This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Blow-up and lifespan estimate to a nonlinear wave equation in Schwarzschild spacetime

Ning-An Lai
School of Mathematics Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
ninganlai@zjnu.edu.cn. Corresponding author
   Yi Zhou
School of Mathematics Sciences, Fudan University, Shanghai 200433, P. R. China
yizhou@fudan.edu.cn
Abstract

We study the semilinear wave equation with power type nonlinearity and small initial data in Schwarzschild spacetime. If the nonlinear exponent pp satisfies 2p<1+22\leq p<1+\sqrt{2}, we establish the sharp upper bound of lifespan estimate, while for the most delicate critical power p=1+2p=1+\sqrt{2}, we show that the lifespan satisfies

T(ε)exp(Cε(2+2)),T(\varepsilon)\leq\exp\left(C\varepsilon^{-(2+\sqrt{2})}\right),

the optimality of which remains to be proved. The key novelty is that the compact support of the initial data can be close to the event horizon. By combining the global existence result for p>1+2p>1+\sqrt{2} obtained by Lindblad et al.(Math. Ann. 2014), we then give a positive answer to the interesting question posed by Dafermos and Rodnianski(J. Math. Pures Appl. 2005, the end of the first paragraph in page 11511151): p=1+2p=1+\sqrt{2} is exactly the critical power of pp separating stability and blow-up.

Keywords: Semilinear wave equations; blow-up; Schwarzschild spacetime; lifespan; event horizon

2010 MSC: 35L70, 58J45

1 Introduction

Nonlinear wave equations in Schwarzschild spacetime attract more and more attention, since it is natural to generalize the classical results for nonlinear wave equations in flat Minkowski spactime to the black hole spacetime. Schwarzschild metric is the first analytic solution to the vacuum Einstein equation, which was derived by Schwarzschild in 1915. And according to Birkhoff s theorem it is also a unique spherical symmetry solution of the vacuum Einstein equation. The explicit expression of the metric is

gS=F(r)dt2F(r)1dr2r2dω2,\displaystyle g_{S}=F(r)dt^{2}-F(r)^{-1}dr^{2}-r^{2}d\omega^{2}, (1.1)

where F(r)=12MrF(r)=1-\frac{2M}{r}, and MM is the Newtonian mass. Noting that asymptotically rr\rightarrow\infty or M0M\rightarrow 0 the Schwarzschild metric reduces to the Minkowski metric

ds2=dt2dr2r2dω2.ds^{2}=dt^{2}-dr^{2}-r^{2}d\omega^{2}.

The study of classical Cauchy problem to semilinear wave equations in Minkowski spacetime

{uttΔu=|u|p,in [0,T)×𝐑n,u(x,0)=εf(x),ut(x,0)=εg(x),x𝐑n\left\{\begin{aligned} &u_{tt}-\Delta u=|u|^{p},\quad\text{in $[0,T)\times\mathbf{R}^{n}$},\\ &u(x,0)=\varepsilon f(x),\quad u_{t}(x,0)=\varepsilon g(x),\quad x\in\mathbf{R}^{n}\end{aligned}\right. (1.2)

has a long time history, and it has now been determined there exists a critical power pc(n)>1,n2p_{c}(n)>1,n\geq 2, which solves the quadratic equation

(n1)p2(n+1)p2=0.(n-1)p^{2}-(n+1)p-2=0.

Such kind problem is known as Strauss conjecture: for 1<ppc(n)1<p\leq p_{c}(n), the solution will blow up in a finite time, while for p>pc(n)p>p_{c}(n) the solution exists globally in time, see [5, 6, 7, 10, 14, 26, 27, 30, 35] and references therein. It is easy to see that pc(3)=1+2p_{c}(3)=1+\sqrt{2}. If there is no global solution, it is then also interesting to estimate the lifespan(T(ε)T(\varepsilon)) with respect to the small parameter ε\varepsilon. We are now clear that there exist two positive constants cc and CC such that the lifespan satisfies for n2n\geq 2 and max(1,2/(n1))<p<pc(n)\max(1,2/(n-1))<p<p_{c}(n)

cε2p(p1)γ(n,p)T(ε)Cε2p(p1)γ(n,p),\displaystyle c\varepsilon^{\frac{-2p(p-1)}{\gamma(n,p)}}\leq T(\varepsilon)\leq C\varepsilon^{\frac{-2p(p-1)}{\gamma(n,p)}}, (1.3)

where γ(n,p)=2+(n+1)p(n1)p2>0\gamma(n,p)=2+(n+1)p-(n-1)p^{2}>0. For (n,p)=(2,2)(n,p)=(2,2),

{limε0+a(ε)1T(ε)>0,if𝐑2g(x)𝑑x0,limε0+εT(ε)>0,if𝐑2g(x)𝑑x=0,\left\{\begin{array}[]{ll}\exists\lim\limits_{\varepsilon\rightarrow 0^{+}}a(\varepsilon)^{-1}T(\varepsilon)>0,&\mathrm{if}~{}\int_{\mathbf{R}^{2}}g(x)dx\neq 0,\\ \exists\lim\limits_{\varepsilon\rightarrow 0^{+}}\varepsilon T(\varepsilon)>0,&\mathrm{if}~{}\int_{\mathbf{R}^{2}}g(x)dx=0,\end{array}\right. (1.4)

where a(ε)a(\varepsilon) denotes a number satisfying

a2ε2log(1+a)=1.a^{2}\varepsilon^{2}\log(1+a)=1.

For 1<p<21<p<2 and n=2n=2,

{cεp13pT(ε)Cεp13p,if𝐑2g(x)𝑑x0,cε2p(p1)γ(2,p)T(ε)Cε2p(p1)γ(2,p),if𝐑2g(x)𝑑x=0.\left\{\begin{array}[]{ll}c\varepsilon^{-\frac{p-1}{3-p}}\leq T(\varepsilon)\leq C\varepsilon^{-\frac{p-1}{3-p}},&\mathrm{if}~{}\int_{\mathbf{R}^{2}}g(x)dx\neq 0,\\ c\varepsilon^{-\frac{2p(p-1)}{\gamma(2,p)}}\leq T(\varepsilon)\leq C\varepsilon^{-\frac{2p(p-1)}{\gamma(2,p)}},&\mathrm{if}~{}\int_{\mathbf{R}^{2}}g(x)dx=0.\end{array}\right. (1.5)

For the critical case (p=pc(n),n2)(p=p_{c}(n),n\geq 2),

exp(cεp(p1))T(ε)exp(Cεp(p1)).\displaystyle\exp(c\varepsilon^{-p(p-1)})\leq T(\varepsilon)\leq\exp(C\varepsilon^{-p(p-1)}). (1.6)

See [9, 14, 16, 18, 19, 28, 29, 33, 34] and and the introduction in [12].

It is natural to consider the corresponding Cauchy problem in Schwarzschild spacetime

{gSu=|u|p,(t,x)𝐑t+×Σ,u(x,0)=εf(x),ut(x,0)=εg(x),xΣ,\left\{\begin{aligned} &\Box_{g_{S}}u=|u|^{p},\quad(t,x)\in\mathbf{R}_{t}^{+}\times\Sigma,\\ &u(x,0)=\varepsilon f(x),\quad u_{t}(x,0)=\varepsilon g(x),\quad x\in\Sigma,\end{aligned}\right. (1.7)

where gSg_{S} denotes the Schwarzschild metric presented in (1.1) and 𝐑t+×Σ\mathbf{R}_{t}^{+}\times\Sigma is called the exterior of the black hole:

𝐑t+×Σ=𝐑t+×(2M,)×𝕊2.\displaystyle\mathbf{R}_{t}^{+}\times\Sigma=\mathbf{R}_{t}^{+}\times(2M,\infty)\times\mathbb{S}^{2}.

The D’Alembert operator associated with the Schwarzschild metric gg can be written explicitly as

gS=1F(r)(t2Fr2r(r2F)rFr2Δ𝕊2),\displaystyle\Box_{g_{S}}=\frac{1}{F(r)}\Big{(}\partial_{t}^{2}-\frac{F}{r^{2}}\partial_{r}(r^{2}F)\partial_{r}-\frac{F}{r^{2}}\Delta_{\mathbb{S}^{2}}\Big{)}, (1.8)

where Δ𝕊2\Delta_{\mathbb{S}^{2}} denotes the standard Laplace-Beltrami operator on 𝕊2\mathbb{S}^{2}. At first glance, a divergent coefficient(when rr approaches to 2M2M) appears in the operator, which may cause essential difficulty near the event horizon(r=2Mr=2M). The study of power type nonlinear wave equations in Schwarzschild(-like) and Kerr black hole spacetime was initiated by Nicolas [24, 25], in which the global existence results were established for

gu+m2u+λ|u|2u=0,λ>0\Box_{g}u+m^{2}u+\lambda|u|^{2}u=0,~{}~{}~{}\lambda>0

with large initial data, and gg denotes the Schwarzschild-like or Kerr metric. After that, more and more attention is paid to the small data Cauchy problem. Catania and Georgiev [2] first studied the blow-up phenomenon for (1.7). They considered radial solution in the Regge-Wheeler coordinate

r=r+2Mln(r2M),r^{*}=r+2M\ln(r-2M), (1.9)

and proved that the solution will blow up for 1<p<1+21<p<1+\sqrt{2}, by choosing special initial data

f(r)=εχ0(rr0(ε)),g(r)=εχ1(rr0(ε)),f(r^{*})=\varepsilon\chi_{0}(r^{*}-r_{0}^{*}(\varepsilon)),~{}~{}g(r^{*})=\varepsilon\chi_{1}(r^{*}-r_{0}^{*}(\varepsilon)),

where χjC0(𝐑)(j=1,2)\chi_{j}\in C_{0}^{\infty}(\mathbf{R})(j=1,2) satisfy

χj(r)0,r𝐑,\displaystyle\chi_{j}(r^{*})\geq 0,r^{*}\in\mathbf{R},
χj(r)=1,r[R/2,R/2],\displaystyle\chi_{j}(r^{*})=1,r^{*}\in[-R/2,R/2],
suppχj[R,R]\displaystyle supp~{}\chi_{j}\subset[-R,R]

for some positive constant. And

r0(ε)=εθr_{0}^{*}(\varepsilon)=\varepsilon^{-\theta}

for some positive constant θ\theta depending on pp. Noting that rr^{*} varies from -\infty to ++\infty as rr varies from 2M2M to ++\infty, it means that the chosen data above have compact support far away from the event horizon, and the distance depends on the small parameter, see the picture below.

