This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Asymptotically efficient estimation for diffusion processes with nonsynchronous observations

Teppei Ogihara∗,†
* Graduate School of Information Science and Technology, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8656, Japan
E-mail: ogihara@mist.i.u-tokyo.ac.jp

\dagger The Institute of Statistical Mathematics

Abstract. We study maximum-likelihood-type estimation for diffusion processes when the coefficients are nonrandom and observation occurs in nonsynchronous manner. The problem of nonsynchronous observations is important when we consider the analysis of high-frequency data in a financial market. Constructing a quasi-likelihood function to define the estimator, we adaptively estimate the parameter for the diffusion part and the drift part. We consider the asymptotic theory when the terminal time point TnT_{n} and the observation frequency goes to infinity, and show the consistency and the asymptotic normality of the estimator. Moreover, we show local asymptotic normality for the statistical model, and asymptotic efficiency of the estimator as a consequence. To show the asymptotic properties of the maximum-likelihood-type estimator, we need to control the asymptotic behaviors of some functionals of the sampling scheme. Though it is difficult to directly control those in general, we study tractable sufficient conditions when the sampling scheme is generated by mixing processes.

Keywords. asymptotic efficiency; diffusion processes; local asymptotic normality; maximum-likelihood-type estimation; nonsynchronous observations

1 Introduction

Given a probability space (Ω,,P)(\Omega,\mathcal{F},P) with a right-continuous filtration 𝐅={t}t0{\bf F}=\{\mathcal{F}_{t}\}_{t\geq 0}, let X(α)={Xt(α)}t0={(Xt(α),1,Xt(α),2)}t0X^{(\alpha)}=\{X_{t}^{(\alpha)}\}_{t\geq 0}=\{(X^{(\alpha),1}_{t},X^{(\alpha),2}_{t})\}_{t\geq 0} be a two-dimensional 𝐅{\bf F}-adapted process satisfying the following stochastic differential equation

dXt(α)=μt(θ)dt+bt(σ)dWt,X0=x0,{dX_{t}^{(\alpha)}=\mu_{t}(\theta)dt+b_{t}(\sigma)dW_{t},\quad X_{0}=x_{0},} (1.1)

where x02x_{0}\in\mathbb{R}^{2}, {Wt}0tT\{W_{t}\}_{0\leq t\leq T} is a two-dimensional standard 𝐅{\bf F}-Wiener process, {μt(θ)}t0\{\mu_{t}(\theta)\}_{t\geq 0} and {bt(σ)}t0\{b_{t}(\sigma)\}_{t\geq 0} are deterministic functions with values in 2\mathbb{R}^{2} and 2×2\mathbb{R}^{2\times 2}, respectively, α=(σ,θ)\alpha=(\sigma,\theta), σΘ1\sigma\in\Theta_{1}, θΘ2\theta\in\Theta_{2}, and Θ1\Theta_{1} and Θ2\Theta_{2} are bounded open subsets of d1\mathbb{R}^{d_{1}} and d2\mathbb{R}^{d_{2}}, respectively. Let α0=(σ0,θ0)Θ1×Θ2\alpha_{0}=(\sigma_{0},\theta_{0})\in\Theta_{1}\times\Theta_{2} be the true value, and let Xt=(Xt1,Xt2)=Xt(α0)X_{t}=(X_{t}^{1},X_{t}^{2})=X_{t}^{(\alpha_{0})}. We consider estimation of α0\alpha_{0} when XX is observed with nonsynchronous manner, that is, observation times of X1X^{1} and X2X^{2} are different each other.

The problem of nonsynchronous observations appears in the analysis of high-frequency financial data. If we analyze the intra-day stock price data, we observe stock price when a new transaction or a new order arrived. Then, the observation times are different for different stocks, and hence, we cannot avoid the problem of nonsynchronous observations. Statistical analysis with such data is much more complicated compared to the analysis with synchronous data. Parametric estimation for diffusion processes with synchronous and equidistant observations have been analyzed through quasi-maximum likelihood methods in Florens-Zmirou [4], Yoshida [18, 19], Kessler [11], and Uchida and Yoshida [17]. Related to the estimation problem for nonsynchronously observed diffusion processes, estimators for the quadratic covariation have been actively studied. Hayashi and Yoshida [6, 7, 8] and Malliavin and Mancino [12, 13] have independently constructed consistent estimators under nonsynchronous observations. There are also studies of covariation estimation under the simultaneous presence of microstructure noise and nonsynchronous observations (Barndorff-Nielsen et al. [1], Christensen, Kinnebrock, and Podolskij [3], Bibinger et al. [2], and so on). For parametric estimation with nonsynchronous observations, Ogihara and Yoshida [16] have constructed maximum-likelihood-type and Bayes-type estimators and have shown the consistency and the asymptotic mixed normality of the estimators when the terminal time point TnT_{n} is fixed and the observation frequency goes to infinity. Ogihara [14] have shown local asymototic mixed normality for the model in [16], and the maximum-likelihood-type and Bayes-type estimators have been shown to be asymptotically efficient. On the other hand, we need to consider asymptotic theory that the terminal time point TnT_{n} goes to infinity to consistently estimate the parameter θ\theta in the drift term. To the best of the author’s knowledge, there are no study of the asymptotic theory of parametric estimation for nonsynchronously observed diffusion processes when TnT_{n}\to\infty.

In this work, we consider the asymptotic theory for nonsynchronously observed diffusion processes when TnT_{n}\to\infty, and construct maximum-likelihood-type estimators for the parameter σ\sigma in the diffusion part and the parameter θ\theta in the drift part. We show the consistency and the asymptotic normality of the estimators. Moreover, we show local asymptotic normality of the statistical model, and we obtain asymptotic efficiency of our estimator as a consequence. Our estimator is constructed based on the quasi-likelihood function that is similarly defined to the one in [16] though we need some modification to deal with the drift part. To investigate asymptotic theory for the maximum-likelihood-type estimator, we need to specify the limit of the quasi-likelihood function. Then, we need to assume some conditions for the asymptotic behavior of the sampling scheme. In [16], for a matrix

G={(Sin,1Sjn,2Sj1n,2Si1n,1)0|Sin,1Si1n,1|1/2|Sjn,2Sj1n,2|1/2}i,jG=\bigg{\{}\frac{(S_{i}^{n,1}\wedge S_{j}^{n,2}-S_{j-1}^{n,2}\vee S_{i-1}^{n,1})\vee 0}{|S_{i}^{n,1}-S_{i-1}^{n,1}|^{1/2}|S_{j}^{n,2}-S_{j-1}^{n,2}|^{1/2}}\bigg{\}}_{i,j}

generated by the sampling scheme, the existence of the probability limit of n1tr((GG)p)(p+)n^{-1}{\rm tr}((GG^{\top})^{p})\ (p\in\mathbb{Z}_{+}) is required, where (Sin,l)i(S_{i}^{n,l})_{i} is observation times of XlX^{l} and \top denotes transpose of a matrix. Since we consider the different asymptotics, the asymptotic behavior of the quasi-likelihood function is different from that in [16]. We also need to consider estimation for the drift parameter θ\theta. Then, we need other assumptions for the asymptotic behavior of the sampling scheme (Assumption (A5)). Though these conditions for the sampling scheme is difficult to check directly, we study tractable sufficient conditions in Section 2.4.

As seen in [16], the quasi-likelihood analysis for nonsynchronously observed diffusion processes become much more complicated compared to synchronous observations. In this work, estimation for the drift parameter θ\theta is added, and hence, we consider nonrandom drift and diffusion coefficients to avoid overcomplication. For general diffusion processes with the random drift and diffusion coefficients, we need to set predictable coefficients to use the matingale theory. However, the quasi-likelihood function loses a Markov property with nonsynchronous observations and the coefficients in the quasi-likelihood function contains randomness of future time. Then, we need to approximate the coefficients by predictable functions. This operation is particularly complicated. Moreover, approximating the true likelihood function by the quasi-likelihood function is much more difficult problem when we show local asymtotic normality and asymptotic efficiency of the estimators. Therefore, we left asymptotic theory under general random drift and diffusion coefficients as a future work.

The rest of this paper is organized as follows. In Section 2, we introduce our model settings and the assumptions for main results. Our estimator is constructed in Section 2.1, and the asymptotic normality of the estimator is given in Section 2.2. Section 2.3 deal with local asymptotic normality of our model and asymptotic efficiency of the estimator. Tractable sufficient conditions for the assumptions of the sampling scheme are given in Section 2.4. Section 3 contains the proofs of main results. Section 3.2 is for the consistency of the estimator for σ\sigma, Section 3.3 is for the asymptotic normality of the estimator for σ\sigma, Section 3.4 is for the consistency of the estimator for θ\theta, and Section 3.5 is for the asymptotic normality of the estimator for θ\theta. Other proofs are collected in Section 3.6.

2 Main results

2.1 Settings

For l{1,2}l\in\{1,2\}, let the observation times {Sin,l}i=0Ml\{S_{i}^{n,l}\}_{i=0}^{M_{l}} be strictly increasing random times with respect to ii, and satisfy S0n,l=0S_{0}^{n,l}=0 and SMln,l=nhnS_{M_{l}}^{n,l}=nh_{n}, where MlM_{l} is a random positive integer depending on nn. We assume that {Sin,l}0iMl,l=1,2\{S_{i}^{n,l}\}_{0\leq i\leq M_{l},l=1,2} is independent of T\mathcal{F}_{T} and α\alpha. We consider nonsynchronous observations of XX, that is, we observe {Sin,l}0iMl,l=1,2\{S_{i}^{n,l}\}_{0\leq i\leq M_{l},l=1,2} and {XSin,ll}0iMl,l=1,2\{X^{l}_{S^{n,l}_{i}}\}_{0\leq i\leq M_{l},l=1,2}.

We denote by \lVert\cdot\rVert the operator norm of a matrix, and by \top the transpose operator for a matrix or a vector. We often regard a pp-dimensional vector vv as a p×1p\times 1 matrix. For jj\in\mathbb{N} and a vector κ=(κ1,,κj)\kappa=(\kappa_{1},\cdots,\kappa_{j}), we denote κk=(kκi1κik)i1,ik=1j\partial_{\kappa}^{k}=(\frac{\partial^{k}}{\partial\kappa_{i_{1}}\cdots\partial\kappa_{i_{k}}})_{i_{1},\cdots i_{k}=1}^{j}. For a set AA in a topological space, let clos(A){\rm clos}(A) denote the closure of AA. For a matrix AA, [A]ij[A]_{ij} denotes its (i,j)(i,j) element. For a vector v=(vj)j=1Kv=(v_{j})_{j=1}^{K}, diag(v){\rm diag}(v) denotes a k×kk\times k diagonal matrix with elements [diag(v)]jj=vj[{\rm diag}(v)]_{jj}=v_{j}.

Let M=M1+M2M=M_{1}+M_{2}. For 1iM1\leq i\leq M, let

φ(i)={iifiM1iM1ifi>M1ψ(i)={1ifiM12ifi>M1{\varphi(i)=\left\{\begin{array}[]{ll}i&{\rm if}\ i\leq M_{1}\\ i-M_{1}&{\rm if}\ i>M_{1}\end{array}\right.\quad\psi(i)=\left\{\begin{array}[]{ll}1&{\rm if}\ i\leq M_{1}\\ 2&{\rm if}\ i>M_{1}\end{array}\right.}

For a two-dimensional stochastic process (Ut)t0=((Ut1,Ut2))t0(U_{t})_{t\geq 0}=((U_{t}^{1},U_{t}^{2}))_{t\geq 0}, let ΔilU=USin,llUSi1n,ll\Delta_{i}^{l}U=U^{l}_{S^{n,l}_{i}}-U^{l}_{S^{n,l}_{i-1}} , and let ΔlU=(ΔilU)1iMl\Delta^{l}U=(\Delta_{i}^{l}U)_{1\leq i\leq M_{l}} and ΔiU=Δφ(i)ψ(i)U\Delta_{i}U=\Delta_{\varphi(i)}^{\psi(i)}U for 1iM1\leq i\leq M. Let ΔU=((Δ1U),(Δ2U))\Delta U=((\Delta^{1}U)^{\top},(\Delta^{2}U)^{\top})^{\top}. Let |K|=ba|K|=b-a for an interval K=(a,b]K=(a,b]. Let Iil=(Si1n,l,Sin,l]I_{i}^{l}=(S_{i-1}^{n,l},S_{i}^{n,l}] for 1iMl1\leq i\leq M_{l}, and let Ii=Iφ(i)ψ(i)I_{i}=I_{\varphi(i)}^{\psi(i)} for 1iM1\leq i\leq M. We denote a unit matrix of size kk by k\mathcal{E}_{k}.

Let Σ~il(σ)=Iil[btbt(σ)]ll𝑑t\tilde{\Sigma}_{i}^{l}(\sigma)=\int_{I_{i}^{l}}[b_{t}b_{t}^{\top}(\sigma)]_{ll}dt and Σ~i,j1,2(σ)=Ii1Ij2[btbt(σ)]12𝑑t\tilde{\Sigma}_{i,j}^{1,2}(\sigma)=\int_{I_{i}^{1}\cap I_{j}^{2}}[b_{t}b_{t}^{\top}(\sigma)]_{12}dt. By setting 𝒟~=diag({Σ~i}1iM)\tilde{\mathcal{D}}={\rm diag}(\{\tilde{\Sigma}_{i}\}_{1\leq i\leq M}),

G={|Ii1Ij2||Ii1|1/2|Ij2|1/2}1iM1,1jM2,ρij(σ)=Σ~i,j1,2Σ~i1Σ~j2(σ),G~(σ)={ρij(σ)[G]ij}1iM1,1jM2,{G=\bigg{\{}\frac{|I_{i}^{1}\cap I_{j}^{2}|}{|I_{i}^{1}|^{1/2}|I_{j}^{2}|^{1/2}}\bigg{\}}_{1\leq i\leq M_{1},1\leq j\leq M_{2}},\quad\rho_{ij}(\sigma)=\frac{\tilde{\Sigma}_{i,j}^{1,2}}{\sqrt{\tilde{\Sigma}_{i}^{1}}\sqrt{\tilde{\Sigma}_{j}^{2}}}(\sigma),\quad\tilde{G}(\sigma)=\{\rho_{ij}(\sigma)[G]_{ij}\}_{1\leq i\leq M_{1},1\leq j\leq M_{2}},}

we can calculate the covariance matrix of ΔX\Delta X as

Sn(σ)=𝒟~1/2(M1G~(σ)G~(σ)M2)𝒟~1/2.{S_{n}(\sigma)=\tilde{\mathcal{D}}^{1/2}\left(\begin{array}[]{cc}\mathcal{E}_{M_{1}}&\tilde{G}(\sigma)\\ \tilde{G}^{\top}(\sigma)&\mathcal{E}_{M_{2}}\end{array}\right)\tilde{\mathcal{D}}^{1/2}.}

As we will see later, we can ignore the drift term when we consider estimation of σ\sigma because the drift term converges to zero very fast. Therefore, we first construct an estimator for σ\sigma, and then construct an estimator for θ\theta. Such adaptive estimation can speed up the calculation.

We define the quasi-likelihood function Hn1(σ)H_{n}^{1}(\sigma) for σ\sigma as follows.

=12ΔXSn1(σ)ΔX12logdetSn(σ).\begin{split}{H_{n}^{1}(\sigma)&=-\frac{1}{2}\Delta X^{\top}S_{n}^{-1}(\sigma)\Delta X-\frac{1}{2}\log\det S_{n}(\sigma).}\end{split}

Then, the maximum-likelihood-type estimator for σ\sigma is defined by

σ^nargmaxσclos(Θ1)Hn1(σ).{\hat{\sigma}_{n}\in{\rm argmax}_{\sigma\in{\rm clos}(\Theta_{1})}H_{n}^{1}(\sigma).}

We consider estimation for θ\theta in the next. Let V(θ)=(Vt(θ))t0V(\theta)=(V_{t}(\theta))_{t\geq 0} be a two-dimensional stochastic process defined by Vt(θ)=(0tμs1(θ)𝑑s,0tμs2(θ)𝑑s)V_{t}(\theta)=(\int_{0}^{t}\mu^{1}_{s}(\theta)^{\top}ds,\int_{0}^{t}\mu^{2}_{s}(\theta)^{\top}ds)^{\top}. Let X¯(θ)=ΔXΔV(θ)\bar{X}(\theta)=\Delta X-\Delta V(\theta). We define the quasi-likelihood function Hn2(θ)H_{n}^{2}(\theta) for θ\theta as follows.

Hn2(θ)=12X¯(θ)Sn1(σ^n)X¯(θ).{H_{n}^{2}(\theta)=-\frac{1}{2}\bar{X}(\theta)^{\top}S_{n}^{-1}(\hat{\sigma}_{n})\bar{X}(\theta).}

Then, the maximum-likelihood-type estimator for θ\theta is defined by

θ^nargmaxθclos(Θ2)Hn2(θ).{\hat{\theta}_{n}\in{\rm argmax}_{\theta\in{\rm clos}(\Theta_{2})}H_{n}^{2}(\theta).}

The quasi-(log-)likelihood function Hn1H_{n}^{1} is defined in the same way as that in [16]. Since ΔX\Delta X follows normal distribution, we can construct such a Gaussian quasi-likelihood function even for the nonsynchronous data. When the coefficients are random, though the distribution of ΔX\Delta X is not Gaussian, such Gaussian-type quasi-likelihood function is still valid due to the local Gaussian property of diffusion processes. The Gaussian mean that comes from the drift part is ignored when we construct the quasi-likelihood Hn1H_{n}^{1}. When we estimate the parameter θ\theta for the drift part, we substruct the mean in X¯(θ)\bar{X}(\theta) to construct the quasi-likelihood function Hn2H_{n}^{2}. Since the effect of the drift term on the estimation of σ\sigma is small, it works well to estimate σ\sigma in this way and then plug in θ^n\hat{\theta}_{n} to SnS_{n} to construct the estimator for θ\theta. Thus, we can speed up the calculation by separating the estimation for σ\sigma and θ\theta.

Remark 2.1.

Hn1(σ)H_{n}^{1}(\sigma) and Hn2(θ)H_{n}^{2}(\theta) are well-defined only if detSn(σ)>0\det S_{n}(\sigma)>0 and detSn(σ^n)>0\det S_{n}(\hat{\sigma}_{n})>0, respectively. For the covariance matrix SnS_{n} of nonsynchronous observations ΔX\Delta X, it is not trivial to check these conditions. Proposition 1 in Section 2 of [16] shows that these conditions are satisfied if bt(σ)b_{t}(\sigma) is continuous on [0,)×clos(Θ1)[0,\infty)\times{\rm clos}(\Theta_{1}) and inft,σdet(btbt(σ))>0\inf_{t,\sigma}\det(b_{t}b_{t}^{\top}(\sigma))>0. We assume such conditions in our setting (Assumption (A1) in Section 2.2).

2.2 Asymptotic normality of the estimator

In this section, we state the assumptions of our main results, and state the asymtotic normality of the estimator.

For mm\in\mathbb{N}, an open subset UmU\subset\mathbb{R}^{m} is said to admit Sobolev’s inequality if for any p>mp>m, there exists a positve constant CC depending UU and pp such that supxU|u(x)|Ck=0,1(|xku(x)|p)1/p\sup_{x\in U}|u(x)|\leq C\sum_{k=0,1}(\int|\partial_{x}^{k}u(x)|^{p})^{1/p} for any uC1(U)u\in C^{1}(U). This is the case when UU has a Lipschitz boundary. We assume that Θ\Theta, Θ1\Theta_{1}, and Θ2\Theta_{2} admit Sobolev’s inequality.

Let Σt(σ)=btbt(σ)\Sigma_{t}(\sigma)=b_{t}b_{t}^{\top}(\sigma), and let

ρt(σ)=[Σt]12[Σt]111/2[Σt]221/2(σ),Bl,t(σ)=[Σt(σ0)]ll[Σt(σ)]ll.{\rho_{t}(\sigma)=\frac{[\Sigma_{t}]_{12}}{[\Sigma_{t}]_{11}^{1/2}[\Sigma_{t}]_{22}^{1/2}}(\sigma),\quad B_{l,t}(\sigma)=\frac{[\Sigma_{t}(\sigma_{0})]_{ll}}{[\Sigma_{t}(\sigma)]_{ll}}.}

Let ρt,0=ρt(σ0)\rho_{t,0}=\rho_{t}(\sigma_{0}) and rn=maxi,l|Iil|r_{n}=\max_{i,l}|I_{i}^{l}|. Let 𝔖\mathfrak{S} be the set of all partitions (sk)k=0(s_{k})_{k=0}^{\infty} of [0,)[0,\infty) satisfying supk1|sksk1|1\sup_{k\geq 1}|s_{k}-s_{k-1}|\leq 1 and infk1|sksk1|>0\inf_{k\geq 1}|s_{k}-s_{k-1}|>0. For (sk)k=0𝔖(s_{k})_{k=0}^{\infty}\in\mathfrak{S}, let Ml,k=#{i;supIil(sk1,sk]}M_{l,k}=\#\{i;\sup I_{i}^{l}\in(s_{k-1},s_{k}]\} and qn=max{k;sknhn}q_{n}=\max\{k;s_{k}\leq nh_{n}\}, and let (k)l\mathcal{E}_{(k)}^{l} be an Ml×MlM_{l}\times M_{l} matrix satisfying [(k)l]ij=1[\mathcal{E}_{(k)}^{l}]_{ij}=1 if i=ji=j and supIil(sk1,sk]\sup I_{i}^{l}\in(s_{k-1},s_{k}], and otherwise [(k)l]ij=0[\mathcal{E}_{(k)}^{l}]_{ij}=0.

Assumption (A1).

There exist positive constants c1c_{1} and c2c_{2} such that c12Σt(σ)c22c_{1}\mathcal{E}_{2}\leq\Sigma_{t}(\sigma)\leq c_{2}\mathcal{E}_{2} for any t[0,)t\in[0,\infty) and σΘ1\sigma\in\Theta_{1}. For k{0,1,2,3,4}k\in\{0,1,2,3,4\}, θkμt(θ)\partial_{\theta}^{k}\mu_{t}(\theta) and σkbt(σ)\partial_{\sigma}^{k}b_{t}(\sigma) exist and are continuous with respect to (t,σ,θ)(t,\sigma,\theta) on [0,)×clos(Θ1)×clos(Θ2)[0,\infty)\times{\rm clos}(\Theta_{1})\times{\rm clos}(\Theta_{2}). For any ϵ>0\epsilon>0, there exist δ>0\delta>0 and K>0K>0 such that

|θkμt(θ)|+|σkbt(σ)|K,|θkμt(θ)θkμs(θ)|+|σkbt(σ)σkbs(σ)|ϵ{|\partial_{\theta}^{k}\mu_{t}(\theta)|+|\partial_{\sigma}^{k}b_{t}(\sigma)|\leq K,\quad|\partial_{\theta}^{k}\mu_{t}(\theta)-\partial_{\theta}^{k}\mu_{s}(\theta)|+|\partial_{\sigma}^{k}b_{t}(\sigma)-\partial_{\sigma}^{k}b_{s}(\sigma)|\leq\epsilon}

for any k{0,1,2,3,4}k\in\{0,1,2,3,4\}, σΘ1\sigma\in\Theta_{1}, θΘ2\theta\in\Theta_{2}, and t,s0t,s\geq 0 satisfying |ts|<δ|t-s|<\delta.

Assumption (A2).

rn𝑃0r_{n}\overset{P}{\to}0 as nn\to\infty.

Assumption (A3).

