This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Asymptotic Critical Radii in Random Geometric Graphs over 3-Dimensional Convex regions

Jie Ding jieding78@hotmail.com China Institute of FIZ Supply Chain, Shanghai Maritime University, Shanghai 201306, China Xiaohua Xu artex@gmail.com School of Information Engineering, Yangzhou University, Yangzhou 225000, China Shuai Ma mashuai@buaa.edu.cn SKLSDE Lab, Beihang University, Beijing 100191, China Xinshan Zhu xszhu126@126.com School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
Abstract

This article presents the precise asymptotical distribution of two types of critical transmission radii, defined in terms of kk-connectivity and the minimum vertex degree, for a random geometry graph distributed over a 3-Dimensional Convex region.

keywords:
Random geometry graph, Asymptotic critical radius, Convex region

1 Introduction and main results

Let χn\chi_{n} be a uniform nn-point process over a convex region Ωd(d2)\Omega\subset\mathbb{R}^{d}(d\geq 2), i.e., a set of nn independent points each of which is uniformly distributed over Ω\Omega, and every pair of points whose Euclidean distance less than rnr_{n} is connected with an undirected edge. So a random geometric graph G(χn,rn)G(\chi_{n},r_{n}) is obtained.

kk-connectivity and the smallest vertex degree are two interesting topological properties of a random geometry graph. A graph GG is said to be kk-connected if there is no set of k1k-1 vertices whose removal would disconnect the graph. Denote by κ\kappa the connectivity of GG, being the maximum kk such that GG is kk-connected. The minimum vertex degree of GG is denoted by δ\delta. Let ρ(χn;κk)\rho(\chi_{n};\kappa\geq k) be the minimum rnr_{n} such that G(χn,rn)G(\chi_{n},r_{n}) is kk-connected and ρ(χn;δk)\rho(\chi_{n};\delta\geq k) be the minimum rnr_{n} such that G(χn,rn)G(\chi_{n},r_{n}) has the smallest degree kk, respectively.

When Ω\Omega is a unit-area convex region on 2\mathbb{R}^{2}, the precise probability distributions of these two types of critical radii have been given in an asymptotic manner:

Theorem 1.

([1, 2]) Let Ω2\Omega\subset\mathbb{R}^{2} be a unit-area convex region such that the length of the boundary Ω\partial\Omega is ll, k0k\geq 0 be an integer and c>0c>0 be a constant.

(i) If k>0k>0, let

rn=logn+(2k1)loglogn+ξπn,r_{n}=\sqrt{\frac{\log n+(2k-1)\log\log n+\xi}{\pi n}},

where ξ\xi satisfies

{ξ=2log(ec+πl264lπ8),k=1,ξ=2log(lπ2k+1k!)+2c,k>1.\left\{\begin{array}[]{cc}\xi=-2\log\left(\sqrt{e^{-c}+\frac{\pi l^{2}}{64}}-\frac{l\sqrt{\pi}}{8}\right),&k=1,\\ \xi=2\log\left(\frac{l\sqrt{\pi}}{2^{k+1}k!}\right)+2c,&k>1.\\ \end{array}\right.

(ii) If k=0k=0, let

rn=logn+cπn.r_{n}=\sqrt{\frac{\log n+c}{\pi n}}.

Then

limnnk!Ω(n|B(x,rn)Ω|)ken|B(x,rn)Ω|𝑑x=ec,\lim_{n\rightarrow\infty}\frac{n}{k!}\int_{\Omega}\left(n|B(x,r_{n})\cap\Omega|\right)^{k}e^{-n|B(x,r_{n})\cap\Omega|}dx=e^{-c}, (1)

and therefore, the probabilities of the two events ρ(χn;δk+1)rn\rho(\chi_{n};\delta\geq k+1)\leq r_{n} and ρ(χn;κk+1)rn\rho(\chi_{n};\kappa\geq k+1)\leq r_{n} both converge to exp(ec)\exp\left(-e^{-c}\right) as nn\rightarrow\infty.

This theorem firstly reveals how the region shape impacts on the critical transmission ranges, generalising the previous work [3, 4, 5, 6, 7] in which only regular regions like disks or squares are considered. This paper further demonstrates the asymptotic distribution of the critical radii for convex regions on 3\mathbb{R}^{3}:

Theorem 2.

Let Ω3\Omega\subset\mathbb{R}^{3} be a unit-volume convex region such that the area of the boundary Ω\partial\Omega is Area(Ω)\mathrm{Area}(\partial\Omega), k1k\geq 1 be an integer and c>0c>0 be a constant. Let

rn=(165πlogn+(3k21)loglogn+ξn)13,r_{n}=\left(\frac{16}{5\pi}\frac{\log n+(\frac{3k}{2}-1)\log\log n+\xi}{n}\right)^{\frac{1}{3}}, (2)

where ξ\xi solves

Area(Ω)43πe2ξ3(5π16)23(23)k1k!=ec,\mathrm{Area}(\Omega)\frac{4}{3\pi}e^{-\frac{2\xi}{3}}\left(\frac{5\pi}{16}\right)^{\frac{2}{3}}\left(\frac{2}{3}\right)^{k}\frac{1}{k!}=e^{-c},

then the probabilities of the two events ρ(χn;δk+1)rn\rho(\chi_{n};\delta\geq k+1)\leq r_{n} and ρ(χn;κk+1)rn\rho(\chi_{n};\kappa\geq k+1)\leq r_{n} both converge to exp(ec)\exp\left(-e^{-c}\right) as nn\rightarrow\infty.

The proof of Theorem 2 follows the framework presented in [1, 2]. However, the details of the technique of boundary treatment are different. To prove Theorem 2 it suffices to prove the following four propositions. In fact, Theorem 2 is a consequence of Proposition 3 and 4. However, the proofs of Proposition 3 and 4 rely on Proposition 1 and Proposition 2 which will be proved in Section 2 and 3 respectively.

Proposition 1.

Under the assumptions of Theorem 2,

limnnk!Ω(n|B(x,rn)Ω|)ken|B(x,rn)Ω|𝑑x=ec.\lim_{n\rightarrow\infty}\frac{n}{k!}\int_{\Omega}\left(n|B(x,r_{n})\cap\Omega|\right)^{k}e^{-n|B(x,r_{n})\cap\Omega|}dx=e^{-c}. (3)
Proposition 2.

Under the assumptions of Theorem 2,

limnPr{ρ(𝒫n;δk+1)rn}=exp(ec),\lim_{n\rightarrow\infty}\Pr\left\{\rho(\mathcal{P}_{n};\delta\geq k+1)\leq r_{n}\right\}=\exp\left(-e^{-c}\right), (4)

where 𝒫n\mathcal{P}_{n} is a homogeneous Poisson point process of intensity nn (i.e., n|Ω|n|\Omega|) distributed over unit-volume convex region Ω\Omega.

Proposition 3.

Under the assumptions of Theorem 2,

limnPr{ρ(χn;δk+1)rn}=eec.\lim_{n\rightarrow\infty}\Pr\left\{\rho(\chi_{n};\delta\geq k+1)\leq r_{n}\right\}=e^{-e^{-c}}. (5)
Proposition 4.

Under the assumptions of Theorem 2,

limnPr{ρ(χn;δk+1)=ρ(χn;κk+1)}=1.\lim_{n\rightarrow\infty}\Pr\left\{\rho(\chi_{n};\delta\geq k+1)=\rho(\chi_{n};\kappa\geq k+1)\right\}=1. (6)

We use the following notations throughout this article. (1) Region Ω3\Omega\subset\mathbb{R}^{3} is a unit-volume convex region, and B(x,r)3B(x,r)\subset\mathbb{R}^{3} is a ball centered at xx with radius rr. (2) Notation |A||A| is a short for the volume of a measurable set A3A\subset\mathbb{R}^{3} and \|\cdot\| represents the length of a line segment. Area()\mathrm{Area}(\cdot) denotes the area of a surface. (3) dist(x,A)=infyAxy\mathrm{dist}(x,A)=\inf_{y\in A}\|xy\| where xx is a point and AA is a set. (4) Given any two nonnegative functions f(n)f(n) and g(n)g(n), if there exist two constants 0<c1<c20<c_{1}<c_{2} such that c1g(n)f(n)c2g(n)c_{1}g(n)\leq f(n)\leq c_{2}g(n) for any sufficiently large nn, then denote f(n)=Θ(g(n))f(n)=\Theta(g(n)). We also use notations f(n)=o(g(n))f(n)=o(g(n)) and f(n)g(n)f(n)\sim g(n) to denote that limnf(n)g(n)=0\lim\limits_{n\rightarrow\infty}\frac{f(n)}{g(n)}=0 and limnf(n)g(n)=1\lim\limits_{n\rightarrow\infty}\frac{f(n)}{g(n)}=1, respectively. A surface is said to be smooth in this paper, meaning that its function has continuous second derivatives.

