This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Asymptotically Compatible Error Bound of Finite Element Method for Nonlocal Diffusion Model with An Efficient Implementation

Yanzun Meng Yanzun Meng: Department of Mathematical Sciences, Tsinghua University, Beijing, China, 100084. myz21@mails.tsinghua.edu.cn  and  Zuoqiang Shi Zuoqiang Shi: Yau Mathematical Sciences Center, Tsinghua University, Beijing, China, 100084. & Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing, China, 101408. zqshi@tsinghua.edu.cn
Abstract.

This paper presents an asymptotically compatible error bound for the finite element method (FEM) applied to a nonlocal diffusion model. The analysis covers two scenarios: meshes with and without shape regularity. For shape-regular meshes, the error is bounded by O(hk+δ)O(h^{k}+\delta), where hh is the mesh size, δ\delta is the nonlocal horizon, and kk is the order of the FEM basis. Without shape regularity, the bound becomes O(hk+1/δ+δ)O(h^{k+1}/\delta+\delta). In addition, we present an efficient implementation of the finite element method of nonlocal model. The direct implementation of the finite element method of nonlocal model requires computation of 2n2n-dimensional integrals which are very expensive. For the nonlocal model with Gaussian kernel function, we can decouple the 2n2n-dimensional integral to 2-dimensional integrals which reduce the computational cost tremendously. Numerical experiments verify the theoretical results and demonstrate the outstanding performance of the proposed numerical approach.

Key words and phrases:
nonlocal diffusion model, finite element method, asymptotically compatible error
2020 Mathematics Subject Classification:
Primary 65R20, 65N30, 45A05, 65B99
This work is supported by National Natural Science Foundation of China (NSFC) 92370125.

1. Introduction

Nonlocal modeling has emerged as a powerful framework in recent decades, offering advantages over traditional differential operator-based approaches, particularly for problems involving singularities or anomalous behavior. By replacing differential operators with integral operators, nonlocal models can capture complex phenomena that classical partial differential equations (PDEs) struggle to describe. Nonlocal models have found applications in diverse fields, including anomalous diffusion [1, 4, 30, 5], fracture mechanics in peridynamics [2, 20, 26, 14, 25], traffic flow [7], imaging process [19] and semi-supervised learning [22, 32, 27]. Given their broad applicability, the development of efficient and accurate numerical methods for nonlocal models has attracted significant attention.

To solve the nonlocal models, many numerical methods have been proposed in the literature, include difference method [28], finite element method [6, 8, 9], spectral method [12, 11, 13], collocation method [33, 35] and mesh free method [3, 24, 16, 17]. Among the various numerical approaches, the finite element method (FEM) stands out due to its flexibility and robustness. In this paper, we focus the finite element discretization of a nonlocal diffusion model

1δ2ΩRδ(𝐱,𝐲)(u(𝐱)u(𝐲))d𝐲+ΩR¯δ(𝐱,𝐲)u(𝐲)d𝐲\displaystyle\frac{1}{\delta^{2}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(u({\mathbf{x}})-u({\mathbf{y}}))\mathrm{d}{\mathbf{y}}+{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}u({\mathbf{y}})\mathrm{d}{\mathbf{y}}
=ΩR¯δ(𝐱,𝐲)f(𝐲)d𝐲+2ΩR¯δ(𝐱,𝐲)g(𝐲)dS𝐲.\displaystyle\hskip 113.81102pt={\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}f({\mathbf{y}})\mathrm{d}{\mathbf{y}}+2{\int_{\partial\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}g({\mathbf{y}})\mathrm{d}S_{\mathbf{y}}. (1.1)

where Rδ(𝐱,𝐲){R_{\delta}({\mathbf{x}},{\mathbf{y}})} and R¯δ(𝐱,𝐲){\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})} are integral kernels, which are typically chosen as radially symmetric and limited to a spherical neighborhood of radius 2δ2\delta. ff and gg are given functions. The details of the above nonlocal model are given in Section 2.1. It has been proved that under some mild assumptions, the solution of above nonlocal model converges to the solution of the following elliptic equation with Neumann boundary condition

{Δu(𝐱)+u(𝐱)=f(𝐱),𝐱Ω,u𝐧(𝐱)=g(𝐱),𝐱Ω,\left\{\begin{aligned} -&\Delta u({\mathbf{x}})+u({\mathbf{x}})=f({\mathbf{x}}),\quad&{\mathbf{x}}\in\Omega,\\ &\dfrac{\partial u}{\partial{\mathbf{n}}}({\mathbf{x}})=g({\mathbf{x}}),&{\mathbf{x}}\in\partial\Omega,\end{aligned}\right. (1.2)

as δ\delta goes to zero [23].

In the theoretical part of this paper, we analyze the error between the finite element solution of the nonlocal model (1.1) and the exact solution of the local model (1.2), denoted as uhuu_{h}-u. If the shape regularity is preserved as mesh size h0h\rightarrow 0, we prove that the error is O(hk+δ)O(h^{k}+\delta) in L2L^{2} norm with kk-th order finite element basis. For H1H^{1} norm, due to the absence of H1H^{1} coercivity for nonlocal diffusion model, we can not get the bound of uhuH1(Ω)\|u_{h}-u\|_{H^{1}(\Omega)} directly. However, we introduce a gradient recovery method such that the error gradient also has the bound of O(hk+δ)O(h^{k}+\delta) after recovery. This theoretical result shows that the finite element solution of the nonlocal model converges to the solution of the local model as h,δh,\delta go to zero without any requirement on the relation between hh and δ\delta. This property is very important to guarantee that the finite element method is asymptotically compatible (AC) as introduced by Du and Tian [29]. In [29], a theoretical framework of AC scheme was established to show that under some general assumptions, the Galerkin finite element approximation is always asymptotically compatible as long as the continuous piecewise linear functions are included in the finite element space. For a specific nonlocal diffusion model (1.1), we get the optimal H1H^{1} convergence rate in hh after introducing a gradient recovery strategy. The convergence rate in δ\delta is first order which is also optimal in the sense that the convergence rate of the nonlocal model itself is also first order.

If the shape regularity is not preserving when mesh size hh goes to zero, the error bound becomes O(hk+1/δ+δ)O(h^{k+1}/\delta+\delta). In this case, the finite element method is asymptotically compatible with condition hk+1/δ0h^{k+1}/\delta\rightarrow 0. This is a reasonable result, since the finite element method is not convergent for the local problem without shape regularity.

Although the finite element method for nonlocal model has good theoretical properties, the implementation of the nonlocal finite element method is very challenging. The most difficult part lies in the assembling of the stiffness matrix. In this process, we need to compute following integral many times.

δψi,ψj=ΩB(𝐱,2δ)Ωγδ(𝐱,𝐲)(ψi(𝐱)ψi(𝐲))ψj(𝐱)d𝐲d𝐱,\displaystyle\left<\mathcal{L}_{\delta}\psi_{i},\psi_{j}\right>=\int_{\Omega}\int_{B({\mathbf{x}},2\delta)\cap\Omega}\gamma_{\delta}({\mathbf{x}},{\mathbf{y}})(\psi_{i}({\mathbf{x}})-\psi_{i}({\mathbf{y}}))\psi_{j}({\mathbf{x}})\mathrm{d}{\mathbf{y}}\mathrm{d}{\mathbf{x}},

Where ψi,ψj\psi_{i},\psi_{j} are the node basis functions. If Ω\Omega is a domain in n{\mathbb{R}}^{n}, the above integral is in fact a 2n2n-dimensional integral. Assembling the stiff matrix requires calculating this kind of integral for numerous times, which brings expensive computation cost. Meanwhile, the kernel γδ\gamma_{\delta} is usually nearly-singular, and dealing with the intersection of the Euclidean ball B(𝐱,δ)B({\mathbf{x}},\delta) and the mesh is also challenging. Despite considerable efforts have been made to mitigate these issues, such as [34, 21] designed efficient quadrature method and [15] polygonally approximated the Euclidean ball, the implementation of nonlocal finite element is still a challenging task.

For Gaussian kernel and tensor-product domain, we propose a fast implementation of the nonlocal finite element method. In this case, the 2n2n-dimensional integral can be separated to the product of 2d integrals, which reduces the computational cost tremendously. For the domain which can be decomposed to the union of tensor-product domains, the method is still applicable.

The rest of this paper is organized as follows. In Section 2, we give the formulation of nonlocal diffusion model and introduce the finite element discretization. The details of the error analysis are presented in Section 3. Subsequently, the fast implementation is introduced in Section 4 and numerical experiments are demonstrated in Section 5.

2. Nonlocal finite element discretization and main results

This section will introduce the configuration of our nonlocal diffusion model with its local counterpart. To solve this nonlocal problem, a conformal finite element discretization is designed. The error estimations between the finite element solution and the PDE solution will be stated in this section. Additionally, we also design a method to approximate the gradient of the local solution.

2.1. Nonlocal diffusion model

In this paper, we consider the following partial differential equation with Neumann boundary.

{Δu(𝐱)+u(𝐱)=f(𝐱),𝐱Ω,u𝐧(𝐱)=g(𝐱),𝐱Ω,\left\{\begin{aligned} -&\Delta u({\mathbf{x}})+u({\mathbf{x}})=f({\mathbf{x}}),\quad&{\mathbf{x}}\in\Omega,\\ &\dfrac{\partial u}{\partial{\mathbf{n}}}({\mathbf{x}})=g({\mathbf{x}}),&{\mathbf{x}}\in\partial\Omega,\end{aligned}\right. (2.1)

where Ωn\Omega\subset{\mathbb{R}}^{n} is a bounded and connected domain. The nonlocal counterpart of this equation is given as follows

1δ2ΩRδ(𝐱,𝐲)(u(𝐱)u(𝐲))d𝐲+ΩR¯δ(𝐱,𝐲)u(𝐲)d𝐲\displaystyle\frac{1}{\delta^{2}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(u({\mathbf{x}})-u({\mathbf{y}}))\mathrm{d}{\mathbf{y}}+{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}u({\mathbf{y}})\mathrm{d}{\mathbf{y}}
=ΩR¯δ(𝐱,𝐲)f(𝐲)d𝐲+2ΩR¯δ(𝐱,𝐲)g(𝐲)dS𝐲.\displaystyle\hskip 113.81102pt={\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}f({\mathbf{y}})\mathrm{d}{\mathbf{y}}+2{\int_{\partial\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}g({\mathbf{y}})\mathrm{d}S_{\mathbf{y}}. (2.2)

The kernel functions RδR_{\delta} and R¯δ\bar{R}_{\delta} in (2.2) are derived from a function RR which satisfies the following conditions:

  • (a)

    (regularity) RC1([0,+))R\in C^{1}([0,+\infty));

  • (b)

    (positivity and compact support) R(r)0R(r)\geq 0 and R(r)=0R(r)=0 for r>1\forall r>1;

  • (c)

    (nondegeneracy) γ0>0\exists\gamma_{0}>0 so that R(r)γ0R(r)\geq\gamma_{0} for 0r120\leq r\leq\frac{1}{2}.

With this function, we can further define

R¯(r)=r+R(s)ds.\displaystyle\bar{R}(r)=\int_{r}^{+\infty}R(s)\mathrm{d}s.

We can find R¯\bar{R} also satisfies the above three conditions. With these two univariate functions, we can get the corresponding kernel function with scaling transformation as follows

Rδ(𝐱,𝐲)=αnδnR(|𝐱𝐲|24δ2),R¯δ(𝐱,𝐲)=αnδnR¯(|𝐱𝐲|24δ2).\displaystyle R_{\delta}({\mathbf{x}},{\mathbf{y}})=\alpha_{n}\delta^{-n}R\left(\frac{|{\mathbf{x}}-{\mathbf{y}}|^{2}}{4\delta^{2}}\right),\quad\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})=\alpha_{n}\delta^{-n}\bar{R}\left(\frac{|{\mathbf{x}}-{\mathbf{y}}|^{2}}{4\delta^{2}}\right). (2.3)

Here αn\alpha_{n} is a normalization constant such that

nαnδnR¯(|𝐱𝐲|24δ2)d𝐲=αnSn02R¯(r2/4)rn1dr=1,\displaystyle\int_{{\mathbb{R}}^{n}}\alpha_{n}\delta^{-n}\bar{R}\left(\frac{|{\mathbf{x}}-{\mathbf{y}}|^{2}}{4\delta^{2}}\right)\mathrm{d}{\mathbf{y}}=\alpha_{n}S_{n}\int_{0}^{2}\bar{R}(r^{2}/4)r^{n-1}\mathrm{d}r=1,

With the configuration as above, we can illustrate our finite element scheme.

2.2. Finite element discretization.

We next consider solving the nonlocal model (2.2) with finite element method. Let Ωh\Omega_{h} be a polyhedral approximation of Ω\Omega, and 𝒯h\mathcal{T}_{h} be the mesh associated with Ωh\Omega_{h}, where h=maxT𝒯hdiam(T)h=\max_{T\in\mathcal{T}_{h}}\mbox{diam}(T) is the maximum diameter. Additionally, the radius of the inscribed ball of TT is denoted as ρ(T)\rho(T) and ρ=minT𝒯hρ(T)\rho=\min_{T\in\mathcal{T}_{h}}\rho(T). We focus on the continuous kk-th order finite element space defined on Ωh\Omega_{h}, i.e.

Sh={vhC0(Ωh):vh|Tk(T),TΩh}.S_{h}=\left\{v_{h}\in C^{0}(\Omega_{h}):v_{h}|_{T}\in\mathbb{P}_{k}(T),\quad\forall T\in\Omega_{h}\right\}. (2.4)

If 𝒯h\mathcal{T}_{h} is a simplicial mesh, such as triangular mesh in 2D and tetrahedral mesh in 3D, k\mathbb{P}_{k} denotes the set of all kk-th order polynomials in TT. Meanwhile, for Cartesian mesh, e.g. rectangular mesh in 2D and cuboidal mesh in 3D, k\mathbb{P}_{k} will be chosen as kk-th tensor-product polynomial space.

The finite element discretization of the nonlocal diffusion model is to find uhShu_{h}\in S_{h} such that

Lδuh,vhΩh=f¯δ,vhΩh,vhSh,\displaystyle\left<L_{\delta}u_{h},v_{h}\right>_{\Omega_{h}}=\left<\bar{f}_{\delta},v_{h}\right>_{\Omega_{h}},\quad\forall v_{h}\in S_{h}, (2.5)

with f¯δ(𝐱)=ΩR¯δ(𝐱,𝐲)f(𝐲)d𝐲+2ΩR¯δ(𝐱,𝐲)g(𝐲)dS𝐲\bar{f}_{\delta}({\mathbf{x}})=\int_{\Omega}\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})f({\mathbf{y}})\mathrm{d}{\mathbf{y}}+2\int_{\partial\Omega}\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})g({\mathbf{y}})\mathrm{d}S_{{\mathbf{y}}} and

Lδv(𝐱)=1δ2ΩRδ(𝐱,𝐲)(v(𝐱)v(𝐲))d𝐲+ΩR¯δ(𝐱,𝐲)v(𝐲)d𝐲,vL2(Ω).L_{\delta}v({\mathbf{x}})=\frac{1}{\delta^{2}}\int_{\Omega}R_{\delta}({\mathbf{x}},{\mathbf{y}})(v({\mathbf{x}})-v({\mathbf{y}}))\mathrm{d}{\mathbf{y}}+\int_{\Omega}\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})v({\mathbf{y}})\mathrm{d}{\mathbf{y}},\quad\forall v\in L^{2}(\Omega). (2.6)

The binary operator <,>Ωh<\cdot,\cdot>_{\Omega_{h}} in (2.5) denotes the inner product in Ωh\Omega_{h}, i.e.

u,vΩh=Ωhu(𝐱)v(𝐱)d𝐱.\displaystyle\left<u,v\right>_{\Omega_{h}}=\int_{\Omega_{h}}u({\mathbf{x}})v({\mathbf{x}})\mathrm{d}{\mathbf{x}}.

For the sake of simplification, we focus on the case Ω=Ωh\Omega=\Omega_{h} which means that we do not consider the error from domain approximation. In the rest of the paper, Ω\Omega and Ωh\Omega_{h} will not be distinguished.

2.3. Main results.

We will give the main results of this paper in advance here. The proof of these results can be found in the following sections. Our results include two key points. Firstly, the L2L^{2} error between the nonlocal finite element solution uhu_{h} and the solution of the local counterpart uu can get an estimation. Secondly, based on the solution uhu_{h}, we can also approximate u\nabla u.

Theorem 2.1.

Let uHmax{k+1,3}(Ω)u\in H^{\max\{k+1,3\}}(\Omega) solve the local model (2.1) and uhu_{h} be the solution of (2.5). We can obtain

uuhL2(Ω)C(hk+1max{ρ,δ}+δ)uHmax{k+1,3}(Ω),\displaystyle\left\|u-u_{h}\right\|_{L^{2}(\Omega)}\leq C\left(\frac{h^{k+1}}{\max\{\rho,\delta\}}+\delta\right)\left\|u\right\|_{H^{\max\{k+1,3\}}(\Omega)}, (2.7)

where ρ\rho is the minimal radius of the inscribed ball of the elements and CC is a constant independent of δ\delta and hh.

Remark 2.2.

Noticing the result (2.7) indicates the following result

uuhL2(Ω)C(hk+δ)uHmax{k+1,3}(Ω),\displaystyle\left\|u-u_{h}\right\|_{L^{2}(\Omega)}\leq C\left(h^{k}+\delta\right)\left\|u\right\|_{H^{\max\{k+1,3\}}(\Omega)}, (2.8)

under the shape regular condition, i.e. hρ\frac{h}{\rho} is bounded. More importantly, this is an asymptotically compatible result. In other words, as long as our mesh is shape regular, the finite element solution converges to the local solution as δ0\delta\rightarrow 0 and h0h\rightarrow 0 independently. For irregular mesh, this result also indicates the following error bound depending only on δ\delta and hh

uuhL2(Ω)C(hk+1δ+δ)uHmax{k+1,3}(Ω).\displaystyle\left\|u-u_{h}\right\|_{L^{2}(\Omega)}\leq C\left(\frac{h^{k+1}}{\delta}+\delta\right)\left\|u\right\|_{H^{\max\{k+1,3\}}(\Omega)}. (2.9)

Moreover, in this paper, we also design a method to approximate the gradient of the local solution. For vL2(Ω)v\in L^{2}(\Omega), we define

Sδv(𝐱)=1wδ(𝐱)ΩRδ(𝐱,𝐲)v(𝐲)d𝐲,wδ(𝐱)=ΩRδ(𝐱,𝐲)d𝐲.\displaystyle S_{\delta}v({\mathbf{x}})=\frac{1}{w_{\delta}({\mathbf{x}})}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}v({\mathbf{y}})\mathrm{d}{\mathbf{y}},\quad w_{\delta}({\mathbf{x}})=\int_{\Omega}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}}. (2.10)

Then we can obtain the following theorem.

