This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Aubin type almost sharp Moser-Trudinger inequality revisited

Fengbo Hang Courant Institute, New York University, 251 Mercer Street, New York NY 10012 fengbo@cims.nyu.edu
Abstract.

We give a new proof of the almost sharp Moser-Trudinger inequality on compact Riemannian manifolds based on the sharp Moser inequality on Euclidean spaces. In particular we can lower the smoothness requirement of the metric and apply the same approach to higher order Sobolev spaces and manifolds with boundary under several boundary conditions.

1. Introduction

Let nn\in\mathbb{N}, n2n\geq 2. For 1<p<n1<p<n, the classical Sobolev inequality states that there exists a positive constant c(n,p)c\left(n,p\right) with

φLnpnpc(n,p)φLp\left\|\varphi\right\|_{L^{\frac{np}{n-p}}}\leq c\left(n,p\right)\left\|\nabla\varphi\right\|_{L^{p}} (1.1)

for any φCc(n)\varphi\in C_{c}^{\infty}\left(\mathbb{R}^{n}\right). We denote Sn,pS_{n,p} as the smallest possible choice for the constant c(n,p)c\left(n,p\right) i.e.

Sn,p=supφCc(n)\{0}φLnpnpφLp.S_{n,p}=\sup_{\varphi\in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)\backslash\left\{0\right\}}\frac{\left\|\varphi\right\|_{L^{\frac{np}{n-p}}}}{\left\|\nabla\varphi\right\|_{L^{p}}}. (1.2)

Let (Mn,g)\left(M^{n},g\right) be a smooth compact Riemannian manifold of dimension nn and 1<p<n1<p<n. Aubin [Au1] showed that for any ε>0\varepsilon>0, we have

uLnpnp(M)p(Sn,pp+ε)uLp(M)p+c(ε)uLp(M)p\left\|u\right\|_{L^{\frac{np}{n-p}}\left(M\right)}^{p}\leq\left(S_{n,p}^{p}+\varepsilon\right)\left\|\nabla u\right\|_{L^{p}\left(M\right)}^{p}+c\left(\varepsilon\right)\left\|u\right\|_{L^{p}\left(M\right)}^{p} (1.3)

for uW1,p(M)u\in W^{1,p}\left(M\right). We call (1.3) Aubin’s almost sharp Sobolev inequality. Aubin’s almost sharp Sobolev inequality and its closely related concentration compactness principle play fundamental role in the study of semilinear equations (see [He, Ln1, Ln2]).

On the other hand, let BR=BRnnB_{R}=B_{R}^{n}\subset\mathbb{R}^{n} be the open ball with origin as center and RR as radius. In [M], it is shown that for any uW01,n(BR)\{0}u\in W_{0}^{1,n}\left(B_{R}\right)\backslash\left\{0\right\},

BRexp(an|u|nn1uLn(BR)nn1)𝑑xc(n)Rn.\int_{B_{R}}\exp\left(a_{n}\frac{\left|u\right|^{\frac{n}{n-1}}}{\left\|\nabla u\right\|_{L^{n}\left(B_{R}\right)}^{\frac{n}{n-1}}}\right)dx\leq c\left(n\right)R^{n}. (1.4)

Here

an=n|𝕊n1|1n1.a_{n}=n\left|\mathbb{S}^{n-1}\right|^{\frac{1}{n-1}}. (1.5)

|𝕊n1|\left|\mathbb{S}^{n-1}\right| is the volume of 𝕊n1\mathbb{S}^{n-1} under the standard metric. Note that ana_{n} is sharp in the sense that if a>0a>0 s.t.

supuW01,n(BR)\{0}BRexp(a|u|nn1uLn(BR)nn1)𝑑x<,\sup_{u\in W_{0}^{1,n}\left(B_{R}\right)\backslash\left\{0\right\}}\int_{B_{R}}\exp\left(a\frac{\left|u\right|^{\frac{n}{n-1}}}{\left\|\nabla u\right\|_{L^{n}\left(B_{R}\right)}^{\frac{n}{n-1}}}\right)dx<\infty\text{,}

then we have aana\leq a_{n}. For similar inequalities on general smooth compact Riemannian manifolds, in [F], it is shown that if (Mn,g)\left(M^{n},g\right) is a smooth compact Riemannian manifold, then for any uW1,n(M)\{0}u\in W^{1,n}\left(M\right)\backslash\left\{0\right\} with Mu𝑑μ=0\int_{M}ud\mu=0 (here μ\mu is the measure associated with gg),

Mexp(an|u|nn1uLnnn1)𝑑μc(M,g).\int_{M}\exp\left(a_{n}\frac{\left|u\right|^{\frac{n}{n-1}}}{\left\|\nabla u\right\|_{L^{n}}^{\frac{n}{n-1}}}\right)d\mu\leq c\left(M,g\right). (1.6)

The Moser-Trudinger inequality (1.6) and its analogy are closely related to spectral geometry through the classical Polyakov formula, Gauss curvature equation and Q curvature equations (see for example [Au2, CY1, CY2, M, OPS] and the references therein). A direct consequence of (1.6) is for uW1,n(M)\{0}u\in W^{1,n}\left(M\right)\backslash\left\{0\right\} with Mu𝑑μ=0\int_{M}ud\mu=0 and ε>0\varepsilon>0 small,

Mexp((anε)|u|nn1uLnnn1)𝑑μc(ε)<.\int_{M}\exp\left(\left(a_{n}-\varepsilon\right)\frac{\left|u\right|^{\frac{n}{n-1}}}{\left\|\nabla u\right\|_{L^{n}}^{\frac{n}{n-1}}}\right)d\mu\leq c\left(\varepsilon\right)<\infty. (1.7)

We call (1.7) as Aubin type almost sharp Moser-Trudinger inequality. It is worth pointing out that for most applications, almost sharp Moser-Trudinger inequality is sufficient (using suitable approximation process when necessary, see for example Lemma 3.2 and the discussion after it). On the other hand, one can pass from (1.7) to (1.6) by blow-up analysis (see [Li1, Li2]).

To continue we observe that Aubin’s almost sharp Sobolev inequality follows from (1.2) by a smart but elementary application of decomposition of unit (see [Au1]). On the other hand, such passage from (1.4) to (1.7) is missing. Fontana’s proof for (1.6) uses potential theory approach by Adams [A] and requires accurate estimate of the Green’s function. This method does not work well for functions satisfying suitable boundary conditions (see [Y2]). The main aim of this note is to provide a direct and elementary method to deduce (1.7) from (1.4). Our approach is motivated from recent progress in concentration compactness principle in critical dimension in [CH, H], where Aubin’s Moser-Trudinger-Onofri inequality on 𝕊n\mathbb{S}^{n} in [Au2] is generalized to higher order moments cases. The sequence of inequalities are motivated from similar inequalities on 𝕊1\mathbb{S}^{1} (see [GrS, OPS, W]). The key point in [CH, H], which is different from [CCH, Ln1, Ln2], is recognizing the importance of the value of defect measure at a single point. This point of view will be crucial here as well (see Proposition 1.1 below). An interesting gain of our approach is we only need the metric to be continuous. Due to the elementary nature of our method, we can easily adapt it to higher order Sobolev spaces and functions satisfying various boundary conditions.

In the remaining part of this section, we will prove Theorem 1.1, which covers (1.7). In Section 2 we will adapt the approach to functions on manifolds with nonempty boundary, either under Dirichlet condition or no boundary condition at all. In Section 3, we prove similar results for second order Sobolev spaces under various boundary conditions and discuss its applications to Q curvature equations in dimension 4. In Section 4, we briefly describe what can be done for higher order Sobolev spaces.

The first fact is a qualitative property of Sobolev functions following from (1.4). It should be compared to [CH, Lemma 2.1] and [H, Lemma 2.1].

Lemma 1.1.

Let uW1,n(BRn)u\in W^{1,n}\left(B_{R}^{n}\right) and a>0a>0, then

BRea|u|nn1𝑑x<.\int_{B_{R}}e^{a\left|u\right|^{\frac{n}{n-1}}}dx<\infty. (1.8)
Proof.

We first treat the case uW01,n(BR)u\in W_{0}^{1,n}\left(B_{R}\right). If uu is bounded the claim is clearly true. We assume uu is unbounded. For ε>0\varepsilon>0, a tiny number to be determined, we can find vCc(BR)v\in C_{c}^{\infty}\left(B_{R}\right) such that

(uv)Ln<ε.\left\|\nabla\left(u-v\right)\right\|_{L^{n}}<\varepsilon.

Let w=uvw=u-v, then

|u|=|v+w|vL+|w|.\left|u\right|=\left|v+w\right|\leq\left\|v\right\|_{L^{\infty}}+\left|w\right|.

Hence

|u|nn121n1vLnn1+21n1|w|nn1.\left|u\right|^{\frac{n}{n-1}}\leq 2^{\frac{1}{n-1}}\left\|v\right\|_{L^{\infty}}^{\frac{n}{n-1}}+2^{\frac{1}{n-1}}\left|w\right|^{\frac{n}{n-1}}.

It follows that

ea|u|nn1e21n1avLnn1e21n1a|w|nn1e21n1avLnn1ean|w|nn1wLnnn1e^{a\left|u\right|^{\frac{n}{n-1}}}\leq e^{2^{\frac{1}{n-1}}a\left\|v\right\|_{L^{\infty}}^{\frac{n}{n-1}}}e^{2^{\frac{1}{n-1}}a\left|w\right|^{\frac{n}{n-1}}}\leq e^{2^{\frac{1}{n-1}}a\left\|v\right\|_{L^{\infty}}^{\frac{n}{n-1}}}e^{a_{n}\frac{\left|w\right|^{\frac{n}{n-1}}}{\left\|\nabla w\right\|_{L^{n}}^{\frac{n}{n-1}}}}

if ε\varepsilon is small enough. Using (1.4) we see

BRea|u|nn1𝑑xc(n)e21n1avLnn1Rn<.\int_{B_{R}}e^{a\left|u\right|^{\frac{n}{n-1}}}dx\leq c\left(n\right)e^{2^{\frac{1}{n-1}}a\left\|v\right\|_{L^{\infty}}^{\frac{n}{n-1}}}R^{n}<\infty.

In general, if uW1,n(BR)u\in W^{1,n}\left(B_{R}\right), then we can find u~W01,n(B2R)\widetilde{u}\in W_{0}^{1,n}\left(B_{2R}\right) such that u~|BR=u\left.\widetilde{u}\right|_{B_{R}}=u. Hence

BRea|u|nn1𝑑xB2Rea|u~|nn1𝑑x<\int_{B_{R}}e^{a\left|u\right|^{\frac{n}{n-1}}}dx\leq\int_{B_{2R}}e^{a\left|\widetilde{u}\right|^{\frac{n}{n-1}}}dx<\infty

by the previous discussion.    

Next we localize [CH, Lemma 2.2] and [H, Proposition 2.1].

Proposition 1.1.

Let 0<R10<R\leq 1, gg be a continuous Riemannian metric on BRn¯\overline{B_{R}^{n}}. Assume uiW1,n(BR)u_{i}\in W^{1,n}\left(B_{R}\right), uiuu_{i}\rightharpoonup u weakly in W1,n(BR)W^{1,n}\left(B_{R}\right) and

|gui|gndμ|gu|gndμ+σ as measure on BR.\left|\nabla_{g}u_{i}\right|_{g}^{n}d\mu\rightarrow\left|\nabla_{g}u\right|_{g}^{n}d\mu+\sigma\text{ as measure on }B_{R}\text{.}

If 0<p<σ({0})1n10<p<\sigma\left(\left\{0\right\}\right)^{-\frac{1}{n-1}}, then for some r>0r>0,

supiBreanp|ui|nn1𝑑μ<.\sup_{i}\int_{B_{r}}e^{a_{n}p\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu<\infty. (1.9)

Here

an=n|𝕊n1|1n1.a_{n}=n\left|\mathbb{S}^{n-1}\right|^{\frac{1}{n-1}}. (1.10)
Remark 1.1.

[CH, Lemma 2.2] and [H, Proposition 2.1] follows from Proposition 1.1. Hence to derive the main results in [CH, H], we may use Moser’s sharp inequality on Euclidean spaces instead of Fontana’s Moser-Trudinger inequality (1.6).

To prove Proposition 1.1, we first observe that by a linear changing of variable and shrinking RR if necessary we can assume g=gijdxidxjg=g_{ij}dx_{i}dx_{j} with gij(0)=δijg_{ij}\left(0\right)=\delta_{ij}. Fix p1(p,σ({0})1n1)p_{1}\in\left(p,\sigma\left(\left\{0\right\}\right)^{-\frac{1}{n-1}}\right), then

σ({0})<1p1n1.\sigma\left(\left\{0\right\}\right)<\frac{1}{p_{1}^{n-1}}. (1.11)

We can find ε>0\varepsilon>0 such that

(1+ε)σ({0})<1p1n1\left(1+\varepsilon\right)\sigma\left(\left\{0\right\}\right)<\frac{1}{p_{1}^{n-1}} (1.12)

and

(1+ε)p<p1.\left(1+\varepsilon\right)p<p_{1}. (1.13)

Let vi=uiuv_{i}=u_{i}-u, then vi0v_{i}\rightharpoonup 0 weakly in W1,n(BR)W^{1,n}\left(B_{R}\right), vi0v_{i}\rightarrow 0 in Ln(BR)L^{n}\left(B_{R}\right). To continue, we note that on BRB_{R} we have two Riemannian metrics: The standard Euclidean metric and gg. For a function ff on BRB_{R}, we write

fLn=fLn(BR)=fLn(BR,dx),\left\|f\right\|_{L^{n}}=\left\|f\right\|_{L^{n}\left(B_{R}\right)}=\left\|f\right\|_{L^{n}\left(B_{R},dx\right)}, (1.14)

here dxdx is the standard Lebesgue measure. This should be compared with fLn(BR,dμ)\left\|f\right\|_{L^{n}\left(B_{R},d\mu\right)}. We write f\nabla f as the usual gradient of ff i.e. the gradient with respect to Euclidean metric and gf\nabla_{g}f as the gradient of ff with respect to metric gg.

Let 0<R1<R0<R_{1}<R be a small number to be determined. For any φCc(BR1)\varphi\in C_{c}^{\infty}\left(B_{R_{1}}\right), we have

(φvi)Ln(BR)n\displaystyle\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{n}\left(B_{R}\right)}^{n}
\displaystyle\leq (φviLn+viφLn)n\displaystyle\left(\left\|\varphi\nabla v_{i}\right\|_{L^{n}}+\left\|v_{i}\nabla\varphi\right\|_{L^{n}}\right)^{n}
\displaystyle\leq (φuiLn+φuLn+viφLn)n\displaystyle\left(\left\|\varphi\nabla u_{i}\right\|_{L^{n}}+\left\|\varphi\nabla u\right\|_{L^{n}}+\left\|v_{i}\nabla\varphi\right\|_{L^{n}}\right)^{n}
\displaystyle\leq (1+ε2)φuiLnn+c(ε)φuLnn+c(ε)viφLnn\displaystyle\left(1+\frac{\varepsilon}{2}\right)\left\|\varphi\nabla u_{i}\right\|_{L^{n}}^{n}+c\left(\varepsilon\right)\left\|\varphi\nabla u\right\|_{L^{n}}^{n}+c\left(\varepsilon\right)\left\|v_{i}\nabla\varphi\right\|_{L^{n}}^{n}
\displaystyle\leq (1+ε)φguiLn(BR,dμ)n+c(ε)φuLnn+c(ε)viφLnn.\displaystyle\left(1+\varepsilon\right)\left\|\varphi\nabla_{g}u_{i}\right\|_{L^{n}\left(B_{R},d\mu\right)}^{n}+c\left(\varepsilon\right)\left\|\varphi\nabla u\right\|_{L^{n}}^{n}+c\left(\varepsilon\right)\left\|v_{i}\nabla\varphi\right\|_{L^{n}}^{n}.

Here we have used the continuity of gijg_{ij}, gij(0)=δijg_{ij}\left(0\right)=\delta_{ij} and the smallness of R1R_{1}. Hence

limsupi(φvi)Ln(BR)n\displaystyle\lim\sup_{i\rightarrow\infty}\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{n}\left(B_{R}\right)}^{n}
\displaystyle\leq (1+ε)BR|φ|n𝑑σ+(1+ε)BR|φ|n|gu|gn𝑑μ+c(ε)BR|φ|n|u|n𝑑x\displaystyle\left(1+\varepsilon\right)\int_{B_{R}}\left|\varphi\right|^{n}d\sigma+\left(1+\varepsilon\right)\int_{B_{R}}\left|\varphi\right|^{n}\left|\nabla_{g}u\right|_{g}^{n}d\mu+c\left(\varepsilon\right)\int_{B_{R}}\left|\varphi\right|^{n}\left|\nabla u\right|^{n}dx
\displaystyle\leq (1+ε)BR|φ|n𝑑σ+c(ε)BR|φ|n|u|n𝑑x.\displaystyle\left(1+\varepsilon\right)\int_{B_{R}}\left|\varphi\right|^{n}d\sigma+c\left(\varepsilon\right)\int_{B_{R}}\left|\varphi\right|^{n}\left|\nabla u\right|^{n}dx.

Since (1+ε)σ({0})<1p1n1\left(1+\varepsilon\right)\sigma\left(\left\{0\right\}\right)<\frac{1}{p_{1}^{n-1}}, we can choose φCc(BR1)\varphi\in C_{c}^{\infty}\left(B_{R_{1}}\right) such that φ|Br=1\left.\varphi\right|_{B_{r}}=1 for some r>0r>0 and

(1+ε)BR|φ|n𝑑σ+c(ε)BR|φ|n|u|n𝑑x<1p1n1.\left(1+\varepsilon\right)\int_{B_{R}}\left|\varphi\right|^{n}d\sigma+c\left(\varepsilon\right)\int_{B_{R}}\left|\varphi\right|^{n}\left|\nabla u\right|^{n}dx<\frac{1}{p_{1}^{n-1}}. (1.15)

Hence for ii large enough, we have

(φvi)Ln(BR)n<1p1n1.\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{n}\left(B_{R}\right)}^{n}<\frac{1}{p_{1}^{n-1}}. (1.16)

This implies

(φvi)Ln(BR)nn1<1p1.\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{n}\left(B_{R}\right)}^{\frac{n}{n-1}}<\frac{1}{p_{1}}. (1.17)

On the other hand,

|ui|nn1(|vi|+|u|)nn1(1+ε)|vi|nn1+c(ε)|u|nn1,\left|u_{i}\right|^{\frac{n}{n-1}}\leq\left(\left|v_{i}\right|+\left|u\right|\right)^{\frac{n}{n-1}}\leq\left(1+\varepsilon\right)\left|v_{i}\right|^{\frac{n}{n-1}}+c\left(\varepsilon\right)\left|u\right|^{\frac{n}{n-1}},

hence

ean|ui|nn1e(1+ε)an|vi|nn1ec(ε)|u|nn1.e^{a_{n}\left|u_{i}\right|^{\frac{n}{n-1}}}\leq e^{\left(1+\varepsilon\right)a_{n}\left|v_{i}\right|^{\frac{n}{n-1}}}e^{c\left(\varepsilon\right)\left|u\right|^{\frac{n}{n-1}}}.

It follows from (1.4) that

Breanp1|vi|nn1𝑑μcBReanp1|φvi|nn1𝑑xcBRean|φvi|nn1(φvi)Lnnn1𝑑xc.\int_{B_{r}}e^{a_{n}p_{1}\left|v_{i}\right|^{\frac{n}{n-1}}}d\mu\leq c\int_{B_{R}}e^{a_{n}p_{1}\left|\varphi v_{i}\right|^{\frac{n}{n-1}}}dx\leq c\int_{B_{R}}e^{a_{n}\frac{\left|\varphi v_{i}\right|^{\frac{n}{n-1}}}{\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{n}}^{\frac{n}{n-1}}}}dx\leq c.