2 Proof of Proposition 1

Throughout this article, we define

ψn,rk(x)=(n|B(x,r)Ω|)ken|B(x,r)Ω|k!.\psi^{k}_{n,r}(x)=\frac{\left(n|B(x,r)\cap\Omega|\right)^{k}e^{-n|B(x,r)\cap\Omega|}}{k!}. (7)

All left work in this section is to prove Proposition 1, i.e., nΩψn,rk(x)𝑑xec.n\int_{\Omega}\psi^{k}_{n,r}(x)dx\sim e^{-c}. The proof will follow the framework proposed in [1] to carefully deal with the boundary of a convex region. The framework is developed based on the pioneering work of Wan et al. in [6] and [7], although in which only regular regions like disk or square are considered.

The following three conclusions are elementary, with their proof presented in Appendix A for reviewing.

Lemma 1.

Let Ω3\Omega\subset\mathbb{R}^{3} be a bounded convex region, then there exists a positive constant CC such that for any sufficiently small rr, infxΩ|B(x,r)Ω|Cπr3.\mathop{\inf}_{x\in\Omega}|B(x,r)\cap\Omega|\geq C\pi r^{3}. In particular, if Ω\partial\Omega is smooth, then xΩ\forall x\in\partial\Omega, limr0|B(x,r)Ω|43πr3=12\lim_{r\rightarrow 0}\frac{|B(x,r)\cap\Omega|}{\frac{4}{3}\pi r^{3}}=\frac{1}{2}.

Refer to caption
Figure 1: Ω\partial\Omega is tangent to γ\gamma at point OO
Lemma 2.

Suppose smooth surface Ω\partial\Omega is tangent to plane γ\gamma at point OO, seeing Figure 1. Point AΩA\in\partial\Omega and DγD\in\gamma, ADγAD\perp\gamma at point DD. Then

ADG(Ω)OD2+o(OD),\|AD\|\leq G(\Omega)\|OD\|^{2}+o(\|OD\|), (8)

where G(Ω)>0G(\Omega)>0 is a constant only depending on Ω\Omega. This leads to that if AD>(G(Ω)+1)r2\|AD\|>(G(\Omega)+1)r^{2}, then OD>r,\|OD\|>r, as long as rr is sufficiently small.

For any t[0,r]t\in[0,r], we define

a(r,t)=|{x=(x1,x2,x3):x12+x22+x32r2,x1t}|.a(r,t)=|\{x=(x_{1},x_{2},x_{3}):x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\leq r^{2},x_{1}\leq t\}|. (9)

a(r,t)a(r,t) is usually shortly denoted by a(t)a(t). Here this definition follows the ones in [6, 7] where only the sets on planes are considered.

Lemma 3.

Let r=rn=(165πlogn+(3k21)loglogn+ξn)13r=r_{n}=\left(\frac{16}{5\pi}\frac{\log n+(\frac{3k}{2}-1)\log\log n+\xi}{n}\right)^{\frac{1}{3}} and k1k\geq 1, then

n0r2(na(t))kena(t)k!𝑑t43πe2ξ3(5π16)23(23)k1k!.n\int_{0}^{\frac{r}{2}}\frac{(na(t))^{k}e^{-na(t)}}{k!}dt\sim\frac{4}{3\pi}e^{-\frac{2\xi}{3}}\left(\frac{5\pi}{16}\right)^{\frac{2}{3}}\left(\frac{2}{3}\right)^{k}\frac{1}{k!}.

2.1 Case of smooth Ω\partial\Omega

In this subsection, we assume the boundary Ω\partial\Omega be smooth. Let

Ω(0)={xΩ:dist(x,Ω)r},Ω(2)={xΩ:dist(x,Ω)(G(Ω)+1)r2},\Omega(0)=\left\{x\in\Omega:\mathrm{dist}(x,\partial\Omega)\geq r\right\},\quad\Omega(2)=\left\{x\in\Omega:\mathrm{dist}(x,\partial\Omega)\leq(G(\Omega)+1)r^{2}\right\},

and define Ω(1)=Ω\(Ω(0)Ω(2)).\Omega(1)=\Omega\backslash\left(\Omega(0)\cup\Omega(2)\right). Here constant G(Ω)G(\Omega) is given by Lemma 2, and rr is considered sufficiently small so that Ω(0)\Omega(0) and Ω(2)\Omega(2) are disjoint. Clearly,

nΩψn,rk(x)𝑑xdx=n(Ω(0)+Ω(2)+Ω(1))ψn,rk(x)dxdx.\begin{split}&n\int_{\Omega}\psi^{k}_{n,r}(x)dx\mathrm{d}x=n\left(\int_{\Omega(0)}+\int_{\Omega(2)}+\int_{\Omega(1)}\right)\psi^{k}_{n,r}(x)dx\mathrm{d}x.\end{split}
Claim 1.

nΩ(0)ψn,rk(x)𝑑xo(1).n\int_{\Omega(0)}\psi^{k}_{n,r}(x)dx\sim o(1).

Proof.

xΩ(0),|B(x,r)Ω|=43πr3\forall x\in\Omega(0),|B(x,r)\cap\Omega|=\frac{4}{3}\pi r^{3}. Notice that |Ω(0)|(1Area(Ω)r)|\Omega(0)|\sim(1-\mathrm{Area}(\Omega)r).

nΩ(0)ψn,rk(x)𝑑x=nk!(4nπr33)ke4nπr33|Ω(0)|nk!(4nπr33)ke4nπr33=o(1).\displaystyle n\int_{\Omega(0)}\psi^{k}_{n,r}(x)dx=\frac{n}{k!}\left(\frac{4n\pi r^{3}}{3}\right)^{k}e^{-\frac{4n\pi r^{3}}{3}}|\Omega(0)|\sim\frac{n}{k!}\left(\frac{4n\pi r^{3}}{3}\right)^{k}e^{-\frac{4n\pi r^{3}}{3}}=o(1).

Claim 2.

nΩ(2)ψn,rk(x)𝑑x=o(1).n\int_{\Omega(2)}\psi^{k}_{n,r}(x)dx=o(1).

Proof.

Notice that |Ω(2)|Area(Ω)×(G(Ω)+1)r2=Θ(1)r2=Θ((lognn)23)|\Omega(2)|\leq\mathrm{Area}(\Omega)\times(G(\Omega)+1)r^{2}=\Theta(1)r^{2}=\Theta\left(\left(\frac{\log n}{n}\right)^{\frac{2}{3}}\right). By Lemma 1, there exists r0r_{0} such that r<r0\forall r<r_{0}, |B(x,r)Ω|>12πr3|B(x,r)\cap\Omega|>\frac{1}{2}\pi r^{3}, which implies supxΩ(2)en|B(x,r)Ω|=o(n1)\sup_{x\in\Omega(2)}e^{-n|B(x,r)\cap\Omega|}=o(n^{-1}).

nΩ(2)ψn,rk(x)𝑑x\displaystyle n\int_{\Omega(2)}\psi^{k}_{n,r}(x)dx \displaystyle\leq nk!(nπr3)k[o(n1)]|Ω(2)|=o(1).\displaystyle\frac{n}{k!}(n\pi r^{3})^{k}[o(n^{-1})]|\Omega(2)|=o(1).

Refer to caption
(a) t(x)t(x) is nonnegative
Refer to caption
(b) Upper bound for |B(x,r)Ω||B(x,r)\cap\Omega|

For any point xΩ(1)x\in\Omega(1), let WΩW\in\partial\Omega be the nearest point to xx, i.e., xW=dist(x,Ω)<r.\|xW\|=\mathrm{dist}(x,\partial\Omega)<r. Let plane γCD\gamma_{CD} be tangent to Ω\partial\Omega at point WW, plane γAB\gamma_{AB} parallel γCD\gamma_{CD} and pass through point xx. Then xWγCDxW\bot\gamma_{CD} and xWγABxW\bot\gamma_{AB}. See Figure 2(a). The distance between these two planes is xW>(G(Ω)+1)r2\|xW\|>(G(\Omega)+1)r^{2}, then by Lemma 2 we have that

dist(x,ΩγAB)>r,\mathrm{dist}(x,\partial\Omega\cap\gamma_{AB})>r,

which implies that AΩγAB\forall A\in\partial\Omega\cap\gamma_{AB},

xA>r.\|xA\|>r.