For any l{1,2}l\in\{1,2\}, i1+i_{1}\in\mathbb{Z}_{+}, i2{0,1}i_{2}\in\{0,1\}, i3{0,1,2,3,4}i_{3}\in\{0,1,2,3,4\}, k1,k2{0,1,2}k_{1},k_{2}\in\{0,1,2\} satisfying k1+k2=2k_{1}+k_{2}=2, and any polynomial function F(x1,,x14)F(x_{1},\cdots,x_{14}) of degree equal to or less than 44, there exist continuous functions Φi1,i21,F(σ)\Phi_{i_{1},i_{2}}^{1,F}(\sigma), Φl,i32(σ)\Phi_{l,i_{3}}^{2}(\sigma) and Φi1,i33,k1,k2(θ)\Phi^{3,k_{1},k_{2}}_{i_{1},i_{3}}(\theta) on clos(Θ1){\rm clos}(\Theta_{1}) and clos(Θ2){\rm clos}(\Theta_{2}) such that

1T0TF((σkBl,t(σ))0k4,l=1,2,(σkρt(σ))k=14)ρt(σ)i1ρt,0i2𝑑tΦi1,i21,F(σ),{\frac{1}{T}\int_{0}^{T}F((\partial_{\sigma}^{k}B_{l,t}(\sigma))_{0\leq k\leq 4,l=1,2},(\partial_{\sigma}^{k^{\prime}}\rho_{t}(\sigma))_{k^{\prime}=1}^{4})\rho_{t}(\sigma)^{i_{1}}\rho_{t,0}^{i_{2}}dt\to\Phi_{i_{1},i_{2}}^{1,F}(\sigma),}
1T0Tσi3logBl,t(σ)dtΦl,i32(σ),1T0Tθi3(ϕ1,tk1ϕ2,tk2)(θ)ρt,0i1dtΦi1,i33,k1,k2(θ){\frac{1}{T}\int_{0}^{T}\partial_{\sigma}^{i_{3}}\log B_{l,t}(\sigma)dt\to\Phi_{l,i_{3}}^{2}(\sigma),\quad\frac{1}{T}\int_{0}^{T}\partial_{\theta}^{i_{3}}(\phi_{1,t}^{k_{1}}\phi_{2,t}^{k_{2}})(\theta)\rho_{t,0}^{i_{1}}dt\to\Phi^{3,k_{1},k_{2}}_{i_{1},i_{3}}(\theta)}

as TT\to\infty for σclos(Θ1)\sigma\in{\rm clos}(\Theta_{1}), θclos(Θ2)\theta\in{\rm clos}(\Theta_{2}), where ϕl,t(θ)=[Σt(σ0)]ll1/2(μtl(θ)μtl(θ0))\phi_{l,t}(\theta)=[\Sigma_{t}(\sigma_{0})]_{ll}^{-1/2}(\mu_{t}^{l}(\theta)-\mu_{t}^{l}(\theta_{0})).

Assumption (A1) and the Ascoli–Arzelà theorem yield that the convergences in (A3) can be replaced by uniform convergence with respect to σ\sigma and θ\theta. Assumption (A3) is satisfied if μt(θ)\mu_{t}(\theta) and bt(σ)b_{t}(\sigma) are independent of tt, or are periodic functions with respect to tt having a common period (when the period does not depend on σ\sigma nor θ\theta).

Let l=(|Iil|1/2)i=1Ml\mathfrak{I}_{l}=(|I_{i}^{l}|^{1/2})_{i=1}^{M_{l}}.

Assumption (A4).

There exist positive constants a01a_{0}^{1} and a02a_{0}^{2} such that {hnMl,qn+1}n=1\{h_{n}M_{l,q_{n}+1}\}_{n=1}^{\infty} is PP-tight and

max1kqn|hnMl,ka0l(sksk1)|𝑃0{\max_{1\leq k\leq q_{n}}|h_{n}M_{l,k}-a_{0}^{l}(s_{k}-s_{k-1})|\overset{P}{\to}0}

for l{1,2}l\in\{1,2\} and any partition (sk)k=0𝔖(s_{k})_{k=0}^{\infty}\in\mathfrak{S}. Moreover, for any pp\in\mathbb{N}, there exists a nonnegative constant ap1a_{p}^{1} such that

max1kqn|hntr((k)1(GG)p)ap1(sksk1)|𝑃0{\max_{1\leq k\leq q_{n}}|h_{n}{\rm tr}(\mathcal{E}_{(k)}^{1}(GG^{\top})^{p})-a_{p}^{1}(s_{k}-s_{k-1})|\overset{P}{\to}0}

as nn\to\infty for any partition (sk)k=0𝔖(s_{k})_{k=0}^{\infty}\in\mathfrak{S}.

Assumption (A5).

For p+p\in\mathbb{Z}_{+}, there exist nonnegative constants fp1,1f_{p}^{1,1}, fp1,2f_{p}^{1,2}, and fp2,2f_{p}^{2,2} such that

max1kqn|1(k)1(GG)p1fp1,1(sksk1)|𝑃0,max1kqn|1(k)1(GG)pG2fp1,2(sksk1)|𝑃0,𝑃0\begin{split}{\max_{1\leq k\leq q_{n}}|\mathfrak{I}_{1}\mathcal{E}_{(k)}^{1}(GG^{\top})^{p}\mathfrak{I}_{1}-f_{p}^{1,1}(s_{k}-s_{k-1})|&\overset{P}{\to}0,\\ \max_{1\leq k\leq q_{n}}|\mathfrak{I}_{1}\mathcal{E}_{(k)}^{1}(GG^{\top})^{p}G\mathfrak{I}_{2}-f_{p}^{1,2}(s_{k}-s_{k-1})|&\overset{P}{\to}0,\\ \max_{1\leq k\leq q_{n}}|\mathfrak{I}_{2}\mathcal{E}_{(k)}^{2}(G^{\top}G)^{p}\mathfrak{I}_{2}-f_{p}^{2,2}(s_{k}-s_{k-1})|&\overset{P}{\to}0}\end{split}

as nn\to\infty for any partition (sk)k=0𝔖(s_{k})_{k=0}^{\infty}\in\mathfrak{S}.

Assumption (A4) corresponds to [A3] in Ogihara and Yoshida [16]. The functionals in (A4) and (A5) appear in Hn1H_{n}^{1} and Hn2H_{n}^{2}, and hence, we cannot specify the limits of Hn1H_{n}^{1} and Hn2H_{n}^{2} unless we assume existence of the limits of these functionals. It is difficult to directly check (A4) and (A5) for general sampling scheme. We study sufficient conditions for these conditions in Section 2.4.

Assumption (A6).

The constant a11a_{1}^{1} in (A4) is positive, and there exist positive constants c3c_{3} and c4c_{4} such that

lim supT(1T0TΣt(σ)Σt(σ0)2𝑑t)c3|σσ0|2,c4|θθ0|2\begin{split}{\limsup_{T\to\infty}\bigg{(}\frac{1}{T}\int_{0}^{T}\lVert\Sigma_{t}(\sigma)-\Sigma_{t}(\sigma_{0})\rVert^{2}dt\bigg{)}&\geq c_{3}|\sigma-\sigma_{0}|^{2},\\ \limsup_{T\to\infty}\bigg{(}\frac{1}{T}\int_{0}^{T}|\mu_{t}(\theta)-\mu_{t}(\theta_{0})|^{2}dt\bigg{)}&\geq c_{4}|\theta-\theta_{0}|^{2}}\end{split}

for any σclos(Θ1)\sigma\in{\rm clos}(\Theta_{1}) and θclos(Θ2)\theta\in{\rm clos}(\Theta_{2}).

Assumption (A6) is necessary to identify the parameter σ\sigma and θ\theta from the data. If a11=0a_{1}^{1}=0, then we have ap1=0a_{p}^{1}=0 for any pp\in\mathbb{N}. This implies that the non-diagonal components of the covariance matrix SnS_{n} are negligible in the limit. Then, we cannot consistently estimate the parameter in ρt(σ)\rho_{t}(\sigma). This is why we need the assumption a11>0a_{1}^{1}>0 (see Proposition 3.2 and the following discussion to obtain the consistency).

Let 𝒜(ρ)=p=1ap1ρ2p\mathcal{A}(\rho)=\sum_{p=1}^{\infty}a_{p}^{1}\rho^{2p} for ρ(1,1)\rho\in(-1,1), and let σkBl,t,0=σkBl,t(σ0)\partial_{\sigma}^{k}B_{l,t,0}=\partial_{\sigma}^{k}B_{l,t}(\sigma_{0}). Let

γ1,t=𝒜(ρt,0)(σρt,0ρt,0σB1,t,0σB2,t,0)2ρ𝒜(ρt,0)(σρt,0)2ρt,02l=12(a0l+𝒜(ρt,0))(σBl,t,0)2,{\gamma_{1,t}=\mathcal{A}(\rho_{t,0})\bigg{(}\frac{\partial_{\sigma}\rho_{t,0}}{\rho_{t,0}}-\partial_{\sigma}B_{1,t,0}-\partial_{\sigma}B_{2,t,0}\bigg{)}^{2}-\partial_{\rho}\mathcal{A}(\rho_{t,0})\frac{(\partial_{\sigma}\rho_{t,0})^{2}}{\rho_{t,0}}-2\sum_{l=1}^{2}(a_{0}^{l}+\mathcal{A}(\rho_{t,0}))(\partial_{\sigma}B_{l,t,0})^{2},}

and let Γ1=limTT10Tγ1,t𝑑t\Gamma_{1}=\lim_{T\to\infty}T^{-1}\int_{0}^{T}\gamma_{1,t}dt, which exists under (A1), (A3) and (A4). Let

Γ2=limT1T0Tp=0ρt,02p{l=12fpll(θϕl,t)2(θ0)2ρt,0fp12θϕ1,tθϕ2,t(θ0)}dt,{\Gamma_{2}=\lim_{T\to\infty}\frac{1}{T}\int_{0}^{T}\sum_{p=0}^{\infty}\rho_{t,0}^{2p}\bigg{\{}\sum_{l=1}^{2}f_{p}^{ll}(\partial_{\theta}\phi_{l,t})^{2}(\theta_{0})-2\rho_{t,0}f_{p}^{12}\partial_{\theta}\phi_{1,t}\partial_{\theta}\phi_{2,t}(\theta_{0})\bigg{\}}dt,}

which exists under (A1), (A3) and (A5). Let Tn=nhnT_{n}=nh_{n} and

Γ=(Γ100Γ2).{\Gamma=\left(\begin{array}[]{cc}\Gamma_{1}&0\\ 0&\Gamma_{2}\end{array}\right).}
Theorem 2.1.

Assume (A1)–(A6). Then Γ\Gamma is positive difinite, and

(n(σ^nσ0),Tn(θ^nθ0))𝑑N(0,Γ1){(\sqrt{n}(\hat{\sigma}_{n}-\sigma_{0}),\sqrt{T_{n}}(\hat{\theta}_{n}-\theta_{0}))\overset{d}{\to}N(0,\Gamma^{-1})}

as nn\to\infty.

2.3 Local asymptotic normality

Next, to discuss the optimality of the estimator, we discuss local asymptotic normality of the statistical model. In this section, local asymptotic normality of our model is shown, and the maximum-likelihood-type estimator is shown to be asymptotically efficient.

Let \mathbb{N} be the set of all positive integers. Let α0Θ\alpha_{0}\in\Theta, Θd\Theta\subset\mathbb{R}^{d}, and {Pα,n}αΘ\{P_{\alpha,n}\}_{\alpha\in\Theta} be a family of probability measures defined on a measurable space (𝒳n,𝒜n)(\mathcal{X}_{n},\mathcal{A}_{n}) for nn\in\mathbb{N}, where Θ\Theta is an open subset of d\mathbb{R}^{d}. As usual we shall refer to dPα2,n/dPα1,ndP_{\alpha_{2},n}/dP_{\alpha_{1},n} the derivative of the absolutely continuous component of the measure Pα2,nP_{\alpha_{2},n} with respect to measure Pα1,nP_{\alpha_{1},n} at the observation xx as the likelihood ratio. The following definition of local asymptotic normality is Definition 2.1 in Chapter II of Ibragimov and Has’minskiĭ [9].

Definition 2.1.

A family Pα,nP_{\alpha,n} is called locally asymptotically normal (LAN) at point α0Θ\alpha_{0}\in\Theta as nn\to\infty if for some nondegenerate d×dd\times d matrix ϵn\epsilon_{n} and any udu\in\mathbb{R}^{d}, the representation

logdPα0+ϵnu,ndPα0,n(uΔn|u|2/2)0{\log\frac{dP_{\alpha_{0}+\epsilon_{n}u,n}}{dP_{\alpha_{0},n}}-(u^{\top}\Delta_{n}-|u|^{2}/2)\to 0}

in Pα0,nP_{\alpha_{0},n}-probability as nn\to\infty, where

(Δn|Pα0,n)N(0,d){\mathcal{L}(\Delta_{n}|P_{\alpha_{0},n})\to N(0,\mathcal{E}_{d})}

as nn\to\infty.

Let Θ=Θ1×Θ2\Theta=\Theta_{1}\times\Theta_{2}. For αΘ\alpha\in\Theta, let Pα,nP_{\alpha,n} be the probability measure generated by the observation {Sin,l}i,l\{S_{i}^{n,l}\}_{i,l} and {XSin,l(α),l}i,l\{X_{S_{i}^{n,l}}^{(\alpha),l}\}_{i,l}.

Theorem 2.2.

Assume (A1)–(A6). Then, {Pα,n}α,n\{P_{\alpha,n}\}_{\alpha,n} satisfies the LAN property at α=α0\alpha=\alpha_{0} with

ϵn=(n1/2Γ11/200Tn1/2Γ21/2).{\epsilon_{n}=\left(\begin{array}[]{cc}n^{-1/2}\Gamma_{1}^{-1/2}&0\\ 0&T_{n}^{-1/2}\Gamma_{2}^{-1/2}\end{array}\right).}

The proof is left to Section 3.6. Theorem 11.2 in Chapter II of Ibragimov and Has’minskiĭ [9] gives lower bounds of estimation errors for any regular estimator of parameters under the LAN property. Then, the optimal asymptotic variance of ϵn1(Tnα0)\epsilon_{n}^{-1}(T_{n}-\alpha_{0}) for regular estimator TnT_{n} is d\mathcal{E}_{d}. Therefore, Theorems 2.2 ensures that our estimator (σ^n,θ^n)(\hat{\sigma}_{n},\hat{\theta}_{n}) is asymptotically efficient in this sense under the assumptions of the theorem (we can show that (σ^n,θ^n)(\hat{\sigma}_{n},\hat{\theta}_{n}) is regular by the proof of Theorem 2.2, (3.49), (3.9), (3.31), (3.35) and Theorem 2 in [10]).

2.4 Sufficient conditions for the assumptions

It is not easy to directly check Assumptions (A4) and (A5) for general random sampling scheme. In this section, we study tractable sufficient conditions for these assumptions. The proofs of the results in this section are left to Section 3.6.

Let q>0q>0 and 𝒩tn,l=i=1Ml1{Sin,lt}\mathcal{N}^{n,l}_{t}=\sum_{i=1}^{M_{l}}1_{\{S_{i}^{n,l}\leq t\}}. We consider the following conditions for point process 𝒩tn,l\mathcal{N}_{t}^{n,l}.

Assumption (B1-qq).
supn1maxl{1,2}sup0t(n1)hnE[(𝒩t+hnn,l𝒩tn,l)q]<.{\sup_{n\geq 1}\max_{l\in\{1,2\}}\sup_{0\leq t\leq(n-1)h_{n}}E[(\mathcal{N}^{n,l}_{t+h_{n}}-\mathcal{N}^{n,l}_{t})^{q}]<\infty.}
Assumption (B2-qq).
lim supusupn1maxl{1,2}sup0tnhnuhnuqP(𝒩t+uhnn,l𝒩tn,l=0)<.{\limsup_{u\to\infty}\sup_{n\geq 1}\max_{l\in\{1,2\}}\sup_{0\leq t\leq nh_{n}-uh_{n}}u^{q}P(\mathcal{N}^{n,l}_{t+uh_{n}}-\mathcal{N}^{n,l}_{t}=0)<\infty.}

For example, let (𝒩¯t1,𝒩¯t2)(\bar{\mathcal{N}}_{t}^{1},\bar{\mathcal{N}}_{t}^{2}) be two independent homogeneous Poisson processes with positive intensities λ1\lambda_{1} and λ2\lambda_{2}, respectively, and 𝒩tn,l=𝒩¯hn1tl\mathcal{N}^{n,l}_{t}=\bar{\mathcal{N}}_{h_{n}^{-1}t}^{l}. Then (B1-qq) obviously holds for any q>0q>0. Moreover, (B2-q) holds for any q>0q>0 since

lim supusupn1maxl{1,2}sup0tnhnuhnuqP(𝒩t+uhnn,l𝒩tn,l=0)=limuuqe(λ1λ2)u=0.{\limsup_{u\to\infty}\sup_{n\geq 1}\max_{l\in\{1,2\}}\sup_{0\leq t\leq nh_{n}-uh_{n}}u^{q}P(\mathcal{N}^{n,l}_{t+uh_{n}}-\mathcal{N}^{n,l}_{t}=0)=\lim_{u\to\infty}u^{q}e^{-(\lambda_{1}\wedge\lambda_{2})u}=0.}

To give sufficient conditions for (A4) and (A5), we consider mixing properties of 𝒩n,l\mathcal{N}^{n,l}. That is, we assume condtions for the following mixing coefficient αkn\alpha_{k}^{n}. Let

𝒢i,jn=σ(𝒩tn,l𝒩sn,l;ihns<tjhn,l=1,2)(0i,jn),{\mathcal{G}_{i,j}^{n}=\sigma(\mathcal{N}^{n,l}_{t}-\mathcal{N}^{n,l}_{s};ih_{n}\leq s<t\leq jh_{n},l=1,2)\quad(0\leq i,j\leq n),}

and let

αkn=0sup1i,jn1,jiksupA𝒢0,insupB𝒢j,nn|P(AB)P(A)P(B)|.{\alpha_{k}^{n}=0\vee\sup_{1\leq i,j\leq n-1,j-i\geq k}\sup_{A\in\mathcal{G}_{0,i}^{n}}\sup_{B\in\mathcal{G}_{j,n}^{n}}|P(A\cap B)-P(A)P(B)|.}
Proposition 2.1.

Assume that (B1-qq) and (B2-qq) hold and that

supnk=0(k+1)qαkn<{\sup_{n\in\mathbb{N}}\sum_{k=0}^{\infty}(k+1)^{q}\alpha_{k}^{n}<\infty} (2.1)

for any q>0q>0. Moreover, assume that there exist positive constants a01a_{0}^{1} and a02a_{0}^{2}, and a nonnegative constant ap1a_{p}^{1} for pp\in\mathbb{N} such that

max1kqn|hnE[Ml,k]a0l(sksk1)|0,0\begin{split}{\max_{1\leq k\leq q_{n}}|h_{n}E[M_{l,k}]-a_{0}^{l}(s_{k}-s_{k-1})|&\to 0,\\ \max_{1\leq k\leq q_{n}}|h_{n}E[{\rm tr}(\mathcal{E}_{(k)}^{1}(GG^{\top})^{p})]-a_{p}^{1}(s_{k}-s_{k-1})|&\to 0}\end{split} (2.2)

as nn\to\infty for p+p\in\mathbb{Z}_{+}, l{1,2}l\in\{1,2\} and any partition (sk)k=0𝔖(s_{k})_{k=0}^{\infty}\in\mathfrak{S}. Then, (A4) holds.

In the following, let (𝒩¯tl)t0(\bar{\mathcal{N}}_{t}^{l})_{t\geq 0} be an exponential α\alpha-mixing point process for l{1,2}l\in\{1,2\}. Assume that the distribution of (𝒩¯t+tkl𝒩¯t+tk1l)1kK,l=1,2(\bar{\mathcal{N}}_{t+t_{k}}^{l}-\bar{\mathcal{N}}_{t+t_{k-1}}^{l})_{1\leq k\leq K,l=1,2} does not depend on t0t\geq 0 for any KK\in\mathbb{N} and 0t0<t1<<tK0\leq t_{0}<t_{1}<\cdots<t_{K}.

Proposition 2.2.

Assume that (B1-qq) and (B2-qq) hold and that (2.1) is satisfied for any q>0q>0. Moreover, assume that there exist nonnegative constants fp1,1f_{p}^{1,1}, fp1,2f_{p}^{1,2}, and fp2,2f_{p}^{2,2} for p+p\in\mathbb{Z}_{+} such that

max1kqn|E[1(k)1(GG)p1]fp1,1(sksk1)|0,max1kqn|E[1(k)1(GG)pG2]fp1,2(sksk1)|0,0\begin{split}{\max_{1\leq k\leq q_{n}}|E[\mathfrak{I}_{1}\mathcal{E}_{(k)}^{1}(GG^{\top})^{p}\mathfrak{I}_{1}]-f_{p}^{1,1}(s_{k}-s_{k-1})|&\to 0,\\ \max_{1\leq k\leq q_{n}}|E[\mathfrak{I}_{1}\mathcal{E}_{(k)}^{1}(GG^{\top})^{p}G\mathfrak{I}_{2}]-f_{p}^{1,2}(s_{k}-s_{k-1})|&\to 0,\\ \max_{1\leq k\leq q_{n}}|E[\mathfrak{I}_{2}\mathcal{E}_{(k)}^{2}(G^{\top}G)^{p}\mathfrak{I}_{2}]-f_{p}^{2,2}(s_{k}-s_{k-1})|&\to 0}\end{split} (2.3)

as nn\to\infty for p+p\in\mathbb{Z}_{+} and any partition (sk)k=0𝔖(s_{k})_{k=0}^{\infty}\in\mathfrak{S}. Then, (A5) holds.

Proposition 2.3.

Assume that there exists q>0q>0 such that (A4) and (B2-qq) hold, {𝒩t+hnn,l𝒩tn,l}0tTnhn,l{1,2},n\{\mathcal{N}_{t+h_{n}}^{n,l}-\mathcal{N}_{t}^{n,l}\}_{0\leq t\leq T_{n}-h_{n},l\in\{1,2\},n\in\mathbb{N}} is PP-tight, and k=1kαkn<\sum_{k=1}^{\infty}k\alpha_{k}^{n}<\infty. Then, a11>0a_{1}^{1}>0.

Lemma 2.1.

Let 𝒩tn,l=𝒩¯hn1tl\mathcal{N}^{n,l}_{t}=\bar{\mathcal{N}}_{h_{n}^{-1}t}^{l} for 0tnhn0\leq t\leq nh_{n} and l{1,2}l\in\{1,2\}. Then, (2.1) is satisfied for any q>2q>2, and there exist constants a01a_{0}^{1}, a02a_{0}^{2}, and ap1=ap2a_{p}^{1}=a_{p}^{2} for pp\in\mathbb{N} such that (2.2) holds true. Moreover, there exist nonnegative constants fp1,1f_{p}^{1,1}, fp1,2f_{p}^{1,2}, and fp2,2f_{p}^{2,2} for p+p\in\mathbb{Z}_{+} such that (2.3) holds.

Proposition 2.4 (Proposition 8 in [16]).

Let qq\in\mathbb{N}. Assume (B2-(q+1)(q+1)). Then, supnE[hnq+1rnq]<\sup_{n}E[h_{n}^{-q+1}r_{n}^{q}]<\infty. In particular, (A2) holds under (B2-11).

By the above results, we obtain simple tractable sufficient conditions for the assumptions of the sampling scheme.

Corollary 2.1.

Let 𝒩tn,l=𝒩¯hn1tl\mathcal{N}_{t}^{n,l}=\bar{\mathcal{N}}_{h_{n}^{-1}t}^{l} for 0tTn0\leq t\leq T_{n} and l{1,2}l\in\{1,2\}. Assume that (B1-qq) and (B2-qq) hold for any q>0q>0. Then, (A2), (A4) and (A5) hold, and a11>0a_{1}^{1}>0.

3 Proofs

3.1 Preliminary results

For a real number aa, [a][a] denotes the maximum integer which is not greater than aa. Let Π=Πn={Sin,l}1iMl,l{1,2}\Pi=\Pi_{n}=\{S_{i}^{n,l}\}_{1\leq i\leq M_{l},l\in\{1,2\}}. We denote |x|2=i1,,ik|xi1,,ik|2|x|^{2}=\sum_{i_{1},\cdots,i_{k}}|x_{i_{1},\cdots,i_{k}}|^{2} for x={xi1,,ik}i1,,ikx=\{x_{i_{1},\cdots,i_{k}}\}_{i_{1},\cdots,i_{k}} with kk\in\mathbb{N}. CC denotes generic positive constant whose value may vary depending on context. We often omit the parameters σ\sigma and θ\theta in general functions f(σ)f(\sigma) and g(θ)g(\theta).

For a sequence pnp_{n} of positive numbers, let us denote by {R¯n(pn)}n\{\bar{R}_{n}(p_{n})\}_{n\in\mathbb{N}} a sequence of random variables (which may also depend on 1iM1\leq i\leq M and αΘ\alpha\in\Theta) satisfying

supα,iEΠ[|pn1R¯n(pn)|q]1/q<a.s.\sup_{\alpha,i}E_{\Pi}[|p_{n}^{-1}\bar{R}_{n}(p_{n})|^{q}]^{1/q}<\infty\quad{\rm a.s.} (3.1)

where EΠ[𝐗]=E[𝐗|σ(Πn)]E_{\Pi}[{\bf X}]=E[{\bf X}|\sigma(\Pi_{n})] for a random variable 𝐗{\bf X}.

