This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Asymptotic analysis of linearly elastic flexural shells subjected to an obstacle in absence of friction

Paolo Piersanti Department of Mathematics and Institute for Scientific Computing and Applied Mathematics, Indiana University Bloomington, 729 East Third Street, Bloomington, Indiana, USA ppiersan@iu.edu
Abstract.

In this paper we identify a set of two-dimensional variational inequalities governing the displacement of a linearly elastic flexural shell subjected to a confinement condition, expressing that all the points of the admissible deformed configurations remain in a given half-space. The action of friction is neglected. Keywords. Variational inequalities \cdot Flexural shells \cdot Penalty method \cdot Obstacle problems

MSC 2010. 35J86, 47H07, 74B05.

1. Introduction

Unilateral contact problems arise in many fields such as medicine, engineering, biology and material science. For instance, the description of the motion inside the human heart of the three Aorta valves, which can be regarded as linearly elastic shells, is governed by a mathematical model built up in a way such that each valve remains confined in a certain portion of space without penetrating or being penetrated by the other two valves. In this direction we cite the recent references [40], [41] and [51].

The displacement of a linearly elastic shell is modeled, in general, via the classical equations of three-dimensional linearized elasticity (cf., e.g., [9]). The intrinsic complexity of this model, however, prevents certain situations from being amenably studied like, for instance, when the shell is non-homogeneous and anisotropic (cf., e.g., [7] and [8]), or its thickness varies periodically (cf., e.g., [48] and [49]). It might thus be useful to perform a dimension reduction in order to obtain approximate models which are more amenable to analyze and to implement numerically.

The identification of two-dimensional limit models for time-independent linearly elastic shells was extensively treated by Ciarlet and his associates in the seminal papers [14, 15, 16, 17, 18, 21] for the purpose of justifying Koiter’s model in the case where no obstacles are taken into account. We also mention the papers [44, 45, 47], which are about the numerical computation of the solution of the obstacle-free linear Koiter’s model in the time-dependent case. For the justification of Koiter’s model in the time-dependent case where the action of temperature is considered, we refer the reader to [33]. In the aforementioned papers no confinement conditions were imposed. The recent papers [38] and [39] provide examples of variational-inequalities-based models arising in biology. The paper [37], instead, treats the modeling and analysis of the melting of a shallow ice sheet by means of a set of doubly nonlinear parabolic variational inequalities.

In the recent papers [19, 20, 22, 23], Ciarlet and his associates fully justified Koiter’s model in the case where the linearly elastic shell under consideration is an elliptic membrane shell subject to the aforementioned confinement condition.

The confinement condition we are here considering considerably departs from the Signorini condition usually considered in the existing literature. Indeed, the Signorini contact condition states that only the “lower face” of the shell is required to remain above the “horizontal” plane (cf., e.g. Chapter 63 of [50]). Such a confinement condition renders the asymptotic analysis considerably more difficult as the constraint now bears on a vector field, the displacement vector field of the reference configuration, instead of on only a single component of this field.

The recovery of a set of two-dimensional variational inequalities as a result of a rigorous asymptotic analysis conducted on a ad hoc three-dimensional model based on the classical equations of three-dimensional linearized elasticity in the case where the linearly elastic shell under consideration is a flexural shell has only been addressed, to our best knowledge, by Léger and Miara in the paper [28] in a very amenable geometrical framework. In the paper [28] the authors do not consider the action of friction. The method proposed in the paper [28], which makes use of a very lengthy argument exploiting the properties of cones, is suitable for treating the case where only one linearly elastic flexural shell is considered. In the context of multi-physics multi-scale problems, like for instance those considered by Quarteroni and his associates in [40], [41] and [51], it is not however clear whether the approach proposed by Léger and Miara is suitable. The purpose of this paper is to remedy this situation by presenting a new method, based on the rigorous asymptotic analysis technique developed by Ciarlet, Lods and Miara [21] and the properties of the penalty method for constrained optimization problem (cf., e.g., [10]), for recovering the same set of two-dimensional variational inequalities for linearly elastic flexural shells that were recovered in the recent papers [19, 20] in a more general geometrical framework. It is also worth mentioning that the method we present in this paper makes use of considerably less lengthy computations than those in [28]. In particular, the approach based on the penalty method we are going to implement will save us the effort of constructing a suitable vector field in the instance of recovering the sought two-dimensional limit model. We refer the reader to the references [26, 32, 43, 46].

More precisely, in this paper we recover, via a rigorous asymptotic analysis as the thickness approaches zero over a ad hoc three-dimensional model (three-dimensional in the sense that it is defined over a three-dimensional subset of 3\mathbb{R}^{3}), a set of two-dimensional (two-dimensional in the sense that it is defined over a two-dimensional subset of 2\mathbb{R}^{2}) variational inequalities governing the displacement of a linearly elastic flexural shell subject to remain confined in a half-space in absence of friction. The problem under consideration is an obstacle problem.

The paper is divided into five sections (including this one). In section 2 we recall some background and notation. In section 3 we recall the formulation and the properties of a three-dimensional obstacle problem for “general” linearly elastic shell. In section 4 we specialize the formulation presented in the previous section to the case where the linearly elastic shell under consideration is a flexural shell, and then we scale the three-dimensional obstacle problem in a way such that the integration domain becomes independent of the thickness parameter. The penalized version of the three-dimensional obstacle problem is introduced at the end of this section. Finally, in section 5, a rigorous asymptotic analysis is carried out and the sought set of two-dimensional variational inequalities is recovered.

2. Geometrical preliminaries

For details about the classical notions of differential geometry used in this section and the next one, see, e.g. [11] or [12].

Greek indices, except ε\varepsilon, take their values in the set {1,2}\{1,2\}, while Latin indices, except when they are used for indexing sequences, take their values in the set {1,2,3}\{1,2,3\}, and the summation convention with respect to repeated indices is systematically used in conjunction with these two rules. The notation 𝔼3\mathbb{E}^{3} designates the three-dimensional Euclidean space whose origin is denoted by OO; the Euclidean inner product and the vector product of 𝒖,𝒗𝔼3\bm{u},\bm{v}\in\mathbb{E}^{3} are denoted 𝒖𝒗\bm{u}\cdot\bm{v} and 𝒖×𝒗\bm{u}\times\bm{v}; the Euclidean norm of 𝒖𝔼3\bm{u}\in\mathbb{E}^{3} is denoted |𝒖|\left|\bm{u}\right|. The notation δij\delta^{j}_{i} designates the Kronecker symbol.

Given an open subset Ω\Omega of n\mathbb{R}^{n}, notations such as L2(Ω)L^{2}(\Omega), H1(Ω)H^{1}(\Omega), or H2(Ω)H^{2}(\Omega), designate the usual Lebesgue and Sobolev spaces, and the notation 𝒟(Ω)\mathcal{D}(\Omega) designates the space of all functions that are infinitely differentiable over Ω\Omega and have compact supports in Ω\Omega. The notation X\left\|\cdot\right\|_{X} designates the norm in a normed vector space XX. Spaces of vector-valued functions are denoted with boldface letters.

The positive and negative parts of a function f:Ωf:\Omega\to\mathbb{R} are respectively denoted by:

f+(x):=max{f(x),0} and f(x):=min{f(x),0}xΩ.f^{+}(x):=\max\{f(x),0\}\quad\textup{ and }\quad f^{-}(x):=-\min\{f(x),0\}\quad x\in\Omega.

The boundary Γ\Gamma of an open subset Ω\Omega in n\mathbb{R}^{n} is said to be Lipschitz-continuous if the following conditions are satisfied (cf., e.g., Section 1.18 of [13]): Given an integer s1s\geq 1, there exist constants α1>0\alpha_{1}>0 and L>0L>0, and a finite number of local coordinate systems, with coordinates ϕr=(ϕ1r,,ϕn1r)n1\bm{\phi}^{\prime}_{r}=(\phi_{1}^{r},\dots,\phi_{n-1}^{r})\in\mathbb{R}^{n-1} and ϕr=ϕnr\phi_{r}=\phi_{n}^{r}, sets ω~r:={ϕrn1;|ϕr|<α1}\tilde{\omega}_{r}:=\{\bm{\phi}_{r}\in\mathbb{R}^{n-1};|\bm{\phi}_{r}|<\alpha_{1}\}, 1rs1\leq r\leq s, and corresponding functions

θ~r:ω~r,\tilde{\theta}_{r}:\tilde{\omega}_{r}\to\mathbb{R},

such that

Γ=r=1s{(ϕr,ϕr);ϕrω~r and ϕr=θ~r(ϕr)},\Gamma=\bigcup_{r=1}^{s}\{(\bm{\phi}^{\prime}_{r},\phi_{r});\bm{\phi}^{\prime}_{r}\in\tilde{\omega}_{r}\textup{ and }\phi_{r}=\tilde{\theta}_{r}(\bm{\phi}^{\prime}_{r})\},

and

|θ~r(ϕr)θ~r(𝝊r)|L|ϕr𝝊r|, for all ϕr,𝝊rω~r, and all 1rs.|\tilde{\theta}_{r}(\bm{\phi}^{\prime}_{r})-\tilde{\theta}_{r}(\bm{\upsilon}^{\prime}_{r})|\leq L|\bm{\phi}^{\prime}_{r}-\bm{\upsilon}^{\prime}_{r}|,\textup{ for all }\bm{\phi}^{\prime}_{r},\bm{\upsilon}^{\prime}_{r}\in\tilde{\omega}_{r},\textup{ and all }1\leq r\leq s.

We observe that the second last formula takes into account overlapping local charts, while the last set of inequalities express the Lipschitz continuity of the mappings θ~r\tilde{\theta}_{r}.

An open set Ω\Omega is said to be locally on the same side of its boundary Γ\Gamma if, in addition, there exists a constant α2>0\alpha_{2}>0 such that

{(ϕr,ϕr);ϕrω~r and θ~r(ϕr)<ϕr<θ~r(ϕr)+α2}\displaystyle\{(\bm{\phi}^{\prime}_{r},\phi_{r});\bm{\phi}^{\prime}_{r}\in\tilde{\omega}_{r}\textup{ and }\tilde{\theta}_{r}(\bm{\phi}^{\prime}_{r})<\phi_{r}<\tilde{\theta}_{r}(\bm{\phi}^{\prime}_{r})+\alpha_{2}\} Ω, for all 1rs,\displaystyle\subset\Omega,\quad\textup{ for all }1\leq r\leq s,
{(ϕr,ϕr);ϕrω~r and θ~r(ϕr)α2<ϕr<θ~r(ϕr)}\displaystyle\{(\bm{\phi}^{\prime}_{r},\phi_{r});\bm{\phi}^{\prime}_{r}\in\tilde{\omega}_{r}\textup{ and }\tilde{\theta}_{r}(\bm{\phi}^{\prime}_{r})-\alpha_{2}<\phi_{r}<\tilde{\theta}_{r}(\bm{\phi}^{\prime}_{r})\} nΩ¯, for all 1rs.\displaystyle\subset\mathbb{R}^{n}\setminus\overline{\Omega},\quad\textup{ for all }1\leq r\leq s.

Following [13], a domain in n\mathbb{R}^{n} is considered as a bounded Lipschitz domain, namely, a bounded and connected open subset Ω\Omega of n\mathbb{R}^{n}, whose boundary Ω\partial\Omega is Lipschitz-continuous, the set Ω\Omega being locally on a single side of Ω\partial\Omega.

Let ω\omega be a domain in 2\mathbb{R}^{2}, let y=(yα)y=(y_{\alpha}) denote a generic point in ω¯\overline{\omega}, and let α:=/yα\partial_{\alpha}:=\partial/\partial y_{\alpha} and αβ:=2/yαyβ\partial_{\alpha\beta}:=\partial^{2}/\partial y_{\alpha}\partial y_{\beta}. A mapping 𝜽𝒞1(ω¯;𝔼3)\bm{\theta}\in\mathcal{C}^{1}(\overline{\omega};\mathbb{E}^{3}) is an immersion if the two vectors

𝒂α(y):=α𝜽(y)\bm{a}_{\alpha}(y):=\partial_{\alpha}\bm{\theta}(y)

are linearly independent at each point yω¯y\in\overline{\omega}. Then the image 𝜽(ω¯)\bm{\theta}(\overline{\omega}) of the set ω¯\overline{\omega} under the mapping 𝜽\bm{\theta} is a surface in 𝔼3\mathbb{E}^{3}, equipped with y1,y2y_{1},y_{2} as its curvilinear coordinates. Given any point yω¯y\in\overline{\omega}, the vectors 𝒂α(y)\bm{a}_{\alpha}(y) span the tangent plane to the surface 𝜽(ω¯)\bm{\theta}(\overline{\omega}) at the point 𝜽(y)\bm{\theta}(y), the unit vector

𝒂3(y):=𝒂1(y)×𝒂2(y)|𝒂1(y)×𝒂2(y)|\bm{a}_{3}(y):=\frac{\bm{a}_{1}(y)\times\bm{a}_{2}(y)}{|\bm{a}_{1}(y)\times\bm{a}_{2}(y)|}

is normal to 𝜽(ω¯)\bm{\theta}(\overline{\omega}) at 𝜽(y)\bm{\theta}(y), the three vectors 𝒂i(y)\bm{a}_{i}(y) form the covariant basis at 𝜽(y)\bm{\theta}(y), and the three vectors 𝒂j(y)\bm{a}^{j}(y) defined by the relations

𝒂j(y)𝒂i(y)=δij\bm{a}^{j}(y)\cdot\bm{a}_{i}(y)=\delta^{j}_{i}

form the contravariant basis at 𝜽(y)\bm{\theta}(y); note that the vectors 𝒂β(y)\bm{a}^{\beta}(y) also span the tangent plane to 𝜽(ω¯)\bm{\theta}(\overline{\omega}) at 𝜽(y)\bm{\theta}(y) and that 𝒂3(y)=𝒂3(y)\bm{a}^{3}(y)=\bm{a}_{3}(y).

The first fundamental form of the surface 𝜽(ω¯)\bm{\theta}(\overline{\omega}) is then defined by means of its covariant components

aαβ:=𝒂α𝒂β=aβα𝒞0(ω¯),a_{\alpha\beta}:=\bm{a}_{\alpha}\cdot\bm{a}_{\beta}=a_{\beta\alpha}\in\mathcal{C}^{0}(\overline{\omega}),

or by means of its contravariant components

aαβ:=𝒂α𝒂β=aβα𝒞0(ω¯).a^{\alpha\beta}:=\bm{a}^{\alpha}\cdot\bm{a}^{\beta}=a^{\beta\alpha}\in\mathcal{C}^{0}(\overline{\omega}).

Note that the symmetric matrix field (aαβ)(a^{\alpha\beta}) is then the inverse of the matrix field (aαβ)(a_{\alpha\beta}), that 𝒂β=aαβ𝒂α\bm{a}^{\beta}=a^{\alpha\beta}\bm{a}_{\alpha} and 𝒂α=aαβ𝒂β\bm{a}_{\alpha}=a_{\alpha\beta}\bm{a}^{\beta}, and that the area element along 𝜽(ω¯)\bm{\theta}(\overline{\omega}) is given at each point 𝜽(y),yω¯\bm{\theta}(y),\,y\in\overline{\omega}, by a(y)dy\sqrt{a(y)}\,\mathrm{d}y, where

a:=det(aαβ)𝒞0(ω¯).a:=\det(a_{\alpha\beta})\in\mathcal{C}^{0}(\overline{\omega}).

Given an immersion 𝜽𝒞2(ω¯;𝔼3)\bm{\theta}\in\mathcal{C}^{2}(\overline{\omega};\mathbb{E}^{3}), the second fundamental form of the surface 𝜽(ω¯)\bm{\theta}(\overline{\omega}) is defined by means of its covariant components

bαβ:=α𝒂β𝒂3=𝒂βα𝒂3=bβα𝒞0(ω¯),b_{\alpha\beta}:=\partial_{\alpha}\bm{a}_{\beta}\cdot\bm{a}_{3}=-\bm{a}_{\beta}\cdot\partial_{\alpha}\bm{a}_{3}=b_{\beta\alpha}\in\mathcal{C}^{0}(\overline{\omega}),

or by means of its mixed components

bαβ:=aβσbασ𝒞0(ω¯),b^{\beta}_{\alpha}:=a^{\beta\sigma}b_{\alpha\sigma}\in\mathcal{C}^{0}(\overline{\omega}),

and the Christoffel symbols associated with the immersion 𝜽\bm{\theta} are defined by

Γαβσ:=α𝒂β𝒂σ=Γβασ𝒞0(ω¯).\Gamma^{\sigma}_{\alpha\beta}:=\partial_{\alpha}\bm{a}_{\beta}\cdot\bm{a}^{\sigma}=\Gamma^{\sigma}_{\beta\alpha}\in\mathcal{C}^{0}(\overline{\omega}).

Given an immersion 𝜽𝒞2(ω¯;𝔼3)\bm{\theta}\in\mathcal{C}^{2}(\overline{\omega};\mathbb{E}^{3}) and a vector field 𝜼=(ηi)𝒞1(ω¯;3)\bm{\eta}=(\eta_{i})\in\mathcal{C}^{1}(\overline{\omega};\mathbb{R}^{3}), the vector field

𝜼~:=ηi𝒂i\tilde{\bm{\eta}}:=\eta_{i}\bm{a}^{i}

can be viewed as a displacement field of the surface 𝜽(ω¯)\bm{\theta}(\overline{\omega}), thus defined by means of its covariant components ηi\eta_{i} over the vectors 𝒂i\bm{a}^{i} of the contravariant bases along the surface. If the norms ηi𝒞1(ω¯)\left\|\eta_{i}\right\|_{\mathcal{C}^{1}(\overline{\omega})} are small enough, the mapping (𝜽+ηi𝒂i)𝒞1(ω¯;𝔼3)(\bm{\theta}+\eta_{i}\bm{a}^{i})\in\mathcal{C}^{1}(\overline{\omega};\mathbb{E}^{3}) is also an immersion, so that the set (𝜽+ηi𝒂i)(ω¯)(\bm{\theta}+\eta_{i}\bm{a}^{i})(\overline{\omega}) is also a surface in 𝔼3\mathbb{E}^{3}, equipped with the same curvilinear coordinates as those of the surface 𝜽(ω¯)\bm{\theta}(\overline{\omega}), called the deformed surface corresponding to the displacement field 𝜼~=ηi𝒂i\tilde{\bm{\eta}}=\eta_{i}\bm{a}^{i}. One can then define the first fundamental form of the deformed surface by means of its covariant components

aαβ(𝜼):=\displaystyle a_{\alpha\beta}(\bm{\eta}):= (𝒂α+α𝜼~)(𝒂β+β𝜼~)\displaystyle(\bm{a}_{\alpha}+\partial_{\alpha}\tilde{\bm{\eta}})\cdot(\bm{a}_{\beta}+\partial_{\beta}\tilde{\bm{\eta}})
=\displaystyle= aαβ+𝒂αβ𝜼~+α𝜼~𝒂β+α𝜼~β𝜼~.\displaystyle a_{\alpha\beta}+\bm{a}_{\alpha}\cdot\partial_{\beta}\tilde{\bm{\eta}}+\partial_{\alpha}\tilde{\bm{\eta}}\cdot\bm{a}_{\beta}+\partial_{\alpha}\tilde{\bm{\eta}}\cdot\partial_{\beta}\tilde{\bm{\eta}}.

The linear part with respect to 𝜼~\tilde{\bm{\eta}} in the difference 12(aαβ(𝜼)aαβ)\dfrac{1}{2}(a_{\alpha\beta}(\bm{\eta})-a_{\alpha\beta}) is called the linearized change of metric tensor associated with the displacement field ηi𝒂i\eta_{i}\bm{a}^{i}, the covariant components of which are thus defined by

γαβ(𝜼):=12(𝒂αβ𝜼~+α𝜼~𝒂β)=12(βηα+αηβ)Γαβσησbαβη3=γβα(𝜼).\gamma_{\alpha\beta}(\bm{\eta}):=\dfrac{1}{2}\left(\bm{a}_{\alpha}\cdot\partial_{\beta}\tilde{\bm{\eta}}+\partial_{\alpha}\tilde{\bm{\eta}}\cdot\bm{a}_{\beta}\right)=\frac{1}{2}(\partial_{\beta}\eta_{\alpha}+\partial_{\alpha}\eta_{\beta})-\Gamma^{\sigma}_{\alpha\beta}\eta_{\sigma}-b_{\alpha\beta}\eta_{3}=\gamma_{\beta\alpha}(\bm{\eta}).

The linear part with respect to 𝜼~\tilde{\bm{\eta}} in the difference 12(bαβ(𝜼)bαβ)\dfrac{1}{2}(b_{\alpha\beta}(\bm{\eta})-b_{\alpha\beta}) is called the linearized change of curvature tensor associated with the displacement field ηi𝒂i\eta_{i}\bm{a}^{i}, the covariant components of which are thus defined by

ραβ(𝜼)\displaystyle\rho_{\alpha\beta}(\bm{\eta}) :=(αβ𝜼~Γαβσσ𝜼~)𝒂3=ρβα(𝜼)\displaystyle:=(\partial_{\alpha\beta}\tilde{\bm{\eta}}-\Gamma_{\alpha\beta}^{\sigma}\partial_{\sigma}\tilde{\bm{\eta}})\cdot\bm{a}_{3}=\rho_{\beta\alpha}(\bm{\eta})
=αβη3Γαβσση3bασbσβη3+bασ(βησΓβστητ)+bβτ(αητΓατσησ)+(αbβτ+ΓαστbβσΓαβσbστ)ητ.\displaystyle=\partial_{\alpha\beta}\eta_{3}-\Gamma_{\alpha\beta}^{\sigma}\partial_{\sigma}\eta_{3}-b_{\alpha}^{\sigma}b_{\sigma\beta}\eta_{3}+b_{\alpha}^{\sigma}(\partial_{\beta}\eta_{\sigma}-\Gamma_{\beta\sigma}^{\tau}\eta_{\tau})+b_{\beta}^{\tau}(\partial_{\alpha}\eta_{\tau}-\Gamma_{\alpha\tau}^{\sigma}\eta_{\sigma})+(\partial_{\alpha}b_{\beta}^{\tau}+\Gamma_{\alpha\sigma}^{\tau}b_{\beta}^{\sigma}-\Gamma_{\alpha\beta}^{\sigma}b_{\sigma}^{\tau})\eta_{\tau}.

It turns out that, when a generic surface is subjected to a displacement field ηi𝒂i\eta_{i}\bm{a}^{i} whose tangential covariant components ηα\eta_{\alpha} vanish on a non-zero length portion of boundary of the domain ω\omega, denoted γ0\gamma_{0} in the statement of the next result, the following inequality holds (this inequality plays an essential role in our convergence analysis; cf. the proof of Theorem 5.1). Note that the components of the displacement fields, linearized change of metric tensor and linearized change of curvature tensor appearing in the next theorem are no longer assumed to be continuously differentiable functions; they are instead to be understood in a generalized sense, since they now belong to ad hoc Lebesgue or Sobolev spaces. Throughout the paper the symbol ν\partial_{\nu} denotes the outer unit normal derivative operator along the boundary γ\gamma.

Theorem 2.1.

Let ω\omega be a domain in 2\mathbb{R}^{2} and let an immersion 𝛉𝒞3(ω¯;𝔼3)\bm{\theta}\in\mathcal{C}^{3}(\overline{\omega};\mathbb{E}^{3}) be given. Define the space

𝑽K(ω)\displaystyle\bm{V}_{K}(\omega) :={𝜼=(ηi)H1(ω)×H1(ω)×H2(ω);ηi=νη3=0 on γ0}.\displaystyle:=\{\bm{\eta}=(\eta_{i})\in H^{1}(\omega)\times H^{1}(\omega)\times H^{2}(\omega);\eta_{i}=\partial_{\nu}\eta_{3}=0\textup{ on }\gamma_{0}\}.

