This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Asymptotically Optimal Sequence Sets With Low/Zero Ambiguity Zone Properties

Liying Tian, , Xiaoshi Song, , Zilong Liu, , and Yubo Li,  Liying Tian and Xiaoshi Song are with the School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China, and also with the Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110189, China (e-mail: tianliying@mail.neu.edu.cn; songxiaoshi@cse.neu.edu.cn) Zilong Liu is with the School of Computer Science and Electronics Engineering, University of Essex, Colchester CO4 3SQ, U.K. (e-mail: zilong.liu@essex.ac.uk).Yubo Li is with the School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China, and also with the Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China (e-mail: liyubo6316@ysu.edu.cn).
Abstract

Sequences with low/zero ambiguity zone (LAZ/ZAZ) properties are useful in modern communication and radar systems operating over mobile environments. This paper first presents a new family of ZAZ sequence sets motivated by the “modulating” zero correlation zone (ZCZ) sequences which were first proposed by Popovic and Mauritz. We then introduce a second family of ZAZ sequence sets with comb-like spectrum, whereby the local Doppler resilience is guaranteed by their inherent spectral nulls in the frequency domain. Finally, LAZ sequence sets are obtained by exploiting their connection with a novel class of mapping functions. These proposed unimodular ZAZ and LAZ sequence sets are cyclically distinct and asymptotically optimal with respect to the existing theoretical bounds on ambiguity functions.

Index Terms:
Unimodular sequence, low ambiguity zone (LAZ), zero ambiguity zone (ZAZ), comb-like spectrum, wireless communication, radar.

I Introduction

Sequences with good correlation properties are desirable in wireless communication and radar systems for a number of applications, such as synchronization, channel estimation, multiuser communication, interference mitigation, sensing, ranging, and positioning [1]. According to the Welch bound, however, it is impossible to obtain a sequence set having both ideal auto- and cross-correlation properties [2]. To circumvent this problem, extensive studies have been conducted on low-correlation sequences and low/zero correlation zone (LCZ/ZCZ) sequences, where the latter are characterized by low/zero correlation properties within a time-shift zone around the origin [3], [4].

Modern sequence design is more stringent as one is expected to deal with the notorious Doppler effect in various mobile channels [5]-[7]. For example, in Vehicle-to-Everything (V2X) networks, satellite communications, as well as radar sensing systems, the received signals are often corrupted by both time delays and phase rotations introduced by the propagation delay and mobility-incurred Doppler, respectively. To characterize the delay-Doppler response at the receiver side, ambiguity function is widely used [8]. For reliable estimation of the delay and Doppler values, it is required to minimize the auto-ambiguity sidelobes and cross-ambiguity magnitudes of a sequence set over the entire delay-Doppler domain. Unfortunately, such a design task is challenging. An explicit algorithm was developed in [9] to generate a sequence set with low ambiguity property (called a finite oscillator system) from the Weil representation. Then, Wang and Gong constructed in [10]-[12] several classes of complex-valued sequence sets with low ambiguity amplitudes using additive and multiplicative characters over finite fields. Ding et al. [13] introduced a set of ambiguity function bounds for unimodular sequence sets as well as four classes of unimodular sequence sets with good ambiguity properties. Recently, a generic cubic-phase sequence set was introduced in [14], whereby each sequence possesses optimal low auto-ambiguity sidelobes and distinct sequences have low cross-ambiguity magnitudes. To date, however, the construction of a sequence set with optimal auto- and cross-ambiguity properties is largely open.

TABLE I: Comparison of periodic unimodular LAZ/ZAZ sequence sets
Method Length Set size θmax\theta_{\textrm{max}} ZxZ_{x} ZyZ_{y} Constraint Optimality
[13] Theorem 9 L=q1L=q-1 1 L\sqrt{L} LL LL q=plq=p^{l}, pp is a prime optimal
Theorem 10 L=q1NL=\frac{q-1}{N} NN q\sqrt{q} LL LL q=plq=p^{l}, pp is a prime, N|(q1)N|(q-1), N2N\geq 2
Theorem 11 L=q1NL=\frac{q-1}{N} LL 2q2\sqrt{q} LL LL q=plq=p^{l}, pp is a prime, N|(q1)N|(q-1), N2N\geq 2
L=q1NL=\frac{q-1}{N} j=1s(L(L.λi)+1)\prod_{j=1}^{s}(\frac{L}{(L.\lambda_{i})}+1) λsqL\frac{\lambda_{s}\sqrt{q}}{L} LL LL q=plq=p^{l}, pp is a prime, N|(q1)N|(q-1), N2N\geq 2,
{λi}i=0\{\lambda_{i}\}_{i=0}^{\infty} are positive integers coprime
to qq in increasing order
[14] Theorem 5 pp p2p^{2} 2p2\sqrt{p} pp pp pp is an odd prime
Theorem 6 pp 11 p\sqrt{p} pp pp pp is an odd prime optimal
Theorem 8 LL 11 0 Lr\frac{L}{r} rr gcd(a,L)=1\text{gcd}(a,L)=1 if LL is odd, r=gcd(2a,L)r=\text{gcd}(2a,L), r>1r>1 optimal
Construction 2 LL NN 0 L/Nr\frac{\left\lfloor{L}/{N}\right\rfloor}{r} rr gcd(a,L)=1\text{gcd}(a,L)=1 if LL is odd, r=gcd(2a,L)r=\text{gcd}(2a,L), r>1r>1 optimal
if N|LN|L
[26] Theorem 4 2(2m1)2(2^{m}-1) 2M2M 22m2\sqrt{2^{m}} LL 2(2m1)2(2^{m}-1) E={𝒆i=(ei,0,ei,1):0i<M}E=\{{\bm{e}_{i}}=(e_{i,0},e_{i,1}):0\leq i<M\} is a shift
sequence set,
L=min{min𝒆𝒉E{2(e0h0),2(e1h1)},L=\min\big{\{}\mathop{\min}\limits_{{\bm{e}}\neq{\bm{h}}\in E}\{2(e_{0}-h_{0}),2(e_{1}-h_{1})\},
min𝒆𝒉E{2(e0h1)+1,2(e1h0)1}}\mathop{\min}\limits_{\bm{e}\neq\bm{h}\in E}\{2(e_{0}-h_{1})+1,2(e_{1}-h_{0})-1\}\big{\}}
This paper Corollary 1 MN2M{{N}^{2}} MNMN 0 NK\left\lfloor\frac{N}{K}\right\rfloor KK K<NK<N, gcd(K,N)=1{\rm{gcd}}(K,N)=1 asymptotically
optimal
Theorem 3 N(KN+P)N(KN+P) NN 0 NN KK gcd(P,NK)=1{\rm{gcd}}(P,NK)=1 asymptotically
optimal
Theorem 4 p(p1)p(p-1) pp pp p1p-1 pp pp is an odd prime asymptotically
optimal
  • θmax\theta_{\textrm{max}} is the maximum periodic ambiguity magnitude for (τ,v)(Zx,Zx)×(Zy,Zy)(\tau,v)\in(-Z_{x},Z_{x})\times(-Z_{y},Z_{y}), where τ\tau is time delay and vv is Doppler shift.

In practice, the maximum Doppler shift is often much smaller than the signal bandwidth [15]. Recognizing this, significant efforts have been devoted to minimizing the local ambiguity sidelobes of sequences [15]-[26]. In [16], for example, an energy gradient method was used to optimize the local ambiguity functions of a sequence set. In [17], a multi-stage accelerated iterative sequential optimization (MS-AISO) algorithm was used to generate sequence sets with enhanced local ambiguity functions in reference to the works in [15], [16]. Although numerous research attempts have been made from the optimization standpoint [15]-[23], only a few works are known on analytical constructions of sequence sets with good local ambiguity functions [14], [24]-[26]. In [14], theoretical bounds on the parameters of unimodular periodic sequence sets with low ambiguity zone (LAZ) and zero ambiguity zone (ZAZ) have been developed. Meanwhile, based on quadratic phase sequences, a class of unimodular ZAZ sequence sets was introduced in [14]. Doppler-resilient phase-coded waveforms (pulse trains) were designed in [24] by carefully transmitting the two sequences in a Golay pair according to the “1” and “0” positions of a binary Prouhet-Thue-Morse (PTM) sequence. Such a construction was then generalized in [25] by applying complete complementary codes and generalized PTM sequences. Recently, [26] pointed out that a class of binary LCZ sequence sets presented in [4] exhibits low ambiguity properties in a delay-Doppler zone around the origin.

Against the aforementioned background, the main objective of this paper is to look for new analytical constructions of unimodular ZAZ and LAZ sequence sets. The core idea behind our proposed constructions is motivated by [27], whereby a ZCZ sequence set was generated by modulating a common “carrier” sequence with a set of orthogonal “modulating” sequences. More constructions on “modulating” ZCZ sequence sets can be found in [28]-[30]. Nevertheless, the aforementioned works have not looked into the ambiguity functions behavior of these “modulating” ZCZ sequences. Such a research gap is filled by this work.

Specifically, by looking into the joint impact of delay and Doppler, a generic design of polyphase ZAZ sequence sets is first presented. Interestingly, such a design also leads to optimal ZCZ sequence sets. Secondly, we observe from the discrete Fourier transform (DFT) that a Doppler-incurred phase rotation in the time-domain is equivalent to a shift in the frequency-domain. Thus, it is natural to expect that sequences with comb-like spectrum are resilient to Doppler shifts. Having this idea in mind, a second construction of polyphase ZAZ sequence sets with comb-like spectrum is developed, where the zero ambiguity sidelobes are guaranteed by their successive nulls in the frequency-domain. Finally, a connection between polyphase sequence sets and a novel class of mapping functions from p1\mathbb{Z}_{p-1} to p\mathbb{Z}_{p} is identified, where pp is an odd prime. Such a finding reveals that constructing LAZ sequence sets is equivalent to finding mapping functions that satisfy certain conditions. By adopting a class of explicit mapping functions, polyphase LAZ sequence sets are derived. We further show that the proposed ZAZ and LAZ sequence sets are cyclically distinct, thus facilitating their wide use in practical applications. As a comparison with the known constructions, the parameters of our proposed periodic ZAZ and LAZ sequence sets are listed in Table I. It is shown that our proposed sequence sets are asymptotically optimal with respect to the theoretical bounds in [14].

The remainder of this paper is organized as follows. In Section II, some necessary notations and lemmas are introduced. In Section III, two constructions of polyphase ZAZ sequence sets are proposed, whereby the spectral characteristics are analyzed for the latter one. Then, a construction of asymptotically optimal LAZ sequence sets associated with a novel class of mappings is presented in Section IV. Finally, we summarize our work in Section V.

II Preliminaries

In this section, we introduce the definitions of LAZ/ZAZ sequence sets and review the corresponding theoretical bounds. Besides, the definition of spectral constraints is briefly recalled. For convenience, we adopt the following notations throughout this paper.

  1. -

    L={0,1,,L1}\mathbb{Z}_{L}=\left\{0,1,\cdots,L-1\right\} is a ring of integers modulo LL, L=L{0}\mathbb{Z}^{*}_{L}=\mathbb{Z}_{L}\setminus\{0\}.

  2. -

    For a prime pp, 𝔽p={0,α0,α1,,αp2}\mathbb{F}_{p}=\{0,\alpha^{0},\alpha^{1},\cdots,\alpha^{p-2}\} is the finite field (Galois field GF(p)\mathrm{GF}(p)) with pp elements, where α\alpha is a primitive element of 𝔽p\mathbb{F}_{p} with αp1=1\alpha^{p-1}=1.

  3. -

    ωL=exp(2π1/L)\omega_{L}={\rm{exp}}\left({2\pi\sqrt{-1}}/{L}\right) is a primitive LL-th complex root of unit.

  4. -

    tL\langle{t\rangle}_{L} denotes that the integer tt is calculated modulo LL.

  5. -

    c\lfloor{c}\rfloor denotes the largest integer not greater than cc.

  6. -

    cc^{*} denotes the complex conjugation of a complex value cc.

  7. -

    lcm(a,b){\rm{lcm}}(a,b) and gcd(a,b){\rm{gcd}}(a,b) denote the least common multiple and the greatest common divisor of positive integers aa and bb, respectively.

  8. -

    For positive integers NN and LL, N|LN|L denotes that NN is a divisor of LL.

  9. -

    𝒂||𝒃\bm{a}||\bm{b} denotes the horizontal concatenation of the vectors 𝒂\bm{a} and 𝒃\bm{b}.

  10. -

    \odot denotes the Hadamard product.

II-A Ambiguity Functions and Correlation Functions

We first give the definition of discrete periodic ambiguity function of sequences [9].

Definition 1: Let 𝒂=(a(0),a(1),,a(L1))\bm{a}=\left(a(0),a(1),\cdots,a(L-1)\right) and 𝒃=(b(0),b(1),,b(L1))\bm{b}=\left(b(0),b(1),\cdots,b(L-1)\right) be two complex-valued sequences of length LL. The periodic ambiguity function of 𝒂\bm{a} and 𝒃\bm{b} at time shift τ\tau and Doppler shift vv is given by

AF𝒂,𝒃(τ,v)=t=0N1a(t)b(t+τL)ωLvt,\displaystyle{\rm{AF}}_{\bm{a},\bm{b}}(\tau,v)=\sum_{t=0}^{N-1}a(t)\cdot b^{*}(\langle{t+\tau\rangle}_{L})\cdot\omega_{L}^{vt}, (1)

where L<τ,v<L-L<\tau,v<L. If 𝒂𝒃\bm{a}\neq\bm{b}, AF𝒂,𝒃(τ){\rm{AF}}_{\bm{a},\bm{b}}(\tau) is called the cross-ambiguity function; otherwise, it is called the auto-ambiguity function and denoted by AF𝒂(τ,v){\rm{AF}}_{\bm{a}}(\tau,v).

When the Doppler shift is zero, we have the following definition on periodic correlation functions.