The distance between point xx and point yΩy\in\partial\Omega is a continuous function of yy, which is due to the smooth boundary Ω\partial\Omega. By xW<r\|xW\|<r and xA>r\|xA\|>r, we know that any point EΩE^{\prime}\in\partial\Omega with xE=r\|xE^{\prime}\|=r, or any point EΩB(x,r)E^{\prime}\in\partial\Omega\cap\partial B(x,r), is between these two planes. Define

t(x,r)=inf{dist(x,EF)E,FΩB(x,r)},t(x,r)=\inf\{\mathrm{dist}(x,E^{\prime}F^{\prime})\mid E^{\prime},F^{\prime}\in\partial\Omega\cap\partial B(x,r)\},

then clearly t(x,r)0t(x,r)\geq 0. Here t(x,r)t(x,r) is usually shortly denoted by t(x)t(x). Because ΩB(x,r)\partial\Omega\cap\partial B(x,r) is compact, we assume E,FΩB(x,r)E,F\in\partial\Omega\cap\partial B(x,r) such that

t(x,r)=dist(x,EF)=inf{dist(x,EF)E,FΩB(x,r)}.t(x,r)=\mathrm{dist}(x,EF)=\inf\{\mathrm{dist}(x,E^{\prime}F^{\prime})\mid E^{\prime},F^{\prime}\in\partial\Omega\cap\partial B(x,r)\}.

Furthermore, we set

Ω(1,1)={xΩ(1):t(x)r2},Ω(1,2)=Ω(1)Ω(1,1).\Omega(1,1)=\left\{x\in\Omega(1):t(x)\leq\frac{r}{2}\right\},\quad\Omega(1,2)=\Omega(1)\setminus\Omega(1,1).

In following, we will specify nΩ(1,2)ψn,rk(x)𝑑xn\int_{\Omega(1,2)}\psi^{k}_{n,r}(x)dx in Claim 3, and then determine nΩ(1,1)ψn,rk(x)𝑑xn\int_{\Omega(1,1)}\psi^{k}_{n,r}(x)dx in Claim 4. But at first, we will establish a lower and upper bounds for |B(x,r)Ω||B(x,r)\cap\Omega| where xΩ(1)x\in\Omega(1).

Because t(x)>0t(x)>0, a lower bound is straightforward:

|B(x,r)Ω|a(t(x))23πr3.|B(x,r)\cap\Omega|\geq a(t(x))\geq\frac{2}{3}\pi r^{3}.

Now we give an upper bound for |B(x,r)Ω||B(x,r)\cap\Omega|. Let γEF\gamma_{EF} be the plane passing through EFEF with dist(x,γEF)=t(x)\mathrm{dist}(x,\gamma_{EF})=t(x). Plane γGH\gamma_{GH} parallels γEF\gamma_{EF} and tangents to Ω\partial\Omega. See Figure 2(b). Here we assume EHγGHEH\bot\gamma_{GH} and FGγGHFG\bot\gamma_{GH}.

Clearly EF<2r\|EF\|<2r, so

Area(B(x,r)γEF)Θ(1)r2,\mathrm{Area}(B(x,r)\cap\gamma_{EF})\leq\Theta(1)r^{2},

and by Lemma 2, EH<Θ(1)r2\|EH\|<\Theta(1)r^{2}. Therefore, the volume of cylinder Cyc(EFGH)\mathrm{Cyc}(EFGH) which is formed by surface B(x,r)γEFB(x,r)\cap\gamma_{EF} and its projection on γFG\gamma_{FG}, satisfies

Vol(Cyc(EFGH))=Area(B(x,r)γEF)EHΘ(1)r4.\mathrm{Vol}(\mathrm{Cyc}(EFGH))=\mathrm{Area}(B(x,r)\cap\gamma_{EF})\|EH\|\leq\Theta(1)r^{4}.

So

|B(x,r)Ω|a(t(x))+Vol(Cyc(EFGH))a(t(x))+Θ(r4)a(t(x))+Θ(r4).\displaystyle|B(x,r)\cap\Omega|\leq a(t(x))+\mathrm{Vol}(\mathrm{Cyc}(EFGH))\leq a(t(x))+\Theta(r^{4})\leq a(t(x))+\Theta(r^{4}).

With a(t(x))2πr33a(t(x))\geq\frac{2\pi r^{3}}{3} that has been derived above, we obtain

|B(x,r)Ω|a(t(x))(1+Θ(r4)a(t(x)))a(t(x))(1+o(1)).\displaystyle|B(x,r)\cap\Omega|\leq a(t(x))\left(1+\frac{\Theta(r^{4})}{a(t(x))}\right)\leq a(t(x))(1+o(1)).

According to these lower and upper bounds of |B(x,r)Ω||B(x,r)\cap\Omega|, we have the following estimates:

(n|B(x,r)Ω|)ken|B(x,r)Ω|(1+o(1))k(na(t(x)))kena(t(x)).\begin{split}&(n|B(x,r)\cap\Omega|)^{k}e^{-n|B(x,r)\cap\Omega|}\leq(1+o(1))^{k}(na(t(x)))^{k}e^{-na(t(x))}.\end{split} (10)
(n|B(x,r)Ω|)ken|B(x,r)Ω|(na(t(x)))ken(a(t(x))+Θ(r4))enΘ(r4)(na(t(x)))kena(t(x)).\begin{split}&(n|B(x,r)\cap\Omega|)^{k}e^{-n|B(x,r)\cap\Omega|}\geq(na(t(x)))^{k}e^{-n(a(t(x))+\Theta(r^{4}))}\geq e^{-n\Theta(r^{4})}(na(t(x)))^{k}e^{-na(t(x))}.\end{split} (11)

Consider the integration on Ω(1,2)\Omega(1,2). Noticing that volume |Ω(1,2)|Area(Ω)r|\Omega(1,2)|\leq\mathrm{Area}(\Omega)r and 23πr3a(t(x))43πr3\frac{2}{3}\pi r^{3}\leq a(t(x))\leq\frac{4}{3}\pi r^{3}, then by formula (10), we have

nΩ(1,2)ψn,rk(x)𝑑x\displaystyle n\int_{\Omega(1,2)}\psi^{k}_{n,r}(x)dx =\displaystyle= nk!Ω(1,2)(n|B(x,rn)Ω|)ken|B(x,rn)Ω|𝑑x\displaystyle\frac{n}{k!}\int_{\Omega(1,2)}\left(n|B(x,r_{n})\cap\Omega|\right)^{k}e^{-n|B(x,r_{n})\cap\Omega|}dx
\displaystyle\leq nk![(1+o(1))k(na(t(x)))kena(t(x))]|Ω(1,2)|\displaystyle\frac{n}{k!}\left[(1+o(1))^{k}(na(t(x)))^{k}e^{-na(t(x))}\right]|\Omega(1,2)|
\displaystyle\leq nk!(43nπr3)ke23nπr3|Ω(1,2)|=o(1).\displaystyle\frac{n}{k!}(\frac{4}{3}n\pi r^{3})^{k}e^{-\frac{2}{3}n\pi r^{3}}|\Omega(1,2)|=o(1).

This proves

Claim 3.

nΩ(1,2)ψn,rk(x)𝑑x=o(1).n\int_{\Omega(1,2)}\psi^{k}_{n,r}(x)dx=o(1).

Refer to caption
Figure 2: Ω\Omega is divided into four parts

In the following, we will determine nΩ(1,1)ψn,rk(x)𝑑xn\int_{\Omega(1,1)}\psi^{k}_{n,r}(x)dx. By estimates (10) and (11),

nk!Ω(1,1)(n|B(x,rn)Ω|)ken|B(x,rn)Ω|𝑑xnk!Ω(1,1)(na(t(x)))kena(t(x))𝑑x.\displaystyle\frac{n}{k!}\int_{\Omega(1,1)}\left(n|B(x,r_{n})\cap\Omega|\right)^{k}e^{-n|B(x,r_{n})\cap\Omega|}dx\sim\frac{n}{k!}\int_{\Omega(1,1)}(na(t(x)))^{k}e^{-na(t(x))}dx.

We define

L1={xΩdist(x,Ω)=(G(Ω)+1)r2},L2={xΩ(1)t(x)=r2},L_{1}=\{x\in\Omega\mid\mathrm{dist}(x,\partial\Omega)=(G(\Omega)+1)r^{2}\},\quad L_{2}=\{x\in\Omega(1)\mid t(x)=\frac{r}{2}\},
L3={xΩdist(x,Ω)=r}.L_{3}=\{x\in\Omega\mid\mathrm{dist}(x,\partial\Omega)=r\}.