[Uncaptioned image]

Dafermos and Rodnianski [3] first studied the global existence for the corresponding small data problem, in which they showed the radial solution for p>4p>4 in Schwarzschild or more generally a Reissner-Nordström spacetime exists globally in time. Blue and Sterbenz [1] generalized the global existence of general solution for (1.7) to p>3p>3. Marzuola et al [22] proved the global-in-time Strichartz estimates for wave equations in Schwarzschild spacetime and furthermore established global existence for (1.7) with p=5p=5. Lindblad et al [20] then established global existence result for p>1+2p>1+\sqrt{2}, which also holds for Kerr black hole with small angular momentum if the small data have compact support. This result takes a giant step forward for the question posed by Dafermos and Rodnianski [3], and it was generalized by Metcalfe-Wang [23] to the slowly rotating Kerr spacetime with non-compact supported small data. Wang [31] established the following lower bound of the lifespan estimate

T(ε){Cεp(p1)1+2pp2,2p<1+2,exp(Cε22),p=1+2,T(\varepsilon)\geq\left\{\begin{aligned} &C\varepsilon^{-\frac{p(p-1)}{1+2p-p^{2}}},\quad&2\leq p<1+\sqrt{2},\\ &\exp\left(C\varepsilon^{-2\sqrt{2}}\right),&p=1+\sqrt{2},\\ \end{aligned}\right. (1.10)

which also holds for the corresponding problem posed on Kerr spacetime with small angular momentum(aMa\ll M), see [4]. The lower bound for 2p<1+22\leq p<1+\sqrt{2} above coincides with that in (1.3) by setting n=3n=3, while the existence time for the “critical” power p=1+2p=1+\sqrt{2} seems to have a long gap, comparing to the one in (1.6). Very recently, Lin et al. [17] established blow-up result for p[32,2]p\in[\frac{3}{2},2], without assuming that the supports of the initial data should be far away from the black hole. We also refer the reader to [32] for more introduction to the Cauchy problem (1.7).

One should also notice that in [21] Luk first studied the semilinear wave equations with derivative nonlinearity in slowly rotating Kerr spacetimes(aM)(a\ll M), and showed global existence for small data solution assuming the nonlinear term satisfies the null condition. Without null condition assumption, the authors [15] proved that the semilinear problem in Schwarzschild spacetime has no global solution.

The main target of this paper is to show that p=1+2p=1+\sqrt{2} is indeed the critical power to (1.7), thus, to show there is no global solution for 2p1+22\leq p\leq 1+\sqrt{2}, without any assumption on the distance between the event horizon and the support of the initial data. What is more, we will prove the sharpness of the lifespan estimate for 2p<1+22\leq p<1+\sqrt{2}, while for the critical power p=1+2p=1+\sqrt{2}, a possibly sharp lifespan estimate from above will be established, since there is a gap comparing to the second lower bound in (1.10). If we try to get blow-up result for small initial data problem, it always means that the nonlinear term will dominate the linear effect, this is why we may succeed in showing blow-up for relative small power(1<ppc(n)1<p\leq p_{c}(n)) in the flat Minkowski spacetime. However, for our concerned problem (1.7), it is easy to see from the wave operator (1.8) with Schwarzschild metric that a factor asymptotically approaching to 0 as coming close to the event horizon(r=2Mr=2M) will appear. This factor will make competition with the nonlinear term and it may prevent finite time blow-up in some sense. This fact is also the reason why the assumption that the support of the initial data should be far away from the event horizon is needed for small data problem in [2]. We in this paper divide the radial variable into two parts: r<C~0r^{*}<\widetilde{C}_{0} and rC~0r^{*}\geq\widetilde{C}_{0} for some positive constant C~0\widetilde{C}_{0}, which corresponds to 2M<r<2M+C02M<r<2M+C_{0} and r2M+C0r\geq 2M+C_{0} for some other positive constant C0C_{0} respectively. For the latter part, the wave will not touch the event horizon then all the estimates are almost the same as that of the corresponding flat Minkowski case, hence the nonlinear term will have polynomial growth at most. We call this area polynomial zone, which is labelled as ZpolZ_{pol} in the picture below. For the former part 2M<r<2M+C02M<r<2M+C_{0}(r<C~0r^{*}<\widetilde{C}_{0}), the upper bound of the nonlinear term will increase exponentially with respect to tt, which seems impossible to obtain a lifespan estimate of polynomial type. This exponential zone is labelled by ZexpZ_{exp} in the picture below. However, if we use the test function

ψλ(t,r)=eλtϕλ,\psi_{\lambda}(t,r)=e^{-\lambda t}\phi_{\lambda},

where ϕλ\phi_{\lambda} solves for λ>0\lambda>0

1r2r(r(r2M)rϕλ)=λ212Mrϕλ,\displaystyle\frac{1}{r^{2}}\partial_{r}\big{(}r(r-2M)\partial_{r}\phi_{\lambda}\big{)}=\frac{\lambda^{2}}{1-\frac{2M}{r}}\phi_{\lambda}, (1.11)

we then can gain some exponential decay in ZexpZ_{exp} by choosing cut-off functions delicately, and hence the exponential increase mentioned above can be cancelled out. Inspired by this observation, we find that the effect for blow-up caused by ZpolZ_{pol} area will dominate ZexpZ_{exp} zone. We then use a family of solutions to the elliptic equation (1.11) to construct a powerful test function bqb_{q}(see Lemma 6.1) for the critical power p=1+2p=1+\sqrt{2}, and furthermore to establish blow-up result and lifespan estimate for the solution involved in ZpolZ_{pol} zone.

[Uncaptioned image]

We state our main results as

Theorem 1.1.

Let 2p<1+22\leq p<1+\sqrt{2}. Suppose the initial data in (1.7) are nonnegative and do not vanish identically, and the supports of the data satisfy

suppf(x),g(x){2M+R1r2M+R2}×𝕊2\displaystyle supp~{}f(x),g(x)\subset\{2M+R_{1}\leq r\leq 2M+R_{2}\}\times\mathbb{S}^{2} (1.12)

for some positive constants R1<R2R_{1}<R_{2}. Then the solution of problem (1.7) blows up in a finite time. Furthermore, the upper bound of lifespan estimate satisfies

T(ε)Cεp(p1)1+2pp2.\displaystyle T(\varepsilon)\leq C\varepsilon^{-\frac{p(p-1)}{1+2p-p^{2}}}. (1.13)

Hereafter, CC denotes a generic positive constant independent of ε\varepsilon, and the values may change from line to line.

Remark 1.1.

The assumption (1.12) posed on the initial data in our results can be depicted as

[Uncaptioned image]
Remark 1.2.

In rr^{*} coordinate, the support assumption (1.12) implies that there exists some positive constant RR such that

suppf(x),g(x){|r|R}×𝕊2.\displaystyle supp~{}f(x),g(x)\subset\{|r^{*}|\leq R\}\times\mathbb{S}^{2}. (1.14)
Theorem 1.2.

Let p=1+2p=1+\sqrt{2}. Suppose the initial data satisfy the same conditions as in Theorem 1.1. Then the solution of problem (1.7) blows up in a finite time. Furthermore, the upper bound of the lifespan estimate satisfies

T(ε)exp(Cεp(p1))=exp(Cε(2+2)).\displaystyle T(\varepsilon)\leq\exp\left(C\varepsilon^{-p(p-1)}\right)=\exp\left(C\varepsilon^{-(2+\sqrt{2})}\right). (1.15)
Remark 1.3.

In some sense, p=1+2p=1+\sqrt{2} is the “only” power left to be solved, according to the question posed at the end of the first paragraph in page 11511151 in [3]. The above theorem shows that it also belongs to the blow-up case. Actually, we also first show the finite time blow-up result for 2p<1+22\leq p<1+\sqrt{2} when the supports of the initial data are close to the black hole.

Remark 1.4.

Compared to the lower bound of lifespan for p=1+2p=1+\sqrt{2} in (1.10), there still exists a gap between the existence and the blow-up time.

[Uncaptioned image]

We organize the paper as follows. In Section 2, we list the ingredients used to construct the appropriate test function. In Section 3, the upper bound of the spacetime integral of the nonlinear term far away from the event horizon is established, by using the space and time cut-off functions, while in Section 4 the upper bound of the spacetime integral of the nonlinear term in the whole exterior of the black hole is obtained, by using only a time cut-off function. In Section 5, we demonstrate the proof for Theorem 1.1, which corresponds to the upper bound of lifespan estimate for subcritical powers. The main idea is to obtain the optimal lower bounds for the space time integrals of the nonlinear term, then the result follows by combining the upper bounds established in Section 3 and 4. In Section 6, we show the proof for Theorem 1.4, which corresponds to the blow-up and upper bound of lifespan estimate for the critical power p=1+2p=1+\sqrt{2}. The key ingredient is that we use a family of test functions with parameter λ\lambda to construct a new test function with better decay.

2 Preliminaries

For blow-up result, the normal way is to find some appropriate test functions, and then to construct some functional including the solution which approaches to \infty at some time. And hence the upper bound of lifespan estimate follows. Besides, we choose some smooth cut-off functions delicately

η(t)={10t13,0t23,ηT(t)=η(tT),\eta(t)=\left\{\begin{array}[]{ll}1&0\leq t\leq\frac{1}{3},\\ 0&t\geq\frac{2}{3},\\ \end{array}\right.\eta_{T}(t)=\eta\left(\frac{t}{T}\right),
α(r)={0r18,1r14,αT(r)=α(rT)\alpha(r^{*})=\left\{\begin{array}[]{ll}0&-\infty\leq r^{*}\leq\frac{1}{8},\\ 1&r^{*}\geq\frac{1}{4},\\ \end{array}\right.\alpha_{T}(r^{*})=\alpha\left(\frac{r^{*}}{T}\right)

and

χ(θ)={10θ34,0θ56,χT(θ)=χ(θT),\chi(\theta)=\left\{\begin{array}[]{ll}1&0\leq\theta\leq\frac{3}{4},\\ 0&\theta\geq\frac{5}{6},\\ \end{array}\right.\chi_{T}(\theta)=\chi\left(\frac{\theta}{T}\right),

where

T[T0,T(ε)),T0=max{8(4M+e),12(R+R3),16R},T\in[T_{0},T(\varepsilon)),~{}~{}~{}T_{0}=\max\{8(4M+e),12(R+R_{3}),16R\}, (2.1)

with R,R3R,R_{3} the positive constants appearing in (1.14) and (5.1) respectively. The next lemma concerns to our key test function.

Lemma 2.1.

The elliptic equation with 0<λλ00<\lambda\leq\lambda_{0} for some fixed λ0(>max{8Mp(p1),1})\lambda_{0}(>\max\{\frac{8}{Mp(p-1)},1\})

1r2r(r(r2M)rϕλ)=λ212Mrϕλ\displaystyle\frac{1}{r^{2}}\partial_{r}\big{(}r(r-2M)\partial_{r}\phi_{\lambda}\big{)}=\frac{\lambda^{2}}{1-\frac{2M}{r}}\phi_{\lambda} (2.2)

admits a family of nonnegative solutions ϕλ(r)\phi_{\lambda}(r) satisfy

ϕλ(r)1reλr1(1+λ)reλr\displaystyle\phi_{\lambda}(r)\thicksim\frac{1}{r}e^{\lambda r^{*}}\thicksim\frac{1}{(1+\lambda)r}e^{\lambda r^{*}} (2.3)

and

|rϕλ(r)|λr2Meλr.\displaystyle|\partial_{r}\phi_{\lambda}(r)|\lesssim\frac{\lambda}{r-2M}e^{\lambda r^{*}}. (2.4)

Proof. In Lemma 5.4 in [2], it has been proved that the equation

rrφλ2M(12Mr)r3φλ=λ2φλ\partial_{r^{*}r^{*}}\varphi_{\lambda}-\frac{2M\left(1-\frac{2M}{r}\right)}{r^{3}}\varphi_{\lambda}=\lambda^{2}\varphi_{\lambda}

admits a family of nonnegative solutions φλ(r)\varphi_{\lambda}(r^{*}) satisfying

φλ(r)eλr.\varphi_{\lambda}(r^{*})\thicksim e^{\lambda r^{*}}. (2.5)

Set

ϕλ(r)=φλr,\phi_{\lambda}(r)=\frac{\varphi_{\lambda}}{r},

then direct computation implies that ϕλ(r)\phi_{\lambda}(r) solves (2.2), and the asymptotic behavior (2.3) follows from (2.5).

