This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Asymptotics for the twisted eta-product and applications to sign changes in partitions

Walter Bridges, Johann Franke, and Taylor Garnowski University of Cologne, Department of Mathematics and Computer Science, Weyertal 86-90, 50931 Cologne, Germany wbridges@uni-koeln.de jfrank12@uni-koeln.de tgarnows@uni-koeln.de
Abstract.

We prove asymptotic formulas for the complex coefficients of (ζq;q)1(\zeta q;q)_{\infty}^{-1}, where ζ\zeta is a root of unity, and apply our results to determine secondary terms in the asymptotics for p(a,b,n)p(a,b,n), the number of integer partitions of nn with number of parts congruent aa modulo bb. Our results imply that, as nn\to\infty, the difference p(a1,b,n)p(a2,b,n)p(a_{1},b,n)-p(a_{2},b,n) for a1a2a_{1}\neq a_{2} oscillates like a cosine when renormalized by elementary functions. Moreover, we give asymptotic formulas for arbitrary linear combinations of {p(a,b,n)}1ab.\{p(a,b,n)\}_{1\leq a\leq b}.

Key words and phrases:
circle method, partitions, asymptotics, sign-changes, secondary terms
2020 Mathematics Subject Classification:
11P82, 11P83

1. Introduction and statement of results

Let nn be a positive integer. A partition of nn is a weakly decreasing sequence of positive integers that sum to nn. The number of partitions of nn is denoted by p(n)p(n). For example, one has p(4)=5p(4)=5, since the relevant partitions are

4,3+1,2+2,2+1+1,1+1+1+1.\displaystyle 4,\qquad 3+1,\qquad 2+2,\qquad 2+1+1,\qquad 1+1+1+1.

When λ1++λr=n\lambda_{1}+\cdots+\lambda_{r}=n, the λj\lambda_{j} are called the parts of the partition λ=(λ1,,λr)\lambda=(\lambda_{1},...,\lambda_{r}), and we write λn\lambda\vdash n to denote that λ\lambda is a partition of nn. The partition function has no elementary closed formula, nor does it satisfy any finite order recurrence. However, when defining p(0):=1p(0):=1, its generating function has the following product expansion

n0p(n)qn=k111qk=q124η(τ),\displaystyle\sum_{n\geq 0}p(n)q^{n}=\prod_{k\geq 1}\frac{1}{1-q^{k}}=\frac{q^{\frac{1}{24}}}{\eta(\tau)}, (1.1)

where as usual q:=e2πiτq:=e^{2\pi i\tau} and η(τ)\eta(\tau) denotes the Dedekind eta function. In [13], Hardy and Ramanujan used (1.1) to show the asymptotic formula

p(n)143nexp(π2n3),n.\displaystyle p(n)\sim\frac{1}{4\sqrt{3}n}\exp\left(\pi\sqrt{\frac{2n}{3}}\right),\qquad n\rightarrow\infty. (1.2)

For their proof they introduced the circle method, certainly one of the most useful tools in modern analytic number theory. The now so-called Hardy–Ramanujan circle method uses modular type transformations to obtain a divergent asymptotic expansion whose truncations approximate p(n)p(n) up to small errors. A later refinement by Rademacher [20], exploiting the modularity of η(τ)\eta(\tau), provides a convergent series for p(n)p(n).

In this work we study the distribution of ordinary partitions whose number of parts are congruent to some residue class aa modulo bb.111A similar sounding, but entirely different problem is to study the total number of parts that are all congruent to aa modulo bb. This problem was studied in detail by Beckwith–Mertens [3, 2] for ordinary partitions and recently by Craig [12] for distinct parts partitions. The number of such partitions λn\lambda\vdash n is denoted by p(a,b,n)p(a,b,n).222Note that the number of partitions λn\lambda\vdash n with largest part (λ)\ell(\lambda) equals the number of partitions with number of parts (λ)\ell(\lambda) (see also [1], Ch. 1), so the results of this paper can be reformulated taking number of parts into account instead. It is well-known that the numbers p(a,b,n)p(a,b,n) are asymptotically equidistributed; i.e.,

p(a,b,n)p(n)b,n.\displaystyle p(a,b,n)\sim\frac{p(n)}{b},\qquad n\to\infty. (1.3)

The proof of (1.3) begins by writing the generating function for p(a,b,n)p(a,b,n) in terms of non-modular eta-products twisted with roots of unity modulo bb which is a direct consequence of the orthogonality of roots of unity:

n0p(a,b,n)qn=1b(q124η(τ)+b1j1ζbja(ζbjq;q)),\displaystyle\sum_{n\geq 0}p(a,b,n)q^{n}=\frac{1}{b}\left(\frac{q^{\frac{1}{24}}}{\eta(\tau)}+\sum_{b-1\geq j\geq 1}\frac{\zeta_{b}^{-ja}}{\left(\zeta_{b}^{j}q;q\right)_{\infty}}\right), (1.4)

where (a;q):=n0(1aqn)(a;q)_{\infty}:=\prod_{n\geq 0}(1-aq^{n}) denotes the usual qq-Pochhammer symbol and ζb:=e2πib\zeta_{b}:=e^{\frac{2\pi i}{b}}. Since the first term does not depend on aa and dominates the other summands, (1.3) can be seen as a corollary of (1.4). Similar results have also been proved for related statistics. For example, the rank of a partition is defined to be the largest part minus the number of parts; Males [17] showed that the Dyson rank function N(a,b,n)N(a,b,n) (the number of partitions with rank congruent to aa modulo bb) is asymptotically equidistributed. Males’ proof uses Ingham’s Tauberian theorem [15] and exploits the modularity of the generating function of N(a,b,n)N(a,b,n), which is given in terms of twisted generalizations of one of Ramanujan’s famous mock theta functions. In contrast, the twisted eta-products in (1.4) lack modularity.

If we now consider differences, p(a1,b,n)p(a2,b,n)p(a_{1},b,n)-p(a_{2},b,n), the main terms in (1.4) cancel and the behavior must be determined by secondary terms. In the following example we look at the differences of two modulo 5 partition functions.

Example 1.1.

Consider the case a1=1a_{1}=1, a2=4a_{2}=4 and b=5b=5. The qq-series of the differences has the following oscillating shape

n0(p(1,5,n)p(4,5,n))qn=\displaystyle\sum_{n\geq 0}\left(p(1,5,n)-p(4,5,n)\right)q^{n}=\ q+q2+q3q72q83q94q104q115q126q137q14\displaystyle q+q^{2}+q^{3}-q^{7}-2q^{8}-3q^{9}-4q^{10}-4q^{11}-5q^{12}-6q^{13}-7q^{14}
7q157q16+2q22++109q40++11q4824q49\displaystyle-7q^{15}-7q^{16}-\cdots+2q^{22}+\cdots+109q^{40}+\cdots+11q^{48}-24q^{49}

1998q75266q85+163q86++40511q120+\displaystyle-\cdots-1998q^{75}-\cdots-266q^{85}+163q^{86}+\cdots+40511q^{120}+\cdots

+3701q1333587q134.\displaystyle+3701q^{133}-3587q^{134}-\cdots.
Refer to caption
Figure 1. For b=5b=5, a1=1a_{1}=1, and a2=4a_{2}=4, we plot the difference p(1,5,n)p(4,5,n)p(1,5,n)-p(4,5,n) with log-scaling. The abrupt vertical changes in the graph indicate the location of the sign changes in the sequence.

Our first result predicts this oscillation as follows. As usual, we define the dilogarithm for |z|1|z|\leq 1 by the generating series

Li2(z):=n1znn2.\mathrm{Li}_{2}(z):=\sum_{n\geq 1}\frac{z^{n}}{n^{2}}.

Throughout we use the principle branch of the complex square root and logarithm.

Theorem 1.2.

Let b5b\geq 5 be an integer. Then for any two residue classes a1a2(modb)a_{1}\not\equiv a_{2}\pmod{b}, we have

p(a1,b,n)p(a2,b,n)Bn34exp(2λ1n)=cos(β+2λ2n)+o(1),\displaystyle\frac{p(a_{1},b,n)-p(a_{2},b,n)}{Bn^{-\frac{3}{4}}\exp\left(2\lambda_{1}\sqrt{n}\right)}=\cos\left(\beta+2\lambda_{2}\sqrt{n}\right)+o(1),

as nn\to\infty, where333Here and throughout we take the principal branch of the square-root and upcoming logarithms. λ1+iλ2:=Li2(ζb)\lambda_{1}+i\lambda_{2}:=\sqrt{\mathrm{Li}_{2}(\zeta_{b})} and B>0B>0 and 0β<2π0\leq\beta<2\pi are implicitly defined by

Beiβ:=1b(ζba1ζba2)(1ζb)(λ1+iλ2)π.\displaystyle Be^{i\beta}:=\frac{1}{b}(\zeta_{b}^{-a_{1}}-\zeta_{b}^{-a_{2}})\sqrt{\frac{(1-\zeta_{b})(\lambda_{1}+i\lambda_{2})}{\pi}}.

A more general version of Theorem 1.2 holds for values b2b\geq 2, see Theorem 3.20, where the special cases b{2,3,4}b\in\{2,3,4\} have to be treated slightly differently. Figure 2 shows that this prediction is surprisingly accurate even for small nn.

Refer to caption
Figure 2. The plot shows the sign changes of p(1,5,n)p(4,5,n)p(1,5,n)-p(4,5,n). The blue dots depict the function p(1,5,n)p(4,5,n)Bn34e2λ1n\frac{p(1,5,n)-p(4,5,n)}{Bn^{-\frac{3}{4}}e^{2\lambda_{1}\sqrt{n}}} and the red line is the asymptotic prediction cos(β+2λ2n)\cos\left(\beta+2\lambda_{2}\sqrt{n}\right). The approximate values of the constants are B0.23268B\approx 0.23268, β1.4758\beta\approx 1.4758, λ10.72984\lambda_{1}\approx 0.72984, and λ20.68327\lambda_{2}\approx 0.68327.

The proof makes use of (1.4) and a detailed study of the coefficients n0Qn(ζ)qn:=(ζq;q)1\sum_{n\geq 0}Q_{n}(\zeta)q^{n}:=(\zeta q;q)^{-1}_{\infty} when ζ\zeta is a root of unity. Prompted by a question of Stanley, a study of the polynomials Qn(ζ)Q_{n}(\zeta) and their complex zeroes was undertaken in a series of papers by Boyer, Goh, Keith and Parry (see [4, 5, 6, 7, 18]), and the functions (ζq;q)1(\zeta q;q)^{-1}_{\infty} have also been studied in recent work of Bringmann, Craig, Males, and Ono [8] in the context of distribution of homology of Hilbert schemes and tt-hook lengths. Asymptotics for Qn(ζ)Q_{n}(\zeta) were studied by Wright [24] when ζ\zeta is any positive real number, and then by Boyer and Goh [4, 5] for |ζ|1|\zeta|\neq 1. Our results essentially complete this study, proving asymptotics when ζ\zeta is any root of unity.

We use the circle method in the form of Parry [18] as a template; however, significant technical effort is required to bound minor arcs that one does not encounter when |ζ|1|\zeta|\neq 1. For example, we have to overcome the fact that when ζ\zeta is a root of unity, the series representation of the polylogarithm Lis(ζ)\mathrm{Li}_{s}(\zeta) does not converge for Re(s)<0\mathrm{Re}(s)<0.

Asymptotics in the case that b5b\geq 5 are as follows, and a general version with the sporadic cases b{2,3,4}b\in\{2,3,4\} is stated in Theorem 3.17.

Theorem 1.3.

Let b5b\geq 5. Then we have

Qn(ζb)1ζbLi2(ζb)142πn34exp(2Li2(ζb)n),n.\displaystyle Q_{n}\left(\zeta_{b}\right)\sim\frac{\sqrt{1-\zeta_{b}}\mathrm{Li}_{2}\left(\zeta_{b}\right)^{\frac{1}{4}}}{2\sqrt{\pi}n^{\frac{3}{4}}}\exp\left(2\sqrt{\mathrm{Li}_{2}\left(\zeta_{b}\right)}\sqrt{n}\right),\qquad n\to\infty.
Remark 1.4.

Our techniques for bounding minor arcs seem not to readily apply when |ζ|=1|\zeta|=1 and ζ\zeta is not a root of unity, so we leave it as an open problem to prove asymptotic formulas for Qn(ζ)Q_{n}(\zeta) in this case. Boyer and Goh [4] prove that the unit circle is part of the zero attractor of the polynomials Qn(ζ)Q_{n}(\zeta), and it follows from their results that asymptotic formulas for Qn(ζ)Q_{n}(\zeta) cannot be uniform on any subset of \mathbb{C} which is an open neighborhood of an arc of the unit circle.

Furthermore, note that taking ζ1\zeta\to 1 in Theorem 1.3 does not recover the Hardy–Ramanujan asymptotic formula (1.2).

The above results can be further developed to linear combinations of p(a,b,n)p(a,b,n) (where bb is fixed). Each relevant combination 0a<bcap(a,b,n)\sum_{0\leq a<b}c_{a}p(a,b,n) corresponds to a polynomial
P(x):=0j<bcaxaP(x):=\sum_{0\leq j<b}c_{a}x^{a} via p(a,b,n)xap(a,b,n)\mapsto x^{a}. Perhaps the most combinatorially interesting cases are ca{0,±1}c_{a}\in\{0,\pm 1\}; i.e., differences of partition numbers. This means that for any two nonempty disjoint subsets S1,S2[0,b1]S_{1},S_{2}\subset[0,b-1] of integers, we consider the differences

aS1p(a,b,n)aS2p(a,b,n).\displaystyle\sum_{a\in S_{1}}p(a,b,n)-\sum_{a\in S_{2}}p(a,b,n).

The asymptotic behavior of these differences is described in Theorem 3.22. When choosing the coefficients cac_{a} properly we can reduce the growth of the difference terms by canceling main terms. By doing so, we see that actually all formulas of Theorem 1.3 are required (as well as the sporadic cases described in Theorem 3.17). In contrast, one can deduce formula (1.3) by only elementary means without a thorough analysis of the coefficients Qn(ζ)Q_{n}(\zeta).

Moreover, for families of partition numbers, one can consider growth and sign changes simultaneously. Of special interest here is the fact that any shift of (S1,S2)(S_{1},S_{2}) to (S1+r,S2+r)(S_{1}+r,S_{2}+r) changes the “phase” but not the “amplitude” of the asymptotic terms. The following example demonstrates this fact.

Example 1.5.

Let b=12b=12. For the sets S1:={1,2,5}S_{1}:=\{1,2,5\} and S2:={0,3,4}S_{2}:=\{0,3,4\}, we find
PS1,S2(x)=x5x4x3+x2+x1=(x1)Φ12(x)P_{S_{1},S_{2}}(x)=x^{5}-x^{4}-x^{3}+x^{2}+x-1=(x-1)\Phi_{12}(x), where Φ12(x)\Phi_{12}(x) is the 12th cyclotomic polynomial. The corresponding difference of partition numbers is

p(5,12,n)p(4,12,n)p(3,12,n)+p(2,12,n)+p(1,12,n)p(0,12,n).\displaystyle p(5,12,n)-p(4,12,n)-p(3,12,n)+p(2,12,n)+p(1,12,n)-p(0,12,n).

By shifting the sets with integers 0r60\leq r\leq 6, we find that, more generally, all differences

Δr(n)\displaystyle\Delta_{r}(n) :=p(5+r,12,n)p(4+r,12,n)p(3+r,12,n)\displaystyle:=p(5+r,12,n)-p(4+r,12,n)-p(3+r,12,n)
+p(2+r,12,n)+p(1+r,12,n)p(r,12,n)\displaystyle\hskip 113.81102pt+p(2+r,12,n)+p(1+r,12,n)-p(r,12,n)

have the same growth in their amplitudes but have different phases of sign changes. Since PS1,S2(x)P_{S_{1},S_{2}}(x) has zeros {1,±ζ12,±ζ125}\{1,\pm\zeta_{12},\pm\zeta^{5}_{12}\}, the dominating term in the asymptotic expansion is induced by the root of unity ζ6\zeta_{6}. In fact, we obtain

Δr(n)An34exp(2λ1n)=cos(α2πr6+2λ2n)+o(1),\displaystyle\frac{\Delta_{r}(n)}{An^{-\frac{3}{4}}\exp\left(2\lambda_{1}\sqrt{n}\right)}=\cos\left(\alpha-\frac{2\pi r}{6}+2\lambda_{2}\sqrt{n}\right)+o(1), (1.5)

with λ1+iλ2=Li2(ζ6)\lambda_{1}+i\lambda_{2}=\sqrt{\mathrm{Li}_{2}(\zeta_{6})}, where A>0A>0 and α[0,2π)\alpha\in[0,2\pi) are defined by

Aeiα=(1i3)32122πLi2(ζ6)14.Ae^{i\alpha}=\frac{\left(1-i\sqrt{3}\right)^{\frac{3}{2}}}{12\sqrt{2\pi}}\mathrm{Li}_{2}(\zeta_{6})^{\frac{1}{4}}.

Note that AA, α\alpha, λ1\lambda_{1} and λ2\lambda_{2} all do not depend on the choice of rr. One can then asymptotically describe the regions of nn, where

p(5,12,n)+p(2,12,n)+p(1,12,n)>p(4,12,n)+p(3,12,n)+p(0,12,n),p(5,12,n)+p(2,12,n)+p(1,12,n)>p(4,12,n)+p(3,12,n)+p(0,12,n),

and vice versa, using formula (1.5). Additionally, since Re(Li2(ζ6))<Re(Li2(ζ12))\mathrm{Re}(\sqrt{\mathrm{Li}_{2}(\zeta_{6})})<\mathrm{Re}(\sqrt{\mathrm{Li}_{2}(\zeta_{12})}), we note with the help of Theorem 1.2 that

lim supn|p(a1,12,n)p(a2,12,n)n34exp(2Re(Li2(ζ6))n)|=.\displaystyle\limsup_{n\to\infty}\left|\frac{p(a_{1},12,n)-p(a_{2},12,n)}{n^{-\frac{3}{4}}\exp\left(2\mathrm{Re}(\mathrm{Li}_{2}(\zeta_{6}))\sqrt{n}\right)}\right|=\infty.

This implies some form of cancellation within the higher differences Δr(n)\Delta_{r}(n), that “exceeds” that of simple differences modulo 1212.

In contrast to Example 1.5, when bb is prime, one cannot decrease the order of growth below simple differences using any rational combination of the p(a,b,n)p(a,b,n). This is shown in Section 3.

The paper is organized as follows. In Section 2, we collect some classic analytical tools and prove some key lemmas. This includes a careful study of the dilogarithm function Li2(z)\mathrm{Li}_{2}(z) for values |z|=1|z|=1. In Section 3, we state our main result, Theorem 3.17, and applications. We prove Theorem 3.17 in Sections 4 and 5 using the circle method. Section 5 deals with the primary difficulty of bounding the minor arcs.

Acknowledgements

We would like to thank Kathrin Bringmann, Joshua Males, Caner Nazaroglu, Ken Ono and Wadim Zudilin for useful discussions and for making comments on an earlier version of this paper. We are grateful to the referees for their detailed comments that improved the exposition.

The first author is partially supported by the SFB/TRR 191 “Symplectic Structures in Geometry, Algebra and Dynamics”, funded by the DFG (Projektnummer 281071066 TRR 191).

The second author is partially supported by the Alfried Krupp prize.

2. Preliminaries

We will need several analytical results in this work, which we collect in this section. Much of the items here are discussed in works such as [9, 10, 11, 16, 19, 22]. The reader can skip this section and refer back to it as needed as we work through the proofs of our main theorems.

2.1. Classical asymptotic analysis and integration formulas

A first tool is the well known Laplace’s method for studying limits of definite integrals with oscillation, which we will use for evaluating Cauchy-type integrals.

Theorem 2.6 (Laplace’s method, see Section 1.1.5 of [19]).