Using p<p11+εp<\frac{p_{1}}{1+\varepsilon} and Lemma 1.1, it follows from Holder’s inequality that ean|ui|nn1e^{a_{n}\left|u_{i}\right|^{\frac{n}{n-1}}} is bounded in Lp(Br,dμ)L^{p}\left(B_{r},d\mu\right). This finishes the proof of Proposition 1.1.

Theorem 1.1.

Let (Mn,g)\left(M^{n},g\right) be a C1C^{1} compact manifold with a continuous Riemannian metric gg. If EME\subset M with μ(E)δ>0\mu\left(E\right)\geq\delta>0, uW1,n(M)\{0}u\in W^{1,n}\left(M\right)\backslash\left\{0\right\} with uE=0u_{E}=0 (here uE=1μ(E)Eu𝑑μu_{E}=\frac{1}{\mu\left(E\right)}\int_{E}ud\mu), then for any 0<a<an=n|𝕊n1|1n10<a<a_{n}=n\left|\mathbb{S}^{n-1}\right|^{\frac{1}{n-1}},

Mea|u|nn1uLnnn1𝑑μc(a,δ)<.\int_{M}e^{a\frac{\left|u\right|^{\frac{n}{n-1}}}{\left\|\nabla u\right\|_{L^{n}}^{\frac{n}{n-1}}}}d\mu\leq c\left(a,\delta\right)<\infty. (1.18)
Remark 1.2.

It is interesting that we can find a continuous Riemannian metric on MM such that

supuW1,n(M)\{0}uM=0Mexp(an|u|nn1uLn(M)nn1)𝑑μ=.\sup_{\begin{subarray}{c}u\in W^{1,n}\left(M\right)\backslash\left\{0\right\}\\ u_{M}=0\end{subarray}}\int_{M}\exp\left(a_{n}\frac{\left|u\right|^{\frac{n}{n-1}}}{\left\|\nabla u\right\|_{L^{n}\left(M\right)}^{\frac{n}{n-1}}}\right)d\mu=\infty. (1.19)

Indeed let (U,ϕ)\left(U,\phi\right) be a coordinate on MM such that ϕ(U)=B2\phi\left(U\right)=B_{2}. For convenience we identify UU with B2B_{2}. Let

α(r)=1log1r+4for 0<r<1,\alpha\left(r\right)=\frac{1}{\sqrt{\log\frac{1}{r}+4}}\quad\text{for }0<r<1\text{,} (1.20)

then 0α120\leq\alpha\leq\frac{1}{2} and

01α(r)r𝑑r=.\int_{0}^{1}\frac{\alpha\left(r\right)}{r}dr=\infty. (1.21)

We can find a continuous Riemannian metric on MM such that on B1B_{1}, g=gijdxidxjg=g_{ij}dx_{i}dx_{j} with

gij=(1α(|x|))2nxi|x|xj|x|+(1α(|x|))2n(n1)(δijxi|x|xj|x|).g_{ij}=\left(1-\alpha\left(\left|x\right|\right)\right)^{-\frac{2}{n}}\frac{x_{i}}{\left|x\right|}\frac{x_{j}}{\left|x\right|}+\left(1-\alpha\left(\left|x\right|\right)\right)^{\frac{2}{n\left(n-1\right)}}\left(\delta_{ij}-\frac{x_{i}}{\left|x\right|}\frac{x_{j}}{\left|x\right|}\right). (1.22)

Hence

gij=(1α(|x|))2nxi|x|xj|x|+(1α(|x|))2n(n1)(δijxi|x|xj|x|).g^{ij}=\left(1-\alpha\left(\left|x\right|\right)\right)^{\frac{2}{n}}\frac{x_{i}}{\left|x\right|}\frac{x_{j}}{\left|x\right|}+\left(1-\alpha\left(\left|x\right|\right)\right)^{-\frac{2}{n\left(n-1\right)}}\left(\delta_{ij}-\frac{x_{i}}{\left|x\right|}\frac{x_{j}}{\left|x\right|}\right). (1.23)

For 0<ε<10<\varepsilon<1, we define

vε(x)={logε,if |x|ε;log|x|,if ε<|x|<1;0,if xM\B1.v_{\varepsilon}\left(x\right)=\left\{\begin{tabular}[]{ll}$\log\varepsilon,$&if $\left|x\right|\leq\varepsilon$;\\ $\log\left|x\right|,$&if $\varepsilon<\left|x\right|<1$;\\ $0,$&if $x\in M\backslash B_{1}$.\end{tabular}\right.

Then

vεLnn\displaystyle\left\|\nabla v_{\varepsilon}\right\|_{L^{n}}^{n} =\displaystyle= ε<|x|<1(gijxi|x|2xj|x|2)n2𝑑x\displaystyle\int_{\varepsilon<\left|x\right|<1}\left(g^{ij}\frac{x_{i}}{\left|x\right|^{2}}\frac{x_{j}}{\left|x\right|^{2}}\right)^{\frac{n}{2}}dx
=\displaystyle= ε<|x|<11α(|x|)|x|n𝑑x\displaystyle\int_{\varepsilon<\left|x\right|<1}\frac{1-\alpha\left(\left|x\right|\right)}{\left|x\right|^{n}}dx
=\displaystyle= |𝕊n1|(log1εε1α(r)r𝑑r).\displaystyle\left|\mathbb{S}^{n-1}\right|\left(\log\frac{1}{\varepsilon}-\int_{\varepsilon}^{1}\frac{\alpha\left(r\right)}{r}dr\right).

On the other hand, vε,M=O(1)v_{\varepsilon,M}=O\left(1\right) as ε0+\varepsilon\rightarrow 0^{+}. Letting uε=vεvε,Mu_{\varepsilon}=v_{\varepsilon}-v_{\varepsilon,M}, we claim

limε0+Mexp(an|uε|nn1uεLn(M)nn1)𝑑μ=.\lim_{\varepsilon\rightarrow 0^{+}}\int_{M}\exp\left(a_{n}\frac{\left|u_{\varepsilon}\right|^{\frac{n}{n-1}}}{\left\|\nabla u_{\varepsilon}\right\|_{L^{n}\left(M\right)}^{\frac{n}{n-1}}}\right)d\mu=\infty. (1.24)

Indeed,

Mexp(an|uε|nn1uεLn(M)nn1)𝑑μ\displaystyle\int_{M}\exp\left(a_{n}\frac{\left|u_{\varepsilon}\right|^{\frac{n}{n-1}}}{\left\|\nabla u_{\varepsilon}\right\|_{L^{n}\left(M\right)}^{\frac{n}{n-1}}}\right)d\mu
\displaystyle\geq Bεexp(an|logεvε,M|nn1vεLn(M)nn1)𝑑x\displaystyle\int_{B_{\varepsilon}}\exp\left(a_{n}\frac{\left|\log\varepsilon-v_{\varepsilon,M}\right|^{\frac{n}{n-1}}}{\left\|\nabla v_{\varepsilon}\right\|_{L^{n}\left(M\right)}^{\frac{n}{n-1}}}\right)dx
=\displaystyle= |B1|εnexp(n|log1ε+vε,M|nn1(log1εε1α(r)r𝑑r)1n1)\displaystyle\left|B_{1}\right|\varepsilon^{n}\exp\left(n\frac{\left|\log\frac{1}{\varepsilon}+v_{\varepsilon,M}\right|^{\frac{n}{n-1}}}{\left(\log\frac{1}{\varepsilon}-\int_{\varepsilon}^{1}\frac{\alpha\left(r\right)}{r}dr\right)^{\frac{1}{n-1}}}\right)
\displaystyle\geq c(n)exp[nlog1ε(1c1log1ε)(1+1n1ε1α(r)r𝑑rlog1ε)nlog1ε]\displaystyle c\left(n\right)\exp\left[n\log\frac{1}{\varepsilon}\cdot\left(1-\frac{c_{1}}{\log\frac{1}{\varepsilon}}\right)\left(1+\frac{1}{n-1}\frac{\int_{\varepsilon}^{1}\frac{\alpha\left(r\right)}{r}dr}{\log\frac{1}{\varepsilon}}\right)-n\log\frac{1}{\varepsilon}\right]
\displaystyle\geq c(n)exp(nn1ε1α(r)r𝑑rc)\displaystyle c\left(n\right)\exp\left(\frac{n}{n-1}\int_{\varepsilon}^{1}\frac{\alpha\left(r\right)}{r}dr-c\right)
\displaystyle\geq cexp(nn1ε1α(r)r𝑑r).\displaystyle c\exp\left(\frac{n}{n-1}\int_{\varepsilon}^{1}\frac{\alpha\left(r\right)}{r}dr\right).

This estimate together with (1.21) implies (1.24). (1.19) follows.

Proof of Theorem 1.1.

For any vW1,n(M)v\in W^{1,n}\left(M\right), we know

vvMLncvLn.\left\|v-v_{M}\right\|_{L^{n}}\leq c\left\|\nabla v\right\|_{L^{n}}.

On the other hand,

vvELncμ(E)1nvLnc(δ)vLn.\left\|v-v_{E}\right\|_{L^{n}}\leq\frac{c}{\mu\left(E\right)^{\frac{1}{n}}}\left\|v\right\|_{L^{n}}\leq c\left(\delta\right)\left\|v\right\|_{L^{n}}.

Replacing vv by vvMv-v_{M}, we see

vvELnc(δ)vvMLnc(δ)vLn.\left\|v-v_{E}\right\|_{L^{n}}\leq c\left(\delta\right)\left\|v-v_{M}\right\|_{L^{n}}\leq c\left(\delta\right)\left\|\nabla v\right\|_{L^{n}}.

If (1.18) is not true, then we can find a sequence uiW1,n(M)u_{i}\in W^{1,n}\left(M\right), EiME_{i}\subset M with μ(Ei)δ\mu\left(E_{i}\right)\geq\delta, ui,Ei=0u_{i,E_{i}}=0, uiLn=1\left\|\nabla u_{i}\right\|_{L^{n}}=1 and

Mea|ui|nn1𝑑μ\int_{M}e^{a\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu\rightarrow\infty

as ii\rightarrow\infty. Since

uiLn=uiui,EiLnc(δ)uiLn=c(δ),\left\|u_{i}\right\|_{L^{n}}=\left\|u_{i}-u_{i,E_{i}}\right\|_{L^{n}}\leq c\left(\delta\right)\left\|\nabla u_{i}\right\|_{L^{n}}=c\left(\delta\right),

we see uiu_{i} is bounded in W1,n(M)W^{1,n}\left(M\right). Hence after passing to a subsequence we can find uW1,n(M)u\in W^{1,n}\left(M\right) such that uiuu_{i}\rightharpoonup u weakly in W1,n(M)W^{1,n}\left(M\right) and a measure on MM, σ\sigma such that

|ui|ndμ|u|ndμ+σ\left|\nabla u_{i}\right|^{n}d\mu\rightarrow\left|\nabla u\right|^{n}d\mu+\sigma

as measure. Note that σ(M)1\sigma\left(M\right)\leq 1. For any xMx\in M, since

0<aan<σ({x})1n1,0<\frac{a}{a_{n}}<\sigma\left(\left\{x\right\}\right)^{-\frac{1}{n-1}},

it follows from Proposition 1.1 that for some r>0r>0, we have

supiBr(x)ea|ui|nn1𝑑μ<.\sup_{i}\int_{B_{r}\left(x\right)}e^{a\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu<\infty.

A covering argument implies

supiMea|ui|nn1𝑑μ<.\sup_{i}\int_{M}e^{a\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu<\infty.

This contradicts with the choice of uiu_{i}.    

The argument above is flexible and can be applied to other cases as well.

Example 1.1.

Let MnM^{n} be a C1C^{1} compact manifold with a C0C^{0} Riemannian metric gg. Denote

κ(M,g)=infuW1,n(M)\{0}uM=0uLnuLn.\kappa\left(M,g\right)=\inf_{\begin{subarray}{c}u\in W^{1,n}\left(M\right)\backslash\left\{0\right\}\\ u_{M}=0\end{subarray}}\frac{\left\|\nabla u\right\|_{L^{n}}}{\left\|u\right\|_{L^{n}}}. (1.25)

It follows from Poincare inequality that κ(M,g)\kappa\left(M,g\right) is a positive number. Assume 0κ<κ(M,g)0\leq\kappa<\kappa\left(M,g\right), 0<a<an0<a<a_{n}, uW1,n(M)u\in W^{1,n}\left(M\right) with uM=0u_{M}=0 and

uLnnκnuLnn1,\left\|\nabla u\right\|_{L^{n}}^{n}-\kappa^{n}\left\|u\right\|_{L^{n}}^{n}\leq 1, (1.26)

then we have

Mea|u|nn1𝑑μc(κ,a)<.\int_{M}e^{a\left|u\right|^{\frac{n}{n-1}}}d\mu\leq c\left(\kappa,a\right)<\infty. (1.27)
Proof.

If the claim is not true, then we can find a sequence uiW1,n(M)u_{i}\in W^{1,n}\left(M\right) s.t. ui,M=0u_{i,M}=0, uiLnnκnuiLnn1\left\|\nabla u_{i}\right\|_{L^{n}}^{n}-\kappa^{n}\left\|u_{i}\right\|_{L^{n}}^{n}\leq 1 and Mea|ui|nn1𝑑μ\int_{M}e^{a\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu\rightarrow\infty as ii\rightarrow\infty. By the definition of κ(M,g)\kappa\left(M,g\right), we see

(κ(M,g)nκn)uiLnnuiLnnκnuiLnn1,\left(\kappa\left(M,g\right)^{n}-\kappa^{n}\right)\left\|u_{i}\right\|_{L^{n}}^{n}\leq\left\|\nabla u_{i}\right\|_{L^{n}}^{n}-\kappa^{n}\left\|u_{i}\right\|_{L^{n}}^{n}\leq 1,

hence

uiLnn1κ(M,g)nκn.\left\|u_{i}\right\|_{L^{n}}^{n}\leq\frac{1}{\kappa\left(M,g\right)^{n}-\kappa^{n}}.

This together with uiLnnκnuiLnn1\left\|\nabla u_{i}\right\|_{L^{n}}^{n}-\kappa^{n}\left\|u_{i}\right\|_{L^{n}}^{n}\leq 1 implies

uiLnnκ(M,g)nκ(M,g)nκn.\left\|\nabla u_{i}\right\|_{L^{n}}^{n}\leq\frac{\kappa\left(M,g\right)^{n}}{\kappa\left(M,g\right)^{n}-\kappa^{n}}.

In other words, uiu_{i} is bounded in W1,n(M)W^{1,n}\left(M\right). After passing to a subsequence, we can find uW1,n(M)u\in W^{1,n}\left(M\right) s.t. uiuu_{i}\rightharpoonup u weakly in W1,n(M)W^{1,n}\left(M\right), uiuu_{i}\rightarrow u in Ln(M)L^{n}\left(M\right) and

|ui|ndμ|u|ndμ+σ\left|\nabla u_{i}\right|^{n}d\mu\rightarrow\left|\nabla u\right|^{n}d\mu+\sigma

as measure. In particular, uM=0u_{M}=0. On the other hand,

uLnn+σ(M)κnuLnn1.\left\|\nabla u\right\|_{L^{n}}^{n}+\sigma\left(M\right)-\kappa^{n}\left\|u\right\|_{L^{n}}^{n}\leq 1.

Since uLnnκnuLnn0\left\|\nabla u\right\|_{L^{n}}^{n}-\kappa^{n}\left\|u\right\|_{L^{n}}^{n}\geq 0, we see σ(M)1\sigma\left(M\right)\leq 1. For any xMx\in M, since

0<aan<σ({x})1n1,0<\frac{a}{a_{n}}<\sigma\left(\left\{x\right\}\right)^{-\frac{1}{n-1}},

it follows from Proposition 1.1 that for some r>0r>0, we have

supiBr(x)ea|ui|nn1𝑑μ<.\sup_{i}\int_{B_{r}\left(x\right)}e^{a\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu<\infty.

This together with compactness of MM implies

supiMea|ui|nn1𝑑μ<.\sup_{i}\int_{M}e^{a\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu<\infty.

It gives us a contradiction by the choice of uiu_{i} at the beginning.    

2. Functions on manifolds with nonempty boundary

In this section, we will study functions on manifolds with boundary under no boundary conditions or Dirichlet boundary condition. At first we need to discuss functions on half ball. Let R>0R>0, we denote

BR+={xBR:x=(x,xn),xn1,xn0}.B_{R}^{+}=\left\{x\in B_{R}:x=\left(x^{\prime},x_{n}\right),x^{\prime}\in\mathbb{R}^{n-1},x_{n}\geq 0\right\}. (2.1)
Lemma 2.1.

Assume uW1,n(BR+)\{0}u\in W^{1,n}\left(B_{R}^{+}\right)\backslash\left\{0\right\} such that u(x)=0u\left(x\right)=0 for |x|\left|x\right| close to RR, then

BR+e21n1an|u|nn1uLn(BR+)nn1𝑑xc(n)Rn.\int_{B_{R}^{+}}e^{2^{-\frac{1}{n-1}}a_{n}\frac{\left|u\right|^{\frac{n}{n-1}}}{\left\|\nabla u\right\|_{L^{n}\left(B_{R}^{+}\right)}^{\frac{n}{n-1}}}}dx\leq c\left(n\right)R^{n}. (2.2)
Proof.

For |x|<R\left|x\right|<R, let

v(x)={u(x),if xn>0;u(x,xn),if xn<0.v\left(x\right)=\left\{\begin{array}[]{cc}u\left(x\right),&\text{if }x_{n}>0;\\ u\left(x^{\prime},-x_{n}\right),&\text{if }x_{n}<0\text{.}\end{array}\right.

Then vW01,n(BR)v\in W_{0}^{1,n}\left(B_{R}\right) with vLn(BR)n=2uLn(BR+)n\left\|\nabla v\right\|_{L^{n}\left(B_{R}\right)}^{n}=2\left\|\nabla u\right\|_{L^{n}\left(B_{R}^{+}\right)}^{n}. Using (1.4) we see

BR+e21n1an|u|nn1uLn(BR+)nn1𝑑x\displaystyle\int_{B_{R}^{+}}e^{2^{-\frac{1}{n-1}}a_{n}\frac{\left|u\right|^{\frac{n}{n-1}}}{\left\|\nabla u\right\|_{L^{n}\left(B_{R}^{+}\right)}^{\frac{n}{n-1}}}}dx =\displaystyle= BR+ean|u|nn1vLn(BR)nn1𝑑x\displaystyle\int_{B_{R}^{+}}e^{a_{n}\frac{\left|u\right|^{\frac{n}{n-1}}}{\left\|\nabla v\right\|_{L^{n}\left(B_{R}\right)}^{\frac{n}{n-1}}}}dx
\displaystyle\leq BRean|v|nn1vLn(BR)nn1𝑑x\displaystyle\int_{B_{R}}e^{a_{n}\frac{\left|v\right|^{\frac{n}{n-1}}}{\left\|\nabla v\right\|_{L^{n}\left(B_{R}\right)}^{\frac{n}{n-1}}}}dx
\displaystyle\leq c(n)Rn.\displaystyle c\left(n\right)R^{n}.

   

We also need a qualitative property of Sobolev functions.

Lemma 2.2.

Let uW1,n(BR+)u\in W^{1,n}\left(B_{R}^{+}\right) and a>0a>0, then

BR+ea|u|nn1𝑑x<.\int_{B_{R}^{+}}e^{a\left|u\right|^{\frac{n}{n-1}}}dx<\infty. (2.3)
Proof.