For (2.4), equation (2.2) yields

rϕλ\displaystyle\partial_{r}\phi_{\lambda} =λ2r(r2M)2Mrτ3τ2Mϕλ𝑑τ\displaystyle=\frac{\lambda^{2}}{r(r-2M)}\int_{2M}^{r}\frac{\tau^{3}}{\tau-2M}\phi_{\lambda}d\tau (2.6)
=λ2r(r2M)rτ2ϕλ𝑑s.\displaystyle=\frac{\lambda^{2}}{r(r-2M)}\int_{-\infty}^{r^{*}}\tau^{2}\phi_{\lambda}ds.

We next divide the estimate into two parts. For r0r^{*}\leq 0, we have τ,r1\tau,r\thicksim 1, then plugging (2.3) into (2.6) yields

|rϕλ|\displaystyle|\partial_{r}\phi_{\lambda}| λ2r2Mreλs𝑑s\displaystyle\lesssim\frac{\lambda^{2}}{r-2M}\int_{-\infty}^{r^{*}}e^{\lambda s}ds (2.7)
λr2Meλr.\displaystyle\lesssim\frac{\lambda}{r-2M}e^{\lambda r^{*}}.

For r>0r^{*}>0, we have r1+rr\thicksim 1+r^{*} and then

|rϕλ|\displaystyle|\partial_{r}\phi_{\lambda}| λ2r(r2M)(0eλs𝑑s+0rseλs𝑑s)\displaystyle\lesssim\frac{\lambda^{2}}{r(r-2M)}\left(\int_{-\infty}^{0}e^{\lambda s}ds+\int_{0}^{r^{*}}se^{\lambda s}ds\right) (2.8)
λ2r(r2M)(1λ+1λreλr)\displaystyle\lesssim\frac{\lambda^{2}}{r(r-2M)}\left(\frac{1}{\lambda}+\frac{1}{\lambda}r^{*}e^{\lambda r^{*}}\right)
λr2Meλr,\displaystyle\lesssim\frac{\lambda}{r-2M}e^{\lambda r^{*}},

hence (2.4) follows from (2.7) and (2.8).

3 Upper Bound For The Nonlinear Term Far Away From Event Horizon

Multiplying the equation in (1.7) with ηT2p(t)αT2p(r)r2\eta_{T}^{2p^{\prime}}(t)\alpha_{T}^{2p^{\prime}}(r^{*})r^{2}, and then integrating with respect to ω,r,t\omega,r,t, we get

0T2M𝕊2[r212Mrt2ur(r(r2M)ru)Δ𝕊2u]ηT2pαT2p𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\left[\frac{r^{2}}{1-\frac{2M}{r}}\partial_{t}^{2}u-\partial_{r}\big{(}r(r-2M)\partial_{r}u\big{)}-\Delta_{\mathbb{S}^{2}}u\right]\eta_{T}^{2p^{\prime}}\alpha_{T}^{2p^{\prime}}d\omega drdt (3.1)
=\displaystyle= 0T2M𝕊2|u|pηT2pαT2pr2𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}\eta_{T}^{2p^{\prime}}\alpha_{T}^{2p^{\prime}}r^{2}d\omega drdt
\displaystyle\triangleq F0(T).\displaystyle F_{0}(T).

Due to the assumption (1.14), the support of the solution satisfies

suppu{r||r|t+R}×𝕊2.suppu~{}\subset\Big{\{}r^{*}\Big{|}|r^{*}|\leq t+R\Big{\}}\times\mathbb{S}^{2}. (3.2)

Hence by integration by part we get from (3.1)

F0(T)\displaystyle F_{0}(T)\lesssim 0T2M𝕊2|r212Mrut2ηT2pαT2p|𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\Big{|}\frac{r^{2}}{1-\frac{2M}{r}}u\partial_{t}^{2}\eta_{T}^{2p^{\prime}}\alpha_{T}^{2p^{\prime}}\Big{|}d\omega drdt (3.3)
+0T2M𝕊2|uηT2p(2r2M)rαT2p|𝑑ω𝑑r𝑑t\displaystyle+\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\big{|}u\eta_{T}^{2p^{\prime}}(2r-2M)\partial_{r}\alpha_{T}^{2p^{\prime}}\big{|}d\omega drdt
+0T2M𝕊2|uηT2p(r22Mr)r2αT2p|𝑑ω𝑑r𝑑t\displaystyle+\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\big{|}u\eta_{T}^{2p^{\prime}}(r^{2}-2Mr)\partial_{r}^{2}\alpha_{T}^{2p^{\prime}}\big{|}d\omega drdt
\displaystyle\triangleq I1+I2+I3.\displaystyle I_{1}+I_{2}+I_{3}.

Since

|t2ηT2p|T2ηT2p2,|\partial_{t}^{2}\eta_{T}^{2p^{\prime}}|\lesssim T^{-2}\eta_{T}^{2p^{\prime}-2},

and if rT84M+er^{*}\geq\frac{T}{8}\geq 4M+e, then

r2M+e,rr,r\geq 2M+e,~{}~{}r^{*}\thicksim r,

and hence

rr2MC,\frac{r}{r-2M}\thicksim C,

we may estimate I1I_{1} by Hölder inequality

0T2M𝕊2|r212Mrut2ηT2pαT2p|𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\Big{|}\frac{r^{2}}{1-\frac{2M}{r}}u\partial_{t}^{2}\eta_{T}^{2p^{\prime}}\alpha_{T}^{2p^{\prime}}\Big{|}d\omega drdt (3.4)
\displaystyle\lesssim T2F01p(T)(T32T3rT8𝕊2r2(rr2M)p𝑑ω𝑑r𝑑t)1p\displaystyle T^{-2}F_{0}^{\frac{1}{p}}(T)\left(\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{r^{*}\geq\frac{T}{8}}\int_{\mathbb{S}^{2}}r^{2}\big{(}\frac{r}{r-2M}\big{)}^{p^{\prime}}d\omega drdt\right)^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim T2F01p(T)(T32T34M+et+R𝕊2r2(rr2M)pr2Mr𝑑ω𝑑r𝑑t)1p\displaystyle T^{-2}F_{0}^{\frac{1}{p}}(T)\left(\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{4M+e}^{t+R}\int_{\mathbb{S}^{2}}r^{2}\big{(}\frac{r}{r-2M}\big{)}^{p^{\prime}}\frac{r-2M}{r}d\omega dr^{*}dt\right)^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim T2F01p(T)(T32T34M+et+R(r)2𝑑r𝑑t)1p\displaystyle T^{-2}F_{0}^{\frac{1}{p}}(T)\left(\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{4M+e}^{t+R}(r^{*})^{2}dr^{*}dt\right)^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim T4p2F01p(T).\displaystyle T^{\frac{4}{p^{\prime}}-2}F_{0}^{\frac{1}{p}}(T).

For r4M+er^{*}\geq 4M+e, it has

rMrr,r-M\thicksim r\thicksim r^{*},

then I2I_{2} can be estimated as

0T2M𝕊2|uηT2p(2r2M)rαT2p|𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\big{|}u\eta_{T}^{2p^{\prime}}(2r-2M)\partial_{r}\alpha_{T}^{2p^{\prime}}\big{|}d\omega drdt (3.5)
\displaystyle\lesssim T1F01p(T)(0TrT8𝕊2r2p1rp𝑑ω𝑑r𝑑t)1p\displaystyle T^{-1}F_{0}^{\frac{1}{p}}(T)\left(\int_{0}^{T}\int_{r^{*}\geq\frac{T}{8}}\int_{\mathbb{S}^{2}}r^{-\frac{2}{p-1}}r^{p^{\prime}}d\omega drdt\right)^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim T1F01p(T)(0T4M+et+R(r)p2p1𝑑ω𝑑r𝑑t)1p\displaystyle T^{-1}F_{0}^{\frac{1}{p}}(T)\left(\int_{0}^{T}\int_{4M+e}^{t+R}(r^{*})^{\frac{p-2}{p-1}}d\omega dr^{*}dt\right)^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim T4p2F01p(T),\displaystyle T^{\frac{4}{p^{\prime}}-2}F_{0}^{\frac{1}{p}}(T),

and we can get the similar estimate for I3I_{3}

0T2M𝕊2|uηT2p(r22Mr)r2αT2p|𝑑ω𝑑r𝑑tT4p2F01p(T).\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\big{|}u\eta_{T}^{2p^{\prime}}(r^{2}-2Mr)\partial_{r}^{2}\alpha_{T}^{2p^{\prime}}\big{|}d\omega drdt\lesssim T^{\frac{4}{p^{\prime}}-2}F_{0}^{\frac{1}{p}}(T). (3.6)

Since it also holds

r2Mrr,forr>4M+e,r-2M\thicksim r\thicksim r^{*},~{}~{}for~{}r^{*}>4M+e,

we then get the upper bound for F0(T)F_{0}(T) by combining (3.3), (3.4), (3.5) and (3.6)

F0(T)T42p.\displaystyle F_{0}(T)\lesssim T^{4-2p^{\prime}}. (3.7)

4 Upper Bound For The Nonlinear Term Outside The Black Hole

Comparing to the estimate of F0(T)F_{0}(T), we have no space cut-off for F1(T)F_{1}(T), so we have to complete the estimate by dividing the radial space variable into two cases: r4M+er^{*}\geq 4M+e and r4M+er^{*}\leq 4M+e. This time we multiply the equation in (1.7) with ηT2pr2\eta_{T}^{2p^{\prime}}r^{2} to get

0T2M𝕊2[r212Mrt2ur(r(r2M)ru)Δ𝕊2u]ηT2p𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\left[\frac{r^{2}}{1-\frac{2M}{r}}\partial_{t}^{2}u-\partial_{r}\big{(}r(r-2M)\partial_{r}u\big{)}-\Delta_{\mathbb{S}^{2}}u\right]\eta_{T}^{2p^{\prime}}d\omega drdt (4.1)
=\displaystyle= 0T2M𝕊2|u|pηT2pr2𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}\eta_{T}^{2p^{\prime}}r^{2}d\omega drdt
\displaystyle\triangleq F1(T).\displaystyle F_{1}(T).

