This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Cosmic Dawn Center (DAWN), Copenhagen, Denmark
11email: nbsi@space.dtu.dk
22institutetext: DTU-Space, Technical University of Denmark, Elektrovej 327, DK-2800 Kgs. Lyngby, Denmark
22email: shuji@dtu.dk
33institutetext: Niels Bohr Institute, University of Copenhagen, Jagtvej 128, DK-2200 Copenhagen, Denmark 44institutetext: Leiden Observatory, Leiden University, NL-2300 RA Leiden, the Netherlands 55institutetext: Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile 66institutetext: Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, Paris, France 77institutetext: Department of Space, Earth, & Environment, Chalmers University of Technology, Chalmersplatsen 4 412 96 Gothenburg, Sweden 88institutetext: Department of Physics, University of Helsinki, PO Box 64, 00014 Helsinki, Finland 99institutetext: Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany 1010institutetext: Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), No. 1, Section 4, Roosevelt Rd., Taipei 106216, Taiwan 1111institutetext: Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA 1212institutetext: Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan 1313institutetext: National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, Japan 1414institutetext: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, James-Franck-Str. 1, D-85748 Garching, Germany 1515institutetext: Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D85748 Garching, Germany 1616institutetext: Instituto de Física y Astronomía, Universidad de Valparaíso, Avda. Gran Bretana 1111, Valparaíso, Chile 1717institutetext: Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), No. 1, Section 4, Roosevelt Road, Taipei 106216, Taiwan 1818institutetext: Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK 1919institutetext: Department of Astronomy, Columbia University, New York, NY 10027, USA 2020institutetext: University of Bologna– Department of Physics and Astronomy “Augusto Righi” (DIFA), Via Gobetti 93/2, I-40129 Bologna, Italy 2121institutetext: INAF–Osservatorio di Astrofisica e Scienza dello Spazio, Via Gobetti 93/3, I-40129 Bologna, Italy 2222institutetext: Caltech/IPAC, 1200 E. California Boulevard, Pasadena, CA 91125, USA 2323institutetext: Department of Computer Science, Aalto University, PO Box 15400, Espoo 00 076, Finland 2424institutetext: Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA 2525institutetext: Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA 2626institutetext: Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD, Groningen, The Netherlands 2727institutetext: University of Bologna, Department of Physics and Astronomy (DIFA), Via Gobetti 93/2, I-40129 Bologna, Italy 2828institutetext: Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2929institutetext: Department of Physics & Astronomy, University of California Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095, USA

Behind the dust veil: A panchromatic view of an optically dark galaxy at z=4.82

Nikolaj B. Sillassen 1122    Shuowen Jin 1122Marie Curie FellowMarie Curie Fellow    Georgios E. Magdis 112233    Jacqueline Hodge 44    Raphael Gobat 55    Emanuele Daddi 66    Kirsten Knudsen 77    Alexis Finoguenov 88    Eva Schinnerer 99    Wei-Hao Wang 1010    Zhen-Kai Gao 1010    John R. Weaver 1111    Hiddo Algera 101012121313    Irham T. Andika 14141515    Malte Brinch 1616    Chian-Chou Chen 1717    Rachel Cochrane 18181919    Andrea Enia 20202121    Andreas Faisst 2222    Steven Gillman 1122    Carlos Gomez-Guijarro 66    Ghassem Gozaliasl 882323    Chris Hayward 2424    Vasily Kokorev 2525    Maya Merchant 1133    Francesca Rizzo 2626    Margherita Talia 27272121    Francesco Valentino 1122    David Blánquez-Sesé 1122    Anton M. Koekemoer 2828    Benjamin Magnelli 66    Michael Rich 2929    Marko Shuntov 1133
(Received XX / Accepted XX)

Optically dark dusty star-forming galaxies (DSFGs) play an essential role in massive galaxy formation at early cosmic time, however their nature remains elusive. Here we present a detailed case study of all the baryonic components of a z=4.821z=4.821 DSFG, XS55. Selected from the ultra-deep COSMOS-XS 3GHz map with a red SCUBA-2 450μ\mum/850μ\mum colour, XS55 was followed up with ALMA 3mm line scans and spectroscopically confirmed to be at z=4.821z=4.821 via detections of the CO(5-4) and [CI](1-0) lines. JWST/NIRCam imaging reveals that XS55 is a F150W-dropout with red F277W/F444W colour, and a complex morphology: a compact central component embedded in an extended structure with a likely companion. XS55 is tentatively detected in X-rays with both Chandra and XMM-Newton, suggesting an active galactic nucleus (AGN) nature. By fitting a panchromatic SED spanning NIR to radio wavelengths, we revealed that XS55 is a massive main-sequence galaxy with a stellar mass of M=(5±1)×1010MM_{\ast}=(5\pm 1)\times 10^{10}\,{\rm M_{\odot}} and a star formation rate of SFR=540±177Myr1{\rm SFR}=540\pm 177\leavevmode\nobreak\ {\rm M_{\odot}\,yr^{-1}}. The dust of XS55 is optically thick in the far infrared (FIR) with a surprisingly cold dust temperature of Tdust=33±2KT_{\rm dust}=33\pm 2\,{\rm K}, making XS55 one of the coldest DSFGs at z>4z>4 known to date. This work unveils the nature of a radio-selected F150W-dropout, suggesting the existence of a population of DSFGs hosting active black holes embedded in optically thick dust.

Key Words.:
Galaxy: evolution – galaxies: high-redshift – submillimeter: galaxies