We can find u~W1,n(BR)\widetilde{u}\in W^{1,n}\left(B_{R}\right) such that u~|BR+=u\left.\widetilde{u}\right|_{B_{R}^{+}}=u. Then it follows from Lemma 1.1 that

BR+ea|u|nn1𝑑xBRea|u~|nn1𝑑x<.\int_{B_{R}^{+}}e^{a\left|u\right|^{\frac{n}{n-1}}}dx\leq\int_{B_{R}}e^{a\left|\widetilde{u}\right|^{\frac{n}{n-1}}}dx<\infty.

   

Proposition 2.1.

Let 0<R10<R\leq 1, gg be a continuous Riemannian metric on BR+¯\overline{B_{R}^{+}}. Assume uiW1,n(BR+)u_{i}\in W^{1,n}\left(B_{R}^{+}\right), uiuu_{i}\rightharpoonup u weakly in W1,n(BR+)W^{1,n}\left(B_{R}^{+}\right) and

|gui|gndμ|gu|gndμ+σ as measure on BR+.\left|\nabla_{g}u_{i}\right|_{g}^{n}d\mu\rightarrow\left|\nabla_{g}u\right|_{g}^{n}d\mu+\sigma\text{ as measure on }B_{R}^{+}\text{.}

If 0<p<σ({0})1n10<p<\sigma\left(\left\{0\right\}\right)^{-\frac{1}{n-1}}, then there exists r>0r>0 such that

supiBr+e21n1anp|ui|nn1𝑑μ<.\sup_{i}\int_{B_{r}^{+}}e^{2^{-\frac{1}{n-1}}a_{n}p\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu<\infty. (2.4)

Here

an=n|𝕊n1|1n1.a_{n}=n\left|\mathbb{S}^{n-1}\right|^{\frac{1}{n-1}}. (2.5)
Proof.

By linear changing of variable and shrinking RR if necessary we can assume g=gijdxidxjg=g_{ij}dx_{i}dx_{j} with gij(0)=δijg_{ij}\left(0\right)=\delta_{ij}. Fix p1(p,σ({0})1n1)p_{1}\in\left(p,\sigma\left(\left\{0\right\}\right)^{-\frac{1}{n-1}}\right), then

σ({0})<1p1n1.\sigma\left(\left\{0\right\}\right)<\frac{1}{p_{1}^{n-1}}. (2.6)

We can find ε>0\varepsilon>0 such that

(1+ε)σ({0})<1p1n1\left(1+\varepsilon\right)\sigma\left(\left\{0\right\}\right)<\frac{1}{p_{1}^{n-1}} (2.7)

and

(1+ε)p<p1.\left(1+\varepsilon\right)p<p_{1}. (2.8)

Let vi=uiuv_{i}=u_{i}-u, then vi0v_{i}\rightharpoonup 0 weakly in W1,n(BR+)W^{1,n}\left(B_{R}^{+}\right), vi0v_{i}\rightarrow 0 in Ln(BR+)L^{n}\left(B_{R}^{+}\right). Let 0<R1<R0<R_{1}<R be a small number to be determined. For any φCc(BR1+)\varphi\in C_{c}^{\infty}\left(B_{R_{1}}^{+}\right), we have

(φvi)Ln(BR+)n\displaystyle\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{n}\left(B_{R}^{+}\right)}^{n}
\displaystyle\leq (φviLn+viφLn)n\displaystyle\left(\left\|\varphi\nabla v_{i}\right\|_{L^{n}}+\left\|v_{i}\nabla\varphi\right\|_{L^{n}}\right)^{n}
\displaystyle\leq (φuiLn+φuLn+viφLn)n\displaystyle\left(\left\|\varphi\nabla u_{i}\right\|_{L^{n}}+\left\|\varphi\nabla u\right\|_{L^{n}}+\left\|v_{i}\nabla\varphi\right\|_{L^{n}}\right)^{n}
\displaystyle\leq (1+ε2)φuiLnn+c(ε)φuLnn+c(ε)viφLnn\displaystyle\left(1+\frac{\varepsilon}{2}\right)\left\|\varphi\nabla u_{i}\right\|_{L^{n}}^{n}+c\left(\varepsilon\right)\left\|\varphi\nabla u\right\|_{L^{n}}^{n}+c\left(\varepsilon\right)\left\|v_{i}\nabla\varphi\right\|_{L^{n}}^{n}
\displaystyle\leq (1+ε)φguiLn(BR+,dμ)n+c(ε)φuLnn+c(ε)viφLnn.\displaystyle\left(1+\varepsilon\right)\left\|\varphi\nabla_{g}u_{i}\right\|_{L^{n}\left(B_{R}^{+},d\mu\right)}^{n}+c\left(\varepsilon\right)\left\|\varphi\nabla u\right\|_{L^{n}}^{n}+c\left(\varepsilon\right)\left\|v_{i}\nabla\varphi\right\|_{L^{n}}^{n}.

Hence

limsupi(φvi)Lnn\displaystyle\lim\sup_{i\rightarrow\infty}\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{n}}^{n}
\displaystyle\leq (1+ε)BR+|φ|n𝑑σ+(1+ε)BR+|φ|n|gu|gn𝑑μ+c(ε)BR+|φ|n|u|n𝑑x\displaystyle\left(1+\varepsilon\right)\int_{B_{R}^{+}}\left|\varphi\right|^{n}d\sigma+\left(1+\varepsilon\right)\int_{B_{R}^{+}}\left|\varphi\right|^{n}\left|\nabla_{g}u\right|_{g}^{n}d\mu+c\left(\varepsilon\right)\int_{B_{R}^{+}}\left|\varphi\right|^{n}\left|\nabla u\right|^{n}dx
\displaystyle\leq (1+ε)BR+|φ|n𝑑σ+c(ε)BR+|φ|n|u|n𝑑x.\displaystyle\left(1+\varepsilon\right)\int_{B_{R}^{+}}\left|\varphi\right|^{n}d\sigma+c\left(\varepsilon\right)\int_{B_{R}^{+}}\left|\varphi\right|^{n}\left|\nabla u\right|^{n}dx.

Since (1+ε)σ({0})<1p1n1\left(1+\varepsilon\right)\sigma\left(\left\{0\right\}\right)<\frac{1}{p_{1}^{n-1}}, we can choose φCc(BR1+)\varphi\in C_{c}^{\infty}\left(B_{R_{1}}^{+}\right) such that φ|Br+=1\left.\varphi\right|_{B_{r}^{+}}=1 for some r>0r>0 and

(1+ε)BR+|φ|n𝑑σ+c(ε)BR+|φ|n|u|n𝑑x<1p1n1.\left(1+\varepsilon\right)\int_{B_{R}^{+}}\left|\varphi\right|^{n}d\sigma+c\left(\varepsilon\right)\int_{B_{R}^{+}}\left|\varphi\right|^{n}\left|\nabla u\right|^{n}dx<\frac{1}{p_{1}^{n-1}}. (2.9)

Hence for ii large enough, we have

(φvi)Lnn<1p1n1.\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{n}}^{n}<\frac{1}{p_{1}^{n-1}}. (2.10)

On the other hand,

|ui|nn1(|vi|+|u|)nn1(1+ε)|vi|nn1+c(ε)|u|nn1,\left|u_{i}\right|^{\frac{n}{n-1}}\leq\left(\left|v_{i}\right|+\left|u\right|\right)^{\frac{n}{n-1}}\leq\left(1+\varepsilon\right)\left|v_{i}\right|^{\frac{n}{n-1}}+c\left(\varepsilon\right)\left|u\right|^{\frac{n}{n-1}},

hence

e21n1an|ui|nn1e21n1(1+ε)an|vi|nn1ec(ε)|u|nn1.e^{2^{-\frac{1}{n-1}}a_{n}\left|u_{i}\right|^{\frac{n}{n-1}}}\leq e^{2^{-\frac{1}{n-1}}\left(1+\varepsilon\right)a_{n}\left|v_{i}\right|^{\frac{n}{n-1}}}e^{c\left(\varepsilon\right)\left|u\right|^{\frac{n}{n-1}}}.

It follows from Lemma 2.1 that

Br+e21n1anp1|vi|nn1𝑑μ\displaystyle\int_{B_{r}^{+}}e^{2^{-\frac{1}{n-1}}a_{n}p_{1}\left|v_{i}\right|^{\frac{n}{n-1}}}d\mu \displaystyle\leq cBR+e21n1anp1|φvi|nn1𝑑x\displaystyle c\int_{B_{R}^{+}}e^{2^{-\frac{1}{n-1}}a_{n}p_{1}\left|\varphi v_{i}\right|^{\frac{n}{n-1}}}dx
\displaystyle\leq cBR+e21n1an|φvi|nn1(φvi)Lnnn1𝑑x\displaystyle c\int_{B_{R}^{+}}e^{2^{-\frac{1}{n-1}}a_{n}\frac{\left|\varphi v_{i}\right|^{\frac{n}{n-1}}}{\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{n}}^{\frac{n}{n-1}}}}dx
\displaystyle\leq c.\displaystyle c.

Using p<p11+εp<\frac{p_{1}}{1+\varepsilon} and Lemma 2.2, it follows from Holder’s inequality that e21n1an|ui|nn1e^{2^{-\frac{1}{n-1}}a_{n}\left|u_{i}\right|^{\frac{n}{n-1}}} is bounded in Lp(Br+,dμ)L^{p}\left(B_{r}^{+},d\mu\right).    

Theorem 2.1.

Let MnM^{n} be a C1C^{1} compact manifold with boundary and gg be a continuous Riemannian metric on MM. If EME\subset M with μ(E)δ>0\mu\left(E\right)\geq\delta>0, uW1,n(M)\{0}u\in W^{1,n}\left(M\right)\backslash\left\{0\right\} with uE=0u_{E}=0, then for any 0<a<an=n|𝕊n1|1n10<a<a_{n}=n\left|\mathbb{S}^{n-1}\right|^{\frac{1}{n-1}},

Me21n1a|u|nn1uLnnn1𝑑μc(a,δ)<.\int_{M}e^{2^{-\frac{1}{n-1}}a\frac{\left|u\right|^{\frac{n}{n-1}}}{\left\|\nabla u\right\|_{L^{n}}^{\frac{n}{n-1}}}}d\mu\leq c\left(a,\delta\right)<\infty. (2.11)
Proof.

For any vW1,n(M)v\in W^{1,n}\left(M\right),

vvMLncvLn.\left\|v-v_{M}\right\|_{L^{n}}\leq c\left\|\nabla v\right\|_{L^{n}}.

On the other hand,

vvELncμ(E)1nvLnc(δ)vLn.\left\|v-v_{E}\right\|_{L^{n}}\leq\frac{c}{\mu\left(E\right)^{\frac{1}{n}}}\left\|v\right\|_{L^{n}}\leq c\left(\delta\right)\left\|v\right\|_{L^{n}}.

Replacing vv by vvMv-v_{M}, we see

vvEL2c(δ)vvMLnc(δ)vLn.\left\|v-v_{E}\right\|_{L^{2}}\leq c\left(\delta\right)\left\|v-v_{M}\right\|_{L^{n}}\leq c\left(\delta\right)\left\|\nabla v\right\|_{L^{n}}.

If (2.11) is not true, then we can find a sequence uiW1,n(M)u_{i}\in W^{1,n}\left(M\right), EiME_{i}\subset M with μ(Ei)δ\mu\left(E_{i}\right)\geq\delta, ui,Ei=0u_{i,E_{i}}=0, uiLn=1\left\|\nabla u_{i}\right\|_{L^{n}}=1 and

Me21n1a|ui|nn1𝑑μ\int_{M}e^{2^{-\frac{1}{n-1}}a\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu\rightarrow\infty

as ii\rightarrow\infty. Since

uiLn=uiui,EiLnc(δ)uiLn=c(δ),\left\|u_{i}\right\|_{L^{n}}=\left\|u_{i}-u_{i,E_{i}}\right\|_{L^{n}}\leq c\left(\delta\right)\left\|\nabla u_{i}\right\|_{L^{n}}=c\left(\delta\right),

we see uiu_{i} is bounded in W1,n(M)W^{1,n}\left(M\right). After passing to a subsequence we can find uW1,n(M)u\in W^{1,n}\left(M\right) such that uiuu_{i}\rightharpoonup u weakly in W1,n(M)W^{1,n}\left(M\right) and a measure on MM, σ\sigma such that

|ui|ndμ|u|ndμ+σ\left|\nabla u_{i}\right|^{n}d\mu\rightarrow\left|\nabla u\right|^{n}d\mu+\sigma

as measure. Note that σ(M)1\sigma\left(M\right)\leq 1. For any xM\Mx\in M\backslash\partial M, since

0<aan<σ({x})1n1,0<\frac{a}{a_{n}}<\sigma\left(\left\{x\right\}\right)^{-\frac{1}{n-1}},

it follows from Proposition 1.1 that for some r>0r>0, we have

supiBr(x)ea|ui|nn1𝑑μ<.\sup_{i}\int_{B_{r}\left(x\right)}e^{a\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu<\infty.

Hence

supiBr(x)e21n1a|ui|nn1𝑑μ<.\sup_{i}\int_{B_{r}\left(x\right)}e^{2^{-\frac{1}{n-1}}a\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu<\infty.

For xMx\in\partial M, using 0<aan<σ({x})1n10<\frac{a}{a_{n}}<\sigma\left(\left\{x\right\}\right)^{-\frac{1}{n-1}} and Proposition 2.1, we can find r>0r>0 such that

supiBr(x)e21n1a|ui|nn1𝑑μ<.\sup_{i}\int_{B_{r}\left(x\right)}e^{2^{-\frac{1}{n-1}}a\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu<\infty.

A covering argument implies

supiMe21n1a|ui|nn1𝑑μ<.\sup_{i}\int_{M}e^{2^{-\frac{1}{n-1}}a\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu<\infty.

This contradicts with the choice of uiu_{i}.    

Corollary 2.1.

Let Ωn\Omega\subset\mathbb{R}^{n} be a bounded open domain with C1C^{1} boundary, 0<a<an0<a<a_{n}, then for any uW1,n(Ω)\{0}u\in W^{1,n}\left(\Omega\right)\backslash\left\{0\right\} with Ωu𝑑x=0\int_{\Omega}udx=0, we have

Ωe21n1a|u|nn1uLnnn1𝑑xc(a,Ω)<.\int_{\Omega}e^{2^{-\frac{1}{n-1}}a\frac{\left|u\right|^{\frac{n}{n-1}}}{\left\|\nabla u\right\|_{L^{n}}^{\frac{n}{n-1}}}}dx\leq c\left(a,\Omega\right)<\infty. (2.12)

Corollary 2.1 should be compared to [Ci, Theorem 1.1].

Example 2.1.

Let MnM^{n} be a C1C^{1} compact manifold with boundary and gg be a continuous Riemannian metric on MM. Denote

κ(M,g)=infuW1,n(M)\{0}uM=0uLnuLn.\kappa\left(M,g\right)=\inf_{\begin{subarray}{c}u\in W^{1,n}\left(M\right)\backslash\left\{0\right\}\\ u_{M}=0\end{subarray}}\frac{\left\|\nabla u\right\|_{L^{n}}}{\left\|u\right\|_{L^{n}}}. (2.13)

Assume 0κ<κ(M,g)0\leq\kappa<\kappa\left(M,g\right), 0<a<an0<a<a_{n}, uW1,n(M)u\in W^{1,n}\left(M\right) with uM=0u_{M}=0 and

uLnnκnuLnn1,\left\|\nabla u\right\|_{L^{n}}^{n}-\kappa^{n}\left\|u\right\|_{L^{n}}^{n}\leq 1, (2.14)

then we have

Me21n1a|u|nn1𝑑μc(κ,a)<.\int_{M}e^{2^{-\frac{1}{n-1}}a\left|u\right|^{\frac{n}{n-1}}}d\mu\leq c\left(\kappa,a\right)<\infty. (2.15)

Since the proof of Example 2.1 is almost identical to the proof of Example 1.1 (using Proposition 1.1 and 2.1 when necessary), we omit it here. Example 2.1 should be compared with [N1].

Next we switch to the zero boundary value case. For R>0R>0, we denote ΣR\Sigma_{R} as the base of BR+B_{R}^{+} i.e.

ΣR={(x,0):xn1,|x|<R}.\Sigma_{R}=\left\{\left(x^{\prime},0\right):x^{\prime}\in\mathbb{R}^{n-1},\left|x^{\prime}\right|<R\right\}. (2.16)
Proposition 2.2.

Let 0<R10<R\leq 1, gg be a continuous Riemannian metric on BR+¯\overline{B_{R}^{+}}. Assume uiW1,n(BR+)u_{i}\in W^{1,n}\left(B_{R}^{+}\right) s.t. ui|ΣR=0\left.u_{i}\right|_{\Sigma_{R}}=0, uiuu_{i}\rightharpoonup u weakly in W1,n(BR+)W^{1,n}\left(B_{R}^{+}\right) and

|gui|gndμ|gu|gndμ+σ as measure on BR+.\left|\nabla_{g}u_{i}\right|_{g}^{n}d\mu\rightarrow\left|\nabla_{g}u\right|_{g}^{n}d\mu+\sigma\text{ as measure on }B_{R}^{+}\text{.}

If 0<p<σ({0})1n10<p<\sigma\left(\left\{0\right\}\right)^{-\frac{1}{n-1}}, then there exists r>0r>0 such that

supiBr+eanp|ui|nn1𝑑μ<.\sup_{i}\int_{B_{r}^{+}}e^{a_{n}p\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu<\infty. (2.17)

Here

an=n|𝕊n1|1n1.a_{n}=n\left|\mathbb{S}^{n-1}\right|^{\frac{1}{n-1}}. (2.18)
Proof.

Let hh be a continuous Riemannian metric on BR¯\overline{B_{R}}, which is an extension of gg. We define

vi(x)={ui(x),if xBR+0,if xBR\BR+,v(x)={u(x),if xBR+0,if xBR\BR+,v_{i}\left(x\right)=\left\{\begin{tabular}[]{ll}$u_{i}\left(x\right),$&if $x\in B_{R}^{+}$\\ $0,$&if $x\in B_{R}\backslash B_{R}^{+}$\end{tabular}\right.,\quad v\left(x\right)=\left\{\begin{tabular}[]{ll}$u\left(x\right),$&if $x\in B_{R}^{+}$\\ $0,$&if $x\in B_{R}\backslash B_{R}^{+}$\end{tabular}\right.,

and a measure τ\tau on BRB_{R} by τ(E)=σ(EBR)\tau\left(E\right)=\sigma\left(E\cap B_{R}\right) for any Borel set EBRE\subset B_{R}. Then vi,vW1,n(BR)v_{i},v\in W^{1,n}\left(B_{R}\right), vivv_{i}\rightharpoonup v weakly in W1,n(BR)W^{1,n}\left(B_{R}\right) and

|hvi|hndμh|hv|hndμh+τ as measure on BR.\left|\nabla_{h}v_{i}\right|_{h}^{n}d\mu_{h}\rightarrow\left|\nabla_{h}v\right|_{h}^{n}d\mu_{h}+\tau\text{ as measure on }B_{R}.

Here μh\mu_{h} is the measure associated with hh. Since τ({0})=σ({0})\tau\left(\left\{0\right\}\right)=\sigma\left(\left\{0\right\}\right), it follows from Proposition 2.1 that for some r>0r>0,

supiBreanp|vi|nn1𝑑μh<.\sup_{i}\int_{B_{r}}e^{a_{n}p\left|v_{i}\right|^{\frac{n}{n-1}}}d\mu_{h}<\infty.