Theorem 2.3.

Let uHmax{k+1,3}(Ω)u\in H^{\max\{k+1,3\}}(\Omega) solve the local model (2.1) and uhu_{h} be the solution of (2.5). With the correction term

𝐅δ(𝐱)=1wδ2(𝐱)ΩΩRδ(𝐱,𝐲)Rδ(𝐱,𝐳)g(𝐳)((𝐲𝐳)𝐧(𝐳))𝐧(𝐳)dS𝐳d𝐲,\displaystyle\mathbf{F}_{\delta}({\mathbf{x}})=\frac{1}{w^{2}_{\delta}({\mathbf{x}})}\int_{\partial\Omega}\int_{\Omega}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}R_{\delta}({\mathbf{x}},{\mathbf{z}})g({\mathbf{z}})(({\mathbf{y}}-{\mathbf{z}})\cdot{\mathbf{n}}({\mathbf{z}})){\mathbf{n}}({\mathbf{z}})\mathrm{d}S_{\mathbf{z}}\mathrm{d}{\mathbf{y}}, (2.11)

we can get

u(Sδuh𝐅δ)L2(Ω)2C(hk+1max{ρ,δ}+δ)uHmax{k+1,3}(Ω),\displaystyle\left\|\nabla u-\left(\nabla S_{\delta}u_{h}-\mathbf{F}_{\delta}\right)\right\|_{L^{2}(\Omega)}^{2}\leq C\left(\frac{h^{k+1}}{\max\{\rho,\delta\}}+\delta\right)\left\|u\right\|_{H^{\max\{k+1,3\}}(\Omega)}, (2.12)

where g(𝐳)g({\mathbf{z}}) is the Neumann boundary term in (2.1) and CC is a constant independent of δ\delta and hh.

Similar to Remark 2.2, with shape regular condition, above theorem can also get an asymptotically compatible version. For a more important point, we give the following remark.

Remark 2.4.

The complicated correction term (2.11) is introduced for dealing with the loss of half an order of convergence in terms of δ\delta. In other words, without the correction term, the result will become

uSδuhL2(Ω)2C(hk+1max{ρ,δ}+δ)uHmax{k+1,3}(Ω).\displaystyle\left\|\nabla u-\nabla S_{\delta}u_{h}\right\|_{L^{2}(\Omega)}^{2}\leq C\left(\frac{h^{k+1}}{\max\{\rho,\delta\}}+\sqrt{\delta}\right)\left\|u\right\|_{H^{\max\{k+1,3\}}(\Omega)}. (2.13)

In fact, we will find in the subsequent sections, this relatively low order is caused by the error between u\nabla u and Sδu\nabla S_{\delta}u in Ω2δ\Omega_{2\delta}, where Ω2δ={𝐱|d(𝐱,Ω)2δ}\Omega_{2\delta}=\left\{{\mathbf{x}}\big{|}d({\mathbf{x}},\partial\Omega)\leq 2\delta\right\}. This means even if uhu_{h} exactly equals to uu, the error with respect to δ\delta in this narrow band-region is only of half order. Without considering Ω2δ\Omega_{2\delta}, the error estimation becomes

uSδuhL2(Ω\Ω2δ)2C(hk+1max{ρ,δ}+δ)uHmax{k+1,3}(Ω).\displaystyle\left\|\nabla u-\nabla S_{\delta}u_{h}\right\|_{L^{2}(\Omega\backslash\Omega_{2\delta})}^{2}\leq C\left(\frac{h^{k+1}}{\max\{\rho,\delta\}}+\delta\right)\left\|u\right\|_{H^{\max\{k+1,3\}}(\Omega)}. (2.14)

3. Error analysis of finite element method

The proof of the error estimations in Section 2 will be present in this section. We start from some technical results. Then both Theorem 2.1 and Theorem 2.3 can be derived based on these results.

3.1. Technical results.

In order to analyze our nonlocal finite element scheme, we should introduce the following nonlocal energy at first.

(Eδ(v))2\displaystyle(E_{\delta}(v))^{2} =12δ2ΩΩRδ(𝐱,𝐲)(u(𝐱)u(𝐲))2d𝐱d𝐲+ΩΩR¯δ(𝐱,𝐲)u(𝐱)u(𝐲)d𝐱d𝐲.\displaystyle=\frac{1}{2\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(u({\mathbf{x}})-u({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}+{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}u({\mathbf{x}})u({\mathbf{y}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}. (3.1)

It is easy to verify (Eδ(v))2(E_{\delta}(v))^{2} is actually the inner product of LδvL_{\delta}v and vv. For Eδ(v)E_{\delta}(v), we have some technical results.

Lemma 3.1.

There exist constants CC independent of δ\delta such that for vL2(Ω)v\in L^{2}(\Omega) along with Eδ(v)E_{\delta}(v) and SδvS_{\delta}v defined in (3.1)(2.10),

Eδ(v)CδvL2(Ω)\displaystyle E_{\delta}(v)\leq\frac{C}{\delta}\left\|v\right\|_{L^{2}(\Omega)} (3.2)
(Sδv)L2(Ω)CEδ(v)\displaystyle\left\|\nabla(S_{\delta}v)\right\|_{L^{2}(\Omega)}\leq CE_{\delta}(v) (3.3)
vL2(Ω)CEδ(v).\displaystyle\left\|v\right\|_{L^{2}(\Omega)}\leq CE_{\delta}(v). (3.4)
Proof.

We firstly prove estimation (3.2). For the second term of (Eδ(v))2(E_{\delta}(v))^{2},

ΩΩR¯δ(𝐱,𝐲)v(𝐱)v(𝐲)d𝐱d𝐲\displaystyle{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}v({\mathbf{x}})v({\mathbf{y}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}} 12ΩΩR¯δ(𝐱,𝐲)(v2(𝐱)+v2(𝐲))d𝐱d𝐲\displaystyle\leq\frac{1}{2}{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}(v^{2}({\mathbf{x}})+v^{2}({\mathbf{y}}))\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
=Ωv2(𝐱)ΩR¯δ(𝐱,𝐲)d𝐲d𝐱\displaystyle={\int_{\Omega}}v^{2}({\mathbf{x}}){\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}}\mathrm{d}{\mathbf{x}}
CvL2(Ω)2.\displaystyle\leq C\left\|v\right\|_{L^{2}(\Omega)}^{2}.

As for the first term of (Eδ(v))2(E_{\delta}(v))^{2},

12δ2ΩΩRδ(𝐱,𝐲)(u(𝐱)u(𝐲))2d𝐱d𝐲\displaystyle\frac{1}{2\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(u({\mathbf{x}})-u({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}} =1δ2ΩΩRδ(𝐱,𝐲)(v2(𝐱)+v(𝐱)v(𝐲))d𝐱d𝐲\displaystyle=\frac{1}{\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(v^{2}({\mathbf{x}})+v({\mathbf{x}})v({\mathbf{y}}))\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
2δ2Ωv2(𝐱)ΩRδ(𝐱,𝐲)d𝐲d𝐱\displaystyle\leq\frac{2}{\delta^{2}}{\int_{\Omega}}v^{2}({\mathbf{x}}){\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}}\mathrm{d}{\mathbf{x}}
Cδ2vL2(Ω)2.\displaystyle\leq\frac{C}{\delta^{2}}\left\|v\right\|_{L^{2}(\Omega)}^{2}.

Here we have proved (3.2).

For the second result (3.3), [23] provides an inequality

(Sδv)L2(Ω)2C2δ2ΩΩRδ(𝐱,𝐲)(v(𝐱)v(𝐲))2d𝐱d𝐲.\displaystyle\left\|\nabla(S_{\delta}v)\right\|^{2}_{L^{2}(\Omega)}\leq\frac{C}{2\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}. (3.5)

We just need to show the first term of (Eδ(v))2(E_{\delta}(v))^{2} can be bounded by (Eδ(v))2(E_{\delta}(v))^{2}, i.e.

12δ2ΩΩRδ(𝐱,𝐲)(v(𝐱)v(𝐲))2d𝐱d𝐲C(Eδ(v))2.\displaystyle\frac{1}{2\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}\leq C(E_{\delta}(v))^{2}. (3.6)

In fact, we can get (3.6) with the following estimation.

ΩΩR¯δ(𝐱,𝐲)v(𝐱)v(𝐲)d𝐱d𝐲\displaystyle{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}v({\mathbf{x}})v({\mathbf{y}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
\displaystyle\geq 14ΩΩR¯δ(𝐱,𝐲)(v(𝐱)v(𝐲))2d𝐱d𝐲\displaystyle-\frac{1}{4}{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
\displaystyle\geq CΩΩRδ(𝐱,𝐲)(v(𝐱)v(𝐲))2d𝐱d𝐲.\displaystyle-C{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}. (3.7)

The last inequality above can be found in [31]. With these estimations, we can conclude (3.3).

We lastly turn to the proof of (3.4). By reusing the last inequality in (3.7) and denoting w¯δ(𝐱)=ΩR¯δ(𝐱,𝐲)d𝐲\bar{w}_{\delta}({\mathbf{x}})={\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}}, we get

vL2(Ω)2\displaystyle\left\|v\right\|_{L^{2}(\Omega)}^{2} =Ωv2(𝐱)1w¯δ(𝐱)ΩR¯δ(𝐱,𝐲)d𝐲d𝐱\displaystyle={\int_{\Omega}}v^{2}({\mathbf{x}})\frac{1}{\bar{w}_{\delta}({\mathbf{x}})}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}}\mathrm{d}{\mathbf{x}}
CΩΩR¯δ(𝐱,𝐲)v2(𝐱)d𝐱d𝐲\displaystyle\leq C{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}v^{2}({\mathbf{x}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
=C2ΩΩR¯δ(𝐱,𝐲)v2(𝐱)d𝐱d𝐲+C2ΩΩR¯δ(𝐱,𝐲)v2(𝐲)d𝐱d𝐲\displaystyle=\frac{C}{2}{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}v^{2}({\mathbf{x}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}+\frac{C}{2}{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}v^{2}({\mathbf{y}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
=C2ΩΩR¯δ(𝐱,𝐲)(v(𝐱)v(𝐲))2d𝐱d𝐲+CΩΩR¯δ(𝐱,𝐲)v(𝐱)v(𝐲)d𝐱d𝐲\displaystyle=\frac{C}{2}{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}+C{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}v({\mathbf{x}})v({\mathbf{y}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
CΩΩRδ(𝐱,𝐲)(v(𝐱)v(𝐲))2d𝐱d𝐲+CΩΩR¯δ(𝐱,𝐲)v(𝐱)v(𝐲)d𝐱d𝐲.\displaystyle\leq C{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}+C{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}v({\mathbf{x}})v({\mathbf{y}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}.

Here we have finished the proof of Lemma 3.1. ∎

Moreover, with the help of (3.6)(3.4), we can prove EδE_{\delta} is weakly subadditive, i.e.

Lemma 3.2.

There exists CC independent of δ\delta such that for v,wL2(Ω)v,w\in L^{2}(\Omega),

Eδ(v+w)C(Eδ(v)+Eδ(w)).\displaystyle E_{\delta}(v+w)\leq C(E_{\delta}(v)+E_{\delta}(w)).
Proof.

We can find

(Eδ(v+w))2\displaystyle(E_{\delta}(v+w))^{2}
=\displaystyle= 12δ2ΩΩRδ(𝐱,𝐲)((v(𝐱)+w(𝐱))(v(𝐲)+w(𝐲)))2\displaystyle\frac{1}{2\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}((v({\mathbf{x}})+w({\mathbf{x}}))-(v({\mathbf{y}})+w({\mathbf{y}})))^{2}
+ΩΩR¯δ(𝐱,𝐲)(v(𝐱)+w(𝐱))(v(𝐲)+w(𝐲))d𝐱d𝐲\displaystyle\hskip 28.45274pt+{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})+w({\mathbf{x}}))(v({\mathbf{y}})+w({\mathbf{y}}))\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
\displaystyle\leq C2δ2ΩΩRδ(𝐱,𝐲)((v(𝐱)v(𝐲))2+(w(𝐱)w(𝐲))2)d𝐱d𝐲\displaystyle\frac{C}{2\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\left((v({\mathbf{x}})-v({\mathbf{y}}))^{2}+(w({\mathbf{x}})-w({\mathbf{y}}))^{2}\right)\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
+ΩΩR¯δ(𝐱,𝐲)(v(𝐱)v(𝐲)+w(𝐱)w(𝐲)+v(𝐱)w(𝐲)+w(𝐱)v(𝐲))d𝐱d𝐲\displaystyle\hskip 28.45274pt+{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})v({\mathbf{y}})+w({\mathbf{x}})w({\mathbf{y}})+v({\mathbf{x}})w({\mathbf{y}})+w({\mathbf{x}})v({\mathbf{y}}))\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
\displaystyle\leq C(Eδ(v))2+C(Eδ(w))2+CΩΩR¯δ(𝐱,𝐲)(v2(𝐱)+w2(𝐱)+v2(𝐲)+w2(𝐲))d𝐱d𝐲\displaystyle C(E_{\delta}(v))^{2}+C(E_{\delta}(w))^{2}+C{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}(v^{2}({\mathbf{x}})+w^{2}({\mathbf{x}})+v^{2}({\mathbf{y}})+w^{2}({\mathbf{y}}))\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
\displaystyle\leq C(Eδ(v))2+C(Eδ(w))2+CvL2(Ω)2+CwL2(Ω)2\displaystyle C(E_{\delta}(v))^{2}+C(E_{\delta}(w))^{2}+C\left\|v\right\|_{L^{2}(\Omega)}^{2}+C\left\|w\right\|_{L^{2}(\Omega)}^{2}
\displaystyle\leq C(Eδ(v))2+C(Eδ(w))2,\displaystyle C(E_{\delta}(v))^{2}+C(E_{\delta}(w))^{2},

which implies the result we need. ∎

Besides the estimations about Eδ(v)E_{\delta}(v) itself, there are also some results concerning Eδ(v)E_{\delta}(v) and LδvL_{\delta}v, which will be used in the subsequent analysis.

Lemma 3.3.

For v,wL2(Ω)v,w\in L^{2}(\Omega) and Eδ(v)E_{\delta}(v) defined as in (3.1), we have

LδvL2(Ω)CδEδ(v),\displaystyle\left\|L_{\delta}v\right\|_{L^{2}(\Omega)}\leq\frac{C}{\delta}E_{\delta}(v), (3.8)
|Lδv,wΩ|CEδ(v)wH1(Ω),\displaystyle|\left<L_{\delta}v,w\right>_{\Omega}|\leq CE_{\delta}(v)\left\|w\right\|_{H^{1}(\Omega)}, (3.9)

where CC is independent of δ\delta.

The inequality (3.8) is easy to verify. In fact,

LδvL2(Ω)2\displaystyle\left\|L_{\delta}v\right\|^{2}_{L^{2}(\Omega)} Cδ4Ω|ΩRδ(𝐱,𝐲)(v(𝐱)v(𝐲))d𝐲|2d𝐱+CΩ|ΩR¯δ(𝐱,𝐲)v(𝐲)d𝐲|2d𝐱\displaystyle\leq\frac{C}{\delta^{4}}{\int_{\Omega}}\left|{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))\mathrm{d}{\mathbf{y}}\right|^{2}\mathrm{d}{\mathbf{x}}+C{\int_{\Omega}}\left|{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}v({\mathbf{y}})\mathrm{d}{\mathbf{y}}\right|^{2}\mathrm{d}{\mathbf{x}}
Cδ4ΩΩRδ(𝐱,𝐲)(v(𝐱)v(𝐲))2d𝐱d𝐲+CΩΩR¯δ(𝐱,𝐲)v2(𝐲)d𝐲d𝐱\displaystyle\leq\frac{C}{\delta^{4}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}+C{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}v^{2}({\mathbf{y}})\mathrm{d}{\mathbf{y}}\mathrm{d}{\mathbf{x}}
Cδ21δ2ΩΩRδ(𝐱,𝐲)(v(𝐱)v(𝐲))2d𝐱d𝐲+CvL2(Ω)2\displaystyle\leq\frac{C}{\delta^{2}}\frac{1}{\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}+C\left\|v\right\|_{L^{2}(\Omega)}^{2}
Cδ2(Eδ(v))2.\displaystyle\leq\frac{C}{\delta^{2}}(E_{\delta}(v))^{2}.

In the last inequality above, (3.4) and (3.6) are used.

To prove the second result in Lemma 3.3, the following estimation is in need.

Lemma 3.4.

There exists a constant CC depending only on Ω\Omega, such that for vL2(Ω)v\in L^{2}(\Omega),

ΩΩRδ(𝐱,𝐲)(v(𝐱)v(𝐲))2d𝐱d𝐲Cδ2vH1(Ω)2.\displaystyle{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}\leq C\delta^{2}\left\|v\right\|_{H^{1}(\Omega)}^{2}.

The proof of Lemma 3.4 can be found in [23]. With this estimation, we can derive (3.9) as follows.

|Lδv,wΩ|\displaystyle|\left<L_{\delta}v,w\right>_{\Omega}|
\displaystyle\leq 12δ2|ΩΩRδ(𝐱,𝐲)(v(𝐱)v(𝐲))(w(𝐱)w(𝐲))d𝐲d𝐱|+|ΩΩR¯δ(𝐱,𝐲)v(𝐲)w(𝐱)d𝐱d𝐲|\displaystyle\frac{1}{2\delta^{2}}\left|{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))(w({\mathbf{x}})-w({\mathbf{y}}))\mathrm{d}{\mathbf{y}}\mathrm{d}{\mathbf{x}}\right|+\left|{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}v({\mathbf{y}})w({\mathbf{x}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}\right|
\displaystyle\leq 12δ2(ΩΩRδ(𝐱,𝐲)(v(𝐱)v(𝐲))2d𝐱d𝐲)12(ΩΩRδ(𝐱,𝐲)(w(𝐱)w(𝐲))2d𝐱d𝐲)12\displaystyle\frac{1}{2\delta^{2}}\left({\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}\right)^{\frac{1}{2}}\left({\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(w({\mathbf{x}})-w({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}\right)^{\frac{1}{2}}
+(ΩΩR¯δ(𝐱,𝐲)v2(𝐲)d𝐲d𝐱)12(ΩΩR¯δ(𝐱,𝐲)w2(𝐱)d𝐲d𝐱)12\displaystyle\qquad+\left({\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}v^{2}({\mathbf{y}})\mathrm{d}{\mathbf{y}}\mathrm{d}{\mathbf{x}}\right)^{\frac{1}{2}}\left({\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}w^{2}({\mathbf{x}})\mathrm{d}{\mathbf{y}}\mathrm{d}{\mathbf{x}}\right)^{\frac{1}{2}}
\displaystyle\leq C(12δ2ΩΩRδ(𝐱,𝐲)(v(𝐱)v(𝐲))2d𝐱d𝐲)12(12δ2ΩΩRδ(𝐱,𝐲)(w(𝐱)w(𝐲))2d𝐱d𝐲)12\displaystyle C\left(\frac{1}{2\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}\right)^{\frac{1}{2}}\left(\frac{1}{2\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(w({\mathbf{x}})-w({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}\right)^{\frac{1}{2}}
+vL2(Ω)wL2(Ω)\displaystyle\qquad+\left\|v\right\|_{L^{2}(\Omega)}\left\|w\right\|_{L^{2}(\Omega)}
\displaystyle\leq CEδ(v)wH1(Ω).\displaystyle CE_{\delta}(v)\left\|w\right\|_{H^{1}(\Omega)}.