Let A,B:[a,b]A,B:[a,b]\to\mathbb{C} be continuous functions. Suppose xx0[a,b]x\neq x_{0}\in[a,b] such that Re(B(x))<Re(B(x0)),\mathrm{Re}(B(x))<\mathrm{Re}(B(x_{0})), and that

limxx0B(x)B(x0)(xx0)2=k,\displaystyle\lim_{x\to x_{0}}\frac{B(x)-B(x_{0})}{(x-x_{0})^{2}}=-k\in\mathbb{C},

with Re(k)>0.\mathrm{Re}(k)>0. Then as tt\to\infty

abA(x)etB(x)𝑑x=etB(x0)(A(x0)πtk+o(1t)).\displaystyle\int^{b}_{a}A(x)e^{tB(x)}dx=e^{tB(x_{0})}\left(A(x_{0})\sqrt{\frac{\pi}{tk}}+o\left(\frac{1}{\sqrt{t}}\right)\right).

We are ultimately interested in how the coefficients of a series S(q):=n0a(n)qnS(q):=\sum_{n\geq 0}a(n)q^{n} grow as nn\to\infty. The classical Euler–Maclaurin summation formulas can be applied in many cases to link the growth of a(n)a(n) to the growth of S(q)S(q) as qq approaches the unit circle. We state the Euler–Maclaurin summation formulas in two different forms.

Theorem 2.7 (classical Euler–Maclaurin summation, see p. 66 of [16]).

Let {x}:=xx\{x\}:=x-\lfloor x\rfloor denote the fractional part of xx. For NN\in\mathbb{N} and f:[1,)f:[1,\infty)\to\mathbb{C} a continuously differentiable function, we have

1nNf(n)=1Nf(x)𝑑x+12(f(N)+f(1))+1Nf(x)({x}12)𝑑x.\sum_{1\leq n\leq N}f(n)=\int_{1}^{N}f(x)dx+\frac{1}{2}(f(N)+f(1))+\int_{1}^{N}f^{\prime}(x)\left(\{x\}-\frac{1}{2}\right)dx.

We use a second formulation, due to Bringmann–Mahlburg–Jennings-Shaffer, to study the asymptotics of series with a complex variable approaching 0 within a fixed cone in the right-half plane. It is not stated in [10], but one can conclude from the proof that Theorem 2.8 is uniform in 0a1.0\leq a\leq 1.

Theorem 2.8 (uniform complex Euler–Maclaurin summation, [10], Theorem 1.2).

Suppose 0θ<π20\leq\theta<\frac{\pi}{2} and suppose that f:f:\mathbb{C}\to\mathbb{C} is holomorphic in a domain containing {reiα:|α|θ}\{re^{i\alpha}:|\alpha|\leq\theta\} with derivatives of sufficient decay; i.e., there is an ε>0\varepsilon>0 such that for all mm f(m)(z)z1εf^{(m)}(z)\ll z^{-1-\varepsilon} as zz\to\infty. Then uniformly for a[0,1]a\in[0,1], we have

0f(w(+a))=1w0f(w)𝑑wn=0N1f(n)(0)Bn+1(a)(n+1)!wn+ON(wN),\sum_{\ell\geq 0}f(w(\ell+a))=\frac{1}{w}\int_{0}^{\infty}f(w)dw-\sum_{n=0}^{N-1}\frac{f^{(n)}(0)B_{n+1}(a)}{(n+1)!}w^{n}+O_{N}\left(w^{N}\right),

uniformly as w0w\to 0 in Arg(w)θ\mathrm{Arg}(w)\leq\theta.

To identify a constant term in our asymptotic formula, we cite the following integral calculation of Bringmann, Craig, Males and Ono.

Lemma 2.9 ([8], Lemma 2.3).

For a+,a\in\mathbb{R}^{+},

0(eaxx(1ex)1x2(12a)eaxx)𝑑x=log(Γ(a))+(12a)log(a)12log(2π).\displaystyle\int_{0}^{\infty}\left(\frac{e^{-ax}}{x(1-e^{-x})}-\frac{1}{x^{2}}-\left(\frac{1}{2}-a\right)\frac{e^{-ax}}{x}\right)dx=\log\left(\Gamma\left(a\right)\right)+\left(\frac{1}{2}-a\right)\log\left(a\right)-\frac{1}{2}\log(2\pi).

Finally, we will use Abel partial summation extensively when bounding the twisted eta-products on the minor arcs.

Proposition 2.10 (Abel partial summation, see p. 3 of [23]).

Let N0N\in\mathbb{N}_{0} and MM\in\mathbb{N}. For sequences {an}nN\{a_{n}\}_{n\geq N}, {bn}nN\{b_{n}\}_{n\geq N} of complex numbers, if An:=N<mnam,A_{n}:=\sum_{N<m\leq n}a_{m}, then

N<nN+Manbn=AN+MbN+M+N<n<N+MAn(bnbn+1).\sum_{N<n\leq N+M}a_{n}b_{n}=A_{N+M}b_{N+M}+\sum_{N<n<N+M}A_{n}(b_{n}-b_{n+1}).

2.2. Elementary bounds

The following bound for differences of holomorphic functions will be used in conjunction with Abel partial summation during the course of the circle method. The proof of the following is a straightforward application of the fundamental theorem of calculus and the maximum modulus principle.

Lemma 2.11.

Let f:Uf:U\to\mathbb{C} be a holomorphic function and Br(c)¯U\overline{B_{r}(c)}\subset U a compact disk. Then, for all a,bBr(c)a,b\in B_{r}(c) with aba\not=b, we have

|f(b)f(a)|max|zc|=r|f(z)||ba|.\displaystyle\left|f(b)-f(a)\right|\leq\max_{|z-c|=r}|f^{\prime}(z)||b-a|.

We also need the following elementary maximum; for a proof see [18], Lemma 5.2.

Lemma 2.12.

For a(π2,π2)a\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right) and bb\in\mathbb{R}, we have

Re(eia1+ib)cos2(a2),\mathrm{Re}\left(\frac{e^{ia}}{1+ib}\right)\leq\cos^{2}\left(\frac{a}{2}\right),

with equality if and only if bb satisfies Arg(1+ib)=a2.\mathrm{Arg}(1+ib)=\frac{a}{2}.

2.3. Bounds for trigonometric series and the polylogarithm

We recall that for complex numbers ss and zz with |z|<1|z|<1 the polylogarithm Lis(z)\mathrm{Li}_{s}(z) is defined by the series

Lis(z):=n1znns.\displaystyle\mathrm{Li}_{s}(z):=\sum_{n\geq 1}\frac{z^{n}}{n^{s}}.

We are especially interested in the case s=2s=2, where Li2(z)\mathrm{Li}_{2}(z) is called the dilogarithm. The appendix of a recent preprint of Boyer and Parry [7] contains many useful results on the dilogarithm, including the following key lemma.

Lemma 2.13 (Proposition 4, [7]).

The function θRe(Li2(e2πiθ))\theta\mapsto\mathrm{Re}\left(\sqrt{\textnormal{Li}_{2}(e^{2\pi i\theta})}\right) is decreasing on the interval [0,12].[0,\frac{1}{2}].

We also need to consider the derivative of the function θLi2(e2πiθ)\theta\mapsto\mathrm{Li}_{2}(e^{2\pi i\theta}) and its partial sums. Let

GM(θ):=1mMe2πiθmm.\displaystyle G_{M}(\theta):=\sum_{1\leq m\leq M}\frac{e^{2\pi i\theta m}}{m}.

Then the following bound holds.

Lemma 2.14.

We have, uniformly for 0<θ<10<\theta<1,

|GM(θ)|log(1θ)+log(11θ),M.\displaystyle\left|G_{M}(\theta)\right|\ll\log\left(\frac{1}{\theta}\right)+\log\left(\frac{1}{1-\theta}\right),\qquad M\to\infty.
Proof.

Note that we have

GM(θ)=1mMcos(2πθm)m+i1mMsin(2πθm)m,\displaystyle G_{M}(\theta)=\sum_{1\leq m\leq M}\frac{\cos(2\pi\theta m)}{m}+i\sum_{1\leq m\leq M}\frac{\sin(2\pi\theta m)}{m},

and as it is well known that 1mMsin(2πθm)m\sum_{1\leq m\leq M}\frac{\sin(2\pi\theta m)}{m} is uniformly bounded in \mathbb{R} (see [21] on p. 94) we are left with the cosine sum. Let 0<θ120<\theta\leq\frac{1}{2} and MM\in\mathbb{N}. Consider the meromorphic function

hθ(z):=cos(2πθz)(cot(πz)i)2iz,h_{\theta}(z):=\frac{\cos(2\pi\theta z)(\cot(\pi z)-i)}{2iz},

together with the rectangle RMR_{M} with vertices 12iM,12+iθ\frac{1}{2}-iM,\frac{1}{2}+\frac{i}{\theta}, iθ+M+12\frac{i}{\theta}+M+\frac{1}{2}, and iM+M+12-iM+M+\frac{1}{2}. Notice that in a punctured disk of radius r<1r<1 centered at k1k\geq 1, we have

hθ(z)=cos(2πθk)2ik(1π(zk)i+O(zk)).h_{\theta}(z)=\frac{\cos(2\pi\theta k)}{2ik}\left(\frac{1}{\pi(z-k)}-i+O(z-k)\right).

With the residue theorem we find

RMhθ(z)𝑑z=2πi1mMResz=mhθ(z)=1mMcos(2πθm)m,\displaystyle\oint_{\partial R_{M}}h_{\theta}(z)dz=2\pi i\sum_{1\leq m\leq M}\mathrm{Res}_{z=m}h_{\theta}(z)=\sum_{1\leq m\leq M}\frac{\cos(2\pi\theta m)}{m},

where the contour is taken once in positive direction. By the invariance of the function under the reflection θ1θ\theta\to 1-\theta it suffices to consider values 0<θ120<\theta\leq\frac{1}{2}. A straightforward calculation shows that the bottom side integrals are bounded uniformly in 0<θ120<\theta\leq\frac{1}{2}. Similarly, also using that cot(πz)\cot(\pi z) is uniformly bounded on lines {Re(z)12}\{\mathrm{Re}(z)\in\frac{1}{2}\mathbb{Z}\setminus\mathbb{Z}\} for the second part, one argues

M+12MiM+12+iθhθ(z)𝑑z=O(1)+M+12M+12+iθhθ(z)𝑑z1212+iθ|dzz+M|log(1θ).\displaystyle\int_{M+\frac{1}{2}-Mi}^{M+\frac{1}{2}+\frac{i}{\theta}}h_{\theta}(z)dz=O(1)+\int_{M+\frac{1}{2}}^{M+\frac{1}{2}+\frac{i}{\theta}}h_{\theta}(z)dz\ll\int_{\frac{1}{2}}^{\frac{1}{2}+\frac{i}{\theta}}\left|\frac{dz}{z+M}\right|\ll\log\left(\frac{1}{\theta}\right).

A similar argument yields

12+iθ12Mihθ(z)𝑑zlog(1θ).\displaystyle\int_{\frac{1}{2}+\frac{i}{\theta}}^{\frac{1}{2}-Mi}h_{\theta}(z)dz\ll\log\left(\frac{1}{\theta}\right).

For the rectangle top, note with the use of the substitution zzθz\mapsto\frac{z}{\theta} we have

M+12+iθ12+iθhθ(z)𝑑z=θ(M+12)+iθ2+icos(2πz)(cot(πzθ)+i)z𝑑z2iθ(M+12)+iθ2+icos(2πz)z𝑑z.\displaystyle\int_{M+\frac{1}{2}+\frac{i}{\theta}}^{\frac{1}{2}+\frac{i}{\theta}}h_{\theta}(z)dz=\int_{\theta\left(M+\frac{1}{2}\right)+i}^{\frac{\theta}{2}+i}\frac{\cos(2\pi z)(\cot\left(\frac{\pi z}{\theta}\right)+i)}{z}dz-2i\int_{\theta\left(M+\frac{1}{2}\right)+i}^{\frac{\theta}{2}+i}\frac{\cos(2\pi z)}{z}dz. (2.1)

With the Residue Theorem we obtain

θ2+iθ(M+12)+i=θ2+ii+θ(M+12)+iθ(M+12)+i.\displaystyle\int_{\frac{\theta}{2}+i}^{\theta(M+\frac{1}{2})+i}=\int_{\frac{\theta}{2}+i}^{i\infty}+\int_{\theta(M+\frac{1}{2})+i\infty}^{\theta(M+\frac{1}{2})+i}.

and the bound cos(2πz)(cot(πzθ)+i)=O(e2πIm(z))\cos(2\pi z)(\cot\left(\frac{\pi z}{\theta}\right)+i)=O(e^{-2\pi\mathrm{Im}(z)}) as Im(z)\mathrm{Im}(z)\to\infty (since 0<θ120<\theta\leq\frac{1}{2}) yields the uniform boundedness of the first integral in (2.1). The integral on the right hand side of (2.1) can be bounded via standard contour integration, for instance, by using that αcos(x)x𝑑x1\int_{\alpha}^{\infty}\frac{\cos(x)}{x}dx\ll 1 for all α1\alpha\geq 1. This completes the proof. ∎

Lemma 2.14 has the following important consequence.

Lemma 2.15.

Let aa, bb, hh and kk be positive integers, such that gcd(a,b)=gcd(h,k)=1\gcd(a,b)=\gcd(h,k)=1. We assume that aa and bb are fixed. Then we have

1jkak+bjh0(modbk)maxm1|Gm(ab+hjk)|=O(k),\displaystyle\sum_{\begin{subarray}{c}1\leq j\leq k\\ ak+bjh\not\equiv 0\pmod{bk}\end{subarray}}\max_{m\geq 1}\left|G_{m}\left(\frac{a}{b}+\frac{hj}{k}\right)\right|=O(k),

as kk\to\infty, uniformly in hh.

Proof.

The assumption gcd(h,k)=1\gcd(h,k)=1 implies that the map jhjj\mapsto hj is a bijection modulo kk. One can show by elementary means that there is at most one j0j_{0} such that bkbk divides ak+bj0hak+bj_{0}h. First, we assume that such a j0j_{0} exists. Using Gm(x+1)=Gm(x)G_{m}(x+1)=G_{m}(x), we first reorder the sum, then apply Lemma 2.14 to obtain

1jkjj0maxm1|Gm(ab+hjk)|=1jk1maxm1|Gm(jk)|\displaystyle\sum_{\begin{subarray}{c}1\leq j\leq k\\ j\not=j_{0}\end{subarray}}\max_{m\geq 1}\left|G_{m}\left(\frac{a}{b}+\frac{hj}{k}\right)\right|=\sum_{1\leq j\leq k-1}\max_{m\geq 1}\left|G_{m}\left(\frac{j}{k}\right)\right| 1jk1(log(kj)+log(kkj))\displaystyle\ll\sum_{1\leq j\leq k-1}\left(\log\left(\frac{k}{j}\right)+\log\left(\frac{k}{k-j}\right)\right)
=O(k)\displaystyle=O(k)

by Stirling’s formula. Now, assume that there is no such j0j_{0}. In this case we find 0<αa,b,k<b0<\alpha_{a,b,k}<b, such that

1jkmaxm1|Gm(ab+hjk)|=maxm1|Gm(αa,b,kbk)|+maxm1|Gm(αa,b,kbk+11k)|\displaystyle\sum_{1\leq j\leq k}\max_{m\geq 1}\left|G_{m}\left(\frac{a}{b}+\frac{hj}{k}\right)\right|=\max_{m\geq 1}\left|G_{m}\left(\frac{\alpha_{a,b,k}}{bk}\right)\right|+\max_{m\geq 1}\left|G_{m}\left(\frac{\alpha_{a,b,k}}{bk}+1-\frac{1}{k}\right)\right|
+1jk2maxm1|Gm(αa,b,kbk+jk)|.\displaystyle\hskip 170.71652pt+\sum_{1\leq j\leq k-2}\max_{m\geq 1}\left|G_{m}\left(\frac{\alpha_{a,b,k}}{bk}+\frac{j}{k}\right)\right|.

Using again Lemma 2.14 and Stirling’s formula, we obtain

1jk2maxm1|Gm(αa,b,kbk+jk)|\displaystyle\sum_{1\leq j\leq k-2}\max_{m\geq 1}\left|G_{m}\left(\frac{\alpha_{a,b,k}}{bk}+\frac{j}{k}\right)\right| 1jk2(log(kj)+log(kkj))=O(k).\displaystyle\ll\sum_{1\leq j\leq k-2}\left(\log\left(\frac{k}{j}\right)+\log\left(\frac{k}{k-j}\right)\right)=O(k).

Since clearly

maxm1|Gm(αa,b,kbk)|+maxm1|Gm(αa,b,kbk+11k)|=O(log(k)),\max_{m\geq 1}\left|G_{m}\left(\frac{\alpha_{a,b,k}}{bk}\right)\right|+\max_{m\geq 1}\left|G_{m}\left(\frac{\alpha_{a,b,k}}{bk}+1-\frac{1}{k}\right)\right|=O(\log(k)),

the lemma follows. ∎

3. Main results and applications

3.1. Twisted eta-products

In this section, we record the general asymptotic formula for Qn(ζ)Q_{n}(\zeta) where ζ\zeta is any root of unity. Note that Qn(ζ)¯=Qn(ζ¯)\overline{Q_{n}(\zeta)}=Q_{n}(\overline{\zeta}), so it suffices to find asymptotic formulas for ζ\zeta in the upper-half plane. The following theorem of Boyer and Goh [4] regarding the dilogarithm distinguishes several cases in our main theorem. Following [4], we define

Ψk(θ):=Re(Li2(eikθ)k),for 0θπ, \Psi_{k}(\theta):=\mathrm{Re}\left(\frac{\sqrt{\mathrm{Li}_{2}(e^{ik\theta})}}{k}\right),\qquad\text{for $0\leq\theta\leq\pi,$ }

and

0<θ13<2π3<θ23<π0<\theta_{13}<\frac{2\pi}{3}<\theta_{23}<\pi

where each θjk\theta_{jk} is a solution to Ψj(θ)=Ψk(θ)\Psi_{j}\left(\theta\right)=\Psi_{k}\left(\theta\right). Here,

θ13=2.06672,θ23=2.36170.\theta_{13}=2.06672\dots,\quad\theta_{23}=2.36170\dots.

Since the values θ13\theta_{13} and θ23\theta_{23} arise as solutions to a non-algebraic equation, it is very unlikely that they are rational multiples of π\pi. Therefore, we will no longer consider them in future investigations.

Theorem 3.16 ([4], discussion prior to Theorem 2).

For 0θπ0\leq\theta\leq\pi, we have

maxk1Ψk(θ)={Ψ1(θ)if θ[0,θ13],Ψ2(θ)if θ[θ23,π],Ψ3(θ)if θ[θ13,θ23].\max_{k\geq 1}\Psi_{k}(\theta)=\begin{cases}\Psi_{1}(\theta)&\text{if $\theta\in[0,\theta_{13}]$,}\\ \Psi_{2}(\theta)&\text{if $\theta\in[\theta_{23},\pi]$,}\\ \Psi_{3}(\theta)&\text{if $\theta\in[\theta_{13},\theta_{23}]$.}\end{cases}

Following [18], define

ωh,k(z):=j=1k(1zζkjh)jk12.\omega_{h,k}(z):=\prod_{j=1}^{k}\left(1-z\zeta_{k}^{-jh}\right)^{\frac{j}{k}-\frac{1}{2}}.

We have the following asymptotic formulas.

Theorem 3.17.

(1) If 2πab(0,θ13),2\pi\frac{a}{b}\in(0,\theta_{13}), then

Qn(ζba)1ζbaLi2(ζba)142πn34exp(2Li2(ζba)n),n.Q_{n}\left(\zeta_{b}^{a}\right)\sim\frac{\sqrt{1-\zeta_{b}^{a}}\mathrm{Li}_{2}\left(\zeta_{b}^{a}\right)^{\frac{1}{4}}}{2\sqrt{\pi}n^{\frac{3}{4}}}\exp\left({2\sqrt{\mathrm{Li}_{2}\left(\zeta_{b}^{a}\right)}\sqrt{n}}\right),\qquad n\to\infty.