Again by integration by parts and Hölder inequality, we have

F1(T)\displaystyle F_{1}(T)\leq 0T2M𝕊2r212Mrut2ηT2pdωdrdt\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\frac{r^{2}}{1-\frac{2M}{r}}u\partial_{t}^{2}\eta_{T}^{2p^{\prime}}d\omega drdt (4.2)
\displaystyle\lesssim T2F11p(T)(T32T3|r|t+R𝕊2r2(rr2M)p𝑑ω𝑑r𝑑t)1p\displaystyle T^{-2}F_{1}^{\frac{1}{p}}(T)\left(\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{|r^{*}|\leq t+R}\int_{\mathbb{S}^{2}}r^{2}\left(\frac{r}{r-2M}\right)^{p^{\prime}}d\omega drdt\right)^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim T2F11p(T)[T32T34M+et+Rr2(rr2M)pr2Mrdrdt\displaystyle T^{-2}F_{1}^{\frac{1}{p}}(T)\Bigg{[}\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{4M+e}^{t+R}r^{2}\left(\frac{r}{r-2M}\right)^{p^{\prime}}\frac{r-2M}{r}dr^{*}dt
+T32T3tR4M+er2(rr2M)pr2Mrdrdt]1p\displaystyle+\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{-t-R}^{4M+e}r^{2}\left(\frac{r}{r-2M}\right)^{p^{\prime}}\frac{r-2M}{r}dr^{*}dt\Bigg{]}^{\frac{1}{p^{\prime}}}
\displaystyle\triangleq T2F11p(T)(I4+I5)1p.\displaystyle T^{-2}F_{1}^{\frac{1}{p}}(T)(I_{4}+I_{5})^{\frac{1}{p^{\prime}}}.

We may control I4I_{4} in the similar way as that of I1I_{1}, thus

I4T4.\displaystyle I_{4}\lesssim T^{4}. (4.3)

But for I5I_{5}, since

r4M+e2Mr2M+e,r^{*}\leq 4M+e\Leftrightarrow 2M\leq r\leq 2M+e,

and hence

r2MerC2Mer2M,\displaystyle r-2M\sim e^{\frac{r^{*}-C}{2M}}\thicksim e^{\frac{r^{*}}{2M}}, (4.4)

we then have

I5=\displaystyle I_{5}= T32T3tR4M+er2(rr2M)pr2Mr𝑑r𝑑t\displaystyle\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{-t-R}^{4M+e}r^{2}\left(\frac{r}{r-2M}\right)^{p^{\prime}}\frac{r-2M}{r}dr^{*}dt (4.5)
\displaystyle\lesssim T32T3tR4M+ee1p1r2M𝑑r𝑑t\displaystyle\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{-t-R}^{4M+e}e^{-\frac{1}{p-1}\frac{r^{*}}{2M}}dr^{*}dt
\displaystyle\lesssim T32T3et2M(p1)𝑑t\displaystyle\int_{\frac{T}{3}}^{\frac{2T}{3}}e^{\frac{t}{2M(p-1)}}dt
\displaystyle\lesssim eT3M(p1).\displaystyle e^{\frac{T}{3M(p-1)}}.

By combining (4.2), (4.3) and (4.5) we come to

F1\displaystyle F_{1}\lesssim T42p+T2peT3M(p1)\displaystyle T^{4-2p^{\prime}}+T^{-2p^{\prime}}e^{\frac{T}{3M(p-1)}} (4.6)
\displaystyle\lesssim T2peT3M(p1).\displaystyle T^{-2p^{\prime}}e^{\frac{T}{3M(p-1)}}.

5 Proof For Theorem 1.1

In order to prove Theorem 1.1, we use

Φλ(t,r)=ηT2p(t)χT2p(tr+R3)eλtϕλ(r)r2\Phi_{\lambda}(t,r)=\eta_{T}^{2p^{\prime}}(t)\chi_{T}^{2p^{\prime}}(t-r^{*}+R_{3})e^{-\lambda t}\phi_{\lambda}(r)r^{2} (5.1)

as the test function, where R3R_{3} is a positive constant independent of ε\varepsilon. Also, we can choose R3R_{3} and TT(large enough) such that

supp{χT(R3r)=1}supp(f,g)=supp(f,g),\displaystyle supp~{}\{\chi_{T}(R_{3}-r^{*})=1\}\cap supp~{}(f,g)=supp~{}(f,g), (5.2)
supp{tχT(R3r)}supp(f,g)=.\displaystyle supp~{}\{\partial_{t}\chi_{T}(R_{3}-r^{*})\}\cap supp~{}(f,g)=\varnothing.

Multiplying the equation in (1.7) with Φλ(t,r)\Phi_{\lambda}(t,r) and making integration by parts, one has

0T2M𝕊2t(r212MrtuηT2pχT2peλtϕλ)dωdrdt\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\partial_{t}\left(\frac{r^{2}}{1-\frac{2M}{r}}\partial_{t}u\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}}e^{-\lambda t}\phi_{\lambda}\right)d\omega drdt (5.3)
0T2M𝕊2t[r212Mru(ηT2pχT2peλtϕλ)t]dωdrdt\displaystyle-\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\partial_{t}\left[\frac{r^{2}}{1-\frac{2M}{r}}u(\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}}e^{-\lambda t}\phi_{\lambda})_{t}\right]d\omega drdt
+0T2M𝕊2r212Mrut2(ηT2pχT2peλtϕλ)dωdrdt\displaystyle+\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\frac{r^{2}}{1-\frac{2M}{r}}u\partial_{t}^{2}(\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}}e^{-\lambda t}\phi_{\lambda})d\omega drdt
0T2M𝕊2ur[r(r2M)r(ηT2pχT2peλtϕλ)]dωdrdt\displaystyle-\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}u\partial_{r}\left[r(r-2M)\partial_{r}(\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}}e^{-\lambda t}\phi_{\lambda})\right]d\omega drdt
=\displaystyle= 0T2M𝕊2|u|pηT2pχT2peλtϕλr2𝑑ω𝑑r𝑑t,\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}}e^{-\lambda t}\phi_{\lambda}r^{2}d\omega drdt,

which implies according to the support assumption (5.2) that

C1ε\displaystyle C_{1}\varepsilon (5.4)
\displaystyle\leq 0T2M𝕊2r212Mru(t2(ηT2pχT2p)eλtϕλ2λtηT2pχT2peλtϕλ)𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\frac{r^{2}}{1-\frac{2M}{r}}u\Big{(}\partial_{t}^{2}(\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}})e^{-\lambda t}\phi_{\lambda}-2\lambda\partial_{t}\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}}e^{-\lambda t}\phi_{\lambda}\Big{)}d\omega drdt
2λ0T2M𝕊2r212MruηT2ptχT2peλtϕλdωdrdt\displaystyle-2\lambda\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\frac{r^{2}}{1-\frac{2M}{r}}u\eta_{T}^{2p^{\prime}}\partial_{t}\chi_{T}^{2p^{\prime}}e^{-\lambda t}\phi_{\lambda}d\omega drdt
0T2M𝕊2u(2r(r2M)ηT2prχT2peλtrϕλ\displaystyle-\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}u\Big{(}2r(r-2M)\eta_{T}^{2p^{\prime}}\partial_{r}\chi_{T}^{2p^{\prime}}e^{-\lambda t}\partial_{r}\phi_{\lambda}
+r(r2M)ηT2prrχT2peλtϕλ+2(rM)ηT2prχT2peλtϕλ)dωdrdt\displaystyle+r(r-2M)\eta_{T}^{2p^{\prime}}\partial_{rr}\chi_{T}^{2p^{\prime}}e^{-\lambda t}\phi_{\lambda}+2(r-M)\eta_{T}^{2p^{\prime}}\partial_{r}\chi_{T}^{2p^{\prime}}e^{-\lambda t}\phi_{\lambda}\Big{)}d\omega drdt
\displaystyle\triangleq I6+I7+I8+I9+I10+I11,\displaystyle I_{6}+I_{7}+I_{8}+I_{9}+I_{10}+I_{11},

where

C1=2M𝕊2r212Mr(λf(x)+g(x))ϕλ(r)𝑑ω𝑑r𝑑t.C_{1}=\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\frac{r^{2}}{1-\frac{2M}{r}}\big{(}\lambda f(x)+g(x)\big{)}\phi_{\lambda}(r)d\omega drdt.

For the terms I6I11I_{6}-I_{11}, the key point is that each of them contains at least one derivative over one of the cut-off functions, thanks to the equation (2.2) in Lemma 2.1. We estimate I7I_{7} first.

I7\displaystyle I_{7}\triangleq 2λ0T2M𝕊2r212MrutηT2pχT2peλtϕλdωdrdt\displaystyle-2\lambda\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\frac{r^{2}}{1-\frac{2M}{r}}u\partial_{t}\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}}e^{-\lambda t}\phi_{\lambda}d\omega drdt (5.5)
\displaystyle\lesssim T1[0T2M𝕊2r212Mr|uηT2p1ηTχT2pαT2p|eλtϕλdωdrdt\displaystyle T^{-1}\Big{[}\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\frac{r^{2}}{1-\frac{2M}{r}}\big{|}u\eta_{T}^{2p^{\prime}-1}\eta_{T}{{}^{\prime}}\chi_{T}^{2p^{\prime}}\alpha_{T}^{2p^{\prime}}\big{|}e^{-\lambda t}\phi_{\lambda}d\omega drdt
+0T2M𝕊2r212Mr|uηT2p1ηTχT2p(1αT2p)|eλtϕλdωdrdt]\displaystyle+\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\frac{r^{2}}{1-\frac{2M}{r}}\big{|}u\eta_{T}^{2p^{\prime}-1}\eta_{T}{{}^{\prime}}\chi_{T}^{2p^{\prime}}(1-\alpha_{T}^{2p^{\prime}})\big{|}e^{-\lambda t}\phi_{\lambda}d\omega drdt\Big{]}
\displaystyle\triangleq T1(I71+I72),\displaystyle T^{-1}({I_{7}}_{1}+{I_{7}}_{2}),

where I71I_{71} can be estimated by F0(T)F_{0}(T)

I71\displaystyle I_{71}\triangleq 0T2M𝕊2r212Mr|uηT2p1ηTχT2pαT2p|eλtϕλ𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\frac{r^{2}}{1-\frac{2M}{r}}\big{|}u\eta_{T}^{2p^{\prime}-1}\eta_{T}{{}^{\prime}}\chi_{T}^{2p^{\prime}}\alpha_{T}^{2p^{\prime}}\big{|}e^{-\lambda t}\phi_{\lambda}d\omega drdt (5.6)
\displaystyle\lesssim F0(T)1p(T32T34M+et+Rr2(12Mr)1prpeλp(tr)𝑑r𝑑t)1p\displaystyle F_{0}(T)^{\frac{1}{p}}\left(\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{4M+e}^{t+R}r^{2}\left(1-\frac{2M}{r}\right)^{1-p^{\prime}}r^{-p^{\prime}}e^{-\lambda p^{\prime}(t-r^{*})}dr^{*}dt\right)^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim F0(T)1p(T32T34M+et+R(r)2peλp(tr)𝑑r𝑑t)1p\displaystyle F_{0}(T)^{\frac{1}{p}}\left(\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{4M+e}^{t+R}(r^{*})^{2-p^{\prime}}e^{-\lambda p^{\prime}(t-r^{*})}dr^{*}dt\right)^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim F0(T)1p(T3p)1p,\displaystyle F_{0}(T)^{\frac{1}{p}}(T^{3-p^{\prime}})^{\frac{1}{p^{\prime}}},

where an elementary integral estimate (5.7) below has been used.

