This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Binding of anisotropic curvature-inducing proteins onto membrane tubes

Hiroshi Noguchi noguchi@issp.u-tokyo.ac.jp Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan    Caterina Tozzi Universitat Politèdcnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain Present address: Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain    Marino Arroyo Universitat Politèdcnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), 08034 Barcelona, Spain
Abstract

Bin/Amphiphysin/Rvs superfamily proteins and other curvature-inducing proteins have anisotropic shapes and anisotropically bend biomembrane. Here, we report how the anisotropic proteins bind the membrane tube and are orientationally ordered using mean-field theory including an orientation-dependent excluded volume. The proteins exhibit a second-order or first-order nematic transition with increasing protein density depending on the radius of the membrane tube. The tube curvatures for the maximum protein binding and orientational order are different and varied by the protein density and rigidity. As the external force along the tube axis increases, a first-order transition from a large tube radius with low protein density to a small radius with high density occurs once, and subsequently, the protein orientation tilts to the tube-axis direction. When an isotropic bending energy is used for the proteins with an elliptic shape, the force-dependence curves become symmetric and the first-order transition occurs twice. This theory quantitatively reproduces the results of meshless membrane simulation for short proteins, whereas deviations are seen for long proteins owing to the formation of protein clusters.

I Introduction

In living cells, numerous types of proteins work together to regulate biomembrane shapes of cells and organelles McMahon and Gallop (2005); Suetsugu et al. (2014); Johannes et al. (2015); Brandizzi and Barlowe (2013); Hurley et al. (2010); McMahon and Boucrot (2011); Baumgart et al. (2011); Has and Das (2021). Proteins are also involved in dynamic processes such as endo-/exocytosis, vesicle transport, cell locomotion, and cell division. Clathrin and coat protein complex (COPI and COPII) bend membranes in a laterally isotropic manner and generate spherical buds Johannes et al. (2015); Brandizzi and Barlowe (2013); Hurley et al. (2010); McMahon and Boucrot (2011). On the contrary, Bin/Amphiphysin/Rvs (BAR) superfamily proteins bend the membrane anisotropically and generate cylindrical membrane tubes McMahon and Gallop (2005); Suetsugu et al. (2014); Johannes et al. (2015); Itoh and De Camilli (2006); Masuda and Mochizuki (2010); Mim and Unger (2012); Frost et al. (2008); Sorre et al. (2012); Zhu et al. (2012); Tanaka-Takiguchi et al. (2013); Adam et al. (2015). The BAR domains consist of a banana-shaped dimer and bend the membrane along its axis. Dysfunctions of the BAR proteins are considered to be implicated in neurodegenerative, cardiovascular, and neoplastic diseases. Thus, understanding the mechanism of the curvature generation by these proteins is important.

The curvature-inducing proteins can sense the membrane curvature, i.e., they are concentrated in membranes that have their preferred curvatures. The sensing of curvature-inducing proteins, such as BAR proteins Baumgart et al. (2011); Has and Das (2021); Sorre et al. (2012); Prévost et al. (2015); Tsai et al. (2021), dynamin Roux et al. (2010), and G-protein coupled receptors Rosholm et al. (2017), has been examined using a tethered vesicle pulled by optical tweezers and a micropipette. They typically bind more onto the membrane tube than the remaining spherical component.

Theoretically, the bending energy of a single-component fluid membrane is well described by the second-order expansion to the curvature (Canham–Helfrich energy) Canham (1970); Helfrich (1973). The binding of proteins with a laterally isotropic spontaneous curvature is considered to locally change the coefficients of the Canham–Helfrich energy (the bending rigidity and spontaneous curvature). Budding Lipowsky (1992); Sens (2004); Foret (2014); Frey and Schwarz (2020); Tozzi et al. (2019); Noguchi (2021a) and other shape deformations Goutaland et al. (2021); Noguchi (2021b) induced by protein binding have been well explained by mean-field theories using this bending energy. Moreover, traveling waves of membrane deformation can be reproduced by the coupling with reaction-diffusion of multiple types of proteins Gov (2018); Wu et al. (2018); Tamemoto and Noguchi (2020, 2021). In contrast, the effects of the anisotropic spontaneous curvature of proteins have been much less explored. Instead, the bending energy for isotropic spontaneous curvature has been often used for the analysis of BAR proteins Prévost et al. (2015); Wu et al. (2018); Tsai et al. (2021). A few approaches have been examined for the anisotropy of the protein binding. The Canham–Helfrich energy was extended for anisotropic spontaneous curvature Fournier (1996); Kabaso et al. (2011) and membrane-mediated interactions between non-deformable anisotropic objects have been investigated Dommersnes and Fournier (1999, 2002); Schweitzer and Kozlov (2015); Noguchi and Fournier (2017). For cylindrical membranes, the axis of banana-shaped proteins were assumed aligned in the azimuthal direction to derive a force–extension curve Noguchi (2015). However, the entropic interaction of the protein orientation has not been considered in these studies.

Recently, this entropic interaction was taken into account by two of us and co-workers Tozzi et al. (2021); Roux et al. (2021) based on Nascimentos’ theory for three-dimensional liquid-crystals Nascimento et al. (2017). An isotropic-to-nematic transition was obtained on a fixed membrane shape. In this study, we examine the binding of the anisotropic proteins to a cylindrical membrane tube in detail. The axial force along the membrane tube and equilibrium of protein binding/unbinding are considered. Moreover, we clearly show the difference from the binding of isotropic proteins Noguchi (2021b). The tube part of a tethered vesicle is well approximated by this tube with no volume constraint, when tube radius is much smaller than the vesicle radius Noguchi (2021b).

Several types of membrane models have been developed for coarse-grained simulations Müller et al. (2006); Venturoli et al. (2006); Noguchi (2009). The protein binding has been investigated using molecular simulations Arkhipov et al. (2008); Yu and Schulten (2013); Simunovic et al. (2013); Gómez-Llobregat et al. (2016); Olinger et al. (2016); Takemura et al. (2017); Mahmood et al. (2019), dynamically triangulated membrane simulations Ramakrishnan et al. (2013); Behera et al. (2021), and meshless membrane simulations Noguchi (2014, 2015, 2016a, 2016b); Noguchi and Fournier (2017); Noguchi (2017, 2019a). Among them, however, the binding effects on the axial force of a membrane tube have been investigated only by the meshless simulations Noguchi (2014, 2015, 2016b); a characteristic force dependence on the protein curvature was reported for homogeneous states at low protein curvatures, in addition to the protein assembly accompanied by membrane shape transformation at high protein curvatures. Here, we compare our theoretical results with those of the meshless simulations.

The mean-field theory is described in Sec. II. Simulations of membrane tubes are described in Sec. III. The simulation results are compared with the theoretical results in Sec. III.2. Finally, a summary and discussion are presented in Sec. IV.

Refer to caption
Figure 1: Schematic of the theoretical model. (a) An elliptic protein on a membrane tube. The angles between the nematic direction S, the azimuthal direction, and/or and protein axis. (b) Excluded-volume interactions between proteins. A perpendicular protein pair has a larger excluded area (represented by thick dashed lines) than a parallel pair, leading to a nematic order at a high density.

II Theoretical analysis

II.1 Theory

Protein binding on a cylindrical membrane tube is considered as depicted in Fig. 1(a). The membrane is in a fluid phase and the surface area AA is fixed. The radius and length of the tube are RcyR_{\rm cy} and LcyL_{\rm cy}: A=2πRcyLcyA=2\pi R_{\rm cy}L_{\rm cy}. The tube volume can be freely changed. This corresponds to the tubular region of a tethered vesicle in the limit condition, in which the tube volume is negligibly small (πRcy2LcyV\pi R_{\rm cy}^{2}L_{\rm cy}\ll V, where VV is the vesicle volume) Smith et al. (2004); Noguchi (2021b). Proteins can align in the membrane surface. To quantify it, the degree of the orientational order is calculated as

S\displaystyle S =\displaystyle= 2sp(θps),\displaystyle 2\langle s_{\rm p}(\theta_{\rm ps})\rangle, (1)
sp(θps)\displaystyle s_{\rm p}(\theta_{\rm ps}) =\displaystyle= cos2(θps)12,\displaystyle\cos^{2}(\theta_{\rm ps})-\frac{1}{2}, (2)

where \langle...\rangle is the ensemble average, and θps\theta_{\rm ps} is the angle between the major protein axis and the ordered direction. The angles between the ordered direction and the azimuthal direction of the cylinder and between the major protein axis and azimuthal direction are θsc\theta_{\rm sc} and θpc\theta_{\rm pc}, respectively, with θps=θpc+θsc\theta_{\rm ps}=\theta_{\rm pc}+\theta_{\rm sc} (see Fig. 1(a)). Experimentally, the oritational order SzS_{z} along the tube (zz) axis is more easily measured: for θsc=0\theta_{\rm sc}=0 and π/2\pi/2, Sz=SS_{z}=-S and Sz=SS_{z}=S, respectively.