1 Introduction

Optically faint/dark galaxies are a population of massive dusty star-forming galaxies (DSFGs) that are faint or undetected in deep optical images while bright at longer wavelengths. This population includes but is not limited to the following samples: sub-millimetre galaxies (SMGs) (e.g., Walter et al., 2012), H-band dropouts (e.g., Wang et al., 2019; Alcalde Pampliega et al., 2019; Smail et al., 2023), Ks-faint (e.g., Smail et al., 2021), Hubble Space Telescope (HST)-dark/faint galaxies (e.g., Franco et al., 2018; Pérez-González et al., 2023; Xiao et al., 2023; Gómez-Guijarro et al., 2023), and radio-selected near infrared (NIR) dark galaxies (Algera et al. 2020; Talia et al. 2021; Enia et al. 2022; van der Vlugt et al. 2023; Gentile et al. 2024a, b). Recent studies revealed that this population contributes significantly (1040%10-40\%) to the cosmic star formation rate density in the early universe (z36z\sim 3-6, Wang et al. 2019; Fudamoto et al. 2021; Talia et al. 2021; Enia et al. 2022; Shu et al. 2022; Xiao et al. 2023), and dominates the massive end of the stellar mass function (SMF) at z38z\sim 3-8 (Wang et al., 2019; Gottumukkala et al., 2024). This indicates that this population plays a significant role in cosmic star formation history, even up to 50% estimated from Lyman break galaxy selected samples at z3z\sim 3 (Enia et al., 2022), but has been largely missed by previous optical/NIR surveys. Thanks to the unprecedented sensitivity and long wavelength coverage, the James Webb Space Telescope (JWST) can efficiently detect these objects and allows for detailed studies and large sample census of optically faint galaxies. For example, Barrufet et al. (2023) studied the stellar emission of a sample of 30 HST-dark sources in the CEERS field with red colours through 1.6 – 4.4 μ{\rm\mu}m in JWST NIRCam filters, revealing them all to be heavily dust obscured massive main sequence galaxies and significantly contributing to the star formation rate density at high redshift. In a NIRSpec study of 23 HST-dark galaxies, Barrufet et al. (2024) found the majority to be massive (log(M/M)>9.8\log(M_{\ast}/\mathrm{M_{\odot}})>9.8) and highly attenuated (AV>2A_{V}>2) star-forming galaxies with a broad range of recent star-formation activities. Kokorev et al. (2023) studied the multi-wavelength properties of an HST-dark galaxy at zspec=2.58z_{\rm spec}=2.58 with JWST/NIRCam data, revealing it to be a massive disk galaxy with log(M/M)>11(M_{\star}/\mathrm{M_{\odot}})>11 and optically thick dust in the far-infrared. They also found that such objects would not be detected in JWST filters bluer than F356W if placed at z>4z>4, and becoming JWST-dark at z>6z>6 at current depths of major JWST surveys. Given their extreme faintness in optical and NIR wavelengths, and brightness in far infrared (FIR), (sub)mm facilities like ALMA and NOEMA, are more efficient in confirming their redshifts via detecting CO and/or [CI] lines (e.g., Weiß et al., 2009; Walter et al., 2012; Riechers et al., 2013, 2017; Jin et al., 2019, 2022; Casey et al., 2019; Birkin et al., 2021; Chen et al., 2022; Gentile et al., 2024b), which hence revealed vigorous star-bursting activities with obscured star formation rate SFR3003000M/yr{\rm SFR}\sim 300-3000\,{\rm M_{\odot}/yr} and large gas reservoirs logMgas/M10.511.5\log M_{\rm gas}/{\rm M_{\odot}}\sim 10.5-11.5 in these massive systems (e.g., Riechers et al., 2013; Jin et al., 2022). However, the spectroscopic sample is still small and strongly biased towards sources with the brightest submm fluxes. Consequently, studies of this population strongly rely on photometric redshifts, which entail the risk of catastrophic failures. For example, Ling et al. (2024) reported an optically dark photoz>7{\rm photo-}z>7 DSFG candidate using 10 bands of JWST photometry, however, it was eventually confirmed at specz=2.625{\rm spec-}z=2.625 by Jin et al. (2024) via multiple CO and [CI] line detections. Evidently, robust spectroscopic confirmation is essential to uncover the nature of these extreme dusty objects.

Despite the limited sample of spectroscopically confirmed DSFGs, recent studies have revealed optically faint/dark DSFGs have optically thick dust in FIR, massive gas reservoirs and elevated star formation efficiency (SFE) compared to main sequence galaxies (Jin et al., 2019, 2022; Kokorev et al., 2023). Nevertheless, it remains unclear whether active galactic nuclei (AGN) are present in these systems. As both X-ray and optical AGN features can be severely attenuated by dust, the AGN fraction of DSFGs could be largely underestimated (Franco et al., 2018). Therefore, panchromatic studies including deep radio observations (e.g, Delvecchio et al., 2017; Algera et al., 2020; van der Vlugt et al., 2021, 2023; Gentile et al., 2024b) are key to identify potential AGN activity in these systems. As previous studies focus either on the stellar or interstellar medium (ISM) components, comprehensive studies of all baryonic components (stellar, dust, and gas) and AGN activity are essential to unveil their nature.

In this letter, we report the spectroscopic confirmation of the radio-selected DSFG XS55 and provide a panchromatic view of its stellar, dust, and gas components and associated AGN activity. We adopt a flat cosmology with H0=70kms1Mpc1H_{0}=70\,{\rm km\,s^{-1}\,Mpc^{-1}}, ΩM=0.27\Omega_{\rm M}=0.27, and ΩΛ=0.73\Omega_{\Lambda}=0.73, and use a Chabrier (2003) initial mass function (IMF). All magnitudes are in the AB system (Oke, 1974).

2 Selection and Data

2.1 Selection

XS55 was originally selected in the COSMOS-XS (Algera et al., 2020; van der Vlugt et al., 2021) catalog with an ID=55, hence we dub it XS55. It is detected in the ultra-deep COSMOS-XS S-band image with S3GHzS_{\rm 3GHz} = 6.35±0.96μJy6.35\pm 0.96\,{\rm\mu Jy}, but undetected in the less deep COSMOS 3 GHz map (rms=2.5μJy{\rm rms=2.5\,\mu Jy}, Smolčić et al., 2017), and detected in the MeerKAT image with S1.3GHz=10.9±2.1μJyS_{{\rm 1.3GHz}}=10.9\pm 2.1\,{\rm\mu Jy} (Jarvis et al., 2016; Heywood et al., 2022; Hale et al., 2024). XS55 has no optical counterpart (i.e., optically dark) and is not included in the COSMOS2020 catalogue (Weaver et al., 2022). It drops out in JWST F115W and F150W images, but is detected in IRAC 4.5μ\mum (Fig. 1) and tentatively detected (3σ\sim 3\sigma) in the ALMA 2 mm MORA map (Casey et al. 2021). By performing the super-deblending technique (Jin et al., 2018; Liu et al., 2018) with the radio prior, we measure the deblended Herschel and SCUBA-2 photometry of XS55. Interestingly, it is not detected in Herschel images (3σ3\sigma limiting depths: 250 μ{\rm\mu}m=5.3mJy5.3\,{\rm mJy},350 μ{\rm\mu}m=8.0mJy8.0\,{\rm mJy}, 500 μ{\rm\mu}m=8.7mJy8.7\,{\rm mJy}, Jin et al. 2018), but is well detected in two SCUBA-2 bands; 450μ\mum (Gao et al., 2024) and 850μ\mum (Simpson et al., 2019) with a red 450μ\mum/850μ\mum colour (S450μm=5.6±1.4mJy,S850μm=5.7±0.8mJyS_{\rm 450\,\mu m}=5.6\pm 1.4\,{\rm mJy},S_{\rm 850\,\mu m}=5.7\pm 0.8\,{\rm mJy}). Assuming typical dust templates from Magdis et al. (2012), the red SCUBA-2 colour suggests a FIR photometric redshift of z>6z>6. Consequently, XS55 was followed up by two ALMA 3 mm line scan projects in Cycle 9 (ID: 2022.1.00884, PI: R. Gobat; ID: 2022.1.00863.S, PI: J. Hodge).