Clearly, the subregion Ω(1,1)\Omega(1,1) has boundaries L1L_{1} and L2L_{2}, illustrated by Figure 2. If xL1x\in L_{1}, then t(x)0t(x)\geq 0 by a similar argument as shown in the previous step. Clearly, t(x)(G(Ω)+1)r2t(x)\leq(G(\Omega)+1)r^{2}. Therefore, 0t(x)(G(Ω)+1)r20\leq t(x)\leq(G(\Omega)+1)r^{2} for any xL1x\in L_{1}. As rr tends to zero, both surfaces L1L_{1} and L2L_{2} approximate the boundary Ω\partial\Omega. So there exists ϵr\epsilon_{r} such that the area of L1L_{1} and L2L_{2}, denoted by Area(L1)\mathrm{Area}(L_{1}) and Area(L2)\mathrm{Area}(L_{2}) respectively, satisfies:

Area(Ω)ϵrArea(L1),Area(L2)Area(Ω),\mathrm{Area}(\partial\Omega)-\epsilon_{r}\leq\mathrm{Area}(L_{1}),\mathrm{Area}(L_{2})\leq\mathrm{Area}(\partial\Omega),

where ϵr0\epsilon_{r}\rightarrow 0 as r0r\rightarrow 0. In addition, it is clear that t(x)t(x) is increasing along the directed line segment started from a point in L1L_{1} to a point in L2L_{2}. See the line segment PQPQ in Figure 2.

The integration on Ω(1,1)\Omega(1,1) can be bounded as follows:

(Area(Ω)ϵr)nk!(G+1)r2r2(na(t))kena(t)𝑑tnk!Ω(1,1)(na(t(x)))kena(t(x))𝑑xArea(Ω)nk!0r2(na(t))kena(t)𝑑t.\begin{split}&(\mathrm{Area}(\Omega)-\epsilon_{r})\frac{n}{k!}\int_{(G+1)r^{2}}^{\frac{r}{2}}(na(t))^{k}e^{-na(t)}dt\\ &\leq\frac{n}{k!}\int_{\Omega(1,1)}(na(t(x)))^{k}e^{-na(t(x))}dx\\ &\leq\mathrm{Area}(\Omega)\frac{n}{k!}\int_{0}^{\frac{r}{2}}(na(t))^{k}e^{-na(t)}dt.\end{split} (12)

According to Lemma 3, we obtain that

Area(Ω)nk!0r2(na(t))kena(t)𝑑tArea(Ω)43πe2ξ3(5π16)23(23)k1k!.\displaystyle\mathrm{Area}(\Omega)\frac{n}{k!}\int_{0}^{\frac{r}{2}}(na(t))^{k}e^{-na(t)}dt\sim\mathrm{Area}(\Omega)\frac{4}{3\pi}e^{-\frac{2\xi}{3}}\left(\frac{5\pi}{16}\right)^{\frac{2}{3}}\left(\frac{2}{3}\right)^{k}\frac{1}{k!}.

Therefore,

0ϵr(G+1)r2r2nk!(na(t))kena(t)𝑑tϵr0r2nk!(na(t))kena(t)𝑑t=o(1).\begin{split}0&\leq\epsilon_{r}\int_{(G+1)r^{2}}^{\frac{r}{2}}\frac{n}{k!}(na(t))^{k}e^{-na(t)}dt\leq\epsilon_{r}\int_{0}^{\frac{r}{2}}\frac{n}{k!}(na(t))^{k}e^{-na(t)}dt=o(1).\end{split}

Furthermore, noticing that 2πr3/3a(t)2(π+δ)r3/32\pi r^{3}/3\leq a(t)\leq 2(\pi+\delta)r^{3}/3 for any t[0,(G(Ω)+1)r2]t\in[0,(G(\Omega)+1)r^{2}], where δ>0\delta>0 is a small real number, we have that

Area(Ω)0(G+1)r2nk!(na(t))kena(t)𝑑t=o(1).\mathrm{Area}(\Omega)\int_{0}^{(G+1)r^{2}}\frac{n}{k!}(na(t))^{k}e^{-na(t)}dt=o(1).

So,

(Area(Ω)ϵr)nk!(G+1)r2r2(na(t))kena(t)𝑑t=nk!(Area(Ω)0r2Area(Ω)0(G+1)r2ϵr(G+1)r2r2)(na(t))kena(t)dt=Area(Ω)nk!0r2(na(t))kena(t)𝑑t+o(1).\begin{split}&(\mathrm{Area}(\Omega)-\epsilon_{r})\frac{n}{k!}\int_{(G+1)r^{2}}^{\frac{r}{2}}(na(t))^{k}e^{-na(t)}dt\\ =&\frac{n}{k!}\left(\mathrm{Area}(\Omega)\int_{0}^{\frac{r}{2}}-\mathrm{Area}(\Omega)\int_{0}^{(G+1)r^{2}}-\epsilon_{r}\int_{(G+1)r^{2}}^{\frac{r}{2}}\right)(na(t))^{k}e^{-na(t)}dt\\ =&\mathrm{Area}(\Omega)\frac{n}{k!}\int_{0}^{\frac{r}{2}}(na(t))^{k}e^{-na(t)}dt+o(1).\end{split}

Then by formula (12),

Area(Ω)nk!0r2(na(t))kena(t)𝑑t+o(1)\displaystyle\mathrm{Area}(\Omega)\frac{n}{k!}\int_{0}^{\frac{r}{2}}(na(t))^{k}e^{-na(t)}dt+o(1)
=\displaystyle= (Area(Ω)ϵr)nk!(G+1)r2r2(na(t))kena(t)𝑑t\displaystyle(\mathrm{Area}(\Omega)-\epsilon_{r})\frac{n}{k!}\int_{(G+1)r^{2}}^{\frac{r}{2}}(na(t))^{k}e^{-na(t)}dt
\displaystyle\leq nk!Ω(1,1)(na(t(x)))kena(t(x))𝑑x\displaystyle\frac{n}{k!}\int_{\Omega(1,1)}(na(t(x)))^{k}e^{-na(t(x))}dx
\displaystyle\leq Area(Ω)nk!0r2(na(t))kena(t)𝑑t,\displaystyle\mathrm{Area}(\Omega)\frac{n}{k!}\int_{0}^{\frac{r}{2}}(na(t))^{k}e^{-na(t)}dt,

which implies that

nk!Ω(1,1)(na(t(x)))kena(t(x))𝑑xArea(Ω)nk!0r2(na(t))kena(t)𝑑t.\displaystyle\frac{n}{k!}\int_{\Omega(1,1)}(na(t(x)))^{k}e^{-na(t(x))}dx\sim\mathrm{Area}(\Omega)\frac{n}{k!}\int_{0}^{\frac{r}{2}}(na(t))^{k}e^{-na(t)}dt.

So, by Lemma 3, we have

nk!Ω(1,1)(n|B(x,rn)Ω|)ken|B(x,rn)Ω|𝑑x\displaystyle\frac{n}{k!}\int_{\Omega(1,1)}\left(n|B(x,r_{n})\cap\Omega|\right)^{k}e^{-n|B(x,r_{n})\cap\Omega|}dx
\displaystyle\sim nk!Ω(1,1)(na(t(x)))kena(t(x))𝑑x\displaystyle\frac{n}{k!}\int_{\Omega(1,1)}(na(t(x)))^{k}e^{-na(t(x))}dx
\displaystyle\sim Area(Ω)nk!0r2(na(t))kena(t)𝑑t\displaystyle\mathrm{Area}(\Omega)\frac{n}{k!}\int_{0}^{\frac{r}{2}}(na(t))^{k}e^{-na(t)}dt
\displaystyle\sim Area(Ω)43πe2ξ3(5π16)23(23)k1k!.\displaystyle\mathrm{Area}(\Omega)\frac{4}{3\pi}e^{-\frac{2\xi}{3}}\left(\frac{5\pi}{16}\right)^{\frac{2}{3}}\left(\frac{2}{3}\right)^{k}\frac{1}{k!}.

Therefore, we have proved the following conclusion:

Claim 4.

nΩ(1,1)ψn,rk(x)𝑑xArea(Ω)43πe2ξ3(5π16)23(23)k1k!.n\int_{\Omega(1,1)}\psi^{k}_{n,r}(x)dx\sim\mathrm{Area}(\Omega)\frac{4}{3\pi}e^{-\frac{2\xi}{3}}\left(\frac{5\pi}{16}\right)^{\frac{2}{3}}\left(\frac{2}{3}\right)^{k}\frac{1}{k!}.

The four claims prove Ωnψn,rk(x)𝑑x={Ω(0)+Ω(2)+Ω(1,2)+Ω(1,1)}nψn,rk(x)dxec.\int_{\Omega}n\psi^{k}_{n,r}(x)dx=\left\{\int_{\Omega(0)}+\int_{\Omega(2)}+\int_{\Omega(1,2)}+\int_{\Omega(1,1)}\right\}n\psi^{k}_{n,r}(x)dx\sim e^{-c}.