Lemma 5.1 ([15], Lemma 3.3).

Given any α0,β>0\alpha\geq 0,\beta>0 and L>0L>0, there exists a positive constant CC such that

0<st+L(1+s)αeβ(ts)𝑑sC(t+L)α.\displaystyle\int_{0<s\leq t+L}(1+s)^{\alpha}e^{-\beta(t-s)}ds\leq C(t+L)^{\alpha}. (5.7)

Proof. For convenience, we outline the proof. Dividing the integral in (5.7) into two parts

0<st+L(1+s)αeβ(ts)𝑑s\displaystyle\int_{0<s\leq t+L}(1+s)^{\alpha}e^{-\beta(t-s)}ds (5.8)
=\displaystyle= 0t+L2(1+s)αeβ(ts)𝑑s+t+L2t+L(1+s)αeβ(ts)𝑑s\displaystyle\int_{0}^{\frac{t+L}{2}}(1+s)^{\alpha}e^{-\beta(t-s)}ds+\int_{\frac{t+L}{2}}^{t+L}(1+s)^{\alpha}e^{-\beta(t-s)}ds
\displaystyle\leq CeβtL20t+L2(1+s)α𝑑s+C(t+L)αt+L2t+Leβ(ts)𝑑s\displaystyle Ce^{-\beta\cdot\frac{t-L}{2}}\int_{0}^{\frac{t+L}{2}}(1+s)^{\alpha}ds+C(t+L)^{\alpha}\int_{\frac{t+L}{2}}^{t+L}e^{-\beta(t-s)}ds
\displaystyle\leq C(t+L)α,\displaystyle C(t+L)^{\alpha},

which is the desired inequality (5.7).

We control I72I_{72} by dividing the integral into two parts with the assumption λ12Mp\lambda\geq\frac{1}{2Mp}

I72\displaystyle I_{72}\triangleq T3T2M𝕊2r212Mr|uηT2p1ηTχT2p(1αT2p)|eλtϕλ𝑑ω𝑑r𝑑t\displaystyle\int_{\frac{T}{3}}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\frac{r^{2}}{1-\frac{2M}{r}}\big{|}u\eta_{T}^{2p^{\prime}-1}\eta_{T}{{}^{\prime}}\chi_{T}^{2p^{\prime}}(1-\alpha_{T}^{2p^{\prime}})\big{|}e^{-\lambda t}\phi_{\lambda}d\omega drdt (5.9)
\displaystyle\lesssim F1(T)1p[T32T34M+eT4r2(12Mr)1prpeλp(tr)drdt\displaystyle F_{1}(T)^{\frac{1}{p}}\Bigg{[}\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{4M+e}^{\frac{T}{4}}r^{2}\left(1-\frac{2M}{r}\right)^{1-p^{\prime}}r^{-p^{\prime}}e^{-\lambda p^{\prime}(t-r^{*})}dr^{*}dt
+T32T3t14M+er2(12Mr)1prpeλp(tr)drdt]1p\displaystyle+\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{-t-1}^{4M+e}r^{2}\left(1-\frac{2M}{r}\right)^{1-p^{\prime}}r^{-p^{\prime}}e^{-\lambda p^{\prime}(t-r^{*})}dr^{*}dt\Bigg{]}^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim F1(T)1p[T32T34M+eT4(r)2prpeλp(tr)drdt\displaystyle F_{1}(T)^{\frac{1}{p}}\Bigg{[}\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{4M+e}^{\frac{T}{4}}(r^{*})^{2-p^{\prime}}r^{-p^{\prime}}e^{-\lambda p^{\prime}(t-r^{*})}dr^{*}dt
+T32T3tR4M+eer2M(1p)eλp(tr)drdt]1p\displaystyle+\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{-t-R}^{4M+e}e^{\frac{r^{*}}{2M}(1-p^{\prime})}e^{-\lambda p^{\prime}(t-r^{*})}dr^{*}dt\Bigg{]}^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim F1(T)1p[T32T3T2peλptdt4M+eT4eλprdr\displaystyle F_{1}(T)^{\frac{1}{p}}\Bigg{[}\int_{\frac{T}{3}}^{\frac{2T}{3}}T^{2-p^{\prime}}e^{-\lambda p^{\prime}t}dt\int_{4M+e}^{\frac{T}{4}}e^{\lambda p^{\prime}r^{*}}dr^{*}
+T32T3eλptdttR4M+1er2M(p1)(2Mλp1)dr]1p\displaystyle+\int_{\frac{T}{3}}^{\frac{2T}{3}}e^{-\lambda p^{\prime}t}dt\int_{-t-R}^{4M+1}e^{\frac{r^{*}}{2M(p-1)}(2M\lambda p-1)}dr^{*}\Bigg{]}^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim F1(T)1p(T3peλpT12+T2eλpT3)1p.\displaystyle F_{1}(T)^{\frac{1}{p}}\left(T^{3-p^{\prime}}e^{-\frac{\lambda p^{\prime}T}{12}}+T^{2}e^{-\frac{\lambda p^{\prime}T}{3}}\right)^{\frac{1}{p^{\prime}}}.

We next estimate I9I_{9}. Since in the support of rχT(tr+R3)\partial_{r}\chi_{T}(t-r^{*}+R_{3}) one has

3T4tr+R35T6,\frac{3T}{4}\leq t-r^{*}+R_{3}\leq\frac{5T}{6},

which implies tT3t\geq\frac{T}{3} by combining (2.1) and (3.2), and hence

I9\displaystyle I_{9}\triangleq 0T2M𝕊2u2r(r2M)ηT2prχT2peλtrϕλdωdrdt\displaystyle-\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}u2r(r-2M)\eta_{T}^{2p^{\prime}}\partial_{r}\chi_{T}^{2p^{\prime}}e^{-\lambda t}\partial_{r}\phi_{\lambda}d\omega drdt (5.10)
\displaystyle\lesssim T1[0T2M𝕊2|ur(r2M)ηT2pχT2p1rχTαT2p|eλtrϕλdωdrdt\displaystyle T^{-1}\Big{[}\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\big{|}ur(r-2M)\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}-1}\partial_{r}\chi_{T}\alpha_{T}^{2p^{\prime}}\big{|}e^{-\lambda t}\partial_{r}\phi_{\lambda}d\omega drdt
+0T2M𝕊2|ur(r2M)ηT2pχT2p1rχT(1αT2p)|eλtrϕλdωdrdt]\displaystyle+\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\big{|}ur(r-2M)\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}-1}\partial_{r}\chi_{T}(1-\alpha_{T}^{2p^{\prime}})\big{|}e^{-\lambda t}\partial_{r}\phi_{\lambda}d\omega drdt\Big{]}
\displaystyle\triangleq T1(I91+I92),\displaystyle T^{-1}({I_{9}}_{1}+{I_{9}}_{2}),

where I91I_{91} can be controlled by F0(T)F_{0}(T)

I91\displaystyle I_{91}\triangleq T3T2M𝕊2|ur(r2M)ηT2pχT2p1rχTαT2p|eλtrϕλdωdrdt\displaystyle\int_{\frac{T}{3}}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\big{|}ur(r-2M)\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}-1}\partial_{r}\chi_{T}\alpha_{T}^{2p^{\prime}}\big{|}e^{-\lambda t}\partial_{r}\phi_{\lambda}d\omega drdt (5.11)
\displaystyle\lesssim T3T2M𝕊2|ur2ηT2pχT2p1αT2p|eλtrϕλdωdrdt\displaystyle\int_{\frac{T}{3}}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\big{|}ur^{2}\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}-1}\alpha_{T}^{2p^{\prime}}\big{|}e^{-\lambda t}\partial_{r}\phi_{\lambda}d\omega drdt
\displaystyle\lesssim F01p(T)(T32T34M+et+Rr2(r2M)peλp(tr)r2Mr𝑑r𝑑t)1p\displaystyle F_{0}^{\frac{1}{p}}(T)\left(\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{4M+e}^{t+R}r^{2}(r-2M)^{-p^{\prime}}e^{-\lambda p^{\prime}(t-r^{*})}\frac{r-2M}{r}dr^{*}dt\right)^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim F01p(T)(T32T34M+et+R(r)2peλp(tr)𝑑r𝑑t)1p\displaystyle F_{0}^{\frac{1}{p}}(T)\left(\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{4M+e}^{t+R}(r^{*})^{2-p^{\prime}}e^{-\lambda p^{\prime}(t-r^{*})}dr^{*}dt\right)^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim F01p(T)(T3p)1p,\displaystyle F_{0}^{\frac{1}{p}}(T)(T^{3-p^{\prime}})^{\frac{1}{p^{\prime}}},

while I92I_{92} can be estimated by F1(T)F_{1}(T) as (5.9)

I92\displaystyle I_{92}\triangleq 0T2M𝕊2|ur(r2M)ηT2pχT2p1rχT(1αT2p)|eλtrϕλdωdrdt\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\big{|}ur(r-2M)\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}-1}\partial_{r}\chi_{T}(1-\alpha_{T}^{2p^{\prime}})\big{|}e^{-\lambda t}\partial_{r}\phi_{\lambda}d\omega drdt (5.12)
\displaystyle\lesssim 0T2M𝕊2|ur2ηT2pχT2p1αT2p|eλtrϕλdωdrdt\displaystyle\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\big{|}ur^{2}\eta_{T}^{2p^{\prime}}\chi_{T}^{2p^{\prime}-1}\alpha_{T}^{2p^{\prime}}\big{|}e^{-\lambda t}\partial_{r}\phi_{\lambda}d\omega drdt
\displaystyle\lesssim F11p(T)(T32T34M+eT4r2(r2M)peλp(tr)r2Mrdrdt\displaystyle F_{1}^{\frac{1}{p}}(T)\Big{(}\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{4M+e}^{\frac{T}{4}}r^{2}(r-2M)^{-p^{\prime}}e^{-\lambda p^{\prime}(t-r^{*})}\frac{r-2M}{r}dr^{*}dt
+T32T3tR4M+er2(r2M)peλp(tr)r2Mrdrdt)1p\displaystyle+\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{-t-R}^{4M+e}r^{2}(r-2M)^{-p^{\prime}}e^{-\lambda p^{\prime}(t-r^{*})}\frac{r-2M}{r}dr^{*}dt\Big{)}^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim F1(T)1p(T32T3T2peλptdt4M+eT4eλprdr\displaystyle F_{1}(T)^{\frac{1}{p}}\Big{(}\int_{\frac{T}{3}}^{\frac{2T}{3}}T^{2-p^{\prime}}e^{-\lambda p^{\prime}t}dt\int_{4M+e}^{\frac{T}{4}}e^{\lambda p^{\prime}r^{*}}dr^{*}
+T32T3eλptdttR4M+1er2M(p1)(2Mλp1)dr)1p\displaystyle+\int_{\frac{T}{3}}^{\frac{2T}{3}}e^{-\lambda p^{\prime}t}dt\int_{-t-R}^{4M+1}e^{\frac{r^{*}}{2M(p-1)}(2M\lambda p-1)}dr^{*}\Big{)}^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim F1(T)1p(T3peλpT12+T2eλpT3)1p.\displaystyle F_{1}(T)^{\frac{1}{p}}\left(T^{3-p^{\prime}}e^{-\frac{\lambda p^{\prime}T}{12}}+T^{2}e^{-\frac{\lambda p^{\prime}T}{3}}\right)^{\frac{1}{p^{\prime}}}.