Then there exists a constant c0=c0(ω,γ0,𝛉)>0c_{0}=c_{0}(\omega,\gamma_{0},\bm{\theta})>0 such that

{αηαH1(ω)2+η3H2(ω)2}1/2c0{α,βγαβ(𝜼)L2(ω)2+α,βραβ(𝜼)L2(ω)2}1/2\left\{\sum_{\alpha}\left\|\eta_{\alpha}\right\|^{2}_{H^{1}(\omega)}+\left\|\eta_{3}\right\|^{2}_{H^{2}(\omega)}\right\}^{1/2}\leq c_{0}\left\{\sum_{\alpha,\beta}\left\|\gamma_{\alpha\beta}(\bm{\eta})\right\|_{L^{2}(\omega)}^{2}+\sum_{\alpha,\beta}\left\|\rho_{\alpha\beta}(\bm{\eta})\right\|_{L^{2}(\omega)}^{2}\right\}^{1/2}

for all 𝛈=(ηi)𝐕K(ω)\bm{\eta}=(\eta_{i})\in\bm{V}_{K}(\omega). ∎

The above inequality, which is due to [3] and was later on improved by [4] (see also Theorem 2.6-4 of [11]), constitutes an example of a Korn inequality on a general surface, in the sense that it provides an estimate of an appropriate norm of a displacement field defined on a surface in terms of an appropriate norm of a specific “measure of strain” (here, the linearized change of metric tensor and the linearized change of curvature tensor) corresponding to the displacement field considered.

3. The three-dimensional obstacle problem for a “general” linearly elastic shell

Let ω\omega be a domain in 2\mathbb{R}^{2}, let γ:=ω\gamma:=\partial\omega, and let γ0\gamma_{0} be a non-empty relatively open subset of γ\gamma. For each ε>0\varepsilon>0, we define the sets

Ωε=ω×]ε,ε[ and Γ0ε:=γ0×[ε,ε],\Omega^{\varepsilon}=\omega\times\left]-\varepsilon,\varepsilon\right[\quad\textup{ and }\quad\Gamma^{\varepsilon}_{0}:=\gamma_{0}\times\left[-\varepsilon,\varepsilon\right],

we let xε=(xiε)x^{\varepsilon}=(x^{\varepsilon}_{i}) designate a generic point in the set Ωε¯\overline{\Omega^{\varepsilon}}, and we let iε:=/xiε\partial^{\varepsilon}_{i}:=\partial/\partial x^{\varepsilon}_{i}. Hence we also have xαε=yαx^{\varepsilon}_{\alpha}=y_{\alpha} and αε=α\partial^{\varepsilon}_{\alpha}=\partial_{\alpha}.

Given an immersion 𝜽𝒞3(ω¯;𝔼3)\bm{\theta}\in\mathcal{C}^{3}(\overline{\omega};\mathbb{E}^{3}) and ε>0\varepsilon>0, consider a shell with middle surface 𝜽(ω¯)\bm{\theta}(\overline{\omega}) and with constant thickness 2ε2\varepsilon. This means that the reference configuration of the shell is the set 𝚯(Ωε¯)\bm{\Theta}(\overline{\Omega^{\varepsilon}}), where the mapping 𝚯:Ωε¯𝔼3\bm{\Theta}:\overline{\Omega^{\varepsilon}}\to\mathbb{E}^{3} is defined by

𝚯(xε):=𝜽(y)+x3ε𝒂3(y) at each point xε=(y,x3ε)Ωε¯.\bm{\Theta}(x^{\varepsilon}):=\bm{\theta}(y)+x^{\varepsilon}_{3}\bm{a}^{3}(y)\text{ at each point }x^{\varepsilon}=(y,x^{\varepsilon}_{3})\in\overline{\Omega^{\varepsilon}}.

One can then show (cf., e.g., Theorem 3.1-1 of [11]) that, if ε>0\varepsilon>0 is small enough, such a mapping 𝚯𝒞2(Ωε¯;𝔼3)\bm{\Theta}\in\mathcal{C}^{2}(\overline{\Omega^{\varepsilon}};\mathbb{E}^{3}) is an immersion, in the sense that the three vectors

𝒈iε(xε):=iε𝚯(xε),\bm{g}^{\varepsilon}_{i}(x^{\varepsilon}):=\partial^{\varepsilon}_{i}\bm{\Theta}(x^{\varepsilon}),

are linearly independent at each point xεΩε¯x^{\varepsilon}\in\overline{\Omega^{\varepsilon}}; these vectors then constitute the covariant basis at the point 𝚯(xε)\bm{\Theta}(x^{\varepsilon}), while the three vectors 𝒈j,ε(xε)\bm{g}^{j,\varepsilon}(x^{\varepsilon}) defined by the relations

𝒈j,ε(xε)𝒈iε(xε)=δij,\bm{g}^{j,\varepsilon}(x^{\varepsilon})\cdot\bm{g}^{\varepsilon}_{i}(x^{\varepsilon})=\delta^{j}_{i},

constitute the contravariant basis at the same point. It will be implicitly assumed in the sequel that ε>0\varepsilon>0 is small enough so that 𝚯:Ωε¯𝔼3\bm{\Theta}:\overline{\Omega^{\varepsilon}}\to\mathbb{E}^{3} is an immersion.

One then defines the metric tensor associated with the immersion 𝚯\bm{\Theta} by means of its covariant components

gijε:=𝒈iε𝒈jε𝒞1(Ωε¯),g^{\varepsilon}_{ij}:=\bm{g}^{\varepsilon}_{i}\cdot\bm{g}^{\varepsilon}_{j}\in\mathcal{C}^{1}(\overline{\Omega^{\varepsilon}}),

or by means of its contravariant components

gij,ε:=𝒈i,ε𝒈i,ε𝒞1(Ωε¯).g^{ij,\varepsilon}:=\bm{g}^{i,\varepsilon}\cdot\bm{g}^{i,\varepsilon}\in\mathcal{C}^{1}(\overline{\Omega^{\varepsilon}}).

Note that the symmetric matrix field (gij,ε)(g^{ij,\varepsilon}) is then the inverse of the matrix field (gijε)(g^{\varepsilon}_{ij}), that 𝒈j,ε=gij,ε𝒈iε\bm{g}^{j,\varepsilon}=g^{ij,\varepsilon}\bm{g}^{\varepsilon}_{i} and giε=gijε𝒈j,εg^{\varepsilon}_{i}=g^{\varepsilon}_{ij}\bm{g}^{j,\varepsilon}, and that the volume element in 𝚯(Ωε¯)\bm{\Theta}(\overline{\Omega^{\varepsilon}}) is given at each point 𝚯(xε)\bm{\Theta}(x^{\varepsilon}), xεΩε¯x^{\varepsilon}\in\overline{\Omega^{\varepsilon}}, by gε(xε)dxε\sqrt{g^{\varepsilon}(x^{\varepsilon})}\,\mathrm{d}x^{\varepsilon}, where

gε:=det(gijε)𝒞1(Ωε¯).g^{\varepsilon}:=\det(g^{\varepsilon}_{ij})\in\mathcal{C}^{1}(\overline{\Omega^{\varepsilon}}).

One also defines the Christoffel symbols associated with the immersion 𝚯\bm{\Theta} by

Γijp,ε:=i𝒈jε𝒈p,ε=Γjip,ε𝒞0(Ωε¯).\Gamma^{p,\varepsilon}_{ij}:=\partial_{i}\bm{g}^{\varepsilon}_{j}\cdot\bm{g}^{p,\varepsilon}=\Gamma^{p,\varepsilon}_{ji}\in\mathcal{C}^{0}(\overline{\Omega^{\varepsilon}}).

Note that Γα33,ε=Γ33p,ε=0\Gamma^{3,\varepsilon}_{\alpha 3}=\Gamma^{p,\varepsilon}_{33}=0.

Given a vector field 𝒗ε=(viε)𝒞1(Ωε¯;3)\bm{v}^{\varepsilon}=(v^{\varepsilon}_{i})\in\mathcal{C}^{1}(\overline{\Omega^{\varepsilon}};\mathbb{R}^{3}), the associated vector field

𝒗~ε:=viε𝒈i,ε,\tilde{\bm{v}}^{\varepsilon}:=v^{\varepsilon}_{i}\bm{g}^{i,\varepsilon},

can be viewed as a displacement field of the reference configuration 𝚯(Ωε¯)\bm{\Theta}(\overline{\Omega^{\varepsilon}}) of the shell, thus defined by means of its covariant components viεv^{\varepsilon}_{i} over the vectors 𝒈i,ε\bm{g}^{i,\varepsilon} of the contravariant bases in the reference configuration.

If the norms viε𝒞1(Ωε¯)\left\|v^{\varepsilon}_{i}\right\|_{\mathcal{C}^{1}(\overline{\Omega^{\varepsilon}})} are small enough, the mapping (𝚯+viε𝒈i,ε)(\bm{\Theta}+v^{\varepsilon}_{i}\bm{g}^{i,\varepsilon}) is also an immersion, so that one can also define the metric tensor of the deformed configuration (𝚯+viε𝒈i,ε)(Ωε¯)(\bm{\Theta}+v^{\varepsilon}_{i}\bm{g}^{i,\varepsilon})(\overline{\Omega^{\varepsilon}}) by means of its covariant components

gijε(vε):=(𝒈iε+iε𝒗~ε)(𝒈jε+jε𝒗~ε)=gijε+𝒈iεj𝒗~ε+iε𝒗~ε𝒈jε+i𝒗~εj𝒗~ε.\displaystyle g^{\varepsilon}_{ij}(v^{\varepsilon}):=(\bm{g}^{\varepsilon}_{i}+\partial^{\varepsilon}_{i}\tilde{\bm{v}}^{\varepsilon})\cdot(\bm{g}^{\varepsilon}_{j}+\partial^{\varepsilon}_{j}\tilde{\bm{v}}^{\varepsilon})=g^{\varepsilon}_{ij}+\bm{g}^{\varepsilon}_{i}\cdot\partial_{j}\tilde{\bm{v}}^{\varepsilon}+\partial^{\varepsilon}_{i}\tilde{\bm{v}}^{\varepsilon}\cdot\bm{g}^{\varepsilon}_{j}+\partial_{i}\tilde{\bm{v}}^{\varepsilon}\cdot\partial_{j}\tilde{\bm{v}}^{\varepsilon}.

The linear part with respect to 𝒗~ε\tilde{\bm{v}}^{\varepsilon} in the difference 12(gijε(𝒗ε)gijε)\dfrac{1}{2}(g^{\varepsilon}_{ij}(\bm{v}^{\varepsilon})-g^{\varepsilon}_{ij}) is then called the linearized strain tensor associated with the displacement field viε𝒈i,εv^{\varepsilon}_{i}\bm{g}^{i,\varepsilon}, the covariant components of which are thus defined by

eijε(𝒗ε):=12(𝒈iεjε𝒗~ε+iε𝒗~ε𝒈jε)=12(jεviε+iεvjε)Γijp,εvpε=ejiε(𝒗ε).e^{\varepsilon}_{i\|j}(\bm{v}^{\varepsilon}):=\frac{1}{2}\left(\bm{g}^{\varepsilon}_{i}\cdot\partial_{j}^{\varepsilon}\tilde{\bm{v}}^{\varepsilon}+\partial^{\varepsilon}_{i}\tilde{\bm{v}}^{\varepsilon}\cdot\bm{g}^{\varepsilon}_{j}\right)=\frac{1}{2}(\partial^{\varepsilon}_{j}v^{\varepsilon}_{i}+\partial^{\varepsilon}_{i}v^{\varepsilon}_{j})-\Gamma^{p,\varepsilon}_{ij}v^{\varepsilon}_{p}=e_{j\|i}^{\varepsilon}(\bm{v}^{\varepsilon}).

The functions eijε(𝒗ε)e^{\varepsilon}_{i\|j}(\bm{v}^{\varepsilon}) are called the linearized strains in curvilinear coordinates associated with the displacement field viε𝒈i,εv^{\varepsilon}_{i}\bm{g}^{i,\varepsilon}.

We assume throughout this paper that, for each ε>0\varepsilon>0, the reference configuration 𝚯(Ωε¯)\bm{\Theta}(\overline{\Omega^{\varepsilon}}) of the shell is a natural state (i.e., stress-free) and that the material constituting the shell is homogeneous, isotropic, and linearly elastic. The behavior of such an elastic material is thus entirely governed by its two Lamé constants λ0\lambda\geq 0 and μ>0\mu>0 (for details, see, e.g., Section 3.8 of [9]).

We will also assume that the shell is subjected to applied body forces whose density per unit volume is defined by means of its covariant components fi,εL2(Ωε)f^{i,\varepsilon}\in L^{2}(\Omega^{\varepsilon}), and to a homogeneous boundary condition of place along the portion Γ0ε\Gamma^{\varepsilon}_{0} of its lateral face (i.e., the displacement vanishes on Γ0ε\Gamma^{\varepsilon}_{0}).

For what concerns surface traction forces, the mathematical models characterized by the confinement condition considered in this paper (confinement condition which is also considered in [27] in a more amenable geometrical framework) do not take any surface traction forces into account. Indeed, there could be no surface traction forces applied to the portion of the three-dimensional shell boundary that engages contact with the obstacle.

The confinement condition considered in this paper is more suitable in the context of multi-scales multi-bodies problems like, for instance, the study of the motion of the human heart valves, conducted by Quarteroni and his associates in [40, 41, 51] and the references therein.

In this paper we consider a specific obstacle problem for such a shell, in the sense that the shell is also subjected to a confinement condition, expressing that any admissible displacement vector field viε𝒈i,εv^{\varepsilon}_{i}\bm{g}^{i,\varepsilon} must be such that all the points of the corresponding deformed configuration remain in a half-space of the form

:={x𝔼3;𝑶𝒙𝒒0},\mathbb{H}:=\{x\in\mathbb{E}^{3};\,\bm{Ox}\cdot\bm{q}\geq 0\},

where 𝒒\bm{q} is a nonzero vector given once and for all. In other words, any admissible displacement field must satisfy

(𝚯(xε)+viε(xε)𝒈i,ε(xε))𝒒0,\left(\bm{\Theta}(x^{\varepsilon})+v^{\varepsilon}_{i}(x^{\varepsilon})\bm{g}^{i,\varepsilon}(x^{\varepsilon})\right)\cdot\bm{q}\geq 0,

for all xεΩε¯x^{\varepsilon}\in\overline{\Omega^{\varepsilon}}, or possibly only for almost all (a.a. in what follows) xεΩεx^{\varepsilon}\in\Omega^{\varepsilon} when the covariant components viεv^{\varepsilon}_{i} are required to belong to the Sobolev space H1(Ωε)H^{1}(\Omega^{\varepsilon}) as in Theorem 3.1 below.

We will of course assume that the reference configuration satisfies the confinement condition, i.e., that

𝚯(Ωε¯).\bm{\Theta}(\overline{\Omega^{\varepsilon}})\subset\mathbb{H}.

It is to be emphasized that the above confinement condition considerably departs from the usual Signorini condition favored by most authors, who usually require that only the points of the undeformed and deformed “lower face” ω×{ε}\omega\times\{-\varepsilon\} of the reference configuration satisfy the confinement condition (see, e.g., [27], [28], [42]). Clearly, the confinement condition considered in the present paper, which is inspired by the formulation proposed by Brézis & Stampacchia [6], is more physically realistic, since a Signorini condition imposed only on the lower face of the reference configuration does not prevent – at least “mathematically” – other points of the deformed reference configuration to “cross” the plane {x𝔼3;𝑶𝒙𝒒=0}\{x\in\mathbb{E}^{3};\;\bm{Ox}\cdot\bm{q}=0\} and then to end up on the “other side” of this plane (cf., e.g., Chapter 63 in [50]). It is evident that the vector 𝒒\bm{q} is thus orthogonal to the plane associated with the half-space where the linearly elastic shell is required to remain confined.

Such a confinement condition renders the asymptotic analysis considerably more difficult, however, as the constraint now bears on a vector field, the displacement vector field of the reference configuration, instead of on only a single component of this field.

The mathematical modeling of such an obstacle problem for a linearly elastic shell is then clear; since, apart from the confinement condition, the rest, i.e., the function space and the expression of the quadratic energy JεJ^{\varepsilon}, is classical (see, e.g. [11]). More specifically, let

Aijk,ε:=λgij,εgk,ε+μ(gik,εgj,ε+gi,εgjk,ε)=Ajik,ε=Akij,ε,A^{ijk\ell,\varepsilon}:=\lambda g^{ij,\varepsilon}g^{k\ell,\varepsilon}+\mu\left(g^{ik,\varepsilon}g^{j\ell,\varepsilon}+g^{i\ell,\varepsilon}g^{jk,\varepsilon}\right)=A^{jik\ell,\varepsilon}=A^{k\ell ij,\varepsilon},

denote the contravariant components of the elasticity tensor of the elastic material constituting the shell. Then the unknown of the problem, which is the vector field 𝒖ε=(uiε)\bm{u}^{\varepsilon}=(u^{\varepsilon}_{i}) where the functions uiε:Ωε¯u^{\varepsilon}_{i}:\overline{\Omega^{\varepsilon}}\to\mathbb{R} are the three covariant components of the unknown “three-dimensional” displacement vector field uiε𝒈i,εu^{\varepsilon}_{i}\bm{g}^{i,\varepsilon} of the reference configuration of the shell, should minimize the energy Jε:𝑯1(Ωε)J^{\varepsilon}:\bm{H}^{1}(\Omega^{\varepsilon})\to\mathbb{R} defined by

Jε(𝒗ε):=12ΩεAijk,εekε(𝒗ε)eijε(𝒗ε)gεdxεΩεfi,εviεgεdxε,J^{\varepsilon}(\bm{v}^{\varepsilon}):=\frac{1}{2}\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e^{\varepsilon}_{k\|\ell}(\bm{v}^{\varepsilon})e^{\varepsilon}_{i\|j}(\bm{v}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}-\int_{\Omega^{\varepsilon}}f^{i,\varepsilon}v^{\varepsilon}_{i}\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon},

for each 𝒗ε=(viε)𝑯1(Ωε)\bm{v}^{\varepsilon}=(v^{\varepsilon}_{i})\in\bm{H}^{1}(\Omega^{\varepsilon}) over the set of admissible displacements defined by:

𝑼(Ωε):={𝒗ε=(viε)𝑯1(Ωε);𝒗ε=0 on Γ0ε,(𝚯(xε)+viε(xε)𝒈i,ε(xε))𝒒0 for a.a. xεΩε}.\bm{U}(\Omega^{\varepsilon}):=\{\bm{v}^{\varepsilon}=(v^{\varepsilon}_{i})\in\bm{H}^{1}(\Omega^{\varepsilon});\;\bm{v}^{\varepsilon}=\textbf{0}\text{ on }\Gamma^{\varepsilon}_{0},(\bm{\Theta}(x^{\varepsilon})+v^{\varepsilon}_{i}(x^{\varepsilon})\bm{g}^{i,\varepsilon}(x^{\varepsilon}))\cdot\bm{q}\geq 0\textup{ for a.a. }x^{\varepsilon}\in\Omega^{\varepsilon}\}.

The solution to this minimization problem exists and is unique, and it can be also characterized as the unique solution of the following problem:

Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}).

Find 𝐮ε=(uiε)𝐔(Ωε)\bm{u}^{\varepsilon}=(u_{i}^{\varepsilon})\in\bm{U}(\Omega^{\varepsilon}) that satisfies the following variational inequalities:

ΩεAijk,εekε(𝒖ε)(eijε(𝒗ε)eijε(𝒖ε))gεdxεΩεfi,ε(viεuiε)gεdxε,\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e^{\varepsilon}_{k\|\ell}(\bm{u}^{\varepsilon})\left(e^{\varepsilon}_{i\|j}(\bm{v}^{\varepsilon})-e^{\varepsilon}_{i\|j}(\bm{u}^{\varepsilon})\right)\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}\geq\int_{\Omega^{\varepsilon}}f^{i,\varepsilon}(v^{\varepsilon}_{i}-u^{\varepsilon}_{i})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon},

for all 𝐯ε=(viε)𝐔(Ωε)\bm{v}^{\varepsilon}=(v^{\varepsilon}_{i})\in\bm{U}(\Omega^{\varepsilon}). \blacksquare

The following result can be thus straightforwardly proved.

Theorem 3.1.

The quadratic minimization problem: Find a vector field 𝐮ε𝐔(Ωε)\bm{u}^{\varepsilon}\in\bm{U}(\Omega^{\varepsilon}) such that

Jε(𝒖ε)=inf𝒗ε𝑼(Ωε)Jε(𝒗ε),J^{\varepsilon}(\bm{u}^{\varepsilon})=\inf_{\bm{v}^{\varepsilon}\in\bm{U}(\Omega^{\varepsilon})}J^{\varepsilon}(\bm{v}^{\varepsilon}),

has one and only one solution. Besides, 𝐮ε\bm{u}^{\varepsilon} is also the unique solution of Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}).

Proof.

Define the space

𝑽(Ωε):={𝒗ε=(viε)𝑯1(Ωε);𝒗ε=0 on Γ0ε}.\bm{V}(\Omega^{\varepsilon}):=\{\bm{v}^{\varepsilon}=(v^{\varepsilon}_{i})\in\bm{H}^{1}(\Omega^{\varepsilon});\;\bm{v}^{\varepsilon}=\textbf{0}\text{ on }\Gamma^{\varepsilon}_{0}\}.

Then, thanks to the uniform positive-definiteness of the elasticity tensor (Aijk,ε)(A^{ijk\ell,\varepsilon}) [9], and to the boundary condition of place satisfied on Γ0ε=γ0×[ε,ε]\Gamma^{\varepsilon}_{0}=\gamma_{0}\times\left[-\varepsilon,\varepsilon\right] (recall that λ0,μ>0\lambda\geq 0,\,\mu>0, and that γ0\gamma_{0} is a non-empty relatively open subset of γ=ω\gamma=\partial\omega), it can be shown (see Theorems 3.8-3 and 3.9-1 of [12]) that the continuous and symmetric bilinear form

(𝒗ε,𝒘ε)𝑯1(Ωε)×𝑯1(Ωε)ΩεAijk,εekε(𝒗ε)eijε(𝒘ε)gεdxε,(\bm{v}^{\varepsilon},\bm{w}^{\varepsilon})\in\bm{H}^{1}(\Omega^{\varepsilon})\times\bm{H}^{1}(\Omega^{\varepsilon})\mapsto\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e^{\varepsilon}_{k\|\ell}(\bm{v}^{\varepsilon})e^{\varepsilon}_{i\|j}(\bm{w}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon},

is 𝑽(Ωε)\bm{V}(\Omega^{\varepsilon})-elliptic; besides, the linear form

𝒗ε𝑯1(Ωε)Ωεfi,εviεgεdxε,\bm{v}^{\varepsilon}\in\bm{H}^{1}(\Omega^{\varepsilon})\mapsto\int_{\Omega^{\varepsilon}}f^{i,\varepsilon}v^{\varepsilon}_{i}\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon},

is clearly continuous. Finally, the set 𝑼(Ωε)\bm{U}(\Omega^{\varepsilon}) is nonempty (by assumption), closed in 𝑯1(Ωε)\bm{H}^{1}(\Omega^{\varepsilon}) (any convergent sequence in 𝑽(Ωε)\bm{V}(\Omega^{\varepsilon}) contains a subsequence that pointwise converges almost everywhere to its limit), and convex (as is immediately verified).

The existence and uniqueness of the solution to the minimization problem and its characterization by means of variational inequalities is then classical (see, e.g., [13], [24] or [25]). ∎

Since 𝜽(ω¯)𝚯(Ωε¯)\bm{\theta}(\overline{\omega})\subset\bm{\Theta}(\overline{\Omega^{\varepsilon}}), it evidently follows that 𝜽(y)𝒒0\bm{\theta}(y)\cdot\bm{q}\geq 0 for all yω¯y\in\overline{\omega}. But in fact, a stronger property holds (cf. Lemma 2.1 of [23]).

Lemma 3.1.

Let ω\omega be a domain in 2\mathbb{R}^{2}, let 𝛉𝒞1(ω¯;𝔼3)\bm{\theta}\in\mathcal{C}^{1}(\overline{\omega};\mathbb{E}^{3}) be an immersion, let 𝐪𝔼3\bm{q}\in\mathbb{E}^{3} be a non-zero vector, and let ε>0\varepsilon>0. Then the inclusion

𝚯(Ωε¯)={x𝔼3;𝑶𝒙𝒒0}\bm{\Theta}(\overline{\Omega^{\varepsilon}})\subset\mathbb{H}=\{x\in\mathbb{E}^{3};\;\bm{Ox}\cdot\bm{q}\geq 0\}

implies that

infyω¯(𝜽(y)𝒒)>0.\inf_{y\in\overline{\omega}}(\bm{\theta}(y)\cdot\bm{q})>0.