2.2 ALMA

The two ALMA programmes were observed for a total of 1.9 hours on source. The frequency setups are identical in the two programs, adopting the same setups as in Jin et al. (2019) and covering 84–108 GHz with three tunings. We produce measurement sets with the Common Astronomy Software Applications (CASA, McMullin et al. 2007) pipeline for each observation programme. Following the methods presented in Jin et al. (2022), Zhou et al. (2024), and Sillassen et al. (2024), the calibrated data are converted to uvuv table format and analysed with the GILDAS software package in uvuv space. To enhance the signals, the uvuv tables from the two programs are combined using the task uv_mergeuv\_merge. The final products reach a continuum sensitivity of 9.6μJy/beam\,{\rm\mu Jy/beam} with a spatial resolution of 1.61\aas@@fstack{\prime\prime}6, and a line sensitivity of 12mJy/beam\,{\rm mJy/beam} over 500 km/s at 99GHz\sim 99\,{\rm GHz}. As shown in see Figs. 2 and 3.1, We robustly detect continuum (14σ\sim 14\sigma) and two lines (10σ\sim 10\sigma and 4σ\sim 4\sigma). The dust continuum is well-fitted by a point-source model using GILDAS uvfit, while fitting with an elliptical Gaussian does not yield useful constraints. Therefore, the dust continuum is unresolved, and we place an upper limit on the continuum size using Eq. (2) from Gómez-Guijarro et al. (2022) (Table 2).

2.3 JWST

XS55 was observed with JWST NIRCam in F115W, F150W, F277W and F444W bands, as a part of the COSMOS-Web survey (Casey et al., 2023). We use the image product versions from the Dawn JWST Archive (DJA111https://dawn-cph.github.io/dja/index.html, Valentino et al., 2023), and further, have verified these are consistent with the COSMOS-Web team’s map (Shuntov et al. in prep.). XS55 is well detected in both F277W (10σ\sim 10\sigma) and F444W (36σ\sim 36\sigma), but not detected in both F115W and F150W (<3σ<3\sigma), consistent with the H-dropout selection from Wang et al. (2019).

2.4 X-ray

The COSMOS field has been fully observed in soft (0.5-2.0 keV) and hard (2.0-10 keV) X-rays with both XMM-Newton (50 ks per pointing, PI: G. Hasinger; Hasinger et al., 2007) and Chandra (\sim180 ks exposure) as part of the Chandra COSMOS (C-COSMOS, PI: M. Elvis; Elvis et al., 2009) and Chandra COSMOS Legacy (PI: F. Civano; Civano et al., 2016) surveys. As shown in Figs. 3 and 1, XS55 is tentatively detected in soft X-ray band of Chandra with 2.1σ2.1\sigma significance, and detected in the stacked soft, medium and hard X-ray XMM-Newton images with 3.1σ3.1\sigma.

Refer to caption
Figure 1: Multi-wavelength cutout images of XS55. The instrument, wavelength and field of view (FoV) are shown in green text in each panel.

3 Results

3.1 Redshift identification

After extracting the ALMA spectra in all spectral windows (SPWs), we combine them in a single 1D spectrum (Fig. 2), and run a line-searching algorithm as in Jin et al. (2019) to search for emission line features with the highest significance. The continuum is fit with a power-law with fixed slope of 3.7 in frequency (assuming β1.7\beta\approx 1.7, Magdis et al., 2012; Sillassen et al., 2024), masking out the channels of significant emission lines. The detected emission lines are fitted with a Gaussian profile in the continuum subtracted spectrum. XS55 is detected in 3mm continuum at 14σ\sim 14\sigma with a flux of 134.2±9.3μJy134.2\pm 9.3\,{\rm\mu Jy} at 96GHz\sim 96\,{\rm GHz}. One line is detected at 98.99GHz98.99\,{\rm GHz} at 9.8σ9.8\sigma (see Fig. 2), and we search for other lines in the spectrum consistent with this detection. We find a 3.9σ3.9\sigma detection at 84.58GHz84.58\,{\rm GHz}. The two lines are consistent with CO(5-4) and [CI](1-0) at z=4.8214±0.0004z=4.8214\pm 0.0004. We note that there is a slight velocity offset between the CO and CI line peaks of 141km/s\sim 141\,{\rm km/s} (Fig. 2). By defining the [CI] line range using the velocity range of the CO line, the [CI] S/N is 3.3σ3.3\sigma, yielding a low Pchance=0.4%P_{\rm chance}=0.4\%, where PchanceP_{\rm chance} is the chance probability of finding a spurious second line (Jin et al., 2019). Further, we compare the redshift solution with the NIR-SED fitted redshift probability distribution PDF(z) of LePhare in the COSMOS-Web catalog (zphot=4.730.64+0.52z_{\rm phot}=4.73^{+0.52}_{-0.64}, Shuntov et al. in prep.), and find they are in excellent agreement (Fig. 4). For a sanity check, we tested the redshift solution of z=3.66z=3.66 in the case of the bright line being CO(4-3), as this redshift is seemingly consistent with the second peak of the NIR PDF(z). However, we found z=3.66z=3.66 is very unlikely, because (1) the z=3.66z=3.66 [CI](1-0) is not detected at the expected frequency 105.6 GHz (<1σ<1\sigma); (2) the SED fitting at z=3.66z=3.66 yields an abnormally high dust mass to stellar mass fraction 0.09<Mdust/M<0.130.09<{M_{\rm dust}/M_{\ast}}<0.13 that is >10×>10\times above typical values (e.g., Donevski et al., 2020), again disfavouring the z=3.66z=3.66 solution. Therefore, the multitude of evidence confirms the redshift of XS55 to be z=4.8214±0.0004z=4.8214\pm 0.0004.

Refer to caption

Refer to caption Refer to caption Refer to caption Refer to caption

Figure 2: Top: ALMA 3mm spectrum of XS55. The red line shows the line-free continuum, and the blue dotted line indicates the flux error per channel at 1σ1\sigma level. The spectroscopic redshift is shown in text, along with the velocity width of the channels. Bottom-left: Velocity space spectrum of CO(5-4) (blue) and [CI](1-0) (red) at z=4.8214z=4.8214, the uncertainty per channel is shown as dashed lines. Bottom-right: Continuum and continuum subtracted moment-0 line maps of XS55. Contour levels are 5, 8, and 11σ\sigma for continuum, and 3, 4, 5σ\sigma for the line maps. The beam size is shown as a white ellipse, and the peak JWST/F444W position is marked by a grey cross.

3.2 Morphology

We model the F277W and F444W morphology of XS55 using Galfit (Peng et al., 2010). We adopt three separate components in both F277W and F444W: a compact central emission, a diffuse central emission, and a companion component at the south-east. The NIRCam PSFs were obtained using Webbpsf (Perrin et al., 2014) with a pixel scale of 0.05./pix0.05{\rm\aas@@fstack{\prime\prime}/pix}. We consider two cases; one case using a point source (compact component) together with two Sérsic profiles (diffuse component and companion), and another case with three separate Sérsic profiles. In the case using a point source and two Sérsic models in F444W, there is a ring of emission left in the residual (Fig. 6-middle-right), suggesting the brightest part of the galaxy is marginally resolved, or the PSF modelling is imperfect. In the case of three Sérsic profiles, there are no clear structures, as would be expected with random noise (Fig. 6-top). In the three Sérsic profile model of F444W, the compact component has a size of 0.061±0.0070\aas@@fstack{\prime\prime}061\pm 0\aas@@fstack{\prime\prime}007 corresponding to Re=0.40±0.05kpcR_{\rm e}=0.40\pm 0.05\,{\rm kpc} with Sérsic index n<1.2n<1.2, while the diffuse emission and the companion have sizes and Sérsic indices of Re=1.7±0.1kpcR_{\rm e}=1.7\pm 0.1\,{\rm kpc}, n=0.37±0.08n=0.37\pm 0.08 and Re=1.1±0.1kpcR_{\rm e}=1.1\pm 0.1\,{\rm kpc}, n=0.61±0.33n=0.61\pm 0.33 respectively (Table 3). In F444W, 33±333\pm 3% of the total flux is coming from the compact component, while 53±353\pm 3% is coming from the extended diffuse component, and 14±314\pm 3% is coming from the companion. In JWST/F277W, the fit of the compact component yields a bulge-like n=2.6±0.8n=2.6\pm 0.8 model with Re=0.58±0.07kpcR_{\rm e}=0.58\pm 0.07\,{\rm kpc} (Table 3), providing 87±2%87\pm 2\% of the total flux. The diffuse component cannot be fit, and the fit to the companion yields a n=2.0±1.4n=2.0\pm 1.4 model with Re=1.7±0.5kpcR_{\rm e}=1.7\pm 0.5\,{\rm kpc}, providing 13±2%13\pm 2\% of the total flux (Sections 3.2 and 3). At this redshift, [OIII]λλ4959,5007{\lambda\lambda 4959,5007} and Hβ{\rm H\beta} fall within the JWST/F277W filter, consequently the flux is possibly boosted by line emission (Fig. 4).