2.2 Case of continuous Ω\partial\Omega

For a general unit-volume convex region Ω\Omega with a continuous rather than smooth boundary Ω\partial\Omega, we may use a family of convex regions {Ωn}n=1Ω\{\Omega_{n}\}_{n=1}^{\infty}\subset\Omega to approximate Ω\Omega, where the boundary Ωn\partial\Omega_{n} of each Ωn\Omega_{n} is smooth. We set the width of the gap between Ω\partial\Omega and Ωn\partial\Omega_{n} to be less than rn2r^{2}_{n}, That is, supxΩndist(x,Ω)<rn2\sup_{x\in\Omega_{n}}\mathrm{dist}(x,\partial\Omega)<r^{2}_{n} for any nn. Clearly, Vol(Ωn)\mathrm{Vol}(\Omega_{n}), the volume of Ωn\Omega_{n}, satisfies 1Area(Ω)rn2Vol(Ωn)1.1-\mathrm{Area}(\Omega)r_{n}^{2}\leq\mathrm{Vol}(\Omega_{n})\leq 1. Because Ωn\partial\Omega_{n} is smooth, follow the method presented in the previous subsection, we can also similarly obtain nΩnψn,rk(x)𝑑xec.n\int_{\Omega_{n}}\psi^{k}_{n,r}(x)dx\sim e^{-c}. Since the volume of ΩΩn\Omega\setminus\Omega_{n} is no more than Area(Ω)rn2\mathrm{Area}(\Omega)r_{n}^{2}, then by the proof of Claim 2, we have that nΩΩnψn,rk(x)𝑑x=o(1).n\int_{\Omega\setminus\Omega_{n}}\psi^{k}_{n,r}(x)dx=o(1). Therefore,

nΩψn,rk(x)𝑑x=n(Ωn+ΩΩn)ψn,rk(x)dxec.n\int_{\Omega}\psi^{k}_{n,r}(x)dx=n\left(\int_{\Omega_{n}}+\int_{\Omega\setminus\Omega_{n}}\right)\psi^{k}_{n,r}(x)dx\sim e^{-c}.

This finally completes the proof of Proposition 1.

3 Proof of Proposition 2

We follow Penrose’s approach and framework to prove Proposition 2. For given nn, x,yΩx,y\in\Omega, let

vx=|B(x,r)Ω|,vy=|B(y,r)Ω|,vx,y=|B(x,r)B(y,r)Ω|,v_{x}=|B(x,r)\cap\Omega|,v_{y}=|B(y,r)\cap\Omega|,v_{x,y}=|B(x,r)\cap B(y,r)\cap\Omega|,
vx\y=vxvx,y,vy\x=vyvx,y.v_{x\backslash y}=v_{x}-v_{x,y},v_{y\backslash x}=v_{y}-v_{x,y}.

Define Ii=Ii(n)(i=1,2,3)I_{i}=I_{i}(n)(i=1,2,3) as follows:

I1=n2Ω𝑑xΩB(x,3r)𝑑yψn,rk(y)ψn,rk(x),I_{1}=n^{2}\int_{\Omega}dx\int_{\Omega\cap B(x,3r)}dy\psi^{k}_{n,r}(y)\psi^{k}_{n,r}(x),
I2=n2Ω𝑑xΩB(x,r)𝑑yPr[Z1+Z2=Z1+Z3=k1],I_{2}=n^{2}\int_{\Omega}dx\int_{\Omega\cap B(x,r)}dy\Pr[Z_{1}+Z_{2}=Z_{1}+Z_{3}=k-1],
I3=n2Ω𝑑xΩB(x,3r)\B(x,r)𝑑yPr[Z1+Z2=Z1+Z3=k],I_{3}=n^{2}\int_{\Omega}dx\int_{\Omega\cap B(x,3r)\backslash B(x,r)}dy\Pr[Z_{1}+Z_{2}=Z_{1}+Z_{3}=k],

where Z1,Z2,Z3Z_{1},Z_{2},Z_{3} are independent Poisson variables with means nvx,y,nvx\y,nvy\xnv_{x,y},nv_{x\backslash y},nv_{y\backslash x} respectively. As Penrose has pointed out in [5], by an argument similar to that of Section 7 of [8], to prove Proposition 2 it suffices to prove that I1,I2,I30I_{1},I_{2},I_{3}\rightarrow 0 as nn\rightarrow\infty. Firstly, we give the following conclusion.

Proposition 5.

Under the assumptions of Theorem 2, Z3Z_{3} is a Poisson variable with mean nvy\xnv_{y\backslash x} defined above, then

1nπr3Ωnψn,rk(x)𝑑xΩB(x,r)nPr(Z3=k1)𝑑y=o(1).\frac{1}{n\pi r^{3}}\int_{\Omega}n\psi^{k}_{n,r}(x)dx\int_{\Omega\cap B(x,r)}n\Pr(Z_{3}=k-1)dy=o(1).
Proof.

The proof is shown in Appendix B. ∎

The conclusion of I1,I2,I30I_{1},I_{2},I_{3}\rightarrow 0, as n0n\rightarrow 0, will be proved by the following three claims.

Claim 5.

I10I_{1}\rightarrow 0 as nn\rightarrow\infty.

Proof.

By Lemma 1, there exists a constant C>0C>0 such that Cπr3|B(x,r)Ω|43πr3C\pi r^{3}\leq|B(x,r)\cap\Omega|\leq\frac{4}{3}\pi r^{3}.

I1\displaystyle I_{1} =\displaystyle= n2Ω𝑑xΩB(x,3r)𝑑yψn,rk(y)ψn,rk(x)\displaystyle n^{2}\int_{\Omega}dx\int_{{\Omega}\cap B(x,3r)}dy\psi^{k}_{n,r}(y)\psi^{k}_{n,r}(x)
=\displaystyle= Ωnψn,rk(x)𝑑xB(x,3r)Ωnψn,rk(y)𝑑y\displaystyle\int_{\Omega}n\psi^{k}_{n,r}(x)dx\int_{B(x,3r)\cap\Omega}n\psi^{k}_{n,r}(y)dy
\displaystyle\leq Θ(1)Ωnψn,rk(x)𝑑xB(x,3r)Ω1k!n(nπr3)kexp(Cnπr3)\displaystyle\Theta(1)\int_{\Omega}n\psi^{k}_{n,r}(x)dx\int_{B(x,3r)\cap\Omega}\frac{1}{k!}n(n\pi r^{3})^{k}\exp(-Cn\pi r^{3})
\displaystyle\leq Θ(1)nk!|B(x,3r)|(nπr3)kexp(Cnπr3)Ωnψn,rk(x)𝑑x\displaystyle\Theta(1)\frac{n}{k!}|B(x,3r)|(n\pi r^{3})^{k}\exp(-Cn\pi r^{3})\int_{\Omega}n\psi^{k}_{n,r}(x)dx
=\displaystyle= Θ(1)(nπr3)k+1exp(Cnπr3)Ωnψn,rk(x)𝑑x\displaystyle\Theta(1)(n\pi r^{3})^{k+1}\exp(-Cn\pi r^{3})\int_{\Omega}n\psi^{k}_{n,r}(x)dx
\displaystyle\sim Θ(1)(nπr2)k+1exp(Cnπr3)=o(1).\displaystyle\Theta(1)(n\pi r^{2})^{k+1}\exp(-Cn\pi r^{3})=o(1).

Claim 6.

I20I_{2}\rightarrow 0, as nn\rightarrow\infty.

Proof.

It is obvious that Z1+Z2Z_{1}+Z_{2} and Z3Z_{3} are Possison variables with means nvxnv_{x} and nvy\xnv_{y\backslash x} respectively. Notice that

Pr[Z1+Z3=k1|Z1+Z2=k1]\displaystyle\Pr[Z_{1}+Z_{3}=k-1|Z_{1}+Z_{2}=k-1]
\displaystyle\leq j=0k1Pr[Z3=k1j|Z1+Z2=k1]\displaystyle\sum_{j=0}^{k-1}\Pr[Z_{3}=k-1-j|Z_{1}+Z_{2}=k-1]
=\displaystyle= j=0k1Pr[Z3=k1j].\displaystyle\sum_{j=0}^{k-1}\Pr[Z_{3}=k-1-j].