Let V¯=V(θ0)\bar{V}=V(\theta_{0}), ρ¯n=supσ(maxi,j|ρi,j(σ)|supt|ρt(σ)|)\bar{\rho}_{n}=\sup_{\sigma}(\max_{i,j}|\rho_{i,j}(\sigma)|\vee\sup_{t}|\rho_{t}(\sigma)|), and let

S¯=(M1GGM2).{\bar{S}=\left(\begin{array}[]{cc}\mathcal{E}_{M_{1}}&G\\ G^{\top}&\mathcal{E}_{M_{2}}\end{array}\right).}

Let Δi,tlU=UtSin,llUtSi1n,ll\Delta_{i,t}^{l}U=U^{l}_{t\wedge S^{n,l}_{i}}-U^{l}_{t\wedge S^{n,l}_{i-1}}, and let Δi,tU=Δφ(i),tψ(i)U\Delta_{i,t}U=\Delta_{\varphi(i),t}^{\psi(i)}U for t0t\geq 0 and a two-dimensional stochastic process (Ut)t0=((Ut1,Ut2))t0(U_{t})_{t\geq 0}=((U_{t}^{1},U_{t}^{2}))_{t\geq 0}.

Lemma 3.1 (Lemma 2 in [16]).

GG1\lVert G\rVert\vee\lVert G^{\top}\rVert\leq 1.

Lemma 3.2.

G~G~ρ¯n\lVert\tilde{G}\rVert\vee\lVert\tilde{G}^{\top}\rVert\leq\bar{\rho}_{n}.

Proof.

Since all the elements of GG are nonnegative, we have

G~2=sup|x|=1|G~x|2=sup|x|=1i(jρijGijxj)2ρ¯n2sup|x|=1i(jGij|xj|)2ρ¯n2G2ρ¯n2.\begin{split}{\lVert\tilde{G}\rVert^{2}&=\sup_{|x|=1}|\tilde{G}x|^{2}=\sup_{|x|=1}\sum_{i}\bigg{(}\sum_{j}\rho_{ij}G_{ij}x_{j}\bigg{)}^{2}\\ &\leq\bar{\rho}_{n}^{2}\sup_{|x|=1}\sum_{i}\bigg{(}\sum_{j}G_{ij}|x_{j}|\bigg{)}^{2}\leq\bar{\rho}_{n}^{2}\lVert G\rVert^{2}\leq\bar{\rho}_{n}^{2}.}\end{split}

Since G~=G~\lVert\tilde{G}^{\top}\rVert=\lVert\tilde{G}\rVert, we obtain the conclusion. ∎

Let 𝒟=diag({|Ii|}i=1M)\mathcal{D}={\rm diag}(\{|I_{i}|\}_{i=1}^{M}).

Lemma 3.3.

Assume (A1). Then, there exists a positive constant CC such that 𝒟1/2σkSn1(σ)𝒟1/2C(1ρ¯n)k1\lVert\mathcal{D}^{1/2}\partial_{\sigma}^{k}S_{n}^{-1}(\sigma)\mathcal{D}^{1/2}\rVert\leq C(1-\bar{\rho}_{n})^{-k-1} if ρ¯n<1\bar{\rho}_{n}<1, and 𝒟1/2σkSn(σ)𝒟1/2C\lVert\mathcal{D}^{-1/2}\partial_{\sigma}^{k}S_{n}(\sigma)\mathcal{D}^{-1/2}\rVert\leq C for any σΘ1\sigma\in\Theta_{1} and k{0,1,2,3,4}k\in\{0,1,2,3,4\}.

Proof.

By (A1) and Lemmas 3.1 and 3.2, we have

𝒟1/2σkSn(σ)𝒟1/2Cj=0kσj{M+(0G~G~0)}C.{\lVert\mathcal{D}^{-1/2}\partial_{\sigma}^{k}S_{n}(\sigma)\mathcal{D}^{-1/2}\rVert\leq C\sum_{j=0}^{k}\bigg{\lVert}\partial_{\sigma}^{j}\bigg{\{}\mathcal{E}_{M}+\left(\begin{array}[]{cc}0&\tilde{G}\\ \tilde{G}^{\top}&0\end{array}\right)\bigg{\}}\bigg{\rVert}\leq C.}

Moreover, by (A1) and Lemma 3.1, we have

𝒟1/2Sn1𝒟1/2C(M+(0G~G~0))1C(1ρ¯n)1{\lVert\mathcal{D}^{1/2}S_{n}^{-1}\mathcal{D}^{1/2}\rVert\leq C\bigg{\lVert}\bigg{(}\mathcal{E}_{M}+\left(\begin{array}[]{cc}0&\tilde{G}\\ \tilde{G}^{\top}&0\end{array}\right)\bigg{)}^{-1}\bigg{\lVert}\leq C(1-\bar{\rho}_{n})^{-1}}

if ρ¯n<1\bar{\rho}_{n}<1.

By using the equation σSn1=Sn1σSnSn1\partial_{\sigma}S_{n}^{-1}=-S_{n}^{-1}\partial_{\sigma}S_{n}S_{n}^{-1}, we obtain

𝒟1/2σSn1𝒟1/2=𝒟1/2Sn1σSnSn1𝒟1/2𝒟1/2Sn1𝒟1/22𝒟1/2σSn𝒟1/2C(1ρ¯n)2{\lVert\mathcal{D}^{1/2}\partial_{\sigma}S_{n}^{-1}\mathcal{D}^{1/2}\rVert=\lVert\mathcal{D}^{1/2}S_{n}^{-1}\partial_{\sigma}S_{n}S_{n}^{-1}\mathcal{D}^{1/2}\rVert\leq\lVert\mathcal{D}^{1/2}S_{n}^{-1}\mathcal{D}^{1/2}\rVert^{2}\lVert\mathcal{D}^{-1/2}\partial_{\sigma}S_{n}\mathcal{D}^{-1/2}\rVert\leq C(1-\bar{\rho}_{n})^{-2}}

if ρ¯n<1\bar{\rho}_{n}<1. Similarly, we obtain

𝒟1/2σkSn1𝒟1/2C(1ρ¯n)k1{\lVert\mathcal{D}^{1/2}\partial_{\sigma}^{k}S_{n}^{-1}\mathcal{D}^{1/2}\rVert\leq C(1-\bar{\rho}_{n})^{-k-1}}

if ρ¯n<1\bar{\rho}_{n}<1 for k{0,1,2,3,4}k\in\{0,1,2,3,4\}.

ρ¯n\bar{\rho}_{n} is Πn\Pi_{n}-measurable, and We obtain

P(ρ¯n<1)1{P(\bar{\rho}_{n}<1)\to 1} (3.2)

as nn\to\infty by (A2) and uniform continuity of btb_{t} and detΣt>0\det\Sigma_{t}>0 under (A1). Together with Lemma 3.1, we have

Sn1(σ)=𝒟~1/2p=0(1)p(0G~G~0)p𝒟~1/2=𝒟~1/2p=0((G~G~)p(G~G~)pG~(G~G~)pG~(G~G~)p)𝒟~1/2.\begin{split}{S_{n}^{-1}(\sigma)&=\tilde{\mathcal{D}}^{-1/2}\sum_{p=0}^{\infty}(-1)^{p}\left(\begin{array}[]{cc}0&\tilde{G}\\ \tilde{G}^{\top}&0\end{array}\right)^{p}\tilde{\mathcal{D}}^{-1/2}\\ &=\tilde{\mathcal{D}}^{-1/2}\sum_{p=0}^{\infty}\left(\begin{array}[]{cc}(\tilde{G}\tilde{G}^{\top})^{p}&-(\tilde{G}\tilde{G}^{\top})^{p}\tilde{G}\\ -(\tilde{G}^{\top}\tilde{G})^{p}\tilde{G}^{\top}&(\tilde{G}^{\top}\tilde{G})^{p}\end{array}\right)\tilde{\mathcal{D}}^{-1/2}.}\end{split} (3.3)

3.2 Consistency of σ^n\hat{\sigma}_{n}

We first show consistency: σ^n𝑃σ0\hat{\sigma}_{n}\overset{P}{\to}\sigma_{0} as nn\to\infty. For this purpose, we specify the limit of Hn1(σ)Hn1(σ0)H_{n}^{1}(\sigma)-H_{n}^{1}(\sigma_{0}).

Lemma 3.4.

Assume (A1) and (A2). Then

1nsupσΘ1|σk(Hn1(σ)Hn1(σ0))+12σktr(Sn1(σ)(Sn(σ0)Sn(σ)))+12σklogdetSn(σ)detSn(σ0)|𝑃0\begin{split}{\frac{1}{n}\sup_{\sigma\in\Theta_{1}}\bigg{|}\partial_{\sigma}^{k}(H_{n}^{1}(\sigma)-H_{n}^{1}(\sigma_{0}))+\frac{1}{2}\partial_{\sigma}^{k}{\rm tr}(S_{n}^{-1}(\sigma)(S_{n}(\sigma_{0})-S_{n}(\sigma)))+\frac{1}{2}\partial_{\sigma}^{k}\log\frac{\det S_{n}(\sigma)}{\det S_{n}(\sigma_{0})}\bigg{|}\overset{P}{\to}0}\end{split} (3.4)

as nn\to\infty for k{0,1,2,3}k\in\{0,1,2,3\}.

Proof.

Let Xtc=0tbs(σ0)𝑑WsX_{t}^{c}=\int_{0}^{t}b_{s}(\sigma_{0})dW_{s}. By the definition of Hn1H_{n}^{1}, we have

Hn1(σ)Hn1(σ0)=12ΔX(Sn1(σ)Sn1(σ0))ΔX12logdetSn(σ)detSn(σ0).{H_{n}^{1}(\sigma)-H_{n}^{1}(\sigma_{0})=-\frac{1}{2}\Delta X^{\top}(S_{n}^{-1}(\sigma)-S_{n}^{-1}(\sigma_{0}))\Delta X-\frac{1}{2}\log\frac{\det S_{n}(\sigma)}{\det S_{n}(\sigma_{0})}.}

Since

ΔXSn1(σ)ΔX(ΔXc)Sn1(σ)ΔXc=(ΔV¯)Sn1(σ)(2ΔXc+ΔV¯),{\Delta X^{\top}S_{n}^{-1}(\sigma)\Delta X-(\Delta X^{c})^{\top}S_{n}^{-1}(\sigma)\Delta X^{c}=(\Delta\bar{V})^{\top}S_{n}^{-1}(\sigma)(2\Delta X^{c}+\Delta\bar{V}),} (3.5)

and

|𝒟1/2ΔV¯|2=i,l|Iil|1|ΔilV¯|2Cnhn,{|\mathcal{D}^{-1/2}\Delta\bar{V}|^{2}=\sum_{i,l}|I_{i}^{l}|^{-1}|\Delta_{i}^{l}\bar{V}|^{2}\leq Cnh_{n},} (3.6)

together with Lemma 3.3 and (3.2), we obtain

|(ΔV¯)Sn1(σ)ΔV¯|𝒟1/2Sn1(σ)𝒟1/2|𝒟1/2ΔV¯|2=Op(nhn)=op(n).{|(\Delta\bar{V})^{\top}S_{n}^{-1}(\sigma)\Delta\bar{V}|\leq\lVert\mathcal{D}^{1/2}S_{n}^{-1}(\sigma)\mathcal{D}^{1/2}\rVert|\mathcal{D}^{-1/2}\Delta\bar{V}|^{2}=O_{p}(nh_{n})=o_{p}(\sqrt{n}).} (3.7)

Moreover, Lemma 3.3, (3.2), (3.6) and the equation EΠ[ΔXc(ΔXc)]=Sn(σ0)E_{\Pi}[\Delta X^{c}(\Delta X^{c})^{\top}]=S_{n}(\sigma_{0}) yield

EΠ[|(ΔV¯)Sn1(σ)ΔXc|2]=(ΔV¯)Sn1(σ)EΠ[ΔXc(ΔXc)]Sn1(σ)ΔV¯=Op(nhn)=op(n).{E_{\Pi}[|(\Delta\bar{V})^{\top}S_{n}^{-1}(\sigma)\Delta X^{c}|^{2}]=(\Delta\bar{V})^{\top}S_{n}^{-1}(\sigma)E_{\Pi}[\Delta X^{c}(\Delta X^{c})^{\top}]S_{n}^{-1}(\sigma)\Delta\bar{V}=O_{p}(nh_{n})=o_{p}(\sqrt{n}).} (3.8)

(3.5), (3.7), and (3.8) yield

Hn1(σ)Hn1(σ0)=12(ΔXc)(Sn1(σ)Sn1(σ0))ΔXc12logdetSn(σ)detSn(σ0)+op(n).{H_{n}^{1}(\sigma)-H_{n}^{1}(\sigma_{0})=-\frac{1}{2}(\Delta X^{c})^{\top}(S_{n}^{-1}(\sigma)-S_{n}^{-1}(\sigma_{0}))\Delta X^{c}-\frac{1}{2}\log\frac{\det S_{n}(\sigma)}{\det S_{n}(\sigma_{0})}+o_{p}(\sqrt{n}).} (3.9)

Itô’s formula yields

(ΔXc)Sn1(σ)ΔXctr(Sn1(σ)Sn(σ0))=i,j[Sn1(σ)]ij(ΔiXcΔjXc[Σ0]ψ(i),ψ(j)|IiIj|)=i,j[Sn1(σ)]ij{IiΔj,tXc𝑑Xtc,ψ(i)+IjΔi,tXc𝑑Xtc,ψ(j)}=2i,j[Sn1(σ)]ijIiΔj,tXc𝑑Xtc,ψ(i),\begin{split}{&(\Delta X^{c})^{\top}S_{n}^{-1}(\sigma)\Delta X^{c}-{\rm tr}(S_{n}^{-1}(\sigma)S_{n}(\sigma_{0}))\\ &\quad=\sum_{i,j}[S_{n}^{-1}(\sigma)]_{ij}(\Delta_{i}X^{c}\Delta_{j}X^{c}-[\Sigma_{0}]_{\psi(i),\psi(j)}|I_{i}\cap I_{j}|)\\ &\quad=\sum_{i,j}[S_{n}^{-1}(\sigma)]_{ij}\bigg{\{}\int_{I_{i}}\Delta_{j,t}X^{c}dX^{c,\psi(i)}_{t}+\int_{I_{j}}\Delta_{i,t}X^{c}dX_{t}^{c,\psi(j)}\bigg{\}}\\ &\quad=2\sum_{i,j}[S_{n}^{-1}(\sigma)]_{ij}\int_{I_{i}}\Delta_{j,t}X^{c}dX_{t}^{c,\psi(i)},}\end{split} (3.10)

where Xtc,lX^{c,l}_{t} is ll-the component of XtX_{t}.

Since ΔiXc,ΔjXct=[0,t)IiIj[Σt]ψ(i),ψ(j)𝑑t\langle\Delta_{i}X^{c},\Delta_{j}X^{c}\rangle_{t}=\int_{[0,t)\cap I_{i}\cap I_{j}}[\Sigma_{t}]_{\psi(i),\psi(j)}dt, together with Lemma 3.3, (3.2) and the Burkholder-Davis-Gundy inequality, we have

&EΠ[(i,j[Sn1(σ)]ijIiΔj,tXc𝑑Xtc,ψ(i))q]Cql=12EΠ[(i,j1,j2ψ(i)=l[Sn1(σ)]i,j1[Sn1(σ)]i,j2IiΔj1,tXcΔj2,tXc[Σt]ψ(i),ψ(i)𝑑t)q/2]+Cql=12EΠ[(i1,i2,j1,j2ψ(i1)=1,ψ(i2)=2[Sn1(σ)]i1,j1[Sn1(σ)]i2,j2Ii1Ii2Δj1,tXcΔj2,tXc[Σt]ψ(i1),ψ(i2)𝑑t)q/2]CqEΠ[(isupt|Δi,tXc|2|Ii|𝒟1/2Sn1(σ)𝒟1/2(GG)𝒟1/2Sn1(σ)𝒟1/2)q/2]CqMnq/2(1ρ¯n)q\begin{split}{&E_{\Pi}\bigg{[}\bigg{(}\sum_{i,j}[S_{n}^{-1}(\sigma)]_{ij}\int_{I_{i}}\Delta_{j,t}X^{c}dX_{t}^{c,\psi(i)}\bigg{)}^{q}\bigg{]}\\ &\quad\leq C_{q}\sum_{l=1}^{2}E_{\Pi}\bigg{[}\bigg{(}\sum_{\begin{subarray}{c}i,j_{1},j_{2}\\ \psi(i)=l\end{subarray}}[S_{n}^{-1}(\sigma)]_{i,j_{1}}[S_{n}^{-1}(\sigma)]_{i,j_{2}}\int_{I_{i}}\Delta_{j_{1},t}X^{c}\Delta_{j_{2},t}X^{c}[\Sigma_{t}]_{\psi(i),\psi(i)}dt\bigg{)}^{q/2}\bigg{]}\\ &\quad\quad+C_{q}\sum_{l=1}^{2}E_{\Pi}\bigg{[}\bigg{(}\sum_{\begin{subarray}{c}i_{1},i_{2},j_{1},j_{2}\\ \psi(i_{1})=1,\psi(i_{2})=2\end{subarray}}[S_{n}^{-1}(\sigma)]_{i_{1},j_{1}}[S_{n}^{-1}(\sigma)]_{i_{2},j_{2}}\int_{I_{i_{1}}\cap I_{i_{2}}}\Delta_{j_{1},t}X^{c}\Delta_{j_{2},t}X^{c}[\Sigma_{t}]_{\psi(i_{1}),\psi(i_{2})}dt\bigg{)}^{q/2}\bigg{]}\\ &\quad\leq C_{q}E_{\Pi}\bigg{[}\bigg{(}\sum_{i}\frac{\sup_{t}|\Delta_{i,t}X^{c}|^{2}}{|I_{i}|}\bigg{\lVert}\mathcal{D}^{1/2}S_{n}^{-1}(\sigma)\mathcal{D}^{1/2}\left(\begin{array}[]{cc}\mathcal{E}&G\\ G^{\top}&\mathcal{E}\end{array}\right)\mathcal{D}^{1/2}S_{n}^{-1}(\sigma)\mathcal{D}^{1/2}\bigg{\rVert}\bigg{)}^{q/2}\bigg{]}\\ &\quad\leq C_{q}M_{n}^{q/2}(1-\bar{\rho}_{n})^{q}}\end{split}

on {ρ¯n<1}\{\bar{\rho}_{n}<1\} for q1q\geq 1.

Then, thanks to (LABEL:XSX-martingale-est), we obtain

ΔXcSn1(σ)ΔXctr(Sn1(σ)Sn(σ0))=R¯n(n).{\Delta X^{c}S_{n}^{-1}(\sigma)\Delta X^{c}-{\rm tr}(S_{n}^{-1}(\sigma)S_{n}(\sigma_{0}))=\bar{R}_{n}(\sqrt{n}).} (3.11)

(3.11), (3.9) and similar estimates for σk(Hn1(σ)Hn1(σ0))\partial_{\sigma}^{k}(H_{n}^{1}(\sigma)-H_{n}^{1}(\sigma_{0})) yield

&σk(Hn1(σ)Hn1(σ0))=12σktr(Sn(σ0)(Sn1(σ)Sn1(σ0)))12σklogdetSn(σ)detSn(σ0)+R¯n(n)=12σktr(Sn1(σ)(Sn(σ0)Sn(σ)))12σklogdetSn(σ)detSn(σ0)+R¯n(n)\begin{split}{&\partial_{\sigma}^{k}(H_{n}^{1}(\sigma)-H_{n}^{1}(\sigma_{0}))\\ &\quad=-\frac{1}{2}\partial_{\sigma}^{k}{\rm tr}(S_{n}(\sigma_{0})(S_{n}^{-1}(\sigma)-S_{n}^{-1}(\sigma_{0})))-\frac{1}{2}\partial_{\sigma}^{k}\log\frac{\det S_{n}(\sigma)}{\det S_{n}(\sigma_{0})}+\bar{R}_{n}(\sqrt{n})\\ &\quad=-\frac{1}{2}\partial_{\sigma}^{k}{\rm tr}(S_{n}^{-1}(\sigma)(S_{n}(\sigma_{0})-S_{n}(\sigma)))-\frac{1}{2}\partial_{\sigma}^{k}\log\frac{\det S_{n}(\sigma)}{\det S_{n}(\sigma_{0})}+\bar{R}_{n}(\sqrt{n})}\end{split}

for k{0,1,2,3,4}k\in\{0,1,2,3,4\}. Therefore, Sobolev’s inequality yields the conclusion.

Let 𝒴1(σ)=limT(T10Ty1,t(σ)𝑑t)\mathcal{Y}_{1}(\sigma)=\lim_{T\to\infty}(T^{-1}\int_{0}^{T}y_{1,t}(\sigma)dt), where

y1,t(σ)=12𝒜(ρt)l=12Bl,t2+𝒜(ρt)B1,tB2,tρt,0ρt+l=12a0l(1212Bl,t2+logBl,t)+ρt,0ρt𝒜(ρ)ρ𝑑ρ.\begin{split}{y_{1,t}(\sigma)=-\frac{1}{2}\mathcal{A}(\rho_{t})\sum_{l=1}^{2}B_{l,t}^{2}+\mathcal{A}(\rho_{t})\frac{B_{1,t}B_{2,t}\rho_{t,0}}{\rho_{t}}+\sum_{l=1}^{2}a_{0}^{l}\bigg{(}\frac{1}{2}-\frac{1}{2}B_{l,t}^{2}+\log B_{l,t}\bigg{)}+\int_{\rho_{t,0}}^{\rho_{t}}\frac{\mathcal{A}(\rho)}{\rho}d\rho.}\end{split}

The limit 𝒴1(σ)\mathcal{Y}_{1}(\sigma) exists under (A1), (A3) and (A4).

Proposition 3.1.

Assume (A1)–(A4). Then

supσΘ1|n1σk(Hn1(σ)Hn1(σ0))σk𝒴1(σ)|𝑃0{\sup_{\sigma\in\Theta_{1}}|n^{-1}\partial_{\sigma}^{k}(H_{n}^{1}(\sigma)-H_{n}^{1}(\sigma_{0}))-\partial_{\sigma}^{k}\mathcal{Y}_{1}(\sigma)|\overset{P}{\to}0}

as nn\to\infty for k{0,1,2,3}k\in\{0,1,2,3\}.

Proof.

