This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Indian Association for the cultivation of Science
11email: tpab2@iacs.res.in,
home page: http://inspirehep.net/author/profile/Arita.Biswas.1

bclνb\to cl\nu anomalies in light of vector and scalar interactions

Aritra Biswas 11
Abstract

We perform a model independent analysis of the charged current bclνb\to cl\nu anomalies under the presence of scalar and vector interactions. The analysis is carried out in two stages: (a) under the presence of both (left-handed) vector and scalar interactions and (b) under the presence of scalar interactions alone. We find that even after stringent bounds from similar quark-level processes such as BcτνB_{c}\to\tau\nu, such scenarios have the potential to explain the aforementioned anomalies. Contrary to the general notion, we show that even scalar interactions alone can explain such anomalies, provided they are complex. However, extended scalar sector models are unable to comply with these anomalies to 3σ\sim 3\sigma. We further illustrate our results with the help of three benchmark models corresponding to the presence of (i) both scalar and vector (ii) real scalar and (iii) complex scalar interactions.

keywords:
Flavour Physics, Mesons, Hadrons

1 Introduction

Over the past few years, there have been constant and consistent reports from experimental collaborations such as LHCb, Belle and BaBar about flavour observables with deviations of more than 3σ3\sigma in exclusive BDB\to D^{*} [1, 2, 3, 4, 5, 6, 7, 8, 9] and BJ/ψB\to J/\psi transitions. Both of these exclusive processes have the underlying sub-quark transition bclνb\to cl\nu. These results are believed to be the hints of lepton-flavour universality violating (LFUV) type new physics (NP). We investigate the prospect of scalar and vector type NP’s in explaining such deviations. We initially work from a model independent perspective and then illustrate our results further using the models: (i) Non-minimal universal extra dimensions (NMUED) for the case with one scalar and one vector NP operator, (ii) Goergi-Michacek (GM) model for the case of a single scalar NP operator preceded by a real Wilson coefficient (WC) and (iii) Leptoquark (LQ) model for the a single scalar NP operator preceded by a complex WC.

2 Current Status: Theory and Experiment

The present global average for the (D())\mathcal{R}(D^{(*)}) anomalies are about 4σ4\sigma away from the corresponding SM results. Fig. 5 and table. 1 summarize the current theoretical and experimental status for these anomalies. The SM average is the arithmetic mean of the results from [10, 11, 12, 13].

(D)\mathcal{R}(D) (D)\mathcal{R}(D^{*}) Correlation Pτ(D)P_{\tau}(D^{*}) (J/ψ)\mathcal{R}(J/\psi)
SM 0.299(3)0.299(3) 0.258(6)0.258(6) 0.491(25)-0.491(25) 0.249(42)0.249(42)(LFCQ)
0.289(28)0.289(28)(PQCD)
Babar 0.440(58)st.(42)sy.0.440(58)_{st.}(42)_{sy.} 0.332(24)st.(18)sy.0.332(24)_{st.}(18)_{sy.} 0.27-0.27
Belle (2015) 0.375(64)st.(26)sy.0.375(64)_{st.}(26)_{sy.} 0.293(38)st.(15)sy.0.293(38)_{st.}(15)_{sy.} 0.49-0.49
Belle (2016)-I - 0.302(30)st.(11)sy.0.302(30)_{st.}(11)_{sy.}
Belle (2016)-II - 0.270(35)st.+0.0280.0250.270(35)_{st.}~^{+0.028}{}_{-0.025} 0.33 0.38(51)st.+0.210.16-0.38(51)_{st.}~^{+0.21}{}_{-0.16}
LHCb (2015) - 0.336(27)st.(30)sy.0.336(27)_{st.}(30)_{sy.}
LHCb (2017) - 0.286(19)st.(25)sy.(21)0.286(19)_{st.}(25)_{sy.}(21)
World Avg. 0.407(39)st.(24)sy.0.407(39)_{st.}(24)_{sy.} 0.304(13)st.(7)sy.0.304(13)_{st.}(7)_{sy.} 0.200.20 0.71(17)st.(18)sy.0.71(17)_{st.}(18)_{sy.}
Table 1: Present status (both theoretical and experimental) of (D)\mathcal{R}(D), (D)\mathcal{R}(D^{*}) and Pτ(D)P_{\tau}(D^{*}). First uncertainty is statistical and the second one is systematic. The first row lists the arithmetic mean for the SM calculations reported in HFLAV.
Refer to caption
Figure 1: Global average for (D)\mathcal{R}(D), (D)\mathcal{R}(D^{*}) and Pτ(D)P_{\tau}(D^{*}) and the deviation from the SM result.