The bound protein is approximated to have laterally an elliptic shape with an aspect ratio of del=1/2d_{\rm el}=\ell_{1}/\ell_{2} and area ap=π12/4a_{\rm p}=\pi\ell_{1}\ell_{2}/4, where 1\ell_{1} are 2\ell_{2} are the lengths in the major and minor axes, respectively. An orientation-dependent excluded-volume interaction is considered between proteins. When two proteins are perpendicularly oriented, the excluded area AexcA_{\rm exc} between them is larger than the parallel pairs, as shown in Fig. 1(b). This area AexcA_{\rm exc} is expressed as Aexc=B0+B2(cos2(θpp)1/2)+O(cos4(θpp))A_{\rm exc}=B_{0}+B_{2}(\cos^{2}(\theta_{\rm pp})-1/2)+O(\cos^{4}(\theta_{\rm pp})) by a Taylor expansion, where θpp\theta_{\rm pp} is the angle between the major axes of two ellipses. In our previous study Tozzi et al. (2021), the values of B0B_{0} and B2B_{2} are calculated by a two-parameter fit. In this study, the one-parameter fit of Aexc=[4bexc(cos2(θpp)1)]apA_{\rm exc}=[4-b_{\rm exc}(\cos^{2}(\theta_{\rm pp})-1)]a_{\rm p} is used, since the minimum value Aexcmin=4apA_{\rm exc}^{\rm min}=4a_{\rm p} is obtained at the parallel pairs (θpp=0\theta_{\rm pp}=0) for any ratio of deld_{\rm el}: bexc=0.840b_{\rm exc}=0.840, 1.981.98, 3.443.44, and 7.617.61 at del=2d_{\rm el}=2, 33, 44, and 77, respectively. The effective excluded area is represented by Aeff=λAexcA_{\rm eff}=\lambda A_{\rm exc}. The parameter λ\lambda is a function of the protein density and λ=1/2\lambda=1/2 at a low-density limit Nascimento et al. (2017). At the close-packed condition, the area fraction ϕ\phi of the bound protein has the maximum: ϕmax=ap/λAexcmin=1/4λ=π/230.907\phi_{\rm max}=a_{\rm p}/\lambda A_{\rm exc}^{\rm min}=1/4\lambda=\pi/2\sqrt{3}\approx 0.907 in two-dimensional space Tanemura and Matsumoto (1997). For simplicity, we use a constant value, λ=1/3\lambda=1/3, as in our previous study Tozzi et al. (2021); Roux et al. (2021), i.e., ϕmax=0.75\phi_{\rm max}=0.75. In this study, we consider no attractive interactions between the proteins and focus on isotropic and nematic phases, such that smectic and crystal phases are not in the scope.

The bending energy of the bare (unbound) membrane is given by

Umb=κd2(C1+C2)2𝑑A=κdA2Rcy2,U_{\rm mb}=\int\frac{\kappa_{\rm d}}{2}(C_{1}+C_{2})^{2}dA=\frac{\kappa_{\rm d}A}{2R_{\rm cy}^{2}}, (3)

where C1C_{1} and C2C_{2} are the principal curvatures (C1=1/RcyC_{1}=1/R_{\rm cy} and C2=0C_{2}=0 for the cylinder). The unbound membrane has a bending rigidity κd\kappa_{\rm d} and zero spontaneous curvature. The tubular membrane is connected to a large lipid reservoir, and the area difference elasticity Seifert (1997); Svetina (2009) is negligible. The bound protein gives an additional bending energy as U=Umb+NpUp\langle U\rangle=U_{\rm mb}+N_{\rm p}\langle U_{\rm p}\rangle, where Np=ϕA/apN_{\rm p}=\phi A/a_{\rm p} is the number of the bound protein and UpU_{\rm p} is the bending energy of one protein. The protein has an anisotropic bending energy:

Up\displaystyle U_{\rm p} =\displaystyle= κpap2(C1Cp)2+κsideap2(C2Cside)2,\displaystyle\frac{\kappa_{\rm p}a_{\rm p}}{2}(C_{\ell 1}-C_{\rm p})^{2}+\frac{\kappa_{\rm side}a_{\rm p}}{2}(C_{\ell 2}-C_{\rm side})^{2}, (4)
C1\displaystyle C_{\ell 1} =\displaystyle= C1cos2(θpc)+C2sin2(θpc),\displaystyle C_{1}\cos^{2}(\theta_{\rm pc})+C_{2}\sin^{2}(\theta_{\rm pc}), (5)
C2\displaystyle C_{\ell 2} =\displaystyle= C1sin2(θpc)+C2cos2(θpc),\displaystyle C_{1}\sin^{2}(\theta_{\rm pc})+C_{2}\cos^{2}(\theta_{\rm pc}), (6)

where C1C_{\ell 1} and C2C_{\ell 2} are curvatures along the major and minor axes of the proteins, respectively. κp\kappa_{\rm p} and CpC_{\rm p} are the bending rigidity and spontaneous curvature along the major protein axis, respectively, and κside\kappa_{\rm side} and CsideC_{\rm side} are those along the minor axis (side direction). Here, κside=0\kappa_{\rm side}=0 is used unless otherwise specified.

The free energy FpF_{\rm p} of the bound proteins is expressed as

Fp\displaystyle F_{\rm p} =\displaystyle= fp𝑑A,\displaystyle\int f_{\rm p}\ dA, (7)
fp\displaystyle f_{\rm p} =\displaystyle= ϕkBTap[ln(ϕ)+SΨ2ln(π/2π/2w(θps)𝑑θps)],\displaystyle\frac{\phi k_{\rm B}T}{a_{\rm p}}\Big{[}\ln(\phi)+\frac{S\Psi}{2}-\ln\Big{(}\int_{-\pi/2}^{\pi/2}w(\theta_{\rm ps})\ d\theta_{\rm ps}\Big{)}\Big{]},\ \ (8)
w(θps)\displaystyle w(\theta_{\rm ps}) =\displaystyle= gexp[Ψsp(θps)+Ψ¯sin(θps)cos(θps)βUp]Θ(g),\displaystyle g\exp[\Psi s_{\rm p}(\theta_{\rm ps})+\bar{\Psi}\sin(\theta_{\rm ps})\cos(\theta_{\rm ps})-\beta U_{\rm p}]\Theta(g), (9)
g\displaystyle g =\displaystyle= 1ϕ(b0b2Ssp(θps)),\displaystyle 1-\phi(b_{0}-b_{2}Ss_{\rm p}(\theta_{\rm ps})), (10)

where Θ(x)\Theta(x) denotes the unit step function, kBTk_{\rm B}T is the thermal energy, and β=1/kBT\beta=1/k_{\rm B}T. The factor gg expresses the effect of the orientation-dependent excluded volume, where b0=B0λ/ap=(4+bexc/2)λb_{0}=B_{0}\lambda/a_{\rm p}=(4+b_{\rm exc}/2)\lambda and b2=B2λ/ap=bexcλb_{2}=-B_{2}\lambda/a_{\rm p}=b_{\rm exc}\lambda. Unoverlapped states exist at g>0g>0. Since w(θps)w(\theta_{\rm ps}) is the weight of each protein orientation, the ensemble average of a quantity χ\chi is given by

χ=π/2π/2χw(θps)𝑑θpsπ/2π/2w(θps)𝑑θps.\displaystyle\langle\chi\rangle=\frac{\int_{-\pi/2}^{\pi/2}\chi w(\theta_{\rm ps})\ d\theta_{\rm ps}}{\int_{-\pi/2}^{\pi/2}w(\theta_{\rm ps})\ d\theta_{\rm ps}}. (11)

The quantities Ψ\Psi and Ψ¯\bar{\Psi} are the symmetric and asymmetric components of the nematic tensor, respectively, and are determined by Eq. (1) and sin(θps)cos(θps)=0\langle\sin(\theta_{\rm ps})\cos(\theta_{\rm ps})\rangle=0 using Eq. (11). When the nematic order is parallel to one of the directions of the membrane principal curvatures (θsc=0\theta_{\rm sc}=0 or π/2\pi/2), Ψ¯=0\bar{\Psi}=0. The free energy minimum is calculated from fp/S=fp/θsc=0\partial f_{\rm p}/\partial S=\partial f_{\rm p}/\partial\theta_{\rm sc}=0. More detail is described in Ref. 42.