(2) If 2πab(θ23,π),2\pi\frac{a}{b}\in(\theta_{23},\pi), then

Qn(ζba)(1)n1ζbaLi2(ζb2a)1422πn34exp(Li2(ζb2a)n),n.Q_{n}\left(\zeta_{b}^{a}\right)\sim\frac{(-1)^{n}\sqrt{1-\zeta_{b}^{a}}\mathrm{Li}_{2}\left(\zeta_{b}^{2a}\right)^{\frac{1}{4}}}{2\sqrt{2\pi}n^{\frac{3}{4}}}\exp\left({\sqrt{\mathrm{Li}_{2}\left(\zeta_{b}^{2a}\right)}\sqrt{n}}\right),\qquad n\to\infty.

(3) If 2πab(θ13,θ23){2π3},2\pi\frac{a}{b}\in(\theta_{13},\theta_{23})\setminus\left\{\frac{2\pi}{3}\right\}, then

Qn(ζba)(ζ3nω1,3(ζba)+ζ32nω2,3(ζba))Li2(ζb3a)1423πn34exp(23Li2(ζb3a)n),n.Q_{n}\left(\zeta_{b}^{a}\right)\sim(\zeta_{3}^{-n}\omega_{1,3}(\zeta_{b}^{a})+\zeta_{3}^{-2n}\omega_{2,3}(\zeta_{b}^{a}))\frac{\mathrm{Li}_{2}(\zeta_{b}^{3a})^{\frac{1}{4}}}{2\sqrt{3\pi}n^{\frac{3}{4}}}\exp\left(\frac{2}{3}\sqrt{\mathrm{Li}_{2}(\zeta_{b}^{3a})}\sqrt{n}\right),\qquad n\to\infty.

(4) We have

Qn(ζ3)ζ32n(1ζ32)16(1ζ3)12Γ(13)2(6πn)23exp(2π3n6),n.Q_{n}\left(\zeta_{3}\right)\sim\frac{\zeta_{3}^{-2n}(1-\zeta_{3}^{2})^{\frac{1}{6}}(1-\zeta_{3})^{\frac{1}{2}}\Gamma\left(\frac{1}{3}\right)}{2(6\pi n)^{\frac{2}{3}}}\exp\left(\frac{2\pi}{3}\sqrt{\frac{n}{6}}\right),\qquad n\to\infty.

We prove Theorem 3.17 in Sections 4 and 5.

Remark 3.18.

Recall that we have the asymptotic formula (1.2) for Qn(1)=p(n)Q_{n}(1)=p(n), whereas for Qn(1)Q_{n}(-1), standard combinatorial methods give

n0Qn(1)qn=1(q;q)=(q;q)(q2;q2)=(q;q2)=n0(1)np𝒟𝒪(n)qn,\sum_{n\geq 0}Q_{n}(-1)q^{n}=\frac{1}{(-q;q)_{\infty}}=\frac{\left(q;q\right)_{\infty}}{(q^{2};q^{2})_{\infty}}=\left(q;q^{2}\right)_{\infty}=\sum_{n\geq 0}(-1)^{n}p_{\mathcal{DO}}(n)q^{n},

where p𝒟𝒪(n)p_{\mathcal{DO}}(n) counts the number of partitions of nn into distinct odd parts. An asymptotic formula for p𝒟𝒪(n)p_{\mathcal{DO}}(n) can be worked out using standard techniques. For example, Ingham’s Tauberian theorem (see [10], Theorem 1.1) with the modularity of the Dedekind η\eta-function yields

Qn(1)=(1)np𝒟𝒪(n)(1)n2(24)14n34exp(πn6).Q_{n}(-1)=(-1)^{n}p_{\mathcal{DO}}(n)\sim\frac{(-1)^{n}}{2(24)^{\frac{1}{4}}n^{\frac{3}{4}}}\exp\left(\pi\sqrt{\frac{n}{6}}\right).

Note the lack of uniformity in the asymptotic formulas for ζ\zeta near ±1\pm 1; in particular, the asymptotic formulas for Qn(1)Q_{n}(1) and Qn(1)Q_{n}(-1) cannot be obtained by taking ab±1\frac{a}{b}\to\pm 1 in cases (1) and (2).

3.2. Applications to differences of partition functions

In this section, we apply Theorem 3.17 to differences of the partition functions p(a,b,n)p(a,b,n), partitions of nn with number of parts congruent to aa modulo bb. The following elementary proposition relates the the numbers p(a,b,n)p(a,b,n) to the coefficients Qn(ζbj)Q_{n}(\zeta_{b}^{j}).

Proposition 3.19.

We have

p(a,b,n)=1b0jb1ζbjaQn(ζbj).p(a,b,n)=\frac{1}{b}\sum_{0\leq j\leq b-1}\zeta_{b}^{-ja}Q_{n}\left(\zeta_{b}^{j}\right).
Proof.

Using orthogonality, we can write the indicator functions of congruence classes as

1xa(modb)=1bj=0b1ζbjaζbjx,1_{x\equiv a\hskip-8.5359pt\pmod{b}}=\frac{1}{b}\sum_{j=0}^{b-1}\zeta_{b}^{-ja}\zeta_{b}^{jx},

and by standard combinatorial techniques (see [1], Ch. 1) one has

Qn(z)=λnz(λ).Q_{n}(z)=\sum_{\lambda\vdash n}z^{\ell(\lambda)}.

Hence,

p(a,b,n)=λn1b0jb1ζbjaζbj(λ)\displaystyle p(a,b,n)=\sum_{\lambda\vdash n}\frac{1}{b}\sum_{0\leq j\leq b-1}\zeta_{b}^{-ja}\zeta^{j\ell(\lambda)}_{b} =1b0jb1ζbjaλn(ζbj)(λ)=1b0jb1ζbjaQn(ζbj),\displaystyle=\frac{1}{b}\sum_{0\leq j\leq b-1}\zeta_{b}^{-ja}\sum_{\lambda\vdash n}\left(\zeta_{b}^{j}\right)^{\ell(\lambda)}=\frac{1}{b}\sum_{0\leq j\leq b-1}\zeta_{b}^{-ja}Q_{n}\left(\zeta_{b}^{j}\right),

which completes the proof. ∎

Thus, asymptotics for differences of p(a,b,n)p(a,b,n) can be identified using the asymptotic formulas found for Qn(ζ)Q_{n}(\zeta) in Theorem 3.17, in particular the equidistribution of the largest part in congruence classes follows immediately: p(a,b,n)p(n)1b.\frac{p(a,b,n)}{p(n)}\sim\frac{1}{b}. Furthermore, using the Hardy–Ramanujan–Rademacher exact formula for p(n)p(n) ([1], Theorem 5.1) with Theorem 3.17, one can improve this in the various cases. For example, for b5,b\geq 5, we have

limn(bp(a,b,n)2324n1exp(π24n16)(16π24n1)An34exp(2λ1n)cos(α2πab+2λ2n))=0,\lim_{n\to\infty}\left(\frac{b\cdot p(a,b,n)-\frac{2\sqrt{3}}{24n-1}\exp\left(\frac{\pi\sqrt{24n-1}}{6}\right)\left(1-\frac{6}{\pi\sqrt{24n-1}}\right)}{An^{-\frac{3}{4}}\exp(2\lambda_{1}\sqrt{n})}-\cos\left(\alpha-\frac{2\pi a}{b}+2\lambda_{2}\sqrt{n}\right)\right)=0,

where λ1+iλ2=Li2(ζb),\lambda_{1}+i\lambda_{2}=\sqrt{\mathrm{Li}_{2}(\zeta_{b})}, A0,A\geq 0, and α[0,2π)\alpha\in[0,2\pi) are defined by

Aeiα=(λ1+iλ2)(1ζba)π.Ae^{i\alpha}=\sqrt{\frac{(\lambda_{1}+i\lambda_{2})(1-\zeta_{b}^{a})}{\pi}}.

We record a number of results below in the same vein. Considering simple differences, p(a1,b,n)p(a2,b,n),p(a_{1},b,n)-p(a_{2},b,n), it follows from Proposition 3.19 that when rewriting each p(a,b,n)p(a,b,n) in terms of QnQ_{n} the two summands Qn(1)=p(n)Q_{n}(1)=p(n) cancel. With a few exceptions for b=4b=4, the dominant terms are always Qn(ζb)Q_{n}(\zeta_{b}) and Qn(ζbb1)Q_{n}(\zeta_{b}^{b-1}).

Theorem 3.20.

Let 0a1<a2b1.0\leq a_{1}<a_{2}\leq b-1.
(1) For b=2,b=2, we have p(0,2,n)p(1,2,n)=Qn(1).p(0,2,n)-p(1,2,n)=Q_{n}(-1).
(2) For b=3b=3, we have

p(a1,3,n)p(a2,3,n)Aa1,a2n23exp(2π3n6)=cos(αa1,a24πn3)+o(1),\frac{p(a_{1},3,n)-p(a_{2},3,n)}{A_{a_{1},a_{2}}n^{-\frac{2}{3}}\exp\left(\frac{2\pi}{3}\sqrt{\frac{n}{6}}\right)}=\cos\left(\alpha_{a_{1},a_{2}}-\frac{4\pi n}{3}\right)+o(1),

where Aa1,a20A_{a_{1},a_{2}}\geq 0 and αa1,a2[0,2π)\alpha_{a_{1},a_{2}}\in[0,2\pi) are defined by

Aa1,a2eiαa1,a2=(ζ3a1ζ3a2)(1ζ32)16(1ζ3)12Γ(13)3(6π)23.A_{a_{1},a_{2}}e^{i\alpha_{a_{1},a_{2}}}=(\zeta_{3}^{-a_{1}}-\zeta_{3}^{-a_{2}})(1-\zeta_{3}^{2})^{\frac{1}{6}}(1-\zeta_{3})^{\frac{1}{2}}\frac{\Gamma\left(\frac{1}{3}\right)}{3(6\pi)^{\frac{2}{3}}}.

(3) For b=4,b=4, and a1,a2a_{1},a_{2} of opposite parity, we have

p(a1,4,n)p(a2,4,n)(1)a1(1)a24Qn(1).p(a_{1},4,n)-p(a_{2},4,n)\sim\frac{(-1)^{a_{1}}-(-1)^{a_{2}}}{4}Q_{n}(-1).

(4) For b5b\geq 5, or for b=4b=4 and a1,a2a_{1},a_{2} of the same parity, we have

p(a1,b,n)p(a2,b,n)Ba1,a2,bn34exp(2λ1n)=cos(βa1,a2,b+2λ2n)+o(1),\frac{p(a_{1},b,n)-p(a_{2},b,n)}{B_{a_{1},a_{2},b}n^{-\frac{3}{4}}\exp(2\lambda_{1}\sqrt{n})}=\cos\left(\beta_{a_{1},a_{2},b}+2\lambda_{2}\sqrt{n}\right)+o(1),

where λ1+iλ2=Li2(ζb)\lambda_{1}+i\lambda_{2}=\sqrt{\mathrm{Li}_{2}(\zeta_{b})}, Ba1,a2,b0B_{a_{1},a_{2},b}\geq 0 and βa1,a2,b[0,2π)\beta_{a_{1},a_{2},b}\in[0,2\pi) are defined by

Ba1,a2,beiβa1,a2,b=(ζba1ζba2)b(1ζb)(λ1+iλ2)π.B_{a_{1},a_{2},b}e^{i\beta_{a_{1},a_{2},b}}=\frac{\left(\zeta_{b}^{-a_{1}}-\zeta_{b}^{-a_{2}}\right)}{b}\sqrt{\frac{(1-\zeta_{b})(\lambda_{1}+i\lambda_{2})}{\pi}}.
Proof.

When b=2b=2, Theorem 3.20 follows from Proposition 3.19. Let b5.b\geq 5. By Proposition 3.19, it follows that

p(a1,b,n)p(a2,b,n)=1bRe((ζba1ζba2)Qn(ζb))+1b1jb2(ζbja1ζbja2)Qn(ζbj).p(a_{1},b,n)-p(a_{2},b,n)=\frac{1}{b}\mathrm{Re}\left((\zeta_{b}^{-a_{1}}-\zeta_{b}^{-a_{2}})Q_{n}(\zeta_{b})\right)+\frac{1}{b}\sum_{1\leq j\leq b-2}(\zeta_{b}^{-ja_{1}}-\zeta_{b}^{-ja_{2}})Q_{n}\left(\zeta_{b}^{j}\right).

Upon dividing both sides by Ba1,a2,bn34exp(2λ1n)B_{a_{1},a_{2},b}n^{-\frac{3}{4}}\exp(2\lambda_{1}\sqrt{n}), Lemma 2.13 implies that the sum on the right is O(ecn)O(e^{-c\sqrt{n}}), for some c>0,c>0, and it then follows from Theorem 3.17 that

p(a1,b,n)p(a2,b,n)Ba1,a2,bn34exp(2λ1n)=Re(ei(βa1,a2,b+2λ2n))+o(1)+o(ecn),\displaystyle\frac{p(a_{1},b,n)-p(a_{2},b,n)}{B_{a_{1},a_{2},b}n^{-\frac{3}{4}}\exp\left(2\lambda_{1}\sqrt{n}\right)}=\mathrm{Re}\left(e^{i\left(\beta_{a_{1},a_{2},b}+2\lambda_{2}\sqrt{n}\right)}\right)+o(1)+o\left(e^{-c\sqrt{n}}\right), (3.1)

which gives the claim of Theorem 3.20.

The other cases are proved similarly by noting that Lemma 2.13 and Theorem 3.17 imply that the Qn(ζb)Q_{n}(\zeta_{b}) and Qn(ζb1)Q_{n}(\zeta_{b}^{-1}) terms always dominate Qn(ζbj)Q_{n}(\zeta_{b}^{j}) for j±1,j\neq\pm 1, except in the case that b=4b=4, where Qn(1)Q_{n}(-1) dominates when a1,a2a_{1},a_{2} have opposite parity. But Qn(1)Q_{n}(-1) vanishes from the sum in Proposition 3.19 when b=4b=4 and a1,a2a_{1},a_{2} have the same parity, which leads to the third case in Theorem 3.20. ∎

More generally, if P𝕧(x):=0ab1vaxa[x]P_{\mathbb{v}}(x):=\sum_{0\leq a\leq b-1}v_{a}x^{a}\in\mathbb{R}[x] with 𝕧:=(v0,,vb1)b\mathbb{v}:=(v_{0},...,v_{b-1})\in\mathbb{R}^{b}, then Theorem 3.17 implies asymptotic formulas for any weighted count a=0b1vap(a,b,n).\sum_{a=0}^{b-1}v_{a}p(a,b,n). To state our general theorem, we let

L(eiθ):={Li2(eiθ)if 0θ<θ13,Li2(e3iθ)3if θ13<θ<θ23,Li2(e2iθ)2if θ23<θπ.L(e^{i\theta}):=\begin{cases}\sqrt{\mathrm{Li}_{2}(e^{i\theta})}&\text{if $0\leq\theta<\theta_{13}$,}\\ \frac{\sqrt{\mathrm{Li}_{2}(e^{3i\theta})}}{3}&\text{if $\theta_{13}<\theta<\theta_{23}$,}\\ \frac{\sqrt{\mathrm{Li}_{2}(e^{2i\theta})}}{2}&\text{if $\theta_{23}<\theta\leq\pi$.}\end{cases}

Let 𝒵(P𝕧)\mathcal{Z}(P_{\mathbb{v}}) be the roots of P𝕧P_{\mathbb{v}}, and let
λ1+iλ2=L(ζba0)\lambda_{1}+i\lambda_{2}=L(\zeta_{b}^{a_{0}}) for a0b2a_{0}\leq\frac{b}{2}, whenever

Re(L(ζba0))=max0ab2ζba𝒵(P𝕧)Re(L(ζba)).\mathrm{Re}\left(L(\zeta_{b}^{a_{0}})\right)=\max_{\begin{subarray}{c}0\leq a\leq\frac{b}{2}\\ \zeta_{b}^{a}\notin\mathcal{Z}(P_{\mathbb{v}})\end{subarray}}\mathrm{Re}\left(L(\zeta_{b}^{a})\right).
Refer to caption
Figure 3. Re(L(eiθ))\mathrm{Re}(L(e^{i\theta})) for 0θπ.0\leq\theta\leq\pi.
Theorem 3.21.

With notation as above, we have the following asymptotic formulas.
(1) If a0=0,a_{0}=0, then 0ab1vap(a,b,n)P𝐯(1)bp(n).\sum_{0\leq a\leq b-1}v_{a}p(a,b,n)\sim\frac{P_{{\bf v}}(1)}{b}p(n).
(2) If 0<2πa0b<θ13,0<2\pi\frac{a_{0}}{b}<\theta_{13}, then

0ab1vap(a,b,n)Aa0,b,𝕧n34exp(2λ1n)=cos(αa0,b,𝕧+2λ2n)+o(1),\frac{\sum_{0\leq a\leq b-1}v_{a}p(a,b,n)}{A_{a_{0},b,\mathbb{v}}n^{-\frac{3}{4}}\exp(2\lambda_{1}\sqrt{n})}=\cos\left(\alpha_{a_{0},b,\mathbb{v}}+2\lambda_{2}\sqrt{n}\right)+o(1),

where Aa0,b,𝕧0A_{a_{0},b,\mathbb{v}}\geq 0 and αa0,b,𝕧[0,2π)\alpha_{a_{0},b,\mathbb{v}}\in[0,2\pi) are defined by

Aa0,b,𝕧eiαa0,b,𝕧=P𝕧(ζba0)b(λ1+iλ2)(1ζba0)π.A_{a_{0},b,\mathbb{v}}\cdot e^{i\alpha_{a_{0},b,\mathbb{v}}}=\frac{P_{\mathbb{v}}(\zeta_{b}^{-a_{0}})}{b}\sqrt{\frac{(\lambda_{1}+i\lambda_{2})(1-\zeta_{b}^{a_{0}})}{\pi}}.

(3) If θ13<2πa0b<θ23\theta_{13}<2\pi\frac{a_{0}}{b}<\theta_{23} and a0b3,a_{0}\neq\frac{b}{3}, then

0ab1vap(a,b,n)Aa0,b,𝕧n34exp(2λ1n)=Ba0,bcos(αa0,b,𝕧+βa0,b2πn3+2λ2n)\displaystyle\frac{\sum_{0\leq a\leq b-1}v_{a}p(a,b,n)}{A_{a_{0},b,\mathbb{v}}n^{-\frac{3}{4}}\exp(2\lambda_{1}\sqrt{n})}=B_{a_{0},b}\cos\left(\alpha_{a_{0},b,\mathbb{v}}+\beta_{a_{0},b}-\frac{2\pi n}{3}+2\lambda_{2}\sqrt{n}\right)
+Ca0,bcos(αa0,b,𝕧+γa0,b4πn3+2λ2n)+o(1),\displaystyle\hskip 85.35826pt+C_{a_{0},b}\cos\left(\alpha_{a_{0},b,\mathbb{v}}+\gamma_{a_{0},b}-\frac{4\pi n}{3}+2\lambda_{2}\sqrt{n}\right)+o(1),

where Ba0,b,Ca0,b0B_{a_{0},b},C_{a_{0},b}\geq 0 and βa0,b,γa0,b[0,2π)\beta_{a_{0},b},\gamma_{a_{0},b}\in[0,2\pi) are defined by

Ba0,beiβa0,b=ω1,3(ζba0),B_{a_{0},b}e^{i\beta_{a_{0},b}}=\omega_{1,3}(\zeta_{b}^{a_{0}}),
Ca0,beiγa0,b=ω2,3(ζba0).C_{a_{0},b}e^{i\gamma_{a_{0},b}}=\omega_{2,3}(\zeta_{b}^{a_{0}}).