Here (3.4)(3.6) and Lemma 3.4 are applied to get the last inequality above.

3.2. Error analysis.

We next start to analyze our nonlocal finite element method. Let uu solve the local model (2.1) and uhu_{h} be the solution of (2.5). If eh=uuhe_{h}=u-u_{h}, we can find

Lδeh,vhΩ=r,vh,vhSh.\displaystyle\left<L_{\delta}e_{h},v_{h}\right>_{\Omega}=\left<r,v_{h}\right>,\quad\forall v_{h}\in S_{h}.

Here

r(𝐱)=1δ2ΩRδ(𝐱,𝐲)(u(𝐱)u(𝐲))d𝐲+ΩR¯δ(𝐱,𝐲)Δu(𝐲)d𝐲2ΩR¯δ(𝐱,𝐲)u𝐧(𝐲)dS𝐲.\displaystyle r({\mathbf{x}})=\frac{1}{\delta^{2}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(u({\mathbf{x}})-u({\mathbf{y}}))\mathrm{d}{\mathbf{y}}+{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}\Delta u({\mathbf{y}})\mathrm{d}{\mathbf{y}}-2{\int_{\partial\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}\dfrac{\partial u}{\partial{\mathbf{n}}}({\mathbf{y}})\mathrm{d}S_{\mathbf{y}}.

For this truncation error, we have the following lemma to decompose r(𝐱)r({\mathbf{x}}) into an interior error and a boundary error.

Lemma 3.5.

For arbitrary uH3(Ω)u\in H^{3}(\Omega). We denote

rbd(𝐱)=j=1nΩnj(𝐲)(𝐱𝐲)(ju(𝐲))R¯δ(𝐱,𝐲)dS𝐲\displaystyle r_{bd}({\mathbf{x}})=\sum_{j=1}^{n}{\int_{\partial\Omega}}n^{j}({\mathbf{y}})({\mathbf{x}}-{\mathbf{y}})\cdot\nabla(\nabla^{j}u({\mathbf{y}})){\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}S_{\mathbf{y}} (3.10)

and

rin(𝐱)=r(𝐱)rbd(𝐱),\displaystyle r_{in}({\mathbf{x}})=r({\mathbf{x}})-r_{bd}({\mathbf{x}}),

where nj(𝐲)n^{j}({\mathbf{y}}) is the jj-th component of the unit outward normal 𝐧(𝐲){\mathbf{n}}({\mathbf{y}}) at 𝐲Ω{\mathbf{y}}\in\partial\Omega. Then there exist constants CC depending only on Ω\Omega, such that

rinL2(Ω)CδuH3(Ω),rbdL2(Ω)Cδ1/2uH3(Ω).\displaystyle\left\|r_{in}\right\|_{L^{2}(\Omega)}\leq C\delta\left\|u\right\|_{H^{3}(\Omega)},\quad\left\|r_{bd}\right\|_{L^{2}(\Omega)}\leq C\delta^{1/2}\left\|u\right\|_{H^{3}(\Omega)}.

The proof of this lemma can be found in [23]. With the notations in Lemma 3.5, we can get ehe_{h} satisfies

Lδeh,vhΩ=rin+rbd,vh,vhSh.\displaystyle\left<L_{\delta}e_{h},v_{h}\right>_{\Omega}=\left<r_{in}+r_{bd},v_{h}\right>,\quad\forall v_{h}\in S_{h}. (3.11)

Additionally, we have another estimation to control the inner product of rbdr_{bd} and a vL2(Ω)v\in L^{2}(\Omega) with Eδ(v)E_{\delta}(v).

Lemma 3.6.

Let uH3(Ω)u\in H^{3}(\Omega) and rbdr_{bd} is defined as (3.10), then there exists a constant CC depending only on Ω\Omega, for any vShv\in S_{h},

|Ωv(𝐱)rbd(𝐱)d𝐱|CδuH3(Ω)Eδ(v).\displaystyle\left|{\int_{\Omega}}v({\mathbf{x}})r_{bd}({\mathbf{x}})\mathrm{d}{\mathbf{x}}\right|\leq C\delta\left\|u\right\|_{H^{3}(\Omega)}E_{\delta}(v).
Proof.
|Ωv(𝐱)rbd(𝐱)d𝐱|\displaystyle\left|{\int_{\Omega}}v({\mathbf{x}})r_{bd}({\mathbf{x}})\mathrm{d}{\mathbf{x}}\right| =|j=1nΩv(𝐱)Ωnj(𝐲)(𝐱𝐲)(ju(𝐲))R¯δ(𝐱,𝐲)dS𝐲d𝐱|\displaystyle=\left|\sum_{j=1}^{n}{\int_{\Omega}}v({\mathbf{x}}){\int_{\partial\Omega}}n^{j}({\mathbf{y}})({\mathbf{x}}-{\mathbf{y}})\cdot\nabla(\nabla^{j}u({\mathbf{y}}))\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})\mathrm{d}S_{\mathbf{y}}\mathrm{d}{\mathbf{x}}\right|
CδΩH(u)(𝐲)ΩR¯δ(𝐱,𝐲)|v(𝐱)|d𝐱dS𝐲\displaystyle\leq C\delta{\int_{\partial\Omega}}\left\|H(u)({\mathbf{y}})\right\|{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}|v({\mathbf{x}})|\mathrm{d}{\mathbf{x}}\mathrm{d}S_{\mathbf{y}}
CδuH2(Ω)S¯δ(|v|)L2(Ω)\displaystyle\leq C\delta\left\|u\right\|_{H^{2}(\partial\Omega)}\left\|\bar{S}_{\delta}(|v|)\right\|_{L^{2}(\partial\Omega)}
CδuH3(Ω)S¯δ(|v|)H1(Ω),\displaystyle\leq C\delta\left\|u\right\|_{H^{3}(\Omega)}\left\|\bar{S}_{\delta}(|v|)\right\|_{H^{1}(\Omega)},

where H(u)H(u) denotes the Hessian of uu, and

S¯δ(v)(𝐱)=1w¯δ(𝐱)ΩR¯δ(𝐱,𝐲)v(𝐲)d𝐲,w¯δ(𝐱)=ΩR¯δ(𝐱,𝐲)d𝐲.\displaystyle\bar{S}_{\delta}(v)({\mathbf{x}})=\frac{1}{\bar{w}_{\delta}({\mathbf{x}})}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}v({\mathbf{y}})\mathrm{d}{\mathbf{y}},\quad\bar{w}_{\delta}({\mathbf{x}})={\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}}.

Moreover, with (3.7), it is easy to verify the results in Lemma 3.1 are also applicable to S¯δ(v)\bar{S}_{\delta}(v). Hence, we can get

S¯δ(|v|)H1(Ω)2\displaystyle\left\|\bar{S}_{\delta}(|v|)\right\|_{H^{1}(\Omega)}^{2}
\displaystyle\leq S¯δ(|v|)L2(Ω)2+C(Eδ(|v|))2\displaystyle\left\|\bar{S}_{\delta}(|v|)\right\|_{L^{2}(\Omega)}^{2}+C(E_{\delta}(|v|))^{2}
\displaystyle\leq CΩ(ΩR¯δ(𝐱,𝐲)v(𝐲)d𝐲)2d𝐱+C(Eδ(|v|))2\displaystyle C{\int_{\Omega}}\left({\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}v({\mathbf{y}})\mathrm{d}{\mathbf{y}}\right)^{2}\mathrm{d}{\mathbf{x}}+C(E_{\delta}(|v|))^{2}
\displaystyle\leq CvL2(Ω)2+Cδ2ΩΩRδ(𝐱,𝐲)(|v(𝐱)||v(𝐲)|)2d𝐱d𝐲+CΩΩR¯δ(𝐱,𝐲)|v(𝐱)v(𝐲)|d𝐱d𝐲\displaystyle C\left\|v\right\|_{L^{2}(\Omega)}^{2}+\frac{C}{\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(|v({\mathbf{x}})|-|v({\mathbf{y}})|)^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}+C{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}|v({\mathbf{x}})v({\mathbf{y}})|\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
\displaystyle\leq Cδ2ΩΩRδ(𝐱,𝐲)(v(𝐱)v(𝐲))2d𝐱d𝐲+CvL2(Ω)2\displaystyle\frac{C}{\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(v({\mathbf{x}})-v({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}+C\left\|v\right\|_{L^{2}(\Omega)}^{2}
\displaystyle\leq C(Eδ(v))2.\displaystyle C(E_{\delta}(v))^{2}.

Here (3.4) and (3.6) are used again in the last line. ∎

3.3. Proof of Theorem 2.1.

With all those preparations above, we can now prove (2.7). Let IhI_{h} denote the projection operator onto ShS_{h}. Following (3.11), we can get

Lδeh,ehΩ\displaystyle\left<L_{\delta}e_{h},e_{h}\right>_{\Omega} =Lδeh,uIhuΩ+Lδeh,Ihuuh\displaystyle=\left<L_{\delta}e_{h},u-I_{h}u\right>_{\Omega}+\left<L_{\delta}e_{h},I_{h}u-u_{h}\right>
=Lδeh,uIhuΩ+rin+rbd,Ihuuh\displaystyle=\left<L_{\delta}e_{h},u-I_{h}u\right>_{\Omega}+\left<r_{in}+r_{bd},I_{h}u-u_{h}\right> (3.12)

Both the first and the second term in (3.12) can be estimated along two paths. For the first term, (3.9) gives the following estimation

Lδeh,uIhuΩCEδ(eh)uIhuH1(Ω)Chk+1ρEδ(eh)uHk+1(Ω).\displaystyle\left<L_{\delta}e_{h},u-I_{h}u\right>_{\Omega}\leq CE_{\delta}(e_{h})\left\|u-I_{h}u\right\|_{H^{1}(\Omega)}\leq C\frac{h^{k+1}}{\rho}E_{\delta}(e_{h})\left\|u\right\|_{H^{k+1}(\Omega)}. (3.13)

Here the following classical projection error estimation in finite element method

uIhuH1(Ω)Chk+1ρuHk+1(Ω)\displaystyle\left\|u-I_{h}u\right\|_{H^{1}(\Omega)}\leq C\frac{h^{k+1}}{\rho}\left\|u\right\|_{H^{k+1}(\Omega)} (3.14)

is applied in the last inequality.

Meanwhile, if we apply (3.8), the first term can be estimated in another way as follows

Lδeh,uIhuΩLδehL2(Ω)uIhuL2(Ω)Chk+1δEδ(eh)uHk+1(Ω).\displaystyle\left<L_{\delta}e_{h},u-I_{h}u\right>_{\Omega}\leq\left\|L_{\delta}e_{h}\right\|_{L^{2}(\Omega)}\left\|u-I_{h}u\right\|_{L^{2}(\Omega)}\leq C\frac{h^{k+1}}{\delta}E_{\delta}(e_{h})\left\|u\right\|_{H^{k+1}(\Omega)}. (3.15)

In the second inequality, we use another projection error estimation

uIhuL2(Ω)Chk+1uHk+1(Ω).\displaystyle\left\|u-I_{h}u\right\|_{L^{2}(\Omega)}\leq Ch^{k+1}\left\|u\right\|_{H^{k+1}(\Omega)}. (3.16)

The results in (3.13) and (3.15) can be combined into

Lδeh,uIhuΩChk+1max{ρ,δ}Eδ(eh)uHk+1(Ω).\displaystyle\left<L_{\delta}e_{h},u-I_{h}u\right>_{\Omega}\leq C\frac{h^{k+1}}{\max\{\rho,\delta\}}E_{\delta}(e_{h})\left\|u\right\|_{H^{k+1}(\Omega)}. (3.17)

We next turn to the second term in (3.12). On the one hand, this term can be estimated as follows.

rin+rbd,Ihuuh\displaystyle\left<r_{in}+r_{bd},I_{h}u-u_{h}\right> rinL2(Ω)IhuuhL2(Ω)+CδuH3(Ω)Eδ(Ihuuh)\displaystyle\leq\left\|r_{in}\right\|_{L^{2}(\Omega)}\left\|I_{h}u-u_{h}\right\|_{L^{2}(\Omega)}+C\delta\left\|u\right\|_{H^{3}(\Omega)}E_{\delta}(I_{h}u-u_{h})
CδuH3(Ω)Eδ(Ihuuh)\displaystyle\leq C\delta\left\|u\right\|_{H^{3}(\Omega)}E_{\delta}(I_{h}u-u_{h})
CδuH3(Ω)Eδ(uIhu)+CδuH3(Ω)Eδ(eh)\displaystyle\leq C\delta\left\|u\right\|_{H^{3}(\Omega)}E_{\delta}(u-I_{h}u)+C\delta\left\|u\right\|_{H^{3}(\Omega)}E_{\delta}(e_{h})
CδuH3(Ω)uIhuH1(Ω)+CδuH3(Ω)Eδ(eh)\displaystyle\leq C\delta\left\|u\right\|_{H^{3}(\Omega)}\left\|u-I_{h}u\right\|_{H^{1}(\Omega)}+C\delta\left\|u\right\|_{H^{3}(\Omega)}E_{\delta}(e_{h})
Cδhk+1ρuH3(Ω)uHk+1(Ω)+CδuH3(Ω)Eδ(eh).\displaystyle\leq C\delta\frac{h^{k+1}}{\rho}\left\|u\right\|_{H^{3}(\Omega)}\left\|u\right\|_{H^{k+1}(\Omega)}+C\delta\left\|u\right\|_{H^{3}(\Omega)}E_{\delta}(e_{h}). (3.18)

Here Lemma 3.6, Lemma 3.2 and (3.4)(3.14) are used in the above calculation. Additionally, in the fourth line, the estimation Eδ(uIhu)CuIhuH1(Ω)E_{\delta}(u-I_{h}u)\leq C\left\|u-I_{h}u\right\|_{H^{1}(\Omega)} is a natural corollary of Lemma 3.4.

On the other hand, the second term (3.12) can be estimated in another way. With Lemma 3.6, Lemma 3.5, (3.2) and (3.16),

rin+rbd,IhuuhΩ\displaystyle\left<r_{in}+r_{bd},I_{h}u-u_{h}\right>_{\Omega} rinL2(Ω)IhuuhL2(Ω)+CδuH3(Ω)Eδ(Ihuuh)\displaystyle\leq\|r_{in}\|_{L^{2}(\Omega)}\|I_{h}u-u_{h}\|_{L^{2}(\Omega)}+C\delta\|u\|_{H^{3}(\Omega)}E_{\delta}(I_{h}u-u_{h})
CδuH3(Ω)Eδ(Ihuuh)\displaystyle\leq C\delta\|u\|_{H^{3}(\Omega)}E_{\delta}(I_{h}u-u_{h})
CδuH3(Ω)Eδ(uIhu)+CδuH3(Ω)Eδ(eh)\displaystyle\leq C\delta\|u\|_{H^{3}(\Omega)}E_{\delta}(u-I_{h}u)+C\delta\|u\|_{H^{3}(\Omega)}E_{\delta}(e_{h})
CuH3(Ω)uIhuL2(Ω)+CδuH3(Ω)Eδ(eh)\displaystyle\leq C\|u\|_{H^{3}(\Omega)}\|u-I_{h}u\|_{L^{2}(\Omega)}+C\delta\|u\|_{H^{3}(\Omega)}E_{\delta}(e_{h})
Cδhk+1δuH3(Ω)uHk+1(Ω)+CδuH3(Ω)Eδ(eh).\displaystyle\leq C\delta\frac{h^{k+1}}{\delta}\|u\|_{H^{3}(\Omega)}\|u\|_{H^{k+1}(\Omega)}+C\delta\|u\|_{H^{3}(\Omega)}E_{\delta}(e_{h}). (3.19)

Combining (3.13)(3.18), we can get

(Eδ(eh))2\displaystyle(E_{\delta}(e_{h}))^{2} =Lδeh,ehΩ\displaystyle=\left<L_{\delta}e_{h},e_{h}\right>_{\Omega}
Chk+1ρEδ(eh)uHk+1(Ω)+Cδhk+1ρuH3(Ω)uHk+1(Ω)+CδuH3(Ω)Eδ(eh),\displaystyle\leq C\frac{h^{k+1}}{\rho}E_{\delta}(e_{h})\left\|u\right\|_{H^{k+1}(\Omega)}+C\delta\frac{h^{k+1}}{\rho}\left\|u\right\|_{H^{3}(\Omega)}\left\|u\right\|_{H^{k+1}(\Omega)}+C\delta\left\|u\right\|_{H^{3}(\Omega)}E_{\delta}(e_{h}),

which implies that

Eδ(eh)C(hk+1ρ+δ)uHmax{k+1,3}(Ω).\displaystyle E_{\delta}(e_{h})\leq C\left(\frac{h^{k+1}}{\rho}+\delta\right)\left\|u\right\|_{H^{\max\{k+1,3\}}(\Omega)}.

In addition, combining (3.15)(3.19), we can get

(Eδ(eh))2\displaystyle(E_{\delta}(e_{h}))^{2} =Lδeh,ehΩ\displaystyle=\left<L_{\delta}e_{h},e_{h}\right>_{\Omega}
Chk+1δEδ(eh)uHk+1(Ω)+Cδhk+1δuH3(Ω)uHk+1(Ω)+CδuH3(Ω)Eδ(eh),\displaystyle\leq C\frac{h^{k+1}}{\delta}E_{\delta}(e_{h})\left\|u\right\|_{H^{k+1}(\Omega)}+C\delta\frac{h^{k+1}}{\delta}\left\|u\right\|_{H^{3}(\Omega)}\left\|u\right\|_{H^{k+1}(\Omega)}+C\delta\left\|u\right\|_{H^{3}(\Omega)}E_{\delta}(e_{h}),

which implies another estimation

Eδ(eh)C(hk+1δ+δ)uHmax{k+1,3}(Ω).\displaystyle E_{\delta}(e_{h})\leq C\left(\frac{h^{k+1}}{\delta}+\delta\right)\left\|u\right\|_{H^{\max\{k+1,3\}}(\Omega)}.

These two results can have a combined form like (3.17). Moreover, with (3.4), we get a unified L2L^{2} error estimation

ehL2(Ω)C(hk+1max{ρ,δ}+δ)uHmax{k+1,3}(Ω).\displaystyle\left\|e_{h}\right\|_{L^{2}(\Omega)}\leq C\left(\frac{h^{k+1}}{\max\{\rho,\delta\}}+\delta\right)\left\|u\right\|_{H^{\max\{k+1,3\}}(\Omega)}.