For any xΩx\in\Omega, ψn,rk(x)=n|B(x,r)Ω|kψn,rk1(x),\psi^{k}_{n,r}(x)=\frac{n|B(x,r)\cap\Omega|}{k}\psi^{k-1}_{n,r}(x), then by Lemma 1, there exists a constant C>0C>0 such that Cπr3|B(x,r)Ω|C\pi r^{3}\leq|B(x,r)\cap\Omega|, and thus ψn,rk1(x)kCnπr3ψn,rk(x).\psi^{k-1}_{n,r}(x)\leq\frac{k}{Cn\pi r^{3}}\psi^{k}_{n,r}(x). Therefore,

I2\displaystyle I_{2} =\displaystyle= n2Ω𝑑xΩB(x,r)𝑑yPr[Z1+Z2=Z1+Z3=k1]\displaystyle n^{2}\int_{\Omega}dx\int_{\Omega\cap B(x,r)}dy\Pr[Z_{1}+Z_{2}=Z_{1}+Z_{3}=k-1]
=\displaystyle= n2Ω𝑑xΩB(x,r)𝑑yPr[Z1+Z2=k1]Pr[Z1+Z3=k1|Z1+Z2=k1]\displaystyle n^{2}\int_{\Omega}dx\int_{\Omega\cap B(x,r)}dy\Pr[Z_{1}+Z_{2}=k-1]\Pr[Z_{1}+Z_{3}=k-1|Z_{1}+Z_{2}=k-1]
=\displaystyle= nΩPr[Z1+Z2=k1]𝑑xΩB(x,r)nPr[Z1+Z3=k1|Z1+Z2=k1]𝑑y\displaystyle n\int_{\Omega}\Pr[Z_{1}+Z_{2}=k-1]dx\int_{\Omega\cap B(x,r)}n\Pr[Z_{1}+Z_{3}=k-1|Z_{1}+Z_{2}=k-1]dy
\displaystyle\leq nΩPr[Z1+Z2=k1]𝑑x{j=0k1ΩB(x,r)nPr[Z3=k1j]𝑑y}\displaystyle n\int_{\Omega}\Pr[Z_{1}+Z_{2}=k-1]dx\left\{\sum_{j=0}^{k-1}\int_{\Omega\cap B(x,r)}n\Pr[Z_{3}=k-1-j]dy\right\}
=\displaystyle= j=0k1Ωnψn,rk1(x)𝑑xΩB(x,r)nPr[Z3=k1j]𝑑y\displaystyle\sum_{j=0}^{k-1}\int_{\Omega}n\psi^{k-1}_{n,r}(x)dx\int_{\Omega\cap B(x,r)}n\Pr[Z_{3}=k-1-j]dy
\displaystyle\leq Ckj=0k11nπr3Ωnψn,rk(x)𝑑xΩB(x,r)nPr[Z3=k1j]𝑑y=o(1).\displaystyle\frac{C}{k}\sum_{j=0}^{k-1}\frac{1}{n\pi r^{3}}\int_{\Omega}n\psi^{k}_{n,r}(x)dx\int_{\Omega\cap B(x,r)}n\Pr[Z_{3}=k-1-j]dy=o(1).

The last equation holds due to Proposition 5 and the proved conclusion Ωnψn,rk(x)𝑑xec\int_{\Omega}n\psi^{k}_{n,r}(x)dx\sim e^{-c}.

Similarly, we can prove

Claim 7.

I30I_{3}\rightarrow 0, as nn\rightarrow\infty.

Therefore, by these three claims, we know the Poissonized version (4) holds. The proof of Proposition 2 is completed.

4 Proofs of Proposition 3 and 4

Proposition 2 can lead to Proposition 3 by a de-Poissonized technique. The de-Poissonized technique is standard and thus omitted here, please see [5] for details.

Here we sketch the proof of Proposition 4. Penrose has clearly proved this result when region Ω\Omega is a square [5]. He constructed two events, En(K)E_{n}(K) and Fn(K)F_{n}(K), such that for any K>0K>0,

{ρ(χn;δk+1)rn<ρ(χn;κk+1)}En(K)Fn(K),\left\{\rho(\chi_{n};\delta\geq k+1)\leq r_{n}<\rho(\chi_{n};\kappa\geq k+1)\right\}\subseteq E_{n}(K)\cup F_{n}(K),

and

limnPr[En(K)]=limnPr[Fn(K)]=0.\lim_{n\rightarrow\infty}\Pr[E_{n}(K)]=\lim_{n\rightarrow\infty}\Pr[F_{n}(K)]=0.

The definition of the events and the convergence results are organised in Proposition 5.1 and 5.2 of [5]. We do not introduce them in detail. Please refer to [5]. These conclusions can be straightly generalised to the case of convex region, with their proofs not much been modified. In fact, we have proved Proposition 1: nΩψn,rk(x)𝑑xecn\int_{\Omega}\psi^{k}_{n,r}(x)dx\sim e^{-c}, and |B(x,r)Ω||B(x,r)\cap\Omega| in

ψn,rk(x)=(n|B(x,r)Ω|)ken|B(x,r)Ω|k!\psi^{k}_{n,r}(x)=\frac{\left(n|B(x,r)\cap\Omega|\right)^{k}e^{-n|B(x,r)\cap\Omega|}}{k!}

can be bounded by Cπr3|B(x,r)Ω|43πr3C\pi r^{3}\leq|B(x,r)\cap\Omega|\leq\frac{4}{3}\pi r^{3} where C>0C>0, seeing Lemma 1.

As a result, based on two generalised conclusions, a squeezing argument can lead to the following

limnPr{ρ(χn;δk+1)=ρ(χn;κk+1)}=1.\lim_{n\rightarrow\infty}\Pr\left\{\rho(\chi_{n};\delta\geq k+1)=\rho(\chi_{n};\kappa\geq k+1)\right\}=1.

Please see the details presented in [5].

References

References

  • [1] J. Ding, et. al., Asymptotic critical transmission radii in wireless networks over a convex region, submitted to IEEE Transactions on Information Theory (first round submission with Ref. IT-18-0767) (Nov. 2018).
  • [2] J. Ding, S. Ma, X. Zhu, Asymptotic critical transmission radii in wireless networks over a convex region, submitted to IEEE Transactions on Information Theory (second round submission with Ref. IT-21-0894) (Dec. 2021).
  • [3] H. Dette, N. Henze, The limit distribution of the largest nearest-neighbour link in the unit dd-cube, Journal of Applied Probability 26 (1) (1989) 67–80.
  • [4] M. D. Penrose, Random Geometric Graph, Oxford Univ. Press, 2003.
  • [5] M. D. Penrose, On κ\kappa-connectivity for a geometric random graph, Random Struct. Algorithms 15 (1999) 145–164.
  • [6] P.-J. Wan, C.-W. Yi, Asymptotic critical transmission radius and critical neighbor number for kk-connectivity in wireless ad hoc networks, in: Proc. the 5th ACM international symposium on Mobile ad hoc networking and computing, 2004.
  • [7] P.-J. Wan, C.-W. Yi, L. Wang, Asymptotic critical transmission radius for κ\kappa-connectivity in wireless ad hoc networks, IEEE Transactions on Information Theory 56 (6) (2010) 2867–2874.
  • [8] M. D. Penrose, The longest edge of the random minimal spanning tree, The Annals of Applied Probability 7 (2) (1997) 340–361.

Appendix A Proofs of Lemma 1, Lemma 2 and Lemma 3

The proofs of Lemma 1 and Lemma 2 are elementary and and similar to the ones presented in [1]. So they are omitted here. The following is the proof of Lemma 3.

Proof.

(Proof of Lemma 3). For convenience, we denote Ck=3k21C_{k}=\frac{3k}{2}-1. Notice that

a(t)=π3(rt)2(2r+t),a(t)=\frac{\pi}{3}(r-t)^{2}(2r+t),
a(t)=π(t2r2),a′′(t)=2πt.a^{\prime}(t)=\pi(t^{2}-r^{2}),\quad a^{\prime\prime}(t)=2\pi t.

Let f(t)=na(t)f(t)=na(t), then

n0r2(f(t))kef(t)k!𝑑t=1a(t)ef(t)k=0k(f(t))ii!|0r20r2a′′(t)(a(t))2ef(t)i=0k(f(t))ii!dt.n\int_{0}^{\frac{r}{2}}\frac{(f(t))^{k}e^{-f(t)}}{k!}dt=-\frac{1}{a^{\prime}(t)}e^{-f(t)}\sum_{k=0}^{k}\frac{(f(t))^{i}}{i!}|_{0}^{\frac{r}{2}}-\int_{0}^{\frac{r}{2}}\frac{a^{\prime\prime}(t)}{(a^{\prime}(t))^{2}}e^{-f(t)}\sum_{i=0}^{k}\frac{(f(t))^{i}}{i!}dt.

Notice that

f(r2)=5nπr324=5nπ24165πlogn+Ckloglogn+ξn=23(logn+Ckloglogn+ξ).f\left(\frac{r}{2}\right)=\frac{5n\pi r^{3}}{24}=\frac{5n\pi}{24}\frac{16}{5\pi}\frac{\log n+C_{k}\log\log n+\xi}{n}=\frac{2}{3}\left(\log n+C_{k}\log\log n+\xi\right).
ef(r2)=1n231(logn)23Cke2ξ3.e^{-f\left(\frac{r}{2}\right)}=\frac{1}{n^{\frac{2}{3}}}\frac{1}{(\log n)^{\frac{2}{3}C_{k}}}e^{-\frac{2\xi}{3}}.