Let 𝒜p1=(G~G~)p\mathcal{A}_{p}^{1}=(\tilde{G}\tilde{G}^{\top})^{p}, 𝒜p2=(G~G~)p\mathcal{A}_{p}^{2}=(\tilde{G}^{\top}\tilde{G})^{p}, Σ~i,0l=Σ~il(σ0)\tilde{\Sigma}_{i,0}^{l}=\tilde{\Sigma}_{i}^{l}(\sigma_{0}) and Σ~i,j,01,2=Σ~i,j1,2(σ0)\tilde{\Sigma}_{i,j,0}^{1,2}=\tilde{\Sigma}_{i,j}^{1,2}(\sigma_{0}). Thanks to (A1), for any ϵ>0\epsilon>0, there exists δ>0\delta>0 such that |ts|<δ|t-s|<\delta implies

|ρtρs||ΣtΣs||μtμs|<ϵ{|\rho_{t}-\rho_{s}|\vee|\Sigma_{t}-\Sigma_{s}|\vee|\mu_{t}-\mu_{s}|<\epsilon} (3.12)

for any σ\sigma and θ\theta. We fix such δ>0\delta>0, and fix a partition sk=kδ/2s_{k}=k\delta/2. Then, (3.3) and (A4) yield

n1tr(Sn1(σ)(Sn(σ0)Sn(σ)))=1ntr(Sn1(σ)𝒟~1/2(diag((Σ~i,01Σ~i1)i){(Σ~i,j,01,2Σ~i,j1,2)[G]ij}ij{(Σ~i,j,01,2Σ~i,j1,2)[G]ij}jidiag((Σ~j,02Σ~j2)j))𝒟~1/2)=1np=0{l=12tr(diag((Σ~i,0lΣ~il1)i)𝒜pl)2tr(𝒜p1G~{Σ~i,j,01,2Σ~i,j1,2(Σ~i1)1/2(Σ~j2)1/2[G]ij}ij)}=1np=0k=1qn{l=12tr(diag((Σ~i,0lΣ~il1)i)(k)1𝒜pl)2tr((k)1𝒜p1G~{Σ~i,j,01,2Σ~i,j1,2(Σ~i1)1/2(Σ~j2)1/2[G]ij}ij)}.\begin{split}{&n^{-1}{\rm tr}(S_{n}^{-1}(\sigma)(S_{n}(\sigma_{0})-S_{n}(\sigma)))\\ &\quad=\frac{1}{n}{\rm tr}\bigg{(}S_{n}^{-1}(\sigma)\tilde{\mathcal{D}}^{1/2}\left(\begin{array}[]{cc}{\rm diag}((\tilde{\Sigma}_{i,0}^{1}-\tilde{\Sigma}_{i}^{1})_{i})&\{(\tilde{\Sigma}_{i,j,0}^{1,2}-\tilde{\Sigma}_{i,j}^{1,2})[G]_{ij}\}_{ij}\\ \{(\tilde{\Sigma}_{i,j,0}^{1,2}-\tilde{\Sigma}_{i,j}^{1,2})[G]_{ij}\}_{ji}&{\rm diag}((\tilde{\Sigma}_{j,0}^{2}-\tilde{\Sigma}_{j}^{2})_{j})\end{array}\right)\tilde{\mathcal{D}}^{1/2}\bigg{)}\\ &\quad=\frac{1}{n}\sum_{p=0}^{\infty}\bigg{\{}\sum_{l=1}^{2}{\rm tr}\bigg{(}{\rm diag}\bigg{(}\bigg{(}\frac{\tilde{\Sigma}_{i,0}^{l}}{\tilde{\Sigma}_{i}^{l}}-1\bigg{)}_{i}\bigg{)}\mathcal{A}_{p}^{l}\bigg{)}-2{\rm tr}\bigg{(}\mathcal{A}_{p}^{1}\tilde{G}\bigg{\{}\frac{\tilde{\Sigma}_{i,j,0}^{1,2}-\tilde{\Sigma}_{i,j}^{1,2}}{(\tilde{\Sigma}_{i}^{1})^{1/2}(\tilde{\Sigma}_{j}^{2})^{1/2}}[G^{\top}]_{ij}\bigg{\}}_{ij}\bigg{)}\bigg{\}}\\ &\quad=\frac{1}{n}\sum_{p=0}^{\infty}\sum_{k=1}^{q_{n}}\bigg{\{}\sum_{l=1}^{2}{\rm tr}\bigg{(}{\rm diag}\bigg{(}\bigg{(}\frac{\tilde{\Sigma}_{i,0}^{l}}{\tilde{\Sigma}_{i}^{l}}-1\bigg{)}_{i}\bigg{)}\mathcal{E}_{(k)}^{1}\mathcal{A}_{p}^{l}\bigg{)}-2{\rm tr}\bigg{(}\mathcal{E}_{(k)}^{1}\mathcal{A}_{p}^{1}\tilde{G}\bigg{\{}\frac{\tilde{\Sigma}_{i,j,0}^{1,2}-\tilde{\Sigma}_{i,j}^{1,2}}{(\tilde{\Sigma}_{i}^{1})^{1/2}(\tilde{\Sigma}_{j}^{2})^{1/2}}[G^{\top}]_{ij}\bigg{\}}_{ij}\bigg{)}\bigg{\}}.}\end{split} (3.13)

Let ρ˙k=ρsk1\dot{\rho}_{k}=\rho_{s_{k-1}}, B˙k,l=([Σsk1(σ0)]ll/[Σsk1(σ)]ll)1/2\dot{B}_{k,l}=([\Sigma_{s_{k-1}}(\sigma_{0})]_{ll}/[\Sigma_{s_{k-1}}(\sigma)]_{ll})^{1/2}, 𝒜˙k,p1=(k)1(GG)p\dot{\mathcal{A}}_{k,p}^{1}=\mathcal{E}_{(k)}^{1}(GG^{\top})^{p} and 𝒜˙k,p2=(k)2(GG)p\dot{\mathcal{A}}_{k,p}^{2}=\mathcal{E}_{(k)}^{2}(G^{\top}G)^{p}. Then, (3.12) yields that for any p+p\in\mathbb{Z}_{+}, we have

|[(k)l𝒜pl]ijρ˙k2p[𝒜˙k,pl]ij|Cpρ¯n2p1ϵ{|[\mathcal{E}_{(k)}^{l}\mathcal{A}_{p}^{l}]_{ij}-\dot{\rho}_{k}^{2p}[\dot{\mathcal{A}}_{k,p}^{l}]_{ij}|\leq Cp\bar{\rho}_{n}^{2p-1}\epsilon} (3.14)

if 2prn<δ/22pr_{n}<\delta/2. Moreover, Lemmas 3.1 and 3.2 and (3.2) yield

lim supnmax1kqn+1p=0(k)l𝒜plClim supnp=0ρ¯n2p<.{\limsup_{n\to\infty}\max_{1\leq k\leq q_{n}+1}\sum_{p=0}^{\infty}\lVert\mathcal{E}_{(k)}^{l}\mathcal{A}_{p}^{l}\rVert\leq C\limsup_{n\to\infty}\sum_{p=0}^{\infty}\bar{\rho}_{n}^{2p}<\infty.} (3.15)

Then, together with (A2), we obtain

n1tr(Sn1(σ)(Sn(σ0)Sn(σ)))=1np=0k=1qn{ρ˙k2pl=12(B˙k,l21)tr(𝒜˙k,pl)2ρ˙k2p+1(B˙k,1B˙k,2ρ˙k,0ρ˙k)tr(𝒜˙k,p+11)}+en,\begin{split}{&n^{-1}{\rm tr}(S_{n}^{-1}(\sigma)(S_{n}(\sigma_{0})-S_{n}(\sigma)))\\ &\quad=\frac{1}{n}\sum_{p=0}^{\infty}\sum_{k=1}^{q_{n}}\bigg{\{}\dot{\rho}_{k}^{2p}\sum_{l=1}^{2}(\dot{B}_{k,l}^{2}-1){\rm tr}(\dot{\mathcal{A}}_{k,p}^{l})-2\dot{\rho}_{k}^{2p+1}(\dot{B}_{k,1}\dot{B}_{k,2}\dot{\rho}_{k,0}-\dot{\rho}_{k}){\rm tr}(\dot{\mathcal{A}}_{k,p+1}^{1})\bigg{\}}+e_{n},}\end{split} (3.16)

where ρ˙k,0=ρsk1(σ0)\dot{\rho}_{k,0}=\rho_{s_{k-1}}(\sigma_{0}), and (en)n=1(e_{n})_{n=1}^{\infty} denotes a general sequence of random variables such that lim supn|en|0\limsup_{n\to\infty}|e_{n}|\to 0 as δ0\delta\to 0.

Moreover, (3.2), Lemma 3.2, Lemma A.3 in [15] yield

logdetSn(σ)=logdet𝒟~+logdet(M+(0G~G~0))=l=12i=1MllogΣ~il+p=1(1)p1ptr((0G~G~0)p)=l=12i=1MllogΣ~ilp=11ptr((G~G~)p).\begin{split}{\log\det S_{n}(\sigma)&=\log\det\tilde{\mathcal{D}}+\log\det\bigg{(}\mathcal{E}_{M}+\left(\begin{array}[]{cc}0&\tilde{G}\\ \tilde{G}^{\top}&0\end{array}\right)\bigg{)}\\ &=\sum_{l=1}^{2}\sum_{i=1}^{M_{l}}\log\tilde{\Sigma}_{i}^{l}+\sum_{p=1}^{\infty}\frac{(-1)^{p-1}}{p}{\rm tr}\bigg{(}\left(\begin{array}[]{cc}0&\tilde{G}\\ \tilde{G}^{\top}&0\end{array}\right)^{p}\bigg{)}\\ &=\sum_{l=1}^{2}\sum_{i=1}^{M_{l}}\log\tilde{\Sigma}_{i}^{l}-\sum_{p=1}^{\infty}\frac{1}{p}{\rm tr}((\tilde{G}\tilde{G}^{\top})^{p}).}\end{split}

Therefore, thanks to (3.14), we obtain

n1logdetSn(σ)detSn(σ0)=n1l=12i=1MllogΣ~ilΣ~i,0ln1p=11ptr((G~G~)p(G~0G~0)p)=n1k=1qn{l=12Ml,klogB˙k,l2+p=1ρ˙k2pρ˙k,02pptr(𝒜˙k,p1)}+en.\begin{split}{n^{-1}\log\frac{\det S_{n}(\sigma)}{\det S_{n}(\sigma_{0})}&=n^{-1}\sum_{l=1}^{2}\sum_{i=1}^{M_{l}}\log\frac{\tilde{\Sigma}_{i}^{l}}{\tilde{\Sigma}_{i,0}^{l}}-n^{-1}\sum_{p=1}^{\infty}\frac{1}{p}{\rm tr}((\tilde{G}\tilde{G}^{\top})^{p}-(\tilde{G}_{0}\tilde{G}_{0}^{\top})^{p})\\ &=-n^{-1}\sum_{k=1}^{q_{n}}\bigg{\{}\sum_{l=1}^{2}M_{l,k}\log\dot{B}_{k,l}^{2}+\sum_{p=1}^{\infty}\frac{\dot{\rho}_{k}^{2p}-\dot{\rho}_{k,0}^{2p}}{p}{\rm tr}(\dot{\mathcal{A}}_{k,p}^{1})\bigg{\}}+e_{n}.}\end{split} (3.17)

(3.4), (LABEL:H1n-conv-eq1) and (3.17) yield

Hn1(σ)Hn1(σ0)=k=1qn{12p=0ρ˙k2pl=12B˙k,l2tr(𝒜˙k,pl)+p=1ρ˙k2p1ρ˙k,0B˙k,1B˙k,2tr(𝒜˙k,p1)+12l=12tr(A˙k,0l)+l=12Ml,klogB˙k,l+p=1ρ˙k2pρ˙k,02p2ptr(𝒜˙k,p1)}+nen=n𝒴1+nen.\begin{split}{H_{n}^{1}(\sigma)-H_{n}^{1}(\sigma_{0})&=\sum_{k=1}^{q_{n}}\bigg{\{}-\frac{1}{2}\sum_{p=0}^{\infty}\dot{\rho}_{k}^{2p}\sum_{l=1}^{2}\dot{B}_{k,l}^{2}{\rm tr}(\dot{\mathcal{A}}_{k,p}^{l})+\sum_{p=1}^{\infty}\dot{\rho}_{k}^{2p-1}\dot{\rho}_{k,0}\dot{B}_{k,1}\dot{B}_{k,2}{\rm tr}(\dot{\mathcal{A}}_{k,p}^{1})+\frac{1}{2}\sum_{l=1}^{2}{\rm tr}(\dot{A}_{k,0}^{l})\\ &\qquad\qquad+\sum_{l=1}^{2}M_{l,k}\log\dot{B}_{k,l}+\sum_{p=1}^{\infty}\frac{\dot{\rho}_{k}^{2p}-\dot{\rho}_{k,0}^{2p}}{2p}{\rm tr}(\dot{\mathcal{A}}_{k,p}^{1})\bigg{\}}+ne_{n}\\ &=n\mathcal{Y}_{1}+ne_{n}.}\end{split} (3.18)

Together with (A3) and a similar estimates for σk(Hn1(σ)Hn1(σ0))\partial_{\sigma}^{k}(H_{n}^{1}(\sigma)-H_{n}^{1}(\sigma_{0})), we have

n1σk(Hn1(σ)Hn1(σ0))𝑃σk𝒴1(σ){n^{-1}\partial_{\sigma}^{k}(H_{n}^{1}(\sigma)-H_{n}^{1}(\sigma_{0}))\overset{P}{\to}\partial_{\sigma}^{k}\mathcal{Y}_{1}(\sigma)}

for k{0,1,2,3,4}k\in\{0,1,2,3,4\}. Then, Sobolev’s inequality yields the conclusion.

Proposition 3.2.

There exists a positive constant χ\chi such that

𝒴1lim infT0T{12(a01a02)(B1,tB2,t)2χ{a11(ρtρt,0)2+a01a02(B1,tB2,t1)2}}𝑑t.{\mathcal{Y}_{1}\leq\liminf_{T\to\infty}\int_{0}^{T}\bigg{\{}-\frac{1}{2}(a_{0}^{1}\wedge a_{0}^{2})(B_{1,t}-B_{2,t})^{2}-\chi\big{\{}a_{1}^{1}(\rho_{t}-\rho_{t,0})^{2}+a_{0}^{1}\wedge a_{0}^{2}(B_{1,t}B_{2,t}-1)^{2}\big{\}}\bigg{\}}dt.}
Proof.

The proof is based on the ideas of proof of Lemma 5 in [16]. Let

Gk={[G]ij1{supIi1,supIj2(sk1,sk]}}ij,{G_{k}=\{[G]_{ij}1_{\{\sup I_{i}^{1},\sup I_{j}^{2}\in(s_{k-1},s_{k}]\}}\}_{ij},}

and let 𝒜~k,pl\tilde{\mathcal{A}}_{k,p}^{l} be obtained similarly to 𝒜˙k,pl\dot{\mathcal{A}}_{k,p}^{l} replacing (k)(GG)p\mathcal{E}_{(k)}(GG^{\top})^{p} by (GkGk)p(G_{k}G_{k}^{\top})^{p}. Let 𝒜~k=p=1ρ˙k2p𝒜~k,p1\tilde{\mathcal{A}}_{k}=\sum_{p=1}^{\infty}\dot{\rho}_{k}^{2p}\tilde{\mathcal{A}}_{k,p}^{1} and ~k=p=1(2p)1(ρ˙k2pρ˙k,02p)tr(𝒜~k,p1)\tilde{\mathcal{B}}_{k}=\sum_{p=1}^{\infty}(2p)^{-1}(\dot{\rho}_{k}^{2p}-\dot{\rho}_{k,0}^{2p}){\rm tr}(\tilde{\mathcal{A}}_{k,p}^{1}), then we have

𝒴1=n1k=1qn{12(M1,k+𝒜~k)(B˙k,1B˙k,2)2+M1,k(1+log(B˙k,1B˙k,2))+~k+M2,kM1,k2(1B˙k,22+log(B˙k,22))+B˙k,1B˙k,2(𝒜~kρ˙k,0ρ˙k𝒜~kM1,k)}+en=n1k=1qn{12(M2,k+𝒜˙k)(B˙k,1B˙k,2)2+M2,k(1+log(B˙k,1B˙k,2))+~k+M1,kM2,k2(1B˙k,12+log(B˙k,12))+B˙k,1B˙k,2(𝒜~kρ˙k,0ρ˙k𝒜~kM2,k)}+en.\begin{split}{\mathcal{Y}_{1}&=n^{-1}\sum_{k=1}^{q_{n}}\bigg{\{}-\frac{1}{2}(M_{1,k}+\tilde{\mathcal{A}}_{k})(\dot{B}_{k,1}-\dot{B}_{k,2})^{2}+M_{1,k}(1+\log(\dot{B}_{k,1}\dot{B}_{k,2}))\\ &\quad+\tilde{\mathcal{B}}_{k}+\frac{M_{2,k}-M_{1,k}}{2}(1-\dot{B}_{k,2}^{2}+\log(\dot{B}_{k,2}^{2}))+\dot{B}_{k,1}\dot{B}_{k,2}\bigg{(}\tilde{\mathcal{A}}_{k}\frac{\dot{\rho}_{k,0}}{\dot{\rho}_{k}}-\tilde{\mathcal{A}}_{k}-M_{1,k}\bigg{)}\bigg{\}}+e_{n}\\ &=n^{-1}\sum_{k=1}^{q_{n}}\bigg{\{}-\frac{1}{2}(M_{2,k}+\dot{\mathcal{A}}_{k})(\dot{B}_{k,1}-\dot{B}_{k,2})^{2}+M_{2,k}(1+\log(\dot{B}_{k,1}\dot{B}_{k,2}))\\ &\quad+\tilde{\mathcal{B}}_{k}+\frac{M_{1,k}-M_{2,k}}{2}(1-\dot{B}_{k,1}^{2}+\log(\dot{B}_{k,1}^{2}))+\dot{B}_{k,1}\dot{B}_{k,2}\bigg{(}\tilde{\mathcal{A}}_{k}\frac{\dot{\rho}_{k,0}}{\dot{\rho}_{k}}-\tilde{\mathcal{A}}_{k}-M_{2,k}\bigg{)}\bigg{\}}+e_{n}.}\end{split}

For l{1,2}l\in\{1,2\}, let

Fl,k=Ml,k(1+log(B˙k,1B˙k,2))+~k+B˙k,1B˙k,2(𝒜~kρ˙k,0ρ˙k𝒜~kMl,k),{F_{l,k}=M_{l,k}(1+\log(\dot{B}_{k,1}\dot{B}_{k,2}))+\tilde{\mathcal{B}}_{k}+\dot{B}_{k,1}\dot{B}_{k,2}\bigg{(}\tilde{\mathcal{A}}_{k}\frac{\dot{\rho}_{k,0}}{\dot{\rho}_{k}}-\tilde{\mathcal{A}}_{k}-M_{l,k}\bigg{)},}

then we obtain

𝒴1n1k=1qn{12(M1,kM2,k+𝒜~k)(B˙k,1B˙k,2)2+F1,kF2,k}+en.{\mathcal{Y}_{1}\leq n^{-1}\sum_{k=1}^{q_{n}}\bigg{\{}-\frac{1}{2}(M_{1,k}\wedge M_{2,k}+\tilde{\mathcal{A}}_{k})(\dot{B}_{k,1}-\dot{B}_{k,2})^{2}+F_{1,k}\vee F_{2,k}\bigg{\}}+e_{n}.} (3.19)

Let (λik)i=1M1,k(\lambda_{i}^{k})_{i=1}^{M_{1,k}} be all the eigenvalues of GkGkG_{k}G_{k}^{\top}. Then, we have

=i=1M1,k{1+log(B˙k,1B˙k,2)+B˙k,1B˙k,2p=0{(λik)p+1ρ˙k2p+1ρ˙k,0(λik)pρ˙k2p}+p=1(λik)p2p(ρ˙k2pρ˙k,02p)}.\begin{split}{F_{1,k}&=\sum_{i=1}^{M_{1,k}}\bigg{\{}1+\log(\dot{B}_{k,1}\dot{B}_{k,2})+\dot{B}_{k,1}\dot{B}_{k,2}\sum_{p=0}^{\infty}\big{\{}(\lambda_{i}^{k})^{p+1}\dot{\rho}_{k}^{2p+1}\dot{\rho}_{k,0}-(\lambda_{i}^{k})^{p}\dot{\rho}_{k}^{2p}\big{\}}+\sum_{p=1}^{\infty}\frac{(\lambda_{i}^{k})^{p}}{2p}(\dot{\rho}_{k}^{2p}-\dot{\rho}_{k,0}^{2p})\bigg{\}}.}\end{split}

Moreover, by setting gik=1λikρ˙k2g_{i}^{k}=\sqrt{1-\lambda_{i}^{k}\dot{\rho}_{k}^{2}}, gi,0k=1λikρ˙k,02g_{i,0}^{k}=\sqrt{1-\lambda_{i}^{k}\dot{\rho}_{k,0}^{2}}, and F(x)=1x+logxF(x)=1-x+\log x, we have

F1,k=i=1M1,k{1+B˙k,1B˙k,2(gik)2(λikρ˙kρ˙k,01)+log(B˙k,1B˙k,2gi,0k(gik)1)}=i=1M1,k{B˙k,1B˙k,2(gik)2(λikρ˙kρ˙k,01)+B˙k,1B˙k,2gi,0k(gik)1+F(B˙k,1B˙k,2gi,0k(gik)1)}.\begin{split}{F_{1,k}&=\sum_{i=1}^{M_{1,k}}\Big{\{}1+\dot{B}_{k,1}\dot{B}_{k,2}(g_{i}^{k})^{-2}(\lambda_{i}^{k}\dot{\rho}_{k}\dot{\rho}_{k,0}-1)+\log(\dot{B}_{k,1}\dot{B}_{k,2}g_{i,0}^{k}(g_{i}^{k})^{-1})\Big{\}}\\ &=\sum_{i=1}^{M_{1,k}}\Big{\{}\dot{B}_{k,1}\dot{B}_{k,2}(g_{i}^{k})^{-2}(\lambda_{i}^{k}\dot{\rho}_{k}\dot{\rho}_{k,0}-1)+\dot{B}_{k,1}\dot{B}_{k,2}g_{i,0}^{k}(g_{i}^{k})^{-1}+F(\dot{B}_{k,1}\dot{B}_{k,2}g_{i,0}^{k}(g_{i}^{k})^{-1})\Big{\}}.}\end{split}

Let

=supt,σ,k(|σkΣ||σkΣ1|).{\mathcal{R}=\sup_{t,\sigma,k}(|\partial_{\sigma}^{k}\Sigma|\vee|\partial_{\sigma}^{k}\Sigma^{-1}|).}

Since gik1g_{i}^{k}\leq 1, 0λik10\leq\lambda_{i}^{k}\leq 1, and |ρ˙k|1|\dot{\rho}_{k}|\leq 1, we have

(gik)2(λikρ˙kρ˙k,01)=(λikρ˙kρ˙k,01)2(gi,0k)2(gik)2(gik)2(1λikρ˙kρ˙k,0+gi,0kgik)=λik(ρ˙kρ˙k,0)2(gik)2(1λikρ˙kρ˙k,0+gi,0kgik)λik3(ρ˙kρ˙k,0)2.\begin{split}{(g_{i}^{k})^{-2}(\lambda_{i}^{k}\dot{\rho}_{k}\dot{\rho}_{k,0}-1)&=-\frac{(\lambda_{i}^{k}\dot{\rho}_{k}\dot{\rho}_{k,0}-1)^{2}-(g_{i,0}^{k})^{2}(g_{i}^{k})^{2}}{(g_{i}^{k})^{2}(1-\lambda_{i}^{k}\dot{\rho}_{k}\dot{\rho}_{k,0}+g_{i,0}^{k}g_{i}^{k})}\\ &=-\frac{\lambda_{i}^{k}(\dot{\rho}_{k}-\dot{\rho}_{k,0})^{2}}{(g_{i}^{k})^{2}(1-\lambda_{i}^{k}\dot{\rho}_{k}\dot{\rho}_{k,0}+g_{i,0}^{k}g_{i}^{k})}\\ &\leq-\frac{\lambda_{i}^{k}}{3}(\dot{\rho}_{k}-\dot{\rho}_{k,0})^{2}.}\end{split}

Together with Lemma 11 in [16] and

B˙k,1B˙k,2gi,0k(gik)1141ρ¯n2,{\dot{B}_{k,1}\dot{B}_{k,2}g_{i,0}^{k}(g_{i}^{k})^{-1}-1\leq\frac{\mathcal{R}^{4}}{\sqrt{1-\bar{\rho}_{n}^{2}}},}

we have

F1,ki=1M1,k{B˙k,1B˙k,23λik(ρ˙kρ˙k,0)21ρ¯n248(B˙k,1B˙k,2gi,0k(gik)11)2}.{F_{1,k}\leq\sum_{i=1}^{M_{1,k}}\bigg{\{}-\frac{\dot{B}_{k,1}\dot{B}_{k,2}}{3}\lambda_{i}^{k}(\dot{\rho}_{k}-\dot{\rho}_{k,0})^{2}-\frac{1-\bar{\rho}_{n}^{2}}{4\mathcal{R}^{8}}(\dot{B}_{k,1}\dot{B}_{k,2}g_{i,0}^{k}(g_{i}^{k})^{-1}-1)^{2}\bigg{\}}.}

Moreover, since

(B˙k,1B˙k,2gi,0k(gik)11)2(B˙k,1B˙k,2gi,0kgik)2(gi,0k)22(B˙k,1B˙k,21)2(gikgi,0k)2=1ρ¯n22(B˙k,1B˙k,21)2(λik)2(ρ˙kρ˙k,0)2(ρ˙k+ρ˙k,0)2(gik+gi,0k)21ρ¯n22(B˙k,1B˙k,21)2λik1ρ¯n2(ρ˙kρ˙k,0)2,\begin{split}{(\dot{B}_{k,1}\dot{B}_{k,2}g_{i,0}^{k}(g_{i}^{k})^{-1}-1)^{2}&\geq(\dot{B}_{k,1}\dot{B}_{k,2}g_{i,0}^{k}-g_{i}^{k})^{2}\\ &\geq\frac{(g_{i,0}^{k})^{2}}{2}(\dot{B}_{k,1}\dot{B}_{k,2}-1)^{2}-(g_{i}^{k}-g_{i,0}^{k})^{2}\\ &=\frac{1-\bar{\rho}_{n}^{2}}{2}(\dot{B}_{k,1}\dot{B}_{k,2}-1)^{2}-\frac{(\lambda_{i}^{k})^{2}(\dot{\rho}_{k}-\dot{\rho}_{k,0})^{2}(\dot{\rho}_{k}+\dot{\rho}_{k,0})^{2}}{(g_{i}^{k}+g_{i,0}^{k})^{2}}\\ &\geq\frac{1-\bar{\rho}_{n}^{2}}{2}(\dot{B}_{k,1}\dot{B}_{k,2}-1)^{2}-\frac{\lambda_{i}^{k}}{1-\bar{\rho}_{n}^{2}}(\dot{\rho}_{k}-\dot{\rho}_{k,0})^{2},}\end{split}

we have

F1,ki=1M1,k{B˙k,1B˙k,23λik(ρ˙kρ˙k,0)2(1ρ¯n2)288(B˙k,1B˙k,21)2+λik48(ρ˙kρ˙k,0)2}=(B˙k,1B˙k,23148)𝒜˙k,11(ρ˙kρ˙k,0)2(1ρ¯n2)288M1,k(B˙k,1B˙k,21)2.\begin{split}{F_{1,k}&\leq\sum_{i=1}^{M_{1,k}}\bigg{\{}-\frac{\dot{B}_{k,1}\dot{B}_{k,2}}{3}\lambda_{i}^{k}(\dot{\rho}_{k}-\dot{\rho}_{k,0})^{2}-\frac{(1-\bar{\rho}_{n}^{2})^{2}}{8\mathcal{R}^{8}}(\dot{B}_{k,1}\dot{B}_{k,2}-1)^{2}+\frac{\lambda_{i}^{k}}{4\mathcal{R}^{8}}(\dot{\rho}_{k}-\dot{\rho}_{k,0})^{2}\bigg{\}}\\ &=-\bigg{(}\frac{\dot{B}_{k,1}\dot{B}_{k,2}}{3}-\frac{1}{4\mathcal{R}^{8}}\bigg{)}\dot{\mathcal{A}}_{k,1}^{1}(\dot{\rho}_{k}-\dot{\rho}_{k,0})^{2}-\frac{(1-\bar{\rho}_{n}^{2})^{2}}{8\mathcal{R}^{8}}M_{1,k}(\dot{B}_{k,1}\dot{B}_{k,2}-1)^{2}.}\end{split}

By a similar argument for F2,kF_{2,k}, there exists a positive random variable χ\chi which does not depend on kk nor nn such that

F1,kF2,kχ{𝒜˙k,11(ρ˙kρ˙k,0)2+M1,kM2,k(B˙k,1B˙k,21)2}.{F_{1,k}\vee F_{2,k}\leq-\chi\big{\{}\dot{\mathcal{A}}_{k,1}^{1}(\dot{\rho}_{k}-\dot{\rho}_{k,0})^{2}+M_{1,k}\wedge M_{2,k}(\dot{B}_{k,1}\dot{B}_{k,2}-1)^{2}\big{\}}.}

Together with (3.19), we have

𝒴1,nn1k=1qn{12(M1,kM2,k)(B˙k,1B˙k,2)2χ{𝒜˙k,11(ρ˙kρ˙k,0)2+M1,kM2,k(B˙k,1B˙k,21)2}}.\begin{split}{\mathcal{Y}_{1,n}\leq n^{-1}\sum_{k=1}^{q_{n}}\bigg{\{}-\frac{1}{2}(M_{1,k}\wedge M_{2,k})(\dot{B}_{k,1}-\dot{B}_{k,2})^{2}-\chi\big{\{}\dot{\mathcal{A}}_{k,1}^{1}(\dot{\rho}_{k}-\dot{\rho}_{k,0})^{2}+M_{1,k}\wedge M_{2,k}(\dot{B}_{k,1}\dot{B}_{k,2}-1)^{2}\big{\}}\bigg{\}}.}\end{split}

By letting nn\to\infty, (A4) and (A6) yield the conclusion.