Definition 2: Let 𝒂=(a(0),a(1),,a(L1))\bm{a}=\left(a(0),a(1),\cdots,a(L-1)\right) and 𝒃=(b(0),b(1),,b(L1))\bm{b}=\left(b(0),b(1),\cdots,b(L-1)\right) be two complex-valued sequences of length LL. The periodic correlation function of 𝒂\bm{a} and 𝒃\bm{b} at time shift τ\tau is defined by

CF𝒂,𝒃(τ)=t=0L1a(t)b(t+τL),\displaystyle{\rm{CF}}_{\bm{a},\bm{b}}(\tau)=\sum_{t=0}^{L-1}{a(t)\cdot b^{*}(\langle{t+\tau\rangle}_{L})}, (2)

where L<τ<L-L<\tau<L. If 𝒂𝒃\bm{a}\neq\bm{b}, CF𝐚,𝐛(τ){\rm{CF}}_{\mathbf{a},\mathbf{b}}(\tau) is called the cross-correlation function; otherwise, it is called the auto-correlation function and denoted by CF𝐚(τ){\rm{CF}}_{\mathbf{a}}(\tau).

Note that when v=0v=0, the ambiguity function AF𝒂,𝒃(τ,0){\rm{AF}}_{\bm{a},\bm{b}}(\tau,0) defined in (1) reduces to the correlation function CF𝒂,𝒃(τ){\rm{CF}}_{\bm{a},\bm{b}}(\tau).

II-B Low/Zero Ambiguity Zone (LAZ/ZAZ) Sequences and Zero Correlation Zone (ZCZ) Sequences

Definition 3: Let 𝒂=(a(0),a(1),,a(L1))\bm{a}=(a(0),a(1),\cdots,a(L-1)) be a sequence of length LL. Consider a delay-Doppler zone Π=(Zx,Zx)×(Zy,Zy)(L,L)×(L,L)\Pi=(-Z_{x},Z_{x})\times(-Z_{y},Z_{y})\subseteq(-L,L)\times(-L,L). The maximum periodic auto-ambiguity sidelobe of 𝒂\bm{a} over the zone Π\Pi is defined by

θ=max{|AF𝒂(τ,v)|:(0,0)(τ,v)Π}.\displaystyle\theta=\textrm{max}\left\{\left|{\rm{AF}}_{\bm{a}}(\tau,v)\right|:(0,0)\neq(\tau,v)\in\Pi\right\}. (3)

If 0<θL0<\theta\ll L, 𝒂\bm{a} is said to be an LAZ sequence and Π\Pi refers to the low auto-ambiguity zone; if θ=0\theta=0, 𝒂\bm{a} is said to be a ZAZ sequence and Π\Pi the zero auto-ambiguity zone.

Definition 4: Let 𝒮={𝒔n}n=0N1\mathcal{S}=\left\{\bm{s}_{n}\right\}_{n=0}^{N-1} be a set of NN sequences with length LL. Consider a delay-Doppler zone Π=(Zx,Zx)×(Zy,Zy)(L,L)×(L,L)\Pi=(-Z_{x},Z_{x})\times(-Z_{y},Z_{y})\subseteq(-L,L)\times(-L,L). The maximum periodic auto-ambiguity sidelobe θA\theta_{\rm{A}} and the maximum periodic cross-ambiguity magnitude θC\theta_{\rm{C}} of 𝒮\mathcal{S} over the zone Π\Pi are defined by

θA=max{|AF𝒔n(τ,v)|:0nN1,(0,0)(τ,v)Π}\displaystyle\theta_{\rm{A}}=\textrm{max}\bigg{\{}\left|{\rm{AF}}_{\bm{s}_{n}}(\tau,v)\right|:\left.\begin{array}[]{ll}0\leq n\leq N-1,\\ (0,0)\neq(\tau,v)\in\Pi\end{array}\right.\bigg{\}} (6)

and

θC=max{|AF𝒔n,𝒔n(τ,v)|:0nnN1,(τ,v)Π}\displaystyle\theta_{{\rm{C}}}=\textrm{max}\bigg{\{}\left|{\rm{AF}}_{\bm{s}_{n},\bm{s}_{n^{\prime}}}(\tau,v)\right|:\left.\begin{array}[]{ll}0\leq n\neq n^{\prime}\leq N-1,\\ (\tau,v)\in\Pi\end{array}\right.\bigg{\}} (9)

respectively. Let θmax=max{θA,θC}\theta_{\textrm{max}}=\textrm{max}\{\theta_{\rm{A}},\theta_{\rm{C}}\} be the maximum periodic ambiguity magnitude over the zone Π\Pi. If 0<θmaxL0<\theta_{\textrm{max}}\ll L, 𝒮\mathcal{S} is referred to as an (L,N,Π,θmax)\left(L,N,\Pi,\theta_{\textrm{max}}\right)-LAZ sequence set, where LL denotes the sequence length, NN the set size, Π\Pi the low ambiguity zone, and θmax\theta_{\textrm{max}} the maximum periodic ambiguity magnitude over the zone Π\Pi. If θmax=0\theta_{\textrm{max}}=0, 𝒮\mathcal{S} is referred to as an (L,N,Π)\left(L,N,\Pi\right)-ZAZ sequence set.

Definition 5: Let 𝒮={𝒔n}n=0N1\mathcal{S}=\left\{\bm{s}_{n}\right\}_{n=0}^{N-1} be a set of NN sequences with length LL. If any two sequences 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}} in 𝒮\mathcal{S} satisfy the following correlation property,

CF𝒔n,𝒔n(τ)={L,n=n,τ=0,0,n=n, 0<|τ|<Z,0,nn,|τ|<Z,\displaystyle{\rm{CF}}_{\bm{s}_{n},\bm{s}_{n^{\prime}}}(\tau)=\left\{\begin{array}[]{ll}L,&n=n^{\prime},\,\tau=0,\\ 0,&n=n^{\prime},\,0<|\tau|<Z,\\ 0,&n\neq n^{\prime},\,|\tau|<Z,\end{array}\right. (13)

where 0n,nN10\leq n,n^{\prime}\leq N-1, 𝒮\mathcal{S} is referred to as an (L,N,Z)(L,N,Z)-ZCZ sequence set, where ZZ refers to the ZCZ width.

II-C Bounds on LAZ/ZAZ Sequence Sets and ZCZ Sequence Sets

In [2], Welch derived several correlation lower bounds by evaluating the mini-max value of the inner products of a vector set. Based on the inner product theorem presented in [2], the following lower bounds can be easily obtained for the unimodular periodic LAZ / ZAZ sequence sets and ZCZ sequence sets, as shown in [14] and [31] respectively.

Lemma 1 ([14]): For a unimodular (L,N,Π,θmax)(L,N,\Pi,\theta_{\rm{max}})-LAZ sequence set with Π=(Zx,Zx)×(Zy,Zy)\Pi=(-Z_{x},Z_{x})\times(-Z_{y},Z_{y}), the maximum periodic ambiguity magnitude satisfies the following lower bound:

θmaxLZyNZxZy/L1NZx1.\displaystyle\theta_{\rm{\max}}\geq\frac{L}{\sqrt{Z_{y}}}\sqrt{\frac{{N{Z_{x}}{Z_{y}}}/{L}-1}{N{Z_{x}}-1}}. (14)

In order to evaluate the closeness between θmax\theta_{\max} and its lower bound, the optimality factor ρLAZ\rho_{\rm{LAZ}} is defined by

ρLAZ=θmaxLZyNZxZy/L1NZx1.\displaystyle\rho_{\rm{LAZ}}=\frac{\theta_{\rm{\max}}}{\frac{L}{\sqrt{Z_{y}}}\sqrt{\frac{{N{Z_{x}}{Z_{y}}}/{L}-1}{N{Z_{x}}-1}}}. (15)

In general, ρLAZ1\rho_{\rm{LAZ}}\geq 1. If ρLAZ=1\rho_{\rm{LAZ}}=1, the LAZ sequence set is said to be optimal.

By taking θmax=0{{\theta}_{\max}}=0 in Lemma 1, we have the following bound on unimodular ZAZ sequence sets.

Lemma 2: For a unimodular (L,N,Π)(L,N,\Pi)-ZAZ set with Π=(Zx,Zx)×(Zy,Zy)\Pi=(-Z_{x},Z_{x})\times(-Z_{y},Z_{y}), the following upper bound needs to be satisfied:

NZxZyL.\displaystyle NZ_{x}Z_{y}\leq L. (16)

To analyse the tightness, the zero ambiguity zone ratio ZAZratio{\rm{ZAZ_{ratio}}} is defined by

ZAZratio=ZxZyL/N.\displaystyle{\rm{ZAZ_{ratio}}}=\frac{Z_{x}Z_{y}}{L/N}. (17)

In general, ZAZratio1{\rm{ZAZ_{ratio}}}\leq 1. If ZAZratio=1{\rm{ZAZ_{ratio}}}=1, the ZAZ sequence set is said to be optimal.

Lemma 3 ([31]): For an (L,N,Z)(L,N,Z)-ZCZ sequence set, one has

NZL.\displaystyle NZ\leq{L}. (18)

Such a sequence set is called optimal if the above equality holds.

II-D Discrete Fourier Transform (DFT) and Spectral-Null Constraints

Definition 6: For a time-domain sequence 𝒂=(a(0),a(1),,a(L1))\bm{a}=(a(0),a(1),\cdots,a(L-1)) of length LL, the corresponding frequency-domain dual 𝒅=(d(0),d(1),,d(L1))\bm{d}=(d(0),d(1),\cdots,d(L-1)) of length LL is defined by taking the LL-point DFT on 𝒂\bm{a}, i.e.,

d(i)=1Lt=0L1a(t)ωLit, 0iL1.\displaystyle d(i)=\frac{1}{\sqrt{L}}\sum_{t=0}^{L-1}a(t)\cdot\omega_{L}^{-it},\,0\leq i\leq L-1. (19)

It follows from (12) that the periodic ambiguity function of 𝒂\bm{a} and 𝒃\bm{b} at time shift τ\tau and Doppler shift vv in (1) can be represented by

AF𝒂,𝒃(τ,v)=i=0L1c(i)d(i+vL)ωLiτ,\displaystyle{\rm{AF}}_{\bm{a},\bm{b}}(\tau,v)=\sum_{i=0}^{L-1}c(i)\cdot d^{*}(\langle{i+v\rangle}_{L})\cdot\omega_{L}^{i\tau}, (20)

where 𝒄\bm{c} and 𝒅\bm{d} are the frequency-domain duals corresponding to 𝒂\bm{a} and 𝒃\bm{b}, respectively.

Consider a wireless system where the entire spectrum is divided into LL carriers. Let us further consider a “subcarrier marking vector”𝕔=[c0,c1,,cL1]\mathbb{c}=[c_{0},c_{1},\cdots,c_{L-1}] with ci=1c_{i}=1 if the ii-th subcarrier is available and ci=0c_{i}=0 otherwise. The “spectral constraint” is defined by the set of indices of all forbidden carrier positions, i.e., Ω={i:ci=0,iL}\Omega=\left\{i:c_{i}=0,i\in\mathbb{Z}_{L}\right\}. Suppose multiple terminals or targets are supported with distinct signature sequences over the L|Ω|L-|\Omega| available carriers specified by LΩ\mathbb{Z}_{L}\setminus{\Omega} [32].

Definition 7: Let 𝒮={𝒔n}n=0N1\mathcal{S}=\left\{\bm{s}_{n}\right\}_{n=0}^{N-1} be a set of NN sequences with length LL, 𝒅n=(dn(0),dn(1),,dn(L1))\bm{d}_{n}=(d_{n}(0),d_{n}(1),\cdots,d_{n}(L-1)) be the frequency-domain dual corresponding to 𝒔n{\bm{s}}_{n}. For ΩL\Omega\subset\mathbb{Z}_{L}, the sequence set 𝒮\mathcal{S} is subject to the spectral-null constraint Ω\Omega if

n=0N1|dn(i)|2=0\displaystyle\sum_{n=0}^{N-1}\left|d_{n}(i)\right|^{2}=0 (21)

holds for any iΩi\in\Omega.

III Proposed Constructions of ZAZ Sequence Sets

Before the context of the proposed constructions of ZAZ sequence sets, we first review a framework of ZCZ sequence sets from the view point of “modulating” [27].

Let 𝒂=(a(0),a(1),,a(MN1)){\bm{a}}=(a(0),a(1),\cdots,a(MN-1)) be a sequence of length MNMN and {𝒃n}n=0N1\left\{{\bm{b}_{n}}\right\}_{n=0}^{N-1} a set of NN orthogonal sequences with 𝒃n=(bn(0),bn(1),,bn(N1)){\bm{b}}_{n}=(b_{n}(0),b_{n}(1),\cdots,b_{n}(N-1)). By modulating 𝒂{\bm{a}} with NN different orthogonal sequences {𝒃n}n=0N1\left\{{\bm{b}_{n}}\right\}_{n=0}^{N-1}, a sequence set 𝒮={𝒔n}n=0N1{\mathcal{S}}=\left\{{\bm{s}_{n}}\right\}_{n=0}^{N-1} can be obtained by

𝒔n=𝒂[𝒃n||𝒃n||||𝒃nM],\displaystyle{{\bm{s}}_{n}}={\bm{a}}\odot\big{[}\underbrace{{{\bm{b}}_{n}}\,||\,{{\bm{b}}_{n}}\,||\,\cdots\,||{\,{\bm{b}}_{n}}}_{M}\big{]}, (22)

where the tt-th entry of 𝒔n{\bm{s}_{n}} with 0tMN10\leq t\leq MN-1 is

sn(t)=a(t)bn(tmodN).\displaystyle s_{n}(t)=a(t)\cdot b_{n}(t\,{\mathrm{mod}}\,N). (23)

The sequence 𝒂{\bm{a}} can be regarded as a “carrier” sequence and 𝒃n{\bm{b}}_{n} a “modulating” sequence.

Inspired by the above framework, by well choosing the carrier sequences, we introduce two constructions of asymptotically optimal unimodular ZAZ sequence sets and show that all the constructed sequences in a ZAZ sequence set are cyclically distinct.