3.3 FIR SED

To estimate the dust mass (MdustM_{\rm dust}) and temperature (TdustT_{\rm dust}), we fit the FIR and (sub)mm photometry of XS55 with a modified black-body (MBB) model (Magdis et al., 2012) using the code mercurius (Witstok et al., 2022). We explore two cases; one assuming optically thin dust, and the other assuming ‘self-consistent’ optically thick dust. For the optically thick case, we place an upper limit on the emitting area based on the half light radius of the galaxy in JWST/F444W (9.08kpc29.08\,{\rm kpc^{2}}; Section 3.2). The resulting fit and corresponding parameters are shown in Figs. 7 and 2. In both cases, the IR spectral index βIR\beta_{\rm IR} is consistent with a weighted average of βIR=2.02± 0.12\beta_{\rm IR}=2.02\,{\pm\,0.12}. For the optically thin case, we recover a low dust temperature of Tdust=27.62.7+3.1KT_{\rm dust}=27.6^{+3.1}_{-2.7}\,{\rm K}, with an accompanying high dust mass of Mdust=2.40.9+1.4×109MM_{\rm dust}=2.4^{+1.4}_{-0.9}\times 10^{9}\,{\rm M_{\odot}}. On the other hand, the optically thick dust yields a higher Tdust=32.51.9+2.2KT_{\rm dust}=32.5^{+2.2}_{-1.9}\,{\rm K} and a lower Mdust=1.70.4+0.5×109MM_{\rm dust}=1.7^{+0.5}_{-0.4}\times 10^{9}\,{\rm M_{\odot}}.

To construct a panchromatic SED of XS55, we fit the stellar, AGN, and dust components using STARDUST (Kokorev et al., 2021) and available photometry from optical to radio wavelength, yielding an IR luminosity of LIR=(5.43±1.77)×1012LL_{\rm IR}=(5.43\pm 1.77)\times 10^{12}\,{\rm L_{\odot}} and a SFRIR=543±177Myr1{\rm SFR}_{\rm IR}=543\pm 177\,{\rm M_{\odot}\,yr^{-1}}. For the stellar component, we recover the stellar mass log(M/M)=10.7±0.1\log(M_{\ast}/{\rm M_{\odot}})=10.7\pm 0.1, attenuated by Av=2.2±0.3magA_{v}=2.2\pm 0.3\,{\rm mag}. As an additional check, we also fit the stellar part of the spectrum (up to F444W) using Bagpipes222https://bagpipes.readthedocs.io/en/latest/ (Carnall et al., 2018), using the same parameters as in Jin et al. (2024), yielding physical properties similar to those from STARDUST, log(M,bagpipes/M)=10.7±0.1\log(M_{\rm\ast,bagpipes}/{\rm M_{\odot}})=10.7\pm 0.1, Av,bagpipes=2.1±0.3A_{\rm v,bagpipes}=2.1\pm 0.3. The physical parameters calculated with LePhare in the COSMOS-Web catalog (Shuntov et al. in prep.) also agree with our results (log(M,LePhare/M)=10.8±0.3\log(M_{\rm\ast,LePhare}/{\rm M_{\odot}})=10.8\pm 0.3, E(BV)LePhare=1.1E({\rm B-V})_{\rm LePhare}=1.1). The resulting panchromatic SED and corresponding properties from STARDUST, and MBB fit from mercurius, are shown in Figs. 4 and 2.

3.4 Molecular gas mass and far-infrared lines

With the derived dust mass, we infer a molecular gas mass (MmolM_{\rm mol}) using the standard gas-to-dust mass ratio of star-forming galaxies (δgdr=100\delta_{\rm gdr}=100, assuming solar metallicity, Magdis et al., 2012), yielding Mmol,thin=2.60.4+0.5×1011MM_{\rm mol,thin}=2.6^{+0.5}_{-0.4}\times 10^{11}\,{\rm M_{\odot}} and Mmol,thick=1.70.4+0.5×1011MM_{\rm mol,thick}=1.7^{+0.5}_{-0.4}\times 10^{11}\,{\rm M_{\odot}}. Furthermore, based on the detection of the [CI](1-0) line (Table 1), we infer the molecular gas mass Mmol/αCI=(1.8±0.5)×1011/αCIMM_{\rm mol}/{\alpha_{\rm CI}}=(1.8\pm 0.5)\times 10^{11}/{\alpha_{\rm CI}}\,{\rm M_{\odot}}, where αCI=17.0±0.3MK1km1spc2\alpha_{\rm C{\tiny I}}=17.0\pm 0.3\,{\rm M_{\odot}\,K^{-1}\,km^{-1}\,s\,pc^{-2}} (Dunne et al., 2022) that is consistent with other calibrations (Valentino et al., 2018; Heintz & Watson, 2020). Adopting instead αCI=4.1±1.4MK1km1spc2\alpha_{\rm CI}=4.1\pm 1.4\,{\rm M_{\odot}\,K^{-1}\,km^{-1}\,s\,pc^{-2}} from Frias Castillo et al. (2024) for high-zz SMGs, it yields a Mmol=(4.3±1.9)×1010MM_{\rm mol}=(4.3\pm 1.9)\times 10^{10}\,{\rm M_{\odot}}. Interestingly, the CO(5-4) emission is marginally resolved along the NE-SW direction (see Figs. 2 and 3), as the minor axis of the CO emission as well as the continuum source are unresolved, we obtain upper limits on their sizes using Eq. (2) of Gómez-Guijarro et al. (2022). We measure the size of the integrated CO(5-4) emission by fitting an elliptical Gaussian in uvuv-space with GILDAS/uvfit, and obtain Re=1.79±1.22kpcR_{e}=1.79\pm 1.22\,{\rm kpc} with PA=28±20deg{\rm PA}=28\pm 20\,{\rm deg}. We constructed the CO(5-4) moment-1 map using Cube Analysis and Rendering Tool for Astronomy (CARTA; Comrie et al., 2021, Fig. 3-right). In the moment-1 map there is a clear velocity gradient, with the highest redshifted velocity of 70km/s70\,{\rm km/s} and the highest blueshifted velocity of 130km/s-130\,{\rm km/s}. This velocity gradient is comparable to that of the radio selected NIR-dark galaxies from Gentile et al. (2024b). We discuss the possible interpretations of the extended CO(5-4) emission in Sect. 4.2.