We now consider the “penalized” version of Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}). One such penalization transforms the set of variational inequalities in Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}) into a set of nonlinear variational equations, where the nonlinearity is defined in terms of the measure of the “violation” of the constraint. Let κ>0\kappa>0 denote a penalty parameter. The “penalized” variational formulation corresponding to Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}) takes the following form:

Problem 𝒫κ(Ωε)\mathcal{P}_{\kappa}(\Omega^{\varepsilon}).

Find 𝐮κε=(ui,κε)𝐕(Ωε)\bm{u}_{\kappa}^{\varepsilon}=(u_{i,\kappa}^{\varepsilon})\in\bm{V}(\Omega^{\varepsilon}) that satisfies the following variational equations:

ΩεAijk,εekε(𝒖κε)eijε(𝒗ε)gεdxεεκΩε{[𝚯+uj,κε𝒈j,ε]𝒒}=13|𝒈,ε𝒒|2(viε𝒈i,ε𝒒)gεdxε=Ωεfi,εviεgεdxε,\displaystyle\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e^{\varepsilon}_{k\|\ell}(\bm{u}_{\kappa}^{\varepsilon})e^{\varepsilon}_{i\|j}(\bm{v}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}-\dfrac{\varepsilon}{\kappa}\int_{\Omega^{\varepsilon}}\dfrac{\left\{[\bm{\Theta}+u_{j,\kappa}^{\varepsilon}\bm{g}^{j,\varepsilon}]\cdot\bm{q}\right\}^{-}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}}(v_{i}^{\varepsilon}\bm{g}^{i,\varepsilon}\cdot\bm{q})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}=\int_{\Omega^{\varepsilon}}f^{i,\varepsilon}v^{\varepsilon}_{i}\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon},

for all 𝐯ε=(viε)𝐕(Ωε)\bm{v}^{\varepsilon}=(v^{\varepsilon}_{i})\in\bm{V}(\Omega^{\varepsilon}). \blacksquare

Note that the penalty term corresponds to the operator 𝜷ε:𝑳2(Ωε)𝑳2(Ωε)\bm{\beta}^{\varepsilon}:\bm{L}^{2}(\Omega^{\varepsilon})\to\bm{L}^{2}(\Omega^{\varepsilon}) defined by:

(1) 𝜷ε(𝒗):=({(𝚯+vj𝒈j,ε)𝒒}𝒈i,ε𝒒=13|𝒈,ε𝒒|2)i=13, for all 𝒗=(vi)𝑳2(Ωε).\bm{\beta}^{\varepsilon}(\bm{v}):=\left(-\{(\bm{\Theta}+v_{j}\bm{g}^{j,\varepsilon})\cdot\bm{q}\}^{-}\dfrac{\bm{g}^{i,\varepsilon}\cdot\bm{q}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}}\right)_{i=1}^{3},\quad\textup{ for all }\bm{v}=(v_{i})\in\bm{L}^{2}(\Omega^{\varepsilon}).

Note that the denominator appearing in the definition of 𝜷ε\bm{\beta}^{\varepsilon} is always positive, since the three vector fields 𝒈i,ε\bm{g}^{i,\varepsilon} are linearly independent at each xεΩε¯x^{\varepsilon}\in\overline{\Omega^{\varepsilon}}.

In order to show the existence and uniqueness of solution for Problem 𝒫κ(Ωε)\mathcal{P}_{\kappa}(\Omega^{\varepsilon}), we have to show that the operator 𝜷ε\bm{\beta}^{\varepsilon} is monotone. The following lemma, whose proof can be found, for instance, in [37] serves for this purpose.

Lemma 3.2.

Let Ωn\Omega\subset\mathbb{R}^{n}, with n1n\geq 1 an integer, be an open set. The operator {}:L2(Ω)L2(Ω)-\{\cdot\}:L^{2}(\Omega)\to L^{2}(\Omega) defined by

fL2(Ω){f}:=min{f,0}L2(Ω),f\in L^{2}(\Omega)\mapsto-\{f\}^{-}:=\min\{f,0\}\in L^{2}(\Omega),

is monotone, bounded and Lipschitz continuous with Lipschitz constant equal to 11. ∎

The existence and uniqueness of the solution for Problem 𝒫κ(Ωε)\mathcal{P}_{\kappa}(\Omega^{\varepsilon}) is classical too (cf., e.g., Theorem 3.15 in [26], or [29]).

Theorem 3.2.
Proof.

Observe that the linear form

𝒗𝑯1(Ωε)Ωεfi,εvigεdxε,\bm{v}\in\bm{H}^{1}(\Omega^{\varepsilon})\mapsto\int_{\Omega^{\varepsilon}}f^{i,\varepsilon}v_{i}\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon},

is continuous (cf. Theorem 3.1). The mapping A:𝑽(Ωε)𝑽(Ωε)A:\bm{V}(\Omega^{\varepsilon})\to\bm{V}^{\prime}(\Omega^{\varepsilon}) defined by

A𝒖,𝒗𝑽(Ωε),𝑽(Ωε):=ΩεAijk,εekε(𝒖)eijε(𝒗)gεdxεεκΩε{[𝚯+uj,κε𝒈j,ε]𝒒}=13|𝒈,ε𝒒|2(viε𝒈i,ε𝒒)gεdxε,\langle A\bm{u},\bm{v}\rangle_{\bm{V}^{\prime}(\Omega^{\varepsilon}),\bm{V}(\Omega^{\varepsilon})}:=\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e^{\varepsilon}_{k\|\ell}(\bm{u})e^{\varepsilon}_{i\|j}(\bm{v})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}-\dfrac{\varepsilon}{\kappa}\int_{\Omega^{\varepsilon}}\dfrac{\left\{[\bm{\Theta}+u_{j,\kappa}^{\varepsilon}\bm{g}^{j,\varepsilon}]\cdot\bm{q}\right\}^{-}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}}(v_{i}^{\varepsilon}\bm{g}^{i,\varepsilon}\cdot\bm{q})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon},

is continuous and, thanks to an ad hoc Korn’s inequality in curvilinear coordinates (cf., e.g., Theorem 1.7-4 of [11]) and Lemma 3.2, strictly monotone and coercive. Therefore, the conclusion follows by the Minty-Browder theorem (cf., e.g., Theorem 9.14-1 of  [13]). ∎

By means of a different classical approach based on energy estimates [29, 43] (see also part (iv) of Theorem 9.14-1 of  [13]), one can prove Theorem 3.2 by establishing that for each ε>0\varepsilon>0

(2) 𝒖κε𝒖ε, in 𝑽(Ωε),\bm{u}^{\varepsilon}_{\kappa}\rightharpoonup\bm{u}^{\varepsilon},\quad\textup{ in }\bm{V}(\Omega^{\varepsilon}),

and that, thanks to the monotonicity of the penalty term established in Lemma 3.2, the weak limit satisfies Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}). As a result of the convergence (2) and the continuity of the linear operator eijε:𝑯1(Ωε)L2(Ωε)e^{\varepsilon}_{i\|j}:\bm{H}^{1}(\Omega^{\varepsilon})\to L^{2}(\Omega^{\varepsilon}), we have that

eijε(𝒖κε)eijε(𝒖ε), in L2(Ωε).e^{\varepsilon}_{i\|j}(\bm{u}^{\varepsilon}_{\kappa})\rightharpoonup e^{\varepsilon}_{i\|j}(\bm{u}^{\varepsilon}),\quad\textup{ in }L^{2}(\Omega^{\varepsilon}).

Actually, a stronger conclusion holds: Given ε>0\varepsilon>0, the following strong convergence holds

𝒖κε𝒖ε, in 𝑽(Ωε).\bm{u}^{\varepsilon}_{\kappa}\to\bm{u}^{\varepsilon},\quad\textup{ in }\bm{V}(\Omega^{\varepsilon}).

To see this, observe that the uniform positive-definiteness of the elasticity tensor (Aijk,ε)(A^{ijk\ell,\varepsilon}) (cf., e.g., [9]), Korn’s inequality (viz. Theorem 1.7-4 of [11]), the monotonicity of the penalty term (Lemma 3.2), the continuity of the operators eijεe_{i\|j}^{\varepsilon}, and the weak convergence (2) give

𝒖κε𝒖ε𝑯1(Ωε)2\displaystyle\|\bm{u}^{\varepsilon}_{\kappa}-\bm{u}^{\varepsilon}\|_{\bm{H}^{1}(\Omega^{\varepsilon})}^{2} c0ceg0ΩεAijk,εekε(𝒖κε𝒖ε)eijε(𝒖κε𝒖ε)gεdxε\displaystyle\leq\dfrac{c_{0}c_{e}}{\sqrt{g_{0}}}\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e^{\varepsilon}_{k\|\ell}(\bm{u}^{\varepsilon}_{\kappa}-\bm{u}^{\varepsilon})e^{\varepsilon}_{i\|j}(\bm{u}^{\varepsilon}_{\kappa}-\bm{u}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
=εc0ceg0κΩε{[𝚯+uj,κε𝒈j,ε]𝒒}=13|𝒈,ε𝒒|2((ui,κεuiε)𝒈i,ε𝒒)gεdxε\displaystyle=\dfrac{\varepsilon c_{0}c_{e}}{\sqrt{g_{0}}\kappa}\int_{\Omega^{\varepsilon}}\dfrac{\left\{[\bm{\Theta}+u_{j,\kappa}^{\varepsilon}\bm{g}^{j,\varepsilon}]\cdot\bm{q}\right\}^{-}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}}((u^{\varepsilon}_{i,\kappa}-u^{\varepsilon}_{i})\bm{g}^{i,\varepsilon}\cdot\bm{q})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
+c0ceg0Ωεfi,ε(ui,κεuiε)gεdxε\displaystyle\quad+\dfrac{c_{0}c_{e}}{\sqrt{g_{0}}}\int_{\Omega^{\varepsilon}}f^{i,\varepsilon}(u^{\varepsilon}_{i,\kappa}-u^{\varepsilon}_{i})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
c0ceg0ΩεAijk,εekε(𝒖ε)eijε(𝒖κε𝒖ε)gεdxε\displaystyle\quad-\dfrac{c_{0}c_{e}}{\sqrt{g_{0}}}\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e^{\varepsilon}_{k\|\ell}(\bm{u}^{\varepsilon})e^{\varepsilon}_{i\|j}(\bm{u}^{\varepsilon}_{\kappa}-\bm{u}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
c0ceg0Ωεfi,ε(ui,κεuiε)gεdxε\displaystyle\leq\dfrac{c_{0}c_{e}}{\sqrt{g_{0}}}\int_{\Omega^{\varepsilon}}f^{i,\varepsilon}(u^{\varepsilon}_{i,\kappa}-u^{\varepsilon}_{i})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
c0ceg0ΩεAijk,εekε(𝒖ε)eijε(𝒖κε𝒖ε)gεdxε0,\displaystyle\quad-\dfrac{c_{0}c_{e}}{\sqrt{g_{0}}}\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e^{\varepsilon}_{k\|\ell}(\bm{u}^{\varepsilon})e^{\varepsilon}_{i\|j}(\bm{u}^{\varepsilon}_{\kappa}-\bm{u}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}\to 0,

as κ0\kappa\to 0. In particular, we have that for each ε>0\varepsilon>0 and for each δ>0\delta>0, we can find a number κ0=κ0(δ,ε)>0\kappa_{0}=\kappa_{0}(\delta,\varepsilon)>0 such that, for each 0<κ<κ00<\kappa<\kappa_{0}, it results

(3) 𝒖ε𝒖κε𝑯1(Ωε)<δ2,\|\bm{u}^{\varepsilon}-\bm{u}^{\varepsilon}_{\kappa}\|_{\bm{H}^{1}(\Omega^{\varepsilon})}<\dfrac{\delta}{2},

for all ε>0\varepsilon>0, where 𝒖ε\bm{u}^{\varepsilon} and 𝒖κε\bm{u}^{\varepsilon}_{\kappa} respectively denote the solutions of Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}) and Problem 𝒫κ(Ωε)\mathcal{P}_{\kappa}(\Omega^{\varepsilon}).

We observe that if 𝜷ε(𝒖κε)\bm{\beta}^{\varepsilon}(\bm{u}^{\varepsilon}_{\kappa}) enjoys higher regularity (viz., e.g., [43] and [30]) then the threshold number κ0\kappa_{0} can be made independent of ε\varepsilon.

Theorem 3.3.

Let κ>0\kappa>0 be given. Let 𝐮ε\bm{u}^{\varepsilon} be the solution of Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}) and let 𝐮κε\bm{u}^{\varepsilon}_{\kappa} be the solution of Problem 𝒫κ(Ωε)\mathcal{P}_{\kappa}(\Omega^{\varepsilon}).

Assume that there exists a constant C1>0C_{1}>0 independent of κ\kappa and ε\varepsilon such that 𝛃ε(𝐮κε)𝐕(Ωε)C1κ\|\bm{\beta}^{\varepsilon}(\bm{u}_{\kappa}^{\varepsilon})\|_{\bm{V}(\Omega^{\varepsilon})}\leq C_{1}\sqrt{\kappa}, where the nonlinear operator 𝛃ε\bm{\beta}^{\varepsilon} has been defined in (1).

Then, there exists a constant C>0C>0 independent of ε\varepsilon and κ\kappa such that:

𝒖ε𝒖κε𝑽(Ωε)Cκ.\|\bm{u}^{\varepsilon}-\bm{u}^{\varepsilon}_{\kappa}\|_{\bm{V}(\Omega^{\varepsilon})}\leq C\sqrt{\kappa}.
Proof.

For each 𝒗𝑳2(Ωε)\bm{v}\in\bm{L}^{2}(\Omega^{\varepsilon}), define the operator 𝜷~ε:𝑳2(Ωε)𝑳2(Ωε)\tilde{\bm{\beta}}^{\varepsilon}:\bm{L}^{2}(\Omega^{\varepsilon})\to\bm{L}^{2}(\Omega^{\varepsilon}) by:

𝜷~ε(𝒗):=({(𝚯+vj𝒈j,ε)𝒒}(𝒈i,ε𝒒=13|𝒈,ε𝒒|2))i=13.\tilde{\bm{\beta}}^{\varepsilon}(\bm{v}):=\left(-\{(\bm{\Theta}+v_{j}\bm{g}^{j,\varepsilon})\cdot\bm{q}\}^{-}\left(\dfrac{\bm{g}^{i,\varepsilon}\cdot\bm{q}}{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}\right)\right)_{i=1}^{3}.

Define P(𝒖κε):=𝒖κε𝜷~ε(𝒖κε)P(\bm{u}^{\varepsilon}_{\kappa}):=\bm{u}^{\varepsilon}_{\kappa}-\tilde{\bm{\beta}}^{\varepsilon}(\bm{u}^{\varepsilon}_{\kappa}), and observe that P(𝒖κε)𝑼(Ωε)P(\bm{u}^{\varepsilon}_{\kappa})\in\bm{U}(\Omega^{\varepsilon}). Indeed, a direct computation gives

(𝚯+[uκ,iε{(𝚯+uκ,jε𝒈j,ε)𝒒}(𝒈i,ε𝒒)=13|𝒈,ε𝒒|2]𝒈i,ε)𝒒=((𝚯+uκ,iε𝒈i,ε)𝒒)+{(𝚯+uκ,iε𝒈i,ε)𝒒}\displaystyle\left(\bm{\Theta}+\left[u^{\varepsilon}_{\kappa,i}-\dfrac{-\{(\bm{\Theta}+u^{\varepsilon}_{\kappa,j}\bm{g}^{j,\varepsilon})\cdot\bm{q}\}^{-}(\bm{g}^{i,\varepsilon}\cdot\bm{q})}{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}\right]\bm{g}^{i,\varepsilon}\right)\cdot\bm{q}=((\bm{\Theta}+u^{\varepsilon}_{\kappa,i}\bm{g}^{i,\varepsilon})\cdot\bm{q})+\{(\bm{\Theta}+u^{\varepsilon}_{\kappa,i}\bm{g}^{i,\varepsilon})\cdot\bm{q}\}^{-}
={(𝚯+uκ,iε𝒈i,ε)𝒒}+0.\displaystyle=\{(\bm{\Theta}+u^{\varepsilon}_{\kappa,i}\bm{g}^{i,\varepsilon})\cdot\bm{q}\}^{+}\geq 0.

Let us estimate

𝒖κε𝒖ε𝑽(Ωε)𝜷~ε(𝒖κε)𝑽(Ωε)+𝒖κε𝜷~ε(𝒖κε)𝒖ε𝑽(Ωε)C1κ+𝒖κε𝜷~ε(𝒖κε)𝒖ε𝑽(Ωε),\|\bm{u}^{\varepsilon}_{\kappa}-\bm{u}^{\varepsilon}\|_{\bm{V}(\Omega^{\varepsilon})}\leq\|\tilde{\bm{\beta}}^{\varepsilon}(\bm{u}^{\varepsilon}_{\kappa})\|_{\bm{V}(\Omega^{\varepsilon})}+\|\bm{u}^{\varepsilon}_{\kappa}-\tilde{\bm{\beta}}^{\varepsilon}(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon}\|_{\bm{V}(\Omega^{\varepsilon})}\leq C_{1}\sqrt{\kappa}+\|\bm{u}^{\varepsilon}_{\kappa}-\tilde{\bm{\beta}}^{\varepsilon}(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon}\|_{\bm{V}(\Omega^{\varepsilon})},

where the latter inequality holds thanks to the assumed estimate for the penalty term. Since P(𝒖κε)𝑼(Ωε)P(\bm{u}^{\varepsilon}_{\kappa})\in\bm{U}(\Omega^{\varepsilon}), an application of the uniform positive definiteness of the fourth order three-dimensional elasticity tensor (Aijk,ε)(A^{ijk\ell,\varepsilon}) (Theorem 1.8-1 of [11]), Korn’s inequality (Theorem 1.7-4 in [11]) gives

g0cec0P(𝒖κε)𝒖ε𝑽(Ωε)2ΩεAijk,εekε(P(𝒖κε)𝒖ε)eijε(P(𝒖κε)𝒖ε)gεdxε\displaystyle\dfrac{\sqrt{g_{0}}}{c_{e}c_{0}}\|P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon}\|_{\bm{V}(\Omega^{\varepsilon})}^{2}\leq\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e_{k\|\ell}^{\varepsilon}(P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon})e_{i\|j}^{\varepsilon}(P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
Ωε𝒇ε(P(𝒖κε)𝒖ε)gεdxε+ΩεAijk,εekε(P(𝒖κε))eijε(P(𝒖κε)𝒖ε)gεdxε\displaystyle\leq-\int_{\Omega^{\varepsilon}}\bm{f}^{\varepsilon}\cdot(P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}+\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e_{k\|\ell}^{\varepsilon}(P(\bm{u}^{\varepsilon}_{\kappa}))e_{i\|j}^{\varepsilon}(P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
=Ωε𝒇ε(P(𝒖κε)𝒖ε)gεdxεεκΩε𝜷ε(𝒖κε)(P(𝒖κε)𝒖ε)gεdxε+Ωε𝒇ε(P(𝒖κε)𝒖ε)gεdxε\displaystyle=-\int_{\Omega^{\varepsilon}}\bm{f}^{\varepsilon}\cdot(P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}-\dfrac{\varepsilon}{\kappa}\int_{\Omega^{\varepsilon}}\bm{\beta}^{\varepsilon}(\bm{u}^{\varepsilon}_{\kappa})\cdot(P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}+\int_{\Omega^{\varepsilon}}\bm{f}^{\varepsilon}\cdot(P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
ΩεAijk,εekε(𝜷~ε(𝒖κε))eijε(P(𝒖κε)𝒖ε)gεdxε\displaystyle\quad-\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e_{k\|\ell}^{\varepsilon}(\tilde{\bm{\beta}}^{\varepsilon}(\bm{u}^{\varepsilon}_{\kappa}))e_{i\|j}^{\varepsilon}(P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
=εκΩε({(𝚯+uκ,jε𝒈j,ε)𝒒})(uiε𝒈i,ε𝒒=13|𝒈,ε𝒒|2)gεdxε\displaystyle=\dfrac{\varepsilon}{\kappa}\int_{\Omega^{\varepsilon}}\left(-\{(\bm{\Theta}+u^{\varepsilon}_{\kappa,j}\bm{g}^{j,\varepsilon})\cdot\bm{q}\}^{-}\right)\left(\dfrac{u^{\varepsilon}_{i}\bm{g}^{i,\varepsilon}\cdot\bm{q}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}}\right)\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
εκΩε({(𝚯+uκ,jε𝒈j,ε)𝒒})(uκ,iε𝒈i,ε𝒒=13|𝒈,ε𝒒|2)gεdxε\displaystyle\quad-\dfrac{\varepsilon}{\kappa}\int_{\Omega^{\varepsilon}}\left(-\{(\bm{\Theta}+u^{\varepsilon}_{\kappa,j}\bm{g}^{j,\varepsilon})\cdot\bm{q}\}^{-}\right)\left(\dfrac{u^{\varepsilon}_{\kappa,i}\bm{g}^{i,\varepsilon}\cdot\bm{q}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}}\right)\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
+εκΩε({(𝚯+uκ,jε𝒈j,ε)𝒒}𝒈i,ε𝒒=13|𝒈,ε𝒒|2)i=13({(𝚯+uκ,jε𝒈j,ε)𝒒}𝒈i,ε𝒒=13|𝒈,ε𝒒|2)i=13gεdxε\displaystyle\quad+\dfrac{\varepsilon}{\kappa}\int_{\Omega^{\varepsilon}}\left(-\{(\bm{\Theta}+u^{\varepsilon}_{\kappa,j}\bm{g}^{j,\varepsilon})\cdot\bm{q}\}^{-}\dfrac{\bm{g}^{i,\varepsilon}\cdot\bm{q}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}}\right)_{i=1}^{3}\cdot\left(-\{(\bm{\Theta}+u^{\varepsilon}_{\kappa,j}\bm{g}^{j,\varepsilon})\cdot\bm{q}\}^{-}\dfrac{\bm{g}^{i,\varepsilon}\cdot\bm{q}}{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}\right)_{i=1}^{3}\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
ΩεAijk,εekε(𝜷~ε(𝒖κε))eijε(P(𝒖κε)𝒖ε)gεdxε\displaystyle\quad-\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e_{k\|\ell}^{\varepsilon}(\tilde{\bm{\beta}}^{\varepsilon}(\bm{u}^{\varepsilon}_{\kappa}))e_{i\|j}^{\varepsilon}(P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
εκΩε({(𝚯ε+uκ,jε𝒈j,ε)𝒒})(𝚯𝒒=13|𝒈,ε𝒒|2)gεdxε\displaystyle\leq-\dfrac{\varepsilon}{\kappa}\int_{\Omega^{\varepsilon}}\left(-\{(\bm{\Theta}^{\varepsilon}+u^{\varepsilon}_{\kappa,j}\bm{g}^{j,\varepsilon})\cdot\bm{q}\}^{-}\right)\left(\dfrac{\bm{\Theta}\cdot\bm{q}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}}\right)\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
+εκΩε({(𝚯+uκ,jε𝒈j,ε)𝒒})(𝚯𝒒=13|𝒈,ε𝒒|2)gεdxε\displaystyle\quad+\dfrac{\varepsilon}{\kappa}\int_{\Omega^{\varepsilon}}\left(-\{(\bm{\Theta}+u^{\varepsilon}_{\kappa,j}\bm{g}^{j,\varepsilon})\cdot\bm{q}\}^{-}\right)\left(\dfrac{\bm{\Theta}\cdot\bm{q}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}}\right)\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
εκΩε|{(𝚯+uκ,jε𝒈j,ε)𝒒}|2=13|𝒈,ε𝒒|2gεdxε+εκΩε|{(𝚯+uκ,jε𝒈j,ε)𝒒}|2=13|𝒈,ε𝒒|2gεdxε\displaystyle\quad-\dfrac{\varepsilon}{\kappa}\int_{\Omega^{\varepsilon}}\dfrac{|-\{(\bm{\Theta}+u^{\varepsilon}_{\kappa,j}\bm{g}^{j,\varepsilon})\cdot\bm{q}\}^{-}|^{2}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}}\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}+\dfrac{\varepsilon}{\kappa}\int_{\Omega^{\varepsilon}}\dfrac{|-\{(\bm{\Theta}+u^{\varepsilon}_{\kappa,j}\bm{g}^{j,\varepsilon})\cdot\bm{q}\}^{-}|^{2}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell,\varepsilon}\cdot\bm{q}|^{2}}}\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
ΩεAijk,εekε(𝜷~ε(𝒖κε))eijε(P(𝒖κε)𝒖ε)gεdxε\displaystyle\quad-\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e_{k\|\ell}^{\varepsilon}(\tilde{\bm{\beta}}^{\varepsilon}(\bm{u}^{\varepsilon}_{\kappa}))e_{i\|j}^{\varepsilon}(P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}
=ΩεAijk,εekε(𝜷~ε(𝒖κε))eijε(P(𝒖κε)𝒖ε)gεdxεM𝜷~ε(𝒖κε)𝑽(Ωε)P(𝒖κε)𝒖ε𝑽(Ωε)g1\displaystyle=-\int_{\Omega^{\varepsilon}}A^{ijk\ell,\varepsilon}e_{k\|\ell}^{\varepsilon}(\tilde{\bm{\beta}}^{\varepsilon}(\bm{u}^{\varepsilon}_{\kappa}))e_{i\|j}^{\varepsilon}(P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon})\sqrt{g^{\varepsilon}}\,\mathrm{d}x^{\varepsilon}\leq M\|\tilde{\bm{\beta}}^{\varepsilon}(\bm{u}^{\varepsilon}_{\kappa})\|_{\bm{V}(\Omega^{\varepsilon})}\|P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon}\|_{\bm{V}(\Omega^{\varepsilon})}\sqrt{g_{1}}
MC1g1κP(𝒖κε)𝒖ε𝑽(Ωε),\displaystyle\leq MC_{1}\sqrt{g_{1}}\sqrt{\kappa}\|P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon}\|_{\bm{V}(\Omega^{\varepsilon})},

where we recall that g0g_{0} and g1g_{1} are positive constants independent of ε\varepsilon (viz., e.g., Theorem 3.1-1 of [11]) and that the bounding constant MM for the fourth order three-dimensional elasticity tensor is independent of ε\varepsilon (viz., e.g., Theorem 3.3-2 of [11]).