In this study, we examine the axial force fexf_{\rm ex} and the equilibrium of the protein binding and unbinding. In experiments, an external force fexf_{\rm ex} is imposed by optical tweezers and micropipette in order to extend a membrane tube from a liposome. The free energy is give by F=Fp+UmbfexLcyF=F_{\rm p}+U_{\rm mb}-f_{\rm ex}L_{\rm cy}. This force fexf_{\rm ex} is balanced with the membrane axial force and is obtained by F/Lcy=0\partial F/\partial L_{\rm cy}=0 as

fex=2πfp(1/Rcy)+fmb.\displaystyle f_{\rm ex}=2\pi\frac{\partial f_{\rm p}}{\partial(1/R_{\rm cy})}+f_{\rm mb}. (12)

The last term fmbf_{\rm mb} represents the force of the bare membrane tube (ϕ=0\phi=0),

fmb=2πκdRcy=f0RcyCp,f_{\rm mb}=\frac{2\pi\kappa_{\rm d}}{R_{\rm cy}}=\frac{f_{0}}{R_{\rm cy}C_{\rm p}}, (13)

where f0=2πκdCpf_{0}=2\pi\kappa_{\rm d}C_{\rm p} is the force at RcyCp=1R_{\rm cy}C_{\rm p}=1 and is used as the unit hereafter.

The proteins bind and unbind the membrane with the binding chemical potential μ\mu. The equilibrium of the binding and unbinding is obtained by minimizing FμNpF-\mu N_{\rm p}. Hence, the equilibrium protein density is calculated from μ=apfp/ϕ\mu=a_{\rm p}\partial f_{\rm p}/\partial\phi. Here, the number NlipN_{\rm lip} of the lipids and the area AA remain constant, so that the ensemble is changed from the NpNlipATN_{\rm p}N_{\rm lip}AT ensemble to μNlipAT\mu N_{\rm lip}AT ensemble.

Unless otherwise specified, we use del=3d_{\rm el}=3 and apCp2=0.26a_{\rm p}C_{\rm p}^{2}=0.26, which correspond to the N-BAR domain (1=15\ell_{1}=15 nm 2=5\ell_{2}=5 nm, and 1/Cp=151/C_{\rm p}=15 nm) Roux et al. (2021). Another area ratio apCcy2=0.26a_{\rm p}C_{\rm cy}^{2}=0.26 is used to examine CpC_{\rm p} dependence. The detail of the numerical methods is described in Appendix A.

Refer to caption
Figure 2: Orientational degree SS of the proteins for 1/RcyCp=01/R_{\rm cy}C_{\rm p}=0 (flat membrane), 0.10.1, 11, 1.251.25, and 1.51.5 at κp/kBT=40\kappa_{\rm p}/k_{\rm B}T=40 and del=3d_{\rm el}=3. The solid and dashed lines represent the data of stable and metastable states, respectively. The right line in (a) represents the maximum density ϕlim(S)\phi_{\rm lim}(S) given by Eq. (14).
Refer to caption
Figure 3: Effects of (a) the bending rigidity κp\kappa_{\rm p} and (b) elliptic ratio deld_{\rm el} of the proteins on the density ϕ\phi dependence of the orientational degree SS at 1/RcyCp=11/R_{\rm cy}C_{\rm p}=1. (a) From top to bottom, κp/kBT=80\kappa_{\rm p}/k_{\rm B}T=80, 6060, 4040, 2020, and 1010 at del=3d_{\rm el}=3. (b) From top to bottom, del=7d_{\rm el}=7, 44, 33, and 22 at κp/kBT=40\kappa_{\rm p}/k_{\rm B}T=40. The metastable states at ϕϕlim(0)\phi\simeq\phi_{\rm lim}(0) are not shown.
Refer to caption
Figure 4: Angles θsc\theta_{\rm sc} and θpc\theta_{\rm pc} for 1/RcyCp=1.251/R_{\rm cy}C_{\rm p}=1.25 and 1.51.5 at κp/kBT=40\kappa_{\rm p}/k_{\rm B}T=40 and del=3d_{\rm el}=3. Second order and first order transitions occur for 1/RcyCp=1.251/R_{\rm cy}C_{\rm p}=1.25 and 1.51.5, respectively. The solid lines in (a),(b) and dashed lines in (b) represent the data of stable and metastable states, respectively. (d) Two states coexist at ϕ=0.55\phi=0.55 and 1/RcyCp=1.51/R_{\rm cy}C_{\rm p}=1.5. In the inset of (b), the protein states are schematically depicted for low and high protein densities ϕ\phi.
Refer to caption
Figure 5: Dependence on the radius RcyR_{\rm cy} of the membrane tube for a constant protein density at κp/kBT=40\kappa_{\rm p}/k_{\rm B}T=40 and del=3d_{\rm el}=3. (a) Orientational degree SzS_{z} along the tube axis. (b) Free energy density fpf_{\rm p} of the proteins. (c) Axial force fexf_{\rm ex} normalized by f0=2πκdCpf_{0}=2\pi\kappa_{\rm d}C_{\rm p}. The solid and dashed lines represent the data at ϕ=0.4\phi=0.4 and 0.10.1, respectively. (a),(c) From top to bottom, κp/kBT=10\kappa_{\rm p}/k_{\rm B}T=10, 2020, 4040, and 6060. (b) From top to bottom, κp/kBT=60\kappa_{\rm p}/k_{\rm B}T=60, 4040, 2020, and 1010. The inset in (c) shows the generation curvature CgC_{\rm g} (tube curvature at fex=0f_{\rm ex}=0) for ϕ=0.1\phi=0.1 and 0.40.4.
Refer to caption
Figure 6: Order curvature CorderC_{\rm order} (maximum of SS), free-energy-minimum curvature CeC_{\rm e}, and sensing curvature CsC_{\rm s} (maximum binding) of the proteins at del=3d_{\rm el}=3. (a) Dependence on the density ϕ\phi. From top to bottom, κp/kBT=20\kappa_{\rm p}/k_{\rm B}T=20, 4040, and 6060. (b) Dependence on the protein rigidity κp\kappa_{\rm p}. From top to bottom, ϕ=0.1\phi=0.1 and 0.40.4 for CorderC_{\rm order} and CeC_{\rm e}, and μ/kBT=2\mu/k_{\rm B}T=-2 and 44 for CsC_{\rm s}. The dashed lines represent CeC_{\rm e}.
Refer to caption
Figure 7: Effects of the spontaneous curvature CsideC_{\rm side} in the side direction of the proteins on the RcyR_{\rm cy} dependence of (a) the orientational degree SzS_{z} along the tube axis and (b) free energy density fpf_{\rm p} of the proteins at ϕ=0.4\phi=0.4, κp/kBT=40\kappa_{\rm p}/k_{\rm B}T=40, and del=3d_{\rm el}=3. The solid lines represent the data for Cside/Cp=1C_{\rm side}/C_{\rm p}=-1, 0, and 11 at κside/kBT=20\kappa_{\rm side}/k_{\rm B}T=20. The dashed lines represent the data for no side bending energy (κside=0\kappa_{\rm side}=0).
Refer to caption
Figure 8: Dependence on the protein curvature CpC_{\rm p} at apCcy2=0.26a_{\rm p}C_{\rm cy}^{2}=0.26 and del=3d_{\rm el}=3. The force fexf_{\rm ex} for four values of the protein density ϕ\phi and rigidity κp\kappa_{\rm p} are shown in (a) and (b), respectively. (c) Orientational degree SzS_{z} for the same data in (b). (a) ϕ=0.1\phi=0.1, 0.20.2, 0.30.3, and 0.40.4 at κp/kBT=40\kappa_{\rm p}/k_{\rm B}T=40. (b),(c) κp/kBT=10\kappa_{\rm p}/k_{\rm B}T=10, 2020, 4040, and 8080 at ϕ=0.1\phi=0.1.
Refer to caption
Figure 9: Force fexf_{\rm ex} dependence of (a) the curvature 1/Rcy1/R_{\rm cy} of the cylindrical membrane, (b) protein density ϕ\phi, and (c) the orientational degree SzS_{z} along the tube axis for μ/kBT=2.5\mu/k_{\rm B}T=-2.5, 0, 2.52.5, and 55 at del=3d_{\rm el}=3 and κp/kBT=60\kappa_{\rm p}/k_{\rm B}T=60. The solid lines represent thermal equilibrium states. The dashed lines represent the metastable and free-energy-barrier states. The force is normalized by f0=2πκdCpf_{0}=2\pi\kappa_{\rm d}C_{\rm p}.
Refer to caption
Figure 10: Force fexf_{\rm ex} dependence for the proteins with the isotropic bending energy UisoU_{\rm iso} with μ/kBT=4\mu/k_{\rm B}T=-4, 2-2, 0, 22, and 44 at del=3d_{\rm el}=3 and κiso/kBT=60\kappa_{\rm iso}/k_{\rm B}T=60. (a) Curvature 1/Rcy1/R_{\rm cy} of the membrane tube. (b) Protein density ϕ\phi. The solid lines represent thermal equilibrium states. The dashed lines represent the metastable and free-energy-barrier states. The force is normalized by f0=2πκdCisof_{0}=2\pi\kappa_{\rm d}C_{\rm iso}.