(i) First term:

1a(r2)ef(r2)=134πr21n231(logn)23e2ξ3=43πe2ξ3(5π16nlogn+Ckloglogn)23n23(logn)23Ck-\frac{1}{a^{\prime}\left(\frac{r}{2}\right)}e^{-f\left(\frac{r}{2}\right)}=\frac{1}{\frac{3}{4}\pi r^{2}}\frac{1}{n^{\frac{2}{3}}}\frac{1}{(\log n)^{\frac{2}{3}}}e^{-\frac{2\xi}{3}}=\frac{4}{3\pi}e^{-\frac{2\xi}{3}}\frac{\left(\frac{5\pi}{16}\frac{n}{\log n+C_{k}\log\log n}\right)^{\frac{2}{3}}}{n^{\frac{2}{3}}(\log n)^{\frac{2}{3}C_{k}}}
1a(r2)ef(r2)i=0kf(r2)ii!=43πe2ξ3(5π16nlogn+Ckloglogn+ξ)23n23(logn)23Cki=0k(23(logn+Ckloglogn+ξ))i/i!-\frac{1}{a^{\prime}\left(\frac{r}{2}\right)}e^{-f\left(\frac{r}{2}\right)}\sum_{i=0}^{k}\frac{f\left(\frac{r}{2}\right)^{i}}{i!}=\frac{4}{3\pi}e^{-\frac{2\xi}{3}}\frac{\left(\frac{5\pi}{16}\frac{n}{\log n+C_{k}\log\log n+\xi}\right)^{\frac{2}{3}}}{n^{\frac{2}{3}}(\log n)^{\frac{2}{3}C_{k}}}\sum_{i=0}^{k}\left(\frac{2}{3}\left(\log n+C_{k}\log\log n+\xi\right)\right)^{i}/i!

Because Ck=32k1C_{k}=\frac{3}{2}k-1, so (logn)23+23Ck=(logn)k\left(\log n\right)^{\frac{2}{3}+\frac{2}{3}C_{k}}=\left(\log n\right)^{k}, and

1a(r2)ef(r2)i=0kf(r2)ii!1a(r2)ef(r2)f(r2)kk!43πe2ξ3(5π16)23(23)k1k!.-\frac{1}{a^{\prime}\left(\frac{r}{2}\right)}e^{-f\left(\frac{r}{2}\right)}\sum_{i=0}^{k}\frac{f\left(\frac{r}{2}\right)^{i}}{i!}\sim-\frac{1}{a^{\prime}\left(\frac{r}{2}\right)}e^{-f\left(\frac{r}{2}\right)}\frac{f\left(\frac{r}{2}\right)^{k}}{k!}\sim\frac{4}{3\pi}e^{-\frac{2\xi}{3}}\left(\frac{5\pi}{16}\right)^{\frac{2}{3}}\left(\frac{2}{3}\right)^{k}\frac{1}{k!}.

(ii) Second term. Notice that

a(0)=πr2,f(0)=3215(logn+Ckloglogn+ξ),ef(0)=1n32151(logn)3215Cke32ξ15.a^{\prime}(0)=-\pi r^{2},\quad f\left(0\right)=\frac{32}{15}\left(\log n+C_{k}\log\log n+\xi\right),\quad e^{-f(0)}=\frac{1}{n^{\frac{32}{15}}}\frac{1}{(\log n)^{\frac{32}{15}C_{k}}}e^{-\frac{32\xi}{15}}.

It is easy to see that

1a(0)ef(0)f(0)k=o(1).-\frac{1}{a^{\prime}\left(0\right)}e^{-f\left(0\right)}f\left(0\right)^{k}=o(1).

(iii) Third term.

a(t)=π(t2r2),a′′(t)=2πt,a^{\prime}(t)=\pi(t^{2}-r^{2}),\quad a^{\prime\prime}(t)=2\pi t,

When tr2t\leq\frac{r}{2},

|a′′(t)(a(t))3|=2π2t(r2t2)36427π21r5=Θ((nlogn+Ckloglogn+ξ)53).\left|\frac{a^{\prime\prime}(t)}{(a^{\prime}(t))^{3}}\right|=\frac{2}{\pi^{2}}\frac{t}{(r^{2}-t^{2})^{3}}\leq\frac{64}{27\pi^{2}}\frac{1}{r^{5}}=\Theta\left(\left(\frac{n}{\log n+C_{k}\log\log n+\xi}\right)^{\frac{5}{3}}\right).

Then

|0r2a′′(t)(a(t))2ef(t)i=0k(f(t))ii!dt|\displaystyle\left|\int_{0}^{\frac{r}{2}}\frac{a^{\prime\prime}(t)}{(a^{\prime}(t))^{2}}e^{-f(t)}\sum_{i=0}^{k}\frac{(f(t))^{i}}{i!}dt\right|
=\displaystyle= 1n|0r2a′′(t)(a(t))3ef(t)i=0k(f(t))ii!df(t)|\displaystyle\frac{1}{n}\left|\int_{0}^{\frac{r}{2}}\frac{a^{\prime\prime}(t)}{(a^{\prime}(t))^{3}}e^{-f(t)}\sum_{i=0}^{k}\frac{(f(t))^{i}}{i!}df(t)\right|
\displaystyle\leq 6427π21nr5|0r2ef(t)i=0k(f(t))ii!df(t)|\displaystyle\frac{64}{27\pi^{2}}\frac{1}{nr^{5}}\left|\int_{0}^{\frac{r}{2}}e^{-f(t)}\sum_{i=0}^{k}\frac{(f(t))^{i}}{i!}df(t)\right|
\displaystyle\leq Θ(1)6427π21nr5|0r2ef(t)(f(t))kk!𝑑f(t)|\displaystyle\Theta(1)\frac{64}{27\pi^{2}}\frac{1}{nr^{5}}\left|\int_{0}^{\frac{r}{2}}e^{-f(t)}\frac{(f(t))^{k}}{k!}df(t)\right|
=\displaystyle= Θ(1)6427π21nr5|0r2d(ef(t)i=0k(f(t))ii!)|\displaystyle\Theta(1)\frac{64}{27\pi^{2}}\frac{1}{nr^{5}}\left|\int_{0}^{\frac{r}{2}}d\left(-e^{-f(t)}\sum_{i=0}^{k}\frac{(f(t))^{i}}{i!}\right)\right|
\displaystyle\leq Θ(1)6427π21nr5ef(0)i=0k(f(0))ii!\displaystyle\Theta(1)\frac{64}{27\pi^{2}}\frac{1}{nr^{5}}e^{-f(0)}\sum_{i=0}^{k}\frac{(f(0))^{i}}{i!}
=\displaystyle= o(1).\displaystyle o(1).

Therefore,

n0r2(f(t))kef(t)k!𝑑t1a(r2)ef(r2)f(r2)kk!43πe2ξ3(5π16)23(23)k1k!.n\int_{0}^{\frac{r}{2}}\frac{(f(t))^{k}e^{-f(t)}}{k!}dt\sim-\frac{1}{a^{\prime}\left(\frac{r}{2}\right)}e^{-f\left(\frac{r}{2}\right)}\frac{f\left(\frac{r}{2}\right)^{k}}{k!}\sim\frac{4}{3\pi}e^{-\frac{2\xi}{3}}\left(\frac{5\pi}{16}\right)^{\frac{2}{3}}\left(\frac{2}{3}\right)^{k}\frac{1}{k!}.

Appendix B Proof of Proposition 5

Refer to caption
Figure 3: Illustration of Lemma 4

We first give a lemma.

Lemma 4.

The distance between the centers xx and yy of two balls which have the same radium rr is less than the radius, i.e., d=xy<rd=\|xy\|<r. Plane γ\gamma is perpendicular to line xyxy and passes through point xx. The semi-sphere cut by γ\gamma which contains point yy is denoted by Bsemi(x,r)B_{\mathrm{semi}}(x,r), then the volume of Bsemi(x,r)B(y,r)B_{\mathrm{semi}}(x,r)\setminus B(y,r) (see red part in Figure 3) is

V(d)=|BsemiB(y,r)|=14πd3.V^{*}(d)=|B_{\mathrm{semi}}\setminus B(y,r)|=\frac{1}{4}\pi d^{3}.
Proof.

V(d)=0d2π((r2t2)(r2(dt)2))𝑑t=14πd3.V^{*}(d)=\int_{0}^{\frac{d}{2}}\pi\left((r^{2}-t^{2})-(r^{2}-(d-t)^{2})\right)dt=\frac{1}{4}\pi d^{3}.

Proof.