Here the Theorem 2.1 has been proved.

3.4. Convergent approximation of gradient.

We can further give an approximation to the gradient of the local solution. As mentioned in Remark 2.4, when we get the finite element solution uhu_{h}, Sδuh\nabla S_{\delta}u_{h} can serve as an approximation of u\nabla u. In this section, we mainly focus on the proof of (2.13) and (2.14). In our proof, the necessity to introduce a correction term in Theorem 2.3 can be observed. As for the complicated proof of Theorem 2.3, it can be found in Appendix B.

We firstly divide the gradient error into two parts as follows.

uSδuhL2(Ω)CuSδuL2(Ω)+SδehL2(Ω).\displaystyle\left\|\nabla u-\nabla S_{\delta}u_{h}\right\|_{L^{2}(\Omega)}\leq C\left\|\nabla u-\nabla S_{\delta}u\right\|_{L^{2}(\Omega)}+\left\|\nabla S_{\delta}e_{h}\right\|_{L^{2}(\Omega)}. (3.20)

The second term in (3.20) is easy to bound because from Lemma 3.1 we can get

SδehL2(Ω)CEδ(eh)C(hk+1max{ρ,δ}+δ)uHmax{k+1,3}(Ω).\displaystyle\left\|\nabla S_{\delta}e_{h}\right\|_{L^{2}(\Omega)}\leq CE_{\delta}(e_{h})\leq C\left(\frac{h^{k+1}}{\max\{\rho,\delta\}}+\delta\right)\left\|u\right\|_{H^{\max\{k+1,3\}}(\Omega)}. (3.21)

The remaining first term is independent of the finite element method. To estimate this term, we need more calculation.

(uSδu)\displaystyle\nabla(u-S_{\delta}u)
=\displaystyle= u(𝐱)1wδ(𝐱)Ω𝐱Rδ(𝐱,𝐲)u(𝐲)d𝐲+1wδ2(𝐱)ΩRδ(𝐱,𝐲)u(𝐲)d𝐲Ω𝐱Rδ(𝐱,𝐲)d𝐲\displaystyle\nabla u({\mathbf{x}})-\frac{1}{w_{\delta}({\mathbf{x}})}{\int_{\Omega}}\nabla_{\mathbf{x}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}u({\mathbf{y}})\mathrm{d}{\mathbf{y}}+\frac{1}{w^{2}_{\delta}({\mathbf{x}})}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}u({\mathbf{y}})\mathrm{d}{\mathbf{y}}{\int_{\Omega}}\nabla_{\mathbf{x}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}}
=\displaystyle= u(𝐱)+1wδ(𝐱)Ω𝐲Rδ(𝐱,𝐲)u(𝐲)d𝐲1wδ2(𝐱)ΩRδ(𝐱,𝐲)u(𝐲)d𝐲Ω𝐳Rδ(𝐱,𝐳)d𝐳\displaystyle\nabla u({\mathbf{x}})+\frac{1}{w_{\delta}({\mathbf{x}})}{\int_{\Omega}}\nabla_{\mathbf{y}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}u({\mathbf{y}})\mathrm{d}{\mathbf{y}}-\frac{1}{w^{2}_{\delta}({\mathbf{x}})}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}u({\mathbf{y}})\mathrm{d}{\mathbf{y}}{\int_{\Omega}}\nabla_{\mathbf{z}}R_{\delta}({\mathbf{x}},{\mathbf{z}})\mathrm{d}{\mathbf{z}}
=\displaystyle= u(𝐱)1wδ(𝐱)ΩRδ(𝐱,𝐲)u(𝐲)d𝐲+1wδ(𝐱)ΩRδ(𝐱,𝐲)u(𝐲)𝐧(𝐲)dS𝐲\displaystyle\nabla u({\mathbf{x}})-\frac{1}{w_{\delta}({\mathbf{x}})}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\nabla u({\mathbf{y}})\mathrm{d}{\mathbf{y}}+\frac{1}{w_{\delta}({\mathbf{x}})}{\int_{\partial\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}u({\mathbf{y}}){\mathbf{n}}({\mathbf{y}})\mathrm{d}S_{\mathbf{y}}
1wδ2(𝐱)ΩRδ(𝐱,𝐲)u(𝐲)d𝐲ΩRδ(𝐱,𝐳)𝐧(𝐳)dS𝐳\displaystyle\hskip 56.9055pt-\frac{1}{w_{\delta}^{2}({\mathbf{x}})}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}u({\mathbf{y}})\mathrm{d}{\mathbf{y}}{\int_{\partial\Omega}}R_{\delta}({\mathbf{x}},{\mathbf{z}}){\mathbf{n}}({\mathbf{z}})\mathrm{d}S_{\mathbf{z}}
=\displaystyle= 1wδ(𝐱)ΩRδ(𝐱,𝐲)(u(𝐱)u(𝐲))d𝐲\displaystyle\frac{1}{w_{\delta}({\mathbf{x}})}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(\nabla u({\mathbf{x}})-\nabla u({\mathbf{y}}))\mathrm{d}{\mathbf{y}}
+1wδ2(𝐱)ΩΩRδ(𝐱,𝐲)Rδ(𝐱,𝐳)(u(𝐳)u(𝐲))𝐧(𝐳)d𝐲dS𝐳.\displaystyle\hskip 56.9055pt+\frac{1}{w^{2}_{\delta}({\mathbf{x}})}{\int_{\partial\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}R_{\delta}({\mathbf{x}},{\mathbf{z}})(u({\mathbf{z}})-u({\mathbf{y}})){\mathbf{n}}({\mathbf{z}})\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}. (3.22)

This result indicates when 𝐱Ω\Ω2δ={𝐱Ω|d(𝐱,Ω)>2δ}{\mathbf{x}}\in\Omega\backslash\Omega_{2\delta}=\left\{{\mathbf{x}}\in\Omega\big{|}d({\mathbf{x}},\partial\Omega)>2\delta\right\}, the second term in (3.22) vanishes. Therefore, it suffices to consider only the first term when proving (2.14). From Lemma 3.4, we can estimate the first term above as

1wδ(𝐱)ΩRδ(𝐱,𝐲)(u(𝐱)u(𝐲))d𝐲L2(Ω)2\displaystyle\left\|\frac{1}{w_{\delta}({\mathbf{x}})}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(\nabla u({\mathbf{x}})-\nabla u({\mathbf{y}}))\mathrm{d}{\mathbf{y}}\right\|_{L^{2}(\Omega)}^{2}
\displaystyle\leq CΩ(ΩRδ(𝐱,𝐲)(u(𝐱)u(𝐲))d𝐲)2d𝐱\displaystyle C{\int_{\Omega}}\left({\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(\nabla u({\mathbf{x}})-\nabla u({\mathbf{y}}))\mathrm{d}{\mathbf{y}}\right)^{2}\mathrm{d}{\mathbf{x}}
\displaystyle\leq CΩΩRδ(𝐱,𝐲)|u(𝐱)u(𝐲)|2d𝐱d𝐲\displaystyle C{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}|\nabla u({\mathbf{x}})-\nabla u({\mathbf{y}})|^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
\displaystyle\leq Cδ2uH2(Ω)2.\displaystyle C\delta^{2}\left\|u\right\|_{H^{2}(\Omega)}^{2}. (3.23)

Combining (3.21) and (3.23), we can conclude (2.14). As for the proof of (2.13), the second term in (3.22) should be included. We need two lemmas to estimate this term.

Lemma 3.7.

For the kernel RδR_{\delta} defined in Section 2.1, we have the following estimation

ΩRδ(𝐱,𝐲)Rδ(𝐱,𝐳)d𝐱CR22δ(𝐲,𝐳),\displaystyle{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}R_{\delta}({\mathbf{x}},{\mathbf{z}})\mathrm{d}{\mathbf{x}}\leq CR_{2\sqrt{2}\delta}({\mathbf{y}},{\mathbf{z}}),

where CC is a constant independent of δ\delta.

We have proved this lemma in [18]. The detailed proof can be found in the appendix of this article.

Lemma 3.8.

There exists a constant CC independent of δ\delta such that for uH2(Ω)u\in H^{2}(\Omega),

ΩΩRδ(𝐱,𝐲)(u(𝐱)u(𝐲))2d𝐱dS𝐲Cδ2uH2(Ω)2.\displaystyle{\int_{\partial\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(u({\mathbf{x}})-u({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}S_{\mathbf{y}}\leq C\delta^{2}\left\|u\right\|_{H^{2}(\Omega)}^{2}.

The proof of this Lemma is put in Appendix A.

With these two lemmas, we can estimate the second term in (3.22).

1wδ2(𝐱)ΩΩRδ(𝐱,𝐲)Rδ(𝐱,𝐳)(u(𝐳)u(𝐲))𝐧(𝐳)d𝐲dS𝐳L2(Ω)2\displaystyle\left\|\frac{1}{w^{2}_{\delta}({\mathbf{x}})}{\int_{\partial\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}R_{\delta}({\mathbf{x}},{\mathbf{z}})(u({\mathbf{z}})-u({\mathbf{y}})){\mathbf{n}}({\mathbf{z}})\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}\right\|_{L^{2}(\Omega)}^{2}
\displaystyle\leq CΩ(ΩΩRδ(𝐱,𝐳)Rδ(𝐱,𝐲)|u(𝐳)u(𝐲)|d𝐲dS𝐳)2d𝐱\displaystyle C{\int_{\Omega}}\left({\int_{\partial\Omega}}{\int_{\Omega}}R_{\delta}({\mathbf{x}},{\mathbf{z}}){R_{\delta}({\mathbf{x}},{\mathbf{y}})}|u({\mathbf{z}})-u({\mathbf{y}})|\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}\right)^{2}\mathrm{d}{\mathbf{x}}
\displaystyle\leq CΩ(ΩΩRδ(𝐱,𝐳)Rδ(𝐱,𝐲)(u(𝐳)u(𝐲))2d𝐲dS𝐳)(ΩΩRδ(𝐱,𝐳)Rδ(𝐱,𝐲)d𝐲dS𝐳)d𝐱\displaystyle C{\int_{\Omega}}\left({\int_{\partial\Omega}}{\int_{\Omega}}R_{\delta}({\mathbf{x}},{\mathbf{z}}){R_{\delta}({\mathbf{x}},{\mathbf{y}})}(u({\mathbf{z}})-u({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}\right)\left({\int_{\partial\Omega}}{\int_{\Omega}}R_{\delta}({\mathbf{x}},{\mathbf{z}}){R_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}\right)\mathrm{d}{\mathbf{x}}
\displaystyle\leq CδΩΩ(u(𝐳)u(𝐲))2ΩRδ(𝐱,𝐳)Rδ(𝐱,𝐲)d𝐱d𝐲dS𝐳\displaystyle\frac{C}{\delta}{\int_{\partial\Omega}}{\int_{\Omega}}(u({\mathbf{z}})-u({\mathbf{y}}))^{2}{\int_{\Omega}}R_{\delta}({\mathbf{x}},{\mathbf{z}}){R_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}
\displaystyle\leq CδΩΩR22δ(𝐲,𝐳)(u(𝐳)u(𝐲))2d𝐲dS𝐳\displaystyle\frac{C}{\delta}{\int_{\partial\Omega}}{\int_{\Omega}}R_{2\sqrt{2}\delta}({\mathbf{y}},{\mathbf{z}})(u({\mathbf{z}})-u({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}
\displaystyle\leq CδuH2(Ω).\displaystyle C\delta\left\|u\right\|_{H^{2}(\Omega)}. (3.24)

Now (2.13) can be derived from (3.21)(3.23) and (3.24).

We can find the Sδuh\nabla S_{\delta}u_{h} can only approximate u\nabla u with half order about δ\delta because Sδu\nabla S_{\delta}u loses accuracy near the boundary. In other words, this relatively low order is caused by the operator SδS_{\delta} rather than our finite element scheme. To deal with this issue, we introduced a correction term in (2.11). This term is designed for offsetting the principal error in uSδu\nabla u-\nabla S_{\delta}u. In detail,

Lemma 3.9.

For uH3(Ω)u\in H^{3}(\Omega), we have

u(Sδu𝐅δ)L2(Ω)CδuH3(Ω).\displaystyle\left\|\nabla u-(\nabla S_{\delta}u-\mathbf{F}_{\delta})\right\|_{L^{2}(\Omega)}\leq C\delta\left\|u\right\|_{H^{3}(\Omega)}.

Here CC is a constant independent of δ\delta.

The proof of this lemma is put in appendix B. With Lemma 3.9 and (3.21), we can get

u(Sδuh𝐅δ)L2(Ω)\displaystyle\left\|\nabla u-(\nabla S_{\delta}u_{h}-\mathbf{F}_{\delta})\right\|_{L^{2}(\Omega)} u(Sδu𝐅δ)L2(Ω)+SδehL2(Ω)\displaystyle\leq\left\|\nabla u-(\nabla S_{\delta}u-\mathbf{F}_{\delta})\right\|_{L^{2}(\Omega)}+\left\|\nabla S_{\delta}e_{h}\right\|_{L^{2}(\Omega)}
C(hk+1max{ρ,δ}+δ)uHmax{k+1,3}(Ω).\displaystyle\leq C\left(\frac{h^{k+1}}{\max\{\rho,\delta\}}+\delta\right)\left\|u\right\|_{H^{\max\{k+1,3\}}(\Omega)}.

This result means (Sδuh𝐅δ)(\nabla S_{\delta}u_{h}-\mathbf{F}_{\delta}) can approximate u\nabla u with a satisfactory accuracy. Additionally, both Sδuh\nabla S_{\delta}u_{h} and 𝐅δ\mathbf{F}_{\delta} can be computed efficiently. The implementation detail can be found in Appendix C.

4. Fast Implementation

In this section, a fast implementation of the nonlocal finite element scheme will be illustrated.

Two constrains in our implementation should be explained at first.

  • (a)

    (Gaussian kernel) R(r)=es2rR(r)=e^{-s^{2}r}, r[0,)r\in[0,\infty);

  • (b)

    (Rectangular partitionable domain) Ω=αTα\Omega=\bigcup_{\alpha}T_{\alpha}, where each TαT_{\alpha} is nn-dimensional tensor-product domain.

We remark that although R(r)R(r) does not vanish for r>1r>1, its exponential decay property still allows our previous proof to hold because we can adjust ss to make R(r)R(r) small enough in [1,+)[1,+\infty). Meanwhile, we require the region to be partitioned into a Cartesian mesh, and the finite element space is the corresponding piece-wise tensor product polynomial space. Of course, not all regions can satisfy such strict conditions. However, we typically apply the nonlocal model in a subregion with singularities, which usually allows us to define the required region ourselves. Therefore, our method is universally applicable.

With R(r)R(r) defined as above, the kernel functions in our nonlocal diffusion model become

Rδ(𝐱,𝐲)\displaystyle{R_{\delta}({\mathbf{x}},{\mathbf{y}})} =Cδes24δ2i=1n(xiyi)2\displaystyle=C_{\delta}e^{-\frac{s^{2}}{4\delta^{2}}\sum_{i=1}^{n}(x_{i}-y_{i})^{2}}
R¯δ(𝐱,𝐲)\displaystyle{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})} =Cδ1s2es24δ2i=1n(xiyi)2.\displaystyle=C_{\delta}\frac{1}{s^{2}}e^{-\frac{s^{2}}{4\delta^{2}}\sum_{i=1}^{n}(x_{i}-y_{i})^{2}}.

If the finite dimensional space ShS_{h} is spanned by a basis {ψi|i=1,,N}\{\psi_{i}\big{|}i=1,\cdots,N\}, uhu_{h} will be expressed as uh(𝐱)=i=1Nciψi(𝐱)u_{h}({\mathbf{x}})=\sum_{i=1}^{N}c_{i}\psi_{i}({\mathbf{x}}). Then, following (2.5), we can get uhu_{h} by solving a linear system 𝐀𝐜=𝐟\mathbf{A}\mathbf{c}=\mathbf{f}, with the (i,j)(i,j)-element of 𝐀\mathbf{A} being

aij\displaystyle a_{ij} =Lδψi,ψj\displaystyle=\left<L_{\delta}\psi_{i},\psi_{j}\right>
=Ω(1δ2ΩRδ(𝐱,𝐲)(ψi(𝐱)ψi(𝐲))d𝐲+ΩR¯δ(𝐱,𝐲)ψi(𝐲))ψj(𝐱)d𝐱\displaystyle=\int_{\Omega}\left(\frac{1}{\delta^{2}}\int_{\Omega}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(\psi_{i}({\mathbf{x}})-\psi_{i}({\mathbf{y}}))\mathrm{d}{\mathbf{y}}+{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}\psi_{i}({\mathbf{y}})\right)\psi_{j}({\mathbf{x}})\mathrm{d}{\mathbf{x}}
=1δ2ΩΩRδ(𝐱,𝐲)ψj(𝐱)ψi(𝐱)d𝐱d𝐲1δ2ΩΩRδ(𝐱,𝐲)ψi(𝐲)ψj(𝐱)d𝐱d𝐲\displaystyle=\frac{1}{\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\psi_{j}({\mathbf{x}})\psi_{i}({\mathbf{x}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}-\frac{1}{\delta^{2}}{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\psi_{i}({\mathbf{y}})\psi_{j}({\mathbf{x}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
+ΩΩR¯δ(𝐱,𝐲)ψi(𝐲)ψj(𝐱)d𝐱d𝐲,\displaystyle\hskip 28.45274pt+{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}\psi_{i}({\mathbf{y}})\psi_{j}({\mathbf{x}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}, (4.1)

and the jj-th component of right-hand side 𝐟\mathbf{f} being

fj\displaystyle f_{j} =f¯δ,ψj\displaystyle=\left<\bar{f}_{\delta},\psi_{j}\right>
=ΩΩR¯δ(𝐱,𝐲)f(𝐲)ψj(𝐱)d𝐲d𝐱+2ΩΩR¯δ(𝐱,𝐲)g(𝐲)ψj(𝐱)dS𝐲d𝐱\displaystyle={\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}f({\mathbf{y}})\psi_{j}({\mathbf{x}})\mathrm{d}{\mathbf{y}}\mathrm{d}{\mathbf{x}}+2{\int_{\Omega}}{\int_{\partial\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}g({\mathbf{y}})\psi_{j}({\mathbf{x}})\mathrm{d}S_{\mathbf{y}}\mathrm{d}{\mathbf{x}} (4.2)

As mentioned in Section 1, all the three terms in (4.1) are in fact 2n2n-dimensional integrals. And we should calculate a series of this kind of integrals to assemble the stiff matrix. Moreover, we should also provide method to deal with the boundary integrals in (4.2).

4.1. Computation of stiff matrix.

To get the stiff matrix, With these two configurations above, we designed a novel implementation which converts each 2n2n-dimensional integral into the computation of nn double integrals. Moreover, our method entirely avoids the use of numerical quadrature.