III-A The First Proposed Construction of ZAZ Sequence Sets

Construction A:

Consider positive integers MM, NN, and KK such that K<NK<N and gcd(K,N)=1{\rm{gcd}}(K,N)=1. Let 𝑫=[dn(t)]n,t=0N1\bm{D}=\left[{d_{n}(t)}\right]_{n,t=0}^{N-1} be an N×NN\times N DFT matrix, where the tt-th entry of the row 𝒅n{\bm{d}}_{n} is dn(t)=ωNKntd_{n}(t)=\omega_{N}^{Knt}. Define a sequence 𝒂{\bm{a}} of length MN2MN^{2} by

𝒂=\displaystyle{\bm{a}}=
[𝒅0||𝒅0||||𝒅0M||𝒅1||𝒅1||||𝒅1M||||𝒅N1𝒅N1M],\displaystyle\big{[}\underbrace{{{\bm{d}}_{0}}\,||{{\bm{d}}_{0}}||\cdots||{{\bm{d}}_{0}}}_{M}||\underbrace{{\bm{d}}_{1}||{\bm{d}}_{1}||\cdots||{\bm{d}}_{1}}_{M}||\cdots||\underbrace{{{\bm{d}}_{N-1}}||\cdots||{{\bm{d}}_{N-1}}}_{M}\big{]}, (24)

where the tt-th entry of 𝒂{\bm{a}} is a(t)=ωNKt2t0a(t)=\omega_{N}^{Kt_{2}t_{0}}, 0tMN210\leq t\leq MN^{2}-1, t=MNt2+Nt1+t0t=MNt_{2}+Nt_{1}+t_{0}, t2=t/(MN)t_{2}=\lfloor{t}/(MN)\rfloor, t1=t/NMt_{1}={\langle\lfloor{t}/{N}\rfloor\rangle}_{M}, and t0=tNt_{0}={{\langle t\rangle}_{N}}. Following the framework in (15), using the above sequence 𝒂{\bm{a}} and an orthogonal sequence set {𝒃n}n=0MN1\left\{{\bm{b}_{n}}\right\}_{n=0}^{MN-1}, a sequence set 𝒮={𝒔n}n=0MN1{\mathcal{S}}=\left\{{\bm{s}_{n}}\right\}_{n=0}^{MN-1} can be constructed. Recalling (16), the tt-th entry of 𝒔n{\bm{s}}_{n} can be expressed as

sn(t)=ωNKt2t0bn(Nt1+t0),\displaystyle s_{n}(t)=\omega_{N}^{Kt_{2}t_{0}}\cdot b_{n}(Nt_{1}+t_{0}), (25)

where 0tMN210\leq t\leq MN^{2}-1, t=MNt2+Nt1+t0t=MNt_{2}+Nt_{1}+t_{0}, t2=t/(MN)t_{2}=\lfloor{t}/(MN)\rfloor, t1=t/NMt_{1}={\langle\lfloor{t}/{N}\rfloor\rangle}_{M}, and t0=tNt_{0}={{\langle t\rangle}_{N}}.

Theorem 1: The sequence set 𝒮\mathcal{S} constructed above is a unimodular (MN2,MN,Π)(MN^{2},MN,\Pi)-ZAZ sequence set with Π=(N/K,N/K)×(K,K)\Pi=(-\lfloor{N}/{K}\rfloor,\lfloor{N}/{K}\rfloor)\times(-K,K).

Proof: We will show that the sequence set 𝒮\mathcal{S} has ideal ambiguity functions over a delay-Doppler zone around the origin. Note that for two sequences 𝒂\bm{a} and 𝒃\bm{b} of length LL, the ambiguity function has the symmetry property, i.e., AF𝒂,𝒃(τ,v)=AF𝒃,𝒂(τ,v){\rm{AF}}_{{\bm{a}},{\bm{b}}}(\tau,v)={\rm{AF}}^{*}_{{\bm{b}},{\bm{a}}}(-\tau,v) for 0τ<L0\leq\tau<L. Therefore, in the rest of this paper, we will only discuss the ambiguity function AF𝒂,𝒃(τ,v){\rm{AF}}_{{\bm{a}},{\bm{b}}}(\tau,v) with 0τ<L0\leq\tau<L and |v|<L|v|<L. Let 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}} be any two sequences in 𝒮\mathcal{S}, where 0n,nMN10\leq n,n^{\prime}\leq MN-1. Calculate the periodic ambiguity function of 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}} as follows:

AF𝒔n,𝒔n(τ,v)\displaystyle{\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(\tau,v)
=\displaystyle= t=0MN21sn(t)sn(t+τMN2)ωMN2vt\displaystyle\sum_{t=0}^{MN^{2}-1}s_{n}(t)\cdot s^{*}_{n^{\prime}}(\langle{t+\tau\rangle}_{MN^{2}})\cdot\omega_{MN^{2}}^{vt}
=\displaystyle= t2=0N1t1=0M1t0=0N1ωNKt2t0ωNK(t2+τ2+δt1,τ1,t0,τ0)(t0+τ0)\displaystyle\sum_{t_{2}=0}^{N-1}\sum_{t_{1}=0}^{M-1}\sum_{t_{0}=0}^{N-1}\omega_{N}^{Kt_{2}t_{0}}\cdot\omega_{N}^{-K(t_{2}+\tau_{2}+\delta_{t_{1},\tau_{1},t_{0},\tau_{0}})(t_{0}+\tau_{0})}
ωMN2v(MNt2+Nt1+t0)bn(Nt1+t0)\displaystyle\cdot\omega_{MN^{2}}^{v(MNt_{2}+N{t_{1}}+{t_{0}})}\cdot b_{n}(Nt_{1}+t_{0})
bn(N(t1+τ1+δt0,τ0)+(t0+τ0Nδt0,τ0)MN)\displaystyle\cdot b^{*}_{n^{\prime}}(\langle N(t_{1}+\tau_{1}+\delta_{t_{0},\tau_{0}})+(t_{0}+\tau_{0}-N\delta_{t_{0},\tau_{0}})\rangle_{MN})
=\displaystyle= t1=0M1t0=0N1ωNK(τ2+δt1,τ1,t0,τ0)(t0+τ0)ωMNvt1ωMN2vt0\displaystyle\sum_{t_{1}=0}^{M-1}\sum_{t_{0}=0}^{N-1}\omega_{N}^{-K(\tau_{2}+{\delta_{t_{1},\tau_{1},t_{0},\tau_{0}}})(t_{0}+\tau_{0})}\cdot\omega_{MN}^{vt_{1}}\cdot\omega_{MN^{2}}^{vt_{0}}
bn(N(t1+τ1+δt0,τ0)+(t0+τ0)Nδt0,τ0MN)\displaystyle\cdot b^{*}_{n^{\prime}}(\langle N(t_{1}+\tau_{1}+\delta_{t_{0},\tau_{0}})+(t_{0}+\tau_{0})-N\delta_{t_{0},\tau_{0}}\rangle_{MN})
bn(Nt1+t0)t2=0N1ωN(vKτ0)t2,\displaystyle\cdot b_{n}(Nt_{1}+t_{0})\cdot\sum_{t_{2}=0}^{N-1}\omega_{N}^{(v-K\tau_{0})t_{2}}, (26)

where t2=t/(MN)t_{2}=\lfloor{t}/(MN)\rfloor, t1=t/NMt_{1}={\langle\lfloor t/N\rfloor\rangle}_{M}, t0=tNt_{0}={{\langle t\rangle}_{N}}, n1=n/Nn_{1}=\lfloor{n}/{N}\rfloor, n0=nNn_{0}={\langle n\rangle}_{N}, τ=MNτ2+Nτ1+τ0\tau=MN\tau_{2}+N\tau_{1}+\tau_{0}, τ2=τ/(MN)\tau_{2}=\lfloor{\tau/(MN)}\rfloor, τ1=τ/NM\tau_{1}={\langle{\lfloor{\tau/N}\rfloor}\rangle_{M}}, τ0=τN\tau_{0}={\langle\tau\rangle_{N}}, δt0,τ0=(t0+τ0)/N{\delta_{t_{0},\tau_{0}}}=\lfloor{(t_{0}+\tau_{0})/N}\rfloor, and δt1,τ1,t0,τ0=(t1+τ1+δt0,τ0)/M{\delta_{t_{1},\tau_{1},t_{0},\tau_{0}}}=\lfloor{(t_{1}+{\tau_{1}}+{\delta_{t_{0},\tau_{0}}})/M}\rfloor.

Consider the following two cases:

Case 1: When v=0v=0, τ=0\tau=0, and nnn\neq n^{\prime}, (19) is simplified to

AF𝒔n,𝒔n(0,0)\displaystyle{\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(0,0) =Nt0=0N1t1=0M1bn(Nt1+t0)bn(Nt1+t0)\displaystyle=N\cdot\sum_{t_{0}=0}^{N-1}\sum_{t_{1}=0}^{M-1}b_{n}(Nt_{1}+t_{0})\cdot b^{*}_{n^{\prime}}(Nt_{1}+t_{0})
=Nt=0MN1bn(t)bn(t)\displaystyle=N\cdot\sum_{t=0}^{MN-1}b_{n}(t)\cdot b^{*}_{n^{\prime}}(t)
=0,\displaystyle=0, (27)

where t=0MN1bn(t)bn(t)=0\sum_{t=0}^{MN-1}b_{n}(t)\cdot b^{*}_{n^{\prime}}(t)=0 for nn{n}\neq{n^{\prime}}.

Case 2: When v=0v=0 and 0<τ0<N0<\tau_{0}<N, or 0<|v|<K0<|v|<K and 0τ0<N/K0\leq{\tau_{0}}<\lfloor{N}/{K}\rfloor, there is vKτ0N0\langle v-K\tau_{0}\rangle_{N}\neq 0 as gcd(K,N)=1{\rm{gcd}}(K,N)=1. Then t2=0N1ωN(vKτ0)t2=0\sum_{t_{2}=0}^{N-1}\omega_{N}^{(v-K\tau_{0})t_{2}}=0 holds in (19). Therefore, we have AF𝒔n,𝒔n(τ,v)=0{{\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}}(\tau,v)=0.

From the above discussions, we assert that when |τ|<N/K|\tau|<\left\lfloor{N}/{K}\right\rfloor and |v|<K|v|<K, the auto-ambiguity function AF𝒔n(τ,v)=0{\rm{AF}}_{{\bm{s}_{n}}}(\tau,v)=0 for (τ,v)(0,0)(\tau,v)\neq(0,0) and the cross-ambiguity function AF𝒔n,𝒔n(τ,v)=0{\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(\tau,v)=0 for nnn\neq n^{\prime}. Consequently, the sequence set 𝒮\mathcal{S} has ideal ambiguity properties over the delay-Doppler zone (N/K,N/K)×(K,K)(-\lfloor{N}/{K}\rfloor,\lfloor{N}/{K}\rfloor)\times(-K,K).

Note that cyclically equivalent sequences are not treated as essentially different sequences and thus are not desired in practical applications [1]. In the following, a specific orthogonal sequence set {𝒃n}n=0MN1\left\{{\bm{b}_{n}}\right\}_{n=0}^{MN-1} is provided to guarantee that all the sequences in the set 𝒮\mathcal{S} derived from Construction A are cyclically distinct.

Let 𝑪=[ci(j)]i,j=0M1\bm{C}=\left[c_{i}(j)\right]_{i,j=0}^{M-1} be an M×MM\times M DFT matrix with ci(j)=ωMijc_{i}(j)=\omega_{M}^{ij} and 𝑫=[di(j)]i,j=0N1\bm{D}=\left[d_{i}(j)\right]_{i,j=0}^{N-1} a generalized N×NN\times N DFT matrix with di(j)=ωNiσ(j)d_{i}(j)=\omega_{N}^{i\sigma(j)}, where σ\sigma is a permutation of N\mathbb{Z}_{N} such that σ(j)αj+β\sigma(j)\neq\alpha j+\beta for any α,βN\alpha,\beta\in\mathbb{Z}_{N}. Define the orthogonal matrix 𝑩=[bn(t)]n,t=0MN1\bm{B}=\left[b_{n}(t)\right]_{n,t=0}^{MN-1} as the Kronecker product of 𝑪\bm{C} and 𝑫\bm{D}, where the tt-th entry of the row 𝒃n\bm{b}_{n} is bn(t)=ωMn1t1ωNn0σ(t0)b_{n}(t)=\omega_{M}^{n_{1}t_{1}}\cdot\omega_{N}^{n_{0}\sigma(t_{0})}, n1=n/Nn_{1}=\lfloor{n}/{N}\rfloor, n0=nNn_{0}={\langle n\rangle}_{N}, t1=t/Nt_{1}=\lfloor{t}/{N}\rfloor, and t0=tNt_{0}={\langle t\rangle}_{N}. Then, using the orthogonal sequence set {𝒃n}n=0MN1\left\{{\bm{b}_{n}}\right\}_{n=0}^{MN-1}, a sequence set 𝒮={𝒔n}n=0MN1{\mathcal{S}}=\left\{{\bm{s}_{n}}\right\}_{n=0}^{MN-1} can be constructed following (18) in Construction A. The tt-th entry of 𝒔n{\bm{s}}_{n} is given by

sn(t)=ωNKt2t0+n0σ(t0)ωMn1t1,\displaystyle s_{n}(t)=\omega_{N}^{Kt_{2}t_{0}+n_{0}\sigma(t_{0})}\cdot\omega_{M}^{n_{1}t_{1}}, (28)

where 0tMN210\leq t\leq MN^{2}-1, t=MNt2+Nt1+t0t=MNt_{2}+Nt_{1}+t_{0}, t2=t/(MN)t_{2}=\lfloor{t}/(MN)\rfloor, t1=t/NMt_{1}={\langle\lfloor{t}/{N}\rfloor\rangle}_{M}, t0=tNt_{0}={{\langle t\rangle}_{N}}, n=Nn1+n0n=Nn_{1}+n_{0}, n1=n/Nn_{1}=\lfloor{n}/{N}\rfloor, and n0=nNn_{0}={\langle n\rangle}_{N}.

Corollary 1: The sequence set 𝒮\mathcal{S} constructed from (21) is a polyphase (MN2,MN,Π)(MN^{2},MN,\Pi)-ZAZ sequence set with Π=(N/K,N/K)×(K,K)\Pi=(-\lfloor{N}/{K}\rfloor,\lfloor{N}/{K}\rfloor)\times(-K,K). All the sequences in 𝒮\mathcal{S} are cyclically distinct.