II.2 Theoretical results

For flat membranes, the proteins exhibit a first-order transition from a randomly oriented state (S=0S=0) to an ordered state (S>0S>0) with increasing protein density ϕ\phi, as shown in Fig. 2(a). This transition density decreases as the elliptic ratio deld_{\rm el} increases, and the same behavior is obtained for spherical membranes Tozzi et al. (2021). For cylindrical membranes, the proteins are oriented on average even at ϕ0\phi\to 0 (see Figs. 2(b)–(e)). The maximum density ϕlim(S)\phi_{\rm lim}(S) is given by

ϕlim(S)=1b0b2S/2,\phi_{\rm lim}(S)=\frac{1}{b_{0}-b_{2}S/2}, (14)

that is independent of the membrane curvature (ϕmax=ϕlim(1)\phi_{\rm max}=\phi_{\rm lim}(1)). The straight line (S=0S=0) for 0<ϕ<ϕlim(0)0<\phi<\phi_{\rm lim}(0) in Fig. 2(a) is divided into two, and the right branch remains even at large tube curvatures, 1/Rcy1/R_{\rm cy}, although it has a high energy with a narrow width of ϕ\phi (see dashed lines at ϕ0.6\phi\simeq 0.6 in Figs. 2(b)–(e)). Meanwhile, the left branch connects to the upper branch at 1/RcyCp0.11/R_{\rm cy}C_{\rm p}\gtrsim 0.1 (see Fig. 2(b)). Note that it is separated at 1/RcyCp=0.011/R_{\rm cy}C_{\rm p}=0.01 (data not shown). At 1/RcyCp11/R_{\rm cy}C_{\rm p}\leq 1, the proteins prefer to align to the azimuthal direction (θpc=0\theta_{\rm pc}=0), while the thermal fluctuations disturb it. Hence, the proteins are more ordered (higher SS) at higher κp\kappa_{\rm p} (see Fig. 3(a)). At high density ϕ\phi (close to ϕmax\phi_{\rm max}), SS is dominantly determined by the orientation-dependent excluded volume and the effects increase with increasing deld_{\rm el} (see Fig. 3).

At 1/RcyCp>11/R_{\rm cy}C_{\rm p}>1, the protein preferred direction is tilted either to a positive or negative angle of θpc=±arccos(RcyCp)\theta_{\rm pc}=\pm\arccos(\sqrt{R_{\rm cy}C_{\rm p}}). At low ϕ\phi, the positive and negative angles simultaneously exist, so that the proteins exhibit a symmetric distribution with θsc=0\theta_{\rm sc}=0 (see Fig. 4). In contrast, at high ϕ\phi, these two angles cannot coexist at the same time owing to the large excluded-volume interactions between them (see the right distributions in Figs. 4(c) and (d)). The transitions between these two states are the second order and first order for 1/RcyCp1.31/R_{\rm cy}C_{\rm p}\leq 1.3 and 1/RcyCp1.351/R_{\rm cy}C_{\rm p}\geq 1.35 (see Figs. 4(a) and (b)), respectively. The two states coexist at ϕ0.55\phi\simeq 0.55 and 1/RcyCp=1.51/R_{\rm cy}C_{\rm p}=1.5 as shown in Fig. 4(d). Correspondingly, the SSϕ\phi curves exhibit discrete changes of the slope and position (see Figs. 2(d) and (e)), respectively. In the case of the second-order transition, the excluded-volume interactions push the protein into the azimuthal direction leading to the angular distribution of a single peak near the transition point (see the data at ϕ=0.6\phi=0.6 in Fig. 4(c)), so that the symmetric peak continuously changes to an asymmetric peak at the transition.

Figure 5 shows the tube curvature 1/Rcy1/R_{\rm cy} dependence of the orientational degree SzS_{z} along the tube axis, protein free-energy, and axial force fexf_{\rm ex}. The preferred orientation changes from θsc=0\theta_{\rm sc}=0 to π/2\pi/2 at 1/RcyCp=21/R_{\rm cy}C_{\rm p}=2, so that SzS_{z} changes from negative values (Sz=SS_{z}=-S) to positive values (Sz=SS_{z}=S). Interestingly, the orientational order (S=|Sz|S=|S_{z}|) has a maximum at 1/2<1/RcyCp<11/2<1/R_{\rm cy}C_{\rm p}<1, i.e., less than the matching curvature 1/RcyCp=11/R_{\rm cy}C_{\rm p}=1 (see Figs. 5(a) and 2). Oppositely, the curvature CeC_{\rm e} of the free-energy minimum is higher than the matching curvature (see Fig. 5(b)). These are determined by the competition between the orientational entropy and bending energy. The curvature (CorderC_{\rm order}) of the maximum order and CeC_{\rm e} decrease with increasing ϕ\phi and κp\kappa_{\rm p} (see Fig. 6); at κp\kappa_{\rm p}\to\infty, Corder1/2RcyC_{\rm order}\to 1/2R_{\rm cy}, in which the strength of the approximately harmonic potential of UpU_{\rm p} for θpc1\theta_{\rm pc}\ll 1 (i.e., 2Up/θpc2|θpc=0\partial^{2}U_{\rm p}/\partial\theta_{\rm pc}^{2}|_{\theta_{\rm pc}=0}) is maximum. The amplitudes of the order and the depth of free-energy minimum increase with increasing κp\kappa_{\rm p} (see Figs. 5(a) and (b), respectively). Corresponding to the larger energy change in fpf_{\rm p}, the axial force fexf_{\rm ex} deviates more from the value of the bare membrane (fmbf_{\rm mb} given by Eq. (13)) at higher κp\kappa_{\rm p} (see Fig. 5(c)). Spontaneously formed membrane tubes require no axial force (i.e., fex=0f_{\rm ex}=0). The generation curvature CgC_{\rm g} of this spontaneous tube increases with increasing κp\kappa_{\rm p} and ϕ\phi (see the inset of Fig. 5(c)), i.e., a narrower tube is generated. Note that CgC_{\rm g} also depends on the bending rigidity κd\kappa_{\rm d} of the bare membrane in contrast to CorderC_{\rm order} and CeC_{\rm e}.

Next, we examine the effects of the protein bending energy in the side direction (see Fig. 7). At zero side spontaneous curvature (Cside=0C_{\rm side}=0), the proteins more align in the azimuthal direction with increasing κside\kappa_{\rm side}, since the curvature C2C_{\ell 2} in the side direction becomes closer to CsideC_{\rm side}. This effect is pronounced at narrow tubes, whereas it is negligible for 1/RcyCp<11/R_{\rm cy}C_{\rm p}<1. For a negative value of CsideC_{\rm side}, CorderC_{\rm order} and CeC_{\rm e} become close to CpC_{\rm p}, and the proteins more align in a wider range of 1/Rcy1/R_{\rm cy}. For a positive value of CsideC_{\rm side}, CorderC_{\rm order} and CeC_{\rm e} become deviated from CpC_{\rm p}, and the proteins less align. The generation curvature slightly increases with increasing CsideC_{\rm side}: Cg=0.412C_{\rm g}=0.412, 0.4210.421, and 0.4480.448 at Cside=1C_{\rm side}=-1, 0, and 11, respectively, for the condition used in Fig. 7.