It is easy to see that I6I_{6} and I8I_{8} can be estimated in the similar way as that of I7I_{7}, while the terms I10I_{10} and I11I_{11} can be done in the way as that of I9I_{9}, and hence we finally come to by combining (3.7) and (4.6)

ε\displaystyle\varepsilon\lesssim F01pT1(T3p)1p+F11pT1(T3peλpT12+T2eλpT3)1p\displaystyle F_{0}^{\frac{1}{p}}T^{-1}(T^{3-p^{\prime}})^{\frac{1}{p^{\prime}}}+F_{1}^{\frac{1}{p}}T^{-1}\left(T^{3-p^{\prime}}e^{-\frac{\lambda p^{\prime}T}{12}}+T^{2}e^{-\frac{\lambda p^{\prime}T}{3}}\right)^{\frac{1}{p^{\prime}}} (5.13)
\displaystyle\lesssim Tp22p1p(p1)+T2pp+3p1eT(13Mp(p1)λ12)\displaystyle T^{\frac{p^{2}-2p-1}{p(p-1)}}+T^{-\frac{2p^{\prime}}{p}+\frac{3}{p^{\prime}}-1}e^{T\left(\frac{1}{3Mp(p-1)}-\frac{\lambda}{12}\right)}
\displaystyle\lesssim Tp22p1p(p1),\displaystyle T^{\frac{p^{2}-2p-1}{p(p-1)}},

if we choose λ\lambda large enough such that

λ>4Mp(p1).\lambda>\frac{4}{Mp(p-1)}. (5.14)

The lifespan estimate (1.13) comes from (5.13).

6 Proof For Theorem 1.2

Set

λ=8Mp(p1)\lambda=\frac{8}{Mp(p-1)}

in the proof in last section, then from the first inequality in (5.13), there exists a positive constant C1C_{1} depending on p,Mp,M such that

C1ε\displaystyle C_{1}\varepsilon F01pT1(T3p)1p+F11pT2+3peλT12\displaystyle\leq F_{0}^{\frac{1}{p}}T^{-1}(T^{3-p^{\prime}})^{\frac{1}{p^{\prime}}}+F_{1}^{\frac{1}{p}}T^{-2+\frac{3}{p^{\prime}}}e^{-\frac{\lambda T}{12}} (6.1)
F01pT1(T3p)1p+F11pT2+3peT3Mp(p1).\displaystyle\leq F_{0}^{\frac{1}{p}}T^{-1}(T^{3-p^{\prime}})^{\frac{1}{p^{\prime}}}+F_{1}^{\frac{1}{p}}T^{-2+\frac{3}{p^{\prime}}}e^{-\frac{T}{3Mp(p-1)}}.

We claim that the second term in the right hand side of (6.1) should be less than C1ε2\frac{C_{1}\varepsilon}{2}. If not, we than have by combining (4.6)

C1ε2\displaystyle\frac{C_{1}\varepsilon}{2} T442,\displaystyle\lesssim T^{4-4\sqrt{2}}, (6.2)

where we plug into the value p=1+2p=1+\sqrt{2}. This fact implies that the lifespan for p=1+2p=1+\sqrt{2} is at least of polynomial type, which contradict the exponential lower bound established by [31], see (1.10) above. This claim further implies that

F01pT1(T3p)1pC1ε2,\displaystyle F_{0}^{\frac{1}{p}}T^{-1}(T^{3-p^{\prime}})^{\frac{1}{p^{\prime}}}\geq\frac{C_{1}\varepsilon}{2}, (6.3)

which yields

F0εpT3p.\displaystyle F_{0}\gtrsim\varepsilon^{p}T^{3-p}. (6.4)

Actually, from the process to get (5.13), we may get a more precise lower bound than (6.4), thus

F¯0T32T32M𝕊2|u|pηT2pαT2pr2𝑑ω𝑑r𝑑tεpT3p,\displaystyle\overline{F}_{0}\triangleq\int_{\frac{T}{3}}^{\frac{2T}{3}}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}\eta_{T}^{2p^{\prime}}\alpha_{T}^{2p^{\prime}}r^{2}d\omega drdt\gtrsim\varepsilon^{p}T^{3-p}, (6.5)

which definitely implies

F~0T162T32M𝕊2|u|pηT2pαT2pr2𝑑ω𝑑r𝑑tεpT3p.\displaystyle\widetilde{F}_{0}\triangleq\int_{\frac{T}{16}}^{\frac{2T}{3}}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}\eta_{T}^{2p^{\prime}}\alpha_{T}^{2p^{\prime}}r^{2}d\omega drdt\gtrsim\varepsilon^{p}T^{3-p}. (6.6)

In the following, we are going to use a similar method employed in [11, 12].

Lemma 6.1.

Let ϕλ\phi_{\lambda} be the one in Lemma 2.1 and

q=11p=111+2=22.q=1-\frac{1}{p}=1-\frac{1}{1+\sqrt{2}}=2-\sqrt{2}.

Set

bq(t,r)=01eλtϕλ(r)λq1𝑑λ,b_{q}(t,r)=\int_{0}^{1}e^{-\lambda t}\phi_{\lambda}(r)\lambda^{q-1}d\lambda,

then it holds

tbq=bq+1,r212Mrt2bqr(r(r2M)rbq)=0,\displaystyle\partial_{t}b_{q}=b_{q+1},~{}~{}\frac{r^{2}}{1-\frac{2M}{r}}\partial_{t}^{2}b_{q}-\partial_{r}\left(r(r-2M)\partial_{r}b_{q}\right)=0, (6.7)

and for r4M+er^{*}\geq 4M+e

|rbq|bq+1,\displaystyle|\partial_{r}b_{q}|\lesssim b_{q+1}, (6.8)
bq(t+R)q,\displaystyle b_{q}\thicksim(t+R)^{-q},
bq+1(t+R)1(t+R+1r)q.\displaystyle b_{q+1}\lesssim(t+R)^{-1}(t+R+1-r^{*})^{-q}.

Proof. The two identities in (6.7)\eqref{066} can be obtained by direct computations, noting that ϕλ\phi_{\lambda} satisfies (2.2). For (6.8)1\eqref{66}_{1}, by (2.4) and (2.3), one has for r4M+er^{*}\geq 4M+e

|rbq|\displaystyle|\partial_{r}b_{q}| 01eλt|rϕλ|λq1𝑑λ\displaystyle\leq\int_{0}^{1}e^{-\lambda t}|\partial_{r}\phi_{\lambda}|\lambda^{q-1}d\lambda (6.9)
01eλtλr2Meλrλq1𝑑λ\displaystyle\lesssim\int_{0}^{1}e^{-\lambda t}\frac{\lambda}{r-2M}e^{\lambda r^{*}}\lambda^{q-1}d\lambda
01eλtrr2Mϕλλq𝑑λ\displaystyle\lesssim\int_{0}^{1}e^{-\lambda t}\frac{r}{r-2M}\phi_{\lambda}\lambda^{q}d\lambda
bq+1.\displaystyle\lesssim b_{q+1}.

We then show

bq(t+R)q,b_{q}\gtrsim(t+R)^{-q}, (6.10)

for which the key ingredient is the uniform positive lower bound for ϕλ\phi_{\lambda}. Noting (2.6) and the nonnegative of ϕλ\phi_{\lambda}, we know rϕλ\partial_{r}\phi_{\lambda} is nonnegative and hence ϕλ\phi_{\lambda} is nondecreasing with respect to rr for each fixed λ\lambda, and hence for r4M+e(r2M+e)r^{*}\geq 4M+e(r\geq 2M+e) we have for λ(0,1]\lambda\in(0,1]

ϕλ(r)\displaystyle\phi_{\lambda}(r) ϕλ(2M+e)\displaystyle\geq\phi_{\lambda}(2M+e) (6.11)
eλ(4M+e)2M+e\displaystyle\gtrsim\frac{e^{\lambda(4M+e)}}{2M+e}
12M+e.\displaystyle\gtrsim\frac{1}{2M+e}.

With this in hand, we then get

bq(t,r)\displaystyle b_{q}(t,r) 12(t+R)1t+Reλtϕλλq1𝑑λ\displaystyle\gtrsim\int_{\frac{1}{2(t+R)}}^{\frac{1}{t+R}}e^{-\lambda t}\phi_{\lambda}\lambda^{q-1}d\lambda (6.12)
12(t+R)1t+Reλ(t+R)λq1𝑑λ\displaystyle\gtrsim\int_{\frac{1}{2(t+R)}}^{\frac{1}{t+R}}e^{-\lambda(t+R)}\lambda^{q-1}d\lambda
=(t+R)q121eθθq1𝑑θ\displaystyle=(t+R)^{-q}\int_{\frac{1}{2}}^{1}e^{-\theta}\theta^{q-1}d\theta
(t+R)q.\displaystyle\gtrsim(t+R)^{-q}.

For the upper bound of bq,bq+1b_{q},b_{q+1}, we divide the proof into two cases. If 4M+ert+R24M+e\leq r^{*}\leq\frac{t+R}{2}, then rrr\thicksim r^{*} and hence

bq(t,r)\displaystyle b_{q}(t,r) 01eλ(t+R)eλrλq1𝑑λ\displaystyle\lesssim\int_{0}^{1}e^{-\lambda(t+R)}e^{\lambda r^{*}}\lambda^{q-1}d\lambda (6.13)
01eλ(t+R)2λq1𝑑λ\displaystyle\lesssim\int_{0}^{1}e^{-\frac{\lambda(t+R)}{2}}\lambda^{q-1}d\lambda
(t+R)q0eθθq1𝑑θ\displaystyle\lesssim(t+R)^{-q}\int_{0}^{\infty}e^{-\theta}\theta^{q-1}d\theta
(t+R)q,\displaystyle\lesssim(t+R)^{-q},

which also holds for bq+1b_{q+1}

bq+1(t,r)\displaystyle b_{q+1}(t,r) (t+R)(q+1).\displaystyle\lesssim(t+R)^{-(q+1)}. (6.14)

While if t+R2rt+R\frac{t+R}{2}\leq r^{*}\leq t+R, we have

bq\displaystyle b_{q} 01λq1(1+λ)r𝑑λ\displaystyle\lesssim\int_{0}^{1}\frac{\lambda^{q-1}}{(1+\lambda)r}d\lambda (6.15)
01λq11+λ(t+R)𝑑λ\displaystyle\lesssim\int_{0}^{1}\frac{\lambda^{q-1}}{1+\lambda(t+R)}d\lambda
(t+R)q0(1+θ)1θq1𝑑θ\displaystyle\lesssim(t+R)^{-q}\int_{0}^{\infty}(1+\theta)^{-1}\theta^{q-1}d\theta
(t+R)q\displaystyle\lesssim(t+R)^{-q}

and

bq+1\displaystyle b_{q+1} 01eλ(t+R+1r)1λrλq𝑑λ\displaystyle\lesssim\int_{0}^{1}e^{-\lambda(t+R+1-r^{*})}\frac{1}{\lambda r^{*}}\lambda^{q}d\lambda (6.16)
(t+R)101eλ(t+R+1r)λq1𝑑λ\displaystyle\lesssim(t+R)^{-1}\int_{0}^{1}e^{-\lambda(t+R+1-r^{*})}\lambda^{q-1}d\lambda
(t+R)1(t+R+1r)q0eθθq1𝑑θ\displaystyle\lesssim(t+R)^{-1}(t+R+1-r^{*})^{-q}\int_{0}^{\infty}e^{-\theta}\theta^{q-1}d\theta
(t+R)1(t+R+1r)q,\displaystyle\lesssim(t+R)^{-1}(t+R+1-r^{*})^{-q},

and we finish the proof Lemma 6.1.