Hence

supiBr+eanp|ui|nn1𝑑μ<.\sup_{i}\int_{B_{r}^{+}}e^{a_{n}p\left|u_{i}\right|^{\frac{n}{n-1}}}d\mu<\infty.

   

Theorem 2.2.

Let MnM^{n} be a C1C^{1} compact manifold with boundary and gg be a continuous Riemannian metric on MM. Denote

κ0(M,g)=infuW01,n(M)\{0}uLnuLn.\kappa_{0}\left(M,g\right)=\inf_{u\in W_{0}^{1,n}\left(M\right)\backslash\left\{0\right\}}\frac{\left\|\nabla u\right\|_{L^{n}}}{\left\|u\right\|_{L^{n}}}. (2.19)

Assume 0κ<κ0(M,g)0\leq\kappa<\kappa_{0}\left(M,g\right), 0<a<an=n|𝕊n1|1n10<a<a_{n}=n\left|\mathbb{S}^{n-1}\right|^{\frac{1}{n-1}}, uW01,n(M)u\in W_{0}^{1,n}\left(M\right) and

uLnnκnuLnn1,\left\|\nabla u\right\|_{L^{n}}^{n}-\kappa^{n}\left\|u\right\|_{L^{n}}^{n}\leq 1, (2.20)

then we have

Mea|u|nn1𝑑μc(κ,a)<.\int_{M}e^{a\left|u\right|^{\frac{n}{n-1}}}d\mu\leq c\left(\kappa,a\right)<\infty. (2.21)

Since the proof of Theorem 2.2 is almost identical to the proof of Example 1.1 (using Proposition 1.1 and 2.2 when necessary), we omit it here. Theorem 2.2 should be compared with [AD, N2, T, Y1].

3. Second order Sobolev spaces

Let nn\in\mathbb{N}, n3n\geq 3 and Ωn\Omega\subset\mathbb{R}^{n} be an open domain. For 1p<1\leq p<\infty and uW2,p(Ω)u\in W^{2,p}\left(\Omega\right), we denote

uW2,p(Ω)=[Ω(|u|p+|u|p+|D2u|p)𝑑x]1p\left\|u\right\|_{W^{2,p}\left(\Omega\right)}=\left[\int_{\Omega}\left(\left|u\right|^{p}+\left|\nabla u\right|^{p}+\left|D^{2}u\right|^{p}\right)dx\right]^{\frac{1}{p}} (3.1)

and W02,p(Ω)W_{0}^{2,p}\left(\Omega\right) as the closure of Cc(Ω)C_{c}^{\infty}\left(\Omega\right) in W2,p(Ω)W^{2,p}\left(\Omega\right). For uW2,(Ω)u\in W^{2,\infty}\left(\Omega\right), we denote

uW2,(Ω)=uL(Ω)+uL(Ω)+D2uL(Ω).\left\|u\right\|_{W^{2,\infty}\left(\Omega\right)}=\left\|u\right\|_{L^{\infty}\left(\Omega\right)}+\left\|\nabla u\right\|_{L^{\infty}\left(\Omega\right)}+\left\|D^{2}u\right\|_{L^{\infty}\left(\Omega\right)}. (3.2)

For R>0R>0, it is shown in [A] that for any uW02,n2(BRn)\{0}u\in W_{0}^{2,\frac{n}{2}}\left(B_{R}^{n}\right)\backslash\left\{0\right\},

BRexp(a2,n|u|nn2ΔuLn2nn2)𝑑xc(n)Rn.\int_{B_{R}}\exp\left(a_{2,n}\frac{\left|u\right|^{\frac{n}{n-2}}}{\left\|\Delta u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{n-2}}}\right)dx\leq c\left(n\right)R^{n}. (3.3)

Here

a2,n=n|𝕊n1|(4πn2Γ(n22))nn2a_{2,n}=\frac{n}{\left|\mathbb{S}^{n-1}\right|}\left(\frac{4\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-2}{2}\right)}\right)^{\frac{n}{n-2}} (3.4)

and

Γ(α)=0tα1et𝑑t\Gamma\left(\alpha\right)=\int_{0}^{\infty}t^{\alpha-1}e^{-t}dt (3.5)

for α>0\alpha>0.

Similar to Lemma 1.1, we have

Lemma 3.1.

If uW2,n2(BRn)u\in W^{2,\frac{n}{2}}\left(B_{R}^{n}\right), then for any a>0a>0,

BRea|u|nn2𝑑x<.\int_{B_{R}}e^{a\left|u\right|^{\frac{n}{n-2}}}dx<\infty. (3.6)
Proof.

First we assume uW02,n2(BR)u\in W_{0}^{2,\frac{n}{2}}\left(B_{R}\right). Without losing of generality, we can assume uu is unbounded. For ε>0\varepsilon>0, a tiny number to be determined, we can find vCc(BR)v\in C_{c}^{\infty}\left(B_{R}\right) such that

uvW2,n2<ε.\left\|u-v\right\|_{W^{2,\frac{n}{2}}}<\varepsilon.

Hence

ΔuΔvLn2c(n)ε.\left\|\Delta u-\Delta v\right\|_{L^{\frac{n}{2}}}\leq c\left(n\right)\varepsilon.

Let w=uvw=u-v, then

|u|=|v+w|vL+|w|.\left|u\right|=\left|v+w\right|\leq\left\|v\right\|_{L^{\infty}}+\left|w\right|.

Hence

|u|nn222n2vLnn2+22n2|w|nn2.\left|u\right|^{\frac{n}{n-2}}\leq 2^{\frac{2}{n-2}}\left\|v\right\|_{L^{\infty}}^{\frac{n}{n-2}}+2^{\frac{2}{n-2}}\left|w\right|^{\frac{n}{n-2}}.

It follows that

ea|u|nn1e22n2avLnn2e22n2a|w|nn2e22n2avLnn2ea2,n|w|nn2ΔwLn2nn2e^{a\left|u\right|^{\frac{n}{n-1}}}\leq e^{2^{\frac{2}{n-2}}a\left\|v\right\|_{L^{\infty}}^{\frac{n}{n-2}}}e^{2^{\frac{2}{n-2}}a\left|w\right|^{\frac{n}{n-2}}}\leq e^{2^{\frac{2}{n-2}}a\left\|v\right\|_{L^{\infty}}^{\frac{n}{n-2}}}e^{a_{2,n}\frac{\left|w\right|^{\frac{n}{n-2}}}{\left\|\Delta w\right\|_{L^{\frac{n}{2}}}^{\frac{n}{n-2}}}}

if ε\varepsilon is small enough. Hence

BRea|u|nn2𝑑xc(n)e22n2avLnn2Rn<.\int_{B_{R}}e^{a\left|u\right|^{\frac{n}{n-2}}}dx\leq c\left(n\right)e^{2^{\frac{2}{n-2}}a\left\|v\right\|_{L^{\infty}}^{\frac{n}{n-2}}}R^{n}<\infty.

In general, if uW2,n2(BR)u\in W^{2,\frac{n}{2}}\left(B_{R}\right), then we can find u~W02,n2(B2R)\widetilde{u}\in W_{0}^{2,\frac{n}{2}}\left(B_{2R}\right) such that u~|BR=u\left.\widetilde{u}\right|_{B_{R}}=u. Hence

BRea|u|nn2𝑑xB2Rea|u~|nn2𝑑x<.\int_{B_{R}}e^{a\left|u\right|^{\frac{n}{n-2}}}dx\leq\int_{B_{2R}}e^{a\left|\widetilde{u}\right|^{\frac{n}{n-2}}}dx<\infty.

   

Proposition 3.1.

Let 0<R10<R\leq 1, gg be a C1C^{1} Riemannian metric on BRn¯\overline{B_{R}^{n}}. Assume uiW2,n2(BRn)u_{i}\in W^{2,\frac{n}{2}}\left(B_{R}^{n}\right), uiuu_{i}\rightharpoonup u weakly in W2,n2(BR)W^{2,\frac{n}{2}}\left(B_{R}\right) and

|Δgui|n2dμ|Δgu|n2dμ+σ as measure on BR.\left|\Delta_{g}u_{i}\right|^{\frac{n}{2}}d\mu\rightarrow\left|\Delta_{g}u\right|^{\frac{n}{2}}d\mu+\sigma\text{ as measure on }B_{R}.

If 0<p<σ({0})2n20<p<\sigma\left(\left\{0\right\}\right)^{-\frac{2}{n-2}}, then for some r>0r>0,

supiBrea2,np|ui|nn2𝑑μ<.\sup_{i}\int_{B_{r}}e^{a_{2,n}p\left|u_{i}\right|^{\frac{n}{n-2}}}d\mu<\infty. (3.7)

Here

a2,n=n|𝕊n1|(4πn2Γ(n22))nn2a_{2,n}=\frac{n}{\left|\mathbb{S}^{n-1}\right|}\left(\frac{4\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-2}{2}\right)}\right)^{\frac{n}{n-2}} (3.8)

By a linear changing of variable and shrinking RR if necessary we can assume g=gijdxidxjg=g_{ij}dx_{i}dx_{j} with gij(0)=δijg_{ij}\left(0\right)=\delta_{ij}. Let

G=det[gij]1i,jn;[gij]1i,jn=[gij]1i,jn1.G=\det\left[g_{ij}\right]_{1\leq i,j\leq n};\quad\left[g^{ij}\right]_{1\leq i,j\leq n}=\left[g_{ij}\right]_{1\leq i,j\leq n}^{-1}.

If vv is a function on BRB_{R}, then

Δgv\displaystyle\Delta_{g}v =\displaystyle= 1Gi(Ggijjv)\displaystyle\frac{1}{\sqrt{G}}\partial_{i}\left(\sqrt{G}g^{ij}\partial_{j}v\right)
=\displaystyle= gijijv+igijjv+gijilogGjv.\displaystyle g^{ij}\partial_{ij}v+\partial_{i}g^{ij}\partial_{j}v+g^{ij}\partial_{i}\log\sqrt{G}\partial_{j}v.

For vW02,n2(BR)v\in W_{0}^{2,\frac{n}{2}}\left(B_{R}\right), then standard elliptic theory (see [GiT]) tells us

vW2,n2(BR)c1ΔgvLn2(BR).\left\|v\right\|_{W^{2,\frac{n}{2}}\left(B_{R}\right)}\leq c_{1}\left\|\Delta_{g}v\right\|_{L^{\frac{n}{2}}\left(B_{R}\right)}. (3.9)

On the other hand, let 0<R1<R0<R_{1}<R be a small number and vW02,n2(BR1)v\in W_{0}^{2,\frac{n}{2}}\left(B_{R_{1}}\right), we have

Δv\displaystyle\Delta v =\displaystyle= (δijgij)ijv+gijijv\displaystyle\left(\delta_{ij}-g^{ij}\right)\partial_{ij}v+g^{ij}\partial_{ij}v
=\displaystyle= Δgv+(δijgij)ijvigijjvgijilogGjv.\displaystyle\Delta_{g}v+\left(\delta_{ij}-g^{ij}\right)\partial_{ij}v-\partial_{i}g^{ij}\partial_{j}v-g^{ij}\partial_{i}\log\sqrt{G}\partial_{j}v.

It follows that

|Δv||Δgv|+ε1|D2v|+c|v|.\left|\Delta v\right|\leq\left|\Delta_{g}v\right|+\varepsilon_{1}\left|D^{2}v\right|+c\left|\nabla v\right|. (3.10)

Here ε1=ε1(R1)>0\varepsilon_{1}=\varepsilon_{1}\left(R_{1}\right)>0. Moreover ε10\varepsilon_{1}\rightarrow 0 as R10+R_{1}\rightarrow 0^{+}. We have

ΔvLn2(BR)n2\displaystyle\left\|\Delta v\right\|_{L^{\frac{n}{2}}\left(B_{R}\right)}^{\frac{n}{2}}
\displaystyle\leq (ΔgvLn2+ε1D2vLn2+cvLn2)n2\displaystyle\left(\left\|\Delta_{g}v\right\|_{L^{\frac{n}{2}}}+\varepsilon_{1}\left\|D^{2}v\right\|_{L^{\frac{n}{2}}}+c\left\|\nabla v\right\|_{L^{\frac{n}{2}}}\right)^{\frac{n}{2}}
\displaystyle\leq [(1+c1ε1)ΔgvLn2+cvLn2]n2\displaystyle\left[\left(1+c_{1}\varepsilon_{1}\right)\left\|\Delta_{g}v\right\|_{L^{\frac{n}{2}}}+c\left\|\nabla v\right\|_{L^{\frac{n}{2}}}\right]^{\frac{n}{2}}
\displaystyle\leq (1+cε1)ΔgvLn2n2+c(ε1)vLn2n2.\displaystyle\left(1+c\varepsilon_{1}\right)\left\|\Delta_{g}v\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon_{1}\right)\left\|\nabla v\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}.

To continue, we fix p1(p,σ({0})2n2)p_{1}\in\left(p,\sigma\left(\left\{0\right\}\right)^{-\frac{2}{n-2}}\right), then

σ({0})<1p1n22.\sigma\left(\left\{0\right\}\right)<\frac{1}{p_{1}^{\frac{n-2}{2}}}. (3.12)

We can find ε>0\varepsilon>0 s.t.

(1+ε)σ({0})<1p1n22\left(1+\varepsilon\right)\sigma\left(\left\{0\right\}\right)<\frac{1}{p_{1}^{\frac{n-2}{2}}} (3.13)

and

(1+ε)p<p1.\left(1+\varepsilon\right)p<p_{1}. (3.14)

Let vi=uiuv_{i}=u_{i}-u, then vi0v_{i}\rightharpoonup 0 weakly in W2,n2(BR)W^{2,\frac{n}{2}}\left(B_{R}\right) and vi0v_{i}\rightarrow 0 in W1,n2(BR)W^{1,\frac{n}{2}}\left(B_{R}\right). Let 0<R1<R0<R_{1}<R be a small number to be determined. For φCc(BR1)\varphi\in C_{c}^{\infty}\left(B_{R_{1}}\right), by the previous discussion we have

Δ(φvi)Ln2(BR)n2\displaystyle\left\|\Delta\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}\left(B_{R}\right)}^{\frac{n}{2}}
\displaystyle\leq (1+cε1)Δg(φvi)Ln2n2+c(ε1)(φvi)Ln2n2\displaystyle\left(1+c\varepsilon_{1}\right)\left\|\Delta_{g}\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon_{1}\right)\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}
\displaystyle\leq (1+cε1)(φΔgviLn2+cφW2,viW1,n2)n2+c(ε1)(φvi)Ln2n2\displaystyle\left(1+c\varepsilon_{1}\right)\left(\left\|\varphi\Delta_{g}v_{i}\right\|_{L^{\frac{n}{2}}}+c\left\|\varphi\right\|_{W^{2,\infty}}\left\|v_{i}\right\|_{W^{1,\frac{n}{2}}}\right)^{\frac{n}{2}}+c\left(\varepsilon_{1}\right)\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}
\displaystyle\leq (1+ε4)φΔgviLn2n2+c(ε)φW2,n2viW1,n2n2\displaystyle\left(1+\frac{\varepsilon}{4}\right)\left\|\varphi\Delta_{g}v_{i}\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\varphi\right\|_{W^{2,\infty}}^{\frac{n}{2}}\left\|v_{i}\right\|_{W^{1,\frac{n}{2}}}^{\frac{n}{2}}
\displaystyle\leq (1+ε4)(φΔguiLn2+φΔguLn2)n2+c(ε)φW2,n2viW1,n2n2\displaystyle\left(1+\frac{\varepsilon}{4}\right)\left(\left\|\varphi\Delta_{g}u_{i}\right\|_{L^{\frac{n}{2}}}+\left\|\varphi\Delta_{g}u\right\|_{L^{\frac{n}{2}}}\right)^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\varphi\right\|_{W^{2,\infty}}^{\frac{n}{2}}\left\|v_{i}\right\|_{W^{1,\frac{n}{2}}}^{\frac{n}{2}}
\displaystyle\leq (1+ε2)φΔguiLn2n2+c(ε)φΔguLn2n2+c(ε)φW2,n2viW1,n2n2\displaystyle\left(1+\frac{\varepsilon}{2}\right)\left\|\varphi\Delta_{g}u_{i}\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\varphi\Delta_{g}u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\varphi\right\|_{W^{2,\infty}}^{\frac{n}{2}}\left\|v_{i}\right\|_{W^{1,\frac{n}{2}}}^{\frac{n}{2}}
\displaystyle\leq (1+ε)φΔguiLn2(BR,dμ)n2+c(ε)φΔguLn2(BR,dμ)n2+c(ε)φW2,n2viW1,n2n2\displaystyle\left(1+\varepsilon\right)\left\|\varphi\Delta_{g}u_{i}\right\|_{L^{\frac{n}{2}}\left(B_{R},d\mu\right)}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\varphi\Delta_{g}u\right\|_{L^{\frac{n}{2}}\left(B_{R},d\mu\right)}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\varphi\right\|_{W^{2,\infty}}^{\frac{n}{2}}\left\|v_{i}\right\|_{W^{1,\frac{n}{2}}}^{\frac{n}{2}}

if R1R_{1} is small enough. Hence

limsupiΔ(φvi)Ln2(BR)n2\displaystyle\lim\sup_{i\rightarrow\infty}\left\|\Delta\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}\left(B_{R}\right)}^{\frac{n}{2}}
\displaystyle\leq (1+ε)BR|φ|n2𝑑σ+(1+ε)BR|φ|n2|Δgu|n2𝑑μ+c(ε)φΔguLn2(BR,dμ)n2\displaystyle\left(1+\varepsilon\right)\int_{B_{R}}\left|\varphi\right|^{\frac{n}{2}}d\sigma+\left(1+\varepsilon\right)\int_{B_{R}}\left|\varphi\right|^{\frac{n}{2}}\left|\Delta_{g}u\right|^{\frac{n}{2}}d\mu+c\left(\varepsilon\right)\left\|\varphi\Delta_{g}u\right\|_{L^{\frac{n}{2}}\left(B_{R},d\mu\right)}^{\frac{n}{2}}
\displaystyle\leq (1+ε)BR|φ|n2𝑑σ+c(ε)BR|φ|n2|Δgu|n2𝑑μ.\displaystyle\left(1+\varepsilon\right)\int_{B_{R}}\left|\varphi\right|^{\frac{n}{2}}d\sigma+c\left(\varepsilon\right)\int_{B_{R}}\left|\varphi\right|^{\frac{n}{2}}\left|\Delta_{g}u\right|^{\frac{n}{2}}d\mu.

Since (1+ε)σ({0})<1p1n22\left(1+\varepsilon\right)\sigma\left(\left\{0\right\}\right)<\frac{1}{p_{1}^{\frac{n-2}{2}}}, we can choose φCc(BR1)\varphi\in C_{c}^{\infty}\left(B_{R_{1}}\right) such that φ|Br=1\left.\varphi\right|_{B_{r}}=1 for some r>0r>0 and

(1+ε)BR|φ|n2𝑑σ+c(ε)BR|φ|n2|Δgu|n2𝑑μ<1p1n22.\left(1+\varepsilon\right)\int_{B_{R}}\left|\varphi\right|^{\frac{n}{2}}d\sigma+c\left(\varepsilon\right)\int_{B_{R}}\left|\varphi\right|^{\frac{n}{2}}\left|\Delta_{g}u\right|^{\frac{n}{2}}d\mu<\frac{1}{p_{1}^{\frac{n-2}{2}}}. (3.15)

Hence for ii large enough, we have

Δ(φvi)Ln2(BR)n2<1p1n22.\left\|\Delta\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}\left(B_{R}\right)}^{\frac{n}{2}}<\frac{1}{p_{1}^{\frac{n-2}{2}}}. (3.16)

This implies

Δ(φvi)Ln2(BR)nn2<1p1.\left\|\Delta\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}\left(B_{R}\right)}^{\frac{n}{n-2}}<\frac{1}{p_{1}}. (3.17)

On the other hand,

|ui|nn2(|vi|+|u|)nn2(1+ε)|vi|nn2+c(ε)|u|nn2,\left|u_{i}\right|^{\frac{n}{n-2}}\leq\left(\left|v_{i}\right|+\left|u\right|\right)^{\frac{n}{n-2}}\leq\left(1+\varepsilon\right)\left|v_{i}\right|^{\frac{n}{n-2}}+c\left(\varepsilon\right)\left|u\right|^{\frac{n}{n-2}},

hence

ea2,n|ui|nn2e(1+ε)a2,n|vi|nn2ec(ε)|u|nn2.e^{a_{2,n}\left|u_{i}\right|^{\frac{n}{n-2}}}\leq e^{\left(1+\varepsilon\right)a_{2,n}\left|v_{i}\right|^{\frac{n}{n-2}}}e^{c\left(\varepsilon\right)\left|u\right|^{\frac{n}{n-2}}}.