In conclusion, we have that

P(𝒖κε)𝒖ε𝑽(Ωε)MC1c0ceg1g0κ,\|P(\bm{u}^{\varepsilon}_{\kappa})-\bm{u}^{\varepsilon}\|_{\bm{V}(\Omega^{\varepsilon})}\leq MC_{1}c_{0}c_{e}\dfrac{\sqrt{g_{1}}}{\sqrt{g}_{0}}\sqrt{\kappa},

so that

𝒖κε𝒖ε𝑽(Ωε)Cκ,\|\bm{u}^{\varepsilon}_{\kappa}-\bm{u}^{\varepsilon}\|_{\bm{V}(\Omega^{\varepsilon})}\leq C\sqrt{\kappa},

where the constant CC is defined by

C:=C1(1+Mc0ceg1g0).C:=C_{1}\left(1+Mc_{0}c_{e}\sqrt{\dfrac{g_{1}}{g_{0}}}\right).

This completes the proof. ∎

The property that there exists a constant C1>0C_{1}>0 independent of κ\kappa and ε\varepsilon such that 𝜷ε(𝒖κε)𝑽(Ωε)C1κ\|\bm{\beta}^{\varepsilon}(\bm{u}_{\kappa}^{\varepsilon})\|_{\bm{V}(\Omega^{\varepsilon})}\leq C_{1}\sqrt{\kappa}, where 𝜷ε\bm{\beta}^{\varepsilon} has been defined in (1) could be established upon proving, in the same spirit of [43] (see also [30]), that the solution 𝒖ε\bm{u}^{\varepsilon} of Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}) is of class 𝑯2(Ωε)𝑼(Ωε)\bm{H}^{2}(\Omega^{\varepsilon})\cap\bm{U}(\Omega^{\varepsilon}) and that the solution 𝒖κε\bm{u}^{\varepsilon}_{\kappa} is also of class 𝑯2(Ωε)𝑽(Ωε)\bm{H}^{2}(\Omega^{\varepsilon})\cap\bm{V}(\Omega^{\varepsilon}). However, the latter augmentations of regularity are not easy at all to prove, as the boundary conditions for the corresponding problems are only enforced on a portion of the boundary, thus preventing us from applying the argument of Agmon, Douglis & Nirenberg [1, 2].

4. The scaled three-dimensional problem for a family of flexural shells

In section 3, we considered an obstacle problem for “general” linearly elastic shells. From now on, we will restrict ourselves to a specific class of shells, according to the following definition (proposed in [21]; see also [11]).

Consider a linearly elastic shell, subjected to the various assumptions set forth in section 3. Such a shell is said to be a linearly elastic flexural shell if the following two additional assumptions are satisfied: first, γ0γ\emptyset\neq\gamma_{0}\subset\gamma, i.e., the homogeneous boundary condition of place is imposed over a nonzero area portion of the entire lateral face γ0×[ε,ε]\gamma_{0}\times\left[-\varepsilon,\varepsilon\right] of the shell, and second, the space

𝑽F(ω):={𝜼=(ηi)H1(ω)×H1(ω)×H2(ω);eij(𝜼)=0 in ω and ηi=νη3=0 on γ0}\displaystyle\bm{V}_{F}(\omega):=\{\bm{\eta}=(\eta_{i})\in H^{1}(\omega)\times H^{1}(\omega)\times H^{2}(\omega);e_{i\|j}(\bm{\eta})=0\textup{ in }\omega\textup{ and }\eta_{i}=\partial_{\nu}\eta_{3}=0\textup{ on }\gamma_{0}\}

contains nonzero functions, i.e., 𝑽F(ω){𝟎}\bm{V}_{F}(\omega)\neq\{\bf 0\}.

In this paper, we consider the obstacle problem as defined in section 3 for a family of linearly elastic flexural shells, all sharing the same middle surface and whose thickness 2ε>02\varepsilon>0 is considered as a “small” parameter approaching zero. Our objective then consists in performing an asymptotic analysis as ε0\varepsilon\to 0, so as to seek whether we can identify a limit two-dimensional problem. To this end, we shall resort to a (by now standard) methodology first proposed by Ciarlet, Lods and Miara (cf. Theorem 5.1 of [21] and Theorem 6.2-1 of [11]): To begin with, we “scale” each problem 𝒫(Ωε),ε>0\mathcal{P}(\Omega^{\varepsilon}),\,\varepsilon>0, over a fixed domain Ω\Omega, using appropriate scalings on the unknowns and assumptions on the data. Note that these scalings and assumptions definitely depend on the type of shells that are considered; for instance, those used for the linearly elastic elliptic membrane shells considered elsewhere (cf. [22] and also [23]) are different.

More specifically, let

Ω:=ω×]1,1[,\Omega:=\omega\times\left]-1,1\right[,

let x=(xi)x=(x_{i}) denote a generic point in the set Ω¯\overline{\Omega}, and let i:=/xi\partial_{i}:=\partial/\partial x_{i}. With each point x=(xi)Ω¯x=(x_{i})\in\overline{\Omega}, we associate the point xε=(xiε)x^{\varepsilon}=(x^{\varepsilon}_{i}) defined by

xαε:=xα=yα and x3ε:=εx3,x^{\varepsilon}_{\alpha}:=x_{\alpha}=y_{\alpha}\quad\text{ and }\quad x^{\varepsilon}_{3}:=\varepsilon x_{3},

so that αε=α\partial^{\varepsilon}_{\alpha}=\partial_{\alpha} and 3ε=1ε3\partial^{\varepsilon}_{3}=\displaystyle\frac{1}{\varepsilon}\partial_{3}. To the unknown 𝒖ε=(uiε)\bm{u}^{\varepsilon}=(u^{\varepsilon}_{i}) and to the vector fields 𝒗ε=(viε)\bm{v}^{\varepsilon}=(v^{\varepsilon}_{i}) appearing in the formulation of Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}) corresponding to a linearly elastic flexural shell, we then associate the scaled unknown 𝒖(ε)=(ui(ε))\bm{u}(\varepsilon)=(u_{i}(\varepsilon)) and the scaled vector fields 𝒗=(vi)\bm{v}=(v_{i}) by letting

ui(ε)(x):=uiε(xε) and vi(x):=viε(xε),u_{i}(\varepsilon)(x):=u^{\varepsilon}_{i}(x^{\varepsilon})\text{ and }v_{i}(x):=v^{\varepsilon}_{i}(x^{\varepsilon}),

at each xΩ¯x\in\overline{\Omega}. Finally, we assume that there exist functions fiL2(Ω)f^{i}\in L^{2}(\Omega) independent on ε\varepsilon such that the following assumptions on the data hold:

fi,ε(xε)=ε2fi(x) at each xΩ.f^{i,\varepsilon}(x^{\varepsilon})=\varepsilon^{2}f^{i}(x)\text{ at each }x\in\Omega.

Note that the independence on ε\varepsilon of the Lamé constants assumed in section 3 in the formulation of Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}) implicitly constituted another assumption on the data.

In view of the proposed scaling, we define the “scaled” version of the geometrical entities introduced in section 2:

𝒈i(ε)(x)\displaystyle\bm{g}^{i}(\varepsilon)(x) :=𝒈i,ε(xε) at each xΩ¯,\displaystyle:=\bm{g}^{i,\varepsilon}(x^{\varepsilon})\textup{ at each }x\in\overline{\Omega},
g(ε)(x)\displaystyle g(\varepsilon)(x) :=gε(xε) and Aijk(ε)(x):=Aijk,ε(xε) at each xΩ¯,\displaystyle:=g^{\varepsilon}(x^{\varepsilon})\text{ and }A^{ijk\ell}(\varepsilon)(x):=A^{ijk\ell,\varepsilon}(x^{\varepsilon})\text{ at each }x\in\overline{\Omega},
eαβ(ε;𝒗)\displaystyle e_{\alpha\|\beta}(\varepsilon;\bm{v}) :=12(βvα+αvβ)Γαβk(ε)vk=eβα(ε;𝒗),\displaystyle:=\frac{1}{2}(\partial_{\beta}v_{\alpha}+\partial_{\alpha}v_{\beta})-\Gamma^{k}_{\alpha\beta}(\varepsilon)v_{k}=e_{\beta\|\alpha}(\varepsilon;\bm{v}),
eα3(ε;𝒗)=e3α(ε;𝒗)\displaystyle e_{\alpha\|3}(\varepsilon;\bm{v})=e_{3\|\alpha}(\varepsilon;\bm{v}) :=12(1ε3vα+αv3)Γα3σ(ε)vσ,\displaystyle:=\frac{1}{2}\left(\frac{1}{\varepsilon}\partial_{3}v_{\alpha}+\partial_{\alpha}v_{3}\right)-\Gamma^{\sigma}_{\alpha 3}(\varepsilon)v_{\sigma},
e33(ε;𝒗)\displaystyle e_{3\|3}(\varepsilon;\bm{v}) :=1ε3v3,\displaystyle:=\frac{1}{\varepsilon}\partial_{3}v_{3},

where

Γijp(ε)(x):=Γijp,ε(xε) at each xΩ¯.\Gamma^{p}_{ij}(\varepsilon)(x):=\Gamma^{p,\varepsilon}_{ij}(x^{\varepsilon})\textup{ at each }x\in\overline{\Omega}.

Define the space

𝑽(Ω):={𝒗=(vi)𝑯1(Ω);𝒗=0 on γ0×[1,1]},\bm{V}(\Omega):=\{\bm{v}=(v_{i})\in\bm{H}^{1}(\Omega);\;\bm{v}=\textbf{0}\textup{ on }\gamma_{0}\times\left[-1,1\right]\},

and define, for each ε>0\varepsilon>0, the set

𝑼(ε;Ω)\displaystyle\bm{U}(\varepsilon;\Omega) :={𝒗=(vi)𝑽(Ω);(𝜽(y)+εx3𝒂3(y)+vi(x)𝒈i(ε)(x))𝒒0 for a.a. x=(y,x3)Ω}.\displaystyle:=\{\bm{v}=(v_{i})\in\bm{V}(\Omega);\big{(}\bm{\theta}(y)+\varepsilon x_{3}\bm{a}_{3}(y)+v_{i}(x)\bm{g}^{i}(\varepsilon)(x)\big{)}\cdot\bm{q}\geq 0\textup{ for a.a. }x=(y,x_{3})\in\Omega\}.

We are thus in a position to introduce the “scaled” version of Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}), that will be denoted in what follows by 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega).

Problem 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega).

Find 𝐮(ε)=(ui(ε))𝐔(ε;Ω)\bm{u}(\varepsilon)=(u_{i}(\varepsilon))\in\bm{U}(\varepsilon;\Omega) that satisfies the following variational inequalities:

ΩAijk(ε)ek(ε;𝒖(ε))(eij(ε;𝒗)eij(ε;𝒖(ε)))g(ε)dxε2Ωfi(viui(ε))g(ε)dx,\displaystyle\int_{\Omega}A^{ijk\ell}(\varepsilon)e_{k\|\ell}(\varepsilon;\bm{u}(\varepsilon))\left(e_{i\|j}(\varepsilon;\bm{v})-e_{i\|j}(\varepsilon;\bm{u}(\varepsilon))\right)\sqrt{g(\varepsilon)}\,\mathrm{d}x\geq\varepsilon^{2}\int_{\Omega}f^{i}(v_{i}-u_{i}(\varepsilon))\sqrt{g(\varepsilon)}\,\mathrm{d}x,

for all 𝐯=(vi)𝐔(ε;Ω)\bm{v}=(v_{i})\in\bm{U}(\varepsilon;\Omega). \blacksquare

Theorem 4.1.

The scaled unknown 𝐮(ε)\bm{u}(\varepsilon) is the unique solution of the variational Problem 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega).

Proof.

The variational Problem 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega) simply constitutes a re-writing of the variational Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}), this time in terms of the scaled unknown 𝒖(ε)\bm{u}(\varepsilon), of the vector fields 𝒗\bm{v}, and of the functions fif^{i}, which are now all defined over the domain Ω{\Omega}. Then the assertion follows from this observation. ∎

The functions eij(ε;𝒗)e_{i\|j}(\varepsilon;\bm{v}) appearing in Problem 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega) are called the scaled linearized strains in curvilinear coordinates associated with the scaled displacement vector field vi𝒈i(ε)v_{i}\bm{g}^{i}(\varepsilon).

For later purposes (like in Lemma 4.1 below), we also let

𝒈i(ε)(x):=𝒈iε(xε) at each xΩ¯.\bm{g}_{i}(\varepsilon)(x):=\bm{g}^{\varepsilon}_{i}(x^{\varepsilon})\textup{ at each }x\in\overline{\Omega}.

Likewise, one can introduce the “scaled” version of Problem 𝒫κ(Ωε)\mathcal{P}_{\kappa}(\Omega^{\varepsilon}), that will be denoted in what follows by 𝒫κ(ε;Ω)\mathcal{P}_{\kappa}(\varepsilon;\Omega).

Problem 𝒫κ(ε;Ω)\mathcal{P}_{\kappa}(\varepsilon;\Omega).

Find 𝐮κ(ε)=(ui,κ(ε))𝐕(Ω)\bm{u}_{\kappa}(\varepsilon)=(u_{i,\kappa}(\varepsilon))\in\bm{V}(\Omega) that satisfies the following variational equations:

ΩAijk(ε)ek(ε;𝒖κ(ε))eij(ε;𝒗)g(ε)dx\displaystyle\int_{\Omega}A^{ijk\ell}(\varepsilon)e_{k\|\ell}(\varepsilon;\bm{u}_{\kappa}(\varepsilon))e_{i\|j}(\varepsilon;\bm{v})\sqrt{g(\varepsilon)}\,\mathrm{d}x
εκΩ{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}=13|𝒈(ε)𝒒|2(vi𝒈i(ε)𝒒)g(ε)dx=ε2Ωfivig(ε)dx,\displaystyle\quad-\dfrac{\varepsilon}{\kappa}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}(v_{i}\bm{g}^{i}(\varepsilon)\cdot\bm{q})\sqrt{g(\varepsilon)}\,\mathrm{d}x=\varepsilon^{2}\int_{\Omega}f^{i}v_{i}\sqrt{g(\varepsilon)}\,\mathrm{d}x,

for all 𝐯=(vi)𝐕(Ω)\bm{v}=(v_{i})\in\bm{V}(\Omega). \blacksquare

The following existence and uniqueness result can be thus easily proved in the same fashion as Theorem 3.2.

Theorem 4.2.

The scaled unknown 𝐮κ(ε)\bm{u}_{\kappa}(\varepsilon) is the unique solution of the variational Problem 𝒫κ(ε;Ω)\mathcal{P}_{\kappa}(\varepsilon;\Omega).

Proof.

The variational Problem 𝒫κ(ε;Ω)\mathcal{P}_{\kappa}(\varepsilon;\Omega) simply constitutes a re-writing of the variational Problem 𝒫κ(Ωε)\mathcal{P}_{\kappa}(\Omega^{\varepsilon}), this time in terms of the scaled unknown 𝒖κ(ε)\bm{u}_{\kappa}(\varepsilon), of the vector fields 𝒗\bm{v}, and of the functions fif^{i}, which are now all defined over the domain Ω\Omega. Then the assertion follows from this observation. ∎

By means of an analogous reasoning, a condition similar to (3) can be derived, i.e., for each δ>0\delta>0 we can find a number κ0=κ0(δ,ε)>0\kappa_{0}=\kappa_{0}(\delta,\varepsilon)>0 such that, for each 0<κ<κ00<\kappa<\kappa_{0}, it results

(4) 𝒖(ε)𝒖κ(ε)𝑯1(Ω)<δ2,\|\bm{u}(\varepsilon)-\bm{u}_{\kappa}(\varepsilon)\|_{\bm{H}^{1}(\Omega)}<\dfrac{\delta}{2},

for each ε>0\varepsilon>0, where 𝒖(ε)\bm{u}(\varepsilon) and 𝒖κ(ε)\bm{u}_{\kappa}(\varepsilon) respectively denote the solutions of Problem 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega) and Problem 𝒫κ(ε;Ω)\mathcal{P}_{\kappa}(\varepsilon;\Omega).

In the same spirit as Theorem 3.3 it can be shown that if the scaled solution 𝒖(ε)\bm{u}(\varepsilon) enjoys higher regularity then the threshold value κ0\kappa_{0} can be made independent of ε\varepsilon.

Without loss of generality (cf., e.g., [43]), given any ε>0\varepsilon>0, we restrict ourselves to considering penalty parameters with the following property:

(5) 0<κ=ε.0<\kappa=\sqrt{\varepsilon}.

It is straightforward to observe that κ0\kappa\to 0 as ε0\varepsilon\to 0. We observe that the variational Problem 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega) could have been equivalently written as a minimization problem, thus mimicking that found in Theorem 3.1. It turns out, however, that its formulation in Theorem 4.2 as a set of penalized variational equations is more convenient for the asymptotic analysis undertaken in section 5.

It is immediately verified (cf., e.g., [11]) that other assumptions on the data are possible that would give rise to the same problem over the fixed domain Ω\Omega. For instance, should the Lamé constants (now denoted) λε\lambda^{\varepsilon} and με\mu^{\varepsilon} appearing in Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}) be of the form λε=εtλ\lambda^{\varepsilon}=\varepsilon^{t}\lambda and με=εtμ\mu^{\varepsilon}=\varepsilon^{t}\mu, where λ0\lambda\geq 0 and μ\mu are constants independent of ε\varepsilon and tt is an arbitrary real number, the same Problem 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega) arises if we assume that the components of the applied body force density are now of the form

fi,ε(xε)=ε2+tfi(x) at each xΩ,f^{i,\varepsilon}(x^{\varepsilon})=\varepsilon^{2+t}f^{i}(x)\text{ at each }x\in\Omega,

where the functions fiL2(Ω)f^{i}\in L^{2}(\Omega) are independent of ε\varepsilon.

The next lemma assembles various asymptotic properties as ε0\varepsilon\to 0 of functions and vector fields appearing in the formulation of Problem 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega); these properties will be repeatedly used in the proof of the convergence theorem (Theorem 5.1).

In the statement of the next preparatory lemma (cf., e.g., Theorems 3.3-1 and 3.3-2 of [11]), the notation “O(ε)O(\varepsilon)”, or “O(ε2)O(\varepsilon^{2})”, stands for a remainder that is of order ε\varepsilon, or ε2\varepsilon^{2}, with respect to the sup-norm over the set Ω¯\overline{\Omega}, and any function, or vector-valued function, of the variable yω¯y\in\overline{\omega}, such as aαβ,bαβ,𝒂ia^{\alpha\beta},b_{\alpha\beta},\bm{a}^{i}, etc. (all these are defined in section 2) is identified with the function, or vector-valued function, of x=(y,x3)Ω¯=ω¯×[1,1]x=(y,x_{3})\in\overline{\Omega}=\overline{\omega}\times\left[-1,1\right] that takes the same value at x3=0x_{3}=0 and is independent of x3[1,1]x_{3}\in\left[-1,1\right]; for brevity, this extension from ω¯\overline{\omega} to Ω¯\overline{\Omega} is designated with the same notation.

Recall that ε>0\varepsilon>0 is implicitly assumed to be small enough so that 𝚯:Ωε¯𝔼3\bm{\Theta}:\overline{\Omega^{\varepsilon}}\to\mathbb{E}^{3} is an immersion.

Lemma 4.1.

Let 𝛉𝒞3(ω¯;3)\bm{\theta}\in\mathcal{C}^{3}(\overline{\omega};\mathbb{R}^{3}) be an immersion. Let ε0\varepsilon_{0} be defined as in Theorem 3.1-1 of [11]. The functions Aijk(ε)=Ajik(ε)=Akij(ε)A^{ijk\ell}(\varepsilon)=A^{jik\ell}(\varepsilon)=A^{k\ell ij}(\varepsilon) have the following properties:

Aijk(ε)=Aijk(0)+O(ε),Aαβσ3(ε)=Aα333(ε)=0,A^{ijk\ell}(\varepsilon)=A^{ijk\ell}(0)+O(\varepsilon),\quad A^{\alpha\beta\sigma 3}(\varepsilon)=A^{\alpha 333}(\varepsilon)=0,

for all 0<εε00<\varepsilon\leq\varepsilon_{0}, where

Aαβστ(0)\displaystyle A^{\alpha\beta\sigma\tau}(0) =λaαβaστ+μ(aασaβτ+aατaβσ),\displaystyle=\lambda a^{\alpha\beta}a^{\sigma\tau}+\mu(a^{\alpha\sigma}a^{\beta\tau}+a^{\alpha\tau}a^{\beta\sigma}),
Aαβ33(0)\displaystyle A^{\alpha\beta 33}(0) =λaαβ,Aα3σ3(0)=μaασ,A3333(0)=λ+2μ,\displaystyle=\lambda a^{\alpha\beta},\quad A^{\alpha 3\sigma 3}(0)=\mu a^{\alpha\sigma},\quad A^{3333}(0)=\lambda+2\mu,

and there exists a constant C0>0C_{0}>0 such that

i,j|tij|2C0Aijk(ε)(x)tktij\sum_{i,j}\left|t_{ij}\right|^{2}\leq C_{0}A^{ijk\ell}(\varepsilon)(x)t_{k\ell}t_{ij}

for all 0<εε00<\varepsilon\leq\varepsilon_{0}, all xΩ¯x\in\overline{\Omega}, and all symmetric matrices (tij)(t_{ij}).