Set

η(t)=ηχ[18,1](t),ηT(t)=η(tT)\eta^{*}(t)=\eta_{\chi_{[\frac{1}{8},1]}}(t),~{}~{}\eta_{T}^{*}(t)=\eta^{*}\left(\frac{t}{T}\right)\\

and for L[16R,T][16R,T(ε)]L\in[16R,T]\subset[16R,T(\varepsilon)]

Y[bq|u|p](L)=1L(0T2M𝕊2|u|pbq(ησ)2pαL2p(r)r2𝑑ω𝑑r𝑑t)σ1𝑑σ.\displaystyle Y\left[b_{q}|u|^{p}\right](L)=\int_{1}^{L}\left(\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}(\eta_{\sigma}^{*})^{2p^{\prime}}\alpha_{L}^{2p^{\prime}}(r^{*})r^{2}d\omega drdt\right)\sigma^{-1}d\sigma. (6.17)

For simplicity, we denote Y(L)Y(L) for Y[bq|u|p](L)Y\left[b_{q}|u|^{p}\right](L) and have

LY(L)\displaystyle LY^{\prime}(L) =0T2M𝕊2|u|pbq(ηL)2pαL2p(r)r2𝑑ω𝑑r𝑑t\displaystyle=\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}(\eta_{L}^{*})^{2p^{\prime}}\alpha_{L}^{2p^{\prime}}(r^{*})r^{2}d\omega drdt (6.18)
L162L32M𝕊2|u|pbqηL2pαL2p(r)r2𝑑ω𝑑r𝑑t\displaystyle\gtrsim\int_{\frac{L}{16}}^{\frac{2L}{3}}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}\eta_{L}^{2p^{\prime}}\alpha_{L}^{2p^{\prime}}(r^{*})r^{2}d\omega drdt
LqεpL3p\displaystyle\gtrsim L^{-q}\varepsilon^{p}L^{3-p}
=εp,\displaystyle=\varepsilon^{p},

where the lower bounds (6.6), (6.8)2\eqref{66}_{2} and p=1+2,q=22p=1+\sqrt{2},q=2-\sqrt{2} have been used. Also,

Y(L)\displaystyle Y(L) =0T2M𝕊2|u|pbqαL2p(r)r2(1L(ησ)2pσ1𝑑σ)𝑑ω𝑑r𝑑t\displaystyle=\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}\alpha_{L}^{2p^{\prime}}(r^{*})r^{2}\left(\int_{1}^{L}(\eta_{\sigma}^{*})^{2p^{\prime}}\sigma^{-1}d\sigma\right)d\omega drdt (6.19)
=0T2M𝕊2|u|pbqαL2p(r)r2(tLt(η)2p(s)s1𝑑s)𝑑ω𝑑r𝑑t\displaystyle=\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}\alpha_{L}^{2p^{\prime}}(r^{*})r^{2}\left(\int_{\frac{t}{L}}^{t}(\eta^{*})^{2p^{\prime}}(s)s^{-1}ds\right)d\omega drdt
0T2M𝕊2|u|pbqαL2p(r)r2(max(tL,18)23η2p(s)s1𝑑s)𝑑ω𝑑r𝑑t\displaystyle\lesssim\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}\alpha_{L}^{2p^{\prime}}(r^{*})r^{2}\left(\int_{\max(\frac{t}{L},\frac{1}{8})}^{\frac{2}{3}}\eta^{2p^{\prime}}(s)s^{-1}ds\right)d\omega drdt
0T2M𝕊2|u|pbqαL2p(r)η2p(tL)r2(1823s1𝑑s)𝑑ω𝑑r𝑑t\displaystyle\lesssim\int_{0}^{T}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}\alpha_{L}^{2p^{\prime}}(r^{*})\eta^{2p^{\prime}}\left(\frac{t}{L}\right)r^{2}\left(\int_{\frac{1}{8}}^{\frac{2}{3}}s^{-1}ds\right)d\omega drdt
0L2M𝕊2|u|pbqαL2p(r)ηL2p(t)r2𝑑ω𝑑r𝑑t.\displaystyle\lesssim\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}\alpha_{L}^{2p^{\prime}}(r^{*})\eta_{L}^{2p^{\prime}}(t)r^{2}d\omega drdt.

Using (6.19), we may bound Y(L)Y^{\prime}(L) from below by YpY^{p}. Multiplying the equation (1.7) with bqαL2p(r)ηL2p(t)r2b_{q}\alpha_{L}^{2p^{\prime}}(r^{*})\eta_{L}^{2p^{\prime}}(t)r^{2} and then integrating with respect to r,ω,tr,\omega,t we come to

0L2M𝕊2|u|pbqαL2p(r)ηL2p(t)r2𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}\alpha_{L}^{2p^{\prime}}(r^{*})\eta_{L}^{2p^{\prime}}(t)r^{2}d\omega drdt (6.20)
\displaystyle\lesssim 0L2M𝕊2r212Mrut2(bqαL2pηL2p)\displaystyle\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\frac{r^{2}}{1-\frac{2M}{r}}u\partial_{t}^{2}\left(b_{q}\alpha_{L}^{2p^{\prime}}\eta_{L}^{2p^{\prime}}\right)
ur(r(r2M)r(bqαL2pηL2p))dωdrdt\displaystyle-u\partial_{r}\left(r(r-2M)\partial_{r}(b_{q}\alpha_{L}^{2p^{\prime}}\eta_{L}^{2p^{\prime}})\right)d\omega drdt
\displaystyle\lesssim 0L2M𝕊2(r212Mr2|utbqαL2ptηL2p|+r212Mr|ubqαL2pt2ηL2p|)𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\left(\frac{r^{2}}{1-\frac{2M}{r}}2|u\partial_{t}b_{q}\alpha_{L}^{2p^{\prime}}\partial_{t}\eta_{L}^{2p^{\prime}}|+\frac{r^{2}}{1-\frac{2M}{r}}|ub_{q}\alpha_{L}^{2p^{\prime}}\partial_{t}^{2}\eta_{L}^{2p^{\prime}}|\right)d\omega drdt
+0L2M𝕊2|u|(|2(rM)bqrαL2pηL2p|\displaystyle+\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|\Big{(}|2(r-M)b_{q}\partial_{r}\alpha_{L}^{2p^{\prime}}\eta_{L}^{2p^{\prime}}|
+|2r(r2M)rbqrαL2pηL2p|+|r(r2M)bqrrαL2pηL2p|)dωdrdt\displaystyle+|2r(r-2M)\partial_{r}b_{q}\partial_{r}\alpha_{L}^{2p^{\prime}}\eta_{L}^{2p^{\prime}}|+|r(r-2M)b_{q}\partial_{rr}\alpha_{L}^{2p^{\prime}}\eta_{L}^{2p^{\prime}}|\Big{)}d\omega drdt
\displaystyle\lesssim I12+I13+I14+I15+I16.\displaystyle I_{12}+I_{13}+I_{14}+I_{15}+I_{16}.

All the five terms I12I16I_{12}-I_{16} which remain to be estimated include at least one derivative over the cut-off functions ηL\eta_{L} or αL\alpha_{L}, which will restrict the time variable over [L3,2L3][\frac{L}{3},\frac{2L}{3}] and [L16,2L3][\frac{L}{16},\frac{2L}{3}] respectively. The latter restriction with left endpoint L16\frac{L}{16} is due to

L16rt+R.\frac{L}{16}\leq r^{*}\leq t+R.

We estimate I12,I13I_{12},I_{13} first, which read by combining the asymptotic behavior (6.8)2,(6.8)3\eqref{66}_{2},\eqref{66}_{3} and the fact 12MrC1-\frac{2M}{r}\thicksim C

I12\displaystyle I_{12}\triangleq 0L2M𝕊2r212Mr2|utbqαL2ptηL2p|𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\frac{r^{2}}{1-\frac{2M}{r}}2|u\partial_{t}b_{q}\alpha_{L}^{2p^{\prime}}\partial_{t}\eta_{L}^{2p^{\prime}}|d\omega drdt (6.21)
\displaystyle\lesssim L1(0L2M𝕊2|u|pbq(ηL)2pαL2pr2𝑑ω𝑑r𝑑t)1p\displaystyle L^{-1}\left(\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}(\eta_{L}^{*})^{2p^{\prime}}\alpha_{L}^{2p^{\prime}}r^{2}d\omega drdt\right)^{\frac{1}{p}}
×(L32L34M+et+Rbq1p1bq+1pp+1r2(12Mr)1p𝑑r𝑑t)1p\displaystyle\times\left(\int_{\frac{L}{3}}^{\frac{2L}{3}}\int_{4M+e}^{t+R}b_{q}^{-\frac{1}{p-1}}b_{q+1}^{\frac{p}{p+1}}r^{2}\left(1-\frac{2M}{r}\right)^{1-p^{\prime}}dr^{*}dt\right)^{\frac{1}{p^{\prime}}}
(lnL)p1p(0L2M𝕊2|u|pbq(ηL)2pαL2pr2𝑑ω𝑑r𝑑t)1p,\displaystyle\lesssim(\ln L)^{\frac{p-1}{p}}\left(\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}(\eta_{L}^{*})^{2p^{\prime}}\alpha_{L}^{2p^{\prime}}r^{2}d\omega drdt\right)^{\frac{1}{p}},
I13\displaystyle I_{13}\triangleq 0L2M𝕊2r212Mr|ubqαL2pt2ηL2p|𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}\frac{r^{2}}{1-\frac{2M}{r}}|ub_{q}\alpha_{L}^{2p^{\prime}}\partial_{t}^{2}\eta_{L}^{2p^{\prime}}|d\omega drdt (6.22)
(0L2M𝕊2|u|pbq(ηL)2pαL2pr2𝑑ω𝑑r𝑑t)1p.\displaystyle\lesssim\left(\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}(\eta_{L}^{*})^{2p^{\prime}}\alpha_{L}^{2p^{\prime}}r^{2}d\omega drdt\right)^{\frac{1}{p}}.