(4) If a0=b3a_{0}=\frac{b}{3}, then

b0ab1vap(a,b,n)D𝕧n23exp(2π3n6)=cos(δ𝕧4πn3)+o(1),\frac{b\sum_{0\leq a\leq b-1}v_{a}p(a,b,n)}{D_{\mathbb{v}}n^{-\frac{2}{3}}\exp\left(\frac{2\pi}{3}\sqrt{\frac{n}{6}}\right)}=\cos\left(\delta_{\mathbb{v}}-\frac{4\pi n}{3}\right)+o(1),

where D𝕧0D_{\mathbb{v}}\geq 0 and δ𝕧[0,2π)\delta_{\mathbb{v}}\in[0,2\pi) are defined by

D𝕧eiδ𝕧=(1ζ32)16(1ζ3)12Γ(13)2(6π)23P𝕧(ζ31).D_{\mathbb{v}}\cdot e^{i\delta_{\mathbb{v}}}=\frac{(1-\zeta_{3}^{2})^{\frac{1}{6}}(1-\zeta_{3})^{\frac{1}{2}}\Gamma(\frac{1}{3})}{2(6\pi)^{\frac{2}{3}}}P_{\mathbb{v}}\left(\zeta_{3}^{-1}\right).

(5) If θ23<2πa0b<π\theta_{23}<2\pi\frac{a_{0}}{b}<\pi, then

0ab1cvp(a,b,n)Aa0,b,𝕧n34exp(2λ1n)=cos(αa0,b,𝕧+πn+2λ2n)+o(1).\frac{\sum_{0\leq a\leq b-1}c_{v}p(a,b,n)}{A_{a_{0},b,\mathbb{v}}n^{-\frac{3}{4}}\exp\left(2\lambda_{1}\sqrt{n}\right)}=\cos\left(\alpha_{a_{0},b,\mathbb{v}}+\pi n+2\lambda_{2}\sqrt{n}\right)+o(1).

(6) If a0=b2,a_{0}=\frac{b}{2}, then 0ab1(1)avap(a,b,n)P𝕧(1)bQn(1).\sum_{0\leq a\leq b-1}(-1)^{a}v_{a}p(a,b,n)\sim\frac{P_{\mathbb{v}}(-1)}{b}Q_{n}(-1).

Proof.

Theorem 3.21 is proved similarly to Theorem 3.20. For Cases (1) and (6), the asymptotic formula for Qn(1)p(n)Q_{n}(1)\sim p(n) and Proposition 3.19 directly implies

0ab1vap(a,b,n)\displaystyle\sum_{0\leq a\leq b-1}v_{a}p(a,b,n) 1b(v0Qn(1)+v1Qn(1)++vb1Qn(1))=Pv(1)p(n)b,\displaystyle\sim\frac{1}{b}(v_{0}Q_{n}(1)+v_{1}Q_{n}(1)+...+v_{b-1}Q_{n}(1))=\frac{P_{\textbf{v}}(1)p(n)}{b},
0ab1(1)avap(a,b,n)\displaystyle\sum_{0\leq a\leq b-1}(-1)^{a}v_{a}p(a,b,n) 1b(v0Qn(1)v1Qn(1)++(1)b1vb1Qn(1))\displaystyle\sim\frac{1}{b}(v_{0}Q_{n}(-1)-v_{1}Q_{n}(-1)+...+(-1)^{b-1}v_{b-1}Q_{n}(-1))
=Pv(1)Qn(1)b,\displaystyle=\frac{P_{\textbf{v}}(-1)Q_{n}(-1)}{b},

for Cases (1) and (6) respectively.

For Cases (2), (3), and (5), the asymptotic main term (using that Qn(ζ)¯=Qn(ζ¯)\overline{Q_{n}(\zeta)}=Q_{n}(\overline{\zeta})) is

p(a,b,n)1b(ζba0aQn(ζba0)+ζbaoaQn(ζba0)¯)=2bRe(ζba0aQn(ζba0)).p(a,b,n)\sim\frac{1}{b}\left(\zeta^{-a_{0}a}_{b}Q_{n}(\zeta^{a_{0}}_{b})+\overline{\zeta^{-a_{o}a}_{b}{Q_{n}(\zeta^{a_{0}}_{b})}}\right)=\frac{2}{b}\mathrm{Re}\left(\zeta^{-a_{0}a}_{b}Q_{n}(\zeta^{a_{0}}_{b})\right).

The proof then follows by applying Theorem 3.17 and dividing by the appropriate normalizing factors in analog to Equation (3.1).

For case (4), there is only one main term in the sum for

p(a,b,n)ζa3Qn(ζ13).p(a,b,n)\sim\zeta^{-\frac{a}{3}}Q_{n}\left(\zeta^{\frac{1}{3}}\right).

Applying Theorem 3.17 and the analog to Equation (3.1) again proves the claim. ∎

One application of the above theorem generalizes Theorem 3.20 to differences of partitions with number of parts modulo bb in one of two disjoint sets of residue classes S1,S2[0,b1]S_{1},S_{2}\subset[0,b-1]. That is, we consider

PS1,S2(x):=aS1xaaS2xa,P_{S_{1},S_{2}}(x):=\sum_{a\in S_{1}}x^{a}-\sum_{a\in S_{2}}x^{a},

and prove a more explicit version of Theorem 3.21 in this case. Since PS1,S2(x)P_{S_{1},S_{2}}(x) is a polynomial of degree at most b1b-1 with integer coefficients, there must exist some dbd\mid b such that ζd𝒵(PS1,S2),\zeta_{d}\notin\mathcal{Z}(P_{S_{1},S_{2}}), otherwise PS1,S2P_{S_{1},S_{2}} would be divisible by dbΦd(x)=xb1,\prod_{d\mid b}\Phi_{d}(x)=x^{b}-1, where Φd\Phi_{d} is the dd-th cyclotomic polynomial, a contradiction.

Theorem 3.22.

Let b2b\geq 2 and let S1,S2[0,b1]S_{1},S_{2}\subset[0,b-1] be disjoint subsets of integers. If |S1||S2|,|S_{1}|\neq|S_{2}|, then

aS1p(a,b,n)aS2p(a,b,n)(|S1||S2|)p(n)b.\sum_{a\in S_{1}}p(a,b,n)-\sum_{a\in S_{2}}p(a,b,n)\sim\frac{(|S_{1}|-|S_{2}|)p(n)}{b}.

Otherwise, if |S1|=|S2||S_{1}|=|S_{2}|, then we have the following cases. Let d0d_{0} be the largest integer such that d0bd_{0}\mid b and ζd0𝒵(PS1,S2).\zeta_{d_{0}}\notin\mathcal{Z}(P_{S_{1},S_{2}}).
(1) If d05d_{0}\geq 5 or if d0=4d_{0}=4 and 1𝒵(PS1,S2)-1\in\mathcal{Z}(P_{S_{1},S_{2}}), then

aS1p(a,b,n)aS2p(a,b,n)Ad0,S1,S2n34exp(2λ1n)=cos(αd0,S1,S2+2λ2n)+o(1),\frac{\sum_{a\in S_{1}}p(a,b,n)-\sum_{a\in S_{2}}p(a,b,n)}{A_{d_{0},S_{1},S_{2}}n^{-\frac{3}{4}}\exp(2\lambda_{1}\sqrt{n})}=\cos\left(\alpha_{d_{0},S_{1},S_{2}}+2\lambda_{2}\sqrt{n}\right)+o(1),

where λ1+iλ2=Li2(ζd0)\lambda_{1}+i\lambda_{2}=\sqrt{\mathrm{Li}_{2}(\zeta_{d_{0}})}, Ad0,S1,S20A_{d_{0},S_{1},S_{2}}\geq 0 and αd0,S1,S2[0,2π)\alpha_{d_{0},S_{1},S_{2}}\in[0,2\pi) are defined by

Ad0,S1,S2eiαd0,S1,S2=PS1,S2(ζd01)b(λ1+iλ2)(1ζd0)π.A_{d_{0},S_{1},S_{2}}\cdot e^{i\alpha_{d_{0},S_{1},S_{2}}}=\frac{P_{S_{1},S_{2}}\left(\zeta_{d_{0}}^{-1}\right)}{b}\sqrt{\frac{(\lambda_{1}+i\lambda_{2})(1-\zeta_{d_{0}})}{\pi}}.

(2) If d0=4d_{0}=4 or 33 with bb even, and 1𝒵(PS1,S2)-1\notin\mathcal{Z}(P_{S_{1},S_{2}}), we have the following allowable sets:

  • If d0=4d_{0}=4 and (k1+k2)0(mod2)(k_{1}+k_{2})\not\equiv 0\pmod{2},

    S1×S2\displaystyle S_{1}\times S_{2} ={a:ab1,ak1(mod4)}×{a:ab1,ak2(mod4)}.\displaystyle=\{a:a\leq b-1,\;a\equiv k_{1}\pmod{4}\}\times\{a:a\leq b-1,\;a\equiv k_{2}\pmod{4}\}.
  • If d0=3d_{0}=3, bb is even and k1k2(mod2),k_{1}\not\equiv k_{2}\pmod{2},

    S1×S2\displaystyle S_{1}\times S_{2} ={a:ab1,ak1(mod2)}×{a:ab1,ak2(mod2)}.\displaystyle=\{a:a\leq b-1,\;a\equiv k_{1}\pmod{2}\}\times\{a:a\leq b-1,\;a\equiv k_{2}\pmod{2}\}.

The asymptotic formulas are then given by

aS1p(a,b,n)aS2p(a,b,n)NS1,S2bQn(1),\sum_{a\in S_{1}}p(a,b,n)-\sum_{a\in S_{2}}p(a,b,n)\sim\frac{N_{S_{1},S_{2}}}{b}Q_{n}(-1),

where

NS1,S2={(1)k1bifd0=3,beven,(1)k1b2ifd0=4.N_{S_{1},S_{2}}=\begin{cases}(-1)^{k_{1}}b&\textnormal{if}\;d_{0}=3,\;b\;\textnormal{even},\\ (-1)^{k_{1}}\frac{b}{2}&\textnormal{if}\;d_{0}=4.\end{cases}

(3) If d0=3d_{0}=3, bb is even and 1𝒵(PS1,S2)-1\in\mathcal{Z}(P_{S_{1},S_{2}}), or d0=3d_{0}=3 and bb is odd, we have the following sets S1S_{1} and S2S_{2}:

  • If bb is odd, S1S_{1} and S2S_{2} must contain distinct residue classes modulo 33.

  • If bb is even,

    S1×S2\displaystyle S_{1}\times S_{2} ={a:ab1,ak1ork2(mod6)}×{a:ab2,ak3ork4(mod6)},\displaystyle=\{a:a\leq b-1,\;a\equiv k_{1}\;\textnormal{or}\;k_{2}\pmod{6}\}\times\{a:a\leq b-2,\;a\equiv k_{3}\;\textnormal{or}\;k_{4}\pmod{6}\},

    where

    (k1,k2,k3,k4)\displaystyle(k_{1},k_{2},k_{3},k_{4}) =(0,3,2,5),(2,5,0,3),(1,4,2,5),(2,5,1,4),(1,3,1,4),or(1,4,1,3).\displaystyle=(0,3,2,5),\;(2,5,0,3),\;(1,4,2,5),\;(2,5,1,4),(1,3,1,4),\;\textnormal{or}\;(1,4,1,3).

The asymptotic formula is then given by

aS1p(a,b,n)aS2p(a,b,n)2bRe(Qn(ζ3)PS1,S2(ζ31)).\sum_{a\in S_{1}}p(a,b,n)-\sum_{a\in S_{2}}p(a,b,n)\sim\frac{2}{b}\mathrm{Re}\left(Q_{n}(\zeta_{3})P_{S_{1},S_{2}}\left(\zeta^{-1}_{3}\right)\right).

(4) If d0=2,d_{0}=2, then for some a1,a2a_{1},a_{2} of opposite parity we have

(S1,S2)={aa1(mod2)}×{aa2(mod2)}(S_{1},S_{2})=\{a\equiv a_{1}\pmod{2}\}\times\{a\equiv a_{2}\pmod{2}\}

and

aS1p(a,b,n)aS2p(a,b,n)(1)a1Qn(1).\sum_{a\in S_{1}}p(a,b,n)-\sum_{a\in S_{2}}p(a,b,n)\sim(-1)^{a_{1}}Q_{n}(-1).
Proof sketch of Theorem 3.22.

The asymptotic analysis is similar to the proof of Theorem 3.20, since Lemma 2.13 and Theorem 3.17 imply that the sequence Qn(ζd)Q_{n}(\zeta_{d}), ranked from in asymptotic order from least to greatest, is

Qn(ζ3),Qn(i),Qn(1),Qn(ζ5),Qn(ζ6),,Qn(1)=p(n).Q_{n}(\zeta_{3}),\ Q_{n}(i),\ Q_{n}(-1),\ Q_{n}(\zeta_{5}),\ Q_{n}(\zeta_{6}),\dots,Q_{n}(1)=p(n).

Thus, for example in case (3), the asymptotic behavior of aS1p(a,b,n)aS2p(a,b,n)\sum_{a\in S_{1}}p(a,b,n)-\sum_{a\in S_{2}}p(a,b,n) is determined by Qn(ζ3)Q_{n}(\zeta_{3}) and Qn(ζ31)Q_{n}(\zeta_{3}^{-1}) since all other Qn(ζba)Q_{n}(\zeta_{b}^{a}) vanish in PS1,S2(ζbj)Qn(ζbj)P_{S_{1},S_{2}}(\zeta_{b}^{-j})Q_{n}(\zeta_{b}^{j}). Furthermore, in this case we must have

xb1Φ3(x)PS1,S2(x),\frac{x^{b}-1}{\Phi_{3}(x)}\mid P_{S_{1},S_{2}}(x),

and deg(PS1,S2(x))b1\deg(P_{S_{1},S_{2}}(x))\leq b-1. Since

xb1Φ3(x)=xb2xb3+xb5xb6++x4x3+x1,\frac{x^{b}-1}{\Phi_{3}(x)}=x^{b-2}-x^{b-3}+x^{b-5}-x^{b-6}+\dots+x^{4}-x^{3}+x-1,

this leads directly to the possible sets S1S_{1} and S2S_{2} described in case 3. Finally, note that, given S1S_{1} and S2S_{2} defined in terms of a1a_{1} and a2a_{2} modulo bb, we have

PS1,S2(ζ31)=0abaa1(mod3)ζ3a0abaa2(mod3)ζ3a=b3(ζ3a1ζ3a2).P_{S_{1},S_{2}}\left(\zeta_{3}^{-1}\right)=\sum_{\begin{subarray}{c}0\leq a\leq b\\ a\equiv a_{1}\pmod{3}\end{subarray}}\zeta_{3}^{-a}-\sum_{\begin{subarray}{c}0\leq a\leq b\\ a\equiv a_{2}\pmod{3}\end{subarray}}\zeta_{3}^{-a}=\frac{b}{3}(\zeta_{3}^{-a_{1}}-\zeta_{3}^{-a_{2}}).

This is taken into account in the definition of the constant BS1,S2.B_{S_{1},S_{2}}. The other cases are proved similarly. ∎

We make a few remarks.

Remark 3.23.

(1) Theorem 3.22 case (1), in combination with Lemma 2.13, shows that one can reduce the growth of the amplitudes in the differences exponentially, as long as the corresponding polynomial PS1,S2P_{S_{1},S_{2}} vanishes at the crucial roots of unity. But the options for such types of cancellation strongly depend on bb. For example, if bb is a prime number, there is not even a rational combination (except for the trivial combination) such that the amplitudes of 0a<bvap(a,b,n)\sum_{0\leq a<b}v_{a}p(a,b,n) grow exponentially less than any simple difference p(a1,b,n)p(a2,b,n)p(a_{1},b,n)-p(a_{2},b,n). The simple algebraic reason behind this is that the minimal polynomial of ζb\zeta_{b} has degree b1b-1 in this case. It would be interesting to find a purely combinatorial interpretation for this fact.

(2) Note that if we shift the residue classes in S1S_{1} and S2S_{2} by some integer rr, and then take least residues modulo bb to compute PS1+r,S2+r(x)P_{S_{1}+r,S_{2}+r}(x), then this polynomial has the same roots of unity as PS1,S2(x)P_{S_{1},S_{2}}(x), and so

aS1+rp(a,b,n)aS2+rp(a,b,n)\sum_{a\in S_{1}+r}p(a,b,n)-\sum_{a\in S_{2}+r}p(a,b,n)

always has the same asymptotic behavior in Theorem 3.22 as aS1p(a,b,n)aS2p(a,b,n).\sum_{a\in S_{1}}p(a,b,n)-\sum_{a\in S_{2}}p(a,b,n). At the same time, the phase in the cosine changes. Indeed, we obtain

aS1+rp(a,b,n)aS2+rp(a,b,n)Ad0,S1,S2n34exp(2λ1n)=cos(αd0,S1,S22πrd0+2λ2n)+o(1),\displaystyle\frac{\sum_{a\in S_{1}+r}p(a,b,n)-\sum_{a\in S_{2}+r}p(a,b,n)}{A_{d_{0},S_{1},S_{2}}n^{-\frac{3}{4}}\exp\left(2\lambda_{1}\sqrt{n}\right)}=\cos\left(\alpha_{d_{0},S_{1},S_{2}}-\frac{2\pi r}{d_{0}}+2\lambda_{2}\sqrt{n}\right)+o(1), (3.2)

where all the constants are the same as in Theorem 3.22 (1). One can further use trigonometric identities to obtain a wider class of more classical asymptotic formulas, for instance regarding squared partition differences. Indeed, if 4|d04|d_{0} in (3.2), one finds using sin2(x)+cos2(x)=1\sin^{2}(x)+\cos^{2}(x)=1, as nn\to\infty,

(aS1p(a,b,n)aS2p(a,b,n))2+(aS1+d04p(a,b,n)aS2+d04p(a,b,n))2\displaystyle\left(\sum_{a\in S_{1}}p(a,b,n)-\sum_{a\in S_{2}}p(a,b,n)\right)^{2}+\left(\sum_{a\in S_{1}+\frac{d_{0}}{4}}p(a,b,n)-\sum_{a\in S_{2}+\frac{d_{0}}{4}}p(a,b,n)\right)^{2}
Ad0,S1,S22n32exp(4λ1n).\displaystyle\hskip 241.84842pt\sim A_{d_{0},S_{1},S_{2}}^{2}n^{-\frac{3}{2}}\exp\left(4\lambda_{1}\sqrt{n}\right).

(3) Cases 3 and 4 in Theorem 3.22 show that for d0{2,3}d_{0}\in\{2,3\}, there are finitely many sets S1S_{1} and S2S_{2} such that the asymptotic behavior of aS1p(a,b,n)aS2p(a,b,n)\sum_{a\in S_{1}}p(a,b,n)-\sum_{a\in S_{2}}p(a,b,n) is determined by Qn(ζd0)Q_{n}(\zeta_{d_{0}}), and that the number of such sets is independent of bb. In fact this is true for any d0d_{0}, and we leave it as an open problem to describe the sets S1,S2S_{1},S_{2} in general. The sets S1S_{1} and S2S_{2} need not each consist of one congruence class each modulo d0,d_{0}, for example with b=10b=10, the polynomial P{1,3,6,8},{0,2,5,7}(x)P_{\{1,3,6,8\},\{0,2,5,7\}}(x) has d0=5.d_{0}=5.

3.3. Examples

In this section, we provide some examples.

Example 3.24.