The functions Γijp(ε)\Gamma^{p}_{ij}(\varepsilon) and g(ε)g(\varepsilon) have the following properties:

Γαβσ(ε)\displaystyle\Gamma^{\sigma}_{\alpha\beta}(\varepsilon) =Γαβσεx3(αbβσ+ΓατσbβτΓαβτbτσ)+O(ε2),\displaystyle=\Gamma^{\sigma}_{\alpha\beta}-\varepsilon x_{3}(\partial_{\alpha}b^{\sigma}_{\beta}+\Gamma^{\sigma}_{\alpha\tau}b^{\tau}_{\beta}-\Gamma^{\tau}_{\alpha\beta}b^{\sigma}_{\tau})+O(\varepsilon^{2}),
Γαβ3(ε)\displaystyle\Gamma^{3}_{\alpha\beta}(\varepsilon) =bαβεx3bασbσβ,3Γαβp(ε)=O(ε),\displaystyle=b_{\alpha\beta}-\varepsilon x_{3}b^{\sigma}_{\alpha}b_{\sigma\beta},\quad\partial_{3}\Gamma^{p}_{\alpha\beta}(\varepsilon)=O(\varepsilon),
Γα3σ(ε)\displaystyle\Gamma^{\sigma}_{\alpha 3}(\varepsilon) =bασεx3bατbτσ+O(ε2),Γα33(ε)=Γ33p(ε)=0,\displaystyle=-b^{\sigma}_{\alpha}-\varepsilon x_{3}b^{\tau}_{\alpha}b^{\sigma}_{\tau}+O(\varepsilon^{2}),\quad\Gamma^{3}_{\alpha 3}(\varepsilon)=\Gamma^{p}_{33}(\varepsilon)=0,
g(ε)\displaystyle g(\varepsilon) =a+O(ε),\displaystyle=a+O(\varepsilon),

for all 0<εε00<\varepsilon\leq\varepsilon_{0} and all xΩ¯x\in\overline{\Omega}. In particular then, there exist constants g0g_{0} and g1g_{1} such that

0<g0g(ε)(x)g1 for all 0<εε0 and all xΩ¯.0<g_{0}\leq g(\varepsilon)(x)\leq g_{1}\textup{ for all }0<\varepsilon\leq\varepsilon_{0}\textup{ and all }x\in\overline{\Omega}.

The vector fields 𝐠i(ε)\bm{g}_{i}(\varepsilon) and 𝐠j(ε)\bm{g}^{j}(\varepsilon) have the following properties:

𝒈α(ε)\displaystyle\bm{g}_{\alpha}(\varepsilon) =𝒂αεx3bασ𝒂σ,𝒈3(ε)=𝒂3,\displaystyle=\bm{a}_{\alpha}-\varepsilon x_{3}b^{\sigma}_{\alpha}\bm{a}_{\sigma},\quad\bm{g}_{3}(\varepsilon)=\bm{a}_{3},
𝒈α(ε)\displaystyle\bm{g}^{\alpha}(\varepsilon) =𝒂α+εx3bσα𝒂σ+O(ε2),𝒈3(ε)=𝒂3.\displaystyle=\bm{a}^{\alpha}+\varepsilon x_{3}b^{\alpha}_{\sigma}\bm{a}^{\sigma}+O(\varepsilon^{2}),\quad\bm{g}^{3}(\varepsilon)=\bm{a}^{3}.

We recall (cf., e.g., [11]), that the various relations and estimates in Lemma 4.1 hold in fact for any family of linearly elastic shells, i.e., irrespective of whether these shells are flexural ones or not.

When one considers a family of linearly elastic flexural shells whose thickness 2ε2\varepsilon approaches zero, a specific Korn’s inequality in curvilinear coordinates (cf., e.g., Theorem 4.1 of [21] or Theorem 5.3-1 of [11]) holds over the fixed domain Ω=ω×]1,1[\Omega=\omega\times\left]-1,1\right[, according to the following theorem. That the constant C1C_{1} that appears in this inequality is independent of ε>0\varepsilon>0 plays a key role in the asymptotic analysis of such a family (see part (i) of the proof of Theorem 5.1).

Theorem 4.3.

Let 𝛉𝒞3(ω¯;3)\bm{\theta}\in\mathcal{C}^{3}(\overline{\omega};\mathbb{R}^{3}) be an immersion. Let there be given a family of linearly elastic flexural shells with the same middle surface 𝛉(ω¯)\bm{\theta}(\overline{\omega}) and thickness 2ε>02\varepsilon>0. Define the space

𝑽(Ω):={𝒗=(vi)𝑯1(Ω);𝒗=𝟎 on γ0×[1,1]}.\bm{V}(\Omega):=\{\bm{v}=(v_{i})\in\bm{H}^{1}(\Omega);\;\bm{v}=\bm{0}\textup{ on }\gamma_{0}\times\left[-1,1\right]\}.

Then there exist constants ε1>0\varepsilon_{1}>0 and C1>0C_{1}>0 such that

{iviH1(Ω)2}1/2C1ε{i,jeij(ε;𝒗)L2(Ω)2}1/2\left\{\sum_{i}\left\|v_{i}\right\|^{2}_{H^{1}(\Omega)}\right\}^{1/2}\leq\dfrac{C_{1}}{\varepsilon}\left\{\sum_{i,j}\left\|e_{i\|j}(\varepsilon;\bm{v})\right\|^{2}_{L^{2}(\Omega)}\right\}^{1/2}

for all 0<εε10<\varepsilon\leq\varepsilon_{1} and all 𝐯=(vi)𝐕(Ω)\bm{v}=(v_{i})\in\bm{V}(\Omega). ∎

5. Rigorous asymptotic analysis

The ultimate goal of this paper is to show, in the same spirit as [21] (see also Theorem 6.2-1 of [11]), that the solutions 𝐮(ε)\bm{u}(\varepsilon) of the (scaled) three-dimensional problems 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}) converge - as ε\varepsilon approaches zero - to the solution of a two-dimensional problem, denoted by 𝒫F(ω)\mathcal{P}_{F}(\omega) in what follows.

The proof proposed in [21] (see also Theorem 6.2-1 of [11]) resorts, however, to the usage of a specific vector field that was first introduced by Miara and Sanchez-Palencia [31]. This construction argument is, in general, not applicable to the context of variational inequalities, for which the test functions are chosen in a nonempty, closed and convex subset of a certain space.

In order to overcome this difficulty, we first prove that, under the assumption (5), the solutions 𝐮κ(ε)\bm{u}_{\kappa}(\varepsilon) of Problem 𝒫κ(ε;Ω)\mathcal{P}_{\kappa}(\varepsilon;\Omega) converge - as ε\varepsilon approaches zero - to the solution of the variational problem 𝒫F(ω)\mathcal{P}_{F}(\omega).

Define the set

𝑼F(ω)\displaystyle\bm{U}_{F}(\omega) :={𝜼=(ηi)𝑽F(ω);(𝜽(y)+ηi(y)𝒂i(y))𝒒0 for a.a. yω},\displaystyle:=\{\bm{\eta}=(\eta_{i})\in\bm{V}_{F}(\omega);\big{(}\bm{\theta}(y)+\eta_{i}(y)\bm{a}^{i}(y)\big{)}\cdot\bm{q}\geq 0\textup{ for a.a. }y\in\omega\},

where the space 𝑽F(ω)\bm{V}_{F}(\omega) has been defined in section 4. We observe that the set 𝑼F(ω)\bm{U}_{F}(\omega) is nonempty, closed and convex in the space 𝑽F(ω)\bm{V}_{F}(\omega). The vector fields 𝒂i\bm{a}^{i} and the functions Γαβσ,bαβ,aαβ,a\Gamma^{\sigma}_{\alpha\beta},b_{\alpha\beta},a^{\alpha\beta},a, and γαβ(𝜼)\gamma_{\alpha\beta}(\bm{\eta}), have been defined in section 2. We are thus in a position to define the two-dimensional problem 𝒫F(ω)\mathcal{P}_{F}(\omega) as follows:

Problem 𝒫F(ω)\mathcal{P}_{F}(\omega).

Find 𝛇=(ζi)𝐔F(ω)\bm{\zeta}=(\zeta_{i})\in\bm{U}_{F}(\omega) that satisfies the following variational inequalities:

13ωaαβστρστ(𝜻)ραβ(𝜼𝜻)adyωpi(ηiζi)ady,\dfrac{1}{3}\int_{\omega}a^{\alpha\beta\sigma\tau}\rho_{\sigma\tau}(\bm{\zeta})\rho_{\alpha\beta}(\bm{\eta}-\bm{\zeta})\sqrt{a}\,\mathrm{d}y\geq\int_{\omega}p^{i}(\eta_{i}-\zeta_{i})\sqrt{a}\,\mathrm{d}y,

for all 𝛈=(ηi)𝐔F(ω)\bm{\eta}=(\eta_{i})\in\bm{U}_{F}(\omega), where

aαβστ:=4λμλ+2μaαβaστ+2μ(aασaβτ+aατaβσ) and pi:=11fidx3.a^{\alpha\beta\sigma\tau}:=\frac{4\lambda\mu}{\lambda+2\mu}a^{\alpha\beta}a^{\sigma\tau}+2\mu\left(a^{\alpha\sigma}a^{\beta\tau}+a^{\alpha\tau}a^{\beta\sigma}\right)\textup{ and }p^{i}:=\int^{1}_{-1}f^{i}\,\mathrm{d}x_{3}.

\blacksquare

In the same spirit as Theorem 3.1, it can be show that Problem 𝒫F(ω)\mathcal{P}_{F}(\omega) admits one and only one solution.

We are now ready to show that, under the assumption (5), the solutions 𝐮κ(ε)\bm{u}_{\kappa}(\varepsilon) of Problem 𝒫κ(ε;Ω)\mathcal{P}_{\kappa}(\varepsilon;\Omega) converge - as ε\varepsilon approaches zero - to the solution of Problem 𝒫F(ω)\mathcal{P}_{F}(\omega).

Differently from the linearly elastic elliptic membrane case, we will see that problems arise when one has to define an appropriate test vector field for recovering the limit model, which is the main objective of Theorem 5.1 (cf. part (iv)). Since this test vector field will have to depend on the partial derivatives of the displacement, it is hard to find an expression for it that takes into account the geometrical constraint as well. For this reason, the penalty method seems to be the most convenient technique to attack this problem.

Theorem 5.1.

Let ω\omega be a domain in 2\mathbb{R}^{2}, let 𝛉𝒞3(ω¯;𝔼3)\bm{\theta}\in\mathcal{C}^{3}(\overline{\omega};\mathbb{E}^{3}) be the middle surface of a flexural shell, let γ0\gamma_{0} be a non-zero length portion of the boundary γ\gamma (cf. section 4) and let 𝐪𝔼3\bm{q}\in\mathbb{E}^{3} be a non-zero vector given once and for all. Let us consider the non-trivial space (cf. section 4)

𝑽F(ω):={𝜼=(ηi)H1(ω)×H1(ω)×H2(ω);γαβ(𝜼)=0 in ω and ηi=νη3=0 on γ0},\bm{V}_{F}(\omega):=\{\bm{\eta}=(\eta_{i})\in H^{1}(\omega)\times H^{1}(\omega)\times H^{2}(\omega);\gamma_{\alpha\beta}(\bm{\eta})=0\textup{ in }\omega\textup{ and }\eta_{i}=\partial_{\nu}\eta_{3}=0\textup{ on }\gamma_{0}\},

and let us define the set

𝑼F(ω)\displaystyle\bm{U}_{F}(\omega) :={𝜼=(ηi)𝑽F(ω);(𝜽(y)+ηi(y)𝒂i(y))𝒒0 for a.a. yω}.\displaystyle:=\{\bm{\eta}=(\eta_{i})\in\bm{V}_{F}(\omega);\big{(}\bm{\theta}(y)+\eta_{i}(y)\bm{a}^{i}(y)\big{)}\cdot\bm{q}\geq 0\textup{ for a.a. }y\in\omega\}.

Let there be given a family of linearly elastic flexural shells with the same middle surface 𝛉(ω¯)\bm{\theta}(\overline{\omega}) and thickness 2ε>02\varepsilon>0, and let 𝐮κ(ε)𝐕(Ω)\bm{u}_{\kappa}(\varepsilon)\in\bm{V}(\Omega) denote for each ε>0\varepsilon>0 the unique solution of Problem 𝒫κ(ε;Ω)\mathcal{P}_{\kappa}(\varepsilon;\Omega), where the penalty parameter κ\kappa is assumed to be as in (5).

Then there exists 𝐮𝐇1(Ω)\bm{u}\in\bm{H}^{1}(\Omega) independent of the variable x3x_{3} and satisfying

𝒖=𝟎 on Γ0=γ0×[1,1],\displaystyle{\bm{u}=\bf 0}\textup{ on }\Gamma_{0}=\gamma_{0}\times\left[-1,1\right],
𝒖κ(ε)𝒖 in 𝑯1(Ω) as ε0.\displaystyle\bm{u}_{\kappa}(\varepsilon)\to\bm{u}\textup{ in }\bm{H}^{1}(\Omega)\textup{ as }\varepsilon\to 0.

Define the average

𝒖¯=(u¯i):=1211𝒖dx3.\overline{\bm{u}}=(\overline{u}_{i}):=\frac{1}{2}\int^{1}_{-1}\bm{u}\,\mathrm{d}x_{3}.

Then

𝒖¯=𝜻,\overline{\bm{u}}=\bm{\zeta},

where 𝛇\bm{\zeta} is the unique solution to the two-dimensional variational Problem 𝒫F(ω)\mathcal{P}_{F}(\omega).

Proof.

Strong and weak convergences as ε0\varepsilon\to 0 are respectively denoted by \to and \rightharpoonup. For brevity, we let

eij(ε):=eij(ε;𝒖κ(ε)).e_{i\|j}(\varepsilon):=e_{i\|j}(\varepsilon;\bm{u}_{\kappa}(\varepsilon)).

The outline of the proof, which is broken into six parts numbered (i)–(vi), is to a large extent inspired by the proof of Theorem 6.2-1 of [11] (itself adapted from Theorem 5.1 in Ciarlet, Lods and Miara [21]), where no confinement condition was imposed. This is why some parts of the proof are reminiscent of those in [11]; otherwise, considering the confinement condition requires extra care.

(i) There exists a subsequence, still denoted (𝐮κ(ε))ε>0(\bm{u}_{\kappa}(\varepsilon))_{\varepsilon>0}, and there exists 𝐮𝐇1(Ω)\bm{u}\in\bm{H}^{1}(\Omega) and there exist eij1L2(Ω)e_{i\|j}^{1}\in L^{2}(\Omega) satisfying

𝒖=𝟎 on Γ0=γ0×[1,1]{\bm{u}=\bf 0}\textup{ on }\Gamma_{0}=\gamma_{0}\times\left[-1,1\right]

and such that

𝒖κ(ε)𝒖 in 𝑯1(Ω) and thus 𝒖κ(ε)𝒖 in 𝑳2(Ω),\displaystyle\bm{u}_{\kappa}(\varepsilon)\rightharpoonup\bm{u}\textup{ in }\bm{H}^{1}(\Omega)\textup{ and thus }\bm{u}_{\kappa}(\varepsilon)\to\bm{u}\textup{ in }\bm{L}^{2}(\Omega),
(𝜽(y)+ui(y,x3)𝒂i(y))𝒒0 for a.a. x=(y,x3)Ω,\displaystyle(\bm{\theta}(y)+u_{i}(y,x_{3})\bm{a}^{i}(y))\cdot\bm{q}\geq 0\textup{ for a.a. }x=(y,x_{3})\in\Omega,
1εeij(ε)eij1 in L2(Ω).\displaystyle\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon)\rightharpoonup e_{i\|j}^{1}\textup{ in }L^{2}(\Omega).

Letting 𝒗=𝒖κ(ε)\bm{v}=\bm{u}_{\kappa}(\varepsilon) in the variational equations of Problem 𝒫κ(ε;Ω)\mathcal{P}_{\kappa}(\varepsilon;\Omega). Combining the uniform positive-definiteness of the tensor (Aijk(ε))(A^{ijk\ell}(\varepsilon)), the Korn inequality of Theorem 4.3, the asymptotic behavior of the function g(ε)g(\varepsilon) (Lemma 4.1), and the fact that (see Lemmas 3.1 and 3.2)

εκΩ{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}=13|𝒈(ε)𝒒|2(ui,κ(ε)𝒈i(ε)𝒒)g(ε)dx\displaystyle-\dfrac{\varepsilon}{\kappa}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}(u_{i,\kappa}(\varepsilon)\bm{g}^{i}(\varepsilon)\cdot\bm{q})\sqrt{g(\varepsilon)}\,\mathrm{d}x
=εκΩ{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}=13|𝒈(ε)𝒒|2[(𝜽+εx3𝒂3+ui,κ(ε)𝒈i(ε))𝒒]g(ε)dx\displaystyle=-\dfrac{\varepsilon}{\kappa}\dfrac{\int_{\Omega}\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}[(\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{i,\kappa}(\varepsilon)\bm{g}^{i}(\varepsilon))\cdot\bm{q}]\sqrt{g(\varepsilon)}\,\mathrm{d}x
+εκΩ{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}=13|𝒈(ε)𝒒|2[(𝜽+εx3𝒂3)𝒒]g(ε)dx0, for all κ>0 and all ε>0,\displaystyle\quad+\dfrac{\varepsilon}{\kappa}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}[(\bm{\theta}+\varepsilon x_{3}\bm{a}_{3})\cdot\bm{q}]\sqrt{g(\varepsilon)}\,\mathrm{d}x\geq 0,\quad\textup{ for all }\kappa>0\textup{ and all }\varepsilon>0,

we obtain for ε>0\varepsilon>0 sufficiently small:

C12ε2iui,κ(ε)H1(Ω)2\displaystyle C^{-2}_{1}\varepsilon^{2}\sum_{i}\left\|u_{i,\kappa}(\varepsilon)\right\|^{2}_{H^{1}(\Omega)} i,jeij(ε)L2(Ω)2C0g0ΩAijk(ε)ek(ε)eij(ε)g(ε)dx\displaystyle\leq\sum_{i,j}\left\|e_{i\|j}(\varepsilon)\right\|^{2}_{L^{2}(\Omega)}\leq\dfrac{C_{0}}{\sqrt{g_{0}}}\int_{\Omega}A^{ijk\ell}(\varepsilon)e_{k\|\ell}(\varepsilon)e_{i\|j}(\varepsilon)\sqrt{g(\varepsilon)}\,\mathrm{d}x
C0εκg0Ω{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}=13|𝒈(ε)𝒒|2(ui,κ(ε)𝒈i(ε)𝒒)g(ε)dx\displaystyle\quad-\dfrac{C_{0}\varepsilon}{\kappa\sqrt{g_{0}}}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}(u_{i,\kappa}(\varepsilon)\bm{g}^{i}(\varepsilon)\cdot\bm{q})\sqrt{g(\varepsilon)}\,\mathrm{d}x
=ε2C0g0Ωfiui,κ(ε)g(ε)dx\displaystyle=\varepsilon^{2}\frac{C_{0}}{\sqrt{g_{0}}}\int_{\Omega}f^{i}u_{i,\kappa}(\varepsilon)\sqrt{g(\varepsilon)}\,\mathrm{d}x
ε2C0g1g0{ifiL2(Ω)2}1/2{iui,κ(ε)L2(Ω)2}1/2.\displaystyle\leq\varepsilon^{2}C_{0}\sqrt{\frac{g_{1}}{g_{0}}}\Big{\{}\sum_{i}\|f^{i}\|^{2}_{L^{2}(\Omega)}\Big{\}}^{1/2}\Big{\{}\sum_{i}\left\|u_{i,\kappa}(\varepsilon)\right\|^{2}_{L^{2}(\Omega)}\Big{\}}^{1/2}.

This chain of inequalities first shows that the norms (ui,κ(ε)H1(Ω))ε>0\left(\left\|u_{i,\kappa}(\varepsilon)\right\|_{H^{1}(\Omega)}\right)_{\varepsilon>0} are bounded independently of ε\varepsilon, secondly, that the terms (ε1eij(ε)L2(Ω))ε>0\left(\varepsilon^{-1}\left\|e_{i\|j}(\varepsilon)\right\|_{L^{2}(\Omega)}\right)_{\varepsilon>0} are bounded independently of ε\varepsilon and, finally, that the terms

(6) (1ε{[𝜽+εx3𝒂3+ui,κ(ε)𝒈i(ε)]𝒒}κ=13|𝒈(ε)𝒒|24L2(Ω)2)ε>0\left(\dfrac{1}{\sqrt{\varepsilon}}\left\|\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{i,\kappa}(\varepsilon)\bm{g}^{i}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\kappa\sqrt[4]{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}\right\|_{L^{2}(\Omega)}^{2}\right)_{\varepsilon>0}

are bounded independently of ε\varepsilon as well (recall that, by assumption (5), we have that 0<κ=ε0<\kappa=\sqrt{\varepsilon}).

Hence there exist a subsequence, a vector field 𝒖𝑯1(Ω)\bm{u}\in\bm{H}^{1}(\Omega), and functions eij1L2(Ω)e_{i\|j}^{1}\in L^{2}(\Omega) such that, if we let ε0\varepsilon\to 0, the following convergence process occurs:

(7) 𝒖κ(ε)\displaystyle\bm{u}_{\kappa}(\varepsilon) 𝒖 in 𝑯1(Ω),\displaystyle\rightharpoonup\bm{u}\textup{ in }\bm{H}^{1}(\Omega),
1εeij(ε)\displaystyle\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon) eij1 in L2(Ω),\displaystyle\rightharpoonup e_{i\|j}^{1}\textup{ in }L^{2}(\Omega),
1κ{[𝜽+εx3𝒂3+ui,κ(ε)𝒈i(ε)]𝒒}=13|𝒈(ε)𝒒|24\displaystyle\dfrac{1}{\kappa}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{i,\kappa}(\varepsilon)\bm{g}^{i}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\sqrt[4]{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}} 0 in L2(Ω),\displaystyle\to 0\textup{ in }L^{2}(\Omega),
{[𝜽+εx3𝒂3+ui,κ(ε)𝒈i(ε)]𝒒}\displaystyle\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{i,\kappa}(\varepsilon)\bm{g}^{i}(\varepsilon)]\cdot\bm{q}\right\}^{-} 0 in L2(Ω).\displaystyle\to 0\textup{ in }L^{2}(\Omega).

The fact that 𝒖κ(ε)𝒖 in 𝑳2(Ω)\bm{u}_{\kappa}(\varepsilon)\to\bm{u}\textup{ in }\bm{L}^{2}(\Omega) is a consequence of the Rellich-Kondrašov Theorem (viz., e.g., Theorem 6.6-3 of [13]). Note that, by the definition of limit, the latter means that for any given δ>0\delta>0 there exists a number ε2=ε2(δ)>0\varepsilon_{2}=\varepsilon_{2}(\delta)>0 such that for all 0<ε<ε20<\varepsilon<\varepsilon_{2} it results:

(8) 𝒖κ(ε)𝒖𝑳2(Ω)<δ.\|\bm{u}_{\kappa}(\varepsilon)-\bm{u}\|_{\bm{L}^{2}(\Omega)}<\delta.

Note that the third convergence in (7) means that for any given δ>0\delta>0 there exists a number εˇ2=εˇ2(δ)>0\check{\varepsilon}_{2}=\check{\varepsilon}_{2}(\delta)>0 such that for all 0<ε<εˇ20<\varepsilon<\check{\varepsilon}_{2} it results:

(9) {[𝜽+εx3𝒂3+ui,κ(ε)𝒈i(ε)]𝒒}κ=13|𝒈(ε)𝒒|24L2(Ω)<δ.\left\|\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{i,\kappa}(\varepsilon)\bm{g}^{i}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\kappa\sqrt[4]{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}\right\|_{L^{2}(\Omega)}<\delta.

Moreover, recall that the term (6) is bounded independently of ε\varepsilon, in the sense that there exists a constant C=C(C0,C1,g0,g1,ω,γ0,𝜽,𝒇)>0C=C(C_{0},C_{1},g_{0},g_{1},\omega,\gamma_{0},\bm{\theta},\bm{f})>0 such that:

(10) {[𝜽+εx3𝒂3+ui,κ(ε)𝒈i(ε)]𝒒}κ=13|𝒈(ε)𝒒|24L2(Ω)Cε1/4.\left\|\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{i,\kappa}(\varepsilon)\bm{g}^{i}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\kappa\sqrt[4]{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}\right\|_{L^{2}(\Omega)}\leq C\varepsilon^{1/4}.

Therefore, it suffices to take εˇ2=δ4/C\check{\varepsilon}_{2}=\delta^{4}/C.