We have fixed the protein curvature CpC_{\rm p} until here. Figure 8 shows the effects of CpC_{\rm p} variation with maintaining the other parameters. As CpC_{\rm p} changes from null to 1/Rcy1/R_{\rm cy}, the nematic orientation changes from the axial direction (θsc=π/2\theta_{\rm sc}=\pi/2) to the azimuthal direction (θsc=0\theta_{\rm sc}=0) (see the left half of Fig. 8(c)). This change becomes steeper at higher κp\kappa_{\rm p}. During this change, the axial force fexf_{\rm ex} is almost constant, although a small peak appears for high κp\kappa_{\rm p} and/or high ϕ\phi (see the left regions of Figs. 8(a) and (b)). This is due to little change in the bending energy, because the proteins can find their preferred curvature by adjusting their orientation. For Cp1/RcyC_{\rm p}\gtrsim 1/R_{\rm cy}, fexf_{\rm ex} almost linearly decreases, and the slope increases with increasing κp\kappa_{\rm p} and ϕ\phi (see the right region of Figs. 8(a) and (b)). These dependencies qualitatively agree with the results of our previous meshless membrane simulations Noguchi (2014, 2015, 2016b). A quantitative comparison is described in Sec. III.2.

Finally, we examine the equilibrium of the protein binding and unbinding. As the binding chemical potential μ\mu increases, more proteins bind onto the membrane. The protein binding exhibits a first-order transition from a wide tube with low ϕ\phi to a narrow tube with high ϕ\phi at small force, fex<f0f_{\rm ex}<f_{0} (see Fig. 9). This transition agrees with the observation of the coexistence of two tubes with different RcyR_{\rm cy} and ϕ\phi in the experiments of an I-BAR protein Prévost et al. (2015). The force-dependence curves shown in Fig. 9 are asymmetric and exhibit weak dependence at fex>f0f_{\rm ex}>f_{0}, owing to the adjustment of the protein orientation that reduces a change in the protein bending energy (see Fig. 9(c)). These behaviors are different from the binding of proteins with an isotropic spontaneous curvature Noguchi (2021b), where the fexf_{\rm ex}1/Rcy1/R_{\rm cy} andfexf_{\rm ex}ϕ\phi curves are point symmetric and reflection symmetric to fex=f0f_{\rm ex}=f_{0}, respectively.

The protein binding has a maximum in the variation of the tube curvature (compare Figs. 9(a) and (b)). This curvature is called sensing curvature (denoted CsC_{\rm s}) and can be calculated from ϕ/(1/Rcy)=0\partial\phi/\partial(1/R_{\rm cy})=0. Interestingly, CsC_{\rm s} is varied by μ\mu and κp\kappa_{\rm p} (see Fig. 6). For low ϕ\phi at low μ\mu, CsC_{\rm s} approach CeC_{\rm e}, since the excluded volume gives negligible effects. For high μ\mu (ϕ0.5\phi\gtrsim 0.5 in Fig. 6(a)), CsC_{\rm s} becomes lower than CpC_{\rm p}, and ϕ\phi has a broad peak. A similar CsC_{\rm s} dependence on the tube curvature has been reported in the experiments of the BAR proteins Prévost et al. (2015); Tsai et al. (2021). It indicates the anisotropic interaction of the BAR proteins.

The asymmetry of the force-dependence curves is caused not by the orientation-dependent excluded volume but by the anisotropy of the protein bending energy. To clearly show it, the force-dependence curves for the elliptic proteins with an isotropic spontaneous curvature CisoC_{\rm iso} are plotted in Fig. 10. The proteins have a bending energy

Uiso=κisoap2(C1+C2Ciso)2,U_{\rm iso}=\frac{\kappa_{\rm iso}a_{\rm p}}{2}(C_{1}+C_{2}-C_{\rm iso})^{2}, (15)

instead of UpU_{\rm p}. Note that the anisotropic bending energy UpU_{\rm p} with κp=κside\kappa_{\rm p}=\kappa_{\rm side} and Cp=CsideC_{\rm p}=C_{\rm side} does not coincide to UisoU_{\rm iso} except for the case of θpc=0\theta_{\rm pc}=0 or π/2\pi/2. The fexf_{\rm ex}1/Rcy1/R_{\rm cy} andfexf_{\rm ex}ϕ\phi curves become point symmetric and reflection symmetric to fex=f0f_{\rm ex}=f_{0}, respectively, and the first-order transitions occur both at small and large forces symmetrically. The transition points are almost constant for a variation in μ\mu. This is due to the excluded-volume dependence on the protein orientation, since the transition points move outwards in the case of orientation-independent excluded volume Noguchi (2021b).

III Simulation

III.1 Simulation model

A fluid membrane is represented by a self-assembled single-layer sheet of NN particles. The position and orientational vectors of the ii-th particle are 𝒓i{\bm{r}}_{i} and 𝒖i{\bm{u}}_{i}, respectively. The membrane particles interact with each other via a potential U=Urep+Uatt+Ubend+UtiltU=U_{\rm{rep}}+U_{\rm{att}}+U_{\rm{bend}}+U_{\rm{tilt}}. The potential UrepU_{\rm{rep}} is an excluded volume interaction with diameter σ\sigma for all pairs of particles. The solvent is implicitly accounted for by an effective attractive potential UattU_{\rm{att}}. The details of the meshless membrane model and protein rods are described in Ref. 66 and Refs. 57; 59, respectively. We employ the parameter sets used in Ref. 59.

The bending and tilt potentials are given by Ubend/kBT=(kbend/2)i<j(𝒖i𝒖jCbd𝒓^i,j)2wcv(ri,j)U_{\rm{bend}}/k_{\rm B}T=(k_{\rm{bend}}/2)\sum_{i<j}({\bm{u}}_{i}-{\bm{u}}_{j}-C_{\rm{bd}}\hat{\bm{r}}_{i,j})^{2}w_{\rm{cv}}(r_{i,j}) and Utilt/kBT=(ktilt/2)i<j[(𝒖i𝒓^i,j)2+(𝒖j𝒓^i,j)2]wcv(ri,j)U_{\rm{tilt}}/k_{\rm B}T=(k_{\rm{tilt}}/2)\sum_{i<j}[({\bm{u}}_{i}\cdot\hat{\bm{r}}_{i,j})^{2}+({\bm{u}}_{j}\cdot\hat{\bm{r}}_{i,j})^{2}]w_{\rm{cv}}(r_{i,j}), respectively, where 𝒓i,j=𝒓i𝒓j{\bm{r}}_{i,j}={\bm{r}}_{i}-{\bm{r}}_{j}, ri,j=|𝒓i,j|r_{i,j}=|{\bm{r}}_{i,j}|, 𝒓^i,j=𝒓i,j/ri,j\hat{\bm{r}}_{i,j}={\bm{r}}_{i,j}/r_{i,j}, wcv(ri,j)w_{\rm{cv}}(r_{i,j}) is a weight function. The spontaneous curvature C0C_{0} of the membrane is given by C0σ=Cbd/2C_{0}\sigma=C_{\rm{bd}}/2. Shiba and Noguchi (2011) In this study, C0=0C_{0}=0 and kbend=ktilt=10k_{\rm{bend}}=k_{\rm{tilt}}=10 are used except for the membrane particles belonging to the protein rods.

An anisotropic protein and membrane underneath it are together modeled as a rod that is a linear chain of NsgN_{\rm{sg}} membrane particles Noguchi (2014). We use Nsg=5N_{\rm{sg}}=5 and 1010 with the density ϕ=NsgNrod/N=0.167\phi=N_{\rm{sg}}N_{\rm{rod}}/N=0.167. The protein rods have spontaneous curvatures CrodC_{\rm{rod}} along the rod axis and have no spontaneous (side) curvatures perpendicular to the rod axis. The protein-bound membrane are more rigid than the bare membrane: the values of kbendk_{\rm{bend}} and ktiltk_{\rm{tilt}} are krk_{\rm r} times higher than those of the bare membrane.

The membrane has mechanical properties that are typical of lipid membranes: the bare membrane has a bending rigidity κ/kBT=16.1±0.02\kappa/k_{\rm B}T=16.1\pm 0.02, area of the tensionless membrane per particle a0/σ2=1.2778±0.0002a_{0}/\sigma^{2}=1.2778\pm 0.0002, area compression modulus KAσ2/kBT=83.1±0.4K_{A}\sigma^{2}/k_{\rm B}T=83.1\pm 0.4, edge line tension Γσ/kBT=5.73±0.04\Gamma\sigma/k_{\rm B}T=5.73\pm 0.04 Noguchi (2014), and the Gaussian modulus κ¯/κ=0.9±0.1\bar{\kappa}/\kappa=-0.9\pm 0.1 Noguchi (2019b). The bending rigidity is calculated by Eq. (13), which is slightly greater than the value (15±115\pm 1) estimated by thermal undulation Shiba and Noguchi (2011). The membrane tube with a length of LcyL_{\rm cy} is connected by the periodic boundary, and the tube volume can be freely varied. Molecular dynamics with a Langevin thermostat is employed Shiba and Noguchi (2011); Noguchi (2011). The dependence on the rod curvature CrodC_{\rm rod} was calculated at Lcy=48σL_{\rm cy}=48\sigma and N=2400N=2400 in Ref. 59 using the replica-exchange method Hukushima and Nemoto (1996); Okamoto (2004). The dependence on the tube radius was calculated at kr=4k_{\rm r}=4 and N=4800N=4800 in this study.