(A6) and Remark 4 in [16] yield that

lim supT1T0T{|B1,tB2,t|2+|B1,tB2,t1|2+ρtρt,02}𝑑t>0,{\limsup_{T\to\infty}\frac{1}{T}\int_{0}^{T}\big{\{}|B_{1,t}-B_{2,t}|^{2}+|B_{1,t}B_{2,t}-1|^{2}+\lVert\rho_{t}-\rho_{t,0}\rVert^{2}\big{\}}dt>0,}

when σσ0\sigma\neq\sigma_{0}.

Then, by Proposition 3.2, we have 𝒴1(σ)<0\mathcal{Y}_{1}(\sigma)<0. Therefore, for any ϵ,δ>0\epsilon,\delta>0, there exists η>0\eta>0 such that

P(inf|σσ0|δ(𝒴1(σ))<η)<ϵ2.{P\bigg{(}\inf_{|\sigma-\sigma_{0}|\geq\delta}(-\mathcal{Y}_{1}(\sigma))<\eta\bigg{)}<\frac{\epsilon}{2}.}

Then, since Hn1(σ^n)Hn1(σ0)0H_{n}^{1}(\hat{\sigma}_{n})-H_{n}^{1}(\sigma_{0})\geq 0 by the definition, we have

P(|σ^nσ0|δ)P(inf|σσ0|δ(𝒴1(σ))<η)+P(supσ|n1(Hn1(σ)Hn1(σ0))1(σ)|η)<η{P(|\hat{\sigma}_{n}-\sigma_{0}|\geq\delta)\leq P\bigg{(}\inf_{|\sigma-\sigma_{0}|\geq\delta}(-\mathcal{Y}_{1}(\sigma))<\eta\bigg{)}+P\bigg{(}\sup_{\sigma}|n^{-1}(H_{n}^{1}(\sigma)-H_{n}^{1}(\sigma_{0}))-\mathcal{F}_{1}(\sigma)|\geq\eta\bigg{)}<\eta} (3.20)

by Proposition 3.1, which implies σ^n𝑃σ0\hat{\sigma}_{n}\overset{P}{\to}\sigma_{0} as nn\to\infty.

3.3 Asymptotic normality of σ^n\hat{\sigma}_{n}

Let Sn,0=Sn(σ0)S_{n,0}=S_{n}(\sigma_{0}) and Σt,0=Σt(σ0)\Sigma_{t,0}=\Sigma_{t}(\sigma_{0}). (3.9) implies

σHn1(σ0)=12(ΔXc)σSn,01ΔXc12tr(σSn,0Sn,01)+op(n)=12tr(σSn,01(ΔXc(ΔXc)Sn,0))+op(n).\begin{split}{\partial_{\sigma}H_{n}^{1}(\sigma_{0})&=-\frac{1}{2}(\Delta X^{c})^{\top}\partial_{\sigma}S_{n,0}^{-1}\Delta X^{c}-\frac{1}{2}{\rm tr}(\partial_{\sigma}S_{n,0}S_{n,0}^{-1})+o_{p}(\sqrt{n})\\ &=-\frac{1}{2}{\rm tr}(\partial_{\sigma}S_{n,0}^{-1}(\Delta X^{c}(\Delta X^{c})^{\top}-S_{n,0}))+o_{p}(\sqrt{n}).}\end{split} (3.21)

Let (Ln)n(L_{n})_{n\in\mathbb{N}} be a sequence of positive integers such that LnL_{n}\to\infty and Ln(nhn)10L_{n}(nh_{n})^{-1}\to 0 as nn\to\infty. Let sˇk=kTn/Ln\check{s}_{k}=kT_{n}/L_{n} for 0kLn0\leq k\leq L_{n}, let Jk=(sˇk1,sˇk]J^{k}=(\check{s}_{k-1},\check{s}_{k}], and let Sn,0(k)S_{n,0}^{(k)} be an M×MM\times M matrix satisfying

[Sn,0(k)]ij=IiIjJk[Σt,0]ij𝑑t.{[S_{n,0}^{(k)}]_{ij}=\int_{I_{i}\cap I_{j}\cap J_{k}}[\Sigma_{t,0}]_{ij}dt.}

For a two-dimensional stochastic process (Ut)t0=((Ut1,Ut2))t0(U_{t})_{t\geq 0}=((U_{t}^{1},U_{t}^{2}))_{t\geq 0}, let Δi,tl,(k)U=U(Sin,lsˇk1)sˇktlU(Si1n,ksˇk1)sˇktl\Delta_{i,t}^{l,(k)}U=U^{l}_{(S^{n,l}_{i}\vee\check{s}_{k-1})\wedge\check{s}_{k}\wedge t}-U^{l}_{(S^{n,k}_{i-1}\vee\check{s}_{k-1})\wedge\check{s}_{k}\wedge t}, and let Δi,t(k)U=Δφ(i),tψ(i),(k)U\Delta_{i,t}^{(k)}U=\Delta_{\varphi(i),t}^{\psi(i),(k)}U for 1iM1\leq i\leq M. Let Δi(k)U=Δi,Tn(k)U\Delta_{i}^{(k)}U=\Delta_{i,T_{n}}^{(k)}U, and let Δ(k)U=(Δi(k)U)1iM\Delta^{(k)}U=(\Delta_{i}^{(k)}U)_{1\leq i\leq M}.

Let

𝒳k=12n{(Δ(k)Xc)σSn,01Δ(k)Xctr(σSn,01S0(k))}1nk<k(Δ(k)Xc)σSn,01Δ(k)Xc.{\mathcal{X}_{k}=-\frac{1}{2\sqrt{n}}\big{\{}(\Delta^{(k)}X^{c})^{\top}\partial_{\sigma}S_{n,0}^{-1}\Delta^{(k)}X^{c}-{\rm tr}(\partial_{\sigma}S_{n,0}^{-1}S_{0}^{(k)})\big{\}}-\frac{1}{\sqrt{n}}\sum_{k^{\prime}<k}(\Delta^{(k)}X^{c})^{\top}\partial_{\sigma}S_{n,0}^{-1}\Delta^{(k^{\prime})}X^{c}.}

Then since ΔXc=k=1LnΔ(k)Xc\Delta X^{c}=\sum_{k=1}^{L_{n}}\Delta^{(k)}X^{c} and Sn,0=k=1LnSn,0(k)S_{n,0}=\sum_{k=1}^{L_{n}}S_{n,0}^{(k)}, (3.21) yields

n1/2σHn1(σ0)=k=1Ln𝒳k+op(1).{n^{-1/2}\partial_{\sigma}H_{n}^{1}(\sigma_{0})=\sum_{k=1}^{L_{n}}\mathcal{X}_{k}+o_{p}(1).} (3.22)

Moreover, Itô’s formula yields

n𝒳k=12i,j[σSn,01]ij{2IiJkΔj,t(k)Xc𝑑Xtc,ψ(i)+2k<kIiJkΔj(k)Xc𝑑Xtc,ψ(i)}=i,j[σSn,01]ijIiJkΔj,tXc𝑑Xtc,ψ(i).\begin{split}{\sqrt{n}\mathcal{X}_{k}&=-\frac{1}{2}\sum_{i,j}[\partial_{\sigma}S_{n,0}^{-1}]_{ij}\bigg{\{}2\int_{I_{i}\cap J^{k}}\Delta_{j,t}^{(k)}X^{c}dX_{t}^{c,\psi(i)}+2\sum_{k^{\prime}<k}\int_{I_{i}\cap J^{k}}\Delta_{j}^{(k^{\prime})}X^{c}dX_{t}^{c,\psi(i)}\bigg{\}}\\ &=-\sum_{i,j}[\partial_{\sigma}S_{n,0}^{-1}]_{ij}\int_{I_{i}\cap J^{k}}\Delta_{j,t}X^{c}dX_{t}^{c,\psi(i)}.}\end{split} (3.23)

Let 𝒢t=tσ({Πn}n)\mathcal{G}_{t}=\mathcal{F}_{t}\bigvee\sigma(\{\Pi_{n}\}_{n}) for t0t\geq 0. We will show

n1/2σHn1(σ0)𝑑N(0,Γ1),{n^{-1/2}\partial_{\sigma}H_{n}^{1}(\sigma_{0})\overset{d}{\to}N(0,\Gamma_{1}),} (3.24)

by using Corollary 3.1 and the remark after that in Hall and Heyde [5]. For this purpose, it is sufficient to show

k=1LnEk[𝒳k2]𝑃Γ1,{\sum_{k=1}^{L_{n}}E_{k}[\mathcal{X}_{k}^{2}]\overset{P}{\to}\Gamma_{1},} (3.25)

and

k=1LnEk[𝒳k4]𝑃0,{\sum_{k=1}^{L_{n}}E_{k}[\mathcal{X}_{k}^{4}]\overset{P}{\to}0,} (3.26)

by (3.22), where EkE_{k} denotes the conditional expectation with respect to 𝒢sˇk1\mathcal{G}_{\check{s}_{k-1}}.

We first show some auxiliary lemmas. Let M~k=#{i;1iM,supIiJk}\tilde{M}_{k}=\#\{i;1\leq i\leq M,\sup I_{i}\in J_{k}\}.

Lemma 3.5.

Assume (A1). Then, there exists a positive constant CC such that 𝒟1/2Sn,0(k)𝒟1/2C\lVert\mathcal{D}^{-1/2}S_{n,0}^{(k)}\mathcal{D}^{-1/2}\rVert\leq C and tr(𝒟1/2Sn,0(k)𝒟1/2)C(M~k+1){\rm tr}(\mathcal{D}^{-1/2}S_{n,0}^{(k)}\mathcal{D}^{-1/2})\leq C(\tilde{M}_{k}+1) for any 1kLn1\leq k\leq L_{n}.

Proof.

Since

[Sn,0(k)]ijC[𝒟1/2(M1GGM2)𝒟1/2]ij,{[S_{n,0}^{(k)}]_{ij}\leq C\bigg{[}\mathcal{D}^{1/2}\left(\begin{array}[]{cc}\mathcal{E}_{M_{1}}&G\\ G^{\top}&\mathcal{E}_{M_{2}}\end{array}\right)\mathcal{D}^{1/2}\bigg{]}_{ij},}

Lemma 3.1 yields

𝒟1/2Sn,0(k)𝒟1/2C(M1GGM2)C.{\lVert\mathcal{D}^{-1/2}S_{n,0}^{(k)}\mathcal{D}^{-1/2}\rVert\leq C\bigg{\lVert}\left(\begin{array}[]{cc}\mathcal{E}_{M_{1}}&G\\ G^{\top}&\mathcal{E}_{M_{2}}\end{array}\right)\bigg{\rVert}\leq C.}

Moreover, we have

tr(𝒟1/2Sn,0(k)𝒟1/2)=i=1MIiJk[Σt,0]ψ(i),ψ(i)𝑑t|Ii|Ci=1M1{i;IiJk}C(M~k+1).{{\rm tr}(\mathcal{D}^{-1/2}S_{n,0}^{(k)}\mathcal{D}^{-1/2})=\sum_{i=1}^{M}\frac{\int_{I_{i}\cap J^{k}}[\Sigma_{t,0}]_{\psi(i),\psi(i)}dt}{|I_{i}|}\leq C\sum_{i=1}^{M}1_{\{i;I_{i}\cap J^{k}\neq\emptyset\}}\leq C(\tilde{M}_{k}+1).}

Lemma 3.6.

Assume (A4) and that nhnLn1nh_{n}L_{n}^{-1}\to\infty as nn\to\infty. Then, {Lnn1max1kLnM~k}n=1\{L_{n}n^{-1}\max_{1\leq k\leq L_{n}}\tilde{M}_{k}\}_{n=1}^{\infty} is PP-tight.

Proof.

Let n=[nhnLn1]\mathcal{M}_{n}=[nh_{n}L_{n}^{-1}]. We define a partition of [0,)[0,\infty) by

sj=nhnj2Lnn(0j2Lnn).{s_{j}=\frac{nh_{n}j}{2L_{n}\mathcal{M}_{n}}\quad(0\leq j\leq 2L_{n}\mathcal{M}_{n}).}

Then, (sj)j=0𝔖(s_{j})_{j=0}^{\infty}\in\mathfrak{S} when nhnLn11nh_{n}L_{n}^{-1}\geq 1.

For Ml,jM_{l,j} which corresponds to this partition, we have

M~kl=12j=2n(k1)+12nkMl,j,{\tilde{M}_{k}\leq\sum_{l=1}^{2}\sum_{j=2\mathcal{M}_{n}(k-1)+1}^{2\mathcal{M}_{n}k}M_{l,j},}

since nhnkLn1=s2nknh_{n}kL_{n}^{-1}=s_{2\mathcal{M}_{n}k}. Therefore, we obtain

max1kLnM~k4nmaxl,jMl,j4n{hn1(a01a02)+op(hn1)}=Op(nLn1).{\max_{1\leq k\leq L_{n}}\tilde{M}_{k}\leq 4\mathcal{M}_{n}\max_{l,j}M_{l,j}\leq 4\mathcal{M}_{n}\{h_{n}^{-1}(a_{0}^{1}\vee a_{0}^{2})+o_{p}(h_{n}^{-1})\}=O_{p}(nL_{n}^{-1}).}

Lemma 3.7.

Assume (A1). Then,

𝒟~1/2Sn,0(k)σSn,01Sn,0(k)𝒟~1/2C𝒬nρ¯n𝒬n(1ρ¯n)2{\lVert\tilde{\mathcal{D}}^{-1/2}S_{n,0}^{(k)}\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k^{\prime})}\tilde{\mathcal{D}}^{-1/2}\rVert\leq C\frac{\mathcal{Q}_{n}\bar{\rho}_{n}^{\mathcal{Q}_{n}}}{(1-\bar{\rho}_{n})^{2}}}

on {ρ¯n<1}\{\bar{\rho}_{n}<1\} for |kk|>1|k-k^{\prime}|>1, where 𝒬n=[rn1(Tn/Ln2rn)]\mathcal{Q}_{n}=[r_{n}^{-1}(T_{n}/L_{n}-2r_{n})].

Proof.

By using the expansion formula (3.3), we have

Sn,0(k)σSn,01Sn,0(k)=Sn,0(k)Sn,01σSn,0Sn,01Sn,0(k)=Sn,0(k)𝒟~1/2p=0(1)p(0G~G~0)p𝒟~1/2σSn,0𝒟~1/2q=0(1)q(0G~G~0)q𝒟~1/2Sn,0(k)=p,q=0(1)p+q+1Sn,0(k)𝒟~1/2(0G~G~0)p𝒟~1/2σSn,0𝒟~1/2(0G~G~0)q𝒟~1/2Sn,0(k).\begin{split}{S_{n,0}^{(k)}\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k^{\prime})}&=-S_{n,0}^{(k)}S_{n,0}^{-1}\partial_{\sigma}S_{n,0}S_{n,0}^{-1}S_{n,0}^{(k^{\prime})}\\ &=-S_{n,0}^{(k)}\tilde{\mathcal{D}}^{-1/2}\sum_{p=0}^{\infty}(-1)^{p}\left(\begin{array}[]{cc}0&\tilde{G}\\ \tilde{G}^{\top}&0\end{array}\right)^{p}\tilde{\mathcal{D}}^{-1/2}\partial_{\sigma}S_{n,0}\tilde{\mathcal{D}}^{-1/2}\sum_{q=0}^{\infty}(-1)^{q}\left(\begin{array}[]{cc}0&\tilde{G}\\ \tilde{G}^{\top}&0\end{array}\right)^{q}\tilde{\mathcal{D}}^{-1/2}S_{n,0}^{(k^{\prime})}\\ &=-\sum_{p,q=0}^{\infty}(-1)^{p+q+1}S_{n,0}^{(k)}\tilde{\mathcal{D}}^{-1/2}\left(\begin{array}[]{cc}0&\tilde{G}\\ \tilde{G}^{\top}&0\end{array}\right)^{p}\tilde{\mathcal{D}}^{-1/2}\partial_{\sigma}S_{n,0}\tilde{\mathcal{D}}^{-1/2}\left(\begin{array}[]{cc}0&\tilde{G}\\ \tilde{G}^{\top}&0\end{array}\right)^{q}\tilde{\mathcal{D}}^{-1/2}S_{n,0}^{(k^{\prime})}.}\end{split} (3.27)

The element

[𝒟~1/2(0G~G~0)p𝒟~1/2σSn,0𝒟~1/2(0G~G~0)q𝒟~1/2]ij{\bigg{[}\tilde{\mathcal{D}}^{-1/2}\left(\begin{array}[]{cc}0&\tilde{G}\\ \tilde{G}^{\top}&0\end{array}\right)^{p}\tilde{\mathcal{D}}^{-1/2}\partial_{\sigma}S_{n,0}\tilde{\mathcal{D}}^{-1/2}\left(\begin{array}[]{cc}0&\tilde{G}\\ \tilde{G}^{\top}&0\end{array}\right)^{q}\tilde{\mathcal{D}}^{-1/2}\bigg{]}_{ij}} (3.28)

is equal to zero if [S¯p+q+1]ij=0[\bar{S}^{p+q+1}]_{ij}=0. Moreover, [Sn,0(k)]ii0[S_{n,0}^{(k)}]_{i^{\prime}i}\neq 0 only if IiJkI_{i}\cap J^{k}\neq\emptyset, and [Sn,0(k)]jj0[S_{n,0}^{(k^{\prime})}]_{jj^{\prime}}\neq 0 only if IjJkI_{j}\cap J^{k^{\prime}}\neq\emptyset. Since infxIi,yIj|xy|>Tn/Ln2rn\inf_{x\in I_{i},y\in I_{j}}|x-y|>T_{n}/L_{n}-2r_{n} if IiJkI_{i}\cap J^{k}\neq\emptyset and IjJkI_{j}\cap J^{k^{\prime}}\neq\emptyset, we have [S¯r]ij=0[\bar{S}^{r}]_{ij}=0 for r𝒬nr\leq\mathcal{Q}_{n} in this case.

Therefore, all the elements (3.28) are zero if p+q+1𝒬np+q+1\leq\mathcal{Q}_{n}. Then, (3.27) and Lemmas 3.23.3 and 3.5 yield

&𝒟~1/2Sn,0(k)σSn,01Sn,0k𝒟~1/2p=0q=(𝒬np)0𝒟~1/2Sn,0(k)𝒟~1/2(0G~G~0)p𝒟~1/2σSn,0𝒟~1/2(0G~G~0)q𝒟~1/2Sn,0(k)𝒟~1/2Cp=0q=(𝒬np)0ρ¯np+q=C𝒬nρ¯n𝒬n+ρ¯n𝒬n(1ρ¯n)11ρ¯nC𝒬nρ¯n𝒬n(1ρ¯n)2\begin{split}{&\lVert\tilde{\mathcal{D}}^{-1/2}S_{n,0}^{(k)}\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{k^{\prime}}\tilde{\mathcal{D}}^{-1/2}\rVert\\ &\quad\leq\sum_{p=0}^{\infty}\sum_{q=(\mathcal{Q}_{n}-p)\vee 0}^{\infty}\bigg{\lVert}\tilde{\mathcal{D}}^{-1/2}S_{n,0}^{(k)}\tilde{\mathcal{D}}^{-1/2}\left(\begin{array}[]{cc}0&\tilde{G}\\ \tilde{G}^{\top}&0\end{array}\right)^{p}\tilde{\mathcal{D}}^{-1/2}\partial_{\sigma}S_{n,0}\tilde{\mathcal{D}}^{-1/2}\left(\begin{array}[]{cc}0&\tilde{G}\\ \tilde{G}^{\top}&0\end{array}\right)^{q}\tilde{\mathcal{D}}^{-1/2}S_{n,0}^{(k^{\prime})}\tilde{\mathcal{D}}^{-1/2}\bigg{\rVert}\\ &\quad\leq C\sum_{p=0}^{\infty}\sum_{q=(\mathcal{Q}_{n}-p)\vee 0}^{\infty}\bar{\rho}_{n}^{p+q}=C\frac{\mathcal{Q}_{n}\bar{\rho}_{n}^{\mathcal{Q}_{n}}+\bar{\rho}_{n}^{\mathcal{Q}_{n}}(1-\bar{\rho}_{n})^{-1}}{1-\bar{\rho}_{n}}\\ &\quad\leq C\frac{\mathcal{Q}_{n}\bar{\rho}_{n}^{\mathcal{Q}_{n}}}{(1-\bar{\rho}_{n})^{2}}}\end{split}

on {ρ¯n<1}\{\bar{\rho}_{n}<1\}. ∎

Proposition 3.3.

Assume (A1)–(A4) and (A6). Then,

n1/2σHn1(σ0)𝑑N(0,Γ1),{n^{-1/2}\partial_{\sigma}H_{n}^{1}(\sigma_{0})\overset{d}{\to}N(0,\Gamma_{1}),}

as nn\to\infty.

Proof.