Proof: It follows directly from Theorem 1 that 𝒮\mathcal{S} is a polyphase (MN2,MN,Π)(MN^{2},MN,\Pi)-ZAZ sequence set with Π=(N/K,N/K)×(K,K)\Pi=(-\lfloor{N}/{K}\rfloor,\lfloor{N}/{K}\rfloor)\times(-K,K). Next, we will show that all the sequences in 𝒮\mathcal{S} are cyclically distinct. Assume on the contrary that 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}} with 0nnMN10\leq n\neq n^{\prime}\leq MN-1 in 𝒮\mathcal{S} are cyclically equivalent at the time shift τ\tau. It implies that

sn(t)=sn(t+τMN2)ωMN2c\displaystyle s_{n}(t)=s_{n^{\prime}}(\langle{t+\tau\rangle}_{MN^{2}})\cdot\omega_{MN^{2}}^{c} (29)

holds for all 0tMN210\leq t\leq MN^{2}-1, where cMN2c\in\mathbb{Z}_{MN^{2}}. It follows from (21) that for all 0t2N10\leq t_{2}\leq N-1, 0t1M10\leq t_{1}\leq M-1, and 0t0N10\leq t_{0}\leq N-1, there is

ωNn0σ(t0)n0σ(t0+τ0Nδt0,τ0)ωNK(τ2+δt1,τ1,t0,τ0)(t0+τ0)\displaystyle\omega_{N}^{{n_{0}}\sigma(t_{0})-n^{\prime}_{0}\sigma(t_{0}+\tau_{0}-N\delta_{t_{0},\tau_{0}})}\cdot\omega_{N}^{-K(\tau_{2}+\delta_{t_{1},\tau_{1},t_{0},\tau_{0}})(t_{0}+\tau_{0})}
ωMn1(τ1+δt0,τ0)ωM(n1n1)t1ωNKτ0t2=ωMN2c.\displaystyle\cdot\omega_{M}^{-n^{\prime}_{1}(\tau_{1}+\delta_{t_{0},\tau_{0}})}\cdot\omega_{M}^{(n_{1}-n^{\prime}_{1})t_{1}}\cdot\omega_{N}^{-K\tau_{0}t_{2}}=\omega_{MN^{2}}^{c}. (30)

Note that for any 0t2N10\leq t_{2}\leq N-1, (23) holds if and only if τ0=0\tau_{0}=0. Then, we have δt0,τ0=0\delta_{t_{0},\tau_{0}}=0, and (23) becomes

ωN(n0n0)σ(t0)ωNK(τ2+δt1,τ1,t0,0)t0ωMn1τ1ωM(n1n1)t1\displaystyle\omega_{N}^{(n_{0}-n^{\prime}_{0})\sigma(t_{0})}\cdot\omega_{N}^{-K(\tau_{2}+\delta_{t_{1},\tau_{1},t_{0},0})t_{0}}\cdot\omega_{M}^{-n^{\prime}_{1}\tau_{1}}\cdot\omega_{M}^{(n_{1}-n^{\prime}_{1})t_{1}}
=ωMN2c.\displaystyle=\omega_{MN^{2}}^{c}. (31)

For 0t1<Mτ10\leq t_{1}<M-{\tau_{1}} and δt1,τ1,t0,0=0\delta_{t_{1},\tau_{1},t_{0},0}=0, or Mτ1t1<MM-\tau_{1}\leq t_{1}<M and δt1,τ1,t0,0=1\delta_{t_{1},\tau_{1},t_{0},0}=1, (24) holds if and only if n1=n1n_{1}=n^{\prime}_{1}. Thus, (24) simplifies to

ωN(n0n0)σ(t0)ωNK(τ2+δt1,τ1,t0,0)t0ωMn1τ1=ωMN2c.\displaystyle\omega_{N}^{(n_{0}-n^{\prime}_{0})\sigma(t_{0})}\cdot\omega_{N}^{-K(\tau_{2}+\delta_{t_{1},\tau_{1},t_{0},0})t_{0}}\cdot\omega_{M}^{-n^{\prime}_{1}\tau_{1}}=\omega_{MN^{2}}^{c}. (32)

For 0t1<M0\leq t_{1}<M, (25) holds if and only if δt1,τ1,t0,0=0\delta_{t_{1},\tau_{1},t_{0},0}=0. Then, we have τ1=0\tau_{1}=0, and (25) becomes

ωN(n0n0)σ(t0)ωNKτ2t0=ωMN2c.\displaystyle\omega_{N}^{(n_{0}-n^{\prime}_{0})\sigma(t_{0})}\cdot\omega_{N}^{-K\tau_{2}t_{0}}=\omega_{MN^{2}}^{c}. (33)

Since nnn\neq n^{\prime} and n1=n1n_{1}=n^{\prime}_{1}, there is n0n0n_{0}\neq n^{\prime}_{0}. Then, it follows from the above equation that σ(t0)Kτ2n0n0t0+ymodN\sigma(t_{0})\equiv\frac{K\tau_{2}}{n^{\prime}_{0}-n_{0}}t_{0}+y\bmod N for all 0t0N10\leq t_{0}\leq N-1, where yNy\in\mathbb{Z}_{N}. Obviously, it is impossible since σ(t0)xt0+y\sigma(t_{0})\neq xt_{0}+y for any x,yNx,y\in\mathbb{Z}_{N}. Consequently, we deduce that all the sequences in 𝒮\mathcal{S} are cyclically distinct.

TABLE II: Comparison of some known optimal polyphase ZCZ sequence sets
Method Length Set size ZCZ width Alphabet size Constraint
[28] 2n+22^{n+2} 2n2^{n} 44 44
[29] N2N^{2} NN NN NN NN is an odd prime
[34] k=0n1Mk=L2\prod_{k=0}^{n-1}M_{k}=L^{2} k=0np1Mk\prod_{k=0}^{n-p-1}M_{k} k=npn1Mk\prod_{k=n-p}^{n-1}M_{k} L2L^{2} 0<pn10<p\leq n-1, positive integers MkM_{k} with
0kn10\leq k\leq n-1 are not necessarily distinct
MNMN NN MM lcm(N,r){\rm{lcm}}(N,r) gcd(M,N)=1{\rm{gcd}}(M,N)=1, rr is the alphabet size
of a perfect sequence with length MM
[27] MNMN NN MM MNMN
[33] MNMN NN MM not less than MNMN
M2NM^{2}N NN M2M^{2} MNMN
[30] MN2MN^{2} NN MNMN MNMN MM is a square-free integer
Corollary 2 MN2MN^{2} MNMN NN lcm(M,N){\rm{lcm}}(M,N)
Refer to caption
(a) The auto-ambiguity magnitudes of 𝒔0{\bm{s}}_{0} over [8,8]×[8,8][-8,8]\times[-8,8].
Refer to caption
(b) The auto-ambiguity magnitudes of 𝒔0{\bm{s}}_{0} over [3,3]×[2,2][-3,3]\times[-2,2].
Refer to caption
(c) The cross-ambiguity magnitudes of 𝒔0{\bm{s}}_{0} and 𝒔1{\bm{s}_{1}} over [8,8]×[8,8][-8,8]\times[-8,8].
Figure 1: The ambiguity magnitudes of 𝒔0{\bm{s}}_{0} and 𝒔1{\bm{s}_{1}} in 𝒮\mathcal{S} from Example 1.

Remark 1: In Corollary 1, all the sequences in 𝒮\mathcal{S} are cyclically distinct if the permutation σ\sigma of N\mathbb{Z}_{N} satisfies σ(j)xj+y\sigma(j)\neq xj+y for any x,yNx,y\in\mathbb{Z}_{N}. For example, for an odd prime NN and an integer α\alpha with 1<α<N1<\alpha<N, the permutation σ(j)=jαN\sigma(j)=\langle{j^{\alpha}\rangle}_{N} satisfies this condition if gcd(N1,α)=1{\rm{gcd}}(N-1,\alpha)=1. For a fixed NN, the zero ambiguity zone Π=(N/K,N/K)×(K,K)\Pi=(-\lfloor{N}/{K}\rfloor,\lfloor{N}/{K}\rfloor)\times(-K,K) of the proposed (MN2,MN,Π)(MN^{2},MN,\Pi)-ZAZ sequence set 𝒮{\mathcal{S}} can be set flexibly by changing KK. According to (10), the zero ambiguity zone ratio of 𝒮\mathcal{S} is

ZAZratio=KNNK.\displaystyle{\rm{ZAZ_{ratio}}}=\frac{K}{N}\cdot\left\lfloor{\frac{N}{K}}\right\rfloor. (34)

Note that limNK0ZAZratio1\mathop{\lim}\limits_{\langle N\rangle_{K}\rightarrow 0}{\rm{ZAZ_{ratio}}}\rightarrow 1, implying that the constructed ZAZ sequence set 𝒮\mathcal{S} is asymptotically optimal with respect to the theoretical bound in Lemma 2.

Corollary 2: When K=1K=1, the sequence set 𝒮{\mathcal{S}} derived from (21) is an optimal polyphase (MN2,MN,N)\left(MN^{2},MN,N\right)-ZCZ sequence set. All the sequences in 𝒮{\mathcal{S}} are cyclically distinct.

Proof: It follows directly from Corollary 1 that when K=1K=1, 𝒮{\mathcal{S}} is an (MN2,MN,N)\left(MN^{2},MN,N\right)-ZCZ sequence set and all the sequences are cyclically distinct. The parameters of 𝒮{\mathcal{S}} achieve the theoretical bound in Lemma 3, and therefore 𝒮{\mathcal{S}} is optimal.

Remark 2: Due to their important applications in quasi-synchronous code-division multiple-access (QS-CDMA) systems, ZCZ sequences have been extensively investigated [27]-[30], [33], [34]. As a comparison, the parameters of some known optimal polyphase ZCZ sequence sets are listed in Table II. In [29], a construction of (N2,N,N)\left(N^{2},N,N\right)-ZCZ sequence sets based on perfect nonlinear functions (PNFs) was proposed. When M=1M=1, the ZCZ sequence set 𝒮{\mathcal{S}} in Corollary 2 simplifies to that in [29], where the “carrier” sequence 𝒂\bm{a} of length N2N^{2} is defined by a(t)=ωNt/Nta(t)=\omega_{N}^{\lfloor{t}/N\rfloor t}. When M>1M>1, however, the (MN2,MN,N)\left(MN^{2},MN,N\right)-ZCZ sequence set 𝒮{\mathcal{S}} in Corollary 2 is new, in which the “carrier” sequence 𝒂\bm{a} of length MN2MN^{2} with a(t)=ωNt/(MN)ta(t)=\omega_{N}^{\lfloor{t}/(MN)\rfloor t} is an extension of the perfect sequence by generalizing the PNF in [29].

Here, we give an example to illustrate the proposed construction.

Example 1: Let M=1M=1, N=13N=13, K=3K=3, and the permutation σ(j)=j513\sigma(j)={{\left\langle j^{5}\right\rangle}_{13}} for j13j\in\mathbb{Z}_{13}. Following (21), a polyphase (169,13,Π)\left(169,13,\Pi\right)-ZAZ sequence set 𝒮={𝒔n}n=012{\mathcal{S}}=\left\{{\bm{s}_{n}}\right\}_{n=0}^{12} with Π=(4,4)×(3,3)\Pi=(-4,4)\times(-3,3) can be derived, where the tt-th entry of 𝒔n{\bm{s}}_{n} is given by

sn(t)=ω133t2t0+nσ(t0),\displaystyle s_{n}(t)=\omega_{13}^{3t_{2}t_{0}+n\sigma(t_{0})},

0t1680\leq t\leq 168, t2=t/13t_{2}=\lfloor{t}/13\rfloor, and t0=t13t_{0}={\langle t\rangle}_{13}. The zero ambiguity zone ratio of 𝒮{\mathcal{S}} is ZAZratio=0.923077{\rm{ZAZ_{ratio}}}=0.923077. The auto-ambiguity magnitudes of the sequence 𝒔0{\bm{s}}_{0} over [8,8]×[8,8][-8,8]\times[-8,8] and [3,3]×[2,2][-3,3]\times[-2,2], and the cross-ambiguity magnitudes of the sequences 𝒔0{\bm{s}}_{0} and 𝒔1{\bm{s}}_{1} over [8,8]×[8,8][-8,8]\times[-8,8] are shown in Fig. 1 (a), Fig. 1 (b), and Fig. 1 (c) respectively. It can be seen that the sequence 𝒔0{\bm{s}}_{0} has zero auto-ambiguity sidelobes over [3,3]×[2,2][-3,3]\times[-2,2], exhibiting a thumbtack shape over this zone, 𝒔0{\bm{s}}_{0} and 𝒔1{\bm{s}}_{1} have zero cross-ambiguity magnitudes over [3,3]×[2,2][-3,3]\times[-2,2].

III-B The Second Proposed Construction of ZAZ Sequence Sets

Note that according to the DFT, a Doppler-incurred phase rotation in the time-domain corresponds to a shift in the frequency-domain. Therefore, zero ambiguity functions for local non-zero Doppler shifts can be guaranteed if each non-zero element of the frequency-domain duals is followed by successive nulls according to (13). With this idea, we have the following theorem.

Theorem 2: Consider a unimodular (L,N,Z)\left(L,N,Z\right)-ZCZ sequence set subject to the spectral-null constraint Ω\Omega. For any iLΩi\in\mathbb{Z}_{L}\setminus{\Omega} and 0<|v|<K0<|v|<K, if i+vLΩ\langle{i+v\rangle}_{L}\in\Omega, then 𝒮\mathcal{S} is a unimodular (L,N,Π)\left(L,N,\Pi\right)-ZAZ sequence set with Π=(Z,Z)×(K,K)\Pi=(-Z,Z)\times(-K,K).

Proof: For the (L,N,Z)\left(L,N,Z\right)-ZCZ sequence set 𝒮={𝒔n}n=0N1\mathcal{S}=\left\{{\bm{s}_{n}}\right\}_{n=0}^{N-1}, let 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}} be any two sequences in 𝒮\mathcal{S}, where 0n,nN10\leq n,n^{\prime}\leq N-1. Consider the periodic ambiguity function AF𝒔n,𝒔n(τ,v){\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(\tau,v) of 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}} in the following two cases:

Case 1: When v=0v=0, we have AF𝒔n(τ,0)=CF𝒔n(τ)=0{{\rm{AF}}_{\bm{s}_{n}}}(\tau,0)={{\rm{CF}}_{\bm{s}_{n}}}(\tau)=0 for 0<τ<Z0<\tau<Z, and AF𝒔n,𝒔n(τ,0)=CF𝒔n,𝒔n(τ)=0{{\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}}(\tau,0)={{\rm{CF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}}(\tau)=0 for nnn\neq n^{\prime} and 0τ<Z0\leq\tau<Z according to the ZCZ property of 𝒮\mathcal{S}.