Refer to caption
Refer to caption
Figure 11: Membrane simulations of the short protein rods of Nsg=5N_{\rm sg}=5 at kr=4k_{\rm r}=4. (a),(b) Snapshots for (a) Crodσ=0.1C_{\rm rod}\sigma=0.1 and (b) Crodσ=0.25C_{\rm rod}\sigma=0.25 at Lcy/σ=96L_{\rm cy}/\sigma=96 (Rcy/σ=9.92R_{\rm cy}/\sigma=9.92 and 9.919.91, respectively). A protein rod is displayed as a chain of spheres whose halves are colored in red and in yellow. The orientational vector 𝐮i{\bf u}_{i} lies along the direction from the yellow to red hemispheres. Transparent gray particles represent membrane particles. (c),(d) Dependence of (c) the axial force fexf_{\rm ex} and (d) orientational order Sz\langle S_{z}\rangle along the membrane tube on the tube radius RcyR_{\rm cy} for Crodσ=0.1C_{\rm rod}\sigma=0.1, 0.150.15, 0.20.2, and 0.250.25. The symbols with dashed lines represent the simulation data. The black solid lines represent the theoretical results.
Refer to caption
Refer to caption
Figure 12: Membrane simulations of the long protein rods of Nsg=10N_{\rm sg}=10 at kr=4k_{\rm r}=4. (a)–(c) Snapshots for (a),(b) Crodσ=0.1C_{\rm rod}\sigma=0.1 and (c) Crodσ=0.25C_{\rm rod}\sigma=0.25. (a) Lcy/σ=160L_{\rm cy}/\sigma=160 (Rcy/σ=6.05R_{\rm cy}/\sigma=6.05). (b),(c) Lcy/σ=48L_{\rm cy}/\sigma=48 (Rcy/σ=19.66R_{\rm cy}/\sigma=19.66 and 18.3718.37, respectively). The front and side views are displayed in (c). (d),(e) Dependence of (d) the axial force fexf_{\rm ex} and (e) orientational order Sz\langle S_{z}\rangle along the membrane tube on the tube radius RcyR_{\rm cy} for Crodσ=0.1C_{\rm rod}\sigma=0.1, 0.150.15, 0.20.2, and 0.250.25. The symbols with dashed lines represent the simulation data. The black solid lines represent the theoretical results for Crodσ=0.1C_{\rm rod}\sigma=0.1, 0.150.15, and 0.20.2.
Refer to caption
Figure 13: (a),(b) Dependence of (a) the axial force fexf_{\rm ex} and (b) orientational order Sz\langle S_{z}\rangle along the membrane tube on the rod curvature CrodC_{\rm rod} for the bending rigidity ratio kr=2k_{\rm r}=2, 44, 88, and 1212 at Nsg=10N_{\rm sg}=10 and Rcy/σ=9.89R_{\rm cy}/\sigma=9.89. The solid lines represent the simulation data. The black dashed lines represent the theoretical results. The force generated by the proteins is normalized as (fexfmb)Rcy/2πkBT(f_{\rm ex}-f_{\rm mb})R_{\rm cy}/2\pi k_{\rm B}T, where fmbf_{\rm mb} is the force of the bare membrane. The simulation data (solid lines) are reproduced from Ref. 59.

III.2 Comparison of simulation and theoretical results

Figure 11 and Figs. 12,13 show the simulation and theoretical results for the short and long protein rods (Nsg=5N_{\rm sg}=5 and 1010), respectively. Since the simulated proteins do not have an elliptic shape and are flexible, the protein parameters are adjusted as follows. For the short rods, we used the orientational degree SzS_{z} at Crodσ=0.15C_{\rm rod}\sigma=0.15 (the second line from the top in Fig. 11(d)) for a fit and obtained κp=30kBT\kappa_{\rm p}=30k_{\rm B}T and Crod/Cp=2C_{\rm rod}/C_{\rm p}=2 for ap=Nsga0a_{\rm p}=N_{\rm sg}a_{0} and del=3d_{\rm el}=3. This parameter set reproduces the simulation data of SzS_{z} and fexf_{\rm ex} at different values of CrodC_{\rm rod} very well. Thus, this theory can quantitatively describe the behavior of the short proteins.

However, less agreement is obtained for the long rods of Nsg=10N_{\rm sg}=10 (see Figs. 12 and 13). It is due to the protein assembly induced by the membrane-mediated attractive interactions between the proteins (see the snapshots in Figs. 12(a)–(c)). At a high rod curvature (Crodσ=0.25C_{\rm rod}\sigma=0.25), the proteins assemble in the azimuthal direction, and the membrane deforms into an elliptic tube, as shown in Fig. 12(c). For longer (narrower) and shorter (wider) tubes, cylindrical and triangular shapes are formed (see Movie 1 in ESI). Thus, large negative values of SzS_{z} (Fig. 12(e)) and nonmonotonic dependence of fexf_{\rm ex} for CrodRcy2.5C_{\rm rod}R_{\rm cy}\gtrsim 2.5 (Crodσ0.25C_{\rm rod}\sigma\gtrsim 0.25) at kr=4k_{\rm r}=4 (Fig. 13(a)) are obtained. In the elliptic and triangular membranes, the proteins align in the azimuthal direction, so that their stabilities can be analyzed by assuming a fixed protein orientation as reported in Ref. 41. More detail of this assembly is described in Refs. 57; 41; 59.

For a lower rod curvature (Crodσ0.2C_{\rm rod}\sigma\leq 0.2) of the long rods at kr=4k_{\rm r}=4, the azimuthal assembly does not occur, but clusters of a few proteins appear as shown in Figs. 12(a) and (b). We fitted the linear-decrease region of the force-dependence curve in Fig. 13(a) at CrodRcy>1C_{\rm rod}R_{\rm cy}>1 and obtained κp/kBT=60\kappa_{\rm p}/k_{\rm B}T=60, 9090, 120120, and 150150 with Crod/Cp=2.5C_{\rm rod}/C_{\rm p}=2.5, 2.052.05, 1.71.7, and 1.51.5 for kr=2k_{\rm r}=2, 44, 88, and 1212, respectively, at ap=Nsga0a_{\rm p}=N_{\rm sg}a_{0} and del=7d_{\rm el}=7. The orientational orders SzS_{z} calculated by these parameter sets show quantitative deviation from the simulation data, although they capture qualitative behavior (see Figs. 12(e) and 13(b)). Moreover, the other regions of the force-dependence curves have quantitative differences: the heights of peaks at CrodRcy<1C_{\rm rod}R_{\rm cy}<1 in Fig. 13(a) deviate from the simulation values, and the slopes at σ/Rcy<0.1\sigma/R_{\rm cy}<0.1 in Fig. 12(d) are different. Although the present theory assumes the uniform lateral distribution of the proteins, the protein clusters can bend the membrane more strongly as demonstrated by the formation of the elliptic tube. Therefore, we consider that the clusters effectively work as large or rigid proteins. The greater values of κp\kappa_{\rm p} and CpC_{\rm p} obtained by the fits support this mechanism. Thus, for a quantitative prediction of a long protein (i.e., a large elliptic ratio deld_{\rm el}), it is significant to include the effects of the protein clusters.

IV Summary and discussions

We have studied the equilibrium states of the anisotropic curvature-inducing proteins theoretically and compared them with the simulation results. The protein is assumed to have an elliptic shape with a bending rigidity and spontaneous curvature mainly along the major axis of the protein. On narrow membrane tubes, the proteins exhibit a first-order nematic transition with increasing protein density as reported in our previous paper Tozzi et al. (2021). Here, we found that this transition becomes the second order on the tubes with intermediate radii. In our previous study, the proteins on a membrane with a fixed shape have been considered. In this study, we extended the theory to proteins on membrane tubes which radius is not fixed and in the binding/unbinding equilibrium. We found that the protein binding affects the membrane axial force differently for wide and narrow tubes. For wide tubes, the force is reduced by the binding. In contrast, it is only slightly modified for narrow tubes, on which the proteins are tilted from the azimuthal direction. With increasing binding chemical potential, a first-order transition between two tube radii with different protein densities occurs only once at the wide tubes, whereas the proteins with an isotropic bending energy exhibit the transition twice. For the short proteins, this theory reproduces the protein orientation and axial force obtained by the meshless simulations very well. In contrast, the long proteins have large membrane-mediated attractive interactions so that resultant protein clusters modify the mean orientation and axial force. However, the theory still holds qualitative dependency.