We next illustrate our method in detail using the two-dimensional case as an example. Additionally, the constant coefficient CδC_{\delta} in kernel functions is ignored as it can be eliminated from both sides of the equation. In this case, region Ω\Omega is decomposed by rectangles and finite element space can be chosen as the classical piece-wise bilinear, biquadratic or bicubic polynomial space. Recalling the integrals in (4.1),

ΩΩRδ(𝐱,𝐲)ψj(𝐱)ψi(𝐲)d𝐱d𝐲=T𝒯hT𝒯hTTRδ(𝐱,𝐲)ψj(𝐱)ψi(𝐲)d𝐱d𝐲\displaystyle{\int_{\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\psi_{j}({\mathbf{x}})\psi_{i}({\mathbf{y}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}=\sum_{T\in\mathcal{T}_{h}}\sum_{T^{\prime}\in\mathcal{T}_{h}}\int_{T}\int_{T^{\prime}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\psi_{j}({\mathbf{x}})\psi_{i}({\mathbf{y}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}

Following the construction of classical Lagrange element, basis functions have compact support. Therefore, same as the implementation of common finite element method, when TT and TT^{\prime} traverse the mesh, we can compute the local stiffness matrix for each element, and then assemble these matrices into the global stiffness matrix. In each rectangle Tsupp(ψ)T\subset\text{supp}(\psi), the Lagrange basis functions have the following form

ψ(x1,x2)=C(x1μ1)(x2μ2),(bilinear),\displaystyle\psi(x_{1},x_{2})=C(x_{1}-\mu_{1})(x_{2}-\mu_{2}),\quad(\text{bilinear}),
ψ(x1,x2)=C(x1μ11)(x1μ12)(x2μ21)(x2μ22),(biquadratic),\displaystyle\psi(x_{1},x_{2})=C(x_{1}-\mu_{11})(x_{1}-\mu_{12})(x_{2}-\mu_{21})(x_{2}-\mu_{22}),\quad(\text{biquadratic}),
ψ(x1,x2)=C(x1μ11)(x1μ12)(x1μ13)(x2μ21)(x2μ22)(x2μ23),(bicubic).\displaystyle\psi(x_{1},x_{2})=C(x_{1}-\mu_{11})(x_{1}-\mu_{12})(x_{1}-\mu_{13})(x_{2}-\mu_{21})(x_{2}-\mu_{22})(x_{2}-\mu_{23}),\quad(\text{bicubic}).

We uniformly express these forms as

ψj(x1,x2)=pj1(x1)pj2(x2),\displaystyle\psi_{j}(x_{1},x_{2})=p_{j1}(x_{1})p_{j2}(x_{2}),

then, for T=[a1,b1]×[a2,b2]T=[a_{1},b_{1}]\times[a_{2},b_{2}] and T=[a1,b1]×[a2,b2]T^{\prime}=[a_{1}^{\prime},b_{1}^{\prime}]\times[a_{2}^{\prime},b_{2}^{\prime}],

TTRδ(𝐱,𝐲)ψj(𝐱)ψi(𝐲)d𝐱d𝐲\displaystyle\int_{T}\int_{T^{\prime}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\psi_{j}({\mathbf{x}})\psi_{i}({\mathbf{y}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}
=\displaystyle= a1b1a2b2a1b1a2b2es24δ2[(x1y1)2+(x2y2)2]pj1(x1)pj2(x2)pi1(y1)pi2(y2)dx1dx2dy1dy2\displaystyle\int_{a_{1}}^{b_{1}}\int_{a_{2}}^{b_{2}}\int_{a_{1}^{\prime}}^{b_{1}^{\prime}}\int_{a_{2}^{\prime}}^{b_{2}^{\prime}}e^{-\frac{s^{2}}{4\delta^{2}}[(x_{1}-y_{1})^{2}+(x_{2}-y_{2})^{2}]}p_{j1}(x_{1})p_{j2}(x_{2})p_{i1}(y_{1})p_{i2}(y_{2})\mathrm{d}x_{1}\mathrm{d}x_{2}\mathrm{d}y_{1}\mathrm{d}y_{2}
=\displaystyle= l=1,2[alblpjl(xl)albles24δ2(xlyl)2pil(yl)dyldxl]\displaystyle\prod_{l=1,2}\left[\int_{a_{l}}^{b_{l}}p_{jl}(x_{l})\int_{a_{l}^{\prime}}^{b_{l}^{\prime}}e^{-\frac{s^{2}}{4\delta^{2}}(x_{l}-y_{l})^{2}}p_{il}(y_{l})\mathrm{d}y_{l}\mathrm{d}x_{l}\right] (4.3)

Here we can see the 4-fold integral are transferred to the product of two double integrals. The third term in (4.1) has exactly the same form as above since the two kernel functions differ only by a constant factor. Meanwhile, the first term in (4.1) can also be treated in a same way with

TTRδ(𝐱,𝐲)ψj(𝐱)ψi(𝐱)d𝐱d𝐲=l=1,2[alblpjl(xl)pil(xl)albles24δ2(xlyl)2dyldxl]\displaystyle\int_{T}\int_{T^{\prime}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\psi_{j}({\mathbf{x}})\psi_{i}({\mathbf{x}})\mathrm{d}{\mathbf{x}}\mathrm{d}{\mathbf{y}}=\prod_{l=1,2}\left[\int_{a_{l}}^{b_{l}}p_{jl}(x_{l})p_{il}(x_{l})\int_{a_{l}^{\prime}}^{b_{l}^{\prime}}e^{-\frac{s^{2}}{4\delta^{2}}(x_{l}-y_{l})^{2}}\mathrm{d}y_{l}\mathrm{d}x_{l}\right] (4.4)

All the double integrals in (4.3) and (4.4) can be consolidated into a unified expression

I¯(p,q,λ,a,b,a,b)=abp(x)abeλ2(xy)2q(y)dydx\displaystyle\overline{I}(p,q,\lambda,a,b,a^{\prime},b^{\prime})=\int_{a}^{b}p(x)\int_{a^{\prime}}^{b^{\prime}}e^{-\lambda^{2}(x-y)^{2}}q(y)\mathrm{d}y\mathrm{d}x (4.5)

with pp and qq be one-dimensional polynomials, e.g. p(x)=pjl(x)pil(x)p(x)=p_{jl}(x)p_{il}(x), q(y)=1q(y)=1 in (4.4).

Next, we explain how to compute these double integrals without using numerical quadrature. Some notations should be introduced at first. Let

Φ(a,b,λ,k)\displaystyle\Phi(a,b,\lambda,k) =abxkeλ2x2dx\displaystyle=\int_{a}^{b}x^{k}e^{-\lambda^{2}x^{2}}\mathrm{d}x
Φ¯(a,b,l,λ,n)\displaystyle\overline{\Phi}(a,b,l,\lambda,n) =abxneλ2(xl)2dx\displaystyle=\int_{a}^{b}x^{n}e^{-\lambda^{2}(x-l)^{2}}\mathrm{d}x
I(p,a,b,l,λ)\displaystyle I(p,a,b,l,\lambda) =abp(x)eλ2(xl)2dx,\displaystyle=\int_{a}^{b}p(x)e^{-\lambda^{2}(x-l)^{2}}\mathrm{d}x,

where p(x)p(x) is a polynomial. Noticing that

Φ(a,b,λ,k)\displaystyle\Phi(a,b,\lambda,k) =12λ2xk1eλ2x2|ab+k12λ2abxk2es2x2dx\displaystyle=-\frac{1}{2\lambda^{2}}x^{k-1}e^{-\lambda^{2}x^{2}}\bigg{|}_{a}^{b}+\frac{k-1}{2\lambda^{2}}\int_{a}^{b}x^{k-2}e^{-s^{2}x^{2}}\mathrm{d}x
=12λ2(ak1eλ2a2bk1eλ2b2)+k12λ2Φ(a,b,λ,k2),\displaystyle=\frac{1}{2\lambda^{2}}\left(a^{k-1}e^{-\lambda^{2}a^{2}}-b^{k-1}e^{-\lambda^{2}b^{2}}\right)+\frac{k-1}{2\lambda^{2}}\Phi(a,b,\lambda,k-2),

we can compute Φ(a,b,λ,k)\Phi(a,b,\lambda,k) recursively with the initial two terms

abes2x2=π2λ(erf(λb)erf(λa)),abxeλ2x2dx=12λ2(eλ2a2eλ2b2),\displaystyle\int_{a}^{b}e^{-s^{2}x^{2}}=\frac{\sqrt{\pi}}{2\lambda}(\mathrm{erf}(\lambda b)-\mathrm{erf}(\lambda a)),\quad\int_{a}^{b}xe^{-\lambda^{2}x^{2}}\mathrm{d}x=\frac{1}{2\lambda^{2}}\left(e^{-\lambda^{2}a^{2}}-e^{-\lambda^{2}b^{2}}\right),

where

erf(x)=2π0xet2dt\displaystyle\mathrm{erf}(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}\mathrm{d}t

is known as Gauss error function, which has already been implemented in many existing scientific computing libraries. Furthermore, since

Φ¯(a,b,l,λ,n)\displaystyle\overline{\Phi}(a,b,l,\lambda,n) =ab(xl+l)neλ2(xl)2dx\displaystyle=\int_{a}^{b}(x-l+l)^{n}e^{-\lambda^{2}(x-l)^{2}}\mathrm{d}x
=k=0nCnklnkab(xl)keλ2(xl)2dx\displaystyle=\sum_{k=0}^{n}C_{n}^{k}l^{n-k}\int_{a}^{b}(x-l)^{k}e^{-\lambda^{2}(x-l)^{2}}\mathrm{d}x
=k=0nCnklnkΦ(al,bl,λ,k)\displaystyle=\sum_{k=0}^{n}C_{n}^{k}l^{n-k}\Phi(a-l,b-l,\lambda,k)

the computation of Φ¯(a,b,l,λ,n)\overline{\Phi}(a,b,l,\lambda,n) can be gained after the implementation of Φ(a,b,λ,k)\Phi(a,b,\lambda,k). Afterwards, the computation of I(p,a,b,l,λ,n)I(p,a,b,l,\lambda,n) becomes straightforward, since

I(p,a,b,l,λ)\displaystyle I(p,a,b,l,\lambda) =ab(n=0Ncnxn)eλ2(xl)2dx=n=0NcnΦ¯(a,b,l,λ,n).\displaystyle=\int_{a}^{b}\left(\sum_{n=0}^{N}c_{n}x^{n}\right)e^{-\lambda^{2}(x-l)^{2}}\mathrm{d}x=\sum_{n=0}^{N}c_{n}\overline{\Phi}(a,b,l,\lambda,n).

Now we can calculate (4.5) with the three functions above. Let q(y)q^{\prime}(y) represent the derivative of q(y)q(y) and P(x)P(x) denote the antiderivative of p(x)p(x), where the associated constant being of no consequence. Then, using integration by parts, we can get a recursion formula

I¯(p,q,λ,a,b,a,b)\displaystyle\overline{I}(p,q,\lambda,a,b,a^{\prime},b^{\prime})
=\displaystyle= P(x)abeλ2(xy)2q(y)dy|ababP(x)ab(ddxeλ2(xy)2)q(y)dydx\displaystyle P(x)\int_{a^{\prime}}^{b^{\prime}}e^{-\lambda^{2}(x-y)^{2}}q(y)\mathrm{d}y\Bigg{|}_{a}^{b}-\int_{a}^{b}P(x)\int_{a^{\prime}}^{b^{\prime}}\left(\frac{\mathrm{d}}{\mathrm{d}x}e^{-\lambda^{2}(x-y)^{2}}\right)q(y)\mathrm{d}y\mathrm{d}x
=\displaystyle= P(x)abeλ2(xy)2q(y)dy|ab+abP(x)ab(ddyeλ2(xy)2)q(y)dydx\displaystyle P(x)\int_{a^{\prime}}^{b^{\prime}}e^{-\lambda^{2}(x-y)^{2}}q(y)\mathrm{d}y\Bigg{|}_{a}^{b}+\int_{a}^{b}P(x)\int_{a^{\prime}}^{b^{\prime}}\left(\frac{\mathrm{d}}{\mathrm{d}y}e^{-\lambda^{2}(x-y)^{2}}\right)q(y)\mathrm{d}y\mathrm{d}x
=\displaystyle= P(x)abeλ2(xy)2q(y)dy|ab+abP(x)(eλ2(xy)2q(y))|abdx\displaystyle P(x)\int_{a^{\prime}}^{b^{\prime}}e^{-\lambda^{2}(x-y)^{2}}q(y)\mathrm{d}y\Bigg{|}_{a}^{b}+\int_{a}^{b}P(x)\left(e^{-\lambda^{2}(x-y)^{2}}q(y)\right)\Bigg{|}_{a^{\prime}}^{b^{\prime}}\mathrm{d}x
abP(x)abeλ2(xy)2q(y)dydx\displaystyle\hskip 56.9055pt-\int_{a}^{b}P(x)\int_{a^{\prime}}^{b^{\prime}}e^{-\lambda^{2}(x-y)^{2}}q^{\prime}(y)\mathrm{d}y\mathrm{d}x
=\displaystyle= P(b)I(q,a,b,b,λ)P(a)I(q,a,b,a,λ)+q(b)I(P,a,b,b,λ)q(a)I(P,a,b,a,λ)\displaystyle P(b)I(q,a^{\prime},b^{\prime},b,\lambda)-P(a)I(q,a^{\prime},b^{\prime},a,\lambda)+q(b^{\prime})I(P,a,b,b^{\prime},\lambda)-q(a^{\prime})I(P,a,b,a^{\prime},\lambda)
I¯(P,q,λ,a,b,a,b).\displaystyle\hskip 56.9055pt-\overline{I}(P,q^{\prime},\lambda,a,b,a^{\prime},b^{\prime}).

With each recursion, the degree of the polynomial qq is reduced by one through derivation, until qq becomes zero, at which point the last term vanishes. In other words, we can obtain I¯(p,q,λ,a,b,a,b)\overline{I}(p,q,\lambda,a,b,a^{\prime},b^{\prime}) by computing multiple instances of I(p,a,b,l,λ)I(p,a,b,l,\lambda), and the method for calculating I(p,a,b,l,λ)I(p,a,b,l,\lambda) has already been provided.

4.2. Computation of load vector.

Following the ideas in computing stiff matrix, we can apply similar method to calculate (4.2).

The computation of the first term in (4.2) can also be reduced to the integrals in rectangles, that is

ΩΩR¯δ(𝐱,𝐲)f(𝐲)ψj(𝐱)d𝐲d𝐱=T𝒯hT𝒯hTTR¯δ(𝐱,𝐲)f(𝐲)ψj(𝐱)d𝐲d𝐱.\displaystyle{\int_{\Omega}}{\int_{\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}f({\mathbf{y}})\psi_{j}({\mathbf{x}})\mathrm{d}{\mathbf{y}}\mathrm{d}{\mathbf{x}}=\sum_{T\in\mathcal{T}_{h}}\sum_{T^{\prime}\in\mathcal{T}_{h}}\int_{T}\int_{T^{\prime}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}f({\mathbf{y}})\psi_{j}({\mathbf{x}})\mathrm{d}{\mathbf{y}}\mathrm{d}{\mathbf{x}}.

In each rectangle TT^{\prime}, the Lagrange basis functions are provided. Thus, we adopt a typical practice of replacing ff with its Lagrange interpolation in TT^{\prime}, i.e.

TTf(𝐲)ψj(𝐱)d𝐲d𝐱=ii(T)fiTTR¯δ(𝐱,𝐲)ψi(𝐲)ψj(𝐱)d𝐲d𝐱,\displaystyle\int_{T}\int_{T^{\prime}}f({\mathbf{y}})\psi_{j}({\mathbf{x}})\mathrm{d}{\mathbf{y}}\mathrm{d}{\mathbf{x}}=\sum_{i\in i(T^{\prime})}f_{i}\int_{T}\int_{T^{\prime}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}\psi_{i}({\mathbf{y}})\psi_{j}({\mathbf{x}})\mathrm{d}{\mathbf{y}}\mathrm{d}{\mathbf{x}}, (4.6)

where the notation i(T)i(T^{\prime}) indicates ff is interpolated by the basis functions associated with TT^{\prime}. Since we have already described how to compute (4.3), the computation of (4.6) naturally follows.

We next turn to the second terms of (4.2) in which boundary integral is involved. Based on the precondition that Ω\Omega is decomposed by a mesh of rectangles, the boundary of Ω\Omega is naturally assembled by a set of segments. If we denote this set as h\mathcal{L}_{h}, the second terms of (4.2) can be written as

ΩΩR¯δ(𝐱,𝐲)g(𝐲)ψj(𝐱)dS𝐲d𝐱\displaystyle{\int_{\Omega}}{\int_{\partial\Omega}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}g({\mathbf{y}})\psi_{j}({\mathbf{x}})\mathrm{d}S_{\mathbf{y}}\mathrm{d}{\mathbf{x}}
=\displaystyle= T𝒯hLhTLR¯δ(𝐱,𝐲)g(𝐲)ψj(𝐱)dS𝐲d𝐱\displaystyle\sum_{T\in\mathcal{T}_{h}}\sum_{L^{\prime}\in\mathcal{L}_{h}}\int_{T}\int_{L^{\prime}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}g({\mathbf{y}})\psi_{j}({\mathbf{x}})\mathrm{d}S_{\mathbf{y}}\mathrm{d}{\mathbf{x}}
=\displaystyle= T𝒯hLhii(L)giTLR¯δ(𝐱,𝐲)ψ~i(𝐲)ψj(𝐱)dS𝐲d𝐱.\displaystyle\sum_{T\in\mathcal{T}_{h}}\sum_{L^{\prime}\in\mathcal{L}_{h}}\sum_{i\in i(L)}g_{i}\int_{T}\int_{L^{\prime}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}\widetilde{\psi}_{i}({\mathbf{y}})\psi_{j}({\mathbf{x}})\mathrm{d}S_{\mathbf{y}}\mathrm{d}{\mathbf{x}}. (4.7)

In (4.7), we also utilize the trick of interpolation with the only distinction being that it is one-dimensional here. Meanwhile, we use the notation ψ~i\widetilde{\psi}_{i} to indicate this difference.

Subsequently, we illustrate how to calculate (4.7) by taking a horizontal segment L={(y1,y2)|a1y1b1,y2=l}L^{\prime}=\left\{(y_{1},y_{2})\big{|}a^{\prime}_{1}\leq y_{1}\leq b^{\prime}_{1},y_{2}=l\right\} for example.