Note that the fourth convergence in (7) means that for any given δ>0\delta>0 there exists a number ε^2=ε^2(δ)>0\hat{\varepsilon}_{2}=\hat{\varepsilon}_{2}(\delta)>0 such that for all 0<ε<ε^20<\varepsilon<\hat{\varepsilon}_{2} it results:

(11) {[𝜽+εx3𝒂3+ui,κ(ε)𝒈i(ε)]𝒒}L2(Ω)<δ.\left\|\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{i,\kappa}(\varepsilon)\bm{g}^{i}(\varepsilon)]\cdot\bm{q}\right\}^{-}\right\|_{L^{2}(\Omega)}<\delta.

Moreover, recall that the term (6) is bounded independently of ε\varepsilon, in the sense that there exists a constant C=C(C0,C1,g0,g1,ω,γ0,𝜽,𝒇)>0C=C(C_{0},C_{1},g_{0},g_{1},\omega,\gamma_{0},\bm{\theta},\bm{f})>0 such that:

(12) {[𝜽+εx3𝒂3+ui,κ(ε)𝒈i(ε)]𝒒}L2(Ω)Cκε1/4=Cε3/4,\left\|\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{i,\kappa}(\varepsilon)\bm{g}^{i}(\varepsilon)]\cdot\bm{q}\right\}^{-}\right\|_{L^{2}(\Omega)}\leq C\kappa\varepsilon^{1/4}=C\varepsilon^{3/4},

so that ε^2=δ4/3/C\hat{\varepsilon}_{2}=\delta^{4/3}/C is a suitable threshold number for verifying the definition of limit.

Combining the convergence (8) with the fourth convergence in (7), the continuity of the negative part operator (Lemma 3.2), and the fact that, for a generic function,

f=|f|f2,f^{-}=\dfrac{|f|-f}{2},

gives:

(𝜽(y)+ui(y,x3)𝒂i(y))𝒒0, for a.a. x=(y,x3)Ω.(\bm{\theta}(y)+u_{i}(y,x_{3})\bm{a}^{i}(y))\cdot\bm{q}\geq 0,\quad\textup{ for a.a. }x=(y,x_{3})\in\Omega.

That 𝒖=𝟎\bm{u}=\bf 0 on γ0×[1,1]\gamma_{0}\times\left[-1,1\right] follows from the continuity of the trace operator tr:H1(Ω)L2(γ×[1,1])\mathop{\mathrm{tr}}:H^{1}(\Omega)\to L^{2}(\gamma\times\left[-1,1\right]). Indeed, for all ii, we have that for all vH1(Ω)v\in H^{1}(\Omega) such that v=0v=0 on ΓΓ0\Gamma\setminus\Gamma_{0},

0=Γ0ui,κ(ε)vdΓΓ0uivdΓ,0=\int_{\Gamma_{0}}u_{i,\kappa}(\varepsilon)v\,\mathrm{d}\Gamma\to\int_{\Gamma_{0}}u_{i}v\,\mathrm{d}\Gamma,

so that a density result proved by Bernard [5] (see also Theorem 6.7-3 of [13]) gives ui=0u_{i}=0 on Γ0\Gamma_{0}.

(ii) The weak limits uiH1(Ω)u_{i}\in H^{1}(\Omega) found in (i) are independent of the variable x3[1,1]x_{3}\in\left[-1,1\right], in the sense that they satisfy

3ui=0 in L2(Ω).\partial_{3}u_{i}=0\textup{ in }L^{2}(\Omega).

Besides, the average 𝐮¯\overline{\bm{u}} satisfies 𝐮¯𝐔F(ω)\overline{\bm{u}}\in\bm{U}_{F}(\omega), namely,

𝒖¯=(u¯i)H1(ω)×H1(ω)×\displaystyle\overline{\bm{u}}=(\overline{u}_{i})\in H^{1}(\omega)\times H^{1}(\omega)\times H2(ω) and u¯i=νu¯3=0 on γ0,\displaystyle H^{2}(\omega)\textup{ and }\overline{u}_{i}=\partial_{\nu}\overline{u}_{3}=0\textup{ on }\gamma_{0},
γαβ(𝒖¯)\displaystyle\gamma_{\alpha\beta}(\overline{\bm{u}}) =0 in ω,\displaystyle=0\textup{ in }\omega,
(𝜽(y)+u¯i(y)𝒂i(y))\displaystyle\big{(}\bm{\theta}(y)+\overline{u}_{i}(y)\bm{a}^{i}(y)\big{)} 𝒒0 for a.a. yω.\displaystyle\cdot\bm{q}\geq 0\textup{ for a.a. }y\in\omega.

Apart from the latter property, the proof is identical to that of part (ii) of the proof of Theorem 6.2-1 in [11]. Let us thus prove that

(𝜽(y)+u¯i(y)𝒂i(y))𝒒0 for a.a. yω.\big{(}\bm{\theta}(y)+\overline{u}_{i}(y)\bm{a}^{i}(y)\big{)}\cdot\bm{q}\geq 0\textup{ for a.a. }y\in\omega.

By part (i), we have that

(𝜽(y)+ui(y,x3)𝒂i(y))𝒒0 for a.a. x=(y,x3)Ω.(\bm{\theta}(y)+u_{i}(y,x_{3})\bm{a}^{i}(y))\cdot\bm{q}\geq 0\quad\textup{ for a.a. }x=(y,x_{3})\in\Omega.

Since 𝒖=(ui)\bm{u}=(u_{i}) is independent of x3x_{3}, we have that an application of Theorem 4.2-1 (a) of [11] and part (i) gives

(𝜽(y)+u¯i(y)𝒂i(y))𝒒\displaystyle(\bm{\theta}(y)+\overline{u}_{i}(y)\bm{a}^{i}(y))\cdot\bm{q} =(𝜽(y)+1211ui(y,x3)dx3𝒂i(y))𝒒\displaystyle=\left(\bm{\theta}(y)+\dfrac{1}{2}\int_{-1}^{1}u_{i}(y,x_{3})\,\mathrm{d}x_{3}\bm{a}^{i}(y)\right)\cdot\bm{q}
=1211((𝜽(y)+ui(y,x3)𝒂i(y))𝒒)dx30, for a.a. yω,\displaystyle=\dfrac{1}{2}\int_{-1}^{1}\left(\left(\bm{\theta}(y)+u_{i}(y,x_{3})\bm{a}^{i}(y)\right)\cdot\bm{q}\right)\,\mathrm{d}x_{3}\geq 0,\quad\textup{ for a.a. }y\in\omega,

so that 𝒖¯=(u¯i)𝑼F(ω)\overline{\bm{u}}=(\overline{u}_{i})\in\bm{U}_{F}(\omega).

(iii) The weak limits eij1L2(Ω)e_{i\|j}^{1}\in L^{2}(\Omega) and 𝐮𝐇1(Ω)\bm{u}\in\bm{H}^{1}(\Omega) found in (i) satisfy

3eαβ1=ραβ(𝒖) in L2(Ω),\displaystyle-\partial_{3}e_{\alpha\|\beta}^{1}=\rho_{\alpha\beta}(\bm{u})\textup{ in }L^{2}(\Omega),
eα31=0 and e331=λλ+2μaαβeαβ1 in Ω.\displaystyle e_{\alpha\|3}^{1}=0\quad\textup{ and }\quad e_{3\|3}^{1}=-\frac{\lambda}{\lambda+2\mu}a^{\alpha\beta}e_{\alpha\|\beta}^{1}\textup{ in }\Omega.

The equality 3eαβ1=ραβ(𝒖)-\partial_{3}e_{\alpha\|\beta}^{1}=\rho_{\alpha\beta}(\bm{u}) in L2(Ω)L^{2}(\Omega) follows from Theorem 5.2-2 of [11]. Let 𝒗=(vi)𝑽(Ω)\bm{v}=(v_{i})\in\bm{V}(\Omega) be arbitrarily chosen. It is known (cf., e.g., part (iii) of Theorem 6.2-1 of [11]) that

εeαβ(ε;𝒗)\displaystyle\varepsilon e_{\alpha\|\beta}(\varepsilon;\bm{v}) 0 in L2(Ω),\displaystyle\to 0\textup{ in }L^{2}(\Omega),
εeα3(ε;𝒗)\displaystyle\varepsilon e_{\alpha\|3}(\varepsilon;\bm{v}) 123vα in L2(Ω),\displaystyle\to\dfrac{1}{2}\partial_{3}v_{\alpha}\textup{ in }L^{2}(\Omega),
εe33(ε;𝒗)\displaystyle\varepsilon e_{3\|3}(\varepsilon;\bm{v}) =3v3 for all ε>0.\displaystyle=\partial_{3}v_{3}\textup{ for all }\varepsilon>0.

These relations, combined with the boundedness of the terms (ε1eij(ε)L2(Ω))ε>0\left(\varepsilon^{-1}\left\|e_{i\|j}(\varepsilon)\right\|_{L^{2}(\Omega)}\right)_{\varepsilon>0} independently of ε>0\varepsilon>0 (part (i)), the asymptotic behavior of the functions Aijk(ε)A^{ijk\ell}(\varepsilon), the third convergence in (7), and g(ε)\sqrt{g(\varepsilon)} as ε0\varepsilon\to 0 (Lemma 4.1), give

Ω(Aαβστ(ε)eστ(ε)ε+Aαβ33(ε)e33(ε)ε)εeαβ(ε;𝒗)g(ε)dx0 as ε0,\displaystyle\int_{\Omega}\left(A^{\alpha\beta\sigma\tau}(\varepsilon)\dfrac{e_{\sigma\|\tau}(\varepsilon)}{\varepsilon}+A^{\alpha\beta 33}(\varepsilon)\dfrac{e_{3\|3}(\varepsilon)}{\varepsilon}\right)\varepsilon e_{\alpha\|\beta}(\varepsilon;\bm{v})\sqrt{g(\varepsilon)}\,\mathrm{d}x\to 0\textup{ as }\varepsilon\to 0,
Ω(4Aα3σ3(ε)eσ3(ε)ε)εeα3(ε;𝒗)g(ε)dxΩ2μaασeσ313vαadx as ε0,\displaystyle\int_{\Omega}\left(4A^{\alpha 3\sigma 3}(\varepsilon)\dfrac{e_{\sigma\|3}(\varepsilon)}{\varepsilon}\right)\varepsilon e_{\alpha\|3}(\varepsilon;\bm{v})\sqrt{g(\varepsilon)}\,\mathrm{d}x\to\int_{\Omega}2\mu a^{\alpha\sigma}e_{\sigma\|3}^{1}\partial_{3}v_{\alpha}\sqrt{a}\,\mathrm{d}x\textup{ as }\varepsilon\to 0,
Ω(A33στ(ε)eστ(ε)ε+A3333(ε)e33(ε)ε)εe33(ε;𝒗)g(ε)dx\displaystyle\int_{\Omega}\left(A^{33\sigma\tau}(\varepsilon)\dfrac{e_{\sigma\|\tau}(\varepsilon)}{\varepsilon}+A^{3333}(\varepsilon)\dfrac{e_{3\|3}(\varepsilon)}{\varepsilon}\right)\varepsilon e_{3\|3}(\varepsilon;\bm{v})\sqrt{g(\varepsilon)}\,\mathrm{d}x
Ω(λaστeστ1+(λ+2μ)e331)3v3adx as ε0,\displaystyle\quad\to\int_{\Omega}\left(\lambda a^{\sigma\tau}e_{\sigma\|\tau}^{1}+(\lambda+2\mu)e_{3\|3}^{1}\right)\partial_{3}v_{3}\sqrt{a}\,\mathrm{d}x\textup{ as }\varepsilon\to 0,
εκΩ{[𝜽+εx3𝒂3+ui,κ(ε)𝒈i(ε)]𝒒}=13|𝒈(ε)𝒒|2(vi𝒈i(ε)𝒒)g(ε)dx0 as ε0(cf. (5)(7)),\displaystyle-\dfrac{\varepsilon}{\kappa}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{i,\kappa}(\varepsilon)\bm{g}^{i}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}(v_{i}\bm{g}^{i}(\varepsilon)\cdot\bm{q})\sqrt{g(\varepsilon)}\,\mathrm{d}x\to 0\textup{ as }\varepsilon\to 0\,(\textup{cf. }\eqref{kappa}\textup{--}\eqref{process1}),
ε2Ωfivig(ε)dx0 as ε0.\displaystyle\varepsilon^{2}\int_{\Omega}f^{i}v_{i}\sqrt{g(\varepsilon)}\,\mathrm{d}x\to 0\textup{ as }\varepsilon\to 0.

Consequently,

Ω((2μaασeσ31)3vα+(λaστeστ1+(λ+2μ)e331)3v3)adx=0.\int_{\Omega}\left((2\mu a^{\alpha\sigma}e_{\sigma\|3}^{1})\partial_{3}v_{\alpha}+\big{(}\lambda a^{\sigma\tau}e_{\sigma\|\tau}^{1}+(\lambda+2\mu)e_{3\|3}^{1}\big{)}\partial_{3}v_{3}\right)\sqrt{a}\,\mathrm{d}x=0.

Since this inequality holds for any vector field 𝒗=(vi)𝑽(Ω)\bm{v}=(v_{i})\in\bm{V}(\Omega), it follows by Theorem 3.4-1 of [11] that

eσ31=0 and λaστeστ1+(λ+2μ)e331=0 in L2(Ω).e_{\sigma\|3}^{1}=0\quad\textup{ and }\quad\lambda a^{\sigma\tau}e_{\sigma\|\tau}^{1}+(\lambda+2\mu)e_{3\|3}^{1}=0\textup{ in }L^{2}(\Omega).

In particular, the latter gives:

e331=λλ+2μaαβeαβ1 in L2(Ω).e_{3\|3}^{1}=-\frac{\lambda}{\lambda+2\mu}a^{\alpha\beta}e_{\alpha\|\beta}^{1}\textup{ in }L^{2}(\Omega).

(iv) The weak limit 𝐮¯=(u¯i)\overline{\bm{u}}=(\overline{u}_{i}) is the unique solution of Problem 𝒫F(ω)\mathcal{P}_{F}(\omega).

Given any 𝜼𝑼F(ω)\bm{\eta}\in\bm{U}_{F}(\omega), define the vector field 𝒘(ε;𝜼)=(wi(ε;𝜼))\bm{w}(\varepsilon;\bm{\eta})=(w_{i}(\varepsilon;\bm{\eta})) by:

(13) wα(ε;𝜼)\displaystyle w_{\alpha}(\varepsilon;\bm{\eta}) :=ηαεx3(αη3+bασησ),\displaystyle:=\eta_{\alpha}-\varepsilon x_{3}(\partial_{\alpha}\eta_{3}+b_{\alpha}^{\sigma}\eta_{\sigma}),
w3(ε;𝜼)\displaystyle w_{3}(\varepsilon;\bm{\eta}) :=η3.\displaystyle:=\eta_{3}.

We have that 𝒘(ε;𝜼)𝑽(Ω)\bm{w}(\varepsilon;\bm{\eta})\in\bm{V}(\Omega) and e33(ε;𝒘(ε;𝜼))=0e_{3\|3}(\varepsilon;\bm{w}(\varepsilon;\bm{\eta}))=0 for all ε>0\varepsilon>0. Following the same steps as in part (iv) of [11], observe that:

(14) 𝒘(ε;𝜼)\displaystyle\bm{w}(\varepsilon;\bm{\eta})\to 𝜼 in 𝑯1(Ω),\displaystyle\bm{\eta}\textup{ in }\bm{H}^{1}(\Omega),
1εeαβ(ε;𝒘(ε;𝜼))\displaystyle\dfrac{1}{\varepsilon}e_{\alpha\|\beta}(\varepsilon;\bm{w}(\varepsilon;\bm{\eta}))\to {x3ραβ(𝜼)} in L2(Ω),\displaystyle\{-x_{3}\rho_{\alpha\beta}(\bm{\eta})\}\textup{ in }L^{2}(\Omega),
The sequence (1εeα3(ε;𝒘(ε;𝜼)))ε>0\displaystyle\textup{The sequence }\left(\dfrac{1}{\varepsilon}e_{\alpha\|3}(\varepsilon;\bm{w}(\varepsilon;\bm{\eta}))\right)_{\varepsilon>0} converges in L2(Ω).\displaystyle\textup{ converges in }L^{2}(\Omega).

Fix ε>0\varepsilon>0 and define the number

Λ(ε):=ΩAijk(ε){1εek(ε)ek1}{1εeij(ε)eij1}g(ε)dx,\Lambda(\varepsilon):=\int_{\Omega}A^{ijk\ell}(\varepsilon)\left\{\dfrac{1}{\varepsilon}e_{k\|\ell}(\varepsilon)-e_{k\|\ell}^{1}\right\}\left\{\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon)-e_{i\|j}^{1}\right\}\sqrt{g(\varepsilon)}\,\mathrm{d}x,

so that, combining the uniform positive-definiteness of the three-dimensional elasticity tensor Aijk(ε)A^{ijk\ell}(\varepsilon) and the asymptotic behavior of the function g(ε)g(\varepsilon) (Lemma 4.1), we obtain:

0i,j1εeij(ε)eij1L2(Ω)2C0g0Λ(ε).0\leq\sum_{i,j}\left\|\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon)-e_{i\|j}^{1}\right\|_{L^{2}(\Omega)}^{2}\leq\dfrac{C_{0}}{\sqrt{g_{0}}}\Lambda(\varepsilon).

An application of the latter to the variational equations of Problem 𝒫κ(ε;Ω)\mathcal{P}_{\kappa}(\varepsilon;\Omega) under the specialization 𝒗=(𝒘(ε;𝜼)𝒖κ(ε))\bm{v}=(\bm{w}(\varepsilon;\bm{\eta})-\bm{u}_{\kappa}(\varepsilon)), with 𝜼𝑼F(ω)\bm{\eta}\in\bm{U}_{F}(\omega) gives:

(15) 0Λ(ε)\displaystyle 0\leq\Lambda(\varepsilon) =ΩAijk(ε){1εek(ε)}{1εeij(ε)}g(ε)dx\displaystyle=\int_{\Omega}A^{ijk\ell}(\varepsilon)\left\{\dfrac{1}{\varepsilon}e_{k\|\ell}(\varepsilon)\right\}\left\{\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon)\right\}\sqrt{g(\varepsilon)}\,\mathrm{d}x
2ΩAijk(ε){1εek(ε)}eij1g(ε)dx\displaystyle\quad-2\int_{\Omega}A^{ijk\ell}(\varepsilon)\left\{\dfrac{1}{\varepsilon}e_{k\|\ell}(\varepsilon)\right\}e_{i\|j}^{1}\sqrt{g(\varepsilon)}\,\mathrm{d}x
+ΩAijk(ε)ek1eij1g(ε)dx\displaystyle\quad+\int_{\Omega}A^{ijk\ell}(\varepsilon)e_{k\|\ell}^{1}e_{i\|j}^{1}\sqrt{g(\varepsilon)}\,\mathrm{d}x
=ΩAijk(ε){1εek(ε)}{1εeij(ε;𝒘(ε;𝜼))}g(ε)dx\displaystyle=\int_{\Omega}A^{ijk\ell}(\varepsilon)\left\{\dfrac{1}{\varepsilon}e_{k\|\ell}(\varepsilon)\right\}\left\{\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon;\bm{w}(\varepsilon;\bm{\eta}))\right\}\sqrt{g(\varepsilon)}\,\mathrm{d}x
1εκΩ{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}=13|𝒈(ε)𝒒|2((wi(ε;𝜼)ui,κ(ε))𝒈i(ε)𝒒)g(ε)dx\displaystyle\quad-\dfrac{1}{\varepsilon\kappa}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}\left((w_{i}(\varepsilon;\bm{\eta})-u_{i,\kappa}(\varepsilon))\bm{g}^{i}(\varepsilon)\cdot\bm{q}\right)\sqrt{g(\varepsilon)}\,\mathrm{d}x
Ωfi(wi(ε;𝜼)ui,κ(ε))g(ε)dx\displaystyle\quad-\int_{\Omega}f^{i}(w_{i}(\varepsilon;\bm{\eta})-u_{i,\kappa}(\varepsilon))\sqrt{g(\varepsilon)}\,\mathrm{d}x
2ΩAijk(ε){1εek(ε)}eij1g(ε)dx+ΩAijk(ε)ek1eij1g(ε)dx\displaystyle\quad-2\int_{\Omega}A^{ijk\ell}(\varepsilon)\left\{\dfrac{1}{\varepsilon}e_{k\|\ell}(\varepsilon)\right\}e_{i\|j}^{1}\sqrt{g(\varepsilon)}\,\mathrm{d}x+\int_{\Omega}A^{ijk\ell}(\varepsilon)e_{k\|\ell}^{1}e_{i\|j}^{1}\sqrt{g(\varepsilon)}\,\mathrm{d}x
=ΩAαβστ(ε){1εeστ(ε)}{1εeαβ(ε;𝒘(ε;𝜼))}g(ε)dx\displaystyle=\int_{\Omega}A^{\alpha\beta\sigma\tau}(\varepsilon)\left\{\dfrac{1}{\varepsilon}e_{\sigma\|\tau}(\varepsilon)\right\}\left\{\dfrac{1}{\varepsilon}e_{\alpha\|\beta}(\varepsilon;\bm{w}(\varepsilon;\bm{\eta}))\right\}\sqrt{g(\varepsilon)}\,\mathrm{d}x
+ΩAαβ33(ε){1εe33(ε)}{1εeαβ(ε;𝒘(ε;𝜼))}g(ε)dx\displaystyle\quad+\int_{\Omega}A^{\alpha\beta 33}(\varepsilon)\left\{\dfrac{1}{\varepsilon}e_{3\|3}(\varepsilon)\right\}\left\{\dfrac{1}{\varepsilon}e_{\alpha\|\beta}(\varepsilon;\bm{w}(\varepsilon;\bm{\eta}))\right\}\sqrt{g(\varepsilon)}\,\mathrm{d}x
+4ΩAα3σ3(ε){1εeσ3(ε)}{1εeα3(ε;𝒘(ε;𝜼))}g(ε)dx\displaystyle\quad+4\int_{\Omega}A^{\alpha 3\sigma 3}(\varepsilon)\left\{\dfrac{1}{\varepsilon}e_{\sigma\|3}(\varepsilon)\right\}\left\{\dfrac{1}{\varepsilon}e_{\alpha\|3}(\varepsilon;\bm{w}(\varepsilon;\bm{\eta}))\right\}\sqrt{g(\varepsilon)}\,\mathrm{d}x
+ΩA33στ(ε){1εeστ(ε)}{1εe33(ε;𝒘(ε;𝜼))}g(ε)dx\displaystyle\quad+\int_{\Omega}A^{33\sigma\tau}(\varepsilon)\left\{\dfrac{1}{\varepsilon}e_{\sigma\|\tau}(\varepsilon)\right\}\left\{\dfrac{1}{\varepsilon}e_{3\|3}(\varepsilon;\bm{w}(\varepsilon;\bm{\eta}))\right\}\sqrt{g(\varepsilon)}\,\mathrm{d}x
+ΩA3333(ε){1εe33(ε)}{1εe33(ε;𝒘(ε;𝜼))}g(ε)dx\displaystyle\quad+\int_{\Omega}A^{3333}(\varepsilon)\left\{\dfrac{1}{\varepsilon}e_{3\|3}(\varepsilon)\right\}\left\{\dfrac{1}{\varepsilon}e_{3\|3}(\varepsilon;\bm{w}(\varepsilon;\bm{\eta}))\right\}\sqrt{g(\varepsilon)}\,\mathrm{d}x
1εκΩ{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}=13|𝒈(ε)𝒒|2((wi(ε;𝜼)ui,κ(ε))𝒈i(ε)𝒒)g(ε)dx\displaystyle\quad-\dfrac{1}{\varepsilon\kappa}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}\left((w_{i}(\varepsilon;\bm{\eta})-u_{i,\kappa}(\varepsilon))\bm{g}^{i}(\varepsilon)\cdot\bm{q}\right)\sqrt{g(\varepsilon)}\,\mathrm{d}x
Ωfi(wi(ε;𝜼)ui,κ(ε))g(ε)dx\displaystyle\quad-\int_{\Omega}f^{i}(w_{i}(\varepsilon;\bm{\eta})-u_{i,\kappa}(\varepsilon))\sqrt{g(\varepsilon)}\,\mathrm{d}x
2ΩAijk(ε){1εek(ε)}eij1g(ε)dx+ΩAijk(ε)ek1eij1g(ε)dx.\displaystyle\quad-2\int_{\Omega}A^{ijk\ell}(\varepsilon)\left\{\dfrac{1}{\varepsilon}e_{k\|\ell}(\varepsilon)\right\}e_{i\|j}^{1}\sqrt{g(\varepsilon)}\,\mathrm{d}x+\int_{\Omega}A^{ijk\ell}(\varepsilon)e_{k\|\ell}^{1}e_{i\|j}^{1}\sqrt{g(\varepsilon)}\,\mathrm{d}x.