Moreover, we found that the tube curvatures for the maximum protein binding (sensing) and orientational order are different from the protein spontaneous curvature CpC_{\rm p}. The sensing curvature is higher than CpC_{\rm p} at low protein density and coincides to the curvature of the free energy minimum. This is contrast to isotropic proteins Noguchi (2021b) which sensing curvature is constant. The order curvature is lower than CpC_{\rm p} and decreases with increasing protein density and bending rigidity. These dependencies are caused by the variation in the protein orientation. Previously, the proteins are often assumed to orient to the azimuthal direction. Even at the tube curvature close to CpC_{\rm p}, the orientational fluctuations modify the average protein behavior. Thus, it is important to take the orientational degree of freedom into account.

Since the theory for the isotropic bending energy has been well established, it has been employed even in the analysis for the experiments of the BAR proteins Prévost et al. (2015); Wu et al. (2018); Tsai et al. (2021). In this study, however, we have clarified that the anisotropy of the bending energy largely changes the membrane–protein interactions such as the sensing curvature. Therefore, the effects of the protein orientation should be included for more quantitative analysis.

We also showed that the protein side curvature (spontaneous curvature along the protein minor axis) modifies the protein binding. The proteins are oriented less or more strongly in the azimuthal direction for a positive or negative side curvature, respectively. It has been reported that the side curvature of the opposite sign to CpC_{\rm p} can induce the formation of an egg-carton shape Dommersnes and Fournier (1999, 2002) and network structures Noguchi (2016a). However, in many previous studies, the side curvature has not been considered. When the proteins or objects strongly bind the membrane as in coarse-grained molecular simulations Simunovic et al. (2013); Olinger et al. (2016), the proteins effectively have a large negative side curvature. Such a large side curvature can change the orientation direction perpendicularly leading to the tip-to-tip protein assembly as discussed in Ref. 40.

In the present theory, we consider only an excluded-volume interaction between proteins. Bound proteins can attract each other via direct and/or membrane-mediated interactions. In particular, BAR proteins typically form helical alignments in dense-packed conditions. Such a chiral interaction can largely modify the protein assembly and membrane shape Noguchi (2019a); Behera et al. (2021). To reproduce them, additional interactions are required to account for. However, for a sufficiently low protein density, such additional interactions are negligibly weak. Hence, the present theory can be used to estimate the bending rigidity and curvature of bound proteins in experiments and atomistic simulations. These mechanical parameters are keys to quantitatively understand the curvature sensing and generation of proteins.

Acknowledgements.
This work was supported by JSPS KAKENHI Grant Number JP21K03481, the European Research Council (CoG-681434), the European Commission (Project No. H2020-FETPROACT-01-2016-731957), the Spanish Ministry for Science and Innovation/FEDER (PID2019-110949GBI00, BES-2016-078220 to C. T.), and the Generalitat de Catalunya (ICREA Academia award). This research was also supported in part by the National Science Foundation under Grant No. NSF PHY-1748958, through KITP program: The Physics of Elastic Films: from Biological Membranes to Extreme Mechanics (FILMS21). The simulations were partially carried out using the facilities of the Supercomputer Center, Institute for Solid State Physics, University of Tokyo.

Appendix A Calculation method for the present theory

The quantities Ψ\Psi and Ψ¯\bar{\Psi} are single-valued functions of SS, so that they can be calculated by root-finding algorithms such as the bisection method. Alternatively, for ϕ1/(b0+b2/2)\phi\leq 1/(b_{0}+b_{2}/2), where g>0g>0 for any value of SS, SS can be calculated by solving the quadratic equation of S=(q0+q1S)/(p0+p1S)S=(q_{0}+q_{1}S)/(p_{0}+p_{1}S) for given Ψ\Psi and Ψ¯\bar{\Psi} as

S=q1p0+(q1p0)2+4q0p12p1,S=\frac{q_{1}-p_{0}+\sqrt{(q_{1}-p_{0})^{2}+4q_{0}p_{1}}}{2p_{1}}, (16)

where

p0\displaystyle p_{0} =\displaystyle= π/2π/2w0𝑑θps,p1=π/2π/2w1𝑑θps,\displaystyle\int_{-\pi/2}^{\pi/2}\ w_{0}\ d\theta_{\rm ps},\hskip 29.87547ptp_{1}=\int_{-\pi/2}^{\pi/2}\ w_{1}\ d\theta_{\rm ps},
q0\displaystyle q_{0} =\displaystyle= π/2π/22sp(θps)w0𝑑θps,q1=π/2π/22sp(θps)w1𝑑θps,\displaystyle\int_{-\pi/2}^{\pi/2}2s_{\rm p}(\theta_{\rm ps})w_{0}\ d\theta_{\rm ps},\hskip 5.69046ptq_{1}=\int_{-\pi/2}^{\pi/2}2s_{\rm p}(\theta_{\rm ps})w_{1}\ d\theta_{\rm ps},
w0\displaystyle w_{0} =\displaystyle= (1b0ϕ)exp[Ψsp(θps)+Ψ¯sin(θps)cos(θps)βUp],\displaystyle(1-b_{0}\phi)\exp[\Psi s_{\rm p}(\theta_{\rm ps})+\bar{\Psi}\sin(\theta_{\rm ps})\cos(\theta_{\rm ps})-\beta U_{\rm p}],
w1\displaystyle w_{1} =\displaystyle= b2ϕsp(θps)exp[Ψsp(θps)+Ψ¯sin(θps)cos(θps)βUp].\displaystyle b_{2}\phi s_{\rm p}(\theta_{\rm ps})\exp[\Psi s_{\rm p}(\theta_{\rm ps})+\bar{\Psi}\sin(\theta_{\rm ps})\cos(\theta_{\rm ps})-\beta U_{\rm p}].

At ϕ1/b0\phi\simeq 1/b_{0}, SS can be a multivalued function of Ψ\Psi. For 1/(b0+b2/2)<ϕ<ϕmax1/(b_{0}+b_{2}/2)<\phi<\phi_{\rm max}, large values of SS can be calculated by the iteration of Eq. (1) by updating SS. However, the smaller values of SS should be calculated by the former method (Ψ(S)\Psi(S)). In this study, fp/(1/Rcy)\partial f_{\rm p}/\partial(1/R_{\rm cy}) and fp/ϕ\partial f_{\rm p}/\partial\phi are calculated by the central difference method.