It is sufficient to show (3.25) and (3.26). Let 𝔄k=(Δ(k)Xc)σSn,01Δ(k)Xc\mathfrak{A}_{k}=(\Delta^{(k)}X^{c})^{\top}\partial_{\sigma}S_{n,0}^{-1}\Delta^{(k)}X^{c} and 𝔅k=σSn,01Sn,0(k)\mathfrak{B}_{k}=\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k)}. By the definition of 𝒳k\mathcal{X}_{k}, we have

&k=1LnEk[𝒳k4]Cn2k=1Ln{Ek[{(Δ(k)Xc)σSn,01Δ(k)Xctr(σSn,01Sn,0(k))}4]+Ek[(k<k(Δ(k)Xc)σSn,01Δ(k)Xc)4]}=Cn2k=1Ln{Ek[𝔄k4]4Ek[𝔄k3]tr(𝔅k)+6Ek[𝔄k2]tr(𝔅k)24tr(𝔅k)4+tr(𝔅k)4}+Cn2k=1Ln{(k<kΔ(k)Xc)σSn,01Sn,0(k)σSn,01(k<kΔ(k)Xc)}2.\begin{split}{&\sum_{k=1}^{L_{n}}E_{k}[\mathcal{X}_{k}^{4}]\\ &\quad\leq\frac{C}{n^{2}}\sum_{k=1}^{L_{n}}\bigg{\{}E_{k}\big{[}\big{\{}(\Delta^{(k)}X^{c})^{\top}\partial_{\sigma}S_{n,0}^{-1}\Delta^{(k)}X^{c}-{\rm tr}(\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k)})\big{\}}^{4}\big{]}+E_{k}\bigg{[}\bigg{(}\sum_{k^{\prime}<k}(\Delta^{(k)}X^{c})^{\top}\partial_{\sigma}S_{n,0}^{-1}\Delta^{(k^{\prime})}X^{c}\bigg{)}^{4}\bigg{]}\bigg{\}}\\ &\quad=\frac{C}{n^{2}}\sum_{k=1}^{L_{n}}\Big{\{}E_{k}[\mathfrak{A}_{k}^{4}]-4E_{k}[\mathfrak{A}_{k}^{3}]{\rm tr}(\mathfrak{B}_{k})+6E_{k}[\mathfrak{A}_{k}^{2}]{\rm tr}(\mathfrak{B}_{k})^{2}-4{\rm tr}(\mathfrak{B}_{k})^{4}+{\rm tr}(\mathfrak{B}_{k})^{4}\Big{\}}\\ &\quad\quad+\frac{C}{n^{2}}\sum_{k=1}^{L_{n}}\bigg{\{}\bigg{(}\sum_{k^{\prime}<k}\Delta^{(k^{\prime})}X^{c}\bigg{)}^{\top}\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k)}\partial_{\sigma}S_{n,0}^{-1}\bigg{(}\sum_{k^{\prime}<k}\Delta^{(k^{\prime})}X^{c}\bigg{)}\bigg{\}}^{2}.}\end{split}

Thanks to Lemmas A.13.6 and 3.3, the first term in the right-hand side is calculated as

&Cn2k=1Ln{tr(𝔅k)4+12tr(𝔅k)2tr(𝔅k2)+12tr(𝔅k2)2+32tr(𝔅k)tr(𝔅k3)+48tr(𝔅k4)4tr(𝔅k){tr(𝔅k)3+6tr(𝔅k)tr(𝔅k2)+8tr(𝔅k3)}+6tr(𝔅k)2{tr(𝔅k)2+2tr(𝔅k2)}3tr(𝔅k)4}=Cn2k=1Ln{48tr(𝔅k4)+12tr(𝔅k2)2}Cn2(maxkM~k+1)2Ln(1ρ¯n)41{ρ¯n<1}+op(1)0.\begin{split}{&\frac{C}{n^{2}}\sum_{k=1}^{L_{n}}\Big{\{}{\rm tr}(\mathfrak{B}_{k})^{4}+12{\rm tr}(\mathfrak{B}_{k})^{2}{\rm tr}(\mathfrak{B}_{k}^{2})+12{\rm tr}(\mathfrak{B}_{k}^{2})^{2}+32{\rm tr}(\mathfrak{B}_{k}){\rm tr}(\mathfrak{B}_{k}^{3})+48{\rm tr}(\mathfrak{B}_{k}^{4})\\ &\qquad\qquad-4{\rm tr}(\mathfrak{B}_{k})\big{\{}{\rm tr}(\mathfrak{B}_{k})^{3}+6{\rm tr}(\mathfrak{B}_{k}){\rm tr}(\mathfrak{B}_{k}^{2})+8{\rm tr}(\mathfrak{B}_{k}^{3})\big{\}}+6{\rm tr}(\mathfrak{B}_{k})^{2}\big{\{}{\rm tr}(\mathfrak{B}_{k})^{2}+2{\rm tr}(\mathfrak{B}_{k}^{2})\big{\}}-3{\rm tr}(\mathfrak{B}_{k})^{4}\Big{\}}\\ &\quad=\frac{C}{n^{2}}\sum_{k=1}^{L_{n}}\big{\{}48{\rm tr}(\mathfrak{B}_{k}^{4})+12{\rm tr}(\mathfrak{B}_{k}^{2})^{2}\big{\}}\\ &\quad\leq\frac{C}{n^{2}}(\max_{k}\tilde{M}_{k}+1)^{2}L_{n}(1-\bar{\rho}_{n})^{-4}1_{\{\bar{\rho}_{n}<1\}}+o_{p}(1)\to 0.}\end{split}

Moreover, Lemmas 3.3,  3.53.7 and A.1 yield

&EΠ[Cn2k=1Ln{(k<kΔ(k)Xc)σSn,01Sn,0(k)σSn,01(k<kΔ(k)Xc)}2]=Cn2k=1Lnk1,k2<k{|tr(σSn,01Sn,0(k)σSn,01Sn,0(k1))tr(σSn,01Sn,0(k)σSn,01Sn,0(k2))|+|tr(σSn,01Sn,0(k)σSn,01Sn,0(k1)σSn,01Sn,0(k)σSn,01Sn,0(k2))|}Cn2k=1Ln{|tr(σSn,01Sn,0(k)σSn,01Sn,0(k1))2|+|tr((σSn,01Sn,0(k)σSn,01Sn,0(k1))2)|}+Cn2Ln3M2𝒬nρ¯n𝒬n(1ρ¯n)21{ρ¯n<1}+op(1)=Op(Lnn2{maxkM~k}2)+op(1)𝑃0\begin{split}{&E_{\Pi}\bigg{[}\frac{C}{n^{2}}\sum_{k=1}^{L_{n}}\bigg{\{}\bigg{(}\sum_{k^{\prime}<k}\Delta^{(k^{\prime})}X^{c}\bigg{)}^{\top}\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k)}\partial_{\sigma}S_{n,0}^{-1}\bigg{(}\sum_{k^{\prime}<k}\Delta^{(k^{\prime})}X^{c}\bigg{)}\bigg{\}}^{2}\bigg{]}\\ &\quad=\frac{C}{n^{2}}\sum_{k=1}^{L_{n}}\sum_{k^{\prime}_{1},k^{\prime}_{2}<k}\big{\{}|{\rm tr}(\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k)}\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k^{\prime}_{1})}){\rm tr}(\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k)}\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k^{\prime}_{2})})|\\ &\quad\quad\qquad\qquad+|{\rm tr}(\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k)}\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k^{\prime}_{1})}\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k)}\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k^{\prime}_{2})})|\big{\}}\\ &\leq\frac{C}{n^{2}}\sum_{k=1}^{L_{n}}\big{\{}|{\rm tr}(\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k)}\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k-1)})^{2}|+|{\rm tr}((\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k)}\partial_{\sigma}S_{n,0}^{-1}S_{n,0}^{(k-1)})^{2})|\big{\}}+\frac{C}{n^{2}}L_{n}^{3}M^{2}\frac{\mathcal{Q}_{n}\bar{\rho}_{n}^{\mathcal{Q}_{n}}}{(1-\bar{\rho}_{n})^{2}}1_{\{\bar{\rho}_{n}<1\}}+o_{p}(1)\\ &=O_{p}\bigg{(}\frac{L_{n}}{n^{2}}\Big{\{}\max_{k}\tilde{M}_{k}\Big{\}}^{2}\bigg{)}+o_{p}(1)\overset{P}{\to}0}\end{split}

as nn\to\infty. Therefore, we have (3.26).

Next, we show (3.25). Let i,jk=IiIjJk\mathcal{I}_{i,j}^{k}=I_{i}\cap I_{j}\cap J^{k}. Then, we obtain

k=1LnEk[𝒳k2]=1nk=1Lni1,j1i2,j2[σSn,01]i1,j1[σSn,01]i2,j2i1,i2k[Σt,0]ψ(i1),ψ(i2)Ek[Δj1,tXcΔj2,tXc]𝑑t=1nk=1Lni1,j1i2,j2[σSn,01]i1,j1[σSn,01]i2,j2i1,i2k[Σt,0]ψ(i1),ψ(i2)Ij1Ij2[0,t)[Σs,0]ψ(j1),ψ(j2)𝑑s𝑑t.\begin{split}{\sum_{k=1}^{L_{n}}E_{k}[\mathcal{X}_{k}^{2}]&=\frac{1}{n}\sum_{k=1}^{L_{n}}\sum_{i_{1},j_{1}}\sum_{i_{2},j_{2}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{1},j_{1}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{2},j_{2}}\int_{\mathcal{I}_{i_{1},i_{2}}^{k}}[\Sigma_{t,0}]_{\psi(i_{1}),\psi(i_{2})}E_{k}[\Delta_{j_{1},t}X^{c}\Delta_{j_{2},t}X^{c}]dt\\ &=\frac{1}{n}\sum_{k=1}^{L_{n}}\sum_{i_{1},j_{1}}\sum_{i_{2},j_{2}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{1},j_{1}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{2},j_{2}}\int_{\mathcal{I}_{i_{1},i_{2}}^{k}}[\Sigma_{t,0}]_{\psi(i_{1}),\psi(i_{2})}\int_{I_{j_{1}}\cap I_{j_{2}}\cap[0,t)}[\Sigma_{s,0}]_{\psi(j_{1}),\psi(j_{2})}dsdt.}\end{split} (3.29)

We can decompose

i1,i2k[Σt,0]ψ(i1),ψ(i2)Ij1Ij2[0,t)[Σs,0]ψ(j1),ψ(j2)𝑑s𝑑t=0TnFi1,i2k(t)0tFj1,j2k(s)𝑑s𝑑t+k<ki1,i2kj1,j2k,\begin{split}{\int_{\mathcal{I}_{i_{1},i_{2}}^{k}}[\Sigma_{t,0}]_{\psi(i_{1}),\psi(i_{2})}\int_{I_{j_{1}}\cap I_{j_{2}}\cap[0,t)}[\Sigma_{s,0}]_{\psi(j_{1}),\psi(j_{2})}dsdt=\int_{0}^{T_{n}}F_{i_{1},i_{2}}^{k}(t)\int_{0}^{t}F_{j_{1},j_{2}}^{k}(s)dsdt+\sum_{k^{\prime}<k}\mathcal{F}_{i_{1},i_{2}}^{k}\mathcal{F}_{j_{1},j_{2}}^{k^{\prime}},}\end{split}

where Fijk(t)=[Σt,0]ψ(i),ψ(j)1i,jk(t)F_{ij}^{k}(t)=[\Sigma_{t,0}]_{\psi(i),\psi(j)}1_{\mathcal{I}_{i,j}^{k}}(t), and i,jk=0TnFi,jk(t)𝑑t\mathcal{F}_{i,j}^{k}=\int_{0}^{T_{n}}F_{i,j}^{k}(t)dt. Moreover, switching the roles of i1,i2i_{1},i_{2} and j1,j2j_{1},j_{2}, we obtain

&i1,j1i2,j2[σSn,01]i1,j1[σSn,01]i2,j20TnFi1,i2k(t)0tFj1,j2k(s)𝑑s𝑑t=i1,j1i2,j2[σSn,01]i1,j1[σSn,01]i2,j2×12{0TnFi1,i2k(t)0tFj1,j2k(s)𝑑s𝑑t+0TnFj1,j2k(t)0tFi1,i2k(s)𝑑s𝑑t}=12i1,j1i2,j2[σSn,01]i1,j1[σSn,01]i2,j2{0TnFi1,i2k(t)0tFj1,j2k(s)𝑑s𝑑t+0TnFi1,i2k(s)sTnFj1,j2k(t)𝑑t𝑑s}=12i1,j1i2,j2[σSn,01]i1,j1[σSn,01]i2,j2i1,i2kj1,j2k.\begin{split}{&\sum_{i_{1},j_{1}}\sum_{i_{2},j_{2}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{1},j_{1}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{2},j_{2}}\int_{0}^{T_{n}}F_{i_{1},i_{2}}^{k}(t)\int_{0}^{t}F_{j_{1},j_{2}}^{k}(s)dsdt\\ &\quad=\sum_{i_{1},j_{1}}\sum_{i_{2},j_{2}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{1},j_{1}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{2},j_{2}}\times\frac{1}{2}\bigg{\{}\int_{0}^{T_{n}}F_{i_{1},i_{2}}^{k}(t)\int_{0}^{t}F_{j_{1},j_{2}}^{k}(s)dsdt+\int_{0}^{T_{n}}F_{j_{1},j_{2}}^{k}(t)\int_{0}^{t}F_{i_{1},i_{2}}^{k}(s)dsdt\bigg{\}}\\ &\quad=\frac{1}{2}\sum_{i_{1},j_{1}}\sum_{i_{2},j_{2}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{1},j_{1}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{2},j_{2}}\bigg{\{}\int_{0}^{T_{n}}F_{i_{1},i_{2}}^{k}(t)\int_{0}^{t}F_{j_{1},j_{2}}^{k}(s)dsdt+\int_{0}^{T_{n}}F_{i_{1},i_{2}}^{k}(s)\int_{s}^{T_{n}}F_{j_{1},j_{2}}^{k}(t)dtds\bigg{\}}\\ &\quad=\frac{1}{2}\sum_{i_{1},j_{1}}\sum_{i_{2},j_{2}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{1},j_{1}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{2},j_{2}}\mathcal{F}_{i_{1},i_{2}}^{k}\mathcal{F}_{j_{1},j_{2}}^{k}.}\end{split}

Therefore, we have

k=1LnEk[𝒳k2]=12nk=1Lni1,j1i2,j2[σSn,01]i1,j1[σSn,01]i2,j2{i1,i2kj1,j2k+2k<ki1,i2kj1,j2k}=12nk,k=1Lni1,j1i2,j2[σSn,01]i1,j1[σSn,01]i2,j2i1,i2kj1,j2k=12ni1,j1i2,j2[σSn,01]i1,j1[σSn,01]i2,j2Ii1Ii2[Σt,0]ψ(i1),ψ(i2)𝑑tIj1Ij2[Σs,0]ψ(j1),ψ(j2)𝑑s=12ntr((σSn,01Sn,0)2).\begin{split}{\sum_{k=1}^{L_{n}}E_{k}[\mathcal{X}_{k}^{2}]&=\frac{1}{2n}\sum_{k=1}^{L_{n}}\sum_{i_{1},j_{1}}\sum_{i_{2},j_{2}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{1},j_{1}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{2},j_{2}}\bigg{\{}\mathcal{F}_{i_{1},i_{2}}^{k}\mathcal{F}_{j_{1},j_{2}}^{k}+2\sum_{k^{\prime}<k}\mathcal{F}_{i_{1},i_{2}}^{k}\mathcal{F}_{j_{1},j_{2}}^{k^{\prime}}\bigg{\}}\\ &=\frac{1}{2n}\sum_{k,k^{\prime}=1}^{L_{n}}\sum_{i_{1},j_{1}}\sum_{i_{2},j_{2}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{1},j_{1}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{2},j_{2}}\mathcal{F}_{i_{1},i_{2}}^{k}\mathcal{F}_{j_{1},j_{2}}^{k^{\prime}}\\ &=\frac{1}{2n}\sum_{i_{1},j_{1}}\sum_{i_{2},j_{2}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{1},j_{1}}[\partial_{\sigma}S_{n,0}^{-1}]_{i_{2},j_{2}}\int_{I_{i_{1}}\cap I_{i_{2}}}[\Sigma_{t,0}]_{\psi(i_{1}),\psi(i_{2})}dt\int_{I_{j_{1}}\cap I_{j_{2}}}[\Sigma_{s,0}]_{\psi(j_{1}),\psi(j_{2})}ds\\ &=\frac{1}{2n}{\rm tr}((\partial_{\sigma}S_{n,0}^{-1}S_{n,0})^{2}).}\end{split} (3.30)

σSn,01Sn,0\partial_{\sigma}S_{n,0}^{-1}S_{n,0} corresponds to 𝒟^(t)\hat{\mathcal{D}}(t) in the proof (p. 2993) of Proposition 10 of [16]. Then by a similar step to the proof of Proposition 10 in [16], we have (3.25).

Proposition 3.4.

Assume (A1)–(A4) and (A6). Then, Γ1\Gamma_{1} is positive definite and

n(σ^nσ0)𝑑N(0,Γ11){\sqrt{n}(\hat{\sigma}_{n}-\sigma_{0})\overset{d}{\to}N(0,\Gamma_{1}^{-1})}

as nn\to\infty.

Proof.

Proposition 3.2, (A6) and Remark 4 in [16] yield

𝒴1(σ)c|σσ0|2{\mathcal{Y}_{1}(\sigma)\leq-c|\sigma-\sigma_{0}|^{2}}

for some positive constant cc. Therefore, Γ1=σ2𝒴1(σ0)\Gamma_{1}=\partial_{\sigma}^{2}\mathcal{Y}_{1}(\sigma_{0}) is positive definite.

By Taylor’s formula and the equation σHn1(σ^n)=0\partial_{\sigma}H_{n}^{1}(\hat{\sigma}_{n})=0, we have

σHn1(σ0)=σHn1(σ^n)σHn1(σ0)=01σ2Hn1(σt)dt(σ^nσ0)=σ2Hn1(σ0)(σ^nσ0)+(σ^nσ0)01(1t)σ3Hn1(σt)dt(σ^nσ0),\begin{split}{-\partial_{\sigma}H_{n}^{1}(\sigma_{0})&=\partial_{\sigma}H_{n}^{1}(\hat{\sigma}_{n})-\partial_{\sigma}H_{n}^{1}(\sigma_{0})\\ &=\int_{0}^{1}\partial_{\sigma}^{2}H_{n}^{1}(\sigma_{t})dt(\hat{\sigma}_{n}-\sigma_{0})\\ &=\partial_{\sigma}^{2}H_{n}^{1}(\sigma_{0})(\hat{\sigma}_{n}-\sigma_{0})+(\hat{\sigma}_{n}-\sigma_{0})^{\top}\int_{0}^{1}(1-t)\partial_{\sigma}^{3}H_{n}^{1}(\sigma_{t})dt(\hat{\sigma}_{n}-\sigma_{0}),}\end{split}

where σt=tσ^n+(1t)σ0\sigma_{t}=t\hat{\sigma}_{n}+(1-t)\sigma_{0}.

Therefore, we obtain

n(σ^nσ0)={1nσ2Hn1(σ0)1n01(1t)σ3Hn1(σt)dt(σ^nσ0)}11nσHn1(σ0).{\sqrt{n}(\hat{\sigma}_{n}-\sigma_{0})=\bigg{\{}-\frac{1}{n}\partial_{\sigma}^{2}H_{n}^{1}(\sigma_{0})-\frac{1}{n}\int_{0}^{1}(1-t)\partial_{\sigma}^{3}H_{n}^{1}(\sigma_{t})dt(\hat{\sigma}_{n}-\sigma_{0})\bigg{\}}^{-1}\cdot\frac{1}{\sqrt{n}}\partial_{\sigma}H_{n}^{1}(\sigma_{0}).} (3.31)

Since Proposition 3.1 yields

1nσ2Hn1(σ0)𝑃σ2𝒴1(σ0)=Γ1,{-\frac{1}{n}\partial_{\sigma}^{2}H_{n}^{1}(\sigma_{0})\overset{P}{\to}-\partial_{\sigma}^{2}\mathcal{Y}_{1}(\sigma_{0})=\Gamma_{1},}

and Sobolev’s inequality yields that

{supσ|1nσ3Hn1(σ)|}n{\bigg{\{}\sup_{\sigma}\bigg{|}\frac{1}{n}\partial_{\sigma}^{3}H_{n}^{1}(\sigma)\bigg{|}\bigg{\}}_{n}}

is PP-tight, we conclude

n(σ^nσ0)𝑑N(0,Γ11).{\sqrt{n}(\hat{\sigma}_{n}-\sigma_{0})\overset{d}{\to}N(0,\Gamma_{1}^{-1}).} (3.32)

3.4 Consistency of θ^n\hat{\theta}_{n}

Let

𝒴2(θ)=limT1T0Tp=0{12l=12fpllρt,02pϕl,t2+fp12ρt,02p+1ϕ1,tϕ2,t}dt,{\mathcal{Y}_{2}(\theta)=\lim_{T\to\infty}\frac{1}{T}\int_{0}^{T}\sum_{p=0}^{\infty}\bigg{\{}-\frac{1}{2}\sum_{l=1}^{2}f_{p}^{ll}\rho_{t,0}^{2p}\phi_{l,t}^{2}+f_{p}^{12}\rho_{t,0}^{2p+1}\phi_{1,t}\phi_{2,t}\bigg{\}}dt,}

which exists under (A1), (A3) and (A5).

Proposition 3.5.

Assume (A1)–(A6). Then,

supθΘ2|(nhn)1θk(Hn2(θ)Hn2(θ0))θk𝒴2(θ)|𝑃0{\sup_{\theta\in\Theta_{2}}\big{|}(nh_{n})^{-1}\partial_{\theta}^{k}(H_{n}^{2}(\theta)-H_{n}^{2}(\theta_{0}))-\partial_{\theta}^{k}\mathcal{Y}_{2}(\theta)\big{|}\overset{P}{\to}0} (3.33)

as nn\to\infty for k{0,1,2,3}k\in\{0,1,2,3\}.

Proof.

Lemma 3.3 yields

EΠ[(ΔV(θ)σmSn,01ΔXc)2]=i1,j1i2,j2[σmSn,01]i1,j1[σmSn,01]i2,j2Δi1V(θ)Δi2V(θ)EΠ[Δj1XcΔj2Xc]=i1,j1i2,j2[σmSn,01]i1,j1[σmSn,01]i2,j2Δi1V(θ)Δi2V(θ)[Sn,0]j1,j2C|𝒟1/2ΔV(θ)|2𝒟1/2σmSn,01𝒟1/22𝒟1/2Sn,0𝒟1/2C(1ρ¯n)2m2i|Ii|Cnhn(1ρ¯n)2m2\begin{split}{&E_{\Pi}\big{[}(\Delta V(\theta)^{\top}\partial_{\sigma}^{m}S_{n,0}^{-1}\Delta X^{c})^{2}\big{]}\\ &\quad=\sum_{i_{1},j_{1}}\sum_{i_{2},j_{2}}[\partial_{\sigma}^{m}S_{n,0}^{-1}]_{i_{1},j_{1}}[\partial_{\sigma}^{m}S_{n,0}^{-1}]_{i_{2},j_{2}}\Delta_{i_{1}}V(\theta)\Delta_{i_{2}}V(\theta)E_{\Pi}[\Delta_{j_{1}}X^{c}\Delta_{j_{2}}X^{c}]\\ &\quad=\sum_{i_{1},j_{1}}\sum_{i_{2},j_{2}}[\partial_{\sigma}^{m}S_{n,0}^{-1}]_{i_{1},j_{1}}[\partial_{\sigma}^{m}S_{n,0}^{-1}]_{i_{2},j_{2}}\Delta_{i_{1}}V(\theta)\Delta_{i_{2}}V(\theta)[S_{n,0}]_{j_{1},j_{2}}\\ &\quad\leq C|\mathcal{D}^{-1/2}\Delta V(\theta)|^{2}\lVert\mathcal{D}^{1/2}\partial_{\sigma}^{m}S_{n,0}^{-1}\mathcal{D}^{1/2}\rVert^{2}\lVert\mathcal{D}^{-1/2}S_{n,0}\mathcal{D}^{-1/2}\rVert\\ &\quad\leq C(1-\bar{\rho}_{n})^{-2m-2}\sum_{i}|I_{i}|\leq Cnh_{n}(1-\bar{\rho}_{n})^{-2m-2}}\end{split} (3.34)

on {ρ¯n<1}\{\bar{\rho}_{n}<1\}.