Case 2: When 0<|v|<K0<|v|<K, according to (13), the periodic ambiguity function of 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}} can be represented by

AF𝒔n,𝒔n(τ,v)=\displaystyle{\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(\tau,v)= iΩdn(i)dn(i+vL)ωLτi\displaystyle\sum_{i\in{\Omega}}d_{n}(i)\cdot d^{*}_{n^{\prime}}(\langle{i+v\rangle}_{L})\cdot\omega_{L}^{\tau i}
+iLΩdn(i)dn(i+vL)ωLτi,\displaystyle+\sum_{i\in\mathbb{Z}_{L}\setminus{\Omega}}d_{n}(i)\cdot d^{*}_{n^{\prime}}(\langle{i+v\rangle}_{L})\cdot\omega_{L}^{\tau i}, (35)

where 𝒅n\bm{d}_{n} and 𝒅n\bm{d}_{n^{\prime}} are the frequency-domain duals corresponding to the sequences 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}}, respectively. Note that when iΩi\in\Omega, dn(i)=0{d_{n}}(i)=0 holds in (28). When iLΩi\in\mathbb{Z}_{L}\setminus{\Omega}, there is i+vLΩ\langle{i+v\rangle}_{L}\in\Omega as 0<|v|<K0<|v|<K, then dn(i+vL)=0d^{*}_{n^{\prime}}(\langle{i+v\rangle}_{L})=0 holds in (28). Therefore, we have AF𝒔n,𝒔n(τ,v)=0{\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(\tau,v)=0 for 0<|v|<K0<|v|<K.

Combining the above two cases, we assert that when |τ|<Z|\tau|<Z and |v|<K|v|<K, the auto-ambiguity function AF𝒔n(τ,v)=0{\rm{AF}}_{{\bm{s}_{n}}}(\tau,v)=0 for (τ,v)(0,0)(\tau,v)\neq(0,0) and the cross-ambiguity function AF𝒔n,𝒔n(τ,v)=0{\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(\tau,v)=0 for nnn\neq n^{\prime}. Therefore, the sequence set 𝒮\mathcal{S} has ideal ambiguity properties over the delay-Doppler zone (Z,Z)×(K,K)(-Z,Z)\times(-K,K).

In the following, based on ZCZ sequence sets, a simple construction of ZAZ sequence sets is proposed by imposing comb-like spectrum.

Corollary 3: For an optimal unimodular (L,N,Z)\left(L,N,Z\right)-ZCZ sequence set 𝒜\mathcal{A}, by duplicating each sequence KK times, an optimal unimodular (KL,N,Π)\left(KL,N,\Pi\right)-ZAZ sequence set 𝒮{\mathcal{S}} with Π=(Z,Z)×(K,K)\Pi=(-Z,Z)\times(-K,K) is obtained.

Proof: It is easy to verify that 𝒮{\mathcal{S}} is a (KL,N,Z)\left(KL,N,Z\right)-ZCZ sequence set. By duplicating each sequence of length LL in 𝒜\mathcal{A} KK times, KK successive nulls are uniformly distributed in the frequency-domain duals corresponding to the sequences of length KLKL in 𝒮{\mathcal{S}}, i.e., 𝒮{\mathcal{S}} is subject to the spectral-null constraint Ω={Kα+β:αL,βK}\Omega=\left\{K\alpha+\beta:\alpha\in\mathbb{Z}_{L},\,\beta\in\mathbb{Z}^{*}_{K}\right\}. Note that for any iKLΩ={Kα:αL}i\in\mathbb{Z}_{KL}\setminus{\Omega}=\left\{K\alpha:\alpha\in\mathbb{Z}_{L}\right\}, there is i+vLΩ\langle{i+v\rangle}_{L}\in\Omega for 0<|v|<K0<|v|<K. Then, it follows directly from Theorem 2 that 𝒮\mathcal{S} is an optimal unimodular (KL,N,Π)\left(KL,N,\Pi\right)-ZAZ sequence set with Π=(Z,Z)×(K,K)\Pi=(-Z,Z)\times(-K,K). According to Lemma 2, the parameters of 𝒮\mathcal{S} achieve the theoretical bound, and therefore 𝒮\mathcal{S} is optimal.

Corollary 3 presents a construction of optimal ZAZ sequence sets based on ZCZ sequence sets. However, such a construction is trivial. In the sequel, a novel construction of non-trivial ZAZ sequence sets with comb-like spectrum is proposed.

Construction B:

Let KK, NN, and PP be positive integers with P<KP<K. Consider a (KN+P)×(KN+P)(KN+P)\times(KN+P) DFT matrix 𝑫=[di(j)]i,j=0KN+P1\bm{D}=\left[d_{i}(j)\right]_{i,j=0}^{KN+P-1} with di(j)=ωKN+Pijd_{i}(j)=\omega_{KN+P}^{ij}. By selecting NN columns from 𝑫\bm{D} at intervals of KK, we can obtain a (KN+P)×N(KN+P)\times N matrix, i.e.,

𝑨=\displaystyle\bm{A}=
[d0(K0)d0(K1)d0(K(N1))d1(K0)d1(K1)d1(K(N1))dKN+P1(K0)dKN+P1(K1)dKN+P1(K(N1))].\displaystyle{\footnotesize{\left[{\begin{array}[]{cccc}d_{0}(K\cdot 0)&d_{0}(K\cdot 1)&\cdots&d_{0}(K\cdot(N-1))\\ d_{1}(K\cdot 0)&d_{1}(K\cdot 1)&\cdots&d_{1}(K\cdot(N-1))\\ \vdots&\vdots&\ddots&\vdots\\ d_{KN+P-1}(K\cdot 0)&d_{KN+P-1}(K\cdot 1)&\cdots&d_{KN+P-1}(K\cdot(N-1))\end{array}}\right]}}. (40)

By concatenating the successive rows of 𝑨\bm{A}, a sequence 𝒂{\bm{a}} of length N(KN+P)N(KN+P) is obtained, where the tt-th entry of 𝒂{\bm{a}} is a(t)=ωKN+PKt1t0a(t)=\omega_{KN+P}^{Kt_{1}t_{0}}, 0tN(KN+P)10\leq t\leq N(KN+P)-1, t=Nt1+t0t=Nt_{1}+t_{0}, t1=t/Nt_{1}=\lfloor t/N\rfloor, and t0=tNt_{0}={\langle t\rangle}_{N}. Consider an orthogonal sequence set {𝒃n}n=0N1\left\{{\bm{b}_{n}}\right\}_{n=0}^{N-1} with bn(t)=ωNnt{b}_{n}(t)=\omega_{N}^{nt}, 0tN10\leq t\leq N-1. Following the framework in (15), a sequence set 𝒮={𝒔n}n=0N1{\mathcal{S}}=\left\{{\bm{s}_{n}}\right\}_{n=0}^{N-1} can be constructed. The tt-th entry of 𝒔n{\bm{s}}_{n} is given by

sn(t)=ωKN+PKt1t0ωNnt0,\displaystyle s_{n}(t)=\omega_{KN+P}^{Kt_{1}t_{0}}\cdot\omega_{N}^{nt_{0}}, (41)

where 0tN(KN+P)10\leq t\leq N(KN+P)-1, t=Nt1+t0t=Nt_{1}+t_{0}, t1=t/Nt_{1}=\lfloor t/N\rfloor, and t0=tNt_{0}={\langle t\rangle}_{N}.

Theorem 3: The sequence set 𝒮\mathcal{S} constructed above has the following properties:

  1. 1.

    It is a polyphase (N(KN+P),N,Π)\left(N(KN+P),N,\Pi\right)-ZAZ sequence set with Π=(N,N)×(K,K)\Pi=(-N,N)\times(-K,K);

  2. 2.

    It is subject to the spectral-null constraint Ω={(KN+P)α+Kβ+γ:α,βN,γK}{KN+(KN+P)α+β:αN,βP}\Omega=\left\{(KN+P)\alpha+K\beta+\gamma:\alpha,\beta\in\mathbb{Z}_{N},\,\gamma\in\mathbb{Z}^{*}_{K}\right\}\cup\left\{KN+(KN+P)\alpha+\beta:\alpha\in\mathbb{Z}_{N},\,\beta\in\mathbb{Z}_{P}\right\};

  3. 3.

    All the sequences in 𝒮\mathcal{S} are cyclically distinct.

Proof: 1) We first show that 𝒮\mathcal{S} is a ZCZ sequence set. Let 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}} be any two sequences in 𝒮\mathcal{S}, where 0n,nN10\leq n,n^{\prime}\leq N-1. The periodic correlation function of 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}} is

CF𝒔n,𝒔n(τ)\displaystyle{\rm{CF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(\tau)
=\displaystyle= t=0N(KN+P)1sn(t)sn(t+τN(KN+P))\displaystyle\sum_{t=0}^{N(KN+P)-1}{s_{n}}(t)\cdot s^{*}_{n^{\prime}}(\langle{t+\tau\rangle}_{N(KN+P)})
=\displaystyle= t1=0KN+P1t0=0N1ωKN+PKt1t0ωKN+PK(t1+τ1+δt0,τ0)(t0+τ0Nδt0,τ0)\displaystyle\sum_{t_{1}=0}^{KN+P-1}\sum_{t_{0}=0}^{N-1}\omega_{KN+P}^{Kt_{1}t_{0}}\cdot\omega_{KN+P}^{-K(t_{1}+\tau_{1}+\delta_{t_{0},\tau_{0}})(t_{0}+\tau_{0}-N\delta_{t_{0},\tau_{0}})}
ωNnt0ωNn(t0+τ0)\displaystyle\cdot\omega_{N}^{nt_{0}}\cdot\omega_{N}^{-n^{\prime}(t_{0}+\tau_{0})}
=\displaystyle= ωNnτ0t0=0N1ωKN+PK(τ1+δt0,τ0)(t0+τ0Nδt0,τ0)ωN(nn)t0\displaystyle\omega_{N}^{-n^{\prime}\tau_{0}}\cdot\sum_{t_{0}=0}^{N-1}\omega_{KN+P}^{-K\cdot(\tau_{1}+\delta_{t_{0},\tau_{0}})(t_{0}+\tau_{0}-N\delta_{t_{0},\tau_{0}})}\cdot\omega_{N}^{(n-n^{\prime})t_{0}}
t1=0KN+P1ωKN+PK(τ0Nδt0,τ0)t1,\displaystyle\cdot\sum_{t_{1}=0}^{KN+P-1}{\omega_{KN+P}^{-K(\tau_{0}-N\delta_{t_{0},\tau_{0}})t_{1}}}, (42)

where t1=t/Nt_{1}=\lfloor{t}/{N}\rfloor, t0=tNt_{0}={\langle t\rangle}_{N}, τ=Nτ1+τ0\tau=N\tau_{1}+\tau_{0}, τ1=τ/N\tau_{1}=\lfloor\tau/N\rfloor, τ0=τN\tau_{0}={\langle\tau\rangle}_{N}, and δt0,τ0=(t0+τ0)/N\delta_{t_{0},\tau_{0}}=\lfloor(t_{0}+\tau_{0})/N\rfloor.

Case 1: When τ=0\tau=0 and nnn\neq n^{\prime}, we have

CF𝒔n,𝒔n(0)\displaystyle{\rm{CF}}_{\bm{s}_{n},\bm{s}_{n^{\prime}}}(0) =(KN+P)t0=0N1ωN(nn)t0=0,\displaystyle=(KN+P)\cdot\sum_{t_{0}=0}^{N-1}\omega_{N}^{(n-n^{\prime})t_{0}}=0, (43)

where 0<|nn|N10<|n-n^{\prime}|\leq N-1.

Case 2: When 0<τ0<N0<\tau_{0}<N, we have K(τ0Nδt0,τ0)0mod(KN+P)K(\tau_{0}-N\delta_{t_{0},\tau_{0}})\not\equiv 0\,{\rm{mod}}\,(KN+P). Then t1=0KN+P1ωKN+PK(τ0Nδt0,τ0)t1=0\sum_{t_{1}=0}^{KN+P-1}{\omega_{KN+P}^{-K(\tau_{0}-N\delta_{t_{0},\tau_{0}})t_{1}}}=0 holds in (31), implying that CF𝒔n,𝒔n(τ)=0{\rm{CF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(\tau)=0.

Combining the above two cases, when 0τ<N0\leq\tau<N, the cross-correlation function CF𝒔n,𝒔n(τ)=0{\rm{CF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(\tau)=0 for nnn\neq n^{\prime} and the auto-correlation function CF𝒔n(τ)=0{\rm{CF}}_{{\bm{s}_{n}}}(\tau)=0 for τ0\tau\neq 0. Consequently, the sequence set 𝒮\mathcal{S} is an (N(KN+P),N,N)\left(N(KN+P),N,N\right)-ZCZ sequence set.

2) Next, we discuss the frequency-domain duals corresponding to the sequences in 𝒮\mathcal{S}. Let 𝒅n=(dn(0),dn(1),,dn(N(KN+P)1))\bm{d}_{n}=\left(d_{n}(0),d_{n}(1),\cdots,d_{n}(N(KN+P)-1)\right) be the frequency-domain dual corresponding to the sequence 𝒔n\bm{s}_{n} in 𝒮\mathcal{S}, where 0nN10\leq n\leq N-1. We have

N(KN+P)dn(i)=t=0N(KN+P)1sm(t)ωN(KN+P)it\displaystyle\sqrt{N(KN+P)}d_{n}(i)=\sum_{t=0}^{N(KN+P)-1}s_{m}(t)\cdot\omega_{N(KN+P)}^{-it}
=t0=0N1ωNnt0ωN(KN+P)it0t1=0KN+P1ωKN+P(Kt0i)t1,\displaystyle=\sum_{t_{0}=0}^{N-1}{\omega_{N}^{nt_{0}}\cdot\omega_{N(KN+P)}^{-it_{0}}}\cdot\sum_{t_{1}=0}^{KN+P-1}\omega_{KN+P}^{(Kt_{0}-i)t_{1}}, (44)

where t1=t/Nt_{1}=\lfloor t/N\rfloor and t0=tNt_{0}={\langle t\rangle}_{N}. Note that when Kt0i0mod(KN+P)Kt_{0}-i\not\equiv 0\,{\rm{mod}}\,(KN+P), i.e., iΩi\in\Omega, where Ω={(KN+P)α+Kβ+γ:α,βN,γK}{KN+(KN+P)α+β:αN,βP}\Omega=\left\{(KN+P)\alpha+K\beta+\gamma:\alpha,\beta\in\mathbb{Z}_{N},\,\gamma\in\mathbb{Z}^{*}_{K}\right\}\cup\left\{KN+(KN+P)\alpha+\beta:\alpha\in\mathbb{Z}_{N},\,\beta\in\mathbb{Z}_{P}\right\}, there is ωKN+P(Kt0i)t1=0\omega_{KN+P}^{(Kt_{0}-i)t_{1}}=0 in (33), then dn(i)=0{d_{n}}(i)=0. Otherwise, when iN(KN+P)Ω={(KN+P)α+Kβ:α,βN}i\in\mathbb{Z}_{N(KN+P)}\setminus{\Omega}=\{(KN+P)\alpha+K\beta:\alpha,\beta\in\mathbb{Z}_{N}\}, there exists only one solution t0t^{\prime}_{0} with 0t0N10\leq t^{\prime}_{0}\leq N-1 such that Kt0i0mod(KN+P)Kt^{\prime}_{0}-i\equiv 0\,{\rm{mod}}\,(KN+P), then |dn(i)|=1N(KN+P)|(KN+P)ωNnt0ωN(KN+P)it0|=K+PN\left|d_{n}(i)\right|=\frac{1}{\sqrt{N(KN+P)}}\left|(KN+P)\cdot{\omega_{N}^{nt^{\prime}_{0}}\cdot\omega_{N(KN+P)}^{-it^{\prime}_{0}}}\right|=\sqrt{K+\frac{P}{N}}. Therefore, for any iΩi\in\Omega, we have n=0N1|dn(i)|2=0\sum_{n=0}^{N-1}\left|d_{n}(i)\right|^{2}=0.