References

  • McMahon and Gallop (2005) H. T. McMahon and J. L. Gallop, Nature 438, 590 (2005).
  • Suetsugu et al. (2014) S. Suetsugu, S. Kurisu,  and T. Takenawa, Physiol. Rev. 94, 1219 (2014).
  • Johannes et al. (2015) L. Johannes, R. G. Parton, P. Bassereau,  and S. Mayor, Nat. Rev. Mol. Cell. Biol. 16, 311 (2015).
  • Brandizzi and Barlowe (2013) F. Brandizzi and C. Barlowe, Nat. Rev. Mol. Cell Biol. 14, 382 (2013).
  • Hurley et al. (2010) J. H. Hurley, E. Boura, L.-A. Carlson,  and B. Różycki, Cell 143, 875 (2010).
  • McMahon and Boucrot (2011) H. T. McMahon and E. Boucrot, Nat. Rev. Mol. Cell. Biol. 12, 517 (2011).
  • Baumgart et al. (2011) T. Baumgart, B. R. Capraro, C. Zhu,  and S. L. Das, Annu. Rev. Phys. Chem. 62, 483 (2011).
  • Has and Das (2021) C. Has and S. L. Das, Biochim. Biophys. Acta 1865, 129971 (2021).
  • Itoh and De Camilli (2006) T. Itoh and P. De Camilli, Biochim. Biophys. Acta 1761, 897 (2006).
  • Masuda and Mochizuki (2010) M. Masuda and N. Mochizuki, Semin. Cell Dev. Biol. 21, 391 (2010).
  • Mim and Unger (2012) C. Mim and V. M. Unger, Trends Biochem. Sci. 37, 526 (2012).
  • Frost et al. (2008) A. Frost, R. Perera, A. Roux, K. Spasov, O. Destaing, E. H. Egelman, P. De Camilli,  and V. M. Unger, Cell 132, 807 (2008).
  • Sorre et al. (2012) B. Sorre, A. Callan-Jones, J. Manzi, B. Goud, J. Prost, P. Bassereau,  and A. Roux, Proc. Natl. Acad. Sci. USA 109, 173 (2012).
  • Zhu et al. (2012) C. Zhu, S. L. Das,  and T. Baumgart, Biophys. J. 102, 1837 (2012).
  • Tanaka-Takiguchi et al. (2013) Y. Tanaka-Takiguchi, T. Itoh, K. Tsujita, S. Yamada, M. Yanagisawa, K. Fujiwara, A. Yamamoto, M. Ichikawa,  and K. Takiguchi, Langmuir 29, 328 (2013).
  • Adam et al. (2015) J. Adam, N. Basnet,  and N. Mizuno, Sci. Rep. 5, 15452 (2015).
  • Prévost et al. (2015) C. Prévost, H. Zhao, J. Manzi, E. Lemichez, P. Lappalainen, A. Callan-Jones,  and P. Bassereau, Nat. Commun. 6, 8529 (2015).
  • Tsai et al. (2021) F.-C. Tsai, M. Simunovic, B. Sorre, A. Bertin, J. Manzi, A. Callan-Jones,  and P. Bassereau, Soft Matter 17, 4254 (2021).
  • Roux et al. (2010) A. Roux, G. Koster, M. Lenz, B. Sorre, J.-B. Manneville, P. Nassoy,  and P. Bassereau, Proc. Natl. Acad. Sci. USA 107, 4141 (2010).
  • Rosholm et al. (2017) K. R. Rosholm, N. Leijnse, A. Mantsiou, V. Tkach, S. L. Pedersen, V. F. Wirth, L. B. Oddershede, K. J. Jensen, K. L. Martinez, N. S. Hatzakis, P. M. Bendix, A. Callan-Jones,  and D. Stamou, Nat. Chem. Biol. 13, 724 (2017).
  • Canham (1970) P. B. Canham, J. Theor. Biol. 26, 61 (1970).
  • Helfrich (1973) W. Helfrich, Z. Naturforsch 28c, 693 (1973).
  • Lipowsky (1992) R. Lipowsky, J. Phys. II France 2, 1825 (1992).
  • Sens (2004) P. Sens, Phys. Rev. Lett. 93, 108103 (2004).
  • Foret (2014) L. Foret, Eur. Phys. J. E 37, 42 (2014).
  • Frey and Schwarz (2020) F. Frey and U. S. Schwarz, Soft Matter 16, 10723 (2020).
  • Tozzi et al. (2019) C. Tozzi, N. Walani,  and M. Arroyo, New J. Phys. 21, 093004 (2019).
  • Noguchi (2021a) H. Noguchi, Phys. Rev. E 104, 014410 (2021a).
  • Goutaland et al. (2021) Q. Goutaland, F. van Wijland, J.-B. Fournier,  and H. Noguchi, Soft Matter 17, 5560 (2021).
  • Noguchi (2021b) H. Noguchi, Soft Matter 17, 10469 (2021b).
  • Gov (2018) N. S. Gov, Phil. Trans. R. Soc. B 373, 20170115 (2018).
  • Wu et al. (2018) Z. Wu, M. Su, C. Tong, M. Wu,  and J. Liu, Nat. Commun. 9, 136 (2018).
  • Tamemoto and Noguchi (2020) N. Tamemoto and H. Noguchi, Sci. Rep. 10, 19582 (2020).
  • Tamemoto and Noguchi (2021) N. Tamemoto and H. Noguchi, Soft Matter 17, 6589 (2021).
  • Fournier (1996) J.-B. Fournier, Phys. Rev. Lett. 76, 4436 (1996).
  • Kabaso et al. (2011) D. Kabaso, E. Gongadze, P. Elter, U. van Rienen, J. Gimsa, V. Kralj-Iglič,  and A. Iglič, Mini Rev. Med. Chem. 11, 272 (2011).
  • Dommersnes and Fournier (1999) P. G. Dommersnes and J.-B. Fournier, Eur. Phys. J. B 12, 9 (1999).
  • Dommersnes and Fournier (2002) P. G. Dommersnes and J.-B. Fournier, Biophys. J. 83, 2898 (2002).
  • Schweitzer and Kozlov (2015) Y. Schweitzer and M. M. Kozlov, PLoS Comput. Biol. 11, e1004054 (2015).
  • Noguchi and Fournier (2017) H. Noguchi and J.-B. Fournier, Soft Matter 13, 4099 (2017).
  • Noguchi (2015) H. Noguchi, J. Chem. Phys. 143, 243109 (2015).
  • Tozzi et al. (2021) C. Tozzi, N. Walani, A.-L. L. Roux, P. Roca-Cusachs,  and M. Arroyo, Soft Matter 17, 3367 (2021).
  • Roux et al. (2021) A.-L. L. Roux, C. Tozzi, N. Walani, X. Quiroga, D. Zalvidea, X. Trepat, M. Staykova, M. Arroyo,  and P. Roca-Cusachs, Nat. Commun. 12, 6550 (2021).
  • Nascimento et al. (2017) E. S. Nascimento, P. Palffy-Muhoray, J. M. Taylor, E. G. Virga,  and X. Zheng, Phys. Rev. E 96, 022704 (2017).
  • Müller et al. (2006) M. Müller, K. Katsov,  and M. Schick, Phys. Rep. 434, 113 (2006).
  • Venturoli et al. (2006) M. Venturoli, M. M. Sperotto, M. Kranenburg,  and B. Smit, Phys. Rep. 437, 1 (2006).
  • Noguchi (2009) H. Noguchi, J. Phys. Soc. Jpn. 78, 041007 (2009).
  • Arkhipov et al. (2008) A. Arkhipov, Y. Yin,  and K. Schulten, Biophys. J. 95, 2806 (2008).
  • Yu and Schulten (2013) H. Yu and K. Schulten, PLoS Comput. Biol. 9, e1002892 (2013).
  • Simunovic et al. (2013) M. Simunovic, A. Srivastava,  and G. A. Voth, Proc. Natl. Acad. Sci. USA 110, 20396 (2013).
  • Gómez-Llobregat et al. (2016) J. Gómez-Llobregat, F. Elías-Wolff,  and M. Lindén, Biophys. J. 110, 197 (2016).
  • Olinger et al. (2016) A. D. Olinger, E. J. Spangler, P. B. S. Kumar,  and M. Laradji, Faraday Discuss. 186, 265 (2016).
  • Takemura et al. (2017) K. Takemura, K. Hanawa-Suetsugu, S. Suetsugu,  and A. Kitao, Sci. Rep. 7, 6808 (2017).
  • Mahmood et al. (2019) M. I. Mahmood, H. Noguchi,  and K. Okazaki, Sci. Rep. 9, 14557 (2019).
  • Ramakrishnan et al. (2013) N. Ramakrishnan, P. B. Sunil Kumar,  and J. H. Ipsen, Biophys. J. 104, 1018 (2013).
  • Behera et al. (2021) A. Behera, G. Kumar, S. A. Akram,  and A. Sain, Soft Matter 17, 7953 (2021).
  • Noguchi (2014) H. Noguchi, EPL 108, 48001 (2014).
  • Noguchi (2016a) H. Noguchi, Sci. Rep. 6, 20935 (2016a).
  • Noguchi (2016b) H. Noguchi, Phys. Rev. E 93, 052404 (2016b).
  • Noguchi (2017) H. Noguchi, Soft Matter 13, 7771 (2017).
  • Noguchi (2019a) H. Noguchi, Sci. Rep. 9, 11721 (2019a).
  • Smith et al. (2004) A.-S. Smith, E. Sackmann,  and U. Seifert, Phys. Rev. Lett. 92, 208101 (2004).
  • Tanemura and Matsumoto (1997) M. Tanemura and T. Matsumoto, Zeit. Krist. 212, 637 (1997).
  • Seifert (1997) U. Seifert, Adv. Phys. 46, 13 (1997).
  • Svetina (2009) S. Svetina, ChemPhysChem 10, 2769 (2009).
  • Shiba and Noguchi (2011) H. Shiba and H. Noguchi, Phys. Rev. E 84, 031926 (2011).
  • Noguchi (2019b) H. Noguchi, J. Chem. Phys. 151, 094903 (2019b).
  • Noguchi (2011) H. Noguchi, J. Chem. Phys. 134, 055101 (2011).
  • Hukushima and Nemoto (1996) K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996).
  • Okamoto (2004) Y. Okamoto, J. Mol. Graph. Model. 22, 425 (2004).