3.5 Obscured AGN

XS55 is tentatively detected in X-ray with both Chandra and XMM-Newton (Fig. 3, 1).Using a 3” radius aperture that corresponds to the mean PSF of the Chandra COSMOS Legacy Survey (Civano et al., 2016), we detect 3 counts in the 0.5-2 keV band of Chandra. This corresponds to a flux of f[0.52keV]=(1.15±0.54)×1016ergs1cm2f_{\rm[0.5-2keV]}=(1.15\pm 0.54)\times 10^{-16}\,{\rm erg\,s^{-1}\,cm^{-2}} adopting the conversion rate from Civano et al. (2016). Since XS55 is extremely dusty, this flux should be considered a lower limit, yielding a soft X-ray luminosity of L[0.52keV]>2.81×1043ergs1L_{\rm[0.5-2keV]}>2.81\times 10^{43}\,{\rm erg\,s^{-1}}. Using the soft X-ray to bolometric luminosity correction from Lusso et al. (2012) we obtained a bolometric luminosity of Lbol>5.35×1044ergs1L_{\rm bol}>5.35\times 10^{44}\,{\rm erg\,s^{-1}}. XS55 would be an X-ray selected AGN using the criterion from Riccio et al. (2023) (i.e., L0.22.3keV3×1042ergs1L_{0.2-2.3{\rm keV}}\geq 3\times 10^{42}\,{\rm erg\,s^{-1}}). Due to the low significance of the X-ray detection, we cannot exclude that the detection could be spurious, or is originating from star-formation. XS55 does not show excess radio emission compared to the infrared radio correlation (IRRC) of Delvecchio et al. (2021), however, this could be due to the large scatter of IR-radio correlation that is largely unconstrained at z5z\sim 5 (Delvecchio et al., 2021). Further, while radio excess is a clear indicator of AGN activity, X-ray AGN are not necessarily radio loud.

Refer to caption
Figure 3: Multi-wavelength images of XS55. Left: COSMOS-XS 3 GHz map (van der Vlugt et al., 2021) overlaid with 2,3σ\sigma 0.57keV0.5-7\,{\rm keV} contours from Chandra, smoothed with a 1” Gaussian, in purple. Middle: JWST colour image of XS55 representing F115W+F105W, F277W, and F444W as blue, green, and red channels respectively. Overlaid are ALMA 3mm continuum emission contours at 5, 8, and 11σ\sigma, with the beam size shown as a white ellipse. Right: moment-1 map of CO(5-4) masked at 3σ3\sigma in moment-0, overlaid with integrated CO(5-4) at 3, 4, and 5σ\sigma levels, and JWST/F444W contours at 5, 8, and 11σ\sigma levels in yellow and black respectively.
Table 1: Measured properties of XS55 emission lines
Line S/N FWHM IlineI_{\rm line} LlineL^{\prime}_{\rm line} PchanceaP_{\rm chance}^{a}
[kms1{\rm km\,s^{-1}}] [Jykms1{\rm Jy\,km\,s^{-1}}] [1010Kkms1pc210^{10}{\rm K\,km\,s^{-1}\,pc^{2}}]
CO(5-4) 9.8 365±37365\pm 37 0.53±0.070.53\pm 0.07 1.9±0.21.9\pm 0.2 <106<10^{-6}
[CI]{\rm[C{\tiny I}]}(1-0) 3.9 293±75293\pm 75 0.22±0.060.22\pm 0.06 1.1±0.31.1\pm 0.3 <0.004<0.004

Notes:achance probability of emission line (Jin et al., 2019).

Table 2: Fitted and inferred physical properties of XS55
Parameter Value
ID XS55
RA, Dec [deg] 150.1002501, 2.4967382
zz 4.8214±0.00044.8214\pm 0.0004
AVA_{V} [mag] 2.2±0.32.2\pm 0.3
MM_{\ast} [1010M10^{10}{\rm M_{\odot}}] 5±15\pm 1
SFRIR{\rm SFR}_{\rm IR} [Myr1{\rm M_{\odot}\,yr^{-1}}] 540±180540\pm 180
LXL_{\rm X} [1044ergs110^{44}{\rm erg\,s^{-1}}] >5.4>5.4
LIRL_{\rm IR} [1012L10^{12}{\rm L_{\odot}}] 5.4±1.85.4\pm 1.8
βIR\beta_{\rm IR} 2.0±0.22.0\pm 0.2
Mgas,[CI]M_{\rm gas,[C{\tiny I}]} [1011M10^{11}{\rm M_{\odot}}] 1.8±0.51.8\pm 0.5
SFE{\rm SFE} [109yr110^{-9}{\rm yr^{-1}}] 3.0±1.03.0\pm 1.0
Tdust,thickT_{\rm dust,thick} [K] 32.71.9+2.232.7^{+2.2}_{-1.9}
Mdust,thickM_{\rm dust,thick} [109M10^{9}{\rm M_{\odot}}] 1.70.5+0.61.7^{+0.6}_{-0.5}
Tdust,thinT_{\rm dust,thin} [K] 28.02.8+3.328.0^{+3.3}_{-2.8}
Mdust,thinM_{\rm dust,thin} [109M10^{9}{\rm M_{\odot}}] 2.30.8+1.42.3^{+1.4}_{-0.8}
Reff,3mmR_{\rm eff,3mm} [kpc] ¡1.76*
Rmaj,CO(54))R_{\rm maj,CO(5-4))} [kpc] 3.2±1.13.2\pm 1.1
Rmin,CO(54))R_{\rm min,CO(5-4))} [kpc] ¡2.08*
PACO(54){\rm PA}_{\rm CO(5-4)} [deg] 28±2028\pm 20

Notes:*size upper limit (2σ\sigma) calculated with Eq. 2 in Gómez-Guijarro et al. (2022).

Refer to caption
Figure 4: NIR to Radio SED of XS55, fit using STARDUST (Kokorev et al., 2021). The total SED (black), is shown with its different components: stellar (blue), dust (red), and radio (magenta). An optically thick modified blackbody (Magdis et al., 2012), fitted with mercurius (Witstok et al., 2022), is shown with a green line. The modified blackbody is not accounted for in the total SED fit. The radio component is extrapolated using the stellar mass dependent IR-Radio relation from Delvecchio et al. (2021). The NIR PDF(z) of XS55 is shown as an inset with the spec-z marked by a vertical red line.