Note that the sequence set 𝒮\mathcal{S} is subject to the spectral-null constraint Ω\Omega, and for any iN(KN+P)Ωi\in\mathbb{Z}_{N(KN+P)}\setminus{\Omega}, i+vN(KN+PΩ\langle{i+v\rangle}_{N(KN+P}\in\Omega holds for 0<|v|<K0<|v|<K. Therefore, it follows directly from Theorem 2 that the (N(KN+P),N,N)\left(N(KN+P),N,N\right)-ZCZ sequence set 𝒮\mathcal{S} is a unimodular (N(KN+P),N,Π)\left(N(KN+P),N,\Pi\right)-ZAZ sequence set with Π=(N,N)×(K,K)\Pi=(-N,N)\times(-K,K).

3) Here, we prove that all the sequences in 𝒮\mathcal{S} are cyclically distinct. Assume on the contrary that 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}} with 0nnN10\leq n\neq n^{\prime}\leq N-1 are cyclically equivalent at the time shift τ\tau. Then

sn(t)=sn(t+τN(KN+P))ωN(KN+P)c\displaystyle s_{n}(t)=s_{n^{\prime}}(\langle{t+\tau\rangle}_{N(KN+P)})\cdot\omega_{N(KN+P)}^{c} (45)

holds for all 0tN(KN+P)10\leq t\leq N(KN+P)-1, where cN(KN+P)c\in\mathbb{Z}_{N(KN+P)}. It follows from (30) that for all 0t1KN+P10\leq t_{1}\leq KN+P-1 and 0t0N10\leq t_{0}\leq N-1, there is

ωNnτ0ωN(nn)t0ωKN+PK(τ1+δt0,τ0)(t0+τ0δt0,τ0N)\displaystyle\omega_{N}^{n^{\prime}\tau_{0}}\cdot\omega_{N}^{(n^{\prime}-n)t_{0}}\cdot\omega_{KN+P}^{K(\tau_{1}+{\delta_{t_{0},\tau_{0}}})(t_{0}+\tau_{0}-\delta_{t_{0},\tau_{0}}N)}
ωKN+PK(τ0Nδt0,τ0)t1=ωN(KN+P)c.\displaystyle\cdot\omega_{KN+P}^{K(\tau_{0}-N\delta_{t_{0},\tau_{0}})t_{1}}=\omega_{N(KN+P)}^{-c}. (46)

Note that (35) holds for 0t1KN+P10\leq t_{1}\leq KN+P-1 if and only if τ0Nδt0,τ0=0\tau_{0}-N{\delta_{t_{0},\tau_{0}}}=0. Then, we have τ0=0\tau_{0}=0 and δt0,τ0=0\delta_{t_{0},\tau_{0}}=0, and (35) simplifies to

ωN(KN+P)((KN+P)(nn)+KNτ1)t0=ωN(KN+P)c.\displaystyle\omega_{N(KN+P)}^{((KN+P)(n^{\prime}-n)+KN\tau_{1})t_{0}}=\omega_{N(KN+P)}^{-c}. (47)

This equation holds for 0t0N10\leq t_{0}\leq N-1 if and only if (KN+P)(nn)+KNτ10modN(KN+P)(KN+P)(n^{\prime}-n)+KN\tau_{1}\equiv 0\,{\rm{mod}}\,N(KN+P). It implies that n=nn=n^{\prime} and τ1=0\tau_{1}=0 since P<KP<K, which contradicts with the condition that nnn\neq n^{\prime}. Therefore, we assert that all the sequences in 𝒮\mathcal{S} are cyclically distinct.

Refer to caption
Figure 2: The magnitudes of the frequency-domain dual 𝒅n{\bm{d}_{n}} corresponding to 𝒔n{\bm{s}_{n}} in Example 2, 0n40\leq n\leq 4.
Refer to caption
(a) The auto-ambiguity magnitudes of 𝒔0{\bm{s}}_{0} over [8,8]×[8,8][-8,8]\times[-8,8].
Refer to caption
(b) The auto-ambiguity magnitudes of 𝒔0{\bm{s}}_{0} over [4,4]×[3,3][-4,4]\times[-3,3].
Refer to caption
(c) The cross-ambiguity magnitudes of 𝒔0{\bm{s}}_{0} and 𝒔1{\bm{s}_{1}} over [8,8]×[8,8][-8,8]\times[-8,8].
Figure 3: The ambiguity magnitudes of 𝒔0{\bm{s}}_{0} and 𝒔1{\bm{s}_{1}} in 𝒮\mathcal{S} from Example 2.

Remark 3: The zero ambiguity zone ratio ZAZratio{\rm{ZAZ_{ratio}}} of the constructed (N(KN+P),N,Π)\left(N(KN+P),N,\Pi\right)-ZAZ sequence set 𝒮\mathcal{S} with Π=(N,N)×(K,K)\Pi=(-N,N)\times(-K,K) is

ZAZratio=1PNK+P.\displaystyle{\rm{ZAZ_{ratio}}}=1-\frac{P}{NK+P}. (48)

Note that limNKZAZratio1\mathop{\lim}\limits_{NK\rightarrow\infty}{\rm{ZAZ_{ratio}}}\rightarrow 1, indicating that the constructed ZAZ sequence set 𝒮\mathcal{S} is asymptotically optimal with respect to the theoretical bound in Lemma 2.

Example 2: Let N=5N=5, K=4K=4, and P=1P=1. Following Construction B, a (105,5,Π)(105,5,\Pi)-ZAZ sequence set 𝒮={𝒔n}n=04{\mathcal{S}}=\left\{{\bm{s}_{n}}\right\}_{n=0}^{4} with Π=(5,5)×(4,4)\Pi=(-5,5)\times(-4,4) can be derived, where the tt-th entry of 𝒔n{\bm{s}}_{n} is given by

sn(t)=ω214t1t0ω5nt0,\displaystyle s_{n}(t)=\omega_{21}^{4t_{1}t_{0}}\cdot\omega_{5}^{nt_{0}},

0t1040\leq t\leq 104, t1=t/5t_{1}=\lfloor t/5\rfloor, and t0=t5t_{0}={\langle t\rangle}_{5}. The zero ambiguity zone ratio of 𝒮{\mathcal{S}} is ZAZratio=0.952381{\rm{ZAZ_{ratio}}}=0.952381. The magnitudes of frequency-domain dual 𝒅n{\bm{d}_{n}} corresponding to the sequence 𝒔n{\bm{s}_{n}} are shown in Fig. 2, where 0n40\leq n\leq 4. Note that 𝒅n{\bm{d}_{n}} has zero spectral power over the frequency-index set Ω={21α+4β+γ:α,β5,γ4}{20+21α:α5}\Omega=\left\{21\alpha+4\beta+\gamma:\alpha,\beta\in\mathbb{Z}_{5},\,\gamma\in\mathbb{Z}^{*}_{4}\right\}\cup\left\{20+21\alpha:\alpha\in\mathbb{Z}_{5}\right\}. It means that the sequence set 𝒮\mathcal{S} satisfies the spectral-null constraint Ω\Omega. The auto-ambiguity magnitudes of the sequence 𝒔0\bm{{s}}_{0} over [8,8]×[8,8][-8,8]\times[-8,8] and [4,4]×[3,3][-4,4]\times[-3,3], and the cross-ambiguity magnitudes of the sequences 𝒔0{\bm{s}_{0}} and 𝒔1{\bm{s}_{1}} over [8,8]×[8,8][-8,8]\times[-8,8] are shown in Fig 3. (a), Fig 3. (b), and Fig 3. (c) respectively. It can be seen that 𝒔0{\bm{s}_{0}} has zero auto-ambiguity sidelobes over [4,4]×[3,3][-4,4]\times[-3,3], 𝒔0{\bm{s}_{0}} and 𝒔1{\bm{s}_{1}} have zero cross-ambiguity magnitudes over [4,4]×[3,3][-4,4]\times[-3,3].

Remark 4: In a cognitive radio/radar system, sequences are required to satisfy a spectral constraint such that zero or very low transmit power is allocated to certain forbidden carriers which are reserved for primary user(s) [32], [35], [36]. In [19], the energy gradient method and the Hu-Liu algorithm were combined to jointly optimize the local auto-ambiguity functions as well as the peak-to-average power ratio (PAPR) for a sequence under arbitrary spectral constraint. In [14], transform domain approaches were proposed for generating sequences with low ambiguity magnitudes. Unfortunately, [14] does not guarantee a constant modulus constellation for the entries of the generated sequences and this may result in a high PAPR. In this section, a class of polyphase ZAZ sequence sets is derived in Theorem 3, which have ideal PAPR and zero spectral power over certain spectral constraint Ω\Omega. These sequences are useful in cognitive communication and radar systems operating over certain non-contiguous carriers

IV Proposed Construction of LAZ Sequence Sets

In this section, we introduce a construction of asymptotically optimal periodic LAZ sequence sets based on a class of novel mapping functions.

Construction C:

Let pp be an odd prime, π:p1p\pi:\mathbb{Z}_{p-1}\rightarrow\mathbb{Z}_{p} be a mapping function such that for any ap1a\in\mathbb{Z}^{*}_{p-1} and bpb\in\mathbb{Z}_{p}, π(x+ap1)π(x)+bmodp\pi({\langle x+a\rangle}_{p-1})\equiv\pi(x)+b\,\mathrm{mod}\,p has at most one solution for xp1x\in\mathbb{Z}_{p-1}. Construct a sequence set 𝒮={𝒔n}n=0p1{\mathcal{S}}=\left\{{\bm{s}_{n}}\right\}_{n=0}^{p-1} containing pp sequences of length p(p1)p(p-1). The tt-th entry of 𝒔n{\bm{s}_{n}} is given by

sn(t)=ωpt1π(t0)+nt0,\displaystyle s_{n}(t)=\omega_{p}^{t_{1}\pi(t_{0})+nt_{0}}, (49)

where 0tp(p1)10\leq t\leq p(p-1)-1, t=(p1)t1+t0t=(p-1)t_{1}+t_{0}, t1=t/(p1)t_{1}=\lfloor t/(p-1)\rfloor, and t0=tp1t_{0}={\langle t\rangle}_{p-1}.

Theorem 4: The sequence set 𝒮\mathcal{S} constructed above has the following properties:

  1. 1.

    It is a pp-ary (p(p1),p,p,Π)\left(p(p-1),p,p,\Pi\right)-LAZ sequence set with Π=(p+1,p1)×(p,p)\Pi=(-p+1,p-1)\times(-p,p);

  2. 2.

    Each sequence is an LAZ sequence with the maximum auto-ambiguity magnitude pp over the delay-Doppler zones (p+1,p1)×(p(p1),p(p1))(-p+1,p-1)\times(-p(p-1),p(p-1)) and (p(p1),p(p1))×(p,p)(-p(p-1),p(p-1))\times(-p,p);

  3. 3.

    All the sequences in 𝒮\mathcal{S} are cyclically distinct.

Proof: 1) We first show that the sequence set 𝒮\mathcal{S} has low ambiguity properties over a delay-Doppler zone around the origin. Let 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}} be any two sequences in 𝒮\mathcal{S}, where 0n,np10\leq n,n^{\prime}\leq p-1. Calculate the periodic ambiguity function of 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}} as follows:

AF𝒔n,𝒔n(τ,v)\displaystyle{\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(\tau,v)
=\displaystyle= t=0p(p1)sn(t)sn(t+τp(p1))ωp(p1)vt\displaystyle\sum_{t=0}^{p(p-1)}s_{n}(t)\cdot s^{*}_{n^{\prime}}(\langle t+\tau\rangle_{p(p-1)})\cdot\omega_{p(p-1)}^{vt}
=\displaystyle= t1=0p1t0=0p2ωpt1π(t0)ωpnt0ωp(t1+τ1+δt0,τ0)π(t0+τ0p1)\displaystyle\sum_{t_{1}=0}^{p-1}\sum_{t_{0}=0}^{p-2}\omega_{p}^{t_{1}\pi(t_{0})}\cdot\omega_{p}^{nt_{0}}\cdot\omega_{p}^{-(t_{1}+\tau_{1}+\delta_{t_{0},\tau_{0}})\pi({\langle t_{0}+\tau_{0}\rangle}_{p-1})}
ωpn(t0+τ0(p1)δt0,τ0)ωp(p1)v((p1)t1+t0)\displaystyle\cdot\omega_{p}^{-n^{\prime}(t_{0}+\tau_{0}-(p-1)\delta_{t_{0},\tau_{0}})}\cdot\omega_{p(p-1)}^{v((p-1)t_{1}+t_{0})}
=\displaystyle= t0=0p2ωp(nn)t0ωp(τ1+δt0,τ0)π(t0+τ0p1)ωpn(τ0+δt0,τ0)\displaystyle\sum_{t_{0}=0}^{p-2}\omega_{p}^{(n-n^{\prime})t_{0}}\cdot\omega_{p}^{-(\tau_{1}+\delta_{t_{0},\tau_{0}})\pi({\langle t_{0}+\tau_{0}\rangle}_{p-1})}\cdot\omega_{p}^{-n^{\prime}(\tau_{0}+\delta_{t_{0},\tau_{0}})}
ωp(p1)vt0t1=0p1ωp(π(t0)π(t0+τ0p1)+v)t1,\displaystyle\cdot\omega_{p(p-1)}^{vt_{0}}\cdot\sum_{t_{1}=0}^{p-1}{\omega_{p}^{(\pi(t_{0})-\pi({\langle t_{0}+\tau_{0}\rangle}_{p-1})+v)t_{1}}}, (50)

where t1=t/(p1)t_{1}=\lfloor{t}/{(p-1)}\rfloor, t0=tp1t_{0}={\langle t\rangle}_{p-1}, τ=(p1)τ1+τ0\tau=(p-1)\tau_{1}+\tau_{0}, τ1=τ/(p1)\tau_{1}=\lfloor{\tau}/{(p-1)}\rfloor, τ0=τp1\tau_{0}={\langle\tau\rangle}_{p-1}, and δt0,τ0=(t0+τ0)/(p1)\delta_{t_{0},\tau_{0}}=\lfloor(t_{0}+\tau_{0})/(p-1)\rfloor.