Next we move to the term I15I_{15} and have by (6.8)1,(6.8)3\eqref{66}_{1},\eqref{66}_{3}

I15\displaystyle I_{15}\triangleq 0L2M𝕊2|u||2r(r2M)rbqrαL2pηL2p|𝑑ω𝑑r𝑑t\displaystyle\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u||2r(r-2M)\partial_{r}b_{q}\partial_{r}\alpha_{L}^{2p^{\prime}}\eta_{L}^{2p^{\prime}}|d\omega drdt (6.23)
\displaystyle\lesssim L1(0L2M𝕊2|u|pbq(ηL)2pαL2pr2𝑑ω𝑑r𝑑t)1p\displaystyle L^{-1}\left(\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}(\eta_{L}^{*})^{2p^{\prime}}\alpha_{L}^{2p^{\prime}}r^{2}d\omega drdt\right)^{\frac{1}{p}}
×(L82L32M(r(r2M))pbq1p1bq+1pp1r2p1(12Mr)𝑑r𝑑t)1p\displaystyle\times\left(\int_{\frac{L}{8}}^{\frac{2L}{3}}\int_{2M}^{\infty}(r(r-2M))^{p^{\prime}}b_{q}^{-\frac{1}{p-1}}b_{q+1}^{\frac{p}{p-1}}r^{-\frac{2}{p-1}}\left(1-\frac{2M}{r}\right)dr^{*}dt\right)^{\frac{1}{p^{\prime}}}
\displaystyle\lesssim (lnL)p1p(0L2M𝕊2|u|pbq(ηL)2pαL2pr2𝑑ω𝑑r𝑑t)1p,\displaystyle(\ln L)^{\frac{p-1}{p}}\left(\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}(\eta_{L}^{*})^{2p^{\prime}}\alpha_{L}^{2p^{\prime}}r^{2}d\omega drdt\right)^{\frac{1}{p}},

while I14,I16I_{14},I_{16} can be estimated in the same way to get

I14,I16\displaystyle I_{14},I_{16} (0L2M𝕊2|u|pbq(ηL)2pαL2pr2𝑑ω𝑑r𝑑t)1p.\displaystyle\lesssim\left(\int_{0}^{L}\int_{2M}^{\infty}\int_{\mathbb{S}^{2}}|u|^{p}b_{q}(\eta_{L}^{*})^{2p^{\prime}}\alpha_{L}^{2p^{\prime}}r^{2}d\omega drdt\right)^{\frac{1}{p}}. (6.24)

Finally we conclude from the definition (6.17), (6.18), (6.19)(6.24)\eqref{607}-\eqref{612} that

{LY(L)εp,L(lnL)p1Y(L)Yp(L).\left\{\begin{array}[]{ll}&LY^{\prime}(L)\gtrsim\varepsilon^{p},\\ &L(\ln L)^{p-1}Y^{\prime}(L)\gtrsim Y^{p}(L).\\ \end{array}\right. (6.25)

We then can apply the following lemma with p1=p2=p=1+2p_{1}=p_{2}=p=1+\sqrt{2} and δ=εp\delta=\varepsilon^{p} to system (6.25) to get the upper bound of lifespan estimate (1.15) in Theorem 1.2, due to the fact LL is arbitrary in [16R,T)[16R,T).

Lemma 6.2.

(Lemma 3.10 in [8]). Let 2<t0<T2<t_{0}<T. 0ϕC1([t0,T))0\leq\phi\in C^{1}([t_{0},T)). Assume that

{δK1tϕ(t),t(t0,T),ϕ(t)p1K2t(logt)p21ϕ(t),t(t0,T)\left\{\begin{aligned} &\delta\leq K_{1}t\phi^{\prime}(t),\quad t\in(t_{0},T),\\ &\phi(t)^{p_{1}}\leq K_{2}t(\log t)^{p_{2}-1}\phi^{\prime}(t),\quad t\in(t_{0},T)\\ \end{aligned}\right. (6.26)

with δ,K1,K2>0\delta,K_{1},K_{2}>0 and p1,p2>1p_{1},p_{2}>1. If p2<p1+1p_{2}<p_{1}+1, then there exists positive constants δ0\delta_{0} and K3K_{3}(independent of δ\delta) such that

Texp(K3δp11p1p2+1)\displaystyle T\leq\exp\left(K_{3}\delta^{-\frac{p_{1}-1}{p_{1}-p_{2}+1}}\right) (6.27)

when 0<δ<δ00<\delta<\delta_{0}.

Remark 6.1.

Once the differential system (6.25) is established, one can also use a direct method as that in the end of [13] to get the desired upper bound of lifespan estimate.

7 Acknowledgement

N. A. Lai would like to express his sincere thank to Dr. Masahiro Ikeda for the helpful discussion for the critical case, and to Dr. Kyouhei Wakasa for the long time communication on this problem.

The first author was supported by NSFC (No. 12271487), the second author was supported by NSFC (No. 12171097).

References

  • [1] P. Blue and J. Sterbenz, Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space, Comm. Math. Phys., 268 (2006) 481-504.
  • [2] D. Catania and V. Georgiev, Blow-up for the semilinear wave equation in the Schwarzschild metric, Differential Integral Equations, 19 (2006) 799-830.
  • [3] M. Dafermos and I. Rodnianski, Small-amplitude nonlinear waves on a black hole background, J. Math. Pures Appl., 84 (2005) 1147-1172.
  • [4] W. Dai, Y. D. Fang and B. C. Wang, Lifespan of solutions to the Strauss type wave system on asymptotically flat space-times, Discrete Contin. Dyn. Syst. Ser. S., 40(8) (2020) 4985-4999.
  • [5] V. Georgiev, H. Lindblad, C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., 119(6) (1997) 1291-1319.
  • [6] R. T. Glassey, Finite-time blow-up for solutions of nonlinear wave equations, Math. Z., 177 (1981) 323-340.
  • [7] R. T. Glassey, Existence in the large for u=F(u)\Box u=F(u) in two space dimensions, Math. Z., 178 (1981) 233-261.
  • [8] M.Ikeda, M.Sobajima and K. Wakasa, Blow-up phenomena of semilinear wave equations and their weakly coupled systems, J. Differential Equations, 267(9) (2019) 5165-5201.
  • [9] T. Imai, M. Kato, H. Takamura and K. Wakasa, The sharp lower bound of the lifespan of solutions to semilinear wave equations with low powers in two space dimensions. In Asymptotic analysis for nonlinear dispersive and wave equations. Proceedings of the international conference on asymptotic analysis for nonlinear dispersive and wave equations, Osaka University, Osaka, Japan, September 6–9, 2014, pages 31–53. Tokyo: Mathematical Society of Japan, 2019.
  • [10] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1-3)(1979) 235-268.
  • [11] N. A. Lai and Z. H. Tu, Strauss exponent for semilinear wave equations with scattering space dependent damping, J. Math. Anal. Appl., 489 (2020) 124189.
  • [12] N. A. Lai, M. Y. Liu, K. Wakasa and C. B. Wang. Lifespan estimates for 2-dimensional semilinear wave equations in asymptotically Euclidean exterior domains, J. Funct. Anal., 281 (12)(2021) 109253.
  • [13] N. A. Lai, M. Y. Liu, Z. H. Tu and C. B. Wang. Lifespan estimates for semilinear wave equations with space dependent damping and potential, arXiv:2102.10257.
  • [14] N. A. Lai and Y. Zhou, An elementary proof of Strauss conjecture, J. Funct. Anal., 267 (5)(2014) 1364-1381.
  • [15] N. A. Lai and Y. Zhou, Lifespan estimate for the semilinear wave equation with a derivative nonlinear term in Schwarzschild spacetime (in Chinese), Sci. Sin. Math., 51 (2021) 957-970. doi: 10.1360/SSM-2020-0233.
  • [16] T. T. Li and Y. Zhou, Nonlinear Wave Equations(in Chinese), Series in Contemporary Mathematics, Shanghai Scientific & Technical Publishers, 2016.
  • [17] Y. H. Lin, N. A. Lai and S. Ming, Lifespan estimate for semilinear wave equation in Schwarzschild spacetime, Appl Math Lett., 99 (2020) 105997, 4 pp. doi: 10.1016/j.aml.2019.105997.
  • [18] H. Lindblad, Blow-up for solutions of u=|u|p\Box u=|u|^{p} with small initial data, Comm. Partial Differential Equations, 15 (6) (1990) 757-821.
  • [19] H. Lindblad, C. D. Sogge, Long-time existence for small amplitude semilinear wave equations, Amer. J. Math., 118 (5) (1996) 1047-1135.
  • [20] H. Lindblad, J. Metcalfe, C. D. Sogge, M. Tohaneanu and C. B. Wang, The Strauss conjecture on Kerr black hole backgrounds, Math. Ann., 359(3-4) (2014) 637-661.
  • [21] J. Luk, The null condition and global existence for nonlinear wave equations on slowly rotating Kerr spacetimes, Journal Eur Math Soc., 15 (2013) 1629-1700.
  • [22] J. Marzuola, J. Metcalfe, D. Tataru and M. Tohaneanu, Strichartz estimates on Schwarzschild black hole backgrounds, Comm. Math. Phys., 293 (2010) 37-83.
  • [23] J. Metcalfe and C. B. Wang, The Strauss conjecture on asymptotically flat space-times, SIAM J Math. Anal., 49 (2017) 4579-4594.
  • [24] J. P. Nicolas, Nonlinear Klein-Gordon equation on Schwarzschild-like metrics, J. Math. Pures Appl., 74(9) (1995) 35-58.
  • [25] J. P. Nicolas, A nonlinear Klein-Gordon equation on Kerr metrics, J. Math. Pures Appl., 81(9) (2002) 885-914.
  • [26] J. Schaeffer, The equation u=|u|p\Box u=|u|^{p} for the critical value of pp, Proc. Roy. Soc. Edinburgh Sect. A, 101 (1-2)(1985) 31-44.
  • [27] T. C. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differential Equations, 52 (1984) 378-406.
  • [28] H. Takamura, Improved Kato’s lemma on ordinary differential inequality and its application to semilinear wave equations, Nonlinear Analysis, 125 (2015) 227-240.
  • [29] H. Takamura and K. Wakasa, The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions, J. Differential Equations, 251 (2011) 1157-1171.
  • [30] B. Yordanov and Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006) 361-374.
  • [31] C. B. Wang, Long-time existence for semilinear wave equations on asymptotically flat space-times, Comm. Partial Differential Equations, 42 (2017) 1150-1174.
  • [32] C. B. Wang, Recent progress on the Strauss conjecture and related problems(in Chinese), Sci. Sin. Math., 48 (2018) 111-130.
  • [33] Y. Zhou, Lifespan of classical solutions to u=|u|p\Box u=|u|^{p} in two space dimensions, Chin. Ann. Math. Ser.B, 14 (1993) 225-236.
  • [34] Y. Zhou, Blow up of classical solutions to u=|u|1+α\Box u=|u|^{1+\alpha} in three space dimensions, J. Partial Differential Equations, 5 (1992) 21-32.
  • [35] Y. Zhou, Blow up of solutions to semilinear wave equations with critical exponent in high dimensions, Chinese Ann. Math. Ser. B, 28(2)(2007) 205-212.