Let b=6b=6, and consider the difference p(1,6,n)p(5,6,n)p(1,6,n)-p(5,6,n). Then according to Theorem 3.20, we obtain

p(1,6,n)p(5,6,n)Bn34exp(2λ1n)=cos(β+2λ2n)+o(1),\displaystyle\frac{p(1,6,n)-p(5,6,n)}{Bn^{-\frac{3}{4}}\exp\left(2\lambda_{1}\sqrt{n}\right)}=\cos\left(\beta+2\lambda_{2}\sqrt{n}\right)+o(1), (3.3)

where λ1+iλ2=Li2(ζ6)\lambda_{1}+i\lambda_{2}=\sqrt{\mathrm{Li}_{2}(\zeta_{6})}, and B>0B>0 and β[0,2π)\beta\in[0,2\pi) are given implicitely by

Beiβ=ζ61ζ656(1ζ6)(λ1+iλ2)π=i12π(12i32)Li2(ζ6).\displaystyle Be^{i\beta}=\frac{\zeta_{6}^{-1}-\zeta_{6}^{-5}}{6}\sqrt{\frac{(1-\zeta_{6})(\lambda_{1}+i\lambda_{2})}{\pi}}=\frac{i}{\sqrt{12\pi}}\sqrt{\left(\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)\sqrt{\mathrm{Li}_{2}(\zeta_{6})}}.

Note that this implies (choosing BB to be the absolute value of the right hand side of the equation above)

λ1\displaystyle\lambda_{1} =0.81408,λ2=0.62336,\displaystyle=0.81408\ldots,\qquad\lambda_{2}=0.62336\ldots, (3.4)
B\displaystyle B =0.23268,β=1.37394.\displaystyle=0.23268\ldots,\qquad\hskip 3.98337pt\beta=1.37394\ldots.

Considering the first 900 coefficients numerically yields

M:={7,26,59,104,162,233,316,412,521,642,776,},M:=\{7,26,59,104,162,233,316,412,521,642,776,...\},

which are the highest indices until a change of signs in the sequence p(1,6,n)p(5,6,n)p(1,6,n)-p(5,6,n). We can compare this exact result to the prediction of formula (3.3). By considering the roots of the cosine, we find that it changes signs approximately at

M:={7,27,59,104,162,233,316,412,521,642,777,}.M^{\prime}:=\{7,27,59,104,162,233,316,412,521,642,777,...\}.

Note that in the first eleven cases, only case two with 2727 and case eleven with 777777 give slightly wrong predictions.

Refer to caption
Figure 4. The plot shows the sign changes of p(1,6,n)p(5,6,n)p(1,6,n)-p(5,6,n) (in blue dots) and the estimated sign changes (the red line).

The next example refers to higher differences of partition functions.

Example 3.25.

Again, we consider the case b=6b=6. In the spirit of Theorem 3.22 we want to consider multi-termed differences. To do so, we need two subsets S1,S2/6S_{1},S_{2}\subset\mathbb{Z}/6\mathbb{Z}, such that the corresponding nontrivial polynomial PS1,S2(x)P_{S_{1},S_{2}}(x) of degree at most 5 vanishes at as many roots of unity around x=1x=1 as possible. We first note that

(x1)Φ6(x)=(x1)(x2x+1)=x32x2+2x1.\displaystyle(x-1)\Phi_{6}(x)=(x-1)\left(x^{2}-x+1\right)=x^{3}-2x^{2}+2x-1.

In this case, we obtain a weighted difference and no subsets can be found for a growth reduction to an exponent induced by Li2(ζ3)\mathrm{Li}_{2}(\zeta_{3}). We continue by trying to eliminate also the 3rd roots of unity; i.e., with

(x1)Φ6(x)Φ3(x)=x5x4+x3x2+x1.\displaystyle(x-1)\Phi_{6}(x)\Phi_{3}(x)=x^{5}-x^{4}+x^{3}-x^{2}+x-1.

This is exactly the case (4) of Theorem 3.22. As a result, setting S1:={1,3,5}S_{1}:=\{1,3,5\} and S2:={0,2,4}S_{2}:=\{0,2,4\}, we find, as nn\to\infty,

0a5(1)a+1p(a,6,n)Qn(1)(1)n+12(24)14n34exp(πn6).\displaystyle\sum_{0\leq a\leq 5}(-1)^{a+1}p(a,6,n)\sim-Q_{n}(-1)\sim\frac{(-1)^{n+1}}{2(24)^{\frac{1}{4}}n^{\frac{3}{4}}}\exp\left(\pi\sqrt{\frac{n}{6}}\right).

Also note that π6=1.2825\frac{\pi}{\sqrt{6}}=1.2825\ldots is much smaller then the exponent 2λ1=1.62812\lambda_{1}=1.6281\ldots in (3.3), compare also (3.4).

Finally, we give an application of Remark 3.23.

Example 3.26.

In light of Equation (3.2), we can choose rr such that the cosine becomes a sine on the right hand side. Using Pythagoras’ Theorem, and considering the case b=8b=8 and r=2r=2, we obtain an asymptotic formula without oscillating terms. Indeed, according to Theorem 3.20 (4) and Remark 3.23, respectively, we obtain for residue classes a1a2a_{1}\not=a_{2} that

(p(a1,8,n)p(a2,8,n))2+(p(a1+2,8,n)p(a2+2,8,n))2Ba1,a2,82n32exp(4λ1n).\displaystyle(p(a_{1},8,n)-p(a_{2},8,n))^{2}+(p(a_{1}+2,8,n)-p(a_{2}+2,8,n))^{2}\sim B_{a_{1},a_{2},8}^{2}n^{-\frac{3}{2}}\exp\left(4\lambda_{1}\sqrt{n}\right).

There is no difficulty to extend this type of asymptotic formula for higher differences in the spirit of Theorem 3.22 (1).

4. Proof of Theorem 3.17

Since the asymptotic formulas for Qn(1)Q_{n}(1) and Qn(1)Q_{n}(-1) are well-known, we assume throughout that 1a<b21\leq a<\frac{b}{2} with gcd(a,b)=1\gcd(a,b)=1 and b3,b\geq 3, since Qn(ζ)¯=Qn(ζ¯)\overline{Q_{n}(\zeta)}=Q_{n}(\overline{\zeta}).

The setup follows the standard Hardy–Ramanujan circle method, expressing Qn(ζ)Q_{n}(\zeta) as a contour integral about 0 and breaking the contour apart with the sequence of Farey fractions of order N.N. For facts about the Farey sequence, we refer the reader to Chapter 3 of [14]. Much of the analysis in this section closely follows [18] after assuming the technical Lemmas 4.28 and 4.29 which we prove in the next section.

Let N=δnN=\lfloor\delta\sqrt{n}\rfloor, for some δ>0\delta>0 to be chosen independently of nn and small enough during the course of the proof. Let N\mathcal{F}_{N} be the sequence of Farey fractions of order NN with mediants θh,k\theta_{h,k}^{\prime} and θh,k′′\theta_{h,k}^{\prime\prime} at hk\frac{h}{k}. We write

tθ:=tn2πiθ,wheretnn:=Li2(ζbak0)k0,t_{\theta}:=t_{n}-2\pi i\theta,\qquad\text{where}\qquad t_{n}\sqrt{n}:=\frac{\sqrt{\mathrm{Li}_{2}\left(\zeta_{b}^{ak_{0}}\right)}}{k_{0}}, (4.1)

with k0{1,2,3}k_{0}\in\{1,2,3\} according to whether we are in case (1), (2) or (3).

By Cauchy’s integral formula, we have

Qn(ζba)\displaystyle Q_{n}\left(\zeta_{b}^{a}\right) =01(ζbaetn+2πiθ;etn+2πiθ)1entn2πinθ𝑑θ\displaystyle=\int_{0}^{1}\left(\zeta_{b}^{a}e^{-t_{n}+2\pi i\theta};e^{-t_{n}+2\pi i\theta}\right)_{\infty}^{-1}e^{nt_{n}-2\pi in\theta}d\theta
=hkNζkhnθh,kθh,k′′exp(Li2(ζbak)k2tθ+ntθ+Eh,k(ζba,tθ))𝑑θ,\displaystyle=\sum_{\frac{h}{k}\in\mathcal{F}_{N}}\zeta_{k}^{-hn}\int_{-\theta_{h,k}^{\prime}}^{\theta_{h,k}^{\prime\prime}}\exp\left(\frac{\mathrm{Li}_{2}\left(\zeta_{b}^{ak}\right)}{k^{2}t_{\theta}}+nt_{\theta}+E_{h,k}(\zeta_{b}^{a},t_{\theta})\right)d\theta,

where

Eh,k(z,t):=\displaystyle E_{h,k}(z,t):= Log((zζkhet;ζkhet)1)Li2(zk)k2t.\displaystyle\ \mathrm{Log}\left(\left(z\zeta_{k}^{h}e^{-t};\zeta_{k}^{h}e^{-t}\right)_{\infty}^{-1}\right)-\frac{\mathrm{Li}_{2}\left(z^{k}\right)}{k^{2}t}.

We will show that the integral(s) where k=k0k=k_{0} dominate, that is they are the major arcs, and all the other integrals are exponentially smaller, that is they are minor arcs. The Eh,kE_{h,k} will be shown to be error terms on all arcs; the following gives the growth of the Eh,kE_{h,k} up to o(1)o(1) on each of the possible major arcs.

Lemma 4.27.

(1) For 2πab(0,θ13)2\pi\frac{a}{b}\in(0,\theta_{13}) and θ0,1θθ0,1′′-\theta_{0,1}^{\prime}\leq\theta\leq\theta_{0,1}^{\prime\prime}, we have

E0,1(ζba,tθ)=Log(ω0,1(ζba))+o(1).E_{0,1}(\zeta_{b}^{a},t_{\theta})=\mathrm{Log}\left(\omega_{0,1}\left(\zeta_{b}^{a}\right)\right)+o(1).

(2) For 2πab(θ23,π)2\pi\frac{a}{b}\in(\theta_{23},\pi) and θ1,2θθ1,2′′-\theta_{1,2}^{\prime}\leq\theta\leq\theta_{1,2}^{\prime\prime}, we have

E1,2(ζba,tθ)=Log(ω1,2(ζba))+o(1).E_{1,2}(\zeta_{b}^{a},t_{\theta})=\mathrm{Log}\left(\omega_{1,2}\left(\zeta_{b}^{a}\right)\right)+o(1).

(3) For 2πab(θ13,θ23){2π3}2\pi\frac{a}{b}\in(\theta_{13},\theta_{23})\setminus\left\{\frac{2\pi}{3}\right\} and θ1,3θθ1,3′′-\theta_{1,3}^{\prime}\leq\theta\leq\theta_{1,3}^{\prime\prime}, we have

E1,3(ζba,tθ)=Log(ω1,3(ζba))+o(1),E_{1,3}(\zeta_{b}^{a},t_{\theta})=\mathrm{Log}\left(\omega_{1,3}(\zeta_{b}^{a})\right)+o(1),

and for θ2,3θθ2,3′′-\theta_{2,3}^{\prime}\leq\theta\leq\theta_{2,3}^{\prime\prime}, we have

E2,3(ζba,tθ)=Log(ω2,3(ζba))+o(1).E_{2,3}(\zeta_{b}^{a},t_{\theta})=\mathrm{Log}\left(\omega_{2,3}(\zeta_{b}^{a})\right)+o(1).

(4) For ab=13\frac{a}{b}=\frac{1}{3} and θ1,3θθ1,3′′-\theta_{1,3}^{\prime}\leq\theta\leq\theta_{1,3}^{\prime\prime}, we have

E1,3(ζ3,tθ)=Log(tθ16)+Log((1ζ32)16(1ζ3)12)+log(Γ(23))\displaystyle E_{1,3}(\zeta_{3},t_{\theta})=\mathrm{Log}\left(t_{\theta}^{\frac{1}{6}}\right)+\mathrm{Log}\left(\left(1-\zeta_{3}^{2}\right)^{-\frac{1}{6}}\left(1-\zeta_{3}\right)^{\frac{1}{2}}\right)+\log\left(\Gamma\left(\frac{2}{3}\right)\right)
+16log(3)12log(2π)+o(1),\displaystyle\qquad\hskip 85.35826pt+\frac{1}{6}\log\left(3\right)-\frac{1}{2}\log(2\pi)+o(1),

and for θ2,3θθ2,3′′-\theta_{2,3}^{\prime}\leq\theta\leq\theta_{2,3}^{\prime\prime}, we have

E2,3(ζ3,tθ)=Log(tθ16)+Log((1ζ32)16(1ζ3)12)+log(Γ(13))\displaystyle E_{2,3}(\zeta_{3},t_{\theta})=\mathrm{Log}\left(t_{\theta}^{-\frac{1}{6}}\right)+\mathrm{Log}\left(\left(1-\zeta_{3}^{2}\right)^{\frac{1}{6}}(1-\zeta_{3})^{\frac{1}{2}}\right)+\log\left(\Gamma\left(\frac{1}{3}\right)\right)
+16log(13)12log(2π)+o(1).\displaystyle\qquad\hskip 85.35826pt+\frac{1}{6}\log\left(\frac{1}{3}\right)-\frac{1}{2}\log(2\pi)+o(1).

The next two lemmas give uniform bounds on Eh,kE_{h,k} to be applied on the minor arcs. The proofs are quite intricate and are provided in the next section. We assume throughout that 0<ε140<\varepsilon\leq\frac{1}{4}.

Lemma 4.28.

Uniformly for knεk\leq n^{\varepsilon} and θh,kθθh,k′′-\theta_{h,k}^{\prime}\leq\theta\leq\theta_{h,k}^{\prime\prime}, we have

Eh,k(ζba,tθ)=O(n3ε12)+O(nε).E_{h,k}(\zeta_{b}^{a},t_{\theta})=O\left(n^{3\varepsilon-\frac{1}{2}}\right)+O\left(n^{\varepsilon}\right).

The next lemma treats the case of large denominators.

Lemma 4.29.

Uniformly for knεk\geq n^{\varepsilon} and θh,kθθh,k′′-\theta_{h,k}^{\prime}\leq\theta\leq\theta_{h,k}^{\prime\prime}, we have

Eh,k(ζba,tθ)=O(N).E_{h,k}(\zeta_{b}^{a},t_{\theta})=O\left(N\right).

We postpone the proofs of Lemmas 4.274.29 until Section 5. With these key lemmas in hand, the proof of Theorem 3.17 follows [18] closely.

Proof of Theorem 3.17.

Cases (1), (2) and (3). Assume ab13.\frac{a}{b}\neq\frac{1}{3}. We write

λ1+iλ2:=Li2(ζbak0)k0.\lambda_{1}+i\lambda_{2}:=\frac{\sqrt{\mathrm{Li}_{2}(\zeta_{b}^{ak_{0}})}}{k_{0}}.

It follows from the choice 0<ε140<\varepsilon\leq\frac{1}{4}, Lemmas 4.28 and 4.29 that Eh,k(ζba,tθ)=δO(n)E_{h,k}(\zeta_{b}^{a},t_{\theta})=\delta O(\sqrt{n}) uniformly. Using this and Lemma 4.27, we have

e2λ1nQn(ζba)\displaystyle e^{-2\lambda_{1}\sqrt{n}}Q_{n}\left(\zeta_{b}^{a}\right)
=hhk0Nζk0hnωh,k0(ζba)θh,k0θh,k0′′exp(2λ1n+(λ1+iλ2)2tθ+ntθ+o(1))𝑑θ\displaystyle=\sum_{\begin{subarray}{c}h\\ \frac{h}{k_{0}}\in\mathcal{F}_{N}\end{subarray}}\zeta_{k_{0}}^{-hn}\omega_{h,k_{0}}(\zeta_{b}^{a})\int_{-\theta_{h,k_{0}}^{\prime}}^{\theta_{h,k_{0}}^{\prime\prime}}\exp\left(-2\lambda_{1}\sqrt{n}+\frac{(\lambda_{1}+i\lambda_{2})^{2}}{t_{\theta}}+nt_{\theta}+o(1)\right)d\theta
+hkNkk0ζkhnθh,kθh,k′′exp(2λ1n+Li2(ζbak)k2tθ+ntθ+δO(n))𝑑θ.\displaystyle\ \ \ +\sum_{\begin{subarray}{c}\frac{h}{k}\in\mathcal{F}_{N}\\ k\neq k_{0}\end{subarray}}\zeta_{k}^{-hn}\int_{-\theta_{h,k}^{\prime}}^{\theta_{h,k}^{\prime\prime}}\exp\left(-2\lambda_{1}\sqrt{n}+\frac{\mathrm{Li}_{2}\left(\zeta_{b}^{ak}\right)}{k^{2}t_{\theta}}+nt_{\theta}+\delta O\left(\sqrt{n}\right)\right)d\theta. (4.2)

Recalling (4.1), we rewrite the first term in (4.2) as

1h<k0(h,k)=1ζk0hnωh,k0(ζba)exp(i2λ2n)θh,k0θh,k0′′exp(n(λ1+iλ212πiθnλ1+iλ2(λ1+iλ2))2πinθ)𝑑θ.\displaystyle\sum_{\begin{subarray}{c}1\leq h<k_{0}\\ (h,k)=1\end{subarray}}\zeta_{k_{0}}^{-hn}\omega_{h,k_{0}}\left(\zeta_{b}^{a}\right)\exp\left(i2\lambda_{2}\sqrt{n}\right)\int_{-\theta_{h,k_{0}}^{\prime}}^{\theta_{h,k_{0}}^{\prime\prime}}\exp\left(\sqrt{n}\left(\frac{\lambda_{1}+i\lambda_{2}}{1-\frac{2\pi i\theta\sqrt{n}}{\lambda_{1}+i\lambda_{2}}}-(\lambda_{1}+i\lambda_{2})\right)-2\pi in\theta\right)d\theta.