Consider the following four cases:

Case 1: When τ00\tau_{0}\neq 0, there is at most one solution t0t^{\prime}_{0} with 0t0p20\leq{t^{\prime}_{0}}\leq p-2 such that π(t0+τ0p1)π(t0)+vmodp\pi({\langle t_{0}+\tau_{0}\rangle}_{p-1})\equiv\pi(t_{0})+v\,\mathrm{mod}\,p. If π(t0+τ0p1)π(t0)+vmodp\pi({\langle t_{0}+\tau_{0}\rangle}_{p-1})\not\equiv\pi(t_{0})+v\,\mathrm{mod}\,p, t1=0p1ωp(v+π(t0)π(t0+τ0p1))t1=0\sum_{t_{1}=0}^{p-1}\omega_{p}^{(v+\pi(t_{0})-\pi({\langle t_{0}+\tau_{0}\rangle}_{p-1}))t_{1}}=0 holds in (39), which follows that AFsn,sn(τ,v)=0{\rm{AF}}_{s_{n},s_{n^{\prime}}}(\tau,v)=0. Otherwise, there is a solution t0t^{\prime}_{0} with 0t0p20\leq{t^{\prime}_{0}}\leq p-2 such that π(t0+τ0p1)π(t0)+vmodp\pi({\langle t_{0}+\tau_{0}\rangle}_{p-1})\equiv\pi(t_{0})+v\,\mathrm{mod}\,p, then

|AF𝒔n,𝒔n(τ,v)|=\displaystyle\left|{\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(\tau,v)\right|= |pωp(nn)t0ωp(τ1+δt0,τ0)π(t0+τ0p1)\displaystyle\left|p\cdot\omega_{p}^{(n-n^{\prime})t^{\prime}_{0}}\cdot\omega_{p}^{-(\tau_{1}+\delta_{t^{\prime}_{0},\tau_{0}})\pi({\langle t^{\prime}_{0}+\tau_{0}\rangle}_{p-1})}\right.
ωpn(τ0(p1)δt0,τ0)ωp(p1)vt0|\displaystyle\left.\cdot\omega_{p}^{-n^{\prime}(\tau_{0}-(p-1)\delta_{t^{\prime}_{0},\tau_{0}})}\cdot\omega_{p(p-1)}^{vt^{\prime}_{0}}\right|
=\displaystyle= p.\displaystyle p. (51)

Case 2: When τ0=0\tau_{0}=0 and vp0{\langle v\rangle}_{p}\neq 0, we have

AF𝒔n,𝒔n(τ,v)\displaystyle{\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(\tau,v)
=\displaystyle= t0=0p2ωp(nn)t0ωpτ1π(t0)ωp(p1)vt0t1=0p1ωpvt1\displaystyle\sum_{t_{0}=0}^{p-2}\omega_{p}^{(n-n^{\prime})t_{0}}\cdot\omega_{p}^{-\tau_{1}\pi({t_{0}})}\cdot\omega_{p(p-1)}^{vt_{0}}\cdot\sum_{t_{1}=0}^{p-1}{\omega_{p}^{vt_{1}}}
=\displaystyle= 0,\displaystyle 0, (52)

where t1=0p1ωpvt1=0\sum_{t_{1}=0}^{p-1}{\omega_{p}^{vt_{1}}}=0 for vp0{\langle v\rangle}_{p}\neq 0.

Case 3: When n=nn=n^{\prime}, τ=0\tau=0, vp=0{\langle v\rangle}_{p}=0, and v0v\neq 0, suppose v=rpv=rp, where 0<|r|<p10<|r|<p-1, then (39) reduces to

AF𝒔n(0,v)\displaystyle{\rm{AF}}_{{\bm{s}_{n}}}(0,v) =pt0=0p2ωp1rt0=0.\displaystyle=p\cdot\sum_{t_{0}=0}^{p-2}\omega_{p-1}^{rt_{0}}=0. (53)

Case 4: When nnn\neq n^{\prime}, τ=0\tau=0, and v=0v=0, (39) becomes

AF𝒔n,𝒔n(0,0)\displaystyle{\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(0,0) =pt0=0p2ωp(nn)t0=0,\displaystyle=p\cdot\sum_{t_{0}=0}^{p-2}\omega_{p}^{(n-n^{\prime})t_{0}}=0, (54)

where 0<|nn|p10<|n-n^{\prime}|\leq p-1.

Combining Case 1 and Case 2, we assert that the auto-ambiguity magnitude |AF𝒔n(τ,v)|p\left|{\rm{AF}}_{\bm{s}_{n}}(\tau,v)\right|\leq p for |τ|<p(p1)|\tau|<p(p-1), |v|<p|v|<p, and (τ,v)(0,0)(\tau,v)\neq(0,0). Combining Case 1, Case 2, and Case 3, we observe that the auto-ambiguity magnitude |AF𝒔n(τ,v)|p\left|{\rm{AF}}_{\bm{s}_{n}}(\tau,v)\right|\leq p for |τ|<p1|\tau|<p-1, |v|<p(p1)|v|<p(p-1), and (τ,v)(0,0)(\tau,v)\neq(0,0). Consequently, each sequence has the maximum auto-ambiguity magnitude pp over the delay-Doppler zones (p+1,p1)×(p(p1),p(p1))(-p+1,p-1)\times(-p(p-1),p(p-1)) and (p(p1),p(p1))×(p,p)(-p(p-1),p(p-1))\times(-p,p). Combining Case 1, Case 2, and Case 4, we have that the maximum cross-ambiguity function |AF𝒔n,𝒔n(τ,v)|<p|{\rm{AF}}_{{\bm{s}_{n}},{\bm{s}_{n^{\prime}}}}(\tau,v)|<p for |τ|<p1|\tau|<p-1, |v|<p|v|<p, and nnn\neq n^{\prime}. Then, it is sufficient to show that the sequence set 𝒮\mathcal{S} is a (p(p1),p,p,Π)\left(p(p-1),p,p,\Pi\right)-LAZ sequence set with the maximum periodic ambiguity magnitude pp over the delay-Doppler zone Π=(p+1,p1)×(p,p)\Pi=(-p+1,p-1)\times(-p,p).

2) Next, we show that all the sequences in 𝒮\mathcal{S} are cyclically distinct. Assume on the contrary that 𝒔n\bm{s}_{n} and 𝒔n\bm{s}_{n^{\prime}} with 0n,np10\leq n,n^{\prime}\leq p-1 in 𝒮\mathcal{S} are cyclically equivalent at the time shift τ\tau. It implies that

sn(t)=sn(t+τp(p1))ωpc\displaystyle s_{n}(t)=s_{n^{\prime}}(\langle{t+\tau\rangle}_{p(p-1)})\cdot\omega_{p}^{c} (55)

holds for all 0tp(p1)10\leq t\leq p(p-1)-1, where cpc\in\mathbb{Z}_{p}. It follows from (38) that for all 0t1p10\leq t_{1}\leq p-1 and 0t0p20\leq t_{0}\leq p-2, there is

(π(t0)π(t0+τ0p1))t1+(nn)t0n(τ0+δt0,τ0)\displaystyle(\pi(t_{0})-\pi({\langle t_{0}+\tau_{0}\rangle}_{p-1}))t_{1}+(n-n^{\prime})t_{0}\equiv n^{\prime}(\tau_{0}+\delta_{t_{0},\tau_{0}})
+(τ1+δt0,τ0)π(t0+τ0p1)+cmodp.\displaystyle+(\tau_{1}+\delta_{t_{0},\tau_{0}})\pi(\langle{t_{0}+\tau_{0}}\rangle_{p-1})+c\,\bmod\,p. (56)

Note that for any 0t1p10\leq t_{1}\leq p-1, (45) holds if and only if π(t0)π(t0+τ0p1)=0\pi(t_{0})-\pi({\langle t_{0}+\tau_{0}\rangle}_{p-1})=0. Thus we have τ0=0\tau_{0}=0 and δt0,τ0=0\delta_{t_{0},\tau_{0}}=0, and then it follows from (45) that

(nn)t0τ1π(t0)+cmodp\displaystyle(n-n^{\prime})t_{0}\equiv\tau_{1}\pi(t_{0})+c\,\bmod\,p (57)

holds for all 0t0p20\leq t_{0}\leq p-2. Since nnn\neq n^{\prime}, we have τ10\tau_{1}\neq 0, and then

π(t0)nnτ1t0cτ1modp.\displaystyle\pi(t_{0})\equiv\frac{n-n^{\prime}}{\tau_{1}}t_{0}-\frac{c}{\tau_{1}}\,\bmod\,p. (58)

According to (47), for any ap1a\in\mathbb{Z}^{*}_{p-1}, there is π(t0+ap1)=π(t0)+nnτ1amodp\pi(\langle t_{0}+a\rangle_{p-1})=\pi(t_{0})+\frac{n-n^{\prime}}{\tau_{1}}a\,\bmod\,p for 0t0p20\leq t_{0}\leq p-2, which contradicts with the definition of π\pi in Construction C. Consequently, we deduce that all the sequences in 𝒮\mathcal{S} are cyclically distinct.

It is noted that Construction C builds a connection between a class of mapping functions and the associated LAZ sequences. The key of this construction is to find suitable mapping functions π\pi that satisfy the condition in Construction C. The following lemma presents such a class of mapping functions.

Lemma 4: For an odd prime pp, let π(x)=αx\pi(x)={\alpha}^{x} be a mapping function from p1\mathbb{Z}_{p-1} to p\mathbb{Z}^{*}_{p}, where α\alpha is a primitive element of 𝔽p\mathbb{F}_{p}. For any ap1a\in\mathbb{Z}^{*}_{p-1} and bpb\in\mathbb{Z}_{p}, π(x+ap1)π(x)+bmodp\pi({\langle x+a\rangle}_{p-1})\equiv\pi(x)+b\,\mathrm{mod}\,p has at most one solution for xp1x\in\mathbb{Z}_{p-1}.

Proof: When b=0b=0, the equation π(x+ap1)π(x)=αx(αa1)=0\pi({\langle x+a\rangle}_{p-1})-\pi(x)={\alpha}^{x}(\alpha^{a}-1)=0 has no solution for xp1x\in\mathbb{Z}_{p-1} as ap1a\in\mathbb{Z}^{*}_{p-1}. When bpb\in\mathbb{Z}^{*}_{p}, the equation π(x+ap1)π(x)=αx(αa1)=b\pi({\langle x+a\rangle}_{p-1})-\pi(x)={\alpha}^{x}(\alpha^{a}-1)=b has exactly one solution for xp1x\in\mathbb{Z}_{p-1}. The proof of this lemma is then completed.

It might be possible and interesting to obtain more mapping functions π:p1p\pi:\mathbb{Z}_{p-1}\rightarrow\mathbb{Z}_{p} that satisfy the condition in Construction C other than the one mentioned in Lemma 4. The reader is kindly invited to search such mapping functions.

Remark 5: For the constructed (p(p1),p,p,Π)\left(p(p-1),p,p,\Pi\right)-LAZ sequence set 𝒮\mathcal{S} with Π=(p+1,p1)×(p,p)\Pi=(-p+1,p-1)\times(-p,p), the tightness factor is

ρLAZ=(1+1p1)11p(p1)\displaystyle\rho_{\rm{LAZ}}=\left(1+\frac{1}{p-1}\right)\sqrt{1-\frac{1}{p(p-1)}} (59)

Note that limpρLAZ1\mathop{\lim}\limits_{p\to\infty}\rho_{\rm{LAZ}}\rightarrow 1, indicating that the constructed LAZ sequence set 𝒮\mathcal{S} asymptotically achieves the theoretical lower bound in Lemma 1. Similarly, one can check that each LAZ sequence in 𝒮\mathcal{S} asymptotically achieves the theoretical lower bound as pp increases.

To further visualize the parameters of the constructed LAZ sequence sets, some explicit values of the parameters are listed in Table III. Since the optimality factor ρLAZ\rho_{\rm{LAZ}} is a meaningful figure for measuring the merit of LAZ sequence sets, we also list it in this table. The numerical results show that the optimality factor ρLAZ\rho_{\rm{LAZ}} of the constructed LAZ sequence sets asymptotically achieves 1 as pp increases, which means that the constructed LAZ sequence sets are indeed asymptotically optimal as predicted in Remark 5.