4 Discussion

4.1 Intrinsically cold or optically thick dust (or both)?

To determine whether XS55 is intrinsically cold, or optically thick dust is making it appear cold, we apply three methods of diagnosing optically thick dust from Jin et al. (2022): (1) We compare the molecular gas masses derived from [CI](1-0) emission with gas mass inferred by both thin and thick MdustM_{\rm dust}. We find that the lower gas mass from the thick dust model is in good agreement with the [CI]-derived gas mass, assuming δgdr=100\delta_{\rm gdr}=100 and α[CI]=17±3MK1km1spc2\alpha_{\rm[CI]}=17\pm 3\,{\rm M_{\odot}\,K^{-1}\,km^{-1}\,s\,pc^{-2}}, while the gas mass from the thin dust model is likely overestimated. (2) We estimate the dust opacity at 100 μ\mum, τ100μm=κρRe\tau_{\rm 100\mu m}=\kappa\rho R_{\rm e}, where κ\kappa is adopted from Jones et al. (2013), and ρ\rho is the volumetric dust density assuming spherical symmetry, using ReR_{\rm e} from dust continuum (Re<1.76kpcR_{\rm e}<1.76\,{\rm kpc}). This yields τ100μm,thin>1.6\tau_{\rm 100\mu m,thin}>1.6, and τ100μm,thick>1.2\tau_{\rm 100\mu m,thick}>1.2. Furthermore, we calculate the surface SFR density and find ΣSFR>37Myr1kpc2\Sigma_{\rm SFR}>37\,{\rm M_{\odot}\,yr^{-1}\,kpc^{-2}}. With both τ100μm>1\tau_{\rm 100\mu m}>1 and ΣSFR>20Myr1kpc2\Sigma_{\rm SFR}>20\,{\rm M_{\odot}\,yr^{-1}\,kpc^{-2}}, the dust is hence optically thick (Jin et al., 2022). (3) We derive a lower limit of IR luminosity surface density ΣIR>3.7×1011Lkpc2\Sigma_{\rm IR}>3.7\times 10^{11}\,{\rm L_{\odot}\,kpc^{-2}}, and place it on the ΣIRTdust\Sigma_{\rm IR}-T_{\rm dust} diagram. As seen in Fig. 5-right, the thin case is clearly violating the blackbody Stefan-Boltzmann law, and the optically thick case is more favourable. Therefore, these pieces of evidence together imply that the dust of XS55 is optically thick in FIR.

Interestingly, the recovered TdustT_{\rm dust} assuming optically thick dust remains cold. Comparing to the redshift evolution of TdustT_{\rm dust} in main sequence galaxies (Schreiber et al., 2018; Jin et al., 2022), the thick dust solution is 0.13 dex (4σ\sim 4\sigma) below the relation (Fig. 5). This makes XS55 one of the coldest DSFGs at z>4z>4 discovered to date (e.g., Faisst et al., 2020; Jin et al., 2022; Algera et al., 2024a). Since dust temperature is proportional to the radiation field (i.e., U=(Td/18.9)6.04\langle U\rangle=(T_{\rm d}/18.9)^{6.04}, Magdis et al., 2012), and the radiation field is proportional to the ratio of star formation efficiency to metallicity (i.e., USFE/Z\langle U\rangle\propto{\rm SFE}/Z, Magdis et al., 2012), and given that XS55 has typical SFE of DSFGs, the intrinsically low dust temperature could suggest a high metallicity in XS55, where the cooling is more efficient.

Refer to caption
Refer to caption
Figure 5: Left: Dust temperature versus redshift for XS55 and literature samples. The TdzT_{\rm d}-z relation of main sequence galaxies from Schreiber et al. (2018) is shown as a black line, with the uncertainty as the gray shaded area. Literature samples are from Riechers et al. (2013), Riechers et al. (2014), Riechers et al. (2017), Marrone et al. (2018), Pavesi et al. (2018), Faisst et al. (2020), Jin et al. (2019, 2022), Fudamoto et al. (2023), and Algera et al. (2024a, b). The CMB temperature as a function of redshift is shown as a dashed black line. Right: Infrared luminosity surface density as a function of dust temperature, assuming optically thick dust. The surface density limit as defined by the Stefan-Boltzman law of optically thin dust is shown as a black line, while greybodies with varying λeff\lambda_{\rm eff} are shown as dashed lines. Literature samples are from Simpson et al. (2017), Hodge et al. (2019), and Jin et al. (2019, 2022).

4.2 Stable disk, outflow, or merger?

Interestingly, the CO(5-4) is more extended than the dust continuum size and shows a tentative velocity gradient. These properties could suggest a rotating molecular disk (e.g., Rizzo et al., 2023) with compact star-formation (e.g., Cochrane et al., 2019). However, given the low spatial resolution of the CO data, high resolution data are needed to confirm whether it is a rotating disk (e.g., Rowland et al. 2024). As suggested by the complex JWST morphology, galaxy interaction or merger can also be accounted for the extended CO(5-4) emission. Furthermore, given the possible AGN nature of XS55 and that the CO(5-4) is only resolved in one direction, a molecular outflow driven by a central AGN (e.g., Lutz et al., 2020) is also a potential scenario. To disentangle the above scenarios, a high resolution [CII] follow-up would be ideal to reveal the kinematics of XS55.

4.3 Why is this source optically faint?

In nearly all terms, XS55 is a normal but massive main sequence star-forming galaxy at z=4.8214z=4.8214, within 2σ\sigma of the Schreiber et al. (2015) main-sequence relation (ΔMS(SFR/SFRMS)=2.4±0.9{\rm\Delta MS}({\rm SFR/SFR_{MS}})=2.4\pm 0.9). Its star formation efficiency, and thereby depletion time of 300±100Myr300\pm 100\,{\rm Myr}, is comparable to other optically faint galaxies at similar redshift (e.g., Jin et al., 2019, 2022). However, with the compact stellar (Re=1.72±0.13kpcR_{e}=1.72\pm 0.13\,{\rm kpc}) and dust continuum (Re<1.76kpcR_{e}<1.76\,{\rm kpc}) sizes, XS55 falls 2.6×\times below the mass-size relation of main sequence galaxies (Ward et al., 2024). The compact size, together with a massive amount of dust, could explain the optically faint nature of this source, in agreement with observations from Gómez-Guijarro et al. (2023) and simulations from Cochrane et al. (2024).

5 Conclusions

By combining ALMA spectroscopy with JWST imaging and multi-wavelength ancillary data in the COSMOS field, we presented a detailed study of a newly discovered radio selected optically faint galaxy, XS55. ALMA detections of the CO(5-4) and [CI](1-0) lines places the source at z=4.8214z=4.8214, and reveals the presence of large amounts of dust in the ISM (Mdust=(1.7±0.5)×109MM_{\rm dust}=(1.7\pm 0.5)\times 10^{9}\,{\rm M_{\odot}}). XS55 is a compact massive main-sequence galaxy, with extremely cold dust temperature, and optically thick FIR emission. The F444W size of the source falls below the mass-size relation. The tentative X-ray emission and the compactness of the central component suggest the presence of an AGN. The compactness together with the massive amount of cold dust in XS55 naturally explain its optical faintness.