(Proof for Proposition 5). Let d0=(4rn23π23)13,d_{0}=\left(\frac{4r}{n^{\frac{2}{3}}\pi^{\frac{2}{3}}}\right)^{\frac{1}{3}}, then 0<d0=Θ((logn)19n13)<r0<d_{0}=\Theta\left(\frac{(\log n)^{\frac{1}{9}}}{n^{\frac{1}{3}}}\right)<r for any sufficiently large nn, and nπd034=(nπr3)13.\frac{n\pi d_{0}^{3}}{4}=(n\pi r^{3})^{\frac{1}{3}}. xΩ\forall x\in\Omega, let

Γ1(x)={yB(x,r)Ω:dist(y,x)d0},\Gamma_{1}(x)=\left\{y\in B(x,r)\cap\Omega:\mathrm{dist}(y,x)\leq d_{0}\right\},
Γ2(x)={yB(x,r)Ω:dist(y,x)d0,dist(y,Ω)>(G(Ω)+1)r2},\Gamma_{2}(x)=\left\{y\in B(x,r)\cap\Omega:\mathrm{dist}(y,x)\geq d_{0},\mathrm{dist}(y,\partial\Omega)>(G(\Omega)+1)r^{2}\right\},
Γ3(x)={yB(x,r)Ω:dist(y,Ω)(G(Ω)+1)r2}.\Gamma_{3}(x)=\left\{y\in B(x,r)\cap\Omega:\mathrm{dist}(y,\partial\Omega)\leq(G(\Omega)+1)r^{2}\right\}.

Here dist(y,x)=yx\mathrm{dist}(y,x)=\|yx\|, the distance between points yy and xx. Constant G(Ω)G(\Omega) is an uniform upper bound given in Lemma 2. Clearly, B(x,r)ΩΓ1(x)Γ2(x)Γ3(x),B(x,r)\cap\Omega\subset\Gamma_{1}(x)\cup\Gamma_{2}(x)\cup\Gamma_{3}(x), as Figure 4(a) illustrates.

Refer to caption
(a) B(x,r)ΩΓ1(x)Γ2(x)Γ3(x)B(x,r)\cap\Omega\subset\Gamma_{1}(x)\cup\Gamma_{2}(x)\cup\Gamma_{3}(x)
Refer to caption
(b) For proof A2=o(1)A_{2}=o(1)

Let

Ai=1nπr3Ωnψn,rk(x)𝑑xΓi(x)nPr(Z3=k1)𝑑y,i=1,2,3.A_{i}=\frac{1}{n\pi r^{3}}\int_{\Omega}n\psi^{k}_{n,r}(x)dx\int_{\Gamma_{i}(x)}n\Pr(Z_{3}=k-1)dy,i=1,2,3. (13)

We will prove Ai=o(1),i=1,2,3A_{i}=o(1),i=1,2,3, in the following three steps. Notice that we have proved Proposition 1: Ωnψn,rk(x)𝑑xec\int_{\Omega}n\psi^{k}_{n,r}(x)dx\sim e^{-c}.

Step 1: to prove A1=o(1)A_{1}=o(1).

A1\displaystyle A_{1} =\displaystyle= 1nπr3Ωnψn,rk(x)𝑑xΓ1(x)nPr(Z3=k1)𝑑y\displaystyle\frac{1}{n\pi r^{3}}\int_{\Omega}n\psi^{k}_{n,r}(x)dx\int_{\Gamma_{1}(x)}n\Pr(Z_{3}=k-1)dy
\displaystyle\leq 1nπr3Ωnψn,rk(x)𝑑xΓ1(x)n𝑑y\displaystyle\frac{1}{n\pi r^{3}}\int_{\Omega}n\psi^{k}_{n,r}(x)dx\int_{\Gamma_{1}(x)}ndy
\displaystyle\leq 1πr3Ω|Γ1(x)|nψn,rk(x)𝑑x\displaystyle\frac{1}{\pi r^{3}}\int_{\Omega}|\Gamma_{1}(x)|n\psi^{k}_{n,r}(x)dx
\displaystyle\leq Θ(1)d03r3Ωnψn,rk(x)𝑑x=o(1).\displaystyle\Theta(1)\frac{d_{0}^{3}}{r^{3}}\int_{\Omega}n\psi^{k}_{n,r}(x)dx=o(1).

Step 2: to prove A2=o(1)A_{2}=o(1). For any yΓ2(x)y\in\Gamma_{2}(x), dist(y,Ω)(G(Ω)+1)r2\mathrm{dist}(y,\partial\Omega)\geq(G(\Omega)+1)r^{2}. Then by Lemma 2, yA>r\|yA\|>r and yB>r\|yB\|>r, see Figure 4(b). This means that at least more than one half of B(y,r)B(y,r) falling in Ω\Omega. As a result,

vy\x=|B(y,r)Ω||B(x,r)B(y,r)Ω|V(d0)2,v_{y\backslash x}=|B(y,r)\cap\Omega|-|B(x,r)\cap B(y,r)\cap\Omega|\geq\frac{V^{\ast}(d_{0})}{2},

where V(d0)V^{\ast}(d_{0}) is given by Lemma 4. Therefore, nvy\x12nV(d0)=n2πd034=12(nπr3)13.nv_{y\backslash x}\geq\frac{1}{2}nV^{\ast}(d_{0})=\frac{n}{2}\frac{\pi d_{0}^{3}}{4}=\frac{1}{2}(n\pi r^{3})^{\frac{1}{3}}.

A2\displaystyle A_{2} =\displaystyle= 1nπr3Ωnψn,rk(x)𝑑xΓ2nPr(Z3=k1)𝑑y\displaystyle\frac{1}{n\pi r^{3}}\int_{\Omega}n\psi^{k}_{n,r}(x)dx\int_{\Gamma_{2}}n\Pr(Z_{3}=k-1)dy
\displaystyle\leq 1nπr3Ωnψn,rk(x)𝑑xΓ2n(nπr3)k1exp(12(nπr3)13)dy(k1)!\displaystyle\frac{1}{n\pi r^{3}}\int_{\Omega}n\psi^{k}_{n,r}(x)dx\int_{\Gamma_{2}}\frac{n(n\pi r^{3})^{k-1}\exp\left(-\frac{1}{2}\left(n\pi r^{3}\right)^{\frac{1}{3}}\right)dy}{(k-1)!}
\displaystyle\leq 1nπr3Ωnψn,rk(x)𝑑x(nπr3)kexp(12(nπr3)13)(k1)!\displaystyle\frac{1}{n\pi r^{3}}\int_{\Omega}n\psi^{k}_{n,r}(x)dx\frac{(n\pi r^{3})^{k}\exp\left(-\frac{1}{2}\left(n\pi r^{3}\right)^{\frac{1}{3}}\right)}{(k-1)!}
\displaystyle\sim ecnπr3o(1)=o(1).\displaystyle\frac{e^{-c}}{n\pi r^{3}}o(1)=o(1).

Step 3: to prove A3=o(1)A_{3}=o(1). Notice that Γ3(x)\Gamma_{3}(x) falls in a region with the width less than (G(Ω)+1)r2(G(\Omega)+1)r^{2}, we have |Γ3(x)|Area(B(x,r))(G(Ω)+1)r2=Θ(1)r4.|\Gamma_{3}(x)|\leq\mathrm{Area}(\partial B(x,r))(G(\Omega)+1)r^{2}=\Theta(1)r^{4}.

A3\displaystyle A_{3} =\displaystyle= 1nπr3Ωnψn,rk(x)𝑑xΓ3(x)nPr(Z3=k1)𝑑y\displaystyle\frac{1}{n\pi r^{3}}\int_{\Omega}n\psi^{k}_{n,r}(x)dx\int_{\Gamma_{3}(x)}n\Pr(Z_{3}=k-1)dy
\displaystyle\leq 1nπr3Ωnψn,rk(x)𝑑xΓ3(x)n𝑑y\displaystyle\frac{1}{n\pi r^{3}}\int_{\Omega}n\psi^{k}_{n,r}(x)dx\int_{\Gamma_{3}(x)}ndy
=\displaystyle= 1πr3Ω|Γ3(x)|nψn,rk(x)𝑑x\displaystyle\frac{1}{\pi r^{3}}\int_{\Omega}|\Gamma_{3}(x)|n\psi^{k}_{n,r}(x)dx
\displaystyle\leq Θ(r)Ωnψn,rk(x)𝑑x=o(1).\displaystyle\Theta(r)\int_{\Omega}n\psi^{k}_{n,r}(x)dx=o(1).

Finally, we have

1nπr3Ωnψn,rk(x)𝑑xΩB(x,r)nPr(Z3=k1)𝑑yA1+A2+A3=o(1).\frac{1}{n\pi r^{3}}\int_{\Omega}n\psi^{k}_{n,r}(x)dx\int_{\Omega\cap B(x,r)}n\Pr(Z_{3}=k-1)dy\leq A_{1}+A_{2}+A_{3}=o(1).

The proposition is therefore proved. ∎