It follows from (3.3) that

Brea2,np1|vi|nn2𝑑μcBRea2,np1|φvi|nn2𝑑xcBRea2,n|φvi|nn2(φvi)Lnnn2𝑑xc.\int_{B_{r}}e^{a_{2,n}p_{1}\left|v_{i}\right|^{\frac{n}{n-2}}}d\mu\leq c\int_{B_{R}}e^{a_{2,n}p_{1}\left|\varphi v_{i}\right|^{\frac{n}{n-2}}}dx\leq c\int_{B_{R}}e^{a_{2,n}\frac{\left|\varphi v_{i}\right|^{\frac{n}{n-2}}}{\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{n}}^{\frac{n}{n-2}}}}dx\leq c.

Using p<p11+εp<\frac{p_{1}}{1+\varepsilon} and Lemma 3.1, it follows from Holder’s inequality that ea2,n|ui|nn2e^{a_{2,n}\left|u_{i}\right|^{\frac{n}{n-2}}} is bounded in Lp(Br,dμ)L^{p}\left(B_{r},d\mu\right). This finishes the proof of Proposition 3.1.

Theorem 3.1.

Let MnM^{n} be a C2C^{2} compact manifold with a C1C^{1} Riemannian metric gg. If EME\subset M with μ(E)δ>0\mu\left(E\right)\geq\delta>0, uW2,n2(M)\{0}u\in W^{2,\frac{n}{2}}\left(M\right)\backslash\left\{0\right\} with uE=0u_{E}=0, then for any 0<a<a2,n=n|𝕊n1|(4πn2Γ(n22))nn20<a<a_{2,n}=\frac{n}{\left|\mathbb{S}^{n-1}\right|}\left(\frac{4\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-2}{2}\right)}\right)^{\frac{n}{n-2}},

Mea|u|nn2ΔuLn2nn2𝑑μc(a,δ)<.\int_{M}e^{a\frac{\left|u\right|^{\frac{n}{n-2}}}{\left\|\Delta u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{n-2}}}}d\mu\leq c\left(a,\delta\right)<\infty. (3.18)
Proof.

For any vW2,n2(M)v\in W^{2,\frac{n}{2}}\left(M\right), standard elliptic theory (see [GiT]) and compactness argument tells us

vvMLn2cΔvLn2.\left\|v-v_{M}\right\|_{L^{\frac{n}{2}}}\leq c\left\|\Delta v\right\|_{L^{\frac{n}{2}}}.

On the other hand,

vvELn2cμ(E)2nvLn2c(δ)vLn2.\left\|v-v_{E}\right\|_{L^{\frac{n}{2}}}\leq\frac{c}{\mu\left(E\right)^{\frac{2}{n}}}\left\|v\right\|_{L^{\frac{n}{2}}}\leq c\left(\delta\right)\left\|v\right\|_{L^{\frac{n}{2}}}.

Replacing vv by vvMv-v_{M}, we see

vvELn2c(δ)vvMLn2c(δ)ΔvLn2.\left\|v-v_{E}\right\|_{L^{\frac{n}{2}}}\leq c\left(\delta\right)\left\|v-v_{M}\right\|_{L^{\frac{n}{2}}}\leq c\left(\delta\right)\left\|\Delta v\right\|_{L^{\frac{n}{2}}}.

If (3.18) is not true, then we can find a sequence uiW2,n2(M)u_{i}\in W^{2,\frac{n}{2}}\left(M\right), EiME_{i}\subset M with μ(Ei)δ\mu\left(E_{i}\right)\geq\delta, ui,Ei=0u_{i,E_{i}}=0, ΔuiLn2=1\left\|\Delta u_{i}\right\|_{L^{\frac{n}{2}}}=1 and

Mea|ui|nn2𝑑μ\int_{M}e^{a\left|u_{i}\right|^{\frac{n}{n-2}}}d\mu\rightarrow\infty

as ii\rightarrow\infty. Since

uiLn2=uiui,EiLn2c(δ)ΔuiLn2=c(δ),\left\|u_{i}\right\|_{L^{\frac{n}{2}}}=\left\|u_{i}-u_{i,E_{i}}\right\|_{L^{\frac{n}{2}}}\leq c\left(\delta\right)\left\|\Delta u_{i}\right\|_{L^{\frac{n}{2}}}=c\left(\delta\right),

standard elliptic estimate (see [GiT]) gives us

uiW2,n2c(ΔuiLn2+uiLn2)c(δ).\left\|u_{i}\right\|_{W^{2,\frac{n}{2}}}\leq c\left(\left\|\Delta u_{i}\right\|_{L^{\frac{n}{2}}}+\left\|u_{i}\right\|_{L^{\frac{n}{2}}}\right)\leq c\left(\delta\right).

Hence uiu_{i} is bounded in W2,n2(M)W^{2,\frac{n}{2}}\left(M\right). After passing to a subsequence we can find uW2,n2(M)u\in W^{2,\frac{n}{2}}\left(M\right) such that uiuu_{i}\rightharpoonup u weakly in W2,n2(M)W^{2,\frac{n}{2}}\left(M\right) and a measure on MM, σ\sigma such that

|Δui|n2dμ|Δu|n2dμ+σ\left|\Delta u_{i}\right|^{\frac{n}{2}}d\mu\rightarrow\left|\Delta u\right|^{\frac{n}{2}}d\mu+\sigma

as measure. Note that σ(M)1\sigma\left(M\right)\leq 1. For any xMx\in M, since

0<aa2,n<σ({x})2n2,0<\frac{a}{a_{2,n}}<\sigma\left(\left\{x\right\}\right)^{-\frac{2}{n-2}},

it follows from Proposition 3.1 that for some r>0r>0, we have

supiBr(x)ea|ui|nn2𝑑μ<.\sup_{i}\int_{B_{r}\left(x\right)}e^{a\left|u_{i}\right|^{\frac{n}{n-2}}}d\mu<\infty.

A covering argument implies

supiMea|ui|nn2𝑑μ<.\sup_{i}\int_{M}e^{a\left|u_{i}\right|^{\frac{n}{n-2}}}d\mu<\infty.

This contradicts with the choice of uiu_{i}.    

Example 3.1.

Let MnM^{n} be a C2C^{2} compact manifold with a C1C^{1} Riemannian metric gg. Denote

κ2(M,g)=infuW2,n2(M)\{0}uM=0ΔuLn2uLn2.\kappa_{2}\left(M,g\right)=\inf_{\begin{subarray}{c}u\in W^{2,\frac{n}{2}}\left(M\right)\backslash\left\{0\right\}\\ u_{M}=0\end{subarray}}\frac{\left\|\Delta u\right\|_{L^{\frac{n}{2}}}}{\left\|u\right\|_{L^{\frac{n}{2}}}}. (3.19)

Here uM=1μ(M)Mu𝑑μu_{M}=\frac{1}{\mu\left(M\right)}\int_{M}ud\mu. Assume 0κ<κ2(M,g)0\leq\kappa<\kappa_{2}\left(M,g\right), 0<a<a2,n0<a<a_{2,n}, uW2,n2(M)u\in W^{2,\frac{n}{2}}\left(M\right) with uM=0u_{M}=0 and

ΔuLn2n2κn2uLn2n21,\left\|\Delta u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}-\kappa^{\frac{n}{2}}\left\|u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}\leq 1, (3.20)

then we have

Mea|u|nn2𝑑μc(κ,a)<.\int_{M}e^{a\left|u\right|^{\frac{n}{n-2}}}d\mu\leq c\left(\kappa,a\right)<\infty. (3.21)

Since the proof of Example 3.1 is almost identical to the proof of Example 1.1 (using Proposition 3.1 when necessary), we omit it here.

3.1. Paneitz operator and Q curvature in dimension 4

Let (M4,g)\left(M^{4},g\right) be a smooth compact Riemannian manifold with dimension 4. The Paneitz operator is given by (see [CY2, HY2])

Pu=Δ2u+2div(Rc(u,ei)ei)23div(Ru).Pu=\Delta^{2}u+2\mathop{\mathrm{d}iv}\left(Rc\left(\nabla u,e_{i}\right)e_{i}\right)-\frac{2}{3}\mathop{\mathrm{d}iv}\left(R\nabla u\right). (3.22)

Here e1,e2,e3,e4e_{1},e_{2},e_{3},e_{4} is a local orthonormal frame with respect to gg. The associated QQ curvature is

Q=16ΔR12|Rc|2+16R2.Q=-\frac{1}{6}\Delta R-\frac{1}{2}\left|Rc\right|^{2}+\frac{1}{6}R^{2}. (3.23)

In 4-dimensional conformal geometry, PP and QQ play the same roles as Δ-\Delta and Gauss curvature in 2-dimensional conformal geometry.

For uC(M)u\in C^{\infty}\left(M\right), let

E(u)\displaystyle E\left(u\right) =\displaystyle= MPuu𝑑μ\displaystyle\int_{M}Pu\cdot ud\mu
=\displaystyle= M((Δu)22Rc(u,u)+23R|u|2)𝑑μ.\displaystyle\int_{M}\left(\left(\Delta u\right)^{2}-2Rc\left(\nabla u,\nabla u\right)+\frac{2}{3}R\left|\nabla u\right|^{2}\right)d\mu.

By this formula, we know E(u)E\left(u\right) still makes sense for uH2(M)=W2,2(M)u\in H^{2}\left(M\right)=W^{2,2}\left(M\right).

On the standard 𝕊4\mathbb{S}^{4}, P0P\geq 0 and kerP={constant functions}\ker P=\left\{\text{constant functions}\right\}. Moreover in [Gu, GuV], some general criterion for such positivity condition to be valid were derived. If P0P\geq 0 and kerP={constant functions}\ker P=\left\{\text{constant functions}\right\}, then for any uH2(M)u\in H^{2}\left(M\right) with uM=0u_{M}=0,

uL22c(M,g)E(u).\left\|u\right\|_{L^{2}}^{2}\leq c\left(M,g\right)E\left(u\right). (3.25)

On the other hand, standard elliptic theory (see [GiT]) tells us

uH22\displaystyle\left\|u\right\|_{H^{2}}^{2} \displaystyle\leq c(M,g)(ΔuL22+uL22)\displaystyle c\left(M,g\right)\left(\left\|\Delta u\right\|_{L^{2}}^{2}+\left\|u\right\|_{L^{2}}^{2}\right)
\displaystyle\leq c(M,g)(E(u)+uH12)\displaystyle c\left(M,g\right)\left(E\left(u\right)+\left\|u\right\|_{H^{1}}^{2}\right)
\displaystyle\leq c(M,g)E(u)+12uH22+c(M,g)uL22\displaystyle c\left(M,g\right)E\left(u\right)+\frac{1}{2}\left\|u\right\|_{H^{2}}^{2}+c\left(M,g\right)\left\|u\right\|_{L^{2}}^{2}
\displaystyle\leq 12uH22+c(M,g)E(u).\displaystyle\frac{1}{2}\left\|u\right\|_{H^{2}}^{2}+c\left(M,g\right)E\left(u\right).

We have used the interpolation inequality in between. It follows that

uH22c(M,g)E(u).\left\|u\right\|_{H^{2}}^{2}\leq c\left(M,g\right)E\left(u\right). (3.26)
Lemma 3.2.

If P0P\geq 0, kerP={constant functions}\ker P=\left\{\text{constant functions}\right\}, uH2(M)\{0}u\in H^{2}\left(M\right)\backslash\left\{0\right\} such that uM=0u_{M}=0, then for any a(0,32π2)a\in\left(0,32\pi^{2}\right),

Meau2E(u)𝑑μc(a)<.\int_{M}e^{a\frac{u^{2}}{E\left(u\right)}}d\mu\leq c\left(a\right)<\infty. (3.27)

In particular,

logMe4u𝑑μ4aE(u)+c(a).\log\int_{M}e^{4u}d\mu\leq\frac{4}{a}E\left(u\right)+c\left(a\right). (3.28)

Note that a2,4=32π2a_{2,4}=32\pi^{2}. In [CY2, Lemma 1.6], it is shown that under the same assumption as Lemma 3.2,

Me32π2u2E(u)𝑑μc(M,g)<.\int_{M}e^{32\pi^{2}\frac{u^{2}}{E\left(u\right)}}d\mu\leq c\left(M,g\right)<\infty. (3.29)

The argument is based on asymptotic expansion formula of Green’s function of P\sqrt{P} and modified Adams’ argument [A]. Our approach below is more elementary. Moreover, Lemma 3.2 is sufficient for application to Q curvature equation in [CY2, Theorem 1.2], which is for the case (M,g)\left(M,g\right) not conformal diffeomorphic to the standard 𝕊4\mathbb{S}^{4} (see [Gu] and [HY1, Proposition 1.3]).

Proof of Lemma 3.2.

If (3.27) is not true, then there exists uiH2(M)u_{i}\in H^{2}\left(M\right) such that ui,M=0u_{i,M}=0, E(ui)=1E\left(u_{i}\right)=1 and

Meaui2𝑑μ\int_{M}e^{au_{i}^{2}}d\mu\rightarrow\infty

as ii\rightarrow\infty. By previous discussion we see

uiH22c(M,g)E(ui)=c(M,g).\left\|u_{i}\right\|_{H^{2}}^{2}\leq c\left(M,g\right)E\left(u_{i}\right)=c\left(M,g\right).

Hence after passing to a subsequence, we can find a uH2(M)u\in H^{2}\left(M\right) and a measure σ\sigma on MM such that uiuu_{i}\rightharpoonup u weakly in H2(M)H^{2}\left(M\right), uiuu_{i}\rightarrow u in H1(M)H^{1}\left(M\right) and

(Δui)2dμ(Δu)2dμ+σ as measure.\left(\Delta u_{i}\right)^{2}d\mu\rightarrow\left(\Delta u\right)^{2}d\mu+\sigma\text{ as measure.}

Note that

E(ui)\displaystyle E\left(u_{i}\right) =\displaystyle= M((Δui)22Rc(ui,ui)+23R|ui|2)𝑑μ\displaystyle\int_{M}\left(\left(\Delta u_{i}\right)^{2}-2Rc\left(\nabla u_{i},\nabla u_{i}\right)+\frac{2}{3}R\left|\nabla u_{i}\right|^{2}\right)d\mu
\displaystyle\rightarrow E(u)+σ(M),\displaystyle E\left(u\right)+\sigma\left(M\right),

we see E(u)+σ(M)=1E\left(u\right)+\sigma\left(M\right)=1. Using the fact E(u)0E\left(u\right)\geq 0, we see σ(M)1\sigma\left(M\right)\leq 1. For any xMx\in M, because

0<a32π2<σ({x})1,0<\frac{a}{32\pi^{2}}<\sigma\left(\left\{x\right\}\right)^{-1},

it follows from Proposition 3.1 that for some r>0r>0,

supiBr(x)eaui2𝑑μ<.\sup_{i}\int_{B_{r}\left(x\right)}e^{au_{i}^{2}}d\mu<\infty.

A covering arguments implies

supiMeaui2𝑑μ<.\sup_{i}\int_{M}e^{au_{i}^{2}}d\mu<\infty.

This contradicts with the choice of uiu_{i}.

Since

4uau2E(u)+4E(u)a,4u\leq a\frac{u^{2}}{E\left(u\right)}+\frac{4E\left(u\right)}{a},

we see

e4ue4E(u)aeau2E(u).e^{4u}\leq e^{\frac{4E\left(u\right)}{a}}e^{a\frac{u^{2}}{E\left(u\right)}}.

Hence

Me4u𝑑μc(a)e4E(u)a\int_{M}e^{4u}d\mu\leq c\left(a\right)e^{\frac{4E\left(u\right)}{a}}

and

logMe4u𝑑μ4aE(u)+c(a).\log\int_{M}e^{4u}d\mu\leq\frac{4}{a}E\left(u\right)+c\left(a\right).

   

3.2. Functions on manifolds with nonempty boundary

We will use the same notations as in Section 2.

Lemma 3.3.

Assume uW2,n2(BR+)\{0}u\in W^{2,\frac{n}{2}}\left(B_{R}^{+}\right)\backslash\left\{0\right\} such that u(x)=0u\left(x\right)=0 for |x|\left|x\right| close to RR and nu=0\partial_{n}u=0 on ΣR\Sigma_{R}, then

BR+e22n2a2,n|u|nn2ΔuLn2(BR+)nn2𝑑xc(n)Rn.\int_{B_{R}^{+}}e^{2^{-\frac{2}{n-2}}a_{2,n}\frac{\left|u\right|^{\frac{n}{n-2}}}{\left\|\Delta u\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}^{\frac{n}{n-2}}}}dx\leq c\left(n\right)R^{n}. (3.30)
Proof.

For |x|<R\left|x\right|<R, we define

v(x)={u(x),if xn>0;u(x,xn),if xn<0.v\left(x\right)=\left\{\begin{array}[]{cc}u\left(x\right),&\text{if }x_{n}>0;\\ u\left(x^{\prime},-x_{n}\right),&\text{if }x_{n}<0\text{.}\end{array}\right.

Then vW02,n2(BR)v\in W_{0}^{2,\frac{n}{2}}\left(B_{R}\right) with ΔvLn2(BR)n2=2ΔuLn2(BR+)n2\left\|\Delta v\right\|_{L^{\frac{n}{2}}\left(B_{R}\right)}^{\frac{n}{2}}=2\left\|\Delta u\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}^{\frac{n}{2}}. Hence

BR+e22n2a2,n|u|nn2ΔuLn2(BR+)nn2𝑑x\displaystyle\int_{B_{R}^{+}}e^{2^{-\frac{2}{n-2}}a_{2,n}\frac{\left|u\right|^{\frac{n}{n-2}}}{\left\|\Delta u\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}^{\frac{n}{n-2}}}}dx =\displaystyle= BR+ea2,n|u|nn2ΔvLn2(BR)nn2𝑑x\displaystyle\int_{B_{R}^{+}}e^{a_{2,n}\frac{\left|u\right|^{\frac{n}{n-2}}}{\left\|\Delta v\right\|_{L^{\frac{n}{2}}\left(B_{R}\right)}^{\frac{n}{n-2}}}}dx
\displaystyle\leq BRea2,n|v|nn2ΔvLn2(BR)nn2𝑑x\displaystyle\int_{B_{R}}e^{a_{2,n}\frac{\left|v\right|^{\frac{n}{n-2}}}{\left\|\Delta v\right\|_{L^{\frac{n}{2}}\left(B_{R}\right)}^{\frac{n}{n-2}}}}dx
\displaystyle\leq c(n)Rn.\displaystyle c\left(n\right)R^{n}.

   

Lemma 3.4.