Since

EΠ[|𝒟1/2ΔX|2]=iEΠ[|ΔiX|2]|Ii|Cn,{E_{\Pi}[|\mathcal{D}^{-1/2}\Delta X|^{2}]=\sum_{i}\frac{E_{\Pi}[|\Delta_{i}X|^{2}]}{|I_{i}|}\leq Cn,}
X¯(θ)Sn1(σ^n)X¯(θ)ΔXSn1(σ^n)ΔX=ΔV(θ)Sn1(σ^n)(2ΔXΔV(θ)),{\bar{X}(\theta)^{\top}S_{n}^{-1}(\hat{\sigma}_{n})\bar{X}(\theta)-\Delta X^{\top}S_{n}^{-1}(\hat{\sigma}_{n})\Delta X=-\Delta V(\theta)^{\top}S_{n}^{-1}(\hat{\sigma}_{n})(2\Delta X-\Delta V(\theta)),}

and

Sn1(σ^n)=Sn,01+(σ^nσ0)σSn,01+01(1u)σ2Sn1(uσ^n+(1u)σ0)du(σ^nσ0)2,{S_{n}^{-1}(\hat{\sigma}_{n})=S_{n,0}^{-1}+(\hat{\sigma}_{n}-\sigma_{0})\partial_{\sigma}S_{n,0}^{-1}+\int_{0}^{1}(1-u)\partial_{\sigma}^{2}S_{n}^{-1}(u\hat{\sigma}_{n}+(1-u)\sigma_{0})du(\hat{\sigma}_{n}-\sigma_{0})^{2},} (3.35)

(3.32), Lemma 3.3 and a similar estimate to (3.6) imply

supθ|X¯(θ)Sn1(σ^n)X¯(θ)ΔXSn1(σ^n)ΔX+ΔV(θ){Sn,01+(σ^nσ0)σSn,01}(2ΔXΔV(θ))|=Op((n1/2)2nnhn)=op(nhn).\begin{split}{&\sup_{\theta}\big{|}\bar{X}(\theta)^{\top}S_{n}^{-1}(\hat{\sigma}_{n})\bar{X}(\theta)-\Delta X^{\top}S_{n}^{-1}(\hat{\sigma}_{n})\Delta X+\Delta V(\theta)^{\top}\big{\{}S_{n,0}^{-1}+(\hat{\sigma}_{n}-\sigma_{0})\partial_{\sigma}S_{n,0}^{-1}\big{\}}(2\Delta X-\Delta V(\theta))\big{|}\\ &\quad=O_{p}((n^{-1/2})^{2}\cdot\sqrt{n}\cdot\sqrt{nh_{n}})=o_{p}(\sqrt{nh_{n}}).}\end{split} (3.36)

Thanks to (LABEL:drift-est-eq) and Lemma 3.3, we have

supθ|ΔV(θ){(σ^nσ0)σSn,01}(2ΔXΔV(θ))|=supθ|ΔV(θ){(σ^nσ0)σSn,01}(2ΔXc+2ΔV(θ0)ΔV(θ))|supθ|2ΔV(θ){(σ^nσ0)σSn,01}ΔXc|+Csupθ|𝒟1/2ΔV(θ)|2𝒟1/2σSn,01𝒟1/2|σ^nσ0|supθ|2ΔV(θ){(σ^nσ0)σSn,01}ΔXc|+Op(nhn)Op(n1/2).\begin{split}{&\sup_{\theta}|\Delta V(\theta)^{\top}\big{\{}(\hat{\sigma}_{n}-\sigma_{0})\partial_{\sigma}S_{n,0}^{-1}\big{\}}(2\Delta X-\Delta V(\theta))|\\ &\quad=\sup_{\theta}|\Delta V(\theta)^{\top}\big{\{}(\hat{\sigma}_{n}-\sigma_{0})\partial_{\sigma}S_{n,0}^{-1}\big{\}}(2\Delta X^{c}+2\Delta V(\theta_{0})-\Delta V(\theta))|\\ &\quad\leq\sup_{\theta}|2\Delta V(\theta)^{\top}\big{\{}(\hat{\sigma}_{n}-\sigma_{0})\partial_{\sigma}S_{n,0}^{-1}\big{\}}\Delta X^{c}|+C\sup_{\theta}|\mathcal{D}^{-1/2}\Delta V(\theta)|^{2}\lVert\mathcal{D}^{1/2}\partial_{\sigma}S_{n,0}^{-1}\mathcal{D}^{1/2}\rVert|\hat{\sigma}_{n}-\sigma_{0}|\\ &\quad\leq\sup_{\theta}|2\Delta V(\theta)^{\top}\big{\{}(\hat{\sigma}_{n}-\sigma_{0})\partial_{\sigma}S_{n,0}^{-1}\big{\}}\Delta X^{c}|+O_{p}(nh_{n})\cdot O_{p}(n^{-1/2}).}\end{split} (3.37)

For k{0,1}k\in\{0,1\} and q1q\geq 1, the Burkholder-Davis-Gundy inequality, Lemma 3.3 and a similar estimate to (3.6) yield

supθEΠ[|θkΔV(θ)σSn,01ΔXc|q]1/qCqsupθl=12EΠ[|i[σSn,01θkΔV(θ)]i+(l1)M1ΔilXc|q]1/qCqsupθl=12(i[σSn,01θkΔV(θ)]i+(l1)M12|Iil|)1/2=Cqsupθ(θkΔV(θ)σSn,01𝒟σSn,01θkΔV(θ))1/2Cqnhn.\begin{split}{&\sup_{\theta}E_{\Pi}[|\partial_{\theta}^{k}\Delta V(\theta)^{\top}\partial_{\sigma}S_{n,0}^{-1}\Delta X^{c}|^{q}]^{1/q}\\ &\quad\leq C_{q}\sup_{\theta}\sum_{l=1}^{2}E_{\Pi}\bigg{[}\bigg{|}\sum_{i}[\partial_{\sigma}S_{n,0}^{-1}\partial_{\theta}^{k}\Delta V(\theta)]_{i+(l-1)M_{1}}\Delta_{i}^{l}X^{c}\bigg{|}^{q}\bigg{]}^{1/q}\\ &\quad\leq C_{q}\sup_{\theta}\sum_{l=1}^{2}\bigg{(}\sum_{i}[\partial_{\sigma}S_{n,0}^{-1}\partial_{\theta}^{k}\Delta V(\theta)]_{i+(l-1)M_{1}}^{2}|I_{i}^{l}|\bigg{)}^{1/2}\\ &\quad=C_{q}\sup_{\theta}\big{(}\partial_{\theta}^{k}\Delta V(\theta)^{\top}\partial_{\sigma}S_{n,0}^{-1}\mathcal{D}\partial_{\sigma}S_{n,0}^{-1}\partial_{\theta}^{k}\Delta V(\theta)\big{)}^{1/2}\\ &\quad\leq C_{q}\sqrt{nh_{n}}.}\end{split} (3.38)

Together with (LABEL:drift-consis-eq2) and Sobolev’s inequality, we have

supθ|ΔV(θ){(σ^nσ0)σSn,01}(2ΔXΔV(θ))|=op(nhn).{\sup_{\theta}|\Delta V(\theta)^{\top}\big{\{}(\hat{\sigma}_{n}-\sigma_{0})\partial_{\sigma}S_{n,0}^{-1}\big{\}}(2\Delta X-\Delta V(\theta))|=o_{p}(\sqrt{nh_{n}}).} (3.39)

Then, (LABEL:drift-consis-eq1) and (3.39) yield

supθ|X¯(θ)Sn1(σ^n)X¯(θ)ΔXSn1(σ^n)ΔX+2ΔV(θ)Sn,01ΔXc+ΔV(θ)Sn,01(2ΔV(θ0)ΔV(θ))|=op(nhn).\begin{split}{&\sup_{\theta}\big{|}\bar{X}(\theta)^{\top}S_{n}^{-1}(\hat{\sigma}_{n})\bar{X}(\theta)-\Delta X^{\top}S_{n}^{-1}(\hat{\sigma}_{n})\Delta X+2\Delta V(\theta)^{\top}S_{n,0}^{-1}\Delta X^{c}+\Delta V(\theta)^{\top}S_{n,0}^{-1}(2\Delta V(\theta_{0})-\Delta V(\theta))\big{|}\\ &\quad=o_{p}(\sqrt{nh_{n}}).}\end{split} (3.40)

Together with (LABEL:drift-est-eq), we obtain

supθ|Hn2(θ)Hn2(θ0){Δ(V(θ)V(θ0))Sn,01ΔXc+12ΔV(θ)Sn,01(2ΔV(θ0)ΔV(θ))12ΔV(θ0)Sn,01ΔV(θ0)}|=Op(nhn),\begin{split}{&\sup_{\theta}\bigg{|}H_{n}^{2}(\theta)-H_{n}^{2}(\theta_{0})\\ &\qquad-\bigg{\{}\Delta(V(\theta)-V(\theta_{0}))^{\top}S_{n,0}^{-1}\Delta X^{c}+\frac{1}{2}\Delta V(\theta)^{\top}S_{n,0}^{-1}(2\Delta V(\theta_{0})-\Delta V(\theta))-\frac{1}{2}\Delta V(\theta_{0})^{\top}S_{n,0}^{-1}\Delta V(\theta_{0})\bigg{\}}\bigg{|}\\ &\quad=O_{p}(\sqrt{nh_{n}}),}\end{split} (3.41)

and hence, similar estimates to (LABEL:drift-consis-eq6), we have

supθ|Hn2(θ)Hn2(θ0)+12Δ(V(θ)V(θ0))Sn,01Δ(V(θ)V(θ0))|=Op(nhn).{\sup_{\theta}\bigg{|}H_{n}^{2}(\theta)-H_{n}^{2}(\theta_{0})+\frac{1}{2}\Delta(V(\theta)-V(\theta_{0}))^{\top}S_{n,0}^{-1}\Delta(V(\theta)-V(\theta_{0}))\bigg{|}=O_{p}(\sqrt{nh_{n}}).}

Then, (3.3) yields

&Δ(V(θ)V(θ0))Sn,01Δ(V(θ)V(θ0))=Δ(V(θ)V(θ0))𝒟~1/2(σ0)p=0((G~G~)p(G~G~)pG~(G~G~)pG~(G~G~)p)𝒟~1/2(σ0)Δ(V(θ)V(θ0))=p=0k=1qnρ˙k,02p{l=12(ϕl,sk1)2˙k,l𝒜˙k,pl˙k,l2ρ˙k,0ϕ1,sk1ϕ2,sk1˙k,1𝒜˙k,p1Gk˙k,2}+nhnen,\begin{split}{&\Delta(V(\theta)-V(\theta_{0}))^{\top}S_{n,0}^{-1}\Delta(V(\theta)-V(\theta_{0}))\\ &\quad=\Delta(V(\theta)-V(\theta_{0}))^{\top}\tilde{\mathcal{D}}^{-1/2}(\sigma_{0})\sum_{p=0}^{\infty}\left(\begin{array}[]{cc}(\tilde{G}\tilde{G}^{\top})^{p}&-(\tilde{G}\tilde{G}^{\top})^{p}\tilde{G}\\ -(\tilde{G}^{\top}\tilde{G})^{p}\tilde{G}^{\top}&(\tilde{G}^{\top}\tilde{G})^{p}\end{array}\right)\tilde{\mathcal{D}}^{-1/2}(\sigma_{0})\Delta(V(\theta)-V(\theta_{0}))\\ &\quad=\sum_{p=0}^{\infty}\sum_{k=1}^{q_{n}}\dot{\rho}_{k,0}^{2p}\bigg{\{}\sum_{l=1}^{2}(\phi_{l,s_{k-1}})^{2}\dot{\mathfrak{I}}_{k,l}^{\top}\dot{\mathcal{A}}_{k,p}^{l}\dot{\mathfrak{I}}_{k,l}-2\dot{\rho}_{k,0}\phi_{1,s_{k-1}}\phi_{2,s_{k-1}}\dot{\mathfrak{I}}_{k,1}^{\top}\dot{\mathcal{A}}_{k,p}^{1}G_{k}\dot{\mathfrak{I}}_{k,2}\bigg{\}}+nh_{n}e_{n},}\end{split}

where ˙k,l=(k)l˙l\dot{\mathfrak{I}}_{k,l}=\mathcal{E}_{(k)}^{l}\dot{\mathfrak{I}}_{l}. Together with (A3), (A5) and (LABEL:drift-consis-eq4), we obtain

supθ|(nhn)1(Hn2(θ)Hn2(θ0))𝒴2(θ)|𝑃0{\sup_{\theta}\big{|}(nh_{n})^{-1}(H_{n}^{2}(\theta)-H_{n}^{2}(\theta_{0}))-\mathcal{Y}_{2}(\theta)\big{|}\overset{P}{\to}0} (3.42)

as nn\to\infty. Similar estimates for (nhn)1θk(Hn2(θ)Hn2(θ0))(nh_{n})^{-1}\partial_{\theta}^{k}(H_{n}^{2}(\theta)-H_{n}^{2}(\theta_{0})) (k{0,1,2,3,4}(k\in\{0,1,2,3,4\} yield the conclusion.

Proposition 3.6.

Assume (A1)–(A6). Then, θ^n𝑃θ0\hat{\theta}_{n}\overset{P}{\to}\theta_{0} as nn\to\infty.

Proof.

By Lemma 3.3, we have

𝒟1/2Sn,01𝒟1/2𝒟1/2Sn,0𝒟1/21MCM.{\mathcal{D}^{1/2}S_{n,0}^{-1}\mathcal{D}^{1/2}\geq\lVert\mathcal{D}^{-1/2}S_{n,0}\mathcal{D}^{-1/2}\rVert^{-1}\mathcal{E}_{M}\geq C\mathcal{E}_{M}.} (3.43)

Therefore, together with (3.12) and (LABEL:H1n-est-eq1), we obtain

12Δ(V(θ)V(θ0))Sn,01Δ(V(θ)V(θ0))CΔ(V(θ)V(θ0))𝒟1Δ(V(θ)V(θ0))=Ck=1qnl=12iϕl,sk12|IilJk|+nhnen=C0Tnl=12ϕl,t2dt+nhnen\begin{split}{-\frac{1}{2}\Delta(V(\theta)-V(\theta_{0}))^{\top}S_{n,0}^{-1}\Delta(V(\theta)-V(\theta_{0}))&\leq-C\Delta(V(\theta)-V(\theta_{0}))^{\top}\mathcal{D}^{-1}\Delta(V(\theta)-V(\theta_{0}))\\ &=-C\sum_{k=1}^{q_{n}}\sum_{l=1}^{2}\sum_{i}\phi_{l,s_{k-1}}^{2}|I_{i}^{l}\cap J_{k}|+nh_{n}e_{n}\\ &=-C\int_{0}^{T_{n}}\sum_{l=1}^{2}\phi_{l,t}^{2}dt+nh_{n}e_{n}}\end{split} (3.44)

Hence, we have

𝒴2(θ)ClimT(1T0T(ϕ1,t2+ϕ2,t2)𝑑t).{\mathcal{Y}_{2}(\theta)\leq-C\lim_{T\to\infty}\bigg{(}\frac{1}{T}\int_{0}^{T}(\phi_{1,t}^{2}+\phi_{2,t}^{2})dt\bigg{)}.} (3.45)

Assumption (A6) yields that for any θΘ\theta\in\Theta,

𝒴2(θ)0,and𝒴2(θ)=0ifandonlyifθ=θ0.{\mathcal{Y}_{2}(\theta)\leq 0,\quad{\rm and}\quad\mathcal{Y}_{2}(\theta)=0\quad{\rm if~{}and~{}only~{}if}\quad\theta=\theta_{0}.} (3.46)

(3.42), (3.46) together with a similar estimates to (3.20), we have the conclusion.

3.5 Asymptotic normality of θ^n\hat{\theta}_{n}

Proof of Theorem 2.1.

A similar estimate to (LABEL:drift-consis-eq3) yields

θHn2(θ0)=(θΔV(θ0))Sn1(σ^n)X¯(θ0)=θΔV(θ0)Sn,01ΔXc+12θΔV(θ0)Sn,01ΔV(θ0)12ΔV(θ0)Sn,01θΔV(θ0)+op(nhn)=θΔV(θ0)Sn,01ΔXc+op(nhn).\begin{split}{\partial_{\theta}H_{n}^{2}(\theta_{0})&=(\partial_{\theta}\Delta V(\theta_{0}))^{\top}S_{n}^{-1}(\hat{\sigma}_{n})\bar{X}(\theta_{0})\\ &=\partial_{\theta}\Delta V(\theta_{0})^{\top}S_{n,0}^{-1}\Delta X^{c}+\frac{1}{2}\partial_{\theta}\Delta V(\theta_{0})^{\top}S_{n,0}^{-1}\Delta V(\theta_{0})-\frac{1}{2}\Delta V(\theta_{0})^{\top}S_{n,0}^{-1}\partial_{\theta}\Delta V(\theta_{0})+o_{p}(\sqrt{nh_{n}})\\ &=\partial_{\theta}\Delta V(\theta_{0})^{\top}S_{n,0}^{-1}\Delta X^{c}+o_{p}(\sqrt{nh_{n}}).}\end{split}

Let

𝒳˙k=1nhnθΔV(θ0)Sn,01Δ(k)Xc{\dot{\mathcal{X}}_{k}=\frac{1}{\sqrt{nh_{n}}}\partial_{\theta}\Delta V(\theta_{0})S_{n,0}^{-1}\Delta^{(k)}X^{c}}

for 1kLn1\leq k\leq L_{n}. Then, we have

(nhn)1/2θHn2(θ0)=k=1Ln𝒳˙k+op(1).{(nh_{n})^{-1/2}\partial_{\theta}H_{n}^{2}(\theta_{0})=\sum_{k=1}^{L_{n}}\dot{\mathcal{X}}_{k}+o_{p}(1).} (3.47)

Lemma 3.3 yields

k=1LnEk[𝒳˙k4]=3n2hn2k=1Ln{θΔV(θ0)Sn,01Sn,0(k)Sn,01θΔV(θ0)}2Cn2hn2|𝒟1/2ΔθV(θ0)|2𝒟1/2Sn,01𝒟1/22k=1Ln𝒟1/2Sn,0(k)𝒟1/2CLnnhn𝑃0.\begin{split}{\sum_{k=1}^{L_{n}}E_{k}[\dot{\mathcal{X}}_{k}^{4}]&=\frac{3}{n^{2}h_{n}^{2}}\sum_{k=1}^{L_{n}}\big{\{}\partial_{\theta}\Delta V(\theta_{0})^{\top}S_{n,0}^{-1}S_{n,0}^{(k)}S_{n,0}^{-1}\partial_{\theta}\Delta V(\theta_{0})\big{\}}^{2}\\ &\leq\frac{C}{n^{2}h_{n}^{2}}|\mathcal{D}^{-1/2}\Delta\partial_{\theta}V(\theta_{0})|^{2}\lVert\mathcal{D}^{1/2}S_{n,0}^{-1}\mathcal{D}^{1/2}\rVert^{2}\sum_{k=1}^{L_{n}}\lVert\mathcal{D}^{-1/2}S_{n,0}^{(k)}\mathcal{D}^{-1/2}\rVert\leq\frac{CL_{n}}{nh_{n}}\overset{P}{\to}0.}\end{split}

Moreover, simple calculation shows that

k=1LnEk[𝒳˙k2]=1nhnk=1Lni1,j1i2,j2[Sn,01]i1,j1[Sn,01]i2,j2Δi1θV(θ0)Δi2θV(θ0)[Sn,0(k)]j1,j2=1nhnΔθV(θ0)Sn,01Sn,0Sn,01ΔθV(θ0)=1nhnp=0k=1qnρ˙k,02p{l=12θϕl,sk12(θ0)l𝒜k,pll2ρ˙k,0θϕ1,sk1θϕ2,sk1(θ0)1𝒜k,p1G2}+en𝑃Γ2.\begin{split}{\sum_{k=1}^{L_{n}}E_{k}[\dot{\mathcal{X}}_{k}^{2}]&=\frac{1}{nh_{n}}\sum_{k=1}^{L_{n}}\sum_{i_{1},j_{1}}\sum_{i_{2},j_{2}}[S_{n,0}^{-1}]_{i_{1},j_{1}}[S_{n,0}^{-1}]_{i_{2},j_{2}}\Delta_{i_{1}}\partial_{\theta}V(\theta_{0})\Delta_{i_{2}}\partial_{\theta}V(\theta_{0})[S_{n,0}^{(k)}]_{j_{1},j_{2}}\\ &=\frac{1}{nh_{n}}\Delta\partial_{\theta}V(\theta_{0})^{\top}S_{n,0}^{-1}S_{n,0}S_{n,0}^{-1}\Delta\partial_{\theta}V(\theta_{0})\\ &=\frac{1}{nh_{n}}\sum_{p=0}^{\infty}\sum_{k=1}^{q_{n}}\dot{\rho}_{k,0}^{2p}\bigg{\{}\sum_{l=1}^{2}\partial_{\theta}\phi_{l,s_{k-1}}^{2}(\theta_{0})\mathfrak{I}_{l}^{\top}\mathcal{A}_{k,p}^{l}\mathfrak{I}_{l}-2\dot{\rho}_{k,0}\partial_{\theta}\phi_{1,s_{k-1}}\partial_{\theta}\phi_{2,s_{k-1}}(\theta_{0})\mathfrak{I}_{1}^{\top}\mathcal{A}_{k,p}^{1}G\mathfrak{I}_{2}\bigg{\}}+e_{n}\\ &\overset{P}{\to}\Gamma_{2}.}\end{split}

Therefore, (3.47) and the martingale central limit theorem (Corollary 3.1 and the remark after that in Hall and Heyde [5]) yield

(nhn)1/2θHn2(θ0)=k=1Ln𝒳˙k+op(1)𝑑N(0,Γ2).{(nh_{n})^{-1/2}\partial_{\theta}H_{n}^{2}(\theta_{0})=\sum_{k=1}^{L_{n}}\dot{\mathcal{X}}_{k}+o_{p}(1)\overset{d}{\to}N(0,\Gamma_{2}).} (3.48)

By (3.45) and (A5), there exists a positive constant cc such that 𝒴2(θ)c|θθ0|2\mathcal{Y}_{2}(\theta)\leq-c|\theta-\theta_{0}|^{2}. Then, Γ2=θ2𝒴2(θ0)\Gamma_{2}=\partial_{\theta}^{2}\mathcal{Y}_{2}(\theta_{0}) is positive definite.

Therefore, a similar estimate to Section 3.3, PP-tightness of {(nhn)1supθ|θ3Hn2(θ)|}n\{(nh_{n})^{-1}\sup_{\theta}|\partial_{\theta}^{3}H_{n}^{2}(\theta)|\}_{n}, and the equation (nhn)1θ2Hn2(θ0)𝑃Γ2-(nh_{n})^{-1}\partial_{\theta}^{2}H_{n}^{2}(\theta_{0})\overset{P}{\to}\Gamma_{2} yield

Tn(θ^nθ0)𝑑N(0,Γ21).{\sqrt{T_{n}}(\hat{\theta}_{n}-\theta_{0})\overset{d}{\to}N(0,\Gamma_{2}^{-1}).}

(3.31) and a similar equation for nhn(θ^nθ0)\sqrt{nh_{n}}(\hat{\theta}_{n}-\theta_{0}) yield

(n(σ^nσ0),Tn(θ^nθ0))=(n1/2Γ11σHn1(σ0),Tn1/2Γ21θHn2(θ0))+op(1)=k=1Ln(Γ11𝒳k,Γ21𝒳˙k)+op(1).\begin{split}{(\sqrt{n}(\hat{\sigma}_{n}-\sigma_{0}),\sqrt{T_{n}}(\hat{\theta}_{n}-\theta_{0}))&=(n^{-1/2}\Gamma_{1}^{-1}\partial_{\sigma}H_{n}^{1}(\sigma_{0}),T_{n}^{-1/2}\Gamma_{2}^{-1}\partial_{\theta}H_{n}^{2}(\theta_{0}))+o_{p}(1)\\ &=\sum_{k=1}^{L_{n}}(\Gamma_{1}^{-1}\mathcal{X}_{k},\Gamma_{2}^{-1}\dot{\mathcal{X}}_{k})+o_{p}(1).}\end{split} (3.49)

Then, since k=1LnEk[𝒳k𝒳˙k]=0\sum_{k=1}^{L_{n}}E_{k}[\mathcal{X}_{k}\dot{\mathcal{X}}_{k}]=0, we obtain

(n(σ^nσ0),nhn(θ^nθ0))𝑑N(0,Γ1).{(\sqrt{n}(\hat{\sigma}_{n}-\sigma_{0}),\sqrt{nh_{n}}(\hat{\theta}_{n}-\theta_{0}))\overset{d}{\to}N(0,\Gamma^{-1}).}

3.6 Proofs of the results in Sections 2.3 and 2.4

Proof of Theorem 2.2.