3 Formalism

The most general effective Hamiltonian describing the bcτνb\to c\tau\nu transitions, with all possible four-fermi operators in the lowest dimension (with left-handed neutrinos) is given by:

eff=4GF2Vcb[(1+CV1)𝒪V1+CV2𝒪V2+CS1𝒪S1+CS2𝒪S2+CT𝒪T],{\cal H}_{eff}=\frac{4G_{F}}{\sqrt{2}}V_{cb}\Big{[}(1+C^{\ell}_{V_{1}}){\cal O}_{V_{1}}+C^{\ell}_{V_{2}}{\cal O}_{V_{2}}+C^{\ell}_{S_{1}}{\cal O}_{S_{1}}+C^{\ell}_{S_{2}}{\cal O}_{S_{2}}+C^{\ell}_{T}{\cal O}_{T}\Big{]}, (1)

where the operator basis is defined as

𝒪V1\displaystyle{\cal O}_{V_{1}} =\displaystyle= (c¯LγμbL)(τ¯LγμντL),\displaystyle({\bar{c}}_{L}\gamma^{\mu}b_{L})({\bar{\tau}}_{L}\gamma_{\mu}\nu_{\tau L}),
𝒪V2\displaystyle{\cal O}_{V_{2}} =\displaystyle= (c¯RγμbR)(τ¯LγμντL),\displaystyle({\bar{c}}_{R}\gamma^{\mu}b_{R})({\bar{\tau}}_{L}\gamma_{\mu}\nu_{\tau L}),
𝒪S1\displaystyle{\cal O}_{S_{1}} =\displaystyle= (c¯LbR)(τ¯RντL),\displaystyle({\bar{c}}_{L}b_{R})({\bar{\tau}}_{R}\nu_{\tau L}),
𝒪S2\displaystyle{\cal O}_{S_{2}} =\displaystyle= (c¯RbL)(τ¯RντL),\displaystyle({\bar{c}}_{R}b_{L})({\bar{\tau}}_{R}\nu_{\tau L}),
𝒪T\displaystyle{\cal O}_{T} =\displaystyle= (c¯RσμνbL)(τ¯RσμνντL),\displaystyle({\bar{c}}_{R}\sigma^{\mu\nu}b_{L})({\bar{\tau}}_{R}\sigma_{\mu\nu}\nu_{\tau L}), (2)

and the corresponding Wilson coefficients are given by CX(X=V1,V2,S1,S2,T)C_{X}(X=V_{1},V_{2},S_{1},S_{2},T). We are interested in the new scalar interaction 𝒪V1{\cal O}_{V_{1}} and 𝒪S1{\cal O}_{S_{1}}, and thus we turn all other Wilson Coefficients to zero for this analysis.

Subject to the above hamiltonian, one can construct the differential decay rate for a particular exclusive decay, involving the NP WC’s, the CKM elements and the corresponding hadronic form factors. The measurable observables are ratios fo these integrated decay rates with different leptons in the final states. The ratio cancels uncertainties due to the CKM elements completely, and also those due to the form factors to a large extent. For the theoretical details regarding the obserbables, the corresponding form factors and the constraints, the interested reader can look into [14, 15] and the references therein.