TLR¯δ(𝐱,𝐲)ψ~i(𝐲)ψj(𝐱)dS𝐲d𝐱\displaystyle\int_{T}\int_{L^{\prime}}{\bar{R}_{\delta}({\mathbf{x}},{\mathbf{y}})}\widetilde{\psi}_{i}({\mathbf{y}})\psi_{j}({\mathbf{x}})\mathrm{d}S_{\mathbf{y}}\mathrm{d}{\mathbf{x}}
=\displaystyle= 1s2a1b1a2b2a1b1es24δ2[(x1y1)2+(x2l)2]pi1(y1)pj1(x1)pj2(x2)dy1dx2dx1\displaystyle\frac{1}{s^{2}}\int_{a_{1}}^{b_{1}}\int_{a_{2}}^{b_{2}}\int_{a_{1}^{\prime}}^{b_{1}^{\prime}}e^{-\frac{s^{2}}{4\delta^{2}}[(x_{1}-y_{1})^{2}+(x_{2}-l)^{2}]}p_{i1}(y_{1})p_{j1}(x_{1})p_{j2}(x_{2})\mathrm{d}y_{1}\mathrm{d}x_{2}\mathrm{d}x_{1}
=\displaystyle= 1s2[a1b1pj1(x1)a1b1es24δ2(x1y1)2pi1(y1)dy1dx1][a2b2es24δ2(x2l)2pj2(x2)dx2]\displaystyle\frac{1}{s^{2}}\left[\int_{a_{1}}^{b_{1}}p_{j1}(x_{1})\int_{a_{1}^{\prime}}^{b_{1}^{\prime}}e^{-\frac{s^{2}}{4\delta^{2}}(x_{1}-y_{1})^{2}}p_{i1}(y_{1})\mathrm{d}y_{1}\mathrm{d}x_{1}\right]\left[\int_{a_{2}}^{b_{2}}e^{-\frac{s^{2}}{4\delta^{2}}(x_{2}-l)^{2}}p_{j2}(x_{2})\mathrm{d}x_{2}\right]
=\displaystyle= 1s2I¯(pj1,pi1,s/(2δ),a1,b1,a1,b1)I(pj2,a2,b2,l,s/(2δ)).\displaystyle\frac{1}{s^{2}}\overline{I}(p_{j1},p_{i1},s/(2\delta),a_{1},b_{1},a_{1}^{\prime},b_{1}^{\prime})I(p_{j2},a_{2},b_{2},l,s/(2\delta)).

At this point, we have solved the computation of load vector.

With stiff matrix and load vector, the finite element solution uhu_{h} can be solved. In addition, we also provide the way to approximate u\nabla u based on the solution uhu_{h} in Section 3. The smoothed term SδuhS_{\delta}u_{h} and correction term 𝐅δ\mathbf{F}_{\delta} can also be calculated with the same framework. The detail for these two terms is put in Appendix C.

5. Numerical Experiments

In this section, we will exhibit numerical results to validate the error analysis in Section 3 and demonstrate the performance of the proposed numerical method. All the experiments are conducted in a Macbook Pro (3.2GHz M1 CPU, 16G memory) with code written in C++.

5.1. Experiments in a 2D rectangular region

The first example is in Ω=[0,1]×[0,1]\Omega=[0,1]\times[0,1]. The solution of the local model is set as

u(x1,x2)=cos(πx1)cos(πx2)+x1x2,u(x_{1},x_{2})=\cos(\pi x_{1})\cos(\pi x_{2})+x_{1}x_{2},

which implies the right-hand side term

f(x1,x2)=Δu+u=(1+2π2)cos(πx1)cos(πx2)+x1x2\displaystyle f(x_{1},x_{2})=-\Delta u+u=(1+2\pi^{2})\cos(\pi x_{1})\cos(\pi x_{2})+x_{1}x_{2}

and the boundary condition

g(x1,x2)={πcos(πx1)sin(πx2)x1,x1[0,1],x2=0,πcos(πx1)sin(πx2)+x1,x1[0,1],x2=1,πsin(πx1)cos(πx2)x2,x1=0,x2[0,1],πsin(πx1)cos(πx2)+x2,x1=0,x2[0,1].g(x_{1},x_{2})=\left\{\begin{aligned} \pi\cos(\pi x_{1})\sin(\pi x_{2})-x_{1},\qquad x_{1}\in[0,1],x_{2}=0,\\ -\pi\cos(\pi x_{1})\sin(\pi x_{2})+x_{1},\qquad x_{1}\in[0,1],x_{2}=1,\\ \pi\sin(\pi x_{1})\cos(\pi x_{2})-x_{2},\qquad x_{1}=0,x_{2}\in[0,1],\\ -\pi\sin(\pi x_{1})\cos(\pi x_{2})+x_{2},\qquad x_{1}=0,x_{2}\in[0,1].\end{aligned}\right.

5.1.1. Error between uu and uhu_{h}

The domain is discretized using a uniform N×NN\times N grid, and tensor-product Lagrange basis functions of order k=1k=1 or 22 are employed. For convergence in hh, δ\delta is fixed at 0.0010.001 while NN is progressively doubled. For convergence in δ\delta, hh is fixed at 1128\frac{1}{128} (for k=1k=1) or 164\frac{1}{64} (for k=2k=2), and δ\delta is decreased from δ0=0.04\delta_{0}=0.04

The L2L^{2} and H1H^{1} errors with different hh are shown in Figure 1 when δ=0.001\delta=0.001. For L2L^{2} error, the convergence rates align with the bound O(hk+1)O(h^{k+1}) which is one order higher than the theoretical result. This can be attributed to the absence of Aubin-Nitsche Lemma in the nonlocal context. Similar issue is also reported in [10]. When h1/64h\leq 1/64 (first order element) or h1/16h\leq 1/16 (second order element), the L2L^{2} error plateaus since δ\delta dominates. For H1H^{1} error, the observed rates are O(hk)O(h^{k}), though the analysis does not guarantee this due to the lack of H1H^{1} coercivity in the nonlocal model.

Figure 2 demonstrates the convergence in δ\delta, confirming the first-order dependence on δ\delta as predicted. As δ\delta decreasing, the error also plateaus when hh dominates. Notably, second order elements exhibit lower plateau since high-order element achieves higher accuracy.

Refer to caption
(a) First order Lagrange interpolation
Refer to caption
(b) Second order Lagrange interpolation
Figure 1. Error between uu and uhu_{h} with δ=0.001\delta=0.001, h=1/Nh=1/N.
Refer to caption
(a) First order Lagrange interpolation,
N=128N=128, δ0=0.04\delta_{0}=0.04
Refer to caption
(b) Second order Lagrange interpolation, N=64N=64, δ0=0.04\delta_{0}=0.04
Figure 2. Error between uu and uhu_{h} : hh is fixed, δ\delta decreases.

5.1.2. Errors in the gradient

In the theoretical analysis, we propose a gradient recovery technique to approximate the gradient. More precisely, we introduced SδuhS_{\delta}u_{h} and 𝐅δ\mathbf{F}_{\delta} in Section 2 to approximate u\nabla u. In Table 1 and Table 2, we check the convergence of the gradient with respect to hh and δ\delta respectively. As shown in Table 1, our method gives kk-th order convergence with respect to hh. With respect to δ\delta, the convergence rate is first order while the rate is reduced to half order without boundary correction term 𝐅δ\mathbf{F}_{\delta}. All the numerical results fit the theoretical analysis very well.

NN 4 8 16 32 64 128 256
1st order 5.42e-1 2.58e-1 1.27e-1 6.31e-2 3.07e-2 1.30e-2 5.54e-3
Rate - 1.07 1.02 1.01 1.23 1.23 1.39
2nd order 5.10e-2 1.28e-2 3.46e-3 1.55e-3 1.34e-3 1.33e-3 1.33e-3
Rate - 1.99 1.89 1.15 0.20 0.01 0.00
Table 1. u(Sδuh𝐅δ)L2(Ω)\left\|\nabla u-(\nabla S_{\delta}u_{h}-\mathbf{F}_{\delta})\right\|_{L^{2}(\Omega)} with first and second order Lagrange Elements: δ=0.001\delta=0.001, h=1/Nh=1/N.
δ0/δ\delta_{0}/\delta 1 2 4 8 16 32
uSδuhL2(Ω)\left\|\nabla u-\nabla S_{\delta}u_{h}\right\|_{L^{2}(\Omega)} 9.97e-2 6.28e-2 4.19e-2 2.88e-2 1.99e-2 1.49e-2
Rate - 0.67 0.58 0.54 0.53 0.42
uSδuhL2(Ω\Ω2δ)\left\|\nabla u-\nabla S_{\delta}u_{h}\right\|_{L^{2}(\Omega\backslash\Omega_{2\delta})} 4.13e-2 2.30e-2 1.23e-2 6.24e-3 3.19e-3 1.59e-3
Rate - 0.84 0.90 0.98 0.97 1.01
u(Sδuh𝐅δ)L2(Ω)\left\|\nabla u-(\nabla S_{\delta}u_{h}-\mathbf{F}_{\delta})\right\|_{L^{2}(\Omega)} 5.93e-2 2.81e-2 1.37e-2 6.74e-3 3.35e-3 1.67e-3
Rate - 1.08 1.04 1.02 1.01 1.01
Table 2. Gradient approximation with second order Lagrange Elements: δ0=0.04\delta_{0}=0.04, N=128N=128.

5.1.3. CPU time of constructing stiff matrix

Beyond convergence rate validation, we quantitatively analyzed the time consumption of stiffness matrix construction.

In Table 3, we give the CPU time of assembling the stiffness matrix with different hh. For uniform rectangular mesh, the stiffness matrix is translation invariant. Using this property, the computational cost can be further reduced as shown in Table 3. If the mesh is non-uniform, the translation-invariant property does not hold. In Table 3, we also list the CPU without using the translation-invariant property. As we can see, the translation-invariant property significantly reduce the computational cost.

N=1/hN=1/h 44 88 16 32 64 128
1st order 0.004 (0.019) 0.009 (0.096) 0.025 (0.413) 0.078 (1.71) 0.695 (19.2) 5.306 (255)
2nd order 0.018 (0.170) 0.052 (0.889) 0.136 (3.898) 0.393 (16.04) 3.14 (184) 21.85 (2464)
Table 3. CPU time (in seconds) of stiffness matrix assembling with δ=0.01\delta=0.01. CPU time without using translation invariance is in the brackets.
δ\delta 1/1001/100 1/2001/200 1/4001/400 1/8001/800
1st order 5.31 (255) 2.54 (78.9) 0.939 (28.2) 0.925 (28.1)
2nd order 21.8 (2464) 10.4 (748) 4.15 (266) 4.15 (266)
Table 4. CPU time (in seconds) of stiff matrix assembling with h=1/128h=1/128. CPU time without using translation invariance is in the brackets.

The CPU time with different δ\delta is shown in Table 4. The computational time increases as δ\delta grows, since more rectangles involve in the computing of local stiffness matrix.

5.2. Experiments in a 2D L-shaped Region

To demonstrate the flexibility of our method for non-rectangular domains, we conduct experiments on an L-shaped region composed of two rectangular subdomains:

Ω=[0,1]×[0,0.5][0,0.5]×[0.5,1].\Omega=[0,1]\times[0,0.5]\cup[0,0.5]\times[0.5,1].

We consider the exact solution:

u(x1,x2)=x1sin(πx2)+x2sin(πx1),u(x_{1},x_{2})=x_{1}\sin(\pi x_{2})+x_{2}\sin(\pi x_{1}),

which yields the source term:

f(x1,x2)=π2(x1sin(πx2)+x2sin(πx1))+u(x1,x2)f(x_{1},x_{2})=\pi^{2}(x_{1}\sin(\pi x_{2})+x_{2}\sin(\pi x_{1}))+u(x_{1},x_{2})

and corresponding Neumann boundary conditions. Figure 3 illustrates both the domain geometry and solution profile. The domain is discretized using a uniform Cartesian grid with special attention to the reentrant corner. The mesh ensures node alignment at (0.5,0.5)(0.5,0.5) by requiring even divisions in both directions.

11110.50.50.50.50
(a) Mesh in L-shaped Region
Refer to caption
(b) Exact Solution in L-shaped Region
Figure 3. Configuration in L-shaped Region

We study both the L2L^{2} and H1H^{1} errors between uhu_{h} and uu. The results are shown in Figure 4. For L-shape region, the error has similar behavior as that in 2D box. More precisely, the numerical results verify that uuhL2(Ω)=O(hk+1+δ)\left\|u-u_{h}\right\|_{L^{2}(\Omega)}=O(h^{k+1}+\delta) and uuhH1(Ω)=O(hk+δ)\left\|u-u_{h}\right\|_{H^{1}(\Omega)}=O(h^{k}+\delta).

Refer to caption
(a) L2L^{2} error with hh
Refer to caption
(b) H1H^{1} error with hh
Refer to caption
(c) L2L^{2} and H1H^{1} error with δ\delta
Figure 4. Error in LL-shaped Region

5.3. Experiments in a 3D Cube

To demonstrate the applicability of our method in higher dimensions, we conduct numerical experiment on a 3D unit cube domain Ω=[0,1]×[0,1]×[0,1]\Omega=[0,1]\times[0,1]\times[0,1]. The exact solution is chosen as:

u(x1,x2,x3)=cos(πx1)cos(πx2)cos(πx3),u(x_{1},x_{2},x_{3})=\cos(\pi x_{1})\cos(\pi x_{2})\cos(\pi x_{3}),

which yields the source term:

f(x1,x2,x3)=(1+3π2)cos(πx1)cos(πx2)cos(πx3)f(x_{1},x_{2},x_{3})=(1+3\pi^{2})\cos(\pi x_{1})\cos(\pi x_{2})\cos(\pi x_{3})

and homogeneous Neumann boundary conditions g(x1,x2,x3)=0g(x_{1},x_{2},x_{3})=0. The cubic domain is discretized using uniform partitions with NN subdivisions along each coordinate direction. Our implementation extends naturally from the 2D case.

Figure 5 shows the convergence behavior with fixed δ=104\delta=10^{-4} and increasing mesh resolution. The observed convergence rate is O(hk+1)O(h^{k+1}) in L2L^{2} norm and O(hk)O(h^{k}) in H1H^{1} norm. δ\delta-convergence is studied in Figure 6). The results confirm first-order convergence with respect to δ\delta, with the higher-order method showing more pronounced convergence before reaching the discretization error floor.

Refer to caption
(a) First order Lagrange element
Refer to caption
(b) Second order Lagrange element
Figure 5. Error between uu and uhu_{h} : δ=104\delta=10^{-4}, h=1/Nh=1/N.
Refer to caption
(a) First order Lagrange element
Refer to caption
(b) Second order Lagrange element
Figure 6. Error between uu and uhu_{h}: hh is fixed to be 164\frac{1}{64} and 132\frac{1}{32}, δ0=0.02\delta_{0}=0.02 or 0.00160.0016.
N=1/hN=1/h 44 88 1616 3232 6464
1st order (δ=0.01\delta=0.01) 0.017 0.174 1.58 12.9 476
δ\delta 1/50 1/100 1/200 1/400 1/800
1st order (h=164h=\frac{1}{64}) 1246 476 116 116 116
Table 5. CPU time (in seconds) of constructing stiff matrix with first order element in 3D.
N=1/hN=1/h 22 44 88 1616 3232
2nd order (δ=0.01\delta=0.01) 0.010 0.156 1.708 15.2 128
δ\delta 0.02 0.01 0.005 0.0025 0.00125
2nd order (h=132h=\frac{1}{32}) 550 128 128 129 128
Table 6. CPU time (in seconds) of constructing stiff matrix with second order element in 3D.

We also report the CPU time for constructing stiffness matrix in 3D case, see Table 5 and Table 6. Even for the most expensive case (N=64,δ=0.02N=64,\delta=0.02), the computation can be done within 1246s in a Macbook laptop which demonstrate the efficiency of the proposed method.

6. Conclusion

This paper has presented a comprehensive framework for finite element approximation of nonlocal diffusion problems, with theoretical analysis and efficient numerical implementation. We proved that the finite element method converges to the correct local limit as both the mesh size hh and nonlocal horizon δ\delta approach zero, without restrictive conditions on their relative scaling. The error analysis establishes O(hk+δ)O(h^{k}+\delta) convergence in L2L^{2} norm for shape-regular meshes using kk-th order elements. For problems requiring gradient approximation, we proposed a post-processing technique combining nonlocal smoothing SδS_{\delta} with a boundary correction term 𝐅δ\mathbf{F}_{\delta}. This approach is proved to achieve O(hk+δ)O(h^{k}+\delta) accuracy for the gradient approximation, overcoming the half-order loss near boundaries. Moreover, for tensor-product domains with Gaussian kernels, we introduced a novel computational strategy that decomposes the 2n2n-dimensional integrals into products of 2D integrals. This approach avoids expensive numerical quadrature while maintaining accuracy. The numerical experiments validate our theoretical results and the efficiency of the proposed algorithm across various geometries, including rectangular domains, L-shaped regions, and three-dimensional cubes.

In the future, we will try to extend this numerical method to general domain and kernels, not restrictive to the Gaussian kernel and tensor-product domain. We will also explore the application in complex problems include multiscale materials, fracture mechanics etc.

Appendices

In the following appendices, we will give the proof of Lemma 3.8 and Lemma 3.9. In the configuration of our nonlocal finite element method, the domain Ω\Omega is set to be a polyhedron. Here, for brevity of the proof, we omit some geometric details and restrict our discussion to the case where Ω\Omega is a two-dimensional rectangle. Moreover, the implementation detail for approximating u\nabla u is also provided.

Appendix A Proof of Lemma 3.8

To prove Lemma 3.8, a technical lemma should be introduced firstly.

Lemma A.1.

For a polyhedral Ω\Omega, let Ωδ={𝐱|d(𝐱,Ω)δ}\Omega_{\delta}=\left\{{\mathbf{x}}\big{|}d({\mathbf{x}},\partial\Omega)\leq\delta\right\}, then for uH1(Ω)u\in H^{1}(\Omega), we have

uL2(Ωδ)2CδuH1(Ω)2.\displaystyle\left\|u\right\|_{L^{2}(\Omega_{\delta})}^{2}\leq C\delta\left\|u\right\|_{H^{1}(\Omega)}^{2}.

The proof of this lemma does not require any special techniques. Let Ω=[a1,b1]×[a2,b2]\Omega=[a_{1},b_{1}]\times[a_{2},b_{2}]. Following the notations in Figure 7, Ωδi=14Ωδi\Omega_{\delta}\subset\bigcup_{i=1}^{4}\Omega_{\delta}^{i}.