By virtue of the definition of the vector field 𝒘(ε;𝜼)=(wi(ε;𝜼))\bm{w}(\varepsilon;\bm{\eta})=(w_{i}(\varepsilon;\bm{\eta})) introduced in (13) and the asymptotic behaviour of the contravariant basis vectors 𝒈i(ε)\bm{g}^{i}(\varepsilon) established in Lemma 4.1, we obtain that the term

(16) 1εΩ{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}κ=13|𝒈(ε)𝒒|2[(wi(ε;𝜼)ui,κ(ε))𝒈i(ε)𝒒]g(ε)dx\displaystyle-\dfrac{1}{\varepsilon}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\kappa\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}[(w_{i}(\varepsilon;\bm{\eta})-u_{i,\kappa}(\varepsilon))\bm{g}^{i}(\varepsilon)\cdot\bm{q}]\sqrt{g(\varepsilon)}\,\mathrm{d}x
=1εΩ{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}κ=13|𝒈(ε)𝒒|2[(𝜽+εx3𝒂3+wi(ε;𝜼)𝒈i(ε))𝒒]g(ε)dx\displaystyle=-\dfrac{1}{\varepsilon}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\kappa\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}[(\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+w_{i}(\varepsilon;\bm{\eta})\bm{g}^{i}(\varepsilon))\cdot\bm{q}]\sqrt{g(\varepsilon)}\,\mathrm{d}x
+1εΩ{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}κ=13|𝒈(ε)𝒒|2([𝜽+εx3𝒂3+ui,κ(ε)𝒈i(ε)]𝒒)g(ε)dx\displaystyle\quad+\dfrac{1}{\varepsilon}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\kappa\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}\left([\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{i,\kappa}(\varepsilon)\bm{g}^{i}(\varepsilon)]\cdot\bm{q}\right)\sqrt{g(\varepsilon)}\,\mathrm{d}x
=1εΩ{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}κ=13|𝒈(ε)𝒒|2[(𝜽+ηi𝒂i)𝒒]g(ε)dx\displaystyle=-\dfrac{1}{\varepsilon}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\kappa\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}[(\bm{\theta}+\eta_{i}\bm{a}^{i})\cdot\bm{q}]\sqrt{g(\varepsilon)}\,\mathrm{d}x
1εΩ{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}κ=13|𝒈(ε)𝒒|2[εx3(ηαbσα𝒂σ)𝒒]g(ε)dx\displaystyle\quad-\dfrac{1}{\varepsilon}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\kappa\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}[\varepsilon x_{3}(\eta_{\alpha}b_{\sigma}^{\alpha}\bm{a}^{\sigma})\cdot\bm{q}]\sqrt{g(\varepsilon)}\,\mathrm{d}x
1εΩ{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}κ=13|𝒈(ε)𝒒|2[εx3(𝒂3(αη3+bασησ)𝒂α)𝒒]g(ε)dx\displaystyle\quad-\dfrac{1}{\varepsilon}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\kappa\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}[\varepsilon x_{3}(\bm{a}_{3}-(\partial_{\alpha}\eta_{3}+b_{\alpha}^{\sigma}\eta_{\sigma})\bm{a}^{\alpha})\cdot\bm{q}]\sqrt{g(\varepsilon)}\,\mathrm{d}x
+1εΩ{[𝜽+εx3𝒂3+uj,κ(ε)𝒈j(ε)]𝒒}κ=13|𝒈(ε)𝒒|2([𝜽+εx3𝒂3+ui,κ(ε)𝒈i(ε)]𝒒)g(ε)dx+O(ε)\displaystyle\quad+\dfrac{1}{\varepsilon}\int_{\Omega}\dfrac{\left\{[\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{j,\kappa}(\varepsilon)\bm{g}^{j}(\varepsilon)]\cdot\bm{q}\right\}^{-}}{\kappa\sqrt{\sum_{\ell=1}^{3}|\bm{g}^{\ell}(\varepsilon)\cdot\bm{q}|^{2}}}\left([\bm{\theta}+\varepsilon x_{3}\bm{a}_{3}+u_{i,\kappa}(\varepsilon)\bm{g}^{i}(\varepsilon)]\cdot\bm{q}\right)\sqrt{g(\varepsilon)}\,\mathrm{d}x+O(\varepsilon)

has lim sup\limsup less or equal than zero when ε0\varepsilon\to 0 since the first addend in the last equality is less or equal than zero for all ε>0\varepsilon>0 being 𝜼𝑼F(ω)\bm{\eta}\in\bm{U}_{F}(\omega), the second and the third addends tend to zero as ε0\varepsilon\to 0 thanks to the third convergence of (7), and the fourth addend is less or equal than zero thansk to the monotonicity of {}-\{\cdot\}^{-} established in Lemma 3.2. Note that the second factor in the second integral of the last equality corresponds to a remnant of the definition of 𝒈α\bm{g}^{\alpha} (cf. Lemma 4.1).

The asymptotic behavior of the functions 𝒘(ε;𝜼)\bm{w}(\varepsilon;\bm{\eta}) and 1εeij(ε;𝒘(ε;𝜼))\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon;\bm{w}(\varepsilon;\bm{\eta})) exhibited in (14), the asymptotic behavior of the three-dimensional elasticity tensor Aijk(ε)A^{ijk\ell}(\varepsilon) and g(ε)g(\varepsilon) (Lemma 4.1), the weak convergences 1εeij(ε)eij1\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon)\rightharpoonup e_{i\|j}^{1} in L2(Ω)L^{2}(\Omega) established in part (i), and the relations satisfied by ei31e_{i\|3}^{1} (part (iii)) together give:

(17) ΩAijk(ε)\displaystyle\int_{\Omega}A^{ijk\ell}(\varepsilon) {1εek(ε)}{1εeij(ε;𝒘(ε;𝜼))}g(ε)dx\displaystyle\left\{\dfrac{1}{\varepsilon}e_{k\|\ell}(\varepsilon)\right\}\left\{\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon;\bm{w}(\varepsilon;\bm{\eta}))\right\}\sqrt{g(\varepsilon)}\,\mathrm{d}x
Ω(Aαβστ(0)eστ1+Aαβ33(0)e331){x3ραβ(𝜼)}adx,\displaystyle\to\int_{\Omega}(A^{\alpha\beta\sigma\tau}(0)e_{\sigma\|\tau}^{1}+A^{\alpha\beta 33}(0)e_{3\|3}^{1})\{-x_{3}\rho_{\alpha\beta}(\bm{\eta})\}\sqrt{a}\,\mathrm{d}x,
2ΩAijk(ε)\displaystyle 2\int_{\Omega}A^{ijk\ell}(\varepsilon) {1εek(ε)}eij1g(ε)dxΩAijk(ε)ek1eij1g(ε)dx\displaystyle\left\{\dfrac{1}{\varepsilon}e_{k\|\ell}(\varepsilon)\right\}e_{i\|j}^{1}\sqrt{g(\varepsilon)}\,\mathrm{d}x-\int_{\Omega}A^{ijk\ell}(\varepsilon)e_{k\|\ell}^{1}e_{i\|j}^{1}\sqrt{g(\varepsilon)}\,\mathrm{d}x
ΩAijk(0)ek1eij1adx=Ωaαβστeστ1eαβ1adx,\displaystyle\to\int_{\Omega}A^{ijk\ell}(0)e_{k\|\ell}^{1}e_{i\|j}^{1}\sqrt{a}\,\mathrm{d}x=\int_{\Omega}a^{\alpha\beta\sigma\tau}e_{\sigma\|\tau}^{1}e_{\alpha\|\beta}^{1}\sqrt{a}\,\mathrm{d}x,
Ωfi(wi(ε;𝜼\displaystyle\int_{\Omega}f^{i}(w_{i}(\varepsilon;\bm{\eta} )ui,κ(ε))g(ε)dxΩfi(ηiui)adx=ωpi(ηiu¯i)ady.\displaystyle)-u_{i,\kappa}(\varepsilon))\sqrt{g(\varepsilon)}\,\mathrm{d}x\to\int_{\Omega}f^{i}(\eta_{i}-u_{i})\sqrt{a}\,\mathrm{d}x=\int_{\omega}p^{i}(\eta_{i}-\overline{u}_{i})\sqrt{a}\,\mathrm{d}y.

We have yet to take into account the relations ραβ(𝒖)=3eαβ1\rho_{\alpha\beta}(\bm{u})=-\partial_{3}e_{\alpha\|\beta}^{1} in L2(Ω)L^{2}(\Omega) established in part (iii). Since 𝒖\bm{u} is independent of x3x_{3} (part (ii)), these relations show that the functions eαβ1e_{\alpha\|\beta}^{1} are of the form

eαβ1=Υαβx3ραβ(𝒖¯) with ΥαβL2(ω).e_{\alpha\|\beta}^{1}=\Upsilon_{\alpha\beta}-x_{3}\rho_{\alpha\beta}(\overline{\bm{u}})\quad\textup{ with }\Upsilon_{\alpha\beta}\in L^{2}(\omega).

The asymptotic behaviors observed in (15)–(17), Lemma 3.1, and the uniform positive-definiteness of the fourth order two-dimensional elasticity tensor (aαβστ)(a^{\alpha\beta\sigma\tau}) in turn imply:

0\displaystyle 0 lim supε0Λ(ε)limε0ΩAijk(ε){1εek(ε)}{1εeij(ε;𝒘(ε;𝜼))}g(ε)dx\displaystyle\leq\limsup_{\varepsilon\to 0}\Lambda(\varepsilon)\leq\lim_{\varepsilon\to 0}\int_{\Omega}A^{ijk\ell}(\varepsilon)\left\{\dfrac{1}{\varepsilon}e_{k\|\ell}(\varepsilon)\right\}\left\{\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon;\bm{w}(\varepsilon;\bm{\eta}))\right\}\sqrt{g(\varepsilon)}\,\mathrm{d}x
2limε0ΩAijk(ε){1εek(ε)}eij1g(ε)dx+limε0ΩAijk(ε)ek1eij1g(ε)dx\displaystyle\quad-2\lim_{\varepsilon\to 0}\int_{\Omega}A^{ijk\ell}(\varepsilon)\left\{\dfrac{1}{\varepsilon}e_{k\|\ell}(\varepsilon)\right\}e_{i\|j}^{1}\sqrt{g(\varepsilon)}\,\mathrm{d}x+\lim_{\varepsilon\to 0}\int_{\Omega}A^{ijk\ell}(\varepsilon)e_{k\|\ell}^{1}e_{i\|j}^{1}\sqrt{g(\varepsilon)}\,\mathrm{d}x
limε0Ωfi(wi(ε;𝜼)ui,κ(ε))g(ε)dx\displaystyle\quad-\lim_{\varepsilon\to 0}\int_{\Omega}f^{i}(w_{i}(\varepsilon;\bm{\eta})-u_{i,\kappa}(\varepsilon))\sqrt{g(\varepsilon)}\,\mathrm{d}x
=ωpi(ηiu¯i)adyΩAijk(0)ek1eij1adx+ΩAαβk(0)ek1{x3ραβ(𝜼)}adx\displaystyle=-\int_{\omega}p^{i}(\eta_{i}-\overline{u}_{i})\sqrt{a}\,\mathrm{d}y-\int_{\Omega}A^{ijk\ell}(0)e_{k\|\ell}^{1}e_{i\|j}^{1}\sqrt{a}\,\mathrm{d}x+\int_{\Omega}A^{\alpha\beta k\ell}(0)e_{k\|\ell}^{1}\{-x_{3}\rho_{\alpha\beta}(\bm{\eta})\}\sqrt{a}\,\mathrm{d}x
=ωpi(ηiu¯i)ady12ΩaαβστΥστΥαβadx+12Ωaαβστx32ρστ(𝒖¯)ραβ(𝜼𝒖¯)adx\displaystyle=-\int_{\omega}p^{i}(\eta_{i}-\overline{u}_{i})\sqrt{a}\,\mathrm{d}y-\dfrac{1}{2}\int_{\Omega}a^{\alpha\beta\sigma\tau}\Upsilon_{\sigma\tau}\Upsilon_{\alpha\beta}\sqrt{a}\,\mathrm{d}x+\dfrac{1}{2}\int_{\Omega}a^{\alpha\beta\sigma\tau}x_{3}^{2}\rho_{\sigma\tau}(\overline{\bm{u}})\rho_{\alpha\beta}(\bm{\eta}-\overline{\bm{u}})\sqrt{a}\,\mathrm{d}x
13ωaαβστρστ(𝒖¯)ραβ(𝜼𝒖¯)dyωpi(ηiu¯i)ady.\displaystyle\leq\dfrac{1}{3}\int_{\omega}a^{\alpha\beta\sigma\tau}\rho_{\sigma\tau}(\overline{\bm{u}})\rho_{\alpha\beta}(\bm{\eta}-\overline{\bm{u}})\,\mathrm{d}y-\int_{\omega}p^{i}(\eta_{i}-\overline{u}_{i})\sqrt{a}\,\mathrm{d}y.

In conclusion, the latter yields

013ωaαβστρστ(𝒖¯)ραβ(𝜼𝒖¯)dyωpi(ηiu¯i)ady,0\leq\dfrac{1}{3}\int_{\omega}a^{\alpha\beta\sigma\tau}\rho_{\sigma\tau}(\overline{\bm{u}})\rho_{\alpha\beta}(\bm{\eta}-\overline{\bm{u}})\,\mathrm{d}y-\int_{\omega}p^{i}(\eta_{i}-\overline{u}_{i})\sqrt{a}\,\mathrm{d}y,

which establishes that 𝒖¯\overline{\bm{u}} is the unique solution for Problem 𝒫F(ω)\mathcal{P}_{F}(\omega) since 𝜼=(ηi)𝑼F(ω)\bm{\eta}=(\eta_{i})\in\bm{U}_{F}(\omega) is arbitrarily chosen.

(v) The weak convergence 𝐮κ(ε)𝐮\bm{u}_{\kappa}(\varepsilon)\rightharpoonup\bm{u} in 𝐇1(Ω)\bm{H}^{1}(\Omega) established in part (i) is in fact strong, i.e.,

𝒖κ(ε)𝒖 in 𝑯1(Ω),\bm{u}_{\kappa}(\varepsilon)\to\bm{u}\quad\textup{ in }\bm{H}^{1}(\Omega),

and holds for the whole sequence (𝐮κ(ε))ε>0(\bm{u}_{\kappa}(\varepsilon))_{\varepsilon>0}.

The proof is identical to that of part (vi) of the proof of Theorem 6.2-1 of [11] and for this reason is omitted. The assertion means that for all δ>0\delta>0 there exists a number ε2=ε2(δ)>0\varepsilon_{2}=\varepsilon_{2}(\delta)>0 such that for all 0<ε<ε20<\varepsilon<\varepsilon_{2} it results

𝒖κ(ε)𝒖𝑯1(Ω)<δ.\|\bm{u}_{\kappa}(\varepsilon)-\bm{u}\|_{\bm{H}^{1}(\Omega)}<\delta.

(vi) The weak convergences 1εeij(ε)eij1\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon)\rightharpoonup e_{i\|j}^{1} in L2(Ω)L^{2}(\Omega) established in part (i) are in fact strong, i.e.,

1εeij(ε)eij1 in L2(Ω).\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon)\to e_{i\|j}^{1}\quad\textup{ in }L^{2}(\Omega).

Besides, the limits eij1e_{i\|j}^{1} are unique; hence these convergences hold for the whole family (1εeij(ε))ε>0\left(\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon)\right)_{\varepsilon>0}.

Let Λ(ε)\Lambda(\varepsilon) be as in part (iv). Since 𝒖¯𝑼F(ω)\overline{\bm{u}}\in\bm{U}_{F}(\omega), we define a vector field 𝒘~(ε)=(w~i(ε))𝑽(Ω)\tilde{\bm{w}}(\varepsilon)=(\tilde{w}_{i}(\varepsilon))\in\bm{V}(\Omega) as follows:

w~α(ε)\displaystyle\tilde{w}_{\alpha}(\varepsilon) :=u¯αεx3(αu¯3+bασu¯σ),\displaystyle:=\overline{u}_{\alpha}-\varepsilon x_{3}(\partial_{\alpha}\overline{u}_{3}+b_{\alpha}^{\sigma}\overline{u}_{\sigma}),
w~3(ε)\displaystyle\tilde{w}_{3}(\varepsilon) :=u¯3.\displaystyle:=\overline{u}_{3}.

We have that, in the same spirit as (14):

(18) 𝒘~(ε)\displaystyle\tilde{\bm{w}}(\varepsilon)\to 𝒖¯ in 𝑯1(Ω),\displaystyle\overline{\bm{u}}\textup{ in }\bm{H}^{1}(\Omega),
1εeαβ(ε;𝒘~(ε))\displaystyle\dfrac{1}{\varepsilon}e_{\alpha\|\beta}(\varepsilon;\tilde{\bm{w}}(\varepsilon))\to {x3ραβ(𝒖¯)} in L2(Ω),\displaystyle\{-x_{3}\rho_{\alpha\beta}(\overline{\bm{u}})\}\textup{ in }L^{2}(\Omega),
The sequence (1εeα3(ε;𝒘~(ε)))ε>0\displaystyle\textup{The sequence }\left(\dfrac{1}{\varepsilon}e_{\alpha\|3}(\varepsilon;\tilde{\bm{w}}(\varepsilon))\right)_{\varepsilon>0} converges in L2(Ω).\displaystyle\textup{ converges in }L^{2}(\Omega).

Specializing 𝒗=(𝒘~(ε)𝒖κ(ε))\bm{v}=(\tilde{\bm{w}}(\varepsilon)-\bm{u}_{\kappa}(\varepsilon)) in the variational equations of Problem 𝒫κ(ε;Ω)\mathcal{P}_{\kappa}(\varepsilon;\Omega) and repeating the same computations as in part (iv) gives:

0lim supε0Λ(ε)ωaαβστΥστΥαβady0.0\leq\limsup_{\varepsilon\to 0}\Lambda(\varepsilon)\leq-\int_{\omega}a^{\alpha\beta\sigma\tau}\Upsilon_{\sigma\tau}\Upsilon_{\alpha\beta}\sqrt{a}\,\mathrm{d}y\leq 0.

In conclusion, by the uniform positive-definiteness of the two-dimensional fourth-order elasticity tensor (Lemma 4.1) and the asymptotic behavior of the sequence of vector fields (𝒘~(ε))ε>0(\tilde{\bm{w}}(\varepsilon))_{\varepsilon>0} in (18), we obtain Υαβ=0\Upsilon_{\alpha\beta}=0 and that

limε0Λ(ε)=0.\lim_{\varepsilon\to 0}\Lambda(\varepsilon)=0.

These relations in turn imply that the strong convergence

1εeij(ε)eij1 in L2(Ω)\dfrac{1}{\varepsilon}e_{i\|j}(\varepsilon)\to e_{i\|j}^{1}\quad\textup{ in }L^{2}(\Omega)

holds. The functions eαβ1e_{\alpha\|\beta}^{1} are uniquely determined, since they are given by

eαβ1=x3ραβ(𝒖¯)e_{\alpha\|\beta}^{1}=-x_{3}\rho_{\alpha\beta}(\overline{\bm{u}})

and the vector field 𝒖¯\overline{\bm{u}} is uniquely determined as the unique solution of Problem 𝒫F(ω)\mathcal{P}_{F}(\omega). That the functions ei31e_{i\|3}^{1} are uniquely determined then follows from the relations established in part (iii). Therefore, the whole sequence (ε1eij(ε))ε>0(\varepsilon^{-1}e_{i\|j}(\varepsilon))_{\varepsilon>0} strongly converges to the functions eij1e_{i\|j}^{1} in L2(Ω)L^{2}(\Omega) and the proof is complete. ∎

Observe that the conclusion of Theorem 5.1 and Theorem 4.2-1(b) of [11] give that for each δ>0\delta>0 and for each 1i31\leq i\leq 3 there exists a number ε2=ε2(δ)>0\varepsilon_{2}=\varepsilon_{2}(\delta)>0 such that for all 0<ε<ε20<\varepsilon<\varepsilon_{2} it results

(19) 1211ui,κ(ε)(,x3)dx3ζiH1(ω)<δ2,\left\|\dfrac{1}{2}\int_{-1}^{1}u_{i,\kappa}(\varepsilon)(\cdot,x_{3})\,\mathrm{d}x_{3}-\zeta_{i}\right\|_{H^{1}(\omega)}<\dfrac{\delta}{2},

where 𝒖κ(ε)=(ui,κ(ε))\bm{u}_{\kappa}(\varepsilon)=(u_{i,\kappa}(\varepsilon)) is the unique solution of Problem 𝒫κ(ε;Ω)\mathcal{P}_{\kappa}(\varepsilon;\Omega), and 𝜻=(ζi)\bm{\zeta}=(\zeta_{i}) is the unique solution of Problem 𝒫F(ω)\mathcal{P}_{F}(\omega), and κ\kappa is as in (5).

Therefore, the convergence as ε0\varepsilon\to 0 of the solutions 𝒖(ε)\bm{u}(\varepsilon) of Problem 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega) to the solution 𝜻\bm{\zeta} of Problem 𝒫F(ω)\mathcal{P}_{F}(\omega) can thus be established as a direct corollary of Theorem 3.3 and Theorem 5.1.

Corollary 5.2.

Let ω\omega be a domain in 2\mathbb{R}^{2}, let 𝛉𝒞3(ω¯;𝔼3)\bm{\theta}\in\mathcal{C}^{3}(\overline{\omega};\mathbb{E}^{3}) be the middle surface of a flexural shell, let γ0\gamma_{0} be a non-zero length portion of the boundary γ\gamma (cf. section 4) and let 𝐪𝔼3\bm{q}\in\mathbb{E}^{3} be a non-zero vector given once and for all. Let us consider the non-trivial space (cf. section 4)

𝑽F(ω):={𝜼=(ηi)H1(ω)×H1(ω)×H2(ω);γαβ(𝜼)=0 in ω and ηi=νη3=0 on γ0},\bm{V}_{F}(\omega):=\{\bm{\eta}=(\eta_{i})\in H^{1}(\omega)\times H^{1}(\omega)\times H^{2}(\omega);\gamma_{\alpha\beta}(\bm{\eta})=0\textup{ in }\omega\textup{ and }\eta_{i}=\partial_{\nu}\eta_{3}=0\textup{ on }\gamma_{0}\},

and let us define the set

𝑼F(ω)\displaystyle\bm{U}_{F}(\omega) :={𝜼=(ηi)𝑽F(ω);(𝜽(y)+ηi(y)𝒂i(y))𝒒0 for a.a. yω}.\displaystyle:=\{\bm{\eta}=(\eta_{i})\in\bm{V}_{F}(\omega);\big{(}\bm{\theta}(y)+\eta_{i}(y)\bm{a}^{i}(y)\big{)}\cdot\bm{q}\geq 0\textup{ for a.a. }y\in\omega\}.

Let there be given a family of linearly elastic flexural shells with the same middle surface 𝛉(ω¯)\bm{\theta}(\overline{\omega}) and thickness 2ε>02\varepsilon>0, and let 𝐮(ε)𝐔(ε;Ω)\bm{u}(\varepsilon)\in\bm{U}(\varepsilon;\Omega) denote, for each ε>0\varepsilon>0, the unique solution of Problem 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega).