Let

Hn(σ,θ)=12X¯(θ)Sn1(σ)X¯(θ)12logdetSn(σ).{H_{n}(\sigma,\theta)=-\frac{1}{2}\bar{X}(\theta)^{\top}S_{n}^{-1}(\sigma)\bar{X}(\theta)-\frac{1}{2}\log\det S_{n}(\sigma).}

Then, we have

&Hn(σu,θu)=01αHn(σtu,θtu)dtϵnu=uϵnαHn(σ0,θ0)+12uϵnα2Hn(σ0,θ0)ϵnu+i,j,k01(1s)22αiαjαkHn(σsu,θsu)ds[ϵnu]i[ϵnu]j[ϵnu]k.\begin{split}{&H_{n}(\sigma_{u},\theta_{u})\\ &\quad=\int_{0}^{1}\partial_{\alpha}H_{n}(\sigma_{tu},\theta_{tu})dt\epsilon_{n}u\\ &\quad=u^{\top}\epsilon_{n}\partial_{\alpha}H_{n}(\sigma_{0},\theta_{0})+\frac{1}{2}u^{\top}\epsilon_{n}\partial_{\alpha}^{2}H_{n}(\sigma_{0},\theta_{0})\epsilon_{n}u\\ &\quad\quad+\sum_{i,j,k}\int_{0}^{1}\frac{(1-s)^{2}}{2}\partial_{\alpha_{i}}\partial_{\alpha_{j}}\partial_{\alpha_{k}}H_{n}(\sigma_{su},\theta_{su})ds[\epsilon_{n}u]_{i}[\epsilon_{n}u]_{j}[\epsilon_{n}u]_{k}.}\end{split}

By similar arguments to Propositions 3.1 and 3.3, and Sections 3.4 and 3.5, we obtain

i,j,k01(1s)22αiαjαkHn(σsu,θsu)ds[ϵnu]i[ϵnu]j[ϵnu]k𝑃0,ϵnαHn(σ0,θ0)𝑑N(0,Γ),𝑃Γ.\begin{split}{\sum_{i,j,k}\int_{0}^{1}\frac{(1-s)^{2}}{2}\partial_{\alpha_{i}}\partial_{\alpha_{j}}\partial_{\alpha_{k}}H_{n}(\sigma_{su},\theta_{su})ds[\epsilon_{n}u]_{i}[\epsilon_{n}u]_{j}[\epsilon_{n}u]_{k}&\overset{P}{\to}0,\\ \epsilon_{n}\partial_{\alpha}H_{n}(\sigma_{0},\theta_{0})&\overset{d}{\to}N(0,\Gamma),\\ \epsilon_{n}\partial_{\alpha}^{2}H_{n}(\sigma_{0},\theta_{0})\epsilon_{n}&\overset{P}{\to}\Gamma.}\end{split}

Therefore, we have the desired conclusion.

Proof of Proposition 2.1.

The proof is similar to the proof of Proposition 6 in [16].

PP-tightness of {hnMl,qn+1}n=1\{h_{n}M_{l,q_{n}+1}\}_{n=1}^{\infty} imediately follows from (B1-11). Fix 1jqn1\leq j\leq q_{n}. In the proof of Proposition 6 in Section 7.5 of [16], we definte bn=hn1b_{n}=h_{n}^{-1}, tk=sj1+k[hn1]1(sjsj1)t_{k}=s_{j-1}+k[h_{n}^{-1}]^{-1}(s_{j}-s_{j-1}) (0k[hn1](0\leq k\leq[h_{n}^{-1}], and Xk=tr((j,k)1(GG)p)1Ak,bnδpE[tr((j,k)(GG)p)1Ak,bnδp]X^{\prime}_{k}={\rm tr}(\mathcal{E}_{(j,k)}^{1}(GG^{\top})^{p})1_{A_{k,b_{n}^{\delta^{\prime}}}^{p}}-E[{\rm tr}(\mathcal{E}_{(j,k)}(GG^{\top})^{p})1_{A_{k,b_{n}^{\delta^{\prime}}}^{p}}], where (j,k)l\mathcal{E}_{(j,k)}^{l} be an Ml×MlM_{l}\times M_{l} matrix satisfying [(j,k)l]ij=1[\mathcal{E}_{(j,k)}^{l}]_{ij}=1 if i=ji=j and supIil(tk1,tk]\sup I_{i}^{l}\in(t_{k-1},t_{k}], and otherwise [(j,k)l]ij=0[\mathcal{E}_{(j,k)}^{l}]_{ij}=0.

Then, similarly to (31) in [16], there exists η>0\eta>0 such that for any q4q\geq 4, there exists Cq>0C_{q}>0 that does not depend on kk such that

E[|hntr((j,k)(GG)p)E[hntr((j,k)(GG)p)]|q]C(p+1)q1hnqη.{E\big{[}\big{|}h_{n}{\rm tr}(\mathcal{E}_{(j,k)}(GG^{\top})^{p})-E[h_{n}{\rm tr}(\mathcal{E}_{(j,k)}(GG^{\top})^{p})]\big{|}^{q}\big{]}\leq C(p+1)^{q-1}h_{n}^{q\eta}.}

Therefore, by setting sufficiently large qq so that nhn1+qη0nh_{n}^{1+q\eta}\to 0, we have

&E[max1kqn|hntr((j,k)(GG)p)E[hntr((j,k)(GG)p)]|q]E[k=1qn|hntr((j,k)(GG)p)E[hntr((j,k)(GG)p)]|q]=O(nhnhnqη)0.\begin{split}{&E\bigg{[}\max_{1\leq k\leq q_{n}}\big{|}h_{n}{\rm tr}(\mathcal{E}_{(j,k)}(GG^{\top})^{p})-E[h_{n}{\rm tr}(\mathcal{E}_{(j,k)}(GG^{\top})^{p})]\big{|}^{q}\bigg{]}\\ &\quad\leq E\bigg{[}\sum_{k=1}^{q_{n}}\big{|}h_{n}{\rm tr}(\mathcal{E}_{(j,k)}(GG^{\top})^{p})-E[h_{n}{\rm tr}(\mathcal{E}_{(j,k)}(GG^{\top})^{p})]\big{|}^{q}\bigg{]}\\ &\quad=O(nh_{n}\cdot h_{n}^{q\eta})\to 0.}\end{split}

Together with the assumptions, we obtain the conclusion.

Proof of Proposition 2.2.

We use the proof of Proposition 6 in [16] again. We define bnb_{n} and tkt_{k} the same as the previous proposition, and define

Xk=[hn]11(j,k)(GG)p11Ak,bnδpE[[hn]11(j,k)(GG)p11Ak,bnδp].{X^{\prime}_{k}=[h_{n}]^{-1}\mathfrak{I}_{1}^{\top}\mathcal{E}_{(j,k)}(GG^{\top})^{p}\mathfrak{I}_{1}1_{A_{k,b_{n}^{\delta^{\prime}}}^{p}}-E[[h_{n}]^{-1}\mathfrak{I}_{1}^{\top}\mathcal{E}_{(j,k)}(GG^{\top})^{p}\mathfrak{I}_{1}1_{A_{k,b_{n}^{\delta^{\prime}}}^{p}}].}

Then, similarly to (31) in the proof, there exists η>0\eta>0 such that for any q4q\geq 4, there exists Cq>0C_{q}>0 such that

E[|1(j,k)(GG)p1E[1(j,k)(GG)p1]|q]Cq(p+1)q1hnqη.{E\Big{[}\big{|}\mathfrak{I}_{1}^{\top}\mathcal{E}_{(j,k)}(GG^{\top})^{p}\mathfrak{I}_{1}-E[\mathfrak{I}_{1}^{\top}\mathcal{E}_{(j,k)}(GG^{\top})^{p}\mathfrak{I}_{1}]\big{|}^{q}\Big{]}\leq C_{q}(p+1)^{q-1}h_{n}^{q\eta}.}

Together with the assumptions and similar estimates for 1(k)1(GG)pG2\mathfrak{I}_{1}\mathcal{E}_{(k)}^{1}(GG^{\top})^{p}G\mathfrak{I}_{2} and 2(k)2(GG)p2\mathfrak{I}_{2}\mathcal{E}_{(k)}^{2}(G^{\top}G)^{p}\mathfrak{I}_{2}, we obtain the conclusion.

Proof of Proposition 2.3.

We can show the results by a similar approach to the proof of Proposition 9 in [16]. Under (B2-qq), P(𝒩t+Nhn𝒩t=0)P(\mathcal{N}_{t+Nh_{n}}-\mathcal{N}_{t}=0) is small enough to estimate the denominator of

i,j|IiIj|2|Ii||Ij|{\sum_{i,j}\frac{|I_{i}\cap I_{j}|^{2}}{|I_{i}||I_{j}|}}

for sufficiently large nn. Then, we obtain estimates for the numerator by using an inequality x12++xn2R2/nx_{1}^{2}+\cdots+x_{n}^{2}\geq R^{2}/n when x1++xn=Rx_{1}+\cdots+x_{n}=R.

Proof of Lemma 2.1.

We only show

max1kqn|hnE[tr((k)1(GG)p)]ap1(sksk1)|0.{\max_{1\leq k\leq q_{n}}|h_{n}E[{\rm tr}(\mathcal{E}_{(k)}^{1}(GG^{\top})^{p})]-a_{p}^{1}(s_{k}-s_{k-1})|\to 0.}

The other results are similarly obtained.

(2.1) is satisfied because αknc1ec2k\alpha_{k}^{n}\leq c_{1}e^{-c_{2}k} for some positive constants c1c_{1} and c2c_{2}.

Let τ¯il\bar{\tau}_{i}^{l} be ii-th jump time of 𝒩¯l\bar{\mathcal{N}}^{l}. Then, we have Sin,l=hnτ¯ilS_{i}^{n,l}=h_{n}\bar{\tau}_{i}^{l}. Let G¯\bar{G} be a matrix with infinity side defined by

[G¯]ij=|[τ¯i11,τ¯i1)[τ¯j12,τ¯j2)|τ¯i1τ¯i11τ¯j2τ¯j12{[\bar{G}]_{ij}=\frac{|[\bar{\tau}_{i-1}^{1},\bar{\tau}_{i}^{1})\cap[\bar{\tau}_{j-1}^{2},\bar{\tau}_{j}^{2})|}{\sqrt{\bar{\tau}_{i}^{1}-\bar{\tau}_{i-1}^{1}}\sqrt{\bar{\tau}_{j}^{2}-\bar{\tau}_{j-1}^{2}}}}

for i,j1i,j\geq 1.

For kk\in\mathbb{N}, let

𝔊kp=i;τ¯i11[k1,k)[(G¯G¯)p]ii,𝔊kn,p=i;Si1n,1[(k1)hn,khn)[(GG)p]ii.{\mathfrak{G}_{k}^{p}=\sum_{i;\bar{\tau}_{i-1}^{1}\in[k-1,k)}[(\bar{G}\bar{G}^{\top})^{p}]_{ii},\quad\mathfrak{G}_{k}^{n,p}=\sum_{i;S_{i-1}^{n,1}\in[(k-1)h_{n},kh_{n})}[(GG^{\top})^{p}]_{ii}.}

The following idea is based on Section 7.5 of [16]. Roughly speaking, if there are sufficient observations around the interval [k1,k)[k-1,k), we can apply mixing property of 𝒩¯tn,l\bar{\mathcal{N}}_{t}^{n,l} to 𝔊kp\mathfrak{G}_{k}^{p}. On the following sets Ak,rpA_{k,r}^{p} and A¯k,rp\bar{A}_{k,r}^{p}, we have sufficient observations of 𝒩n,l\mathcal{N}^{n,l} and 𝒩¯l\bar{\mathcal{N}}^{l}. Let Δ¯j,trU=Ut+rjUt+r(j1)\bar{\Delta}_{j,t}^{r}U=U_{t+rj}-U_{t+r(j-1)} for a stochastic process (Ut)t0(U_{t})_{t\geq 0}, and let

Ak,rp=l=1,2{1j2p+1tk+rjhnTn{Δ¯j,tkrhn𝒩n,l>0}2pj0tk1+r(j1)hn0{Δ¯j,tk1rhn𝒩n,l>0}},=l=1,2{1j2p+1{Δ¯j,kr𝒩¯l>0}2pj0k1+r(j1)0{Δ¯j,k1r𝒩¯l>0}}.\begin{split}{A_{k,r}^{p}&=\bigcap_{l=1,2}\bigg{\{}\bigcap_{\begin{subarray}{c}1\leq j\leq 2p+1\\ t_{k}+rjh_{n}\leq T_{n}\end{subarray}}\{\bar{\Delta}_{j,t_{k}}^{rh_{n}}\mathcal{N}^{n,l}>0\}\cap\bigcap_{\begin{subarray}{c}-2p\leq j\leq 0\\ t_{k-1}+r(j-1)h_{n}\geq 0\end{subarray}}\{\bar{\Delta}_{j,t_{k-1}}^{rh_{n}}\mathcal{N}^{n,l}>0\}\bigg{\}},\\ \bar{A}_{k,r}^{p}&=\bigcap_{l=1,2}\bigg{\{}\bigcap_{1\leq j\leq 2p+1}\{\bar{\Delta}_{j,k}^{r}\bar{\mathcal{N}}^{l}>0\}\cap\bigcap_{\begin{subarray}{c}-2p\leq j\leq 0\\ k-1+r(j-1)\geq 0\end{subarray}}\{\bar{\Delta}_{j,k-1}^{r}\bar{\mathcal{N}}^{l}>0\}\bigg{\}}.}\end{split} (3.50)

Then, we obtain

E[𝔊kp1A¯k,rp]=E[𝔊kp1A¯k,rp]ifkkrp+1,=E[𝔊kn,p1Ak,rp]ifrp+1k,knrp.\begin{split}{E[\mathfrak{G}_{k}^{p}1_{\bar{A}_{k,r}^{p}}]&=E[\mathfrak{G}_{k^{\prime}}^{p}1_{\bar{A}_{k^{\prime},r}^{p}}]\quad{\rm if}\quad k\wedge k^{\prime}\geq rp+1,\\ E[\mathfrak{G}_{k}^{n,p}1_{A_{k,r}^{p}}]&=E[\mathfrak{G}_{k^{\prime}}^{n,p}1_{A_{k^{\prime},r}^{p}}]\quad{\rm if}\quad rp+1\leq k,k^{\prime}\leq n-rp.}\end{split}

We also have P((A¯k,rp)c)C(p+1)rqP((\bar{A}_{k,r}^{p})^{c})\leq C(p+1)r^{-q} by (B2-qq). For any ϵ>0\epsilon>0, there exists r>0r>0 such that

P((A¯k,rp)c)<ϵ/2.{P((\bar{A}_{k,r}^{p})^{c})<\epsilon/2.} (3.51)

Therefore, {E[𝔊kp]}k\{E[\mathfrak{G}_{k}^{p}]\}_{k} is a Cauchy sequence, and hence, the limit ap1=limkE[𝔊kp]a_{p}^{1}=\lim_{k\to\infty}E[\mathfrak{G}_{k}^{p}] exists for pp\in\mathbb{N}. Moreover, we see existence of

a0l=limkE[𝒩¯kl𝒩¯k1l]=E[𝒩¯1l𝒩¯0l]{a_{0}^{l}=\lim_{k\to\infty}E[\bar{\mathcal{N}}_{k}^{l}-\bar{\mathcal{N}}_{k-1}^{l}]=E[\bar{\mathcal{N}}_{1}^{l}-\bar{\mathcal{N}}_{0}^{l}]}

for l{1,2}l\in\{1,2\}.

Furthermore, for any ϵ>0\epsilon>0, there exists r>0r>0 such that P((A¯k,rp)c)<ϵP((\bar{A}_{k,r}^{p})^{c})<\epsilon and |E[𝔊kp]ap1|<ϵ|E[\mathfrak{G}_{k}^{p}]-a_{p}^{1}|<\epsilon for k[rp]k\geq[rp]. Let rj=[hn1sj]r_{j}=[h_{n}^{-1}s_{j}]. Then, since |𝔊kn,p|i;Si1n,l((k1)hn,khn]1E[𝒩¯11]|\mathfrak{G}_{k}^{n,p}|\leq\sum_{i;S_{i-1}^{n,l}\in((k-1)h_{n},kh_{n}]}1\leq E[\bar{\mathcal{N}}_{1}^{1}] and

supIil(sj1,sj]τ¯il(hn1sj1,hn1sj],{\sup I_{i}^{l}\in(s_{j-1},s_{j}]\quad\Longleftrightarrow\quad\bar{\tau}_{i}^{l}\in(h_{n}^{-1}s_{j-1},h_{n}^{-1}s_{j}],}

the Cauchy-Schwartz inequality yields

&|hn(sjsj1)1E[tr((j)(GG)p)]ap1||hn(sjsj1)1k=rj1+1rj𝔊kn,pap1|+2hn(sjsj1)1E[𝒩¯11]|1rjrj1k=rj1+1rj𝔊kn,pap1|+Chn(sjsj1)11rjrj1k=rj1+1rj|E[𝔊kn,p1Ak,hp]+E[𝔊kn,p1(Ak,hp)c]ap1|+Chn(sjsj1)11rjrj1k=rj1+1rj(|E[𝔊kp]ap1|+2E[(𝒩¯11)2]1/2ϵ)+Chn(sjsj1)1ϵ+2E[(𝒩¯11)2]1/2ϵ+Chn(sjsj1)1.\begin{split}{&|h_{n}(s_{j}-s_{j-1})^{-1}E[{\rm tr}(\mathcal{E}_{(j)}(GG^{\top})^{p})]-a_{p}^{1}|\\ &\quad\leq\bigg{|}h_{n}(s_{j}-s_{j-1})^{-1}\sum_{k=r_{j-1}+1}^{r_{j}}\mathfrak{G}_{k}^{n,p}-a_{p}^{1}\bigg{|}+2h_{n}(s_{j}-s_{j-1})^{-1}E[\bar{\mathcal{N}}_{1}^{1}]\\ &\quad\leq\bigg{|}\frac{1}{r_{j}-r_{j-1}}\sum_{k=r_{j-1}+1}^{r_{j}}\mathfrak{G}_{k}^{n,p}-a_{p}^{1}\bigg{|}+Ch_{n}(s_{j}-s_{j-1})^{-1}\\ &\quad\leq\frac{1}{r_{j}-r_{j-1}}\sum_{k=r_{j-1}+1}^{r_{j}}\big{|}E[\mathfrak{G}_{k}^{n,p}1_{A_{k,h}^{p}}]+E[\mathfrak{G}_{k}^{n,p}1_{(A_{k,h}^{p})^{c}}]-a_{p}^{1}\big{|}+Ch_{n}(s_{j}-s_{j-1})^{-1}\\ &\quad\leq\frac{1}{r_{j}-r_{j-1}}\sum_{k=r_{j-1}+1}^{r_{j}}\big{(}\big{|}E[\mathfrak{G}_{k}^{p}]-a_{p}^{1}\big{|}+2E[(\bar{\mathcal{N}}_{1}^{1})^{2}]^{1/2}\sqrt{\epsilon}\big{)}+Ch_{n}(s_{j}-s_{j-1})^{-1}\\ &\quad\leq\epsilon+2E[(\bar{\mathcal{N}}_{1}^{1})^{2}]^{1/2}\sqrt{\epsilon}+Ch_{n}(s_{j}-s_{j-1})^{-1}.}\end{split}

we replace the minimum rj1+1r_{j-1}+1 of the summation range of kk with rj1+[rp]+2r_{j-1}+[rp]+2 when j=1j=1, and replace the maximum rjr_{j} with rj[rp]1r_{j}-[rp]-1 when j=qnj=q_{n}. Then, the conclusion.

Acknowledgements On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  • [1] O. E. Barndorff-Nielsen, P. R. Hansen, A. Lunde, and N. Shephard. Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading. J. Econometrics, 162(2):149–169, 2011.
  • [2] M. Bibinger, N. Hautsch, P. Malec, and M. Reiss. Estimating the quadratic covariation matrix from noisy observations: local method of moments and efficiency. Ann. Statist., 42(4):80–114, 2014.
  • [3] K. Christensen, S. Kinnebrock, and M. Podolskij. Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data. J. Econometrics, 159(1):116–133, 2010.
  • [4] D. Florens-Zmirou. Approximate discrete-time schemes for statistics of diffusion processes. Statistics, 20(4):547–557, 1989.
  • [5] P. Hall and C. C. Heyde. Martingale limit theory and its application. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. Probability and Mathematical Statistics.
  • [6] T. Hayashi and N. Yoshida. On covariance estimation of non-synchronously observed diffusion processes. Bernoulli, 11(2):359–379, 2005.
  • [7] T. Hayashi and N. Yoshida. Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes. Ann. Inst. Statist. Math., 60(2):367–406, 2008.
  • [8] T. Hayashi and N. Yoshida. Nonsynchronous covariation process and limit theorems. Stochastic Process. Appl., 121(10):2416–2454, 2011.
  • [9] I. A. Ibragimov and R. Z. Has’minskiĭ. Statistical estimation, volume 16 of Applications of Mathematics. Springer-Verlag, New York-Berlin, 1981. Asymptotic theory, Translated from the Russian by Samuel Kotz.
  • [10] P. Jeganathan. On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal. Sankhyā Ser. A, 44(2):173–212, 1982.
  • [11] M. Kessler. Estimation of an ergodic diffusion from discrete observations. Scand. J. Statist., 24(2):211–229, 1997.
  • [12] P. Malliavin and M. E. Mancino. Fourier series method for measurement of multivariate volatilities. Finance Stoch., 6(1):49–61, 2002.
  • [13] P. Malliavin and M. E. Mancino. A Fourier transform method for nonparametric estimation of multivariate volatility. Ann. Statist., 37(4):1983–2010, 2009.
  • [14] T. Ogihara. Local asymptotic mixed normality property for nonsynchronously observed diffusion processes. Bernoulli, 21(4):2024–2072, 2015.
  • [15] T. Ogihara. Parametric inference for nonsynchronously observed diffusion processes in the presence of market microstructure noise. Bernoulli, 24(4B):3318–3383, 2018.
  • [16] T. Ogihara and N. Yoshida. Quasi-likelihood analysis for nonsynchronously observed diffusion processes. Stochastic Process. Appl., 124(9):2954–3008, 2014.
  • [17] M. Uchida and N. Yoshida. Adaptive estimation of an ergodic diffusion process based on sampled data. Stochastic Process. Appl., 122(8):2885–2924, 2012.
  • [18] N. Yoshida. Estimation for diffusion processes from discrete observation. J. Multivariate Anal., 41(2):220–242, 1992.
  • [19] N. Yoshida. Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations. Ann. Inst. Statist. Math., 63(3):431–479, 2011.

A Appendix

Lemma A.1.

Let mm\in\mathbb{N}. Let VV be an m×mm\times m symmetric, positive definite matrix and AA be a m×mm\times m matrix. Let XX be a random variable following N(0,V)N(0,V). Then

E[(XAX)2]=tr(AV)2+2tr((AV)2),E[(XAX)3]=tr(AV)3+6tr(AV)tr((AV)2)+8tr((AV)3),=tr(AV)4+12tr(AV)2tr((AV)2)+12tr((AV)2)2+32tr(AV)tr((AV)3)+48tr((AV)4).\begin{split}{E[(X^{\top}AX)^{2}]&={\rm tr}(AV)^{2}+2{\rm tr}((AV)^{2}),\\ E[(X^{\top}AX)^{3}]&={\rm tr}(AV)^{3}+6{\rm tr}(AV){\rm tr}((AV)^{2})+8{\rm tr}((AV)^{3}),\\ E[(X^{\top}AX)^{4}]&={\rm tr}(AV)^{4}+12{\rm tr}(AV)^{2}{\rm tr}((AV)^{2})+12{\rm tr}((AV)^{2})^{2}+32{\rm tr}(AV){\rm tr}((AV)^{3})+48{\rm tr}((AV)^{4}).}\end{split}
Proof.

We only show the result for E[(XAX)4]E[(X^{\top}AX)^{4}]. Let UU be an orthogonal matrix and Λ\Lambda be a diagonal matrix satisfying UVU=ΛUVU^{\top}=\Lambda. Then, we have UXN(0,Λ)UX\sim N(0,\Lambda), and

E[i=18[UX]ji]=(l2q1,l2q)q=14q=14[Λ]l2q1,l2q,{E\bigg{[}\prod_{i=1}^{8}[UX]_{j_{i}}\bigg{]}=\sum_{(l_{2q-1},l_{2q})_{q=1}^{4}}\prod_{q=1}^{4}[\Lambda]_{l_{2q-1},l_{2q}},}

where the summation of (l2q1,l2q)q=14(l_{2q-1},l_{2q})_{q=1}^{4} is taken over all disjoint pairs of {j1,j8}\{j_{1},\cdots j_{8}\}. Then, by setting B=UAUB=UAU^{\top}, we have

E[(XAX)4]=j1,,j8(l2q1,l2q)q=14p=14[B]j2p1,j2pq=14[Λ]l2q1,l2q,{E[(X^{\top}AX)^{4}]=\sum_{j_{1},\cdots,j_{8}}\sum_{(l_{2q-1},l_{2q})_{q=1}^{4}}\prod_{p=1}^{4}[B]_{j_{2p-1},j_{2p}}\prod_{q=1}^{4}[\Lambda]_{l_{2q-1},l_{2q}},}

which yields the conclusion. ∎