Ωδ1\Omega_{\delta}^{1}Ωδ2\Omega_{\delta}^{2}Ωδ3\Omega_{\delta}^{3}Ωδ4\Omega_{\delta}^{4}
Figure 7. Ωδi=14Ωδi\Omega_{\delta}\subset\bigcup_{i=1}^{4}\Omega_{\delta}^{i}

Take the integral in Ωδ1\Omega_{\delta}^{1} for example, we have

Ωδ1u2(𝐱)d𝐱\displaystyle\int_{\Omega_{\delta}^{1}}u^{2}({\mathbf{x}})\mathrm{d}{\mathbf{x}} =a1b10δu2(x1,x2)dx2dx1\displaystyle=\int_{a_{1}}^{b_{1}}\int_{0}^{\delta}u^{2}(x_{1},x_{2})\mathrm{d}x_{2}\mathrm{d}x_{1}
=a1b10δ(u(x1,0)+0x22u(x1,t)dt)2dx2dx1\displaystyle=\int_{a_{1}}^{b_{1}}\int_{0}^{\delta}\left(u(x_{1},0)+\int_{0}^{x_{2}}\partial_{2}u(x_{1},t)\mathrm{d}t\right)^{2}\mathrm{d}x_{2}\mathrm{d}x_{1}
Ca1b10δ0δ|2u(x1,t)|2dtdx2dx1+Ca1b10δu2(x1,0)dx2dx2\displaystyle\leq C\int_{a_{1}}^{b_{1}}\int_{0}^{\delta}\int_{0}^{\delta}|\partial_{2}u(x_{1},t)|^{2}\mathrm{d}t\mathrm{d}x_{2}\mathrm{d}x_{1}+C\int_{a_{1}}^{b_{1}}\int_{0}^{\delta}u^{2}(x_{1},0)\mathrm{d}x_{2}\mathrm{d}x_{2}
Cδ2uL2(Ωδ)2+CδuL2(Ω)2\displaystyle\leq C\delta\left\|\partial_{2}u\right\|_{L^{2}(\Omega_{\delta})}^{2}+C\delta\left\|u\right\|_{L^{2}(\partial\Omega)}^{2}
CδuH1(Ω)2.\displaystyle\leq C\delta\left\|u\right\|_{H^{1}(\Omega)}^{2}.

With this lemma, we can prove Lemma 3.8. Since

u(𝐱)u(𝐲)=01ddsu(𝐲+s(𝐱𝐲))ds=01u(𝐲+s(𝐱𝐲))(𝐱𝐲)ds,\displaystyle u({\mathbf{x}})-u({\mathbf{y}})=\int_{0}^{1}\frac{\mathrm{d}}{\mathrm{d}s}u({\mathbf{y}}+s({\mathbf{x}}-{\mathbf{y}}))\mathrm{d}s=\int_{0}^{1}\nabla u({\mathbf{y}}+s({\mathbf{x}}-{\mathbf{y}}))\cdot({\mathbf{x}}-{\mathbf{y}})\mathrm{d}s,

we have

ΩΩRδ(𝐱,𝐲)(u(𝐱)u(𝐲))2d𝐱dS𝐲Cδ201ΩΩRδ(𝐱,𝐲)|u(𝐲+s(𝐱𝐲))|2d𝐱dS𝐲ds.\displaystyle\int_{\partial\Omega}\int_{\Omega}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}(u({\mathbf{x}})-u({\mathbf{y}}))^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}S_{\mathbf{y}}\leq C\delta^{2}\int_{0}^{1}\int_{\partial\Omega}\int_{\Omega}R_{\delta}({\mathbf{x}},{\mathbf{y}})|\nabla u({\mathbf{y}}+s({\mathbf{x}}-{\mathbf{y}}))|^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}S_{\mathbf{y}}\mathrm{d}s.

For s(0,1]s\in(0,1],

ΩΩRδ(𝐱,𝐲)|u(𝐲+s(𝐱𝐲))|2d𝐱dS𝐲\displaystyle\int_{\partial\Omega}\int_{\Omega}R_{\delta}({\mathbf{x}},{\mathbf{y}})|\nabla u({\mathbf{y}}+s({\mathbf{x}}-{\mathbf{y}}))|^{2}\mathrm{d}{\mathbf{x}}\mathrm{d}S_{\mathbf{y}}
\displaystyle\leq ΩΩCδR(|𝐳𝐲|24s2δ2)|u(𝐳)|21snd𝐳dS𝐲\displaystyle\int_{\partial\Omega}\int_{\Omega}C_{\delta}R\left(\frac{|{\mathbf{z}}-{\mathbf{y}}|^{2}}{4s^{2}\delta^{2}}\right)|\nabla u({\mathbf{z}})|^{2}\frac{1}{s^{n}}\mathrm{d}{\mathbf{z}}\mathrm{d}S_{\mathbf{y}}
=\displaystyle= CΩΩ2sδRsδ(𝐳,𝐲)|u(𝐳)|21snd𝐳dS𝐲\displaystyle C\int_{\partial\Omega}\int_{\Omega_{2s\delta}}R_{s\delta}({\mathbf{z}},{\mathbf{y}})|\nabla u({\mathbf{z}})|^{2}\frac{1}{s^{n}}\mathrm{d}{\mathbf{z}}\mathrm{d}S_{\mathbf{y}}
\displaystyle\leq CsδΩ2sδ|u(𝐳)|2d𝐳\displaystyle\frac{C}{s\delta}\int_{\Omega_{2s\delta}}|\nabla u({\mathbf{z}})|^{2}\mathrm{d}{\mathbf{z}}
\displaystyle\leq CuH2(Ω)2.\displaystyle C\left\|u\right\|_{H^{2}(\Omega)}^{2}.

Here we have proved Lemma 3.8.

Appendix B Proof of Lemma 3.9

In this section, we give the proof of Lemma 3.9. From (3.22), we can get

u(𝐱)Sδu(𝐱)+Fδ(𝐱)\displaystyle\nabla u({\mathbf{x}})-\nabla S_{\delta}u({\mathbf{x}})+F_{\delta}({\mathbf{x}})
=\displaystyle= 1wδ(𝐱)ΩRδ(𝐱,𝐲)(u(𝐱)u(𝐲))d𝐲1wδ2(𝐱)ΩΩRδ(𝐱,𝐲)Rδ(𝐱,𝐳)Tu(𝐲,𝐳)n(𝐳)d𝐲dS𝐳\displaystyle\frac{1}{w_{\delta}({\mathbf{x}})}\int_{\Omega}R_{\delta}({\mathbf{x}},{\mathbf{y}})(\nabla u({\mathbf{x}})-\nabla u({\mathbf{y}}))\mathrm{d}{\mathbf{y}}-\frac{1}{w_{\delta}^{2}({\mathbf{x}})}\int_{\partial\Omega}\int_{\Omega}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}R_{\delta}({\mathbf{x}},{\mathbf{z}})Tu({\mathbf{y}},{\mathbf{z}})n({\mathbf{z}})\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}

where

Tu(𝐲,𝐳)=u(𝐲)u(𝐳)((𝐲𝐳)𝐧(𝐳))(u(𝐳)𝐧(𝐳)).\displaystyle Tu({\mathbf{y}},{\mathbf{z}})=u({\mathbf{y}})-u({\mathbf{z}})-(({\mathbf{y}}-{\mathbf{z}})\cdot{\mathbf{n}}({\mathbf{z}}))(\nabla u({\mathbf{z}})\cdot{\mathbf{n}}({\mathbf{z}})).

The first term above has been estimated in (3.23). We will focus on the second term in this section. When uC3(Ω¯)u\in C^{3}(\bar{\Omega}), we can divide Tu(𝐲,𝐳)=T1u(𝐲,𝐳)+T2u(𝐲,𝐳)Tu({\mathbf{y}},{\mathbf{z}})=T_{1}u({\mathbf{y}},{\mathbf{z}})+T_{2}u({\mathbf{y}},{\mathbf{z}}), where

T1u(𝐲,𝐳)=u(𝐳)((𝐲𝐳)((𝐲𝐳)𝐧(𝐳))𝐧(𝐳)),\displaystyle T_{1}u({\mathbf{y}},{\mathbf{z}})=\nabla u({\mathbf{z}})\cdot(({\mathbf{y}}-{\mathbf{z}})-(({\mathbf{y}}-{\mathbf{z}})\cdot{\mathbf{n}}({\mathbf{z}})){\mathbf{n}}({\mathbf{z}})),

and

T2u(𝐲,𝐳)=0101i,jiju(𝐳+st(𝐲𝐳))s(yizi)(yjxj)dtds.\displaystyle T_{2}u({\mathbf{y}},{\mathbf{z}})=\int_{0}^{1}\int_{0}^{1}\sum_{i,j}\partial_{ij}u({\mathbf{z}}+st({\mathbf{y}}-{\mathbf{z}}))s(y_{i}-z_{i})(y_{j}-x_{j})\mathrm{d}t\mathrm{d}s.

With the same trick in Appendix A, we can prove

1wδ2(𝐱)ΩΩRδ(𝐱,𝐲)Rδ(𝐱,𝐳)T2u(𝐲,𝐳)n(𝐳)d𝐲dS𝐳L2(Ω)2Cδ3uH3(Ω)2.\displaystyle\left\|\frac{1}{w_{\delta}^{2}({\mathbf{x}})}\int_{\partial\Omega}\int_{\Omega}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}R_{\delta}({\mathbf{x}},{\mathbf{z}})T_{2}u({\mathbf{y}},{\mathbf{z}})n({\mathbf{z}})\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}\right\|_{L^{2}(\Omega)}^{2}\leq C\delta^{3}\left\|u\right\|_{H^{3}(\Omega)}^{2}. (B.1)

To estimate the integral about T1u(𝐲,𝐳)T_{1}u({\mathbf{y}},{\mathbf{z}}), we divide Ω\Omega into two parts. In detail, if for the polyhedron Ω\Omega, Ω=i=1nEi\partial\Omega=\bigcup_{i=1}^{n}E_{i}, where EiE_{i} is the flat face of the boundary of Ω\Omega, we can denote

D1={𝐱Ω2δ,there exists unique i,B(𝐱,2δ)ΩEi},D_{1}=\left\{{\mathbf{x}}\in\Omega_{2\delta},\text{there exists unique }i,B({\mathbf{x}},2\delta)\cap\partial\Omega\subset E_{i}\right\},

and D2=Ωδ\D1D_{2}=\Omega_{\delta}\backslash D_{1}.

For a fixed 𝐱D1{\mathbf{x}}\in D_{1},𝐧(𝐳){\mathbf{n}}({\mathbf{z}}) is in fact a constant vector.

ΩΩRδ(𝐱,𝐲)Rδ(𝐱,𝐳)T1u(𝐲,𝐳)d𝐲dS𝐳\displaystyle{\int_{\partial\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}R_{\delta}({\mathbf{x}},{\mathbf{z}})T_{1}u({\mathbf{y}},{\mathbf{z}})\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}
=\displaystyle= ΩΩRδ(𝐱,𝐲)Rδ(𝐱,𝐳)(𝐲𝐳)(I𝐧(𝐳)𝐧(𝐳)T)u(𝐳)d𝐲dS𝐳\displaystyle{\int_{\partial\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}R_{\delta}({\mathbf{x}},{\mathbf{z}})({\mathbf{y}}-{\mathbf{z}})\cdot(I-{\mathbf{n}}({\mathbf{z}}){\mathbf{n}}({\mathbf{z}})^{T})\nabla u({\mathbf{z}})\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}
=\displaystyle= ΩRδ(𝐱,𝐳)(𝐱𝐳)Γu(𝐳)dS𝐳ΩRδ(𝐱,𝐲)d𝐲+ΩRδ(𝐱,𝐳)Γu(𝐳)dS𝐳ΩRδ(𝐱,𝐲)(𝐲𝐱)d𝐲\displaystyle{\int_{\partial\Omega}}R_{\delta}({\mathbf{x}},{\mathbf{z}})({\mathbf{x}}-{\mathbf{z}})\cdot\nabla_{\Gamma}u({\mathbf{z}})\mathrm{d}S_{\mathbf{z}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}}+{\int_{\partial\Omega}}R_{\delta}({\mathbf{x}},{\mathbf{z}})\nabla_{\Gamma}u({\mathbf{z}})\mathrm{d}S_{\mathbf{z}}\cdot{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}({\mathbf{y}}-{\mathbf{x}})\mathrm{d}{\mathbf{y}}

For the second term, symmetry implies ΩRδ(𝐱,𝐲)(𝐲𝐱)d𝐲{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}({\mathbf{y}}-{\mathbf{x}})\mathrm{d}{\mathbf{y}} is parallel to 𝐧(𝐳){\mathbf{n}}({\mathbf{z}}). Meanwhile, Γu(𝐳)\nabla_{\Gamma}u({\mathbf{z}}) is orthogonal to 𝐧(𝐳){\mathbf{n}}({\mathbf{z}}). Hence, the second term is in fact zero. As for the first term, using integration by parts on Ω\partial\Omega, we have

ΩRδ(𝐱,𝐳)(𝐱𝐳)Γu(𝐳)dS𝐳=δ2ΩR¯δ(𝐱,𝐳)ΔΓu(𝐳)d𝐳.\displaystyle{\int_{\partial\Omega}}R_{\delta}({\mathbf{x}},{\mathbf{z}})({\mathbf{x}}-{\mathbf{z}})\cdot\nabla_{\Gamma}u({\mathbf{z}})\mathrm{d}S_{\mathbf{z}}=\delta^{2}\int_{\partial\Omega}\bar{R}_{\delta}({\mathbf{x}},{\mathbf{z}})\Delta_{\Gamma}u({\mathbf{z}})\mathrm{d}{\mathbf{z}}.

Now, we have

D1(ΩΩRδ(𝐱,𝐲)Rδ(𝐱,𝐳)T1u(𝐲,𝐳)d𝐲dS𝐳)2d𝐱\displaystyle\int_{D_{1}}\left({\int_{\partial\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}R_{\delta}({\mathbf{x}},{\mathbf{z}})T_{1}u({\mathbf{y}},{\mathbf{z}})\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}\right)^{2}\mathrm{d}{\mathbf{x}}
=\displaystyle= D1wδ2(𝐱)(ΩRδ(𝐱,𝐳)(𝐱𝐳)Γu(𝐳)dS𝐳)2d𝐱\displaystyle\int_{D_{1}}w_{\delta}^{2}({\mathbf{x}})\left({\int_{\partial\Omega}}R_{\delta}({\mathbf{x}},{\mathbf{z}})({\mathbf{x}}-{\mathbf{z}})\cdot\nabla_{\Gamma}u({\mathbf{z}})\mathrm{d}S_{\mathbf{z}}\right)^{2}\mathrm{d}{\mathbf{x}}
\displaystyle\leq Cδ4D1(ΩR¯δ(𝐱,𝐳)ΔΓu(𝐳)dS𝐳)d𝐱\displaystyle C\delta^{4}\int_{D_{1}}\left(\int_{\partial\Omega}\bar{R}_{\delta}({\mathbf{x}},{\mathbf{z}})\Delta_{\Gamma}u({\mathbf{z}})\mathrm{d}S_{\mathbf{z}}\right)\mathrm{d}{\mathbf{x}}
\displaystyle\leq Cδ3D1ΩR¯δ(𝐱,𝐳)(ΔΓu(𝐳))2dS𝐳d𝐱\displaystyle C\delta^{3}\int_{D_{1}}\int_{\partial\Omega}\bar{R}_{\delta}({\mathbf{x}},{\mathbf{z}})(\Delta_{\Gamma}u({\mathbf{z}}))^{2}\mathrm{d}S_{\mathbf{z}}\mathrm{d}{\mathbf{x}}
\displaystyle\leq Cδ3ΔΓuL2(Ω)2\displaystyle C\delta^{3}\left\|\Delta_{\Gamma}u\right\|_{L^{2}(\partial\Omega)}^{2}
\displaystyle\leq Cδ3uH3(Ω)2.\displaystyle C\delta^{3}\left\|u\right\|_{H^{3}(\Omega)}^{2}. (B.2)
D21D_{2}^{1}
Figure 8. The Region D2D_{2} and D21D_{2}^{1}

For 𝐱D2{\mathbf{x}}\in D_{2}, we just need to discuss each subdomain near the corners of Ω\Omega. As shown in Figure 8, we firstly take the region D21D_{2}^{1} in the lower-left corner as an example to give the following estimation

D21u2(𝐱)d𝐱Cδ2uH2(Ω)2, for uH2(Ω).\displaystyle\int_{D_{2}^{1}}u^{2}({\mathbf{x}})\mathrm{d}{\mathbf{x}}\leq C\delta^{2}\left\|u\right\|_{H^{2}(\Omega)}^{2},\text{ for }u\in H^{2}(\Omega). (B.3)

The proof of this inequality is based on the Sobolev embedding. For uH2(Ω)u\in H^{2}(\Omega) and the dimension of Ω\Omega to be 22 or 33, we have

uC(Ω¯)CuH2(Ω).\displaystyle\left\|u\right\|_{C(\bar{\Omega})}\leq C\left\|u\right\|_{H^{2}(\Omega)}.

With this inequality, we can get

D21u2(𝐱)d𝐱\displaystyle\int_{D_{2}^{1}}u^{2}({\mathbf{x}})\mathrm{d}{\mathbf{x}} C02δ02δ[(0x22u(x1,t)dt)2+(0x11u(s,0)ds)2]dx1dx2\displaystyle\leq C\int_{0}^{2\delta}\int_{0}^{2\delta}\left[\left(\int_{0}^{x_{2}}\partial_{2}u(x_{1},t)\mathrm{d}t\right)^{2}+\left(\int_{0}^{x_{1}}\partial_{1}u(s,0)\mathrm{d}s\right)^{2}\right]\mathrm{d}x_{1}\mathrm{d}x_{2}
+C02δ02δu2(0,0)dx1dx2\displaystyle\hskip 56.9055pt+C\int_{0}^{2\delta}\int_{0}^{2\delta}u^{2}(0,0)\mathrm{d}x_{1}\mathrm{d}x_{2}
Cδ02δ02δ02δ(|2u(x1,t)|2+|1u(t,0)|2)dtdx1dx2+Cδ2u2(0,0)\displaystyle\leq C\delta\int_{0}^{2\delta}\int_{0}^{2\delta}\int_{0}^{2\delta}\left(|\partial_{2}u(x_{1},t)|^{2}+|\partial_{1}u(t,0)|^{2}\right)\mathrm{d}t\mathrm{d}x_{1}\mathrm{d}x_{2}+C\delta^{2}u^{2}(0,0)
Cδ2uH2(Ω)2.\displaystyle\leq C\delta^{2}\left\|u\right\|_{H^{2}(\Omega)}^{2}.