Let uW2,n2(BR+)u\in W^{2,\frac{n}{2}}\left(B_{R}^{+}\right) and a>0a>0, then

BR+ea|u|nn2𝑑x<.\int_{B_{R}^{+}}e^{a\left|u\right|^{\frac{n}{n-2}}}dx<\infty. (3.31)
Proof.

We can find u~W2,n2(BR)\widetilde{u}\in W^{2,\frac{n}{2}}\left(B_{R}\right) such that u~|BR+=u\left.\widetilde{u}\right|_{B_{R}^{+}}=u. Then it follows from Lemma 3.1 that

BR+ea|u|nn2𝑑xBRea|u~|nn2𝑑x<.\int_{B_{R}^{+}}e^{a\left|u\right|^{\frac{n}{n-2}}}dx\leq\int_{B_{R}}e^{a\left|\widetilde{u}\right|^{\frac{n}{n-2}}}dx<\infty.

   

Proposition 3.2.

Let 0<R10<R\leq 1, gg be a C1C^{1} Riemannian metric on BR+¯\overline{B_{R}^{+}} such that gij(0)=δijg_{ij}\left(0\right)=\delta_{ij} for 1i,jn1\leq i,j\leq n. Assume uiW2,n2(BR+)u_{i}\in W^{2,\frac{n}{2}}\left(B_{R}^{+}\right), nui=0\partial_{n}u_{i}=0 on ΣR\Sigma_{R}, uiuu_{i}\rightharpoonup u weakly in W2,n2(BR+)W^{2,\frac{n}{2}}\left(B_{R}^{+}\right) and

|Δgui|n2dμ|Δgu|n2dμ+σ as measure on BR+.\left|\Delta_{g}u_{i}\right|^{\frac{n}{2}}d\mu\rightarrow\left|\Delta_{g}u\right|^{\frac{n}{2}}d\mu+\sigma\text{ as measure on }B_{R}^{+}\text{.}

If 0<p<σ({0})2n20<p<\sigma\left(\left\{0\right\}\right)^{-\frac{2}{n-2}}, then there exists r>0r>0 such that

supiBr+e22n2a2,np|ui|nn2𝑑μ<.\sup_{i}\int_{B_{r}^{+}}e^{2^{-\frac{2}{n-2}}a_{2,n}p\left|u_{i}\right|^{\frac{n}{n-2}}}d\mu<\infty. (3.32)

Here

a2,n=n|𝕊n1|(4πn2Γ(n22))nn2.a_{2,n}=\frac{n}{\left|\mathbb{S}^{n-1}\right|}\left(\frac{4\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-2}{2}\right)}\right)^{\frac{n}{n-2}}. (3.33)

First we observe that if vW2,n2(BR+)v\in W^{2,\frac{n}{2}}\left(B_{R}^{+}\right), v(x)=0v\left(x\right)=0 for |x|\left|x\right| close to RR, nv|ΣR=0\left.\partial_{n}v\right|_{\Sigma_{R}}=0, then we have

vW2,n2(BR+)cΔvLn2(BR+).\left\|v\right\|_{W^{2,\frac{n}{2}}\left(B_{R}^{+}\right)}\leq c\left\|\Delta v\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}. (3.34)

Indeed, let

v~(x)={v(x),if xn>0;v(x,xn),if xn<0\widetilde{v}\left(x\right)=\left\{\begin{array}[]{cc}v\left(x\right),&\text{if }x_{n}>0;\\ v\left(x^{\prime},-x_{n}\right),&\text{if }x_{n}<0\end{array}\right.

for xBRx\in B_{R}, then v~W02,n2(BR)\widetilde{v}\in W_{0}^{2,\frac{n}{2}}\left(B_{R}\right). Hence elliptic estimates gives us

vW2,n2(BR+)v~W2,n2(BR)cΔv~Ln2(BR)cΔvLn2(BR+).\left\|v\right\|_{W^{2,\frac{n}{2}}\left(B_{R}^{+}\right)}\leq\left\|\widetilde{v}\right\|_{W^{2,\frac{n}{2}}\left(B_{R}\right)}\leq c\left\|\Delta\widetilde{v}\right\|_{L^{\frac{n}{2}}\left(B_{R}\right)}\leq c\left\|\Delta v\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}.

To continue, we recall (3.10) that if 0<R1<R0<R_{1}<R is a small number and vW2,n2(BR1+)v\in W^{2,\frac{n}{2}}\left(B_{R_{1}}^{+}\right), v(x)=0v\left(x\right)=0 for |x|\left|x\right| close to R1R_{1}, nv|ΣR1=0\left.\partial_{n}v\right|_{\Sigma_{R_{1}}}=0, then

|Δv||Δgv|+ε1|D2v|+c|v|,\left|\Delta v\right|\leq\left|\Delta_{g}v\right|+\varepsilon_{1}\left|D^{2}v\right|+c\left|\nabla v\right|,

ε1=ε1(R1)>0\varepsilon_{1}=\varepsilon_{1}\left(R_{1}\right)>0 with ε10\varepsilon_{1}\rightarrow 0 as R10+R_{1}\rightarrow 0^{+}. Hence

ΔvLn2(BR+)n2\displaystyle\left\|\Delta v\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}^{\frac{n}{2}}
\displaystyle\leq (ΔgvLn2+ε1D2vLn2+cvLn2)n2\displaystyle\left(\left\|\Delta_{g}v\right\|_{L^{\frac{n}{2}}}+\varepsilon_{1}\left\|D^{2}v\right\|_{L^{\frac{n}{2}}}+c\left\|\nabla v\right\|_{L^{\frac{n}{2}}}\right)^{\frac{n}{2}}
\displaystyle\leq (1+ε16)ΔgvLn2n2+c(ε)ε1n2D2vLn2n2+c(ε)vLn2n2\displaystyle\left(1+\frac{\varepsilon}{16}\right)\left\|\Delta_{g}v\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon\right)\varepsilon_{1}^{\frac{n}{2}}\left\|D^{2}v\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\nabla v\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}
\displaystyle\leq (1+ε16)ΔgvLn2n2+c(ε)ε1n2ΔvLn2n2+c(ε)vLn2n2.\displaystyle\left(1+\frac{\varepsilon}{16}\right)\left\|\Delta_{g}v\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon\right)\varepsilon_{1}^{\frac{n}{2}}\left\|\Delta v\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\nabla v\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}.

It follows that

ΔvLn2(BR+)n2\displaystyle\left\|\Delta v\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}^{\frac{n}{2}} \displaystyle\leq 1+ε161c(ε)ε1n2ΔgvLn2n2+c(ε)1c(ε)ε1n2vLn2n2\displaystyle\frac{1+\frac{\varepsilon}{16}}{1-c\left(\varepsilon\right)\varepsilon_{1}^{\frac{n}{2}}}\left\|\Delta_{g}v\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+\frac{c\left(\varepsilon\right)}{1-c\left(\varepsilon\right)\varepsilon_{1}^{\frac{n}{2}}}\left\|\nabla v\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}
\displaystyle\leq (1+ε8)ΔgvLn2n2+c(ε)vLn2n2\displaystyle\left(1+\frac{\varepsilon}{8}\right)\left\|\Delta_{g}v\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\nabla v\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}

if R1R_{1} is small enough.

Proof of Proposition 3.2.

Fix p1(p,σ({0})2n2)p_{1}\in\left(p,\sigma\left(\left\{0\right\}\right)^{-\frac{2}{n-2}}\right), then

σ({0})<1p1n22.\sigma\left(\left\{0\right\}\right)<\frac{1}{p_{1}^{\frac{n-2}{2}}}. (3.35)

We can find ε>0\varepsilon>0 s.t.

(1+ε)σ({0})<1p1n22\left(1+\varepsilon\right)\sigma\left(\left\{0\right\}\right)<\frac{1}{p_{1}^{\frac{n-2}{2}}} (3.36)

and

(1+ε)p<p1.\left(1+\varepsilon\right)p<p_{1}. (3.37)

Let vi=uiuv_{i}=u_{i}-u, then vi0v_{i}\rightharpoonup 0 weakly in W2,n2(BR+)W^{2,\frac{n}{2}}\left(B_{R}^{+}\right) and vi0v_{i}\rightarrow 0 in W1,n2(BR+)W^{1,\frac{n}{2}}\left(B_{R}^{+}\right). Let 0<R1<R0<R_{1}<R be small enough. For radial symmetric φCc(BR1)\varphi\in C_{c}^{\infty}\left(B_{R_{1}}\right), we have

Δ(φvi)Ln2(BR+)n2\displaystyle\left\|\Delta\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}^{\frac{n}{2}}
\displaystyle\leq (1+ε8)Δg(φvi)Ln2n2+c(ε)(φvi)Ln2n2\displaystyle\left(1+\frac{\varepsilon}{8}\right)\left\|\Delta_{g}\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}
\displaystyle\leq (1+ε8)(φΔgviLn2+cφW2,viW1,n2)n2+c(ε)(φvi)Ln2n2\displaystyle\left(1+\frac{\varepsilon}{8}\right)\left(\left\|\varphi\Delta_{g}v_{i}\right\|_{L^{\frac{n}{2}}}+c\left\|\varphi\right\|_{W^{2,\infty}}\left\|v_{i}\right\|_{W^{1,\frac{n}{2}}}\right)^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}
\displaystyle\leq (1+ε4)φΔgviLn2n2+c(ε)φW2,n2viW1,n2n2\displaystyle\left(1+\frac{\varepsilon}{4}\right)\left\|\varphi\Delta_{g}v_{i}\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\varphi\right\|_{W^{2,\infty}}^{\frac{n}{2}}\left\|v_{i}\right\|_{W^{1,\frac{n}{2}}}^{\frac{n}{2}}
\displaystyle\leq (1+ε4)(φΔguiLn2+φΔguLn2)n2+c(ε)φW2,n2viW1,n2n2\displaystyle\left(1+\frac{\varepsilon}{4}\right)\left(\left\|\varphi\Delta_{g}u_{i}\right\|_{L^{\frac{n}{2}}}+\left\|\varphi\Delta_{g}u\right\|_{L^{\frac{n}{2}}}\right)^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\varphi\right\|_{W^{2,\infty}}^{\frac{n}{2}}\left\|v_{i}\right\|_{W^{1,\frac{n}{2}}}^{\frac{n}{2}}
\displaystyle\leq (1+ε2)φΔguiLn2n2+c(ε)φΔguLn2n2+c(ε)φW2,n2viW1,n2n2\displaystyle\left(1+\frac{\varepsilon}{2}\right)\left\|\varphi\Delta_{g}u_{i}\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\varphi\Delta_{g}u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\varphi\right\|_{W^{2,\infty}}^{\frac{n}{2}}\left\|v_{i}\right\|_{W^{1,\frac{n}{2}}}^{\frac{n}{2}}
\displaystyle\leq (1+ε)φΔguiLn2(BR+,dμ)n2+c(ε)φΔguLn2(BR+,dμ)n2+c(ε)φW2,n2viW1,n2n2.\displaystyle\left(1+\varepsilon\right)\left\|\varphi\Delta_{g}u_{i}\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+},d\mu\right)}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\varphi\Delta_{g}u\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+},d\mu\right)}^{\frac{n}{2}}+c\left(\varepsilon\right)\left\|\varphi\right\|_{W^{2,\infty}}^{\frac{n}{2}}\left\|v_{i}\right\|_{W^{1,\frac{n}{2}}}^{\frac{n}{2}}.

Hence

limsupiΔ(φvi)Ln2(BR+)n2\displaystyle\lim\sup_{i\rightarrow\infty}\left\|\Delta\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}^{\frac{n}{2}}
\displaystyle\leq (1+ε)BR+|φ|n2𝑑σ+(1+ε)BR+|φ|n2|Δgu|n2𝑑μ+c(ε)φΔguLn2(BR+,dμ)n2\displaystyle\left(1+\varepsilon\right)\int_{B_{R}^{+}}\left|\varphi\right|^{\frac{n}{2}}d\sigma+\left(1+\varepsilon\right)\int_{B_{R}^{+}}\left|\varphi\right|^{\frac{n}{2}}\left|\Delta_{g}u\right|^{\frac{n}{2}}d\mu+c\left(\varepsilon\right)\left\|\varphi\Delta_{g}u\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+},d\mu\right)}^{\frac{n}{2}}
\displaystyle\leq (1+ε)BR+|φ|n2𝑑σ+c(ε)BR+|φ|n2|Δgu|n2𝑑μ.\displaystyle\left(1+\varepsilon\right)\int_{B_{R}^{+}}\left|\varphi\right|^{\frac{n}{2}}d\sigma+c\left(\varepsilon\right)\int_{B_{R}^{+}}\left|\varphi\right|^{\frac{n}{2}}\left|\Delta_{g}u\right|^{\frac{n}{2}}d\mu.

Since (1+ε)σ({0})<1p1n22\left(1+\varepsilon\right)\sigma\left(\left\{0\right\}\right)<\frac{1}{p_{1}^{\frac{n-2}{2}}}, we can choose a radial function φCc(BR1)\varphi\in C_{c}^{\infty}\left(B_{R_{1}}\right) such that φ|Br=1\left.\varphi\right|_{B_{r}}=1 for some r>0r>0 and

(1+ε)BR+|φ|n2𝑑σ+c(ε)BR+|φ|n2|Δgu|n2𝑑μ<1p1n22.\left(1+\varepsilon\right)\int_{B_{R}^{+}}\left|\varphi\right|^{\frac{n}{2}}d\sigma+c\left(\varepsilon\right)\int_{B_{R}^{+}}\left|\varphi\right|^{\frac{n}{2}}\left|\Delta_{g}u\right|^{\frac{n}{2}}d\mu<\frac{1}{p_{1}^{\frac{n-2}{2}}}. (3.38)

Hence for ii large enough, we have

Δ(φvi)Ln2(BR+)n2<1p1n22.\left\|\Delta\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}^{\frac{n}{2}}<\frac{1}{p_{1}^{\frac{n-2}{2}}}. (3.39)

This implies

Δ(φvi)Ln2(BR+)nn2<1p1.\left\|\Delta\left(\varphi v_{i}\right)\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}^{\frac{n}{n-2}}<\frac{1}{p_{1}}. (3.40)

On the other hand,

|ui|nn2(|vi|+|u|)nn2(1+ε)|vi|nn2+c(ε)|u|nn2,\left|u_{i}\right|^{\frac{n}{n-2}}\leq\left(\left|v_{i}\right|+\left|u\right|\right)^{\frac{n}{n-2}}\leq\left(1+\varepsilon\right)\left|v_{i}\right|^{\frac{n}{n-2}}+c\left(\varepsilon\right)\left|u\right|^{\frac{n}{n-2}},

hence

e22n2a2,n|ui|nn2e(1+ε)22n2a2,n|vi|nn2ec(ε)|u|nn2.e^{2^{-\frac{2}{n-2}}a_{2,n}\left|u_{i}\right|^{\frac{n}{n-2}}}\leq e^{\left(1+\varepsilon\right)2^{-\frac{2}{n-2}}a_{2,n}\left|v_{i}\right|^{\frac{n}{n-2}}}e^{c\left(\varepsilon\right)\left|u\right|^{\frac{n}{n-2}}}.

It follows from Lemma 3.3 that

Br+e22n2a2,np1|vi|nn2𝑑μ\displaystyle\int_{B_{r}^{+}}e^{2^{-\frac{2}{n-2}}a_{2,n}p_{1}\left|v_{i}\right|^{\frac{n}{n-2}}}d\mu \displaystyle\leq cBR+e22n2a2,np1|φvi|nn2𝑑x\displaystyle c\int_{B_{R}^{+}}e^{2^{-\frac{2}{n-2}}a_{2,n}p_{1}\left|\varphi v_{i}\right|^{\frac{n}{n-2}}}dx
\displaystyle\leq cBR+e22n2a2,n|φvi|nn2(φvi)Lnnn2𝑑x\displaystyle c\int_{B_{R}^{+}}e^{2^{-\frac{2}{n-2}}a_{2,n}\frac{\left|\varphi v_{i}\right|^{\frac{n}{n-2}}}{\left\|\nabla\left(\varphi v_{i}\right)\right\|_{L^{n}}^{\frac{n}{n-2}}}}dx
\displaystyle\leq c.\displaystyle c.

Using p<p11+εp<\frac{p_{1}}{1+\varepsilon} and Lemma 3.4, it follows from Holder’s inequality that e22n2a2,n|ui|nn2e^{2^{-\frac{2}{n-2}}a_{2,n}\left|u_{i}\right|^{\frac{n}{n-2}}} is bounded in Lp(Br+,dμ)L^{p}\left(B_{r}^{+},d\mu\right).    

Theorem 3.2.

Let (Mn,g)\left(M^{n},g\right) be a C4C^{4} compact Riemannian manifold with boundary and gg be a C3C^{3} Riemannian metric on MM. If EME\subset M with μ(E)δ>0\mu\left(E\right)\geq\delta>0, uW2,n2(M)\{0}u\in W^{2,\frac{n}{2}}\left(M\right)\backslash\left\{0\right\} with uE=0u_{E}=0 and uν|M=0\left.\frac{\partial u}{\partial\nu}\right|_{\partial M}=0 (here ν\nu is the unit outer normal direction on M\partial M), then for any 0<a<a2,n=n|𝕊n1|(4πn2Γ(n22))nn20<a<a_{2,n}=\frac{n}{\left|\mathbb{S}^{n-1}\right|}\left(\frac{4\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-2}{2}\right)}\right)^{\frac{n}{n-2}},

Me22n2a|u|nn2ΔuLn2nn2𝑑μc(a,δ)<.\int_{M}e^{2^{-\frac{2}{n-2}}a\frac{\left|u\right|^{\frac{n}{n-2}}}{\left\|\Delta u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{n-2}}}}d\mu\leq c\left(a,\delta\right)<\infty. (3.41)
Proof.

For any vW2,n2(M)v\in W^{2,\frac{n}{2}}\left(M\right) with vν|M=0\left.\frac{\partial v}{\partial\nu}\right|_{\partial M}=0, standard elliptic theory and compactness argument tells us

vvMLn2(M)cΔvLn2(M).\left\|v-v_{M}\right\|_{L^{\frac{n}{2}}\left(M\right)}\leq c\left\|\Delta v\right\|_{L^{\frac{n}{2}}\left(M\right)}.

On the other hand,

vvELn2cμ(E)2nvLn2c(δ)vLn2.\left\|v-v_{E}\right\|_{L^{\frac{n}{2}}}\leq\frac{c}{\mu\left(E\right)^{\frac{2}{n}}}\left\|v\right\|_{L^{\frac{n}{2}}}\leq c\left(\delta\right)\left\|v\right\|_{L^{\frac{n}{2}}}.

Replacing vv by vvMv-v_{M}, we see

vvELn2c(δ)vvMLn2c(δ)ΔvLn2.\left\|v-v_{E}\right\|_{L^{\frac{n}{2}}}\leq c\left(\delta\right)\left\|v-v_{M}\right\|_{L^{\frac{n}{2}}}\leq c\left(\delta\right)\left\|\Delta v\right\|_{L^{\frac{n}{2}}}.