4 Analysis

The results for our fits with a single vector and scalar type NP are displayed in fig. 2 and table. 2. In what follows CS1=CHmbmC_{S_{1}}=-C_{H}~m_{b}~m_{\ell}. The WC’s are considered to be real. It is clear that for all combinations of results shown in fig. 2, there is a two-fold ambiguity in the best-fit results. One of these points is closer to SM than the other and this is the one that is important in constraining NMUED. We also note that while the results from Belle and LHCb are consistent with SM within 3σ3\sigma, for any and all other combination of results, the SM is away from the best fit point by more than 3σ3\sigma in the CWC_{W} - CHτC^{\tau}_{H} plane.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Refer to caption
(e)
Refer to caption
(f)
Refer to caption
(g)
Refer to caption
(h)
Figure 2: (D())\mathcal{R}(D^{(*)}) fit results corresponding to separate fits listed in table 2 for the case with both OV1O_{V_{1}} and OS1O_{S_{1}}. Red(dotted) and blue(solid) lines enclose 1σ1\sigma (Δχ2=2.30\Delta\chi^{2}=2.30) and 3σ3\sigma (Δχ2=11.83\Delta\chi^{2}=11.83) regions respectively. Only the gridlines corresponding to CW=CV1C_{W}=C_{V_{1}} and CHτ=0C^{\tau}_{H}=0 are shown, such that there intersection point represents SM. The hatched regions in the last two figures show the constraints coming from BcτνB_{c}\to\tau\nu.
Without J/ψ\mathcal{R}_{J/\psi} With J/ψ\mathcal{R}_{J/\psi} Fit Results Observable values
PQCD LFCQ
Datasets χmin2\chi^{2}_{min} pp-value χmin2\chi^{2}_{min} pp-value χmin2\chi^{2}_{min} pp-value Re(CHC_{H}) Im(CHC_{H}) (D)\mathcal{R}(D^{*}) (D)\mathcal{R}(D)
/DoF (%) /DoF (%) /DoF (%) (GeV-2) (GeV-2)
All Data 9.22/8 23.72 11.86/9 15.76 12.38/9 13.51 -0.031(8) 0.000(73) 0.2746(25) 0.448(42)
Belle 1.71/4 63.54 4.39/5 35.63 4.89/5 29.83 -0.023(11) 0.000(87) 0.2674(33) 0.406(60)
Babar +LHCb 6.42/3 4.03 9.00/4 2.92 9.54/4 2.29 -0.042(11) 0.000(84) 0.2764(34) 0.508(58)
Babar + Belle 6.71/6 24.31 9.35/7 15.48 9.87/7 13.03 -0.030(8) 0.000(74) 0.2724(25) 0.445(43)
Belle + LHCb 4.70/6 45.41 7.37/7 28.82 7.88/7 24.72 -0.025(11) 0.000(78) 0.2700(34) 0.414(59)
All D\mathcal{R}_{D^{*}} 2.37/5 66.78 4.31/6 50.53 4.99/6 41.67 - -
No Pτ(D)P_{\tau}(D^{*}) 9.21/7 16.23 11.84/8 10.58 12.36/8 8.92 -0.031(8) 0.000(72) 0.2746(25) 0.448(42)
Table 2: Results of fits for different combinations of experimental data-points along with our predictions for the charged current observables for the case with both OV1O_{V_{1}} and OS1O_{S_{1}}. The last two columns are obtained from fits without treating J/ψ\mathcal{R}_{J/\psi} as a data point.

The results for our fits with a single vector and scalar type NP are displayed in fig. 3 and table. 3, assuming cHc_{H} to be complex.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Refer to caption
(e)
Refer to caption
(f)
Figure 3: Fit results in terms of the fixed Δχ2\Delta\chi^{2} contours representing 1σ1\sigma (red, solid) and 3σ3\sigma (blue, dot-dashed) confidence levels respectively, in the Re(CHC_{H}) and Im(CHC_{H}) parameter-space for the case with OS1O_{S_{1}} only. The diagonally hatched region is ruled out from the BcB_{c} life-time constraint and the gray-shaded region is disallowed by the constraint (Bcτν)<10%\mathcal{B}(B_{c}\to\tau\nu)<10\%.
Without J/ψ\mathcal{R}_{J/\psi} With J/ψ\mathcal{R}_{J/\psi} Fit Results
PQCD LFCQ
Datasets χmin2\chi^{2}_{min} pp-value χmin2\chi^{2}_{min} pp-value χmin2\chi^{2}_{min} pp-value Re(CHC_{H}) Im(CHC_{H})
/DoF (%) /DoF (%) /DoF (%) (GeV-2) (GeV-2)
All Data 9.22/8 23.72 11.86/9 15.76 12.38/9 13.51 -0.031(8) 0.000(73)
Belle 1.71/4 63.54 4.39/5 35.63 4.89/5 29.83 -0.023(11) 0.000(87)
Babar+LHCb 6.42/3 4.03 9.00/4 2.92 9.54/4 2.29 -0.042(11) 0.000(84)
Babar+ Belle 6.71/6 24.31 9.35/7 15.48 9.87/7 13.03 -0.030(8) 0.000(74)
Belle + LHCb 4.70/6 45.41 7.37/7 28.82 7.88/7 24.72 -0.025(11) 0.000(78)
All D\mathcal{R}_{D^{*}} 2.37/5 66.78 4.31/6 50.53 4.99/6 41.67 - -
No Pτ(D)P_{\tau}(D^{*}) 9.21/7 16.23 11.84/8 10.58 12.36/8 8.92 -0.031(8) 0.000(72)
Table 3: Results of fits with different combinations of experimental data-points for the case with only OS1O_{S_{1}}.

5 Models

The model independent scenarios described in the previous sections are further illustrated with the help of benchmark models in this section. Details about the model parameters and their relations with CS1C_{S_{1}} and CV1C_{V_{1}} can be found in [14, 15].

5.1 Real CV1C_{V_{1}} and CS1C_{S_{1}}: Non-Minimal universal extra dimension(NMUED)

Refer to caption
(a) RVR_{V} vs. RfR_{f}
Refer to caption
(b) RfR_{f} vs. R1R^{-1}
Refer to caption
(c) RVR_{V} vs. R1R^{-1}
Figure 4: Regions in the NMUED model parameter space, allowed by CWC_{W} - CHτC^{\tau}_{H} fit of (D())\mathcal{R}(D^{(*)}) data.