We can estimate the mediants as 1nθh,k0,θh,k0′′1n\frac{1}{\sqrt{n}}\ll\theta_{h,k_{0}}^{\prime},\theta_{h,k_{0}}^{\prime\prime}\ll\frac{1}{\sqrt{n}} and setting θθn12\theta\mapsto\theta n^{-\frac{1}{2}}, the above integral is asymptotic to

1n12ccexp(n(λ1+iλ212πiθλ1+iλ2(λ1+iλ2)2πiθ))dθ=:1n12ccenB(θ)dθ,\frac{1}{n^{\frac{1}{2}}}\int_{-c}^{c}\exp\left(\sqrt{n}\left(\frac{\lambda_{1}+i\lambda_{2}}{1-\frac{2\pi i\theta}{\lambda_{1}+i\lambda_{2}}}-(\lambda_{1}+i\lambda_{2})-2\pi i\theta\right)\right)d\theta=:\frac{1}{n^{\frac{1}{2}}}\int_{-c}^{c}e^{\sqrt{n}B(\theta)}d\theta, (4.3)

for some c>0c>0, say. We claim that we can apply Theorem 2.6 with x00,x_{0}\mapsto 0, A(x)1A(x)\mapsto 1 and BB as above. Here, B(0)=0B(0)=0 and expanding the geometric series gives

B(θ)=4π2λ1+iλ2θ2+o(θ2),θ0,B(\theta)=-\frac{4\pi^{2}}{\lambda_{1}+i\lambda_{2}}\theta^{2}+o\left(\theta^{2}\right),\qquad\theta\to 0,

with Re(4π2λ1+iλ2)>0\mathrm{Re}\left(\frac{4\pi^{2}}{\lambda_{1}+i\lambda_{2}}\right)>0. Finally, we claim that Re(B(θ))0\mathrm{Re}(B(\theta))\leq 0 with equality if and only if θ=0.\theta=0. Indeed,

Re(B(θ))=Re(λ1+iλ212πiθλ1+iλ2)λ1=|λ1+iλ2|2λ1Re(eiψ1+i(λ2λ12πθλ1))λ1,\mathrm{Re}(B(\theta))=\mathrm{Re}\left(\frac{\lambda_{1}+i\lambda_{2}}{1-\frac{2\pi i\theta}{\lambda_{1}+i\lambda_{2}}}\right)-\lambda_{1}=\frac{|\lambda_{1}+i\lambda_{2}|^{2}}{\lambda_{1}}\mathrm{Re}\left(\frac{e^{i\psi}}{1+i\left(\frac{\lambda_{2}}{\lambda_{1}}-\frac{2\pi\theta}{\lambda_{1}}\right)}\right)-\lambda_{1},

where λ1+iλ2=|λ1+iλ2|eiψ2\lambda_{1}+i\lambda_{2}=\left|\lambda_{1}+i\lambda_{2}\right|e^{i\frac{\psi}{2}} and ψ(π2,π2).\psi\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right). Lemma 2.12 applies to show

Re(B(θ))|λ1+iλ2|2λ1cos2(ψ2)λ1=λ12λ1λ1=0,\mathrm{Re}(B(\theta))\leq\frac{|\lambda_{1}+i\lambda_{2}|^{2}}{\lambda_{1}}\cos^{2}\left(\frac{\psi}{2}\right)-\lambda_{1}=\frac{\lambda_{1}^{2}}{\lambda_{1}}-\lambda_{1}=0,

with equality if and only if

Arg(1+i(λ2λ12πθλ1))=ψ2=Arg(λ1+iλ2),\mathrm{Arg}\left(1+i\left(\frac{\lambda_{2}}{\lambda_{1}}-\frac{2\pi\theta}{\lambda_{1}}\right)\right)=\frac{\psi}{2}=\mathrm{Arg}\left(\lambda_{1}+i\lambda_{2}\right),

thus if and only if θ=0,\theta=0, as claimed. Now by Theorem 2.6, we conclude that (4.3) is asymptotic to

λ1+iλ22πn34,\frac{\sqrt{\lambda_{1}+i\lambda_{2}}}{2\sqrt{\pi}n^{\frac{3}{4}}},

and overall

1h<k0(h,k)=1ζk0hnωh,k0(ζba)×θh,k0θh,k0′′exp(2λ1n+(λ1+iλ2)2λ1+iλ2n2πiθ+n(λ1+iλ2)2πinθ)𝑑θ\displaystyle\sum_{\begin{subarray}{c}1\leq h<k_{0}\\ (h,k)=1\end{subarray}}\zeta_{k_{0}}^{-hn}\omega_{h,k_{0}}\left(\zeta_{b}^{a}\right)\times\int_{-\theta_{h,k_{0}}^{\prime}}^{\theta_{h,k_{0}}^{\prime\prime}}\exp\left(-2\lambda_{1}\sqrt{n}+\frac{(\lambda_{1}+i\lambda_{2})^{2}}{\frac{\lambda_{1}+i\lambda_{2}}{\sqrt{n}}-2\pi i\theta}+\sqrt{n}(\lambda_{1}+i\lambda_{2})-2\pi in\theta\right)d\theta
λ1+iλ22πn34e2iλ2n1h<k0(h,k0)=1ζk0hnωh,k0(ζba).\displaystyle\hskip 113.81102pt\sim\frac{\sqrt{\lambda_{1}+i\lambda_{2}}}{2\sqrt{\pi}n^{\frac{3}{4}}}e^{2i\lambda_{2}\sqrt{n}}\sum_{\begin{subarray}{c}1\leq h<k_{0}\\ (h,k_{0})=1\end{subarray}}\zeta_{k_{0}}^{-hn}\omega_{h,k_{0}}\left(\zeta_{b}^{a}\right).

When the e2λ1ne^{2\lambda_{1}\sqrt{n}} is brought back to the right-hand side, this is the right-hand side of Theorem 3.17.

For kk0k\neq k_{0}, we follow Parry in Lemma 5.2 of [18] and write

Re(Li2(ζbak)k2tθ+ntθ)\displaystyle\mathrm{Re}\left(\frac{\mathrm{Li}_{2}\left(\zeta_{b}^{ak}\right)}{k^{2}t_{\theta}}+nt_{\theta}\right) =λ1n(|Li2(ζbak)|k2λ12Re(eiψk1+i(λ2λ12πθnλ1))+1),\displaystyle=\lambda_{1}\sqrt{n}\left(\frac{\left|\mathrm{Li}_{2}\left(\zeta_{b}^{ak}\right)\right|}{k^{2}\lambda_{1}^{2}}\mathrm{Re}\left(\frac{e^{i\psi_{k}}}{1+i\left(\frac{\lambda_{2}}{\lambda_{1}}-\frac{2\pi\theta\sqrt{n}}{\lambda_{1}}\right)}\right)+1\right),

where ψk\psi_{k} satisfies Li2(ζbak)=|Li2(ζbak)|eiψk.\mathrm{Li}_{2}(\zeta_{b}^{ak})=|\mathrm{Li}_{2}(\zeta_{b}^{ak})|e^{i\psi_{k}}. Arguing as for the major arcs, the expression Re()\mathrm{Re}(\cdot) above is at most cos2(ψk2)\cos^{2}\left(\frac{\psi_{k}}{2}\right). Now let

Δ:=infkk0(1(Re(Li2(ζbak)kλ1))2)>0.\Delta:=\inf_{k\neq k_{0}}\left(1-\left(\mathrm{Re}\left(\frac{\sqrt{\mathrm{Li}_{2}(\zeta_{b}^{ak})}}{k\lambda_{1}}\right)\right)^{2}\right)>0.

Then

Re(Li2(ζbak)k2tθ+ntθ)λ1n(|Li2(ζbak)|k2λ12cos2(ψk2)+1)λ1n(2Δ).\mathrm{Re}\left(\frac{\mathrm{Li}_{2}(\zeta_{b}^{ak})}{k^{2}t_{\theta}}+nt_{\theta}\right)\leq\lambda_{1}\sqrt{n}\left(\frac{\left|\mathrm{Li}_{2}\left(\zeta_{b}^{ak}\right)\right|}{k^{2}\lambda_{1}^{2}}\cos^{2}\left(\frac{\psi_{k}}{2}\right)+1\right)\leq\lambda_{1}\sqrt{n}(2-\Delta).

Thus,

|hkNkk0ζkhnθh,kθh,k′′exp(2λ1n+Li2(zk)k2tθ+ntθ+δO(n))𝑑θ|exp(λ1Δn+δO(n)).\displaystyle\left|\sum_{\begin{subarray}{c}\frac{h}{k}\in\mathcal{F}_{N}\\ k\neq k_{0}\end{subarray}}\zeta_{k}^{-hn}\int_{-\theta_{h,k}^{\prime}}^{\theta_{h,k}^{\prime\prime}}\exp\left(-2\lambda_{1}\sqrt{n}+\frac{\mathrm{Li}_{2}(z^{k})}{k^{2}t_{\theta}}+nt_{\theta}+\delta O(\sqrt{n})\right)d\theta\right|\leq\exp\left(-\lambda_{1}\Delta\sqrt{n}+\delta O\left(\sqrt{n}\right)\right).

We can choose δ\delta small enough so that the constant in the exponential is negative, and the minor arcs are exponentially smaller than the major arc(s). This completes the proof of cases (1), (2) and (3).

For case (4), we have λ1+iλ2=λ1=Li2(1)3=π36\lambda_{1}+i\lambda_{2}=\lambda_{1}=\frac{\sqrt{\mathrm{Li}_{2}(1)}}{3}=\frac{\pi}{3\sqrt{6}}. Exactly as in case (3) the minor arcs are those with k3k\neq 3, and these are shown to be exponentially smaller than for k0=3k_{0}=3. Thus, by Lemma 4.27 part (4), we have

e2λ1nQn(ζ3)\displaystyle e^{-2\lambda_{1}\sqrt{n}}Q_{n}(\zeta_{3}) =ζ3nC1,3θ1,3θ1,3′′tθ16exp(2λ1n+λ12tθ+ntθ+o(1))𝑑θ\displaystyle=\zeta_{3}^{-n}C_{1,3}\int_{-\theta_{1,3}^{\prime}}^{\theta_{1,3}^{\prime\prime}}t_{\theta}^{\frac{1}{6}}\exp\left(-2\lambda_{1}\sqrt{n}+\frac{\lambda_{1}^{2}}{t_{\theta}}+nt_{\theta}+o(1)\right)d\theta
+ζ32nC2,3θ2,3θ2,3′′tθ16exp(2λ1n+λ12tθ+ntθ+o(1))𝑑θ,\displaystyle\quad+\zeta^{-2n}_{3}C_{2,3}\int_{-\theta_{2,3}^{\prime}}^{\theta_{2,3}^{\prime\prime}}t_{\theta}^{-\frac{1}{6}}\exp\left(-2\lambda_{1}\sqrt{n}+\frac{\lambda_{1}^{2}}{t_{\theta}}+nt_{\theta}+o(1)\right)d\theta,

where

C1,3\displaystyle C_{1,3} :=(1ζ32)16(1ζ3)12Γ(23)3162π,C2,3\displaystyle:=\left(1-\zeta_{3}^{2}\right)^{-\frac{1}{6}}(1-\zeta_{3})^{\frac{1}{2}}\Gamma\left(\frac{2}{3}\right)\frac{3^{\frac{1}{6}}}{\sqrt{2\pi}},\hskip 28.45274ptC_{2,3} :=(1ζ32)16(1ζ3)12Γ(13)13162π.\displaystyle:=\left(1-\zeta_{3}^{2}\right)^{\frac{1}{6}}(1-\zeta_{3})^{\frac{1}{2}}\Gamma\left(\frac{1}{3}\right)\frac{1}{3^{\frac{1}{6}}\sqrt{2\pi}}.

Noting

tθ=π36n(16i6nθ),t_{\theta}=\frac{\pi}{3\sqrt{6n}}\left(1-6i\sqrt{6n}\theta\right),

we have

e2λ1nQn(ζ3)\displaystyle\begin{split}&e^{-2\lambda_{1}\sqrt{n}}Q_{n}(\zeta_{3})\end{split}
=ζ3nC1,3(π)16316(6n)112θ1,3θ1,3′′(16i6nθ)16exp(2λ1n+λ12tθ+ntθ+o(1))𝑑θ\displaystyle\begin{split}&=\zeta_{3}^{-n}C_{1,3}\frac{(\pi)^{\frac{1}{6}}}{3^{\frac{1}{6}}(6n)^{\frac{1}{12}}}\int_{-\theta_{1,3}^{\prime}}^{\theta_{1,3}^{\prime\prime}}\left(1-6i\sqrt{6n}\theta\right)^{\frac{1}{6}}\exp\left(-2\lambda_{1}\sqrt{n}+\frac{\lambda_{1}^{2}}{t_{\theta}}+nt_{\theta}+o(1)\right)d\theta\end{split}
+ζ32nC2,3316(6n)112(π)16θ2,3θ2,3′′(16i6nθ)16exp(2λ1n+λ12tθ+ntθ+o(1))𝑑θ.\displaystyle\begin{split}&+\zeta^{-2n}_{3}C_{2,3}\frac{3^{\frac{1}{6}}(6n)^{\frac{1}{12}}}{(\pi)^{\frac{1}{6}}}\int_{-\theta_{2,3}^{\prime}}^{\theta_{2,3}^{\prime\prime}}\left(1-6i\sqrt{6n}\theta\right)^{-\frac{1}{6}}\exp\left(-2\lambda_{1}\sqrt{n}+\frac{\lambda_{1}^{2}}{t_{\theta}}+nt_{\theta}+o(1)\right)d\theta.\end{split} (4.4)

Setting θθn12\theta\mapsto\theta n^{-\frac{1}{2}} and arguing as before, both integrals are asymptotic to

λ12πn34=1254334n34.\frac{\sqrt{\lambda_{1}}}{2\sqrt{\pi}n^{\frac{3}{4}}}=\frac{1}{2^{\frac{5}{4}}3^{\frac{3}{4}}n^{\frac{3}{4}}}.

Hence, the second term in (LABEL:e13majorarcsint2b) dominates, and gives the claimed asymptotic formula. ∎

5. Proof of Lemmas 4.27, 4.28, and 4.29

We prove Lemma 4.28 first then make use of these ideas in the proof of Lemma 4.27. We finish the section by proving Lemma 4.29.

5.1. Proof of Lemma 4.28

We rewrite Eh,kE_{h,k} as a sum of two functions: a function to which we can apply Euler–Maclaurin summation, and another to which we apply the tools in Proposition 2.10 and Lemma 2.14.

Lemma 5.30.

For Re(t)>0\mathrm{Re}(t)>0 and z=ζba,z=\zeta_{b}^{a}, we have

Eh,k(z,t)\displaystyle E_{h,k}(z,t) =1mbk1jkζbmaζkjmhkt0gj,k(t(bk2+km))+Log(j=1k(1ζbaζkjhejt)12+jk),\displaystyle=\sum_{\begin{subarray}{c}1\leq m\leq bk\\ 1\leq j\leq k\end{subarray}}\zeta_{b}^{ma}\zeta_{k}^{jmh}kt\sum_{\ell\geq 0}g_{j,k}\left(t(bk^{2}\ell+km)\right)+\mathrm{Log}\left(\prod_{j=1}^{k}\left(1-\zeta_{b}^{a}\zeta_{k}^{-jh}e^{-jt}\right)^{-\frac{1}{2}+\frac{j}{k}}\right), (5.1)

where

gj,k(w):=ejkww(1ew)1w2(12jk)ejkww.g_{j,k}(w):=\frac{e^{-\frac{j}{k}w}}{w(1-e^{-w})}-\frac{1}{w^{2}}-\left(\frac{1}{2}-\frac{j}{k}\right)\frac{e^{-\frac{j}{k}w}}{w}.
Proof.

In Eh,kE_{h,k}, we expand the logarithm using its Taylor series as

Log(ζbaζkhet;ζkhet)1\displaystyle\mathrm{Log}\left(\zeta_{b}^{a}\zeta_{k}^{h}e^{-t};\zeta_{k}^{h}e^{-t}\right)_{\infty}^{-1} =ν11ζbaζkνheνt=1jk1mbkν00ζbkm(ka+bjh)e(bk+m)(νk+j)tbk+m\displaystyle=\sum_{\begin{subarray}{c}\nu\geq 1\\ \ell\geq 1\end{subarray}}\frac{\zeta_{b}^{\ell a}\zeta_{k}^{\ell\nu h}e^{-\ell\nu t}}{\ell}=\sum_{\begin{subarray}{c}1\leq j\leq k\\ 1\leq m\leq bk\end{subarray}}\sum_{\begin{subarray}{c}\nu\geq 0\\ \ell\geq 0\end{subarray}}\frac{\zeta_{bk}^{m(ka+bjh)}e^{-(bk\ell+m)(\nu k+j)t}}{bk\ell+m}
=1jk1mbkζbmaζkmjh0ejt(bk+m)(bk+m)(1et(bk2+km)).\displaystyle=\sum_{\begin{subarray}{c}1\leq j\leq k\\ 1\leq m\leq bk\end{subarray}}\zeta_{b}^{ma}\zeta_{k}^{mjh}\sum_{\ell\geq 0}\frac{e^{-jt(bk\ell+m)}}{(bk\ell+m)(1-e^{-t(bk^{2}\ell+km)})}.

This corresponds to the left term in gj,k.g_{j,k}. For the middle term in gj,kg_{j,k}, we compute (using gcd(h,k)=1\gcd(h,k)=1)

1jk1mbkζbmaζkmjhkt01t2(bk2+km)2=k2t1mbkm0(modk)0ζbma1(bk2+mk)2=1tk2Li2(ζbka).\sum_{\begin{subarray}{c}1\leq j\leq k\\ 1\leq m\leq bk\end{subarray}}\zeta_{b}^{ma}\zeta_{k}^{mjh}kt\sum_{\ell\geq 0}\frac{1}{t^{2}(bk^{2}\ell+km)^{2}}=\frac{k^{2}}{t}\sum_{\begin{subarray}{c}1\leq m\leq bk\\ m\equiv 0\pmod{k}\end{subarray}}\sum_{\ell\geq 0}\zeta_{b}^{ma}\frac{1}{(bk^{2}\ell+mk)^{2}}=\frac{1}{tk^{2}}\mathrm{Li}_{2}\left(\zeta_{b}^{ka}\right).

Finally, it is simple to show that the logarithm of the product in (5.1) cancels with the sum of the right term in gj,kg_{j,k}, simply by expanding the logarithm into its Taylor series. ∎

We estimate the first term in (5.1) using Euler–Maclaurin summation. First we need a technical definition. Since gcd(h,k)=1\textnormal{gcd}(h,k)=1, there is at most one j0j_{0} in the sum in (5.1) for which ζbaζkj0h=1;\zeta_{b}^{a}\zeta_{k}^{j_{0}h}=1; i.e., such that ak+bj0h0(modbk).ak+bj_{0}h\equiv 0\pmod{bk}. Define

𝒮a,b:={(h,k)2:there exists j0[1,k] with ak+j0bh0(modbk)}.\mathcal{S}_{a,b}:=\{(h,k)\in\mathbb{N}^{2}:\text{there exists $j_{0}\in[1,k]$ with $ak+j_{0}bh\equiv 0\pmod{bk}$}\}.
Lemma 5.31.

Let j0j_{0} be as above. For knεk\leq n^{\varepsilon} and θh,kθθh,k′′-\theta_{h,k}^{\prime}\leq\theta\leq\theta_{h,k}^{\prime\prime}, we have

1mbk1jkζbmaζkjmhktθ0gj,k(tθ(bk2+km))\displaystyle\sum_{\begin{subarray}{c}1\leq m\leq bk\\ 1\leq j\leq k\end{subarray}}\zeta_{b}^{ma}\zeta_{k}^{jmh}kt_{\theta}\sum_{\ell\geq 0}g_{j,k}\left(t_{\theta}(bk^{2}\ell+km)\right)
=(log(Γ(j0k))+(12j0k)log(j0k)12log(2π))1(h,k)𝒮a,b+O(k3n)+O(k5n).\displaystyle=\left(\log\left(\Gamma\left(\frac{j_{0}}{k}\right)\right)+\left(\frac{1}{2}-\frac{j_{0}}{k}\right)\log\left(\frac{j_{0}}{k}\right)-\frac{1}{2}\log(2\pi)\right)1_{(h,k)\in\mathcal{S}_{a,b}}+O\left(\frac{k^{3}}{\sqrt{n}}\right)+O\left(\frac{k^{5}}{n}\right).
Proof.

Note that the function gj,k(w)g_{j,k}(w) is holomorphic at 0 and in any cone |Arg(w)|π2η.|\mathrm{Arg}(w)|\leq\frac{\pi}{2}-\eta. Also, θh,k,θh,k′′1kN=O(1n)\theta_{h,k}^{\prime},\theta_{h,k}^{\prime\prime}\leq\frac{1}{kN}=O\left(\frac{1}{\sqrt{n}}\right) implies that tθt_{\theta} lies in such a fixed cone (see also [1] on p. 75). Thus, we can apply Theorem 2.8 to gj,d(z)g_{j,d}(z) with wtθbk2w\mapsto t_{\theta}bk^{2}, ambk,a\mapsto\frac{m}{bk}, and N0N\mapsto 0,

0gj,k(tθbk2(+mbk))\displaystyle\sum_{\ell\geq 0}g_{j,k}\left(t_{\theta}bk^{2}\left(\ell+\frac{m}{bk}\right)\right) =1tθbk20gj,k(w)𝑑w(112j22k2)(12mbk)+O(k2n).\displaystyle=\frac{1}{t_{\theta}bk^{2}}\int_{0}^{\infty}g_{j,k}(w)dw-\left(\frac{1}{12}-\frac{j^{2}}{2k^{2}}\right)\left(\frac{1}{2}-\frac{m}{bk}\right)+O\left(\frac{k^{2}}{\sqrt{n}}\right).

When summing the OO-term, we get

1mbk1jkktθO(k2n)=O(k5n),\sum_{\begin{subarray}{c}1\leq m\leq bk\\ 1\leq j\leq k\end{subarray}}kt_{\theta}O\left(\frac{k^{2}}{\sqrt{n}}\right)=O\left(\frac{k^{5}}{n}\right),

where we used the fact that tθt_{\theta} lies in a cone. Summing first over mm gives

1mbkζbmaζkjmh(112j22k2)(12mbk)=O(k).\sum_{1\leq m\leq bk}\zeta_{b}^{ma}\zeta_{k}^{jmh}\left(\frac{1}{12}-\frac{j^{2}}{2k^{2}}\right)\left(\frac{1}{2}-\frac{m}{bk}\right)=O\left(k\right).