TABLE III: Parameters of the proposed (L,N,Π,θmax)\left(L,N,\Pi,\theta_{\mathrm{max}}\right)-LAZ sequence set
pp LL NN Π\Pi θmax\theta_{\textrm{max}} ρLAZ\rho_{\rm{LAZ}}
3 6 3 (2,2)×(3,3)(2,2)\times(3,3) 3 1.369306
5 20 5 (4,4)×(5,5)(4,4)\times(5,5) 5 1.218349
7 42 7 (6,6)×(7,7)(6,6)\times(7,7) 7 1.152694
11 110 11 (10,10)×(11,11)(10,10)\times(11,11) 11 1.094989
13 156 13 (12,12)×(13,13)(12,12)\times(13,13) 13 1.079856
17 272 17 (16,16)×(17,17)(16,16)\times(17,17) 17 1.060545
19 342 19 (18,18)×(19,19)(18,18)\times(19,19) 19 1.054011
23 506 23 (22,22)×(23,23)(22,22)\times(23,23) 23 1.044421
29 812 29 (28,28)×(29,29)(28,28)\times(29,29) 29 1.035076
31 930 31 (30,30)×(31,31)(30,30)\times(31,31) 31 1.032778
37 1332 37 (36,36)×(37,37)(36,36)\times(37,37) 37 1.027392
41 1640 41 (40,40)×(41,41)(40,40)\times(41,41) 41 1.024687
Refer to caption
(a) The auto-ambiguity magnitudes of 𝒔0{\bm{s}}_{0}.
Refer to caption
(b) The auto-ambiguity magnitudes of 𝒔0{\bm{s}}_{0} over [3,3]×[19,19][-3,3]\times[-19,19].
Refer to caption
(c) The auto-ambiguity magnitudes of 𝒔0{\bm{s}}_{0} over [19,19]×[4,4][-19,19]\times[-4,4].
Refer to caption
(d) The cross-ambiguity magnitudes of 𝒔0{\bm{s}}_{0} and 𝒔1{\bm{s}_{1}}.
Figure 4: The ambiguity magnitudes of 𝒔0{\bm{s}}_{0} and 𝒔1{\bm{s}_{1}} in 𝒮\mathcal{S} from Example 3.

An example is given below to illustrate the proposed construction.

Example 3: Let p=5p=5 and π(x)=αx\pi(x)={\alpha}^{x}, where α=3\alpha=3 is a primitive element of 𝔽5\mathbb{F}_{5}, x4x\in\mathbb{Z}_{4}. Following Construction C, a sequence set 𝒮={𝒔n}n=04\mathcal{S}=\left\{{\bm{s}_{n}}\right\}_{n=0}^{4} with each sequence of length 20 can be derived, where the tt-th entry of 𝒔n{\bm{s}_{n}} is given by

sn(t)=ω5t1π(t0)+nt0,\displaystyle s_{n}(t)=\omega_{5}^{t_{1}\cdot\pi(t_{0})+nt_{0}},

0t190\leq t\leq 19, t1=t/4t_{1}=\lfloor{t}/4\rfloor, and t0=t4t_{0}={\langle t\rangle}_{4}. The sequences in 𝒮\mathcal{S} are listed as follows, where each element represents a power of ω5\omega_{5}.

𝒔0=(\displaystyle\bm{s}_{0}=( 0,0,0,0,1,3,4,2,2,1,3,4,3,4,2,1,4,2,1,3);\displaystyle 0,0,0,0,1,3,4,2,2,1,3,4,3,4,2,1,4,2,1,3);
𝒔1=(\displaystyle\bm{s}_{1}=( 0,1,2,3,1,4,1,0,2,2,0,2,3,0,4,4,4,3,3,1);\displaystyle 0,1,2,3,1,4,1,0,2,2,0,2,3,0,4,4,4,3,3,1);
𝒔2=(\displaystyle\bm{s}_{2}=( 0,2,4,1,1,0,3,3,2,3,2,0,3,1,1,2,4,4,0,4);\displaystyle 0,2,4,1,1,0,3,3,2,3,2,0,3,1,1,2,4,4,0,4);
𝒔3=(\displaystyle\bm{s}_{3}=( 0,3,1,4,1,1,0,1,2,4,4,3,3,2,3,0,4,0,2,2);\displaystyle 0,3,1,4,1,1,0,1,2,4,4,3,3,2,3,0,4,0,2,2);
𝒔4=(\displaystyle\bm{s}_{4}=( 0,4,3,2,1,2,2,4,2,0,1,1,3,3,0,3,4,1,4,0).\displaystyle 0,4,3,2,1,2,2,4,2,0,1,1,3,3,0,3,4,1,4,0).

One can verify that 𝒮\mathcal{S} is a (20,5,5,Π)(20,5,5,\Pi)-LAZ sequence set with Π=(4,4)×(5,5)\Pi=(-4,4)\times(-5,5) and the optimality factor ρLAZ=1.218349\rho_{\rm{LAZ}}=1.218349. The auto-ambiguity magnitudes of 𝒔0\bm{s}_{0} over [19,19]×[19,19][-19,19]\times[-19,19], [3,3]×[19,19][-3,3]\times[-19,19], and [19,19]×[4,4][-19,19]\times[-4,4], and the cross-ambiguity magnitudes of 𝒔0\bm{s}_{0} and 𝒔1\bm{s}_{1} over [19,19]×[19,19][-19,19]\times[-19,19] are shown in Fig 4. (a), Fig 4. (b), Fig 4. (c), and Fig 4. (d) respectively. It can be seen that 𝒔0\bm{s}_{0} has the maximum auto-ambiguity sidelobe 5 over [3,3]×[19,19][-3,3]\times[-19,19] and [19,19]×[4,4][-19,19]\times[-4,4], 𝒔0\bm{s}_{0} and 𝒔1\bm{s}_{1} have the maximum cross-ambiguity magnitude 5 over [3,3]×[4,4][-3,3]\times[-4,4].

V Conclusions

This paper is devoted to developing novel unimodular sequence sets with interesting ZAZ and LAZ properties. We have first proposed two classes of polyphase ZAZ sequence sets in Construction A and Construction B, whereby the zero ambiguity sidelobes are obtained 1) by generalizing the PNF induced ZCZ construction in [29] and 2) by introducing successive nulls in the sequence frequency-domain, respectively. Besides, a class of polyphase LAZ sequence sets has been presented in Construction C with the aid of a novel class of mapping functions introduced in Lemma 4. These proposed sequence sets have been proven to be cyclically distinct and asymptotically optimal.

Due to low/zero ambiguity functions over a delay-Doppler zone around the origin, LAZ/ZAZ sequences have potential applications in future high-mobility communications systems, satellite networks, and radar sensing systems. It is interesting to apply the proposed LAZ/ZAZ sequences in these systems to examine the relevant communication/sensing gains in various practical settings. New optimal or asymptotically optimal LAZ/ZAZ sequences with more flexible parameters are also expected.

Acknowledgment

The authors would like to thank anonymous reviewers and the Associate Editor Dr. Gohar Kyureghyan for their valuable comments and suggestions that much improved the quality of this paper.

References

  • [1] S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge, U.K.: Cambridge Univ. Press, 2005.
  • [2] L. R. Welch, “Lower bounds on the maximum cross-correlation of signals,” IEEE Trans. Inf. Theory, vol. IT-20, no. 3, pp. 397-399, May 1974.
  • [3] W. Alltop, “Complex sequences with low periodic correlations,” IEEE Trans. Inf. Theory, vol. 26, no. 3, pp. 350-354, May 1980.
  • [4] Z. Zhou, X. Tang, and G. Gong. “A new class of sequences with zero or low correlation zone based on interleaving technique,” IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 4267-4273, Aug. 2008.
  • [5] T. Strohmer and S. Beaver, “Optimal OFDM design for time-frequency dispersive channels,” IEEE Trans. Commun., vol. 51, no. 7, pp. 1111-1122, Jul. 2003.
  • [6] F. Wang, X.-G. Xia, C. Pang, X. Cheng, Y. Li, and X. Wang, “Joint design methods of unimodular sequences and receiving filters with good correlation properties and Doppler tolerance,” IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1-14, Dec. 2023.
  • [7] G. Duggal, S. Vishwakarma, K. V. Mishra, and S. S. Ram, “Doppler resilient 802.11ad-based ultrashort range automotive joint radar communications system,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 5, pp. 4035-4048, Oct. 2020.
  • [8] P. M. Woodward, Probability and Information Theory, with Applications to Radar, McGraw-Hill, 1953.
  • [9] S. Gurevich, R. Hadani, and N. Sochen, “The finite harmonic oscillator and its applications to sequences, communication and radar,” IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 4239-4253, Sep. 2008.
  • [10] Z. Wang and G. Gong, “New sequences design from Weil representation with low two-dimensional correlation in both time and phase shifts,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4600-4611, Jul. 2011.
  • [11] Z. Wang, G. Gong, and N. Y. Yu, “New polyphase sequence families with low correlation derived from the Weil bound of exponential sums,” IEEE Trans. Inf. Theory, vol. 59, no. 6, pp. 3990-3998, Jun. 2013.
  • [12] G. Gong, “Character sums and polyphase sequence families with low correlation, DFT and ambiguity,” in Character Sums and Polynomials, A. Winterhof, Ed. Berlin, Germany: De Gruyter, 2013, pp. 1-43.
  • [13] C. Ding, K. Feng, R. Feng, M. Xiong, and A. Zhang, “Unit time-phase signal sets: bounds and constructions,” Cryptogr. Commun., vol. 5, no. 3, pp. 209-227, Sep. 2013.
  • [14] Z. Ye, Z. Zhou, P. Fan, Z. Liu, X. Lei, and X. Tang, “Low ambiguity zone: theoretical bounds and Doppler-resilient sequence design in integrated sensing and communication systems,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1809-1822, Jun. 2022.
  • [15] H. He, J. Li, and P. Stoica, Waveform Design for Active Sensing Systems: A Computational Approach. New York: Cambridge Univ. Press, 2012.
  • [16] F. Arlery, R. Kassab, U. Tan, and F. Lehmann, “Efficient optimization of the ambiguity functions of multi-static radar waveforms,” in Proc. 17th Int. Radar Symp. (IRS), Krakow, Poland, May 2016, pp. 1-6.
  • [17] T. Liu, P. Fan, Z. Zhou, and Y. L. Guan, “Unimodular sequence design with good local auto- and cross-ambiguity function for MSPSR system,” in Proc. IEEE 89th Veh. Technol. Conf. (VTC-Spring), Kuala Lumpur, Malaysia, Apr. 2019, pp. 1-5.
  • [18] F. Wang, J. Yin, C. Pang, Y. Li, and X. Wang, “A unified framework of Doppler resilient sequences design for simultaneous polarimetric radars,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-15, Mar. 2022.
  • [19] T. Liu, P. Fan, J. Li, Y. Yang, Z. Liu, and Y. L. Guan, “Sequence design for optimized ambiguity function and PAPR under arbitrary spectrum hole constraint,” in Proc. Signal Design and Its Applications in Communications (IWSDA), Sapporo, Japan, Sep. 2017, pp. 173-177.
  • [20] F. Arlery, R. Kassab, U. Tan and F. Lehmann, “Efficient gradient method for locally optimizing the periodic/aperiodic ambiguity function,” in Proc. IEEE Radar Conf. (RadarConf), Philadelphia, PA, USA, May 2016, pp. 2-6.
  • [21] G. L. Cui, Y. Fu, X. X. Yu, and J. Li, “Local ambiguity function shaping via unimodular sequence design,” IEEE Signal Process. Lett., vol. 24, pp. 977-981, May, 2017.
  • [22] Y. Fu, G. Cui, X. Yu, T. Zhang, L. Kong, and X. Yang, “Ambiguity function design via accelerated iterative sequential optimization,” in Proc. IEEE Radar Conf. (RadarConf), Seattle, WA, USA, Jun. 2017, pp. 698-702.
  • [23] Y. Jing, J. Liang, B. Tang, and J. Li, “Designing unimodular sequence with low peak of sidelobe level of local ambiguity function,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 3, pp. 1393-1406, Jun. 2019.
  • [24] A. Pezeshki, A. R. Calderbank, W. Moran, and S. D. Howard, “Doppler resilient Golay complementary waveforms,” IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 4254-4266, Sep. 2008.
  • [25] J. Tang, N. Zhang, Z. Ma, and B. Tang, “Construction of Doppler resilient complete complementary code in MIMO radar,” IEEE Trans. Signal Process., vol. 62, no. 18, pp. 4704-4712, Sep. 2014.
  • [26] X. Cao, Y. Yang, and R. Luo, “Interleaved sequences with anti-Doppler properties,” IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol. E105-A, no. 4, pp. 734-738, 2022.
  • [27] B. M. Popovic and O. Mauritz, “Generalized chirp-like sequences with zero correlation zone,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2957-2960, Jun. 2010.
  • [28] J. Li, J. Fan, and X. Tang, “A generic construction of generalized chirp-like sequence sets with optimal zero correlation property,” IEEE Commun. Lett., vol. 17, no. 3, pp. 549-552, Mar. 2013.
  • [29] Z. Zhou, D. Zhang, T. Helleseth, and J. Wen, “A construction of multiple optimal ZCZ sequence sets with good cross-correlation,” IEEE Trans. Inf. Theory, vol. 64, no. 2, pp. 1340-1346, Feb. 2018.
  • [30] D. Zhang, “Zero correlation zone sequences from a unified construction of perfect polyphase sequences,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France, Jul. 2019, pp. 2269-2273.
  • [31] X. H. Tang, P. Z. Fan, and S. Matsufuji, “Lower bounds on the maximum correlation of sequence set with low or zero correlation zone,” Electron. Lett., vol. 6, no. 6, pp. 551-552, Mar. 2000.
  • [32] Z. Liu, Y. L. Guan, U. Parampalli, and S. Hu, “Spectrally-constrained sequences: bounds and constructions,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2571-2582, Apr. 2018.
  • [33] Q. Fang and Z. Wang, “A note on “Optimum sets of interference-free sequences with zero autocorrelation zone”,” in Proc. IEEE 10th Int. Conf. Inf., Commun. Net. (ICICN), Zhangye, China, 2022, pp. 436-443.
  • [34] Y. C. Liu, C. W. Chen, and Y. T. Su, “New constructions of zero-correlation zone sequences,” IEEE Trans. Inf. Theory, vol. 59, no. 8, pp. 4994-5007, Aug. 2013.
  • [35] S. Hu, Z. Liu, Y. L. Guan, W. Xiong, G. Bi, and S. Li, “Sequence design for cognitive CDMA communications under arbitrary spectrum hole constraint,” IEEE J. Sel. Areas Commun., vol. 32, no. 11, pp. 1974-1986, Nov. 2014.
  • [36] Z. Ye, Z. Zhou, Z. Liu, X. Tang, and P. Fan, “New spectrally constrained sequence sets with optimal periodic cross-correlation,” IEEE Trans. Inf. Theory, vol. 69, no. 1, pp. 610-625, Jan. 2023.