Acknowledgements.
We thank the anonymous referee for constructive comments, improving this manuscript. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2022.1.00884.S, 2022.1.00863.S and 2021.1.00225.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. Some of the data products presented herein were retrieved from the Dawn JWST Archive (DJA). DJA is an initiative of the Cosmic Dawn Center (DAWN). The Cosmic Dawn Center (DAWN) is funded by the Danish National Research Foundation under grant DNRF140. SJ acknowledges financial support from the European Union’s Horizon Europe research and innovation program under the Marie Skłodowska-Curie grant No. 101060888. GEM and SJ acknowledge the Villum Fonden research grants 37440 and 13160. JH acknowledges support from the ERC Consolidator Grant 101088676 (“VOYAJ”). CCC acknowledges the support of the Taiwan National Science and Technology Council (111-2112M-001-045-MY3), as well as the Academia Sinica through the Career Development Award (AS-CDA-112-M02). KK acknowledges support from the Knut and Alice Wallenberg Foundation (KAW 2017.0292 and 2019.0443).

References

  • Alcalde Pampliega et al. (2019) Alcalde Pampliega, B., Pérez-González, P. G., Barro, G., et al. 2019, ApJ, 876, 135
  • Algera et al. (2024a) Algera, H. S. B., Inami, H., De Looze, I., et al. 2024a, MNRAS, 533, 3098
  • Algera et al. (2024b) Algera, H. S. B., Inami, H., Sommovigo, L., et al. 2024b, MNRAS, 527, 6867
  • Algera et al. (2020) Algera, H. S. B., van der Vlugt, D., Hodge, J. A., et al. 2020, ApJ, 903, 139
  • Barrufet et al. (2024) Barrufet, L., Oesch, P., Marques-Chaves, R., et al. 2024, arXiv e-prints, arXiv:2404.08052
  • Barrufet et al. (2023) Barrufet, L., Oesch, P. A., Weibel, A., et al. 2023, MNRAS, 522, 449
  • Birkin et al. (2021) Birkin, J. E., Weiss, A., Wardlow, J. L., et al. 2021, MNRAS, 501, 3926
  • Carnall et al. (2018) Carnall, A. C., McLure, R. J., Dunlop, J. S., & Davé, R. 2018, MNRAS, 480, 4379
  • Casey et al. (2023) Casey, C. M., Kartaltepe, J. S., Drakos, N. E., et al. 2023, ApJ, 954, 31
  • Casey et al. (2019) Casey, C. M., Zavala, J. A., Aravena, M., et al. 2019, ApJ, 887, 55
  • Casey et al. (2021) Casey, C. M., Zavala, J. A., Manning, S. M., et al. 2021, ApJ, 923, 215
  • Chabrier (2003) Chabrier, G. 2003, PASP, 115, 763
  • Chen et al. (2022) Chen, C.-C., Liao, C.-L., Smail, I., et al. 2022, ApJ, 929, 159
  • Civano et al. (2016) Civano, F., Marchesi, S., Comastri, A., et al. 2016, ApJ, 819, 62
  • Cochrane et al. (2024) Cochrane, R. K., Anglés-Alcázar, D., Cullen, F., & Hayward, C. C. 2024, ApJ, 961, 37
  • Cochrane et al. (2019) Cochrane, R. K., Hayward, C. C., Anglés-Alcázar, D., et al. 2019, MNRAS, 488, 1779
  • Comrie et al. (2021) Comrie, A., Wang, K.-S., Hsu, S.-C., et al. 2021, CARTA: The Cube Analysis and Rendering Tool for Astronomy
  • Delvecchio et al. (2021) Delvecchio, I., Daddi, E., Sargent, M. T., et al. 2021, A&A, 647, A123
  • Delvecchio et al. (2017) Delvecchio, I., Smolčić, V., Zamorani, G., et al. 2017, A&A, 602, A3
  • Donevski et al. (2020) Donevski, D., Lapi, A., Małek, K., et al. 2020, A&A, 644, A144
  • Dunne et al. (2022) Dunne, L., Maddox, S. J., Papadopoulos, P. P., Ivison, R. J., & Gomez, H. L. 2022, MNRAS, 517, 962
  • Elvis et al. (2009) Elvis, M., Civano, F., Vignali, C., et al. 2009, ApJS, 184, 158
  • Enia et al. (2022) Enia, A., Talia, M., Pozzi, F., et al. 2022, ApJ, 927, 204
  • Faisst et al. (2020) Faisst, A. L., Fudamoto, Y., Oesch, P. A., et al. 2020, MNRAS, 498, 4192
  • Franco et al. (2018) Franco, M., Elbaz, D., Béthermin, M., et al. 2018, A&A, 620, A152
  • Frias Castillo et al. (2024) Frias Castillo, M., Rybak, M., Hodge, J. A., et al. 2024, arXiv e-prints, arXiv:2404.05596
  • Fudamoto et al. (2023) Fudamoto, Y., Inoue, A. K., & Sugahara, Y. 2023, MNRAS, 521, 2962
  • Fudamoto et al. (2021) Fudamoto, Y., Oesch, P. A., Schouws, S., et al. 2021, Nature, 597, 489
  • Gao et al. (2024) Gao, Z.-K., Lim, C.-F., Wang, W.-H., et al. 2024, ApJ, 971, 117
  • Gentile et al. (2024a) Gentile, F., Talia, M., Behiri, M., et al. 2024a, ApJ, 962, 26
  • Gentile et al. (2024b) Gentile, F., Talia, M., Daddi, E., et al. 2024b, A&A, 687, A288
  • Gómez-Guijarro et al. (2022) Gómez-Guijarro, C., Elbaz, D., Xiao, M., et al. 2022, A&A, 658, A43
  • Gómez-Guijarro et al. (2023) Gómez-Guijarro, C., Magnelli, B., Elbaz, D., et al. 2023, A&A, 677, A34
  • Gottumukkala et al. (2024) Gottumukkala, R., Barrufet, L., Oesch, P. A., et al. 2024, MNRAS, 530, 966
  • Hale et al. (2024) Hale, C. L., Heywood, I., Jarvis, M. J., et al. 2024, MNRAS[arXiv:2411.04958]
  • Hasinger et al. (2007) Hasinger, G., Cappelluti, N., Brunner, H., et al. 2007, ApJS, 172, 29
  • Heintz & Watson (2020) Heintz, K. E. & Watson, D. 2020, ApJ, 889, L7
  • Heywood et al. (2022) Heywood, I., Jarvis, M. J., Hale, C. L., et al. 2022, MNRAS, 509, 2150
  • Hodge et al. (2019) Hodge, J. A., Smail, I., Walter, F., et al. 2019, ApJ, 876, 130
  • Jarvis et al. (2016) Jarvis, M., Taylor, R., Agudo, I., et al. 2016, in MeerKAT Science: On the Pathway to the SKA, 6
  • Jin et al. (2018) Jin, S., Daddi, E., Liu, D., et al. 2018, ApJ, 864, 56
  • Jin et al. (2019) Jin, S., Daddi, E., Magdis, G. E., et al. 2019, ApJ, 887, 144
  • Jin et al. (2022) Jin, S., Daddi, E., Magdis, G. E., et al. 2022, A&A, 665, A3
  • Jin et al. (2024) Jin, S., Sillassen, N. B., Hodge, J., et al. 2024, A&A, 690, L16
  • Jones et al. (2013) Jones, A. P., Fanciullo, L., Köhler, M., et al. 2013, A&A, 558, A62
  • Kokorev et al. (2023) Kokorev, V., Jin, S., Magdis, G. E., et al. 2023, ApJ, 945, L25
  • Kokorev et al. (2021) Kokorev, V. I., Magdis, G. E., Davidzon, I., et al. 2021, ApJ, 921, 40
  • Ling et al. (2024) Ling, C., Sun, B., Cheng, C., et al. 2024, ApJ, 969, L28
  • Liu et al. (2018) Liu, D., Daddi, E., Dickinson, M., et al. 2018, ApJ, 853, 172
  • Lusso et al. (2012) Lusso, E., Comastri, A., Simmons, B. D., et al. 2012, MNRAS, 425, 623
  • Lutz et al. (2020) Lutz, D., Sturm, E., Janssen, A., et al. 2020, A&A, 633, A134
  • Magdis et al. (2012) Magdis, G. E., Daddi, E., Béthermin, M., et al. 2012, ApJ, 760, 6
  • Marrone et al. (2018) Marrone, D. P., Spilker, J. S., Hayward, C. C., et al. 2018, Nature, 553, 51
  • McMullin et al. (2007) McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 376, Astronomical Data Analysis Software and Systems XVI, ed. R. A. Shaw, F. Hill, & D. J. Bell, 127
  • Oke (1974) Oke, J. B. 1974, ApJS, 27, 21
  • Pavesi et al. (2018) Pavesi, R., Riechers, D. A., Sharon, C. E., et al. 2018, ApJ, 861, 43
  • Peng et al. (2010) Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2010, AJ, 139, 2097
  • Pérez-González et al. (2023) Pérez-González, P. G., Barro, G., Annunziatella, M., et al. 2023, ApJ, 946, L16
  • Perrin et al. (2014) Perrin, M. D., Sivaramakrishnan, A., Lajoie, C.-P., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9143, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, ed. J. Oschmann, Jacobus M., M. Clampin, G. G. Fazio, & H. A. MacEwen, 91433X
  • Riccio et al. (2023) Riccio, G., Yang, G., Małek, K., et al. 2023, A&A, 678, A164
  • Riechers et al. (2013) Riechers, D. A., Bradford, C. M., Clements, D. L., et al. 2013, Nature, 496, 329
  • Riechers et al. (2014) Riechers, D. A., Carilli, C. L., Capak, P. L., et al. 2014, ApJ, 796, 84
  • Riechers et al. (2017) Riechers, D. A., Leung, T. K. D., Ivison, R. J., et al. 2017, ApJ, 850, 1
  • Rizzo et al. (2023) Rizzo, F., Roman-Oliveira, F., Fraternali, F., et al. 2023, A&A, 679, A129
  • Rowland et al. (2024) Rowland, L. E., Hodge, J., Bouwens, R., et al. 2024, MNRAS[arXiv:2405.06025]
  • Schreiber et al. (2018) Schreiber, C., Elbaz, D., Pannella, M., et al. 2018, A&A, 609, A30
  • Schreiber et al. (2015) Schreiber, C., Pannella, M., Elbaz, D., et al. 2015, A&A, 575, A74
  • Shu et al. (2022) Shu, X., Yang, L., Liu, D., et al. 2022, ApJ, 926, 155
  • Sillassen et al. (2024) Sillassen, N. B., Jin, S., Magdis, G. E., et al. 2024, A&A, 690, A55
  • Simpson et al. (2019) Simpson, J. M., Smail, I., Swinbank, A. M., et al. 2019, ApJ, 880, 43
  • Simpson et al. (2017) Simpson, J. M., Smail, I., Swinbank, A. M., et al. 2017, ApJ, 839, 58
  • Smail et al. (2023) Smail, I., Dudzevičiūtė, U., Gurwell, M., et al. 2023, ApJ, 958, 36
  • Smail et al. (2021) Smail, I., Dudzevičiūtė, U., Stach, S. M., et al. 2021, MNRAS, 502, 3426
  • Smolčić et al. (2017) Smolčić, V., Novak, M., Bondi, M., et al. 2017, A&A, 602, A1
  • Talia et al. (2021) Talia, M., Cimatti, A., Giulietti, M., et al. 2021, ApJ, 909, 23
  • Valentino et al. (2023) Valentino, F., Brammer, G., Gould, K. M. L., et al. 2023, ApJ, 947, 20
  • Valentino et al. (2018) Valentino, F., Magdis, G. E., Daddi, E., et al. 2018, ApJ, 869, 27
  • van der Vlugt et al. (2021) van der Vlugt, D., Algera, H. S. B., Hodge, J. A., et al. 2021, ApJ, 907, 5
  • van der Vlugt et al. (2023) van der Vlugt, D., Hodge, J. A., Jin, S., et al. 2023, ApJ, 951, 131
  • Walter et al. (2012) Walter, F., Decarli, R., Carilli, C., et al. 2012, Nature, 486, 233
  • Wang et al. (2019) Wang, T., Schreiber, C., Elbaz, D., et al. 2019, Nature, 572, 211
  • Ward et al. (2024) Ward, E., de la Vega, A., Mobasher, B., et al. 2024, ApJ, 962, 176
  • Weaver et al. (2022) Weaver, J. R., Kauffmann, O. B., Ilbert, O., et al. 2022, ApJS, 258, 11
  • Weiß et al. (2009) Weiß, A., Ivison, R. J., Downes, D., et al. 2009, ApJ, 705, L45
  • Witstok et al. (2022) Witstok, J., Smit, R., Maiolino, R., et al. 2022, MNRAS, 515, 1751
  • Xiao et al. (2023) Xiao, M. Y., Elbaz, D., Gómez-Guijarro, C., et al. 2023, A&A, 672, A18
  • Zhou et al. (2024) Zhou, L., Wang, T., Daddi, E., et al. 2024, A&A, 684, A196