Hence,

1mbk1jkζbmaζkjmhktθ0gj,k(tθ(bk2+km))\displaystyle\sum_{\begin{subarray}{c}1\leq m\leq bk\\ 1\leq j\leq k\end{subarray}}\zeta_{b}^{ma}\zeta_{k}^{jmh}kt_{\theta}\sum_{\ell\geq 0}g_{j,k}\left(t_{\theta}(bk^{2}\ell+km)\right)
=(0gj0,k(w)𝑑w)1(h,k)𝒮a,b+O(k3n)+O(k2n)+O(k5n)\displaystyle=\left(\int_{0}^{\infty}g_{j_{0},k}(w)dw\right)1_{(h,k)\in\mathcal{S}_{a,b}}+O\left(\frac{k^{3}}{\sqrt{n}}\right)+O\left(\frac{k^{2}}{\sqrt{n}}\right)+O\left(\frac{k^{5}}{n}\right)
=(logΓ(j0k)+(12j0k)log(j0k)12log(2π))1(h,k)𝒮a,b+O(k3n)+O(k5n),\displaystyle=\left(\log\Gamma\left(\frac{j_{0}}{k}\right)+\left(\frac{1}{2}-\frac{j_{0}}{k}\right)\log\left(\frac{j_{0}}{k}\right)-\frac{1}{2}\log(2\pi)\right)1_{(h,k)\in\mathcal{S}_{a,b}}+O\left(\frac{k^{3}}{\sqrt{n}}\right)+O\left(\frac{k^{5}}{n}\right),

where the last step follows by by Lemma 2.9. If ε<14,\varepsilon<\frac{1}{4}, then the terms O(k3n)O\left(\frac{k^{3}}{\sqrt{n}}\right) and O(k5n)O\left(\frac{k^{5}}{n}\right) are smaller than n\sqrt{n} as needed since N=O(δn)N=O(\delta\sqrt{n}) where δ\delta is chosen small and independently of nn. ∎

It remains to estimate the product term in (5.2).

Lemma 5.32.

Uniformly for knεk\leq n^{\varepsilon} and θh,kθθh,k′′-\theta_{h,k}\leq\theta\leq\theta_{h,k}^{\prime\prime}, we have

Log(j=1k(1ζbaζkjhejtθ)12+jk)=O(nε).\mathrm{Log}\left(\prod_{j=1}^{k}\left(1-\zeta_{b}^{a}\zeta_{k}^{-jh}e^{-jt_{\theta}}\right)^{-\frac{1}{2}+\frac{j}{k}}\right)=O\left(n^{\varepsilon}\right).
Proof.

Recall the sums GmG_{m} defined in Lemma 2.14. Using the Taylor expansion for the logarithm followed by Proposition 2.10, we write

|Log(j=1k(1ζbaζkjhejtθ)12+jk)|\displaystyle\left|\mathrm{Log}\left(\prod_{j=1}^{k}\left(1-\zeta_{b}^{a}\zeta_{k}^{-jh}e^{-jt_{\theta}}\right)^{-\frac{1}{2}+\frac{j}{k}}\right)\right| =|j=1k(12jk)m1ζbkm(ak+bjh)mejmtθ|\displaystyle=\left|\sum_{j=1}^{k}\left(\frac{1}{2}-\frac{j}{k}\right)\sum_{m\geq 1}\frac{\zeta_{bk}^{m(ak+bjh)}}{m}e^{-jmt_{\theta}}\right|
=|j=1k(12jk)(1ejtθ)m1Gm(ak+bhjbk)emjtθ|.\displaystyle=\left|\sum_{j=1}^{k}\left(\frac{1}{2}-\frac{j}{k}\right)(1-e^{-jt_{\theta}})\sum_{m\geq 1}G_{m}\left(\frac{ak+bhj}{bk}\right)e^{-mjt_{\theta}}\right|.

It is elementary to show that at most one of {ak+bjh}1jk\{ak+bjh\}_{1\leq j\leq k} is divisible by bkbk. Suppose that this happens at j0j_{0} (if it never happens, then the argument is similar). Then Gm(ak+bhj0bk)=HmG_{m}\left(\frac{ak+bhj_{0}}{bk}\right)=H_{m}, the mm-th harmonic number. Applying the formula m1Hmxm=log(1x)1x\sum_{m\geq 1}H_{m}x^{m}=\frac{-\log(1-x)}{1-x}, the above is

|1ej0tθ|m1Hmemj0Re(tθ)+1jkjj0|1ejtθ|maxm1|Gm(ab+hjk)|m1emjRe(tθ)\displaystyle\ll\left|1-e^{-j_{0}t_{\theta}}\right|\sum_{m\geq 1}H_{m}e^{-mj_{0}\mathrm{Re}(t_{\theta})}+\sum_{\begin{subarray}{c}1\leq j\leq k\\ j\neq j_{0}\end{subarray}}\left|1-e^{-jt_{\theta}}\right|\max_{m\geq 1}\left|G_{m}\left(\frac{a}{b}+\frac{hj}{k}\right)\right|\sum_{m\geq 1}e^{-mj\mathrm{Re}(t_{\theta})}
|log(1ej0tθ)||1ej0tθ|1ej0Re(tθ)+1jkjj0|1ejtθ|1ejRe(tθ)maxm1|Gm(ab+hjk)|.\displaystyle\ll\left|\log\left(1-e^{-j_{0}t_{\theta}}\right)\right|\frac{|1-e^{-j_{0}t_{\theta}}|}{1-e^{-j_{0}\mathrm{Re}(t_{\theta})}}+\sum_{\begin{subarray}{c}1\leq j\leq k\\ j\neq j_{0}\end{subarray}}\frac{\left|1-e^{-jt_{\theta}}\right|}{1-e^{-j\mathrm{Re}(t_{\theta})}}\max_{m\geq 1}\left|G_{m}\left(\frac{a}{b}+\frac{hj}{k}\right)\right|.

The fact that tθt_{\theta} lies in a cone |Arg(tθ)|π2η|\mathrm{Arg}(t_{\theta})|\leq\frac{\pi}{2}-\eta with jknε<nj\leq k\leq n^{\varepsilon}<\sqrt{n} gives

|1ejtθ|1ejRe(tθ)=O(|tθ|Re(tθ))=O(1).\frac{\left|1-e^{-jt_{\theta}}\right|}{1-e^{-j\mathrm{Re}(t_{\theta})}}=O\left(\frac{|t_{\theta}|}{\mathrm{Re}(t_{\theta})}\right)=O(1).

Thus, using Lemma 2.15

|Log(j=1k(1ζbaζkjhejtθ)12+jk)|\displaystyle\left|\mathrm{Log}\left(\prod_{j=1}^{k}\left(1-\zeta_{b}^{a}\zeta_{k}^{-jh}e^{-jt_{\theta}}\right)^{-\frac{1}{2}+\frac{j}{k}}\right)\right| =O(log(n))+O(1jkjj0maxm1|Gm(ab+hjk)|)\displaystyle=O(\log(n))+O\left(\sum_{\begin{subarray}{c}1\leq j\leq k\\ j\neq j_{0}\end{subarray}}\max_{m\geq 1}\left|G_{m}\left(\frac{a}{b}+\frac{hj}{k}\right)\right|\right)
=O(log(n))+O(k)=O(nε),\displaystyle=O(\log(n))+O(k)=O(n^{\varepsilon}),

as claimed. ∎

Lemma 4.28 now follows from Lemmas 5.30, 5.31 and 5.32 by recalling that knεk\leq n^{\varepsilon} where 0<ε140<\varepsilon\leq\frac{1}{4}:

Eh,k(ζba,tθ)\displaystyle E_{h,k}(\zeta^{a}_{b},t_{\theta}) =(log(Γ(j0k))+(12j0k)log(j0k)12log(2π))1(h,k)𝒮a,b\displaystyle=\left(\log\left(\Gamma\left(\frac{j_{0}}{k}\right)\right)+\left(\frac{1}{2}-\frac{j_{0}}{k}\right)\log\left(\frac{j_{0}}{k}\right)-\frac{1}{2}\log(2\pi)\right)1_{(h,k)\in\mathcal{S}_{a,b}}
+O(k3n)+O(k5n)+O(nε)\displaystyle\hskip 14.22636pt+O\left(\frac{k^{3}}{\sqrt{n}}\right)+O\left(\frac{k^{5}}{n}\right)+O\left(n^{\varepsilon}\right)
log(n)+n3ε12+nε=O(n3ε12)+O(nε).\displaystyle\ll\log(n)+n^{3\varepsilon-\frac{1}{2}}+n^{\varepsilon}=O\left(n^{3\varepsilon-\frac{1}{2}}\right)+O\left(n^{\varepsilon}\right).

5.2. Proof of Lemma 4.27

To prove Lemma 4.27, we need an elementary fact about the sets 𝒮a,b\mathcal{S}_{a,b}.

Lemma 5.33.

Let 1a<b21\leq a<\frac{b}{2} with gcd(a,b)=1\gcd(a,b)=1 and b3b\geq 3. Then (1,1)𝒮a,b(1,1)\not\in\mathcal{S}_{a,b}, (h,2)𝒮a,b(h,2)\not\in\mathcal{S}_{a,b}, and (h,3)𝒮a,b(h,3)\in\mathcal{S}_{a,b} if and only if (a,b)=(1,3)(a,b)=(1,3).

Proof.

We prove the case (h,k)=(h,2)(h,k)=(h,2) and note that the remaining cases are analogous. We have that (h,2)Sa,b(h,2)\in S_{a,b} if and only if 2b2b divides 2a+b2a+b or 2a+2b2a+2b. Clearly, 2b(2a+2b)2b\nmid(2a+2b), and since 2a+b<3b<2(2b)2a+b<3b<2\cdot(2b),

2b(2a+b)2a+b=2b2a=b(a,b)=(1,2),2b\mid(2a+b)\iff 2a+b=2b\iff 2a=b\iff(a,b)=(1,2),

which is a contradiction. ∎

Proof of Lemma 4.27.

Cases (1), (2) and (3) are simple consequences of Lemmas 5.30 and 5.31 and 5.33. For case (4), we suppose ζ=ζ3\zeta=\zeta_{3}. Then one finds j0(1,3,1,3)=2j_{0}(1,3,1,3)=2 and Lemmas 5.30 and 5.31 imply

E1,3(ζ3,tθ)\displaystyle E_{1,3}(\zeta_{3},t_{\theta}) =Log(j=13(1ζ3ζ3jejtθ)12+j3)+log(Γ(23))16log(23)12log(2π)+o(1)\displaystyle=\mathrm{Log}\left(\prod_{j=1}^{3}\left(1-\zeta_{3}\zeta_{3}^{j}e^{-jt_{\theta}}\right)^{-\frac{1}{2}+\frac{j}{3}}\right)+\log\left(\Gamma\left(\frac{2}{3}\right)\right)-\frac{1}{6}\log\left(\frac{2}{3}\right)-\frac{1}{2}\log(2\pi)+o(1)
=Log(tθ16)+Log((1ζ3)12(1ζ32)16)+log(Γ(13))+16log(3)12log(2π)+o(1),\displaystyle=\mathrm{Log}\left(t_{\theta}^{\frac{1}{6}}\right)+\mathrm{Log}\left(\frac{(1-\zeta_{3})^{\frac{1}{2}}}{(1-\zeta_{3}^{2})^{\frac{1}{6}}}\right)+\log\left(\Gamma\left(\frac{1}{3}\right)\right)+\frac{1}{6}\log\left(3\right)-\frac{1}{2}\log(2\pi)+o(1),

as claimed, whereas j0(1,3,2,3)=1j_{0}(1,3,2,3)=1, and so

E2,3(ζba,tθ)=logj=13(1ζ3ζ32jejtθ)12+j3+logΓ(13)+16log(13)12log(2π)+o(1)\displaystyle E_{2,3}(\zeta_{b}^{a},t_{\theta})=\log\prod_{j=1}^{3}\left(1-\zeta_{3}\zeta_{3}^{2j}e^{-jt_{\theta}}\right)^{-\frac{1}{2}+\frac{j}{3}}+\log\Gamma\left(\frac{1}{3}\right)+\frac{1}{6}\log\left(\frac{1}{3}\right)-\frac{1}{2}\log(2\pi)+o(1)
=log(tθ16)+log((1ζ32)16(1ζ3)12)+logΓ(13)+16log(13)12log(2π)+o(1),\displaystyle=\log\left(t_{\theta}^{-\frac{1}{6}}\right)+\log\left(\left(1-\zeta_{3}^{2}\right)^{\frac{1}{6}}(1-\zeta_{3})^{\frac{1}{2}}\right)+\log\Gamma\left(\frac{1}{3}\right)+\frac{1}{6}\log\left(\frac{1}{3}\right)-\frac{1}{2}\log(2\pi)+o(1),

as claimed. ∎

5.3. Proof of Lemma 4.29

In preparation for the proof of Lemma 4.29, we rewrite Eh,kE_{h,k} as in Lemma 5.30, this time using only the first two terms of gj,kg_{j,k}. The proof is analogous.

Lemma 5.34.

For Re(t)>0\mathrm{Re}(t)>0 and z=ζba,z=\zeta_{b}^{a}, we have

Eh,k(z,t)=1mbk1jkζbmaζkjmhkt0g~j,k(t(bk2+km)),E_{h,k}(z,t)=\sum_{\begin{subarray}{c}1\leq m\leq bk\\ 1\leq j\leq k\end{subarray}}\zeta_{b}^{ma}\zeta_{k}^{jmh}kt\sum_{\ell\geq 0}\widetilde{g}_{j,k}\left(t\left(bk^{2}\ell+km\right)\right), (5.2)

where

g~j,k(w):=ejkww(1ew)1w2.\widetilde{g}_{j,k}(w):=\frac{e^{-\frac{j}{k}w}}{w(1-e^{-w})}-\frac{1}{w^{2}}.

We will need to estimate the sum in (5.2) separately for 1\ell\geq 1 and =0.\ell=0. For 1\ell\geq 1, we can first compute the sum on jj as

1jkζkjmhg~j,k(z)=ζkmhezkz(1ζkmhezk)kz21km.\sum_{1\leq j\leq k}\zeta_{k}^{jmh}\widetilde{g}_{j,k}(z)=\frac{\zeta_{k}^{mh}e^{-\frac{z}{k}}}{z(1-\zeta_{k}^{mh}e^{-\frac{z}{k}})}-\frac{k}{z^{2}}\cdot 1_{k\mid m}.

Thus, writing m=νkm=\nu k with 1νb1\leq\nu\leq b when kmk\mid m, we have

1mbk1jkζbmaζkjmhkt1g~j,k(t(bk2+km))\displaystyle\sum_{\begin{subarray}{c}1\leq m\leq bk\\ 1\leq j\leq k\end{subarray}}\zeta_{b}^{ma}\zeta_{k}^{jmh}kt\sum_{\ell\geq 1}\widetilde{g}_{j,k}\left(t(bk^{2}\ell+km)\right)
=tν=1bζbνka1f1(bkt(+νb))+t1mbkkmζbma1f2(bkt(+mbk))=:S1+S2,\displaystyle=t\sum_{\nu=1}^{b}\zeta_{b}^{\nu ka}\sum_{\ell\geq 1}f_{1}\left(bkt\left(\ell+\frac{\nu}{b}\right)\right)+t\sum_{\begin{subarray}{c}1\leq m\leq bk\\ k\nmid m\end{subarray}}\zeta_{b}^{ma}\sum_{\ell\geq 1}f_{2}\left(bkt\left(\ell+\frac{m}{bk}\right)\right)=:S_{1}+S_{2},

say, where

f1(z):=ezz(1ez)1z2f_{1}(z):=\frac{e^{-z}}{z(1-e^{-z})}-\frac{1}{z^{2}}

and

f2(z):=ζkmhezz(1ζkmhez).f_{2}(z):=\frac{\zeta_{k}^{mh}e^{-z}}{z(1-\zeta_{k}^{mh}e^{-z})}.
Lemma 5.35.

For knεk\geq n^{\varepsilon}, θh,kθθh,k′′-\theta_{h,k}^{\prime}\leq\theta\leq\theta_{h,k}^{\prime\prime} and ttθt\mapsto t_{\theta}, we have |S1|=O(log(n))|S_{1}|=O\left(\log(n)\right).

Proof.

We use Theorem 2.7 (with NN\to\infty) to write

1f1(bktθ(+νb))\displaystyle\sum_{\ell\geq 1}f_{1}\left(bkt_{\theta}\left(\ell+\frac{\nu}{b}\right)\right) =f1(bktθ(1+νb))2+1f1(bktθ(x+νb))𝑑x\displaystyle=\frac{f_{1}\left(bkt_{\theta}\left(1+\frac{\nu}{b}\right)\right)}{2}+\int_{1}^{\infty}f_{1}\left(bkt_{\theta}\left(x+\frac{\nu}{b}\right)\right)dx
+bktθ1f1(bktθ(x+νb))({x}12)𝑑x\displaystyle\quad+bkt_{\theta}\int_{1}^{\infty}f_{1}^{\prime}\left(bkt_{\theta}\left(x+\frac{\nu}{b}\right)\right)\left(\{x\}-\frac{1}{2}\right)dx
=f1(ktθ(b+ν))2+1bktθktθ(b+ν)f1(z)𝑑z\displaystyle=\frac{f_{1}\left(kt_{\theta}\left(b+\nu\right)\right)}{2}+\frac{1}{bkt_{\theta}}\int_{kt_{\theta}(b+\nu)}^{\infty}f_{1}\left(z\right)dz
+ktθ(b+ν)f1(z)({zνbbktθ}12)𝑑z.\displaystyle\quad+\int_{kt_{\theta}(b+\nu)}^{\infty}f_{1}^{\prime}\left(z\right)\left(\left\{\frac{z-\frac{\nu}{b}}{bkt_{\theta}}\right\}-\frac{1}{2}\right)dz.

Here, f1(z)1zf_{1}(z)\ll\frac{1}{z} as z0,z\to 0, thus

f1(ktθ(b+ν))=O(1k|tθ|).f_{1}\left(kt_{\theta}(b+\nu)\right)=O\left(\frac{1}{k|t_{\theta}|}\right).

Furthermore tc|t|tf1(z)𝑑z=O(1)\int_{t\cdot\frac{c}{|t|}}^{t\infty}f_{1}(z)dz=O(1) for |Arg(t)|π2η,|\mathrm{Arg}(t)|\leq\frac{\pi}{2}-\eta, uniformly for any η,c>0.\eta,c>0. As noted before, tθt_{\theta} lies in such a cone, so

1bktθktθ(b+ν)f1(z)𝑑z=O(1k|tθ|ktθ(b+ν)tθ2b|tθ|1z𝑑z)=O(|log(ktθ)|k|tθ|).\frac{1}{bkt_{\theta}}\int_{kt_{\theta}(b+\nu)}^{\infty}f_{1}\left(z\right)dz=O\left(\frac{1}{k|t_{\theta}|}\int_{kt_{\theta}(b+\nu)}^{t_{\theta}\frac{2b}{|t_{\theta}|}}\frac{1}{z}dz\right)=O\left(\frac{|\log(kt_{\theta})|}{k|t_{\theta}|}\right).

Similarly, one has

f1(z)=ezz(1ez)ezz2(1ez)e2zz(1ez)2+2z3,f_{1}^{\prime}(z)=-\frac{e^{-z}}{z(1-e^{-z})}-\frac{e^{-z}}{z^{2}(1-e^{-z})}-\frac{e^{-2z}}{z(1-e^{-z})^{2}}+\frac{2}{z^{3}},

so tc|t|tf1(z)𝑑z=O(1)\int_{t\cdot\frac{c}{|t|}}^{t\infty}f^{\prime}_{1}(z)dz=O(1) for |Arg(t)|π2η,|\mathrm{Arg}(t)|\leq\frac{\pi}{2}-\eta, for any η,c>0.\eta,c>0. And one has f1(z)1z2f_{1}^{\prime}(z)\ll\frac{1}{z^{2}} as z0,z\to 0, thus

ktθ(b+ν)f1(z)({zνbbktθ}12)𝑑z\displaystyle\int_{kt_{\theta}(b+\nu)}^{\infty}f_{1}^{\prime}\left(z\right)\left(\left\{\frac{z-\frac{\nu}{b}}{bkt_{\theta}}\right\}-\frac{1}{2}\right)dz =O(ktθ(b+ν)tθ2b|tθ|1z2𝑑z)=O(1k|tθ|).\displaystyle=O\left(\int_{kt_{\theta}(b+\nu)}^{t_{\theta}\frac{2b}{|t_{\theta}|}}\frac{1}{z^{2}}dz\right)=O\left(\frac{1}{k|t_{\theta}|}\right).