If (3.41) is not true, then we can find a sequence uiW2,n2(M)u_{i}\in W^{2,\frac{n}{2}}\left(M\right), EiME_{i}\subset M with μ(Ei)δ\mu\left(E_{i}\right)\geq\delta, ui,Ei=0u_{i,E_{i}}=0, ΔuiLn2=1\left\|\Delta u_{i}\right\|_{L^{\frac{n}{2}}}=1, uiν|M=0\left.\frac{\partial u_{i}}{\partial\nu}\right|_{\partial M}=0 and

Me22n2a|ui|nn2𝑑μ\int_{M}e^{2^{-\frac{2}{n-2}}a\left|u_{i}\right|^{\frac{n}{n-2}}}d\mu\rightarrow\infty

as ii\rightarrow\infty. Since

uiLn2=uiui,EiLn2c(δ)ΔuiLn2=c(δ),\left\|u_{i}\right\|_{L^{\frac{n}{2}}}=\left\|u_{i}-u_{i,E_{i}}\right\|_{L^{\frac{n}{2}}}\leq c\left(\delta\right)\left\|\Delta u_{i}\right\|_{L^{\frac{n}{2}}}=c\left(\delta\right),

standard elliptic estimate gives us

uiW2,n2c(ΔuiLn2+uiLn2)c(δ).\left\|u_{i}\right\|_{W^{2,\frac{n}{2}}}\leq c\left(\left\|\Delta u_{i}\right\|_{L^{\frac{n}{2}}}+\left\|u_{i}\right\|_{L^{\frac{n}{2}}}\right)\leq c\left(\delta\right).

Hence uiu_{i} is bounded in W2,n2(M)W^{2,\frac{n}{2}}\left(M\right). After passing to a subsequence we can find uW2,n2(M)u\in W^{2,\frac{n}{2}}\left(M\right) such that uiuu_{i}\rightharpoonup u weakly in W2,n2(M)W^{2,\frac{n}{2}}\left(M\right) and a measure on MM, σ\sigma such that

|Δui|n2dμ|Δu|n2dμ+σ\left|\Delta u_{i}\right|^{\frac{n}{2}}d\mu\rightarrow\left|\Delta u\right|^{\frac{n}{2}}d\mu+\sigma

as measure. Note that σ(M)1\sigma\left(M\right)\leq 1. For any yM\My\in M\backslash\partial M, since

0<aa2,n<σ({y})2n2,0<\frac{a}{a_{2,n}}<\sigma\left(\left\{y\right\}\right)^{-\frac{2}{n-2}},

it follows from Proposition 3.1 that for some r>0r>0, we have

supiBr(y)e22n2a|ui|nn2𝑑μsupiBr(y)ea|ui|nn2𝑑μ<.\sup_{i}\int_{B_{r}\left(y\right)}e^{2^{-\frac{2}{n-2}}a\left|u_{i}\right|^{\frac{n}{n-2}}}d\mu\leq\sup_{i}\int_{B_{r}\left(y\right)}e^{a\left|u_{i}\right|^{\frac{n}{n-2}}}d\mu<\infty.

Next we deal with the case yMy\in\partial M. Note for ε0>0\varepsilon_{0}>0 small enough, we have a well defined map

ϕ:M×[0,ε0)M:(ξ,t)expξ(tν(ξ)).\phi:\partial M\times\left[0,\varepsilon_{0}\right)\rightarrow M:\left(\xi,t\right)\mapsto\exp_{\xi}\left(-t\nu\left(\xi\right)\right).

By the compactness of MM, we can find ε0>0\varepsilon_{0}>0 such that ϕ(M×[0,ε0))\phi\left(\partial M\times\left[0,\varepsilon_{0}\right)\right) is open and ϕ\phi is a C2C^{2} diffeomorphism. We write ϕ1(z)=(ξ(z),t(z))\phi^{-1}\left(z\right)=\left(\xi\left(z\right),t\left(z\right)\right). Let s1,,sn1s_{1},\cdots,s_{n-1} be a coordinate near yy on M\partial M such that si(y)=0s_{i}\left(y\right)=0 and si,sj(y)=δij\left\langle\partial_{s_{i}},\partial_{s_{j}}\right\rangle\left(y\right)=\delta_{ij} for 1i,jn11\leq i,j\leq n-1. Then we define a coordinate x1,,xnx_{1},\cdots,x_{n} near yy as xi(z)=si(ξ(z))x_{i}\left(z\right)=s_{i}\left(\xi\left(z\right)\right) for 1in11\leq i\leq n-1 and xn(z)=t(z)x_{n}\left(z\right)=t\left(z\right). It is clear that xn|xn=0=ν\left.\partial_{x_{n}}\right|_{x_{n}=0}=-\nu, hence we see nui|ΣR=0\left.\partial_{n}u_{i}\right|_{\Sigma_{R}}=0. It follows from Proposition 3.2 that for some r>0r>0, we have

supiBr(y)e22n2a|ui|nn2𝑑μ<.\sup_{i}\int_{B_{r}\left(y\right)}e^{2^{-\frac{2}{n-2}}a\left|u_{i}\right|^{\frac{n}{n-2}}}d\mu<\infty.

A covering argument implies

supiMe22n2a|ui|nn2𝑑μ<.\sup_{i}\int_{M}e^{2^{-\frac{2}{n-2}}a\left|u_{i}\right|^{\frac{n}{n-2}}}d\mu<\infty.

This contradicts with the choice of uiu_{i}.    

Example 3.2.

Let (Mn,g)\left(M^{n},g\right) be a C4C^{4} compact Riemannian manifold with boundary and gg be a C3C^{3} Riemannian metric on MM. We define

κ2,N(M,g)=infuW2,n2(M)\{0}uM=0,uν|M=0ΔuLn2uLn2,\kappa_{2,N}\left(M,g\right)=\inf_{\begin{subarray}{c}u\in W^{2,\frac{n}{2}}\left(M\right)\backslash\left\{0\right\}\\ u_{M}=0,\left.\frac{\partial u}{\partial\nu}\right|_{\partial M}=0\end{subarray}}\frac{\left\|\Delta u\right\|_{L^{\frac{n}{2}}}}{\left\|u\right\|_{L^{\frac{n}{2}}}}, (3.42)

here ν\nu is the unit outnormal direction on M\partial M. Assume 0κ<κ2,N(M,g)0\leq\kappa<\kappa_{2,N}\left(M,g\right), 0<a<a2,n0<a<a_{2,n}, uW2,n2(M)u\in W^{2,\frac{n}{2}}\left(M\right) with uM=0u_{M}=0,uν|M=0\left.\frac{\partial u}{\partial\nu}\right|_{\partial M}=0 and

ΔuLn2n2κn2uLn2n21,\left\|\Delta u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}-\kappa^{\frac{n}{2}}\left\|u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}\leq 1, (3.43)

then

Me22n2a|u|nn2𝑑μc(κ,a)<.\int_{M}e^{2^{-\frac{2}{n-2}}a\left|u\right|^{\frac{n}{n-2}}}d\mu\leq c\left(\kappa,a\right)<\infty. (3.44)

Since the proof of Example 3.2 is almost identical to the proof of Example 1.1 (using Proposition 3.1 and 3.2 when necessary), we omit it here.

Next we move to the second boundary condition.

Lemma 3.5.

Assume uW2,n2(BR+)\{0}u\in W^{2,\frac{n}{2}}\left(B_{R}^{+}\right)\backslash\left\{0\right\} such that u(x)=0u\left(x\right)=0 for |x|\left|x\right| close to RR and u|ΣR=0\left.u\right|_{\Sigma_{R}}=0, then

BR+e22n2a2,n|u|nn2ΔuLn2(BR+)nn2𝑑xc(n)Rn.\int_{B_{R}^{+}}e^{2^{-\frac{2}{n-2}}a_{2,n}\frac{\left|u\right|^{\frac{n}{n-2}}}{\left\|\Delta u\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}^{\frac{n}{n-2}}}}dx\leq c\left(n\right)R^{n}. (3.45)
Proof.

For |x|<R\left|x\right|<R, we define

v(x)={u(x),if xn>0;u(x,xn),if xn<0.v\left(x\right)=\left\{\begin{array}[]{cc}u\left(x\right),&\text{if }x_{n}>0;\\ -u\left(x^{\prime},-x_{n}\right),&\text{if }x_{n}<0\text{.}\end{array}\right.

Then vW02,n2(BR)v\in W_{0}^{2,\frac{n}{2}}\left(B_{R}\right) with ΔvLn2(BR)n2=2ΔuLn2(BR+)n2\left\|\Delta v\right\|_{L^{\frac{n}{2}}\left(B_{R}\right)}^{\frac{n}{2}}=2\left\|\Delta u\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}^{\frac{n}{2}}. Hence

BR+e22n2a2,n|u|nn2ΔuLn2(BR+)nn2𝑑x\displaystyle\int_{B_{R}^{+}}e^{2^{-\frac{2}{n-2}}a_{2,n}\frac{\left|u\right|^{\frac{n}{n-2}}}{\left\|\Delta u\right\|_{L^{\frac{n}{2}}\left(B_{R}^{+}\right)}^{\frac{n}{n-2}}}}dx =\displaystyle= BR+ea2,n|u|nn2ΔvLn2(BR)nn2𝑑x\displaystyle\int_{B_{R}^{+}}e^{a_{2,n}\frac{\left|u\right|^{\frac{n}{n-2}}}{\left\|\Delta v\right\|_{L^{\frac{n}{2}}\left(B_{R}\right)}^{\frac{n}{n-2}}}}dx
\displaystyle\leq BRea2,n|v|nn2ΔvLn2(BR)nn2𝑑x\displaystyle\int_{B_{R}}e^{a_{2,n}\frac{\left|v\right|^{\frac{n}{n-2}}}{\left\|\Delta v\right\|_{L^{\frac{n}{2}}\left(B_{R}\right)}^{\frac{n}{n-2}}}}dx
\displaystyle\leq c(n)Rn.\displaystyle c\left(n\right)R^{n}.

   

Proposition 3.3.

Let 0<R10<R\leq 1, gg be a C1C^{1} Riemannian metric on BR+¯\overline{B_{R}^{+}}. Assume uiW2,n2(BR+)u_{i}\in W^{2,\frac{n}{2}}\left(B_{R}^{+}\right), ui|ΣR=0\left.u_{i}\right|_{\Sigma_{R}}=0, uiuu_{i}\rightharpoonup u weakly in W2,n2(BR+)W^{2,\frac{n}{2}}\left(B_{R}^{+}\right) and

|Δgui|n2dμ|Δgu|n2dμ+σ as measure on BR+.\left|\Delta_{g}u_{i}\right|^{\frac{n}{2}}d\mu\rightarrow\left|\Delta_{g}u\right|^{\frac{n}{2}}d\mu+\sigma\text{ as measure on }B_{R}^{+}\text{.}

If 0<p<σ({0})2n20<p<\sigma\left(\left\{0\right\}\right)^{-\frac{2}{n-2}}, then there exists r>0r>0 such that

supiBr+e22n2a2,np|ui|nn2𝑑μ<.\sup_{i}\int_{B_{r}^{+}}e^{2^{-\frac{2}{n-2}}a_{2,n}p\left|u_{i}\right|^{\frac{n}{n-2}}}d\mu<\infty. (3.46)

By a linear changing of variable and shrinking RR if necessary we can assume g=gijdxidxjg=g_{ij}dx_{i}dx_{j} with gij(0)=δijg_{ij}\left(0\right)=\delta_{ij}. The remaining proof is almost identical to the proof of Proposition 3.2 (using Lemma 3.5 instead of Lemma 3.3), we omit it here.

Theorem 3.3.

Let MnM^{n} be a C2C^{2} compact manifold with boundary and gg be a C1C^{1} Riemannian metric on MM. If EME\subset M with μ(E)δ>0\mu\left(E\right)\geq\delta>0, uW2,n2(M)W01,n2(M)\{0}u\in W^{2,\frac{n}{2}}\left(M\right)\cap W_{0}^{1,\frac{n}{2}}\left(M\right)\backslash\left\{0\right\} with uE=0u_{E}=0, then for any 0<a<a2,n=n|𝕊n1|(4πn2Γ(n22))nn20<a<a_{2,n}=\frac{n}{\left|\mathbb{S}^{n-1}\right|}\left(\frac{4\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-2}{2}\right)}\right)^{\frac{n}{n-2}},

Me22n2a|u|nn2ΔuLn2nn2𝑑μc(a,δ)<.\int_{M}e^{2^{-\frac{2}{n-2}}a\frac{\left|u\right|^{\frac{n}{n-2}}}{\left\|\Delta u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{n-2}}}}d\mu\leq c\left(a,\delta\right)<\infty. (3.47)

The proof is almost identical to the proof of Theorem 3.2 (using Proposition 3.3 instead of Proposition 3.2), we omit it here.

Example 3.3.

Let MnM^{n} be a C2C^{2} compact manifold with boundary and gg be a C1C^{1} Riemannian metric on MM. We denote

κ2,D(M,g)=infuW2,n2(M)W01,n2(M)\{0}ΔuLn2uLn2.\kappa_{2,D}\left(M,g\right)=\inf_{u\in W^{2,\frac{n}{2}}\left(M\right)\cap W_{0}^{1,\frac{n}{2}}\left(M\right)\backslash\left\{0\right\}}\frac{\left\|\Delta u\right\|_{L^{\frac{n}{2}}}}{\left\|u\right\|_{L^{\frac{n}{2}}}}. (3.48)

Assume 0κ<κ2,D(M,g)0\leq\kappa<\kappa_{2,D}\left(M,g\right), 0<a<a2,n0<a<a_{2,n}, uW2,n2(M)W01,n2(M)u\in W^{2,\frac{n}{2}}\left(M\right)\cap W_{0}^{1,\frac{n}{2}}\left(M\right) and

ΔuLn2n2κn2uLn2n21,\left\|\Delta u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}-\kappa^{\frac{n}{2}}\left\|u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}\leq 1, (3.49)

then

Me22n2a|u|nn2𝑑μc(κ,a)<.\int_{M}e^{2^{-\frac{2}{n-2}}a\left|u\right|^{\frac{n}{n-2}}}d\mu\leq c\left(\kappa,a\right)<\infty. (3.50)

Since the proof of Example 3.3 is almost identical to the proof of Example 1.1 (using Proposition 3.1 and 3.3 when necessary), we omit it here.

At last we turn to the third boundary condition.

Proposition 3.4.

Let 0<R10<R\leq 1, gg be a C1C^{1} Riemannian metric on BR+¯\overline{B_{R}^{+}}. Assume uiW2,n2(BR+)u_{i}\in W^{2,\frac{n}{2}}\left(B_{R}^{+}\right), u|ΣR=0\left.u\right|_{\Sigma_{R}}=0, nu|ΣR=0\left.\partial_{n}u\right|_{\Sigma_{R}}=0, uiuu_{i}\rightharpoonup u weakly in W2,n2(BR+)W^{2,\frac{n}{2}}\left(B_{R}^{+}\right) and

|Δgui|n2dμ|Δgu|n2dμ+σ as measure on BR+.\left|\Delta_{g}u_{i}\right|^{\frac{n}{2}}d\mu\rightarrow\left|\Delta_{g}u\right|^{\frac{n}{2}}d\mu+\sigma\text{ as measure on }B_{R}^{+}\text{.}

If 0<p<σ({0})2n20<p<\sigma\left(\left\{0\right\}\right)^{-\frac{2}{n-2}}, then there exists r>0r>0 such that

supiBr+ea2,np|ui|nn2𝑑μ<.\sup_{i}\int_{B_{r}^{+}}e^{a_{2,n}p\left|u_{i}\right|^{\frac{n}{n-2}}}d\mu<\infty. (3.51)
Proof.

Let hh be a C1C^{1} Riemannian metric on BR¯\overline{B_{R}}, which is an extension of gg. We define

vi(x)={ui(x),if xBR+0,if xBR\BR+,v(x)={u(x),if xBR+0,if xBR\BR+,v_{i}\left(x\right)=\left\{\begin{tabular}[]{ll}$u_{i}\left(x\right),$&if $x\in B_{R}^{+}$\\ $0,$&if $x\in B_{R}\backslash B_{R}^{+}$\end{tabular}\right.,\quad v\left(x\right)=\left\{\begin{tabular}[]{ll}$u\left(x\right),$&if $x\in B_{R}^{+}$\\ $0,$&if $x\in B_{R}\backslash B_{R}^{+}$\end{tabular}\right.,

and a measure τ\tau on BRB_{R} by τ(E)=σ(EBR)\tau\left(E\right)=\sigma\left(E\cap B_{R}\right) for any Borel set EBRE\subset B_{R}. Then vi,vW2,n2(BR)v_{i},v\in W^{2,\frac{n}{2}}\left(B_{R}\right), vivv_{i}\rightharpoonup v weakly in W2,n2(BR)W^{2,\frac{n}{2}}\left(B_{R}\right) and

|hvi|hndμh|hv|hndμh+τ as measure on BR.\left|\nabla_{h}v_{i}\right|_{h}^{n}d\mu_{h}\rightarrow\left|\nabla_{h}v\right|_{h}^{n}d\mu_{h}+\tau\text{ as measure on }B_{R}.

Here μh\mu_{h} is the measure associated with hh. Since τ({0})=σ({0})\tau\left(\left\{0\right\}\right)=\sigma\left(\left\{0\right\}\right), it follows from Proposition 3.1 that for some r>0r>0,

supiBrea2,np|vi|nn2𝑑μh<.\sup_{i}\int_{B_{r}}e^{a_{2,n}p\left|v_{i}\right|^{\frac{n}{n-2}}}d\mu_{h}<\infty.

Hence

supiBr+ea2,np|ui|nn2𝑑μ<.\sup_{i}\int_{B_{r}^{+}}e^{a_{2,n}p\left|u_{i}\right|^{\frac{n}{n-2}}}d\mu<\infty.

   

Theorem 3.4.

Let MnM^{n} be a C2C^{2} compact manifold with boundary and gg be a C1C^{1} Riemannian metric on MM. We denote

κ2(M,g)=infuW02,n2(M)\{0}ΔuLn2uLn2.\kappa_{2}\left(M,g\right)=\inf_{u\in W_{0}^{2,\frac{n}{2}}\left(M\right)\backslash\left\{0\right\}}\frac{\left\|\Delta u\right\|_{L^{\frac{n}{2}}}}{\left\|u\right\|_{L^{\frac{n}{2}}}}. (3.52)

Assume 0κ<κ2(M,g)0\leq\kappa<\kappa_{2}\left(M,g\right), 0<a<a2,n0<a<a_{2,n}, uW02,n2(M)u\in W_{0}^{2,\frac{n}{2}}\left(M\right) and

ΔuLn2n2κn2uLn2n21,\left\|\Delta u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}-\kappa^{\frac{n}{2}}\left\|u\right\|_{L^{\frac{n}{2}}}^{\frac{n}{2}}\leq 1, (3.53)

then

Mea|u|nn2𝑑μc(κ,a)<.\int_{M}e^{a\left|u\right|^{\frac{n}{n-2}}}d\mu\leq c\left(\kappa,a\right)<\infty. (3.54)

Since the proof of Theorem 2.2 is almost identical to the proof of Example 1.1 (using Proposition 3.1 and 3.4 when necessary), we omit it here. Theorem 3.4 should be compared to [LY].

4. Higher order Sobolev spaces

In this section, we will apply our approach to higher order Sobolev spaces. Since the arguments are similar to those for first and second order Sobolev spaces, we omit all the proofs here. For future references we list the theorems.

4.1. Wm,nm(Mn)W^{m,\frac{n}{m}}\left(M^{n}\right) for even mm

Let mm\in\mathbb{N} be an even number strictly less than nn. For R>0R>0, uW0m,nm(BR)\{0}u\in W_{0}^{m,\frac{n}{m}}\left(B_{R}\right)\backslash\left\{0\right\}, it is shown in [A] that

BRexp(am,n|u|nnmΔm2uLnmnnm)𝑑xc(m,n)Rn.\int_{B_{R}}\exp\left(a_{m,n}\frac{\left|u\right|^{\frac{n}{n-m}}}{\left\|\Delta^{\frac{m}{2}}u\right\|_{L^{\frac{n}{m}}}^{\frac{n}{n-m}}}\right)dx\leq c\left(m,n\right)R^{n}. (4.1)

Here

am,n=n|𝕊n1|(πn22mΓ(m2)Γ(nm2))nnm.a_{m,n}=\frac{n}{\left|\mathbb{S}^{n-1}\right|}\left(\frac{\pi^{\frac{n}{2}}2^{m}\Gamma\left(\frac{m}{2}\right)}{\Gamma\left(\frac{n-m}{2}\right)}\right)^{\frac{n}{n-m}}. (4.2)
Lemma 4.1.