Appendix A Morphology

Refer to caption
Figure 6: Morphological fit of XS55 in JWST/F444W (top and middle row) and JWST/F277W (bottom row). The different components of each fit are stated in the right column of each row.
Table 3: Effective radii and Sérsic indices from Galfit
F444W
Compact component
Re,F444WR_{\rm e,F444W} [kpc] 0.40±0.050.40\pm 0.05
nn <1.2<1.2
Diffuse disk component
Re,F444WR_{\rm e,F444W} [kpc] 1.72±0.131.72\pm 0.13
nn 0.37±0.080.37\pm 0.08
Companion
Re,F444WR_{\rm e,F444W} [kpc] 1.06±0.131.06\pm 0.13
nn 0.61±0.330.61\pm 0.33
F277W
Compact component
Re,F277WR_{\rm e,F277W} [kpc] 0.58±0.070.58\pm 0.07
nn 2.6±0.82.6\pm 0.8
Diffuse disk component
Component not detected
Companion
Re,F277WR_{\rm e,F277W} [kpc] 1.7±0.51.7\pm 0.5
nn 2.0±1.42.0\pm 1.4

Appendix B FIR fitting

Refer to caption
Refer to caption
Figure 7: Mercurius FIR SEDs of XS55. Left: FIR-SED assuming optically thin dust. Right: FIR-SED assuming self-consistent optically thick dust, assuming an upper limit on the emission area of 9.08kpc29.08\,{\rm kpc^{2}} (half light radius of diffuse disk-like component in JWST/F444W).