5.2 Real CS1C_{S_{1}}: Goergi Michacek model (GM)

Refer to caption
Figure 5: vχv_{\chi} vs.mH3±m_{H^{\pm}_{3}} parameter space excluded by all Belle and LHCb data at 2σ2\sigma (orange, solid) and 3σ3\sigma (blue, dashed) confidence levels. Regions above the lines are excluded.

5.3 Complex CS1C_{S_{1}}: Leptoquark model (LQ)

Data Re(g2L33g2R23){\rm Re}\left(g^{33}_{2L}g^{23*}_{2R}\right) Im(g2L33g2R33){\rm Im}\left(g^{33}_{2L}g^{33*}_{2R}\right)
All Data 0.250(64)-0.250(64) 0.0(6)0.0(6)
Belle 0.186(90)-0.186(90) 0.0(7)0.0(7)
Babar+LHCb 0.338(89)-0.338(89) 0.0(7)0.0(7)
Babar + Belle 0.245(65)-0.245(65) 0.0(6)0.0(6)
Belle + LHCb 0.198(88)-0.198(88) 0.0(6)0.0(6)
No Pτ(D)P_{\tau}\left(D^{*}\right) 0.250(64)-0.250(64) 0.0(6)0.0(6)
Table 4: Allowed values of the product of the couplings (both real and imaginary) of the chosen Leptoquark model involved with the Wilson coefficient CS1lC_{S_{1}}^{l}.

References

  • [1] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. Lett.  109, 101802 (2012) doi:10.1103/PhysRevLett.109.101802 [arXiv:1205.5442 [hep-ex]].
  • [2] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 88, no. 7, 072012 (2013) doi:10.1103/PhysRevD.88.072012 [arXiv:1303.0571 [hep-ex]].
  • [3] M. Huschle et al. [Belle Collaboration], Phys. Rev. D 92, no. 7, 072014 (2015) doi:10.1103/PhysRevD.92.072014 [arXiv:1507.03233 [hep-ex]].
  • [4] Y. Sato et al. [Belle Collaboration], Phys. Rev. D 94, no. 7, 072007 (2016) doi:10.1103/PhysRevD.94.072007 [arXiv:1607.07923 [hep-ex]].
  • [5] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.  115, no. 11, 111803 (2015) Erratum: [Phys. Rev. Lett.  115, no. 15, 159901 (2015)] doi:10.1103/PhysRevLett.115.159901, 10.1103/PhysRevLett.115.111803 [arXiv:1506.08614 [hep-ex]].
  • [6] S. Hirose et al. [Belle Collaboration], Phys. Rev. Lett.  118, no. 21, 211801 (2017) doi:10.1103/PhysRevLett.118.211801 [arXiv:1612.00529 [hep-ex]].
  • [7] S. Hirose et al. [Belle Collaboration], Phys. Rev. D 97, no. 1, 012004 (2018) doi:10.1103/PhysRevD.97.012004 [arXiv:1709.00129 [hep-ex]].
  • [8] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.  120, no. 17, 171802 (2018) doi:10.1103/PhysRevLett.120.171802 [arXiv:1708.08856 [hep-ex]].
  • [9] R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 97, no. 7, 072013 (2018) doi:10.1103/PhysRevD.97.072013 [arXiv:1711.02505 [hep-ex]].
  • [10] D. Bigi and P. Gambino, Phys. Rev. D 94, no. 9, 094008 (2016) doi:10.1103/PhysRevD.94.094008 [arXiv:1606.08030 [hep-ph]].
  • [11] F. U. Bernlochner, Z. Ligeti, M. Papucci and D. J. Robinson, Phys. Rev. D 95, no. 11, 115008 (2017) Erratum: [Phys. Rev. D 97, no. 5, 059902 (2018)] doi:10.1103/PhysRevD.95.115008, 10.1103/PhysRevD.97.059902 [arXiv:1703.05330 [hep-ph]].
  • [12] D. Bigi, P. Gambino and S. Schacht, JHEP 1711, 061 (2017) doi:10.1007/JHEP11(2017)061 [arXiv:1707.09509 [hep-ph]].
  • [13] S. Jaiswal, S. Nandi and S. K. Patra, JHEP 1712, 060 (2017) doi:10.1007/JHEP12(2017)060 [arXiv:1707.09977 [hep-ph]].
  • [14] A. Biswas, A. Shaw and S. K. Patra, Phys. Rev. D 97, no. 3, 035019 (2018) doi:10.1103/PhysRevD.97.035019 [arXiv:1708.08938 [hep-ph]].
  • [15] A. Biswas, D. K. Ghosh, A. Shaw and S. K. Patra, arXiv:1801.03375 [hep-ph].