Now we can obtain

D21(ΩΩRδ(𝐱,𝐲)Rδ(𝐱,𝐳)T1u(𝐲,𝐳)d𝐲dS𝐳)2d𝐱\displaystyle\int_{D_{2}^{1}}\left({\int_{\partial\Omega}}{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}R_{\delta}({\mathbf{x}},{\mathbf{z}})T_{1}u({\mathbf{y}},{\mathbf{z}})\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}\right)^{2}\mathrm{d}{\mathbf{x}}
\displaystyle\leq Cδ2D21(ΩRδ(𝐱,𝐳)u(𝐳)dS𝐳)2d𝐱\displaystyle C\delta^{2}\int_{D_{2}^{1}}\left({\int_{\partial\Omega}}R_{\delta}({\mathbf{x}},{\mathbf{z}})\nabla u({\mathbf{z}})\mathrm{d}S_{\mathbf{z}}\right)^{2}\mathrm{d}{\mathbf{x}}
\displaystyle\leq CδD21ΩRδ(𝐱,𝐳)|u(𝐳)u(𝐱)|2dS𝐳d𝐱+CD21|u(𝐱)|2d𝐱\displaystyle C\delta\int_{D_{2}^{1}}{\int_{\partial\Omega}}R_{\delta}({\mathbf{x}},{\mathbf{z}})|\nabla u({\mathbf{z}})-\nabla u({\mathbf{x}})|^{2}\mathrm{d}S_{\mathbf{z}}\mathrm{d}{\mathbf{x}}+C\int_{D_{2}^{1}}|\nabla u({\mathbf{x}})|^{2}\mathrm{d}{\mathbf{x}}
\displaystyle\leq Cδ3uH3(Ω)2+Cδ2uH3(Ω)2\displaystyle C\delta^{3}\left\|u\right\|_{H^{3}(\Omega)}^{2}+C\delta^{2}\left\|u\right\|_{H^{3}(\Omega)}^{2}

In the last inequality, we used Lemma 3.8 and (B.3). Here we can conclude

D2(ΩΩRδ(𝐱,𝐲)Rδ(𝐱,𝐳)T1u(𝐲,𝐳)d𝐲dS𝐳)2d𝐱Cδ2uH3(Ω)2\displaystyle\int_{D_{2}}\left(\int_{\partial\Omega}\int_{\Omega}R_{\delta}({\mathbf{x}},{\mathbf{y}})R_{\delta}({\mathbf{x}},{\mathbf{z}})T_{1}u({\mathbf{y}},{\mathbf{z}})\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}\right)^{2}\mathrm{d}{\mathbf{x}}\leq C\delta^{2}\left\|u\right\|_{H^{3}(\Omega)}^{2} (B.4)

Combining (3.23)(B.1)(B.2) and (B.4), Lemma 3.9 is finally proved.

Appendix C The implementation for approximating u\nabla u

C.1. Computation of SδuhS_{\delta}u_{h}.

After solving uhu_{h} from the linear system, we can take Sδuh\nabla S_{\delta}u_{h} as the solution. Thus, we should also provide the method to calculate Sδuh\nabla S_{\delta}u_{h}.

In fact, by only a little modification in the methods above can we get the value of Sδuh(𝐱)\nabla S_{\delta}u_{h}({\mathbf{x}}) for 𝐱Ω{\mathbf{x}}\in\Omega. Recalling the definition in (2.10), we just need to compute

ΩRδ(𝐱,𝐲)d𝐲=T𝒯hTRδ(𝐱,𝐲)d𝐲,Ω𝐱Rδ(𝐱,𝐲)d𝐲=T𝒯hT𝐱Rδ(𝐱,𝐲)d𝐲,\displaystyle{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}}=\sum_{T^{\prime}\in\mathcal{T}_{h}}\int_{T^{\prime}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}},\quad{\int_{\Omega}}\nabla_{\mathbf{x}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}}=\sum_{T^{\prime}\in\mathcal{T}_{h}}\int_{T^{\prime}}\nabla_{\mathbf{x}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}},

and

ΩRδ(𝐱,𝐲)uh(𝐲)d𝐲\displaystyle{\int_{\Omega}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}u_{h}({\mathbf{y}})\mathrm{d}{\mathbf{y}} =T𝒯hii(T)(uh)iTRδ(𝐱,𝐲)ψi(𝐲)d𝐲.\displaystyle=\sum_{T^{\prime}\in\mathcal{T}_{h}}\sum_{i\in i(T^{\prime})}(u_{h})_{i}\int_{T^{\prime}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\psi_{i}({\mathbf{y}})\mathrm{d}{\mathbf{y}}.
Ω𝐱Rδ(𝐱,𝐲)uh(𝐲)d𝐲\displaystyle{\int_{\Omega}}\nabla_{\mathbf{x}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}u_{h}({\mathbf{y}})\mathrm{d}{\mathbf{y}} =T𝒯hii(T)(uh)iT𝐱Rδ(𝐱,𝐲)ψi(𝐲)d𝐲.\displaystyle=\sum_{T^{\prime}\in\mathcal{T}_{h}}\sum_{i\in i(T^{\prime})}(u_{h})_{i}\int_{T^{\prime}}\nabla_{\mathbf{x}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\psi_{i}({\mathbf{y}})\mathrm{d}{\mathbf{y}}.

Noticing

TRδ(𝐱,𝐲)d𝐲\displaystyle\int_{T^{\prime}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\mathrm{d}{\mathbf{y}} =[a1b1es24δ2(x1y1)2dy1][a2b2es24δ2(x2y2)2dy2]\displaystyle=\left[\int_{a_{1}^{\prime}}^{b_{1}^{\prime}}e^{-\frac{s^{2}}{4\delta^{2}}(x_{1}-y_{1})^{2}}\mathrm{d}y_{1}\right]\left[\int_{a_{2}^{\prime}}^{b_{2}^{\prime}}e^{-\frac{s^{2}}{4\delta^{2}}(x_{2}-y_{2})^{2}}\mathrm{d}y_{2}\right]
=Φ¯(a1,b1,x1,s/(2δ),0)Φ¯(a2,b2,x2,s/(2δ),0),\displaystyle=\bar{\Phi}(a_{1}^{\prime},b_{1}^{\prime},x_{1},s/(2\delta),0)\bar{\Phi}(a_{2}^{\prime},b_{2}^{\prime},x_{2},s/(2\delta),0),

and

Tx1Rδ(𝐱,𝐲)ψi(𝐲)d𝐲\displaystyle\int_{T^{\prime}}\frac{\partial}{\partial x_{1}}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}\psi_{i}({\mathbf{y}})\mathrm{d}{\mathbf{y}}
=\displaystyle= s22δ2[a1b1es24δ2(x1y1)2(y1x1)pi1(y1)dy1][a2b2es24δ2(x2y2)2pi2(y2)dy2]\displaystyle\frac{s^{2}}{2\delta^{2}}\left[\int_{a_{1}^{\prime}}^{b_{1}^{\prime}}e^{-\frac{s^{2}}{4\delta^{2}}(x_{1}-y_{1})^{2}}(y_{1}-x_{1})p_{i1}(y_{1})\mathrm{d}y_{1}\right]\left[\int_{a_{2}^{\prime}}^{b_{2}^{\prime}}e^{-\frac{s^{2}}{4\delta^{2}}(x_{2}-y_{2})^{2}}p_{i2}(y_{2})\mathrm{d}y_{2}\right]
=\displaystyle= I((yx1)pi1,a1,b1,x1,s/(2δ))I(pi2,a2,b2,x2,s/(2δ)),\displaystyle I((y-x_{1})p_{i1},a_{1}^{\prime},b_{1}^{\prime},x_{1},s/(2\delta))I(p_{i2},a_{2}^{\prime},b_{2}^{\prime},x_{2},s/(2\delta)),

can be reduced to the familiar integrals, the computation of Sδuh\nabla S_{\delta}u_{h} has been solved since the remaining necessary components can also be handled with the same way.

C.2. Computation of correction term

The correction term is defined in (2.11). Here, we illustrate the computation of this term. Similar to the calculation above, we write

𝐅δ(𝐱)\displaystyle\mathbf{F}_{\delta}({\mathbf{x}}) =T𝒯hLh1wδ2(𝐱)LTRδ(𝐱,𝐲)Rδ(𝐱,𝐳)g(𝐳)((𝐲𝐳)𝐧(𝐳))𝐧(𝐳)dS𝐳d𝐲\displaystyle=\sum_{T\in\mathcal{T}_{h}}\sum_{L^{\prime}\in\mathcal{L}_{h}}\frac{1}{w^{2}_{\delta}({\mathbf{x}})}\int_{L^{\prime}}\int_{T}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}R_{\delta}({\mathbf{x}},{\mathbf{z}})g({\mathbf{z}})(({\mathbf{y}}-{\mathbf{z}})\cdot{\mathbf{n}}({\mathbf{z}})){\mathbf{n}}({\mathbf{z}})\mathrm{d}S_{\mathbf{z}}\mathrm{d}{\mathbf{y}}
=T𝒯hLhii(L)giwδ2(𝐱)LTRδ(𝐱,𝐲)Rδ(𝐱,𝐳)ψ~i(𝐳)((𝐲𝐳)𝐧(𝐳))𝐧(𝐳)dS𝐳d𝐲\displaystyle=\sum_{T\in\mathcal{T}_{h}}\sum_{L^{\prime}\in\mathcal{L}_{h}}\sum_{i\in i(L^{\prime})}\frac{g_{i}}{w^{2}_{\delta}({\mathbf{x}})}\int_{L^{\prime}}\int_{T}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}R_{\delta}({\mathbf{x}},{\mathbf{z}})\widetilde{\psi}_{i}({\mathbf{z}})(({\mathbf{y}}-{\mathbf{z}})\cdot{\mathbf{n}}({\mathbf{z}})){\mathbf{n}}({\mathbf{z}})\mathrm{d}S_{\mathbf{z}}\mathrm{d}{\mathbf{y}}

We next take L={(z1,z2)|a1z1b1,z2=l}L^{\prime}=\left\{(z_{1},z_{2})\big{|}a_{1}^{\prime}\leq z_{1}\leq b_{1}^{\prime},z_{2}=l\right\} and 𝐧(𝐳)=(0,1)T,𝐳L{\mathbf{n}}({\mathbf{z}})=(0,1)^{T},{\mathbf{z}}\in L^{\prime} for example to explain our method. In this case, we can just consider the second decomposition

LTRδ(𝐱,𝐲)Rδ(𝐱,𝐳)g(𝐳)((𝐲𝐳)𝐧(𝐳))n2(𝐳)d𝐲dS𝐳\displaystyle\int_{L^{\prime}}\int_{T}{R_{\delta}({\mathbf{x}},{\mathbf{y}})}R_{\delta}({\mathbf{x}},{\mathbf{z}})g({\mathbf{z}})(({\mathbf{y}}-{\mathbf{z}})\cdot{\mathbf{n}}({\mathbf{z}}))n_{2}({\mathbf{z}})\mathrm{d}{\mathbf{y}}\mathrm{d}S_{\mathbf{z}}
=\displaystyle= a1b1a1b1a2b2es24δ2[(x1y1)2+(x2y2)2]es24δ2[(x1z1)2+(x2l)2](y2l)pi1(z1)dy1dy2dz1\displaystyle\int_{a_{1}^{\prime}}^{b_{1}^{\prime}}\int_{a_{1}}^{b_{1}}\int_{a_{2}}^{b_{2}}e^{-\frac{s^{2}}{4\delta^{2}}[(x_{1}-y_{1})^{2}+(x_{2}-y_{2})^{2}]}e^{-\frac{s^{2}}{4\delta^{2}}[(x_{1}-z_{1})^{2}+(x_{2}-l)^{2}]}(y_{2}-l)p_{i1}(z_{1})\mathrm{d}y_{1}\mathrm{d}y_{2}\mathrm{d}z_{1}
=\displaystyle= es24δ2(x2l)2a1b2es24δ2(x1z1)2p1(z1)dz1a1b1es24δ2(x1y1)2dy1a2b2es24δ2(x2y2)2(y2l)dy2\displaystyle e^{-\frac{s^{2}}{4\delta^{2}}(x_{2}-l)^{2}}\int_{a_{1}^{\prime}}^{b_{2}^{\prime}}e^{-\frac{s^{2}}{4\delta^{2}}(x_{1}-z_{1})^{2}}p_{1}(z_{1})\mathrm{d}z_{1}\int_{a_{1}}^{b_{1}}e^{-\frac{s^{2}}{4\delta^{2}}(x_{1}-y_{1})^{2}}\mathrm{d}y_{1}\int_{a_{2}}^{b_{2}}e^{-\frac{s^{2}}{4\delta^{2}}(x_{2}-y_{2})^{2}}(y_{2}-l)\mathrm{d}y_{2}
=\displaystyle= es24δ2(x2l)2I(p1,a1,b1,x1,s/(2δ))Φ(a1x1,b1x1,s/(2δ),0)I(yl,a2,b2,x2,s/(2δ)).\displaystyle e^{-\frac{s^{2}}{4\delta^{2}}(x_{2}-l)^{2}}I(p_{1},a_{1}^{\prime},b_{1}^{\prime},x_{1},s/(2\delta))\Phi(a_{1}-x_{1},b_{1}-x_{1},s/(2\delta),0)I(y-l,a_{2},b_{2},x_{2},s/(2\delta)).

Here, we once again get the required terms with some elementary integrals.

References

  • [1] F. Andreu-Vaillo. Nonlocal diffusion problems. Number 165. American Mathematical Soc., 2010.
  • [2] E. Askari, F. Bobaru, R. Lehoucq, M. Parks, S. Silling, and O. Weckner. Peridynamics for multiscale materials modeling. In Journal of Physics: Conference Series, volume 125, page 012078. IOP Publishing, 2008.
  • [3] S. D. Bond, R. B. Lehoucq, and S. T. Rowe. A galerkin radial basis function method for nonlocal diffusion. In Meshfree methods for partial differential equations VII, pages 1–21. Springer, 2015.
  • [4] C. Bucur, E. Valdinoci, et al. Nonlocal diffusion and applications, volume 20. Springer, 2016.
  • [5] N. Burch and R. Lehoucq. Classical, nonlocal, and fractional diffusion equations on bounded domains. International Journal for Multiscale Computational Engineering, 9(6), 2011.
  • [6] X. Chen and M. Gunzburger. Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Computer Methods in Applied Mechanics and Engineering, 200(9-12):1237–1250, 2011.
  • [7] Q. Du, K. Huang, J. Scott, and W. Shen. A space-time nonlocal traffic flow model: Relaxation representation and local limit. Discrete and Continuous Dynamical Systems, 43(9):3456–3484, 2023.
  • [8] Q. Du, L. Ju, L. Tian, and K. Zhou. A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Mathematics of computation, 82(284):1889–1922, 2013.
  • [9] Q. Du, L. Tian, and X. Zhao. A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models. SIAM Journal on Numerical Analysis, 51(2):1211–1234, 2013.
  • [10] Q. Du, H. Xie, X. Yin, and J. Zhang. Error estimates of finite element methods for nonlocal problems using exact or approximated interaction neighborhoods. arXiv preprint arXiv:2409.09270, 2024.
  • [11] Q. Du and J. Yang. Asymptotically compatible fourier spectral approximations of nonlocal allen–cahn equations. SIAM Journal on Numerical Analysis, 54(3):1899–1919, 2016.
  • [12] Q. Du and J. Yang. Fast and accurate implementation of fourier spectral approximations of nonlocal diffusion operators and its applications. Journal of Computational Physics, 332:118–134, 2017.
  • [13] Q. Du and J. Yang. Fast and accurate implementation of fourier spectral approximations of nonlocal diffusion operators and its applications. Journal of Computational Physics, 332:118–134, 2017.
  • [14] Q. Du and K. Zhou. Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM: Mathematical Modelling and Numerical Analysis, 45(2):217–234, 2011.
  • [15] M. D’Elia, M. Gunzburger, and C. Vollmann. A cookbook for approximating euclidean balls and for quadrature rules in finite element methods for nonlocal problems. Mathematical Models and Methods in Applied Sciences, 31(08):1505–1567, 2021.
  • [16] R. Lehoucq, F. Narcowich, S. Rowe, and J. Ward. A meshless galerkin method for non-local diffusion using localized kernel bases. Mathematics of Computation, 87(313):2233–2258, 2018.
  • [17] R. B. Lehoucq and S. T. Rowe. A radial basis function galerkin method for inhomogeneous nonlocal diffusion. Computer Methods in Applied Mechanics and Engineering, 299:366–380, 2016.
  • [18] Y. Meng and Z. Shi. Maximum principle preserving nonlocal diffusion model with dirichlet boundary condition. arXiv e-prints, pages arXiv–2310, 2023.
  • [19] S. Osher, Z. Shi, and W. Zhu. Low dimensional manifold model for image processing. SIAM Journal on Imaging Sciences, 10(4):1669–1690, 2017.
  • [20] E. Oterkus and E. Madenci. Peridynamic analysis of fiber-reinforced composite materials. Journal of Mechanics of Materials and Structures, 7(1):45–84, 2012.
  • [21] M. Pasetto, Z. Shen, M. D’Elia, X. Tian, N. Trask, and D. Kamensky. Efficient optimization-based quadrature for variational discretization of nonlocal problems. Computer Methods in Applied Mechanics and Engineering, 396:115104, 2022.
  • [22] Z. Shi, S. Osher, and W. Zhu. Weighted nonlocal laplacian on interpolation from sparse data. Journal of Scientific Computing, 73(2):1164–1177, 2017.
  • [23] Z. Shi and J. Sun. Convergence of the point integral method for laplace-beltrami equation on point cloud. Research in the Mathematical Sciences, 4(1):1–39, 2017.
  • [24] S. A. Silling and E. Askari. A meshfree method based on the peridynamic model of solid mechanics. Computers & structures, 83(17-18):1526–1535, 2005.
  • [25] S. A. Silling and R. B. Lehoucq. Peridynamic theory of solid mechanics. Advances in applied mechanics, 44:73–168, 2010.
  • [26] S. A. Silling, O. Weckner, E. Askari, and F. Bobaru. Crack nucleation in a peridynamic solid. International Journal of Fracture, 162(1):219–227, 2010.
  • [27] Y. Tao, Q. Sun, Q. Du, and W. Liu. Nonlocal neural networks, nonlocal diffusion and nonlocal modeling. Advances in Neural Information Processing Systems, 31, 2018.
  • [28] X. Tian and Q. Du. Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM Journal on Numerical Analysis, 51(6):3458–3482, 2013.
  • [29] X. Tian and Q. Du. Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM Journal on Numerical Analysis, 52(4):1641–1665, 2014.
  • [30] J. L. Vázquez. Nonlinear diffusion with fractional laplacian operators. In Nonlinear partial differential equations, pages 271–298. Springer, 2012.
  • [31] T. Wang and Z. Shi. A nonlocal diffusion model with h1h^{1} convergence for dirichlet boundary. Commun. Math. Sci., 22(7):1863–1896, 2024.
  • [32] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7794–7803, 2018.
  • [33] X. Zhang, M. Gunzburger, and L. Ju. Nodal-type collocation methods for hypersingular integral equations and nonlocal diffusion problems. Computer Methods in Applied Mechanics and Engineering, 299:401–420, 2016.
  • [34] X. Zhang, M. Gunzburger, and L. Ju. Quadrature rules for finite element approximations of 1d nonlocal problems. Journal of Computational Physics, 310:213–236, 2016.
  • [35] X. Zhang, J. Wu, and L. Ju. An accurate and asymptotically compatible collocation scheme for nonlocal diffusion problems. Applied Numerical Mathematics, 133:52–68, 2018.