If uWm,nm(BRn)u\in W^{m,\frac{n}{m}}\left(B_{R}^{n}\right), then for any a>0a>0,

BRea|u|nnm𝑑x<.\int_{B_{R}}e^{a\left|u\right|^{\frac{n}{n-m}}}dx<\infty. (4.3)
Proposition 4.1.

Let 0<R10<R\leq 1, gg be a Cm1C^{m-1} Riemannian metric on BRn¯\overline{B_{R}^{n}}. Assume uiWm,nm(BRn)u_{i}\in W^{m,\frac{n}{m}}\left(B_{R}^{n}\right), uiuu_{i}\rightharpoonup u weakly in Wm,nm(BR)W^{m,\frac{n}{m}}\left(B_{R}\right) and

|Δgm2ui|nmdμ|Δgm2u|nmdμ+σ as measure on BR,\left|\Delta_{g}^{\frac{m}{2}}u_{i}\right|^{\frac{n}{m}}d\mu\rightarrow\left|\Delta_{g}^{\frac{m}{2}}u\right|^{\frac{n}{m}}d\mu+\sigma\text{ as measure on }B_{R},

here μ\mu is the measure associated with the metric gg. If 0<p<σ({0})mnm0<p<\sigma\left(\left\{0\right\}\right)^{-\frac{m}{n-m}}, then for some r>0r>0,

supiBream,np|ui|nnm𝑑μ<.\sup_{i}\int_{B_{r}}e^{a_{m,n}p\left|u_{i}\right|^{\frac{n}{n-m}}}d\mu<\infty. (4.4)
Theorem 4.1.

Let MnM^{n} be a CmC^{m} compact manifold with a Cm1C^{m-1} Riemannian metric gg. If EME\subset M with μ(E)δ>0\mu\left(E\right)\geq\delta>0, uWm,nm(M)\{0}u\in W^{m,\frac{n}{m}}\left(M\right)\backslash\left\{0\right\} with uE=0u_{E}=0 (here uE=1μ(E)Eu𝑑μu_{E}=\frac{1}{\mu\left(E\right)}\int_{E}ud\mu), then for any 0<a<am,n0<a<a_{m,n},

Mea|u|nnmΔm2uLnmnnm𝑑μc(a,δ)<.\int_{M}e^{a\frac{\left|u\right|^{\frac{n}{n-m}}}{\left\|\Delta^{\frac{m}{2}}u\right\|_{L^{\frac{n}{m}}}^{\frac{n}{n-m}}}}d\mu\leq c\left(a,\delta\right)<\infty. (4.5)

4.1.1. Functions on manifolds with nonempty boundary

Lemma 4.2.

Assume uWm,nm(BR+)\{0}u\in W^{m,\frac{n}{m}}\left(B_{R}^{+}\right)\backslash\left\{0\right\} such that u(x)=0u\left(x\right)=0 for |x|\left|x\right| close to RR and nku=0\partial_{n}^{k}u=0 on ΣR\Sigma_{R} for odd number k[0,m)k\in\left[0,m\right), then

BR+e2mnmam,n|u|nnmΔm2uLnm(BR+)nnm𝑑xc(n)Rn.\int_{B_{R}^{+}}e^{2^{-\frac{m}{n-m}}a_{m,n}\frac{\left|u\right|^{\frac{n}{n-m}}}{\left\|\Delta^{\frac{m}{2}}u\right\|_{L^{\frac{n}{m}}\left(B_{R}^{+}\right)}^{\frac{n}{n-m}}}}dx\leq c\left(n\right)R^{n}. (4.6)

This can be done by even extension for xnx_{n} direction as in the proof of Lemma 3.3.

Proposition 4.2.

Let 0<R10<R\leq 1, gg be a Cm1C^{m-1} Riemannian metric on BR+¯\overline{B_{R}^{+}} such that gij(0)=δijg_{ij}\left(0\right)=\delta_{ij} for 1i,jn1\leq i,j\leq n. Assume uiWm,nm(BR+)u_{i}\in W^{m,\frac{n}{m}}\left(B_{R}^{+}\right), nku=0\partial_{n}^{k}u=0 on ΣR\Sigma_{R} for odd number k[0,m)k\in\left[0,m\right), uiuu_{i}\rightharpoonup u weakly in Wm,nm(BR+)W^{m,\frac{n}{m}}\left(B_{R}^{+}\right) and

|Δgm2ui|nmdμ|Δgm2u|nmdμ+σ as measure on BR+.\left|\Delta_{g}^{\frac{m}{2}}u_{i}\right|^{\frac{n}{m}}d\mu\rightarrow\left|\Delta_{g}^{\frac{m}{2}}u\right|^{\frac{n}{m}}d\mu+\sigma\text{ as measure on }B_{R}^{+}\text{.}

If 0<p<σ({0})mnm0<p<\sigma\left(\left\{0\right\}\right)^{-\frac{m}{n-m}}, then there exists r>0r>0 such that

supiBr+e2mnmam,np|ui|nnm𝑑μ<.\sup_{i}\int_{B_{r}^{+}}e^{2^{-\frac{m}{n-m}}a_{m,n}p\left|u_{i}\right|^{\frac{n}{n-m}}}d\mu<\infty. (4.7)
Theorem 4.2.

Let (Mn,g)\left(M^{n},g\right) be a Cm+2C^{m+2} compact Riemannian manifold with boundary and gg be a Cm+1C^{m+1} Riemannian metric on MM. If EME\subset M with μ(E)δ>0\mu\left(E\right)\geq\delta>0, uWm,nm(M)\{0}u\in W^{m,\frac{n}{m}}\left(M\right)\backslash\left\{0\right\} with uE=0u_{E}=0 and Dku(ν,,νk times)|M=0\left.D^{k}u\left(\overset{k\text{ times}}{\overbrace{\nu,\cdots,\nu}}\right)\right|_{\partial M}=0 for odd number k[0,m)k\in\left[0,m\right) (here ν\nu is the unit outer normal direction on M\partial M), then for any 0<a<am,n0<a<a_{m,n},

Me2mnma|u|nnmΔm2uLnmnnm𝑑μc(a,δ)<.\int_{M}e^{2^{-\frac{m}{n-m}}a\frac{\left|u\right|^{\frac{n}{n-m}}}{\left\|\Delta^{\frac{m}{2}}u\right\|_{L^{\frac{n}{m}}}^{\frac{n}{n-m}}}}d\mu\leq c\left(a,\delta\right)<\infty. (4.8)
Lemma 4.3.

Assume uWm,nm(BR+)\{0}u\in W^{m,\frac{n}{m}}\left(B_{R}^{+}\right)\backslash\left\{0\right\} such that u(x)=0u\left(x\right)=0 for |x|\left|x\right| close to RR and nku=0\partial_{n}^{k}u=0 on ΣR\Sigma_{R} for even number k[0,m)k\in\left[0,m\right), then

BR+e2mnmam,n|u|nnmΔm2uLnm(BR+)nnm𝑑xc(n)Rn.\int_{B_{R}^{+}}e^{2^{-\frac{m}{n-m}}a_{m,n}\frac{\left|u\right|^{\frac{n}{n-m}}}{\left\|\Delta^{\frac{m}{2}}u\right\|_{L^{\frac{n}{m}}\left(B_{R}^{+}\right)}^{\frac{n}{n-m}}}}dx\leq c\left(n\right)R^{n}. (4.9)

This can be done by odd extension in xnx_{n} direction as in the proof of Lemma 3.5.

Proposition 4.3.

Let 0<R10<R\leq 1, gg be a Cm1C^{m-1} Riemannian metric on BR+¯\overline{B_{R}^{+}} such that gij(0)=δijg_{ij}\left(0\right)=\delta_{ij} for 1i,jn1\leq i,j\leq n. Assume uiWm,nm(BR+)u_{i}\in W^{m,\frac{n}{m}}\left(B_{R}^{+}\right), nku=0\partial_{n}^{k}u=0 on ΣR\Sigma_{R} for even number k[0,m)k\in\left[0,m\right), uiuu_{i}\rightharpoonup u weakly in Wm,nm(BR+)W^{m,\frac{n}{m}}\left(B_{R}^{+}\right) and

|Δgm2ui|nmdμ|Δgm2u|nmdμ+σ as measure on BR+.\left|\Delta_{g}^{\frac{m}{2}}u_{i}\right|^{\frac{n}{m}}d\mu\rightarrow\left|\Delta_{g}^{\frac{m}{2}}u\right|^{\frac{n}{m}}d\mu+\sigma\text{ as measure on }B_{R}^{+}\text{.}

If 0<p<σ({0})mnm0<p<\sigma\left(\left\{0\right\}\right)^{-\frac{m}{n-m}}, then there exists r>0r>0 such that

supiBr+e2mnmam,np|ui|nnm𝑑μ<.\sup_{i}\int_{B_{r}^{+}}e^{2^{-\frac{m}{n-m}}a_{m,n}p\left|u_{i}\right|^{\frac{n}{n-m}}}d\mu<\infty. (4.10)
Theorem 4.3.

Let (Mn,g)\left(M^{n},g\right) be a Cm+2C^{m+2} compact Riemannian manifold with boundary and gg be a Cm+1C^{m+1} Riemannian metric on MM. If EME\subset M with μ(E)δ>0\mu\left(E\right)\geq\delta>0, uWm,nm(M)\{0}u\in W^{m,\frac{n}{m}}\left(M\right)\backslash\left\{0\right\} with uE=0u_{E}=0 and Dku(ν,,νk times)|M=0\left.D^{k}u\left(\overset{k\text{ times}}{\overbrace{\nu,\cdots,\nu}}\right)\right|_{\partial M}=0 for even number k[0,m)k\in\left[0,m\right) (here ν\nu is the unit outer normal direction on M\partial M), then for any 0<a<am,n0<a<a_{m,n},

Me2mnma|u|nnmΔm2uLnmnnm𝑑μc(a,δ)<.\int_{M}e^{2^{-\frac{m}{n-m}}a\frac{\left|u\right|^{\frac{n}{n-m}}}{\left\|\Delta^{\frac{m}{2}}u\right\|_{L^{\frac{n}{m}}}^{\frac{n}{n-m}}}}d\mu\leq c\left(a,\delta\right)<\infty. (4.11)
Proposition 4.4.

Let 0<R10<R\leq 1, gg be a Cm1C^{m-1} Riemannian metric on BR+¯\overline{B_{R}^{+}}. Assume uiWm,nm(BR+)u_{i}\in W^{m,\frac{n}{m}}\left(B_{R}^{+}\right), nku|ΣR=0\left.\partial_{n}^{k}u\right|_{\Sigma_{R}}=0 for integer k[0,m)k\in\left[0,m\right), uiuu_{i}\rightharpoonup u weakly in Wm,nm(BR+)W^{m,\frac{n}{m}}\left(B_{R}^{+}\right) and

|Δgm2ui|nmdμ|Δgm2u|nmdμ+σ as measure on BR+.\left|\Delta_{g}^{\frac{m}{2}}u_{i}\right|^{\frac{n}{m}}d\mu\rightarrow\left|\Delta_{g}^{\frac{m}{2}}u\right|^{\frac{n}{m}}d\mu+\sigma\text{ as measure on }B_{R}^{+}\text{.}

If 0<p<σ({0})2n20<p<\sigma\left(\left\{0\right\}\right)^{-\frac{2}{n-2}}, then there exists r>0r>0 such that

supiBr+eam,np|ui|nnm𝑑μ<.\sup_{i}\int_{B_{r}^{+}}e^{a_{m,n}p\left|u_{i}\right|^{\frac{n}{n-m}}}d\mu<\infty. (4.12)
Theorem 4.4.

Let MnM^{n} be a CmC^{m} compact manifold with boundary and gg be a Cm1C^{m-1} Riemannian metric on MM. We denote

κm(M,g)=infuW0m,nm(M)\{0}Δm2uLnmuLnm.\kappa_{m}\left(M,g\right)=\inf_{u\in W_{0}^{m,\frac{n}{m}}\left(M\right)\backslash\left\{0\right\}}\frac{\left\|\Delta^{\frac{m}{2}}u\right\|_{L^{\frac{n}{m}}}}{\left\|u\right\|_{L^{\frac{n}{m}}}}. (4.13)

Assume 0κ<κm(M,g)0\leq\kappa<\kappa_{m}\left(M,g\right), 0<a<am,n0<a<a_{m,n}, uW0m,nm(M)u\in W_{0}^{m,\frac{n}{m}}\left(M\right) and

ΔuLnmnmκnmuLnmnm1,\left\|\Delta u\right\|_{L^{\frac{n}{m}}}^{\frac{n}{m}}-\kappa^{\frac{n}{m}}\left\|u\right\|_{L^{\frac{n}{m}}}^{\frac{n}{m}}\leq 1, (4.14)

then

Mea|u|nnm𝑑μc(κ,a)<.\int_{M}e^{a\left|u\right|^{\frac{n}{n-m}}}d\mu\leq c\left(\kappa,a\right)<\infty. (4.15)

4.2. Wm,nm(Mn)W^{m,\frac{n}{m}}\left(M^{n}\right) for odd mm

Let mm\in\mathbb{N} be an odd number strictly less than nn. For R>0R>0, uW0m,nm(BR)\{0}u\in W_{0}^{m,\frac{n}{m}}\left(B_{R}\right)\backslash\left\{0\right\}, it is shown in [A] that

BRexp(am,n|u|nnmΔm12uLnmnnm)𝑑xc(m,n)Rn.\int_{B_{R}}\exp\left(a_{m,n}\frac{\left|u\right|^{\frac{n}{n-m}}}{\left\|\nabla\Delta^{\frac{m-1}{2}}u\right\|_{L^{\frac{n}{m}}}^{\frac{n}{n-m}}}\right)dx\leq c\left(m,n\right)R^{n}. (4.16)

Here

am,n=n|𝕊n1|(πn22mΓ(m+12)Γ(nm+12))nnm.a_{m,n}=\frac{n}{\left|\mathbb{S}^{n-1}\right|}\left(\frac{\pi^{\frac{n}{2}}2^{m}\Gamma\left(\frac{m+1}{2}\right)}{\Gamma\left(\frac{n-m+1}{2}\right)}\right)^{\frac{n}{n-m}}. (4.17)

With (4.16) at hands, we can derive similar results for mm odd cases. Indeed if we use Δm12uLnm\left\|\nabla\Delta^{\frac{m-1}{2}}u\right\|_{L^{\frac{n}{m}}} instead of Δm2uLnm\left\|\Delta^{\frac{m}{2}}u\right\|_{L^{\frac{n}{m}}} (in the mm even case), we can get the corresponding statements. The details are left to interested readers.

References

  • [A] D. Adams. A sharp inequality of J. Moser for higher order derivatives. Ann. of Math. (2) 128 (1988), no. 2, 385–398.
  • [AD] Adimurthi, O. Druet. Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality. Comm. Partial Differential Equations 29 (2004), no. 1-2, 295–322.
  • [Au1] T. Aubin. Problèmes isopérimétriques et espaces de Sobolev. (French) J. Differential Geometry 11 (1976), no. 4, 573–598.
  • [Au2] T. Aubin. Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire. (French) J. Functional Analysis 32 (1979), no. 2, 148–174.
  • [CCH] R. Cerny, A. Cianchi and S. Hencl. Concentration-compactness principles for Moser-Trudinger inequalities: new results and proofs. (English summary) Ann. Mat. Pura Appl. (4) 192 (2013), no. 2, 225–243.
  • [CH] S. Y. Chang and F. B. Hang. Improved Moser-Trudinger-Onofri inequality under constraints. Comm Pure Appl Math, to appear, arXiv:1909.00431
  • [CY1] S. Y. Chang and P. C. Yang. Conformal deformation of metrics on 𝕊2\mathbb{S}^{2}. J. Differential Geom. 27 (1988), no. 2, 259–296.
  • [CY2] S. Y. Chang and P. C. Yang. Extremal metrics of zeta function determinants on 4-manifolds. Ann. of Math. (2) 142 (1995), no. 1, 171–212.
  • [Ci] A. Cianchi. Moser-Trudinger inequalities without boundary conditions and isoperimetric problems. Indiana Univ. Math. J. 54 (2005), no. 3, 669–705.
  • [F] L. Fontana. Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv. 68 (1993), no. 3, 415–454.
  • [GiT] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517 pp. ISBN: 3-540-41160-7
  • [GrS] U. Grenander and G. Szego. Toeplitz forms and their applications. California Monographs in Mathematical Sciences University of California Press, Berkeley-Los Angeles 1958 vii+245 pp.
  • [Gu] M. J. Gursky. The principal eigenvalue of a conformally invariant differential operator. Comm. Math. Phys. 207 (1999), no. 1, 131–143.
  • [GuV] M. J. Gursky and J. Viaclovsky. A fully nonlinear equation on four-manifolds with positive scalar curvature. J. Differential Geom. 63 (2003), no. 1, 131–154.
  • [H] F. B. Hang. A remark on the concentration compactness principle in critical dimension. Comm Pure Appl Math, to appear, arXiv:2002.09870
  • [HY1] F. B. Hang and P. C. Yang. Sign of Green’s function of Paneitz operators and the Q curvature. Int. Math. Res. Not. IMRN 2015, no. 19, 9775–9791.
  • [HY2] F. B. Hang and P. C. Yang. Lectures on the fourth-order Q curvature equation. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 31 (2016), 1–33.
  • [He] E. Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Lecture Notes in Mathematics, 5. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999.
  • [Li1] Y. X. Li. Moser-Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differential Equations 14 (2001), no. 2, 163–192.
  • [Li2] Y. X. Li. Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds. Sci. China Ser. A 48 (2005), no. 5, 618–648.
  • [Ln1] P. L. Lions. The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201.
  • [Ln2] P. L. Lions. The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1 (1985), no. 2, 45–121.
  • [LY] G. Z. Lu and Y. Y. Yang. Adams’ inequalities for bi-Laplacian and extremal functions in dimension four. Adv. Math. 220 (2009), no. 4, 1135–1170.
  • [M] J. Moser. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (1970/71), 1077–1092.
  • [N1] V. H. Nguyen. Improved Moser-Trudinger inequality for functions with mean value zero in n\mathbb{R}^{n} and its extremal functions. Nonlinear Anal. 163 (2017), 127–145.
  • [N2] V. H. Nguyen. Improved Moser-Trudinger inequality of Tintarev type in dimension n and the existence of its extremal functions. Ann. Global Anal. Geom. 54 (2018), no. 2, 237–256.
  • [OPS] B. Osgood, R. Phillips and P. Sarnak. Extremals of determinants of Laplacians. J. Funct. Anal. 80 (1988), no. 1, 148–211.
  • [T] C. Tintarev. Trudinger-Moser inequality with remainder terms. J. Funct. Anal. 266 (2014), no. 1, 55–66.
  • [W] H. Widom. On an inequality of Osgood, Phillips and Sarnak. Proc. Amer. Math. Soc. 102 (1988), no. 3, 773–774.
  • [Y1] Y. Y. Yang. A sharp form of Moser-Trudinger inequality in high dimension. J. Funct. Anal. 239 (2006), no. 1, 100–126.
  • [Y2] Y. Y. Yang. On a sharp inequality of L. Fontana for compact Riemannian manifolds. Manuscripta Math. 157 (2018), no. 1-2, 51–79.