The above bounds are all clearly uniform in 1νb1\leq\nu\leq b, thus overall

|S1|=1mbkkm|tθ|O(|logktθ|k|tθ|)=O(|log(ktθ)|)=O(logn),|S_{1}|=\sum_{\begin{subarray}{c}1\leq m\leq bk\\ k\nmid m\end{subarray}}|t_{\theta}|O\left(\frac{|\log kt_{\theta}|}{k|t_{\theta}|}\right)=O\left(|\log(kt_{\theta})|\right)=O(\log n),

as claimed. ∎

Lemma 5.36.

For knεk\geq n^{\varepsilon}, θh,kθθh,k′′-\theta_{h,k}^{\prime}\leq\theta\leq\theta_{h,k}^{\prime\prime} and ttθt\mapsto t_{\theta}, we have |S2|=O(n12ε)|S_{2}|=O\left(n^{\frac{1}{2}-\varepsilon}\right).

Proof.

For Re(z)>0\mathrm{Re}(z)>0, we see immediately that

|f2(z)|eRe(z)Re(z)(1eRe(z))=:f2~(Re(z)).|f_{2}(z)|\leq\frac{e^{-\mathrm{Re}(z)}}{\mathrm{Re}(z)(1-e^{-\mathrm{Re}(z)})}=:\tilde{f_{2}}(\mathrm{Re}(z)).

Thus, since f2~\tilde{f_{2}} is decreasing, we have

|S2||tθ|bk1f2~(bkRe(tθ))|tθ|Re(tθ)(bkRe(tθ)f2~(x)𝑑x+bkRe(tθ)f2~(bkRe(tθ))),|S_{2}|\leq|t_{\theta}|bk\sum_{\ell\geq 1}\tilde{f_{2}}\left(bk\mathrm{Re}(t_{\theta})\ell\right)\leq\frac{|t_{\theta}|}{\mathrm{Re}(t_{\theta})}\left(\int_{bk\mathrm{Re}(t_{\theta})}^{\infty}\tilde{f_{2}}(x)dx+bk\mathrm{Re}(t_{\theta})\tilde{f_{2}}(bk\mathrm{Re}(t_{\theta}))\right),

by integral comparison. We can bound the right term as

bkRe(tθ)f2~(bkRe(tθ))=1ebkRe(tθ)11bkRe(tθ).bk\mathrm{Re}(t_{\theta})\tilde{f_{2}}(bk\mathrm{Re}(t_{\theta}))=\frac{1}{e^{bk\mathrm{Re}(t_{\theta})}-1}\leq\frac{1}{bk\mathrm{Re}(t_{\theta})}.

Furthermore, as η0+\eta\to 0^{+}, we have

ηf2~(x)𝑑x=O(1)+η1exx(1ex)𝑑xO(1)+η11x2𝑑x=O(1η).\int_{\eta}^{\infty}\tilde{f_{2}}(x)dx=O(1)+\int_{\eta}^{1}\frac{e^{-x}}{x(1-e^{-x})}dx\leq O(1)+\int_{\eta}^{1}\frac{1}{x^{2}}dx=O\left(\frac{1}{\eta}\right).

Hence, overall,

|S2|=O(1kRe(tθ))=O(nk)=O(n12ε),|S_{2}|=O\left(\frac{1}{k\mathrm{Re}(t_{\theta})}\right)=O\left(\frac{\sqrt{n}}{k}\right)=O\left(n^{\frac{1}{2}-\varepsilon}\right),

as claimed. ∎

It remains to estimate the double sum (5.2) for the term =0;\ell=0; i.e.,

1mbk1jkζbmaζkjmhϕjk(tkm)m,\sum_{\begin{subarray}{c}1\leq m\leq bk\\ 1\leq j\leq k\end{subarray}}\zeta_{b}^{ma}\zeta_{k}^{jmh}\frac{\phi_{\frac{j}{k}}(tkm)}{m},

where

ϕa(w):=eaw1ew1w.\displaystyle\phi_{a}(w):=\frac{e^{-aw}}{1-e^{-w}}-\frac{1}{w}.

Note that ϕa\phi_{a} is holomorphic at 0 and in the cone |Arg(w)|π2η,|\mathrm{Arg}(w)|\leq\frac{\pi}{2}-\eta, for any η>0.\eta>0. We apply Lemma 5.37 to ϕa\phi_{a} to bound differences as follows.

Lemma 5.37.

Let xx be a complex number with positive imaginary part and |x|1|x|\leq 1. Then there is a constant c>0c>0 independent from aa and xx, such that for all m1|x|m\leq\frac{1}{|x|} we have

|ϕa(xm)ϕa(x(m+1))|c|x|.\displaystyle\left|\phi_{a}(xm)-\phi_{a}(x(m+1))\right|\leq c|x|.
Proof.

The function ϕa(z)\phi_{a}(z) is holomorphic in B3(0)B_{3}(0). The functions ϕa(z)\phi_{a}^{\prime}(z) are uniformly bounded on B52(0)¯B3(0)\overline{B_{\frac{5}{2}}(0)}\subset B_{3}(0). Indeed, we have uniformly in aa

max|z|52|ϕa(z)|=max|z|=52|ϕa(z)|max|z|=52|eazz(1ez)2|+max|z|=52|aeaz1ez|+max|z|=52|1z2|1.\displaystyle\max_{|z|\leq\frac{5}{2}}|\phi^{\prime}_{a}(z)|=\max_{|z|=\frac{5}{2}}|\phi^{\prime}_{a}(z)|\leq\max_{|z|=\frac{5}{2}}\left|\frac{e^{-az-z}}{(1-e^{-z})^{2}}\right|+\max_{|z|=\frac{5}{2}}\left|\frac{ae^{-az}}{1-e^{-z}}\right|+\max_{|z|=\frac{5}{2}}\left|\frac{1}{z^{2}}\right|\ll 1.

On the other hand, by Lemma 2.11 applied to f=ϕaf=\phi_{a}, U=B3(0)U=B_{3}(0), and B52(0)¯U\overline{B_{\frac{5}{2}}(0)}\subset U, we find, since |xm|1|xm|\leq 1 and |x(m+1)||mx|+|x|2|x(m+1)|\leq|mx|+|x|\leq 2

|ϕa(xm+x)ϕa(mx)|max|z|52|ϕa(z)||xm+xxm|=c|x|,\displaystyle|\phi_{a}(xm+x)-\phi_{a}(mx)|\leq\max_{|z|\leq\frac{5}{2}}|\phi^{\prime}_{a}(z)||xm+x-xm|=c|x|,

where cc does not depend on 0<a10<a\leq 1. ∎

We also require the following lemma for large values of mm, whose proof is a straightforward calculation using that the denominators of the first term in ϕa(w)\phi_{a}(w) are bounded away from 0.

Lemma 5.38.

Let xx be a complex number with positive imaginary part. Then all m>1|x|m>\frac{1}{|x|} we have

|ϕa(xm)ϕa(x(m+1))|1|x|m(m+1)+|x|emRe(x)+a|x|eamRe(x).\displaystyle\left|\phi_{a}(xm)-\phi_{a}(x(m+1))\right|\ll\frac{1}{|x|m(m+1)}+|x|e^{-m\mathrm{Re}(x)}+a|x|e^{-am\mathrm{Re}(x)}.

The following lemma, when combined with Lemmas 5.345.36, completes the proof of Lemma 4.29, and thus that of Theorem 3.17.

Lemma 5.39.

For nεkNn^{\varepsilon}\leq k\leq N and θh,kθθh,k′′-\theta_{h,k}^{\prime}\leq\theta\leq\theta_{h,k}^{\prime\prime}, we have

1mbk1jkζbmaζkjmhϕjk(tθkm)m=O(k).\sum_{\begin{subarray}{c}1\leq m\leq bk\\ 1\leq j\leq k\end{subarray}}\zeta_{b}^{ma}\zeta_{k}^{jmh}\frac{\phi_{\frac{j}{k}}(t_{\theta}km)}{m}=O(k).
Proof.

Let x:=ktθx:=kt_{\theta} and a:=jka:=\frac{j}{k}. Note that we have 0<a10<a\leq 1, Re(x)>0\mathrm{Re}(x)>0, and |x|Re(x)1\frac{|x|}{\mathrm{Re}(x)}\ll 1 uniformly in kk. We use Abel partial summation and split the sum into two parts:

1mbk1jk=j=1k(0<mmin{bk,1|x|}+min{bk,1|x|}<mbk).\displaystyle\sum_{\begin{subarray}{c}1\leq m\leq bk\\ 1\leq j\leq k\end{subarray}}=\sum_{j=1}^{k}\left(\sum_{0<m\leq\min\left\{bk,\frac{1}{|x|}\right\}}+\sum_{\min\left\{bk,\frac{1}{|x|}\right\}<m\leq bk}\right).

In the case |x|>1|x|>1, the first sum is empty, so we can assume |x|1|x|\leq 1. We first find with Proposition 2.10 that

mmin{bk,1|x|}ζbkm(ak+hjb)1mϕa(xm)\displaystyle\sum_{m\leq\min\left\{bk,\frac{1}{|x|}\right\}}\zeta_{bk}^{m(ak+hjb)}\frac{1}{m}\phi_{a}(xm) =Gmin{bk,1|x|}(ab+hjk)ϕa(xmin{bk,1|x|})\displaystyle=G_{\min\left\{bk,\frac{1}{|x|}\right\}}\left(\frac{a}{b}+\frac{hj}{k}\right)\phi_{a}\left(x\min\left\{bk,\Big{\lfloor}\frac{1}{|x|}\Big{\rfloor}\right\}\right)
+mmin{bk,1|x|}1Gm(ab+hjk)(ϕa(mx)ϕa((m+1)x)).\displaystyle+\sum_{m\leq\min\left\{bk,\frac{1}{|x|}\right\}-1}G_{m}\left(\frac{a}{b}+\frac{hj}{k}\right)\left(\phi_{a}(mx)-\phi_{a}((m+1)x)\right).

It follows that with Lemma 5.37

|j=1kmmin{bk,1|x|}ζbmaζkmhj1mϕa(mx)|j=1k|Gmin{bk,1|x|}(ab+hjk)||ϕa(xmin{bk,1|x|})|\displaystyle\left|\sum_{j=1}^{k}\sum_{m\leq\min\left\{bk,\frac{1}{|x|}\right\}}\zeta_{b}^{ma}\zeta_{k}^{mhj}\cdot\frac{1}{m}\phi_{a}(mx)\right|\leq\sum_{j=1}^{k}\left|G_{\min\left\{bk,\frac{1}{|x|}\right\}}\left(\frac{a}{b}+\frac{hj}{k}\right)\right|\left|\phi_{a}\left(x\min\left\{bk,\Big{\lfloor}\frac{1}{|x|}\Big{\rfloor}\right\}\right)\right|
+|j=1k0<mmin{bk,1|x|}Gm(ab+hjk)(ϕa(mx)ϕa((m+1)x))|\displaystyle\hskip 85.35826pt+\left|\sum_{j=1}^{k}\sum_{0<m\leq\min\left\{bk,\frac{1}{|x|}\right\}}G_{m}\left(\frac{a}{b}+\frac{hj}{k}\right)\left(\phi_{a}(mx)-\phi_{a}((m+1)x)\right)\right|
j=1k|Gmin{bk,1|x|}(ab+hjk)|+j=1kmaxm=1,,min{bk,1|x|}|Gm(ab+hjk)|0<m1|x||x|=O(k),\displaystyle\ll\sum_{j=1}^{k}\left|G_{\min\left\{bk,\frac{1}{|x|}\right\}}\left(\frac{a}{b}+\frac{hj}{k}\right)\right|+\sum_{j=1}^{k}\max_{m=1,...,\min\left\{bk,\frac{1}{|x|}\right\}}\left|G_{m}\left(\frac{a}{b}+\frac{hj}{k}\right)\right|\sum_{0<m\leq\frac{1}{|x|}}|x|=O(k),

where we used Lemma 2.15 and Gbk(1)=Hbk=O(log(k))G_{bk}(1)=H_{bk}=O(\log(k)) in the last step. Similarly, we find with Lemma 5.38 (without loss of generality we assume 1|x|<bk\frac{1}{|x|}<bk)

|j=1k1|x|<mbkζbmaζkmhj1mϕa(mx)|\displaystyle\left|\sum_{j=1}^{k}\sum_{\frac{1}{|x|}<m\leq bk}\zeta_{b}^{ma}\zeta_{k}^{mhj}\cdot\frac{1}{m}\phi_{a}(mx)\right|
j=1k|Gbk(ab+hjk)||ϕa(xbk)|+|j=1k1|x|<mbkGm(ab+hjk)(ϕa(mx)ϕa((m+1)x))|\displaystyle\ll\sum_{j=1}^{k}\left|G_{bk}\left(\frac{a}{b}+\frac{hj}{k}\right)\right|\left|\phi_{a}\left(xbk\right)\right|+\left|\sum_{j=1}^{k}\sum_{\frac{1}{|x|}<m\leq bk}G_{m}\left(\frac{a}{b}+\frac{hj}{k}\right)\left(\phi_{a}(mx)-\phi_{a}((m+1)x)\right)\right|
O(k)+j=1kmaxm=1|x|,,bk|Gm(ab+hjk)|1|x|<mbk(1|x|m(m+1)+|x|emRe(x)+a|x|eamRe(x)).\displaystyle\ll O(k)+\sum_{j=1}^{k}\max_{m=\frac{1}{|x|},...,bk}\left|G_{m}\left(\frac{a}{b}+\frac{hj}{k}\right)\right|\sum_{\frac{1}{|x|}<m\leq bk}\left(\frac{1}{|x|m(m+1)}+|x|e^{-m\mathrm{Re}(x)}+a|x|e^{-am\mathrm{Re}(x)}\right).

Note that we uniformly have ϕa(xbk)1\phi_{a}(xbk)\ll 1 (as 1|xbk|1\ll|xbk| and xx is part of a fixed cone
|Arg(x)|π2η|\mathrm{Arg}(x)|\leq\frac{\pi}{2}-\eta) as well as

1|x|<mbk1|x|m(m+1)\displaystyle\sum_{\frac{1}{|x|}<m\leq bk}\frac{1}{|x|m(m+1)} 1|x|<m<1|x|m(m+1)1\displaystyle\leq\sum_{\frac{1}{|x|}<m<\infty}\frac{1}{|x|m(m+1)}\ll 1

and

1|x|<mbk|x|emRe(x)\displaystyle\sum_{\frac{1}{|x|}<m\leq bk}|x|e^{-m\mathrm{Re}(x)} |x|1eRe(x)1,\displaystyle\leq\frac{|x|}{1-e^{-\mathrm{Re}(x)}}\ll 1,

as |x|Re(x)1,|x|1.\frac{|x|}{\mathrm{Re}(x)}\ll 1,|x|\ll 1. Similarly,

1|x|<mbka|x|eamRe(x)\displaystyle\sum_{\frac{1}{|x|}<m\leq bk}a|x|e^{-am\mathrm{Re}(x)} 1.\displaystyle\ll 1.

As a result, using Lemma 2.15 (again up to at most one summand in O(log(k))O(\log(k))),

|j=1k1|x|<mbkζbmaζkmhj1mϕa(mx)|\displaystyle\left|\sum_{j=1}^{k}\sum_{\frac{1}{|x|}<m\leq bk}\zeta_{b}^{ma}\zeta_{k}^{mhj}\cdot\frac{1}{m}\phi_{a}(mx)\right| O(k)+j=1kmaxm=1|x|,,bk|Gm(ab+hjk)|=O(k),\displaystyle\ll O(k)+\sum_{j=1}^{k}\max_{m=\frac{1}{|x|},...,bk}\left|G_{m}\left(\frac{a}{b}+\frac{hj}{k}\right)\right|=O(k),

as claimed. ∎

Data Availability Statement

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

Conflict of Interest Statement

There are no conflicts of interest for the current study.

References

  • [1] G. Andrews. The Theory of Partitions. Cambridge University Press, 1984.
  • [2] O. Beckwith and M. Mertens. “On the number of parts in integer partitions lying in given residue classes”. Annals of Combinatorics 21 (2017).
  • [3] O. Beckwith and M. Mertens. “The number of parts in certain residue classes of integer partitions”. Res. Number Theory A11 (2015).
  • [4] R. Boyer and W. Goh. “Partition Polynomials: Asymptotics and Zeros”. Preprint (2007). https://arxiv.org/abs/0711.1373
  • [5] R. Boyer and W. Goh. “Polynomials associated with partitions: their asymptotics and zeroes”. Contemp. Math. 471 (2007).
  • [6] R. Boyer and W. Keith. “Stabilization of coefficients for partitions polynomials”. Integers A56 (2013).
  • [7] R. Boyer and D. Parry. “Zero attractors of partition polynomials”. preprint (2021). https://arxiv.org/abs/2111.12226
  • [8] K. Bringmann, W. Craig, J. Males, and K. Ono. “Distributions on partitions arising from Hilbert schemes and hook lengths”. Preprint (2021). https://arxiv.org/abs/2109.10394
  • [9] K. Bringmann, A. Folsom, K. Ono, and L. Rolen. Harmonic Maass forms and mock modular forms. American Mathematical Society Colloquium Publications. AMS, 2017.
  • [10] K. Bringmann, C. Jennings-Shaffer, and K. Mahlburg. “On a Tauberian theorem of Ingham and Euler–Maclaurin summation”. Ramanujan J. (2021)
  • [11] D. Cakmak and A. Tiryaki. “Mean value theorem for holomorphic functions”. Electron. J. Equ. (2012).
  • [12] W. Craig. “On the number of parts in congruence classes for partitions into distinct parts”. preprint (2021) https://arxiv.org/abs/2110.15835
  • [13] G. H. Hardy and S. Ramanujan. “Asymptotic formulae in combinatory analysis.” Proc. London Math. Soc. 17 (1918), pp. 75–115.
  • [14] G. H. Hardy and E. M. Wright. Introduction to the Theory of Numbers, fourth edition. Oxford University Press, 1960.
  • [15] A. E. Ingham. “A Tauberian theorem for partitions”. Annals of Mathematics (1941).
  • [16] H. Iwaniec and E. Kowalski. Analytic Number Theory. Oxford University Press, 2004.
  • [17] J. Males. “Asymptotic equidistribution and convexity for partition ranks”. Ramanujan J. 54 (2021), pp. 397–413.
  • [18] D. Parry. “A polynomial variation on Meinardus’ theorem”. Int. J. of Number Theory 11 (2015), pp. 251–-268.
  • [19] M. Pinsky. Introduction to Fourier Analysis and Wavelets. Graduate Studies in Mathematics. AMS, 2009.
  • [20] H. Radamacher. “On the partition function p(n)p(n)”. Proc. London Math. Soc. 43 (1937), pp. 241–254.
  • [21] E. Stein and R. Shakarchi. Fourier Analysis: An Introduction. Princeton University Press, 2003.
  • [22] N. Temme. Asymptotic Methods for Integrals. Vol. 6 Series in Analysis. World Scientific, 2015.
  • [23] G. Tenenbaum. Introduction to Analytic and Probabilistic Number Theory, third edition. Vol. 163. Graduate Studies in Mathematics. AMS, 2015.
  • [24] E. M. Wright. “Asymptotic partition formulae III. Partitions into kk-th powers”. Acta Math. 63 (1934), pp. 143–191.