Then, we have that

1211𝒖(ε)dx3𝜻, in 𝑯1(ω) as ε0,\dfrac{1}{2}\int_{-1}^{1}\bm{u}(\varepsilon)\,\mathrm{d}x_{3}\to\bm{\zeta},\quad\textup{ in }\bm{H}^{1}(\omega)\textup{ as }\varepsilon\to 0,

where 𝛇\bm{\zeta} is the unique solution to the two-dimensional variational Problem 𝒫F(ω)\mathcal{P}_{F}(\omega).

Proof.

To prove the claim, we have to show that for each δ>0\delta>0 and for all 1i31\leq i\leq 3 there exists a number ε~=ε~(δ)>0\tilde{\varepsilon}=\tilde{\varepsilon}(\delta)>0 such that for all 0<ε<ε~0<\varepsilon<\tilde{\varepsilon} it results

(20) 1211ui(ε)(,x3)dx3ζiH1(ω)<δ,\left\|\dfrac{1}{2}\int_{-1}^{1}u_{i}(\varepsilon)(\cdot,x_{3})\,\mathrm{d}x_{3}-\zeta_{i}\right\|_{H^{1}(\omega)}<\delta,

where 𝒖(ε)=(ui(ε))\bm{u}(\varepsilon)=(u_{i}(\varepsilon)) is the unique solution of Problem 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega) and 𝜻=(ζi)\bm{\zeta}=(\zeta_{i}) is the unique solution of Problem 𝒫F(ω)\mathcal{P}_{F}(\omega).

In order to prove (20), fix δ>0\delta>0 and take ε~:=ε2=ε2(δ)\tilde{\varepsilon}:=\varepsilon_{2}=\varepsilon_{2}(\delta). For each 0<ε<ε20<\varepsilon<\varepsilon_{2} we have that an application of (4), the triangle inequality, Theorem 4.2-1 (b) of [11], and (19) gives

(21) 1211ui(ε)dx3ζiH1(ω)1211ui,κ(ε)(,x3)dx3ζiH1(ω)+12ui(ε)ui,κ(ε)H1(Ω)\displaystyle\left\|\dfrac{1}{2}\int_{-1}^{1}u_{i}(\varepsilon)\,\mathrm{d}x_{3}-\zeta_{i}\right\|_{H^{1}(\omega)}\leq\left\|\dfrac{1}{2}\int_{-1}^{1}u_{i,\kappa}(\varepsilon)(\cdot,x_{3})\,\mathrm{d}x_{3}-\zeta_{i}\right\|_{H^{1}(\omega)}+\dfrac{1}{\sqrt{2}}\|u_{i}(\varepsilon)-u_{i,\kappa}(\varepsilon)\|_{H^{1}(\Omega)}
<δ2+δ2=δ,\displaystyle<\dfrac{\delta}{2}+\dfrac{\delta}{2}=\delta,

whenever 0<κ<κ0(δ)0<\kappa<\kappa_{0}(\delta) (viz. Theorem 3.3 for a reasonable sufficient condition ensuring that κ0\kappa_{0} is independent of ε\varepsilon) and κ\kappa is as in (5).

Observe that if we take κ\kappa as in (5) and it resulted κ0(δ)<ε=κ\kappa_{0}(\delta)<\sqrt{\varepsilon}=\kappa, then it would suffice to reduce ε2\varepsilon_{2} until the requirement for the penalty parameter is met. In doing so, the fact that κ0\kappa_{0} is independent of ε\varepsilon plays a critical role in establishing the sought convergence.

The estimate (21) means that the average across the thickness of the solutions 𝒖(ε)\bm{u}(\varepsilon) of Problem 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega) converge to the solution of Problem 𝒫F(ω)\mathcal{P}_{F}(\omega) as ε0\varepsilon\to 0, as it had to be proved. ∎

Refer to caption
Figure 1. Geometrical interpretation of Corollary 5.2 and criticality of the condition (5). Let δ>0\delta>0 be fixed and let 0<ε~<ε20<\tilde{\varepsilon}<\varepsilon_{2}, where ε2\varepsilon_{2} is the threshold parameter found in Corollary 5.2. Let 𝜻\bm{\zeta} denote the solution to Problem 𝒫F(ω)\mathcal{P}_{F}(\omega). Let κ~\tilde{\kappa} be a “penalty” parameter such that κ~:=ε~\tilde{\kappa}:=\sqrt{\tilde{\varepsilon}}, and for which the distance between the averaged solution of Problem 𝒫κ~(ε~;Ω)\mathcal{P}_{\tilde{\kappa}}(\tilde{\varepsilon};\Omega) (i.e., the vector field 𝜻κ~(ε~)\bm{\zeta}_{\tilde{\kappa}}(\tilde{\varepsilon})) and the solution 𝜻\bm{\zeta} of Problem 𝒫F(ω)\mathcal{P}_{F}(\omega) with respect to the 𝑯1(ω)\bm{H}^{1}(\omega) norm is less than δ/2\delta/2.
If κ~=ε~>κ0=κ0(δ)\tilde{\kappa}=\sqrt{\tilde{\varepsilon}}>\kappa_{0}=\kappa_{0}(\delta), it might happen, as a consequence of (4), that the distance between the averaged solution of Problem 𝒫κ~(ε~;Ω)\mathcal{P}_{\tilde{\kappa}}(\tilde{\varepsilon};\Omega) (i.e., the vector field 𝜻κ~(ε~)\bm{\zeta}_{\tilde{\kappa}}(\tilde{\varepsilon})) and the averaged solution of Problem 𝒫(ε~;Ω)\mathcal{P}(\tilde{\varepsilon};\Omega) (i.e., the vector field 𝜻(ε~)\bm{\zeta}(\tilde{\varepsilon})) is, with respect to the 𝑯1(ω)\bm{H}^{1}(\omega) norm, strictly greater than the fixed number δ\delta.
If, however, we further reduce the parameter ε~\tilde{\varepsilon} until κ~<κ0\tilde{\kappa}<\kappa_{0}, then we can find an element 𝜻κ(ε~)\bm{\zeta}_{\kappa}(\tilde{\varepsilon}), solution of Problem 𝒫κ(ε~;Ω)\mathcal{P}_{\kappa}(\tilde{\varepsilon};\Omega), whose distance (once again with respect to the 𝑯1(ω)\bm{H}^{1}(\omega) norm) from both 𝜻\bm{\zeta} and 𝜻(ε~)\bm{\zeta}(\tilde{\varepsilon}) is strictly less than δ/2\delta/2. In the latter step, a critical role is played by the fact that κ0\kappa_{0} is assumed to be independent of ε\varepsilon (viz. Theorem 3.3 for a reasonable sufficient condition). This figure originally appeared in [36].

It remains to “de-scale” the results of Theorem 5.1 and Corollary 5.2, which apply to the solutions 𝒖(ε)\bm{u}(\varepsilon) of the scaled problem 𝒫(ε;Ω)\mathcal{P}(\varepsilon;\Omega). This means that we need to convert these results into ones about the unknown uiε𝒈i,ε:Ωε¯𝔼3u^{\varepsilon}_{i}\bm{g}^{i,\varepsilon}:\overline{\Omega^{\varepsilon}}\to\mathbb{E}^{3}, which represents the physical three-dimensional vector field of the actual reference configuration of the shell. As shown in the next theorem, this conversion is most conveniently achieved through the introduction of the averages 12εεεuiε𝒈i,εdx3ε\displaystyle\frac{1}{2\varepsilon}\int^{\varepsilon}_{-\varepsilon}u^{\varepsilon}_{i}\bm{g}^{i,\varepsilon}\,\mathrm{d}x^{\varepsilon}_{3} across the thickness of the shell.

Theorem 5.3.

Let the assumptions on the data be as in section 4 and let the assumptions on the immersion 𝛉𝒞3(ω¯;𝔼3)\bm{\theta}\in\mathcal{C}^{3}(\overline{\omega};\mathbb{E}^{3}) be as in Theorem 4.3. Let 𝐮ε=(uiε)𝐔(Ωε)\bm{u}^{\varepsilon}=(u^{\varepsilon}_{i})\in\bm{U}(\Omega^{\varepsilon}) denote for each ε>0\varepsilon>0 the unique solution of the variational Problem 𝒫(Ωε)\mathcal{P}(\Omega^{\varepsilon}) and let 𝛇𝐔F(ω)\bm{\zeta}\in\bm{U}_{F}(\omega) denote the unique solution to the variational inequalities in Problem 𝒫F(ω)\mathcal{P}_{F}(\omega). Then

12εεεuαε𝒈α,εdx3ε\displaystyle\frac{1}{2\varepsilon}\int^{\varepsilon}_{-\varepsilon}u^{\varepsilon}_{\alpha}\bm{g}^{\alpha,\varepsilon}\,\mathrm{d}x^{\varepsilon}_{3} ζα𝒂α, in 𝑯1(ω) as ε0,\displaystyle\to\zeta_{\alpha}\bm{a}^{\alpha},\quad\textup{ in }\bm{H}^{1}(\omega)\textup{ as }\varepsilon\to 0,
12εεεu3ε𝒈3,εdx3ε\displaystyle\frac{1}{2\varepsilon}\int^{\varepsilon}_{-\varepsilon}u^{\varepsilon}_{3}\bm{g}^{3,\varepsilon}\,\mathrm{d}x^{\varepsilon}_{3} ζ3𝒂3, in 𝑯1(ω) as ε0.\displaystyle\to\zeta_{3}\bm{a}^{3},\quad\textup{ in }\bm{H}^{1}(\omega)\textup{ as }\varepsilon\to 0.
Proof.

The proof is analogous to that of Theorem 6.4-1 in [11] and for this reason is omitted. ∎

In view of the scalings, viz., uiε(xε)=ui(ε)(x)u^{\varepsilon}_{i}(x^{\varepsilon})=u_{i}(\varepsilon)(x) at each xεΩεx^{\varepsilon}\in\Omega^{\varepsilon}, and of the assumption on the data, viz., fi,ε(xε)=fi(x)f^{i,\varepsilon}(x^{\varepsilon})=f^{i}(x) at each xεΩεx^{\varepsilon}\in\Omega^{\varepsilon}, made in section 4, it is natural to also “de-scale” the unknown appearing in the limit two-dimensional problem found in Theorem 4.3, by letting

ζiε(y):=ζi(y) at each yω,\zeta^{\varepsilon}_{i}(y):=\zeta_{i}(y)\textup{ at each }y\in\omega,

and by using in its formulation the contravariant components

pi,ε:=ε3{11fidx3}=εεfi,εdx3εp^{i,\varepsilon}:=\varepsilon^{3}\left\{\int_{-1}^{1}f^{i}\,\mathrm{d}x_{3}\right\}=\int^{\varepsilon}_{-\varepsilon}f^{i,\varepsilon}\,\mathrm{d}x^{\varepsilon}_{3}

instead of their scaled counterparts pi=11fidx3p^{i}=\int^{1}_{-1}f^{i}\,\mathrm{d}x_{3}. In this fashion, it is immediately found that 𝜻ε=(ζiε)𝑼F(ω)\bm{\zeta}^{\varepsilon}=(\zeta^{\varepsilon}_{i})\in\bm{U}_{F}(\omega) is the unique solution to the variational inequalities

ε33ωaαβστρστ(𝜻ε)ραβ(𝜼𝜻ε)adyωpi,ε(ηiζiε)ady,\displaystyle\dfrac{\varepsilon^{3}}{3}\int_{\omega}a^{\alpha\beta\sigma\tau}\rho_{\sigma\tau}(\bm{\zeta}^{\varepsilon})\rho_{\alpha\beta}(\bm{\eta}-\bm{\zeta}^{\varepsilon})\sqrt{a}\,\mathrm{d}y\geq\int_{\omega}p^{i,\varepsilon}(\eta_{i}-\zeta^{\varepsilon}_{i})\sqrt{a}\,\mathrm{d}y,

for all 𝜼=(ηi)𝑼F(ω)\bm{\eta}=(\eta_{i})\in\bm{U}_{F}(\omega). These inequalities now display the factor ε33\dfrac{\varepsilon^{3}}{3}, which always appears in the left-hand sides of equations modelling flexural shells.

Conclusion and final remarks

In this paper we identified a set of two-dimensional variational inequalities that model the displacement of a linearly elastic flexural shell subjected to a confinement condition, expressing that all the points of the admissible deformed configurations remain in a given half-space.

The starting point of the rigorous asymptotic analysis we carried out is a set of variational inequalities based on the classical equations of three-dimensional linearized elasticity, and posed over a non-empty, closed and convex subset of a suitable Sobolev space. These variational inequalities govern the displacement of a three-dimensional flexural shell subject to a confinement condition like the one recalled beforehand.

By means of the penalized version of the aforementioned problem (i.e., the set of variational inequalities based on the classical equations of three-dimensional linearized elasticity), we managed to show that, as the thickness parameter approaches zero, the average across the thickness of the solution of the original three-dimensional model converges to the solution of a ad hoc two dimensional model. In this regard, it is worth recalling that the rigorous asymptotic analysis (Theorem 5.1) hinged on an ad hoc scaling of the penalty coefficient with respect to the shell thickness as well as the critical assumption (5).

The two-dimensional model we recovered in this paper coincides with the two-dimensional model recovered as a result of a rigorous asymptotic analysis carried out starting from Koiter’s model in the case where the linearly elastic shell under consideration is subjected to an obstacle (viz. [19] and [20]).

It is worth mentioning that, unlike the case where the linearly elastic shell under consideration was a linearly elastic elliptic membrane shell (viz. [22], [23] and [36]), the rigorous asymptotic analysis carried out in this paper does not resort to any additional assumption apart from those already made in [21] (see also Chapter 6 of [11]).

Indeed, when the linearly elastic shell under consideration was a linearly elastic elliptic membrane shell, the authors had to resort to a ad hoc “density property” in order to carry out the asymptotic analysis leading to the identification of a suitable two-dimensional set of variational inequalities. The “density property” we mentioned is ensured only under certain geometrical assumptions, which restrict the applicability of the recalled result. This very “density property” was recently exploited in [35] (see also [34]) to show that the solution of a certain obstacle problem in linearized elasticity enjoys, at least locally, higher regularity properties.

Acknowledgements

The author is greatly indebted to Professor Philippe G. Ciarlet for his encouragement and guidance.

The author would like to express his sincere gratitude to the Anonymous Referees for their suggested improvements.

The author was partly supported by the Research Fund of Indiana University.

The author declares that no experimental data was used in the preparation of this manuscript.

The author declares that there is no conflict of interests.

References

  • Agmon et al. [1959] S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math., 12:623–727, 1959.
  • Agmon et al. [1964] S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Comm. Pure Appl. Math., 17:35–92, 1964.
  • Bernadou and Ciarlet [1976] M. Bernadou and P. G. Ciarlet. Sur l’ellipticité du modèle linéaire de coques de W. T. Koiter. Computing methods in applied sciences and engineering (Second Internat. Sympos., Versailles, 1975), Part 1. Lecture Notes in Econom. and Math. Systems, 134:89–136, 1976.
  • Bernadou et al. [1994] M. Bernadou, P. G. Ciarlet, and B. Miara. Existence theorems for two-dimensional linear shell theories. J. Elasticity, 34:111–138, 1994.
  • Bernard [2011] J. M. E. Bernard. Density results on Sobolev spaces whose elements vanish on a part of the boundary. Chinese Ann. Math., Ser B, 32:823–846, 2011.
  • Brezis and Stampacchia [1968] H. Brezis and G. Stampacchia. Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. France, 96:153–180, 1968.
  • Caillerie and Sánchez-Palencia [1995a] D. Caillerie and E. Sánchez-Palencia. A new kind of singular stiff problems and application to thin elastic shells. Math. Models Methods Appl. Sci., 5(1):47–66, 1995a.
  • Caillerie and Sánchez-Palencia [1995b] D. Caillerie and E. Sánchez-Palencia. Elastic thin shells: asymptotic theory in the anisotropic and heterogeneous cases. Math. Models Methods Appl. Sci., 5(4):473–496, 1995b.
  • Ciarlet [1988] P. G. Ciarlet. Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity. North-Holland, Amsterdam, 1988.
  • Ciarlet [1989] P. G. Ciarlet. Introduction to Numerical Linear Algebra and Optimisation. Cambridge University Press, 1989.
  • Ciarlet [2000] P. G. Ciarlet. Mathematical Elasticity. Vol. III: Theory of Shells. North-Holland, Amsterdam, 2000.
  • Ciarlet [2005] P. G. Ciarlet. An Introduction to Differential Geometry with Applications to Elasticity. Springer, Dordrecht, 2005.
  • Ciarlet [2013] P. G. Ciarlet. Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia, 2013.
  • Ciarlet and Destuynder [1979] P. G. Ciarlet and P. Destuynder. A justification of the two-dimensional linear plate model. J. Mécanique, 18:315–344, 1979.
  • Ciarlet and Lods [1996a] P. G. Ciarlet and V. Lods. On the ellipticity of linear membrane shell equations. J. Math. Pures Appl., 75:107–124, 1996a.
  • Ciarlet and Lods [1996b] P. G. Ciarlet and V. Lods. Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations. Arch. Rational Mech. Anal., 136(2):119–161, 1996b.
  • Ciarlet and Lods [1996c] P. G. Ciarlet and V. Lods. Asymptotic analysis of linearly elastic shells. III. Justification of koiter’s shell equations. Arch. Rational Mech. Anal., 136(2):191–200, 1996c.
  • Ciarlet and Lods [1996d] P. G. Ciarlet and V. Lods. Asymptotic analysis of linearly elastic shells: “generalized membrane shells”. J. Elasticity, 43(2):147–188, 1996d.
  • Ciarlet and Piersanti [2019a] P. G. Ciarlet and P. Piersanti. Obstacle problems for Koiter’s shells. Math. Mech. Solids, 24:3061–3079, 2019a.
  • Ciarlet and Piersanti [2019b] P. G. Ciarlet and P. Piersanti. A confinement problem for a linearly elastic Koiter’s shell. C.R. Acad. Sci. Paris, Sér. I, 357:221–230, 2019b.
  • Ciarlet et al. [1996] P. G. Ciarlet, V. Lods, and B. Miara. Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations. Arch. Rational Mech. Anal., 136(2):163–190, 1996.
  • Ciarlet et al. [2018] P. G. Ciarlet, C. Mardare, and P. Piersanti. Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique. C.R. Acad. Sci. Paris, Sér. I, 356(10):1040–1051, 2018.
  • Ciarlet et al. [2019] P. G. Ciarlet, C. Mardare, and P. Piersanti. An obstacle problem for elliptic membrane shells. Math. Mech. Solids, 24(5):1503–1529, 2019.
  • Duvaut and Lions [1976] G. Duvaut and J. L. Lions. Inequalities in Mechanics and Physics. Springer, Berlin, 1976.
  • Glowinski [1984] R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York, 1984.
  • Kikuchi and Oden [1988] N. Kikuchi and J. T. Oden. Contact problems in elasticity: a study of variational inequalities and finite element methods, volume 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988.
  • Léger and Miara [2008] A. Léger and B. Miara. Mathematical justification of the obstacle problem in the case of a shallow shell. J. Elasticity, 90:241–257, 2008.
  • Léger and Miara [2018] A. Léger and B. Miara. A linearly elastic shell over an obstacle: The flexural case. J. Elasticity, 131:19–38, 2018.
  • Lions [1969] J. L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris, 1969.
  • Meixner and Piersanti [Submitted] A. Meixner and P. Piersanti. Numerical approximation of the solution of an obstacle problem modelling the displacement of elliptic membrane shells via the penalty method. Submitted. URL https://arxiv.org/abs/2205.11293.
  • Miara and Sanchez-Palencia [1996] B. Miara and E. Sanchez-Palencia. Asymptotic analysis of linearly elastic shells. Asymptotic Anal., 12(1):41–54, 1996.
  • Piersanti [2020] P. Piersanti. An existence and uniqueness theorem for the dynamics of flexural shells. Math. Mech. Solids, 25(2):317–336, 2020.
  • Piersanti [2021] P. Piersanti. On the justification of the frictionless time-dependent Koiter’s model for thermoelastic shells. J. Differential Equations, 296:50–106, 2021.
  • Piersanti [2022a] P. Piersanti. On the improved interior regularity of the solution of a fourth order elliptic problem modelling the displacement of a linearly elastic shallow shell lying subject to an obstacle. Asymptot. Anal., 127(1-2):35–55, 2022a.
  • Piersanti [2022b] P. Piersanti. On the improved interior regularity of the solution of a second order elliptic boundary value problem modelling the displacement of a linearly elastic elliptic membrane shell subject to an obstacle. Discrete Contin. Dyn. Syst., 42(2):1011–1037, 2022b.
  • Piersanti [2022c] P. Piersanti. Asymptotic analysis of linearly elastic elliptic membrane shells subjected to an obstacle. J. Differential Equations, 320:114–142, 2022c.
  • Piersanti and Temam [2023] P. Piersanti and R. Temam. On the dynamics of grounded shallow ice sheets: Modelling and analysis. Adv. Nonlinear Anal., 12(1):40 pp., 2023.
  • Piersanti et al. [2022a] P. Piersanti, K. White, B. Dragnea, and R. Temam. Modelling virus contact mechanics under atomic force imaging conditions. Appl. Anal., 101(11):3947–3957, 2022a.
  • Piersanti et al. [2022b] P. Piersanti, K. White, B. Dragnea, and R. Temam. A three-dimensional discrete model for approximating the deformation of a viral capsid subjected to lying over a flat surface in the static and time-dependent case. Anal. Appl. (Singap.), 20(6):1159–1191, 2022b.
  • Piersanti et al. [2021] R. Piersanti, P. C. Africa, M. Fedele, C. Vergara, L. Dedè, A. F. Corno, and A. Quarteroni. Modeling cardiac muscle fibers in ventricular and atrial electrophysiology simulations. Comput. Methods Appl. Mech. Engrg., 373:113468, 33, 2021.
  • Regazzoni et al. [2021] F. Regazzoni, L. Dedè, and A. Quarteroni. Active force generation in cardiac muscle cells: mathematical modeling and numerical simulation of the actin-myosin interaction. Vietnam J. Math., 49(1):87–118, 2021.
  • Rodríguez-Arós [2018] A. Rodríguez-Arós. Mathematical justification of the obstacle problem for elastic elliptic membrane shells. Applicable Anal., 97:1261–1280, 2018.
  • Scholz [1984] R. Scholz. Numerical solution of the obstacle problem by the penalty method. Computing, 32(4):297–306, 1984.
  • Shen and Li [2018] X. Shen and H. Li. The time-dependent Koiter model and its numerical computation. Appl. Math. Model., 55:131–144, 2018.
  • Shen et al. [2019] X. Shen, J. Jia, S. Zhu, H. Li, L. Bai, T. Wang, and X. Cao. The time-dependent generalized membrane shell model and its numerical computation. Comput. Methods Appl. Mech. Engrg., 344:54–70, 2019.
  • Shen et al. [2020a] X. Shen, L. Piersanti, and P. Piersanti. Numerical simulations for the dynamics of flexural shells. Math. Mech. Solids, 25(4):887–912, 2020a.
  • Shen et al. [2020b] X. Shen, Q. Yang, L. Li, Z. Gao, and T. Wang. Numerical approximation of the dynamic Koiter’s model for the hyperbolic parabolic shell. Appl. Numer. Math., 150:194–205, 2020b.
  • Telega and Lewiński [1998a] J. J. Telega and T. Lewiński. Homogenization of linear elastic shells: Γ\Gamma-convergence and duality. Part I. Formulation of the problem and the effective model. Bull. Polish Acad. Sci., Techincal Sci., 46:1–9, 1998a.
  • Telega and Lewiński [1998b] J. J. Telega and T. Lewiński. Homogenization of linear elastic shells: Γ\Gamma-convergence and duality. Part II. Dual homogenization. Bull. Polish Acad. Sci., Techincal Sci., 46:11–21, 1998b.
  • Zeidler [1988] E. Zeidler. Nonlinear functional analysis and its applications. IV. Springer-Verlag, New York, 1988. Applications to mathematical physics, Translated from the German and with a preface by Juergen Quandt.
  • Zingaro et al. [2021] A. Zingaro, L. Dedè, F. Menghini, and A. Quarteroni. Hemodynamics of the heart’s left atrium based on a Variational Multiscale-LES numerical method. Eur. J. Mech. B Fluids, 89:380–400, 2021.