This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

𝑫\bm{D^{*}} and 𝑫𝒔\bm{D^{*}_{s}} distribution amplitudes from Bethe-Salpeter wave functions

Fernando E. Serna LFTC, Universidade Cidade de São Paulo, Rua Galvão Bueno 868, São Paulo, SP 01506-000, Brazil Departamento de Física, Universidad de Sucre, Carrera 28 No. 5-267, Barrio Puerta Roja, Sincelejo, Colombia    Roberto Correa da Silveira LFTC, Universidade Cidade de São Paulo, Rua Galvão Bueno 868, São Paulo, SP 01506-000, Brazil    Bruno El-Bennich LFTC, Universidade Cidade de São Paulo, Rua Galvão Bueno 868, São Paulo, SP 01506-000, Brazil
(July 28, 2025)
Abstract

We report on the first calculation of the longitudinal and transverse light front distribution amplitudes of the DD^{*} and DsD^{*}_{s} mesons and their first four moments. As a byproduct, we also obtain these distribution amplitudes for the ρ\rho, ϕ\phi, KK^{*} and J/ΨJ/\Psi mesons and confirm a prediction of lattice QCD for the vector kaon: while the longitudinal distribution amplitude is almost symmetric, the transverse one is oblique implying that the strange quark carries more momentum.

I Motivation

In relativistic quantum field theory the infinite degrees of freedom do not allow for a straightforward definition of a particle’s wave function as in quantum mechanics. In particular, in Quantum Chromodynamics (QCD) the fundamental quark and gluon fields are not even observable. On the other hand, the bound states of valence quark-antiquark pairs can be described by a Bethe-Salpeter wave function, the closest relative to a wave function in quantum mechanics. Still, in the instant-form of QCD dynamics these wave functions are defined in an infinite-body field theory in which particles interact and their number is not conserved.

One could overcome this difficulty if the hadron’s light-front wave function was known exactly, though realistic calculations of hadronic bounds states in the front form are a challenging task dePaula:2020qna . A different path to a sensible definition of a wave function in quantum field theory is drawn by projecting the Bethe-Salpeter wave functions in the instant form on the light front. Depending on the projection chosen this yields the hadron’s light-front wave function or its light-front distribution amplitude (LFDA). The latter describes the longitudinal momentum distribution of valence quarks in the limit of negligible transverse momentum. While they are non-measurable objects, they are widely being applied in hadron and flavor physics.

For instance, the asymptotic LFDA of the pion, ϕ(x,μ)=μ6x(1x)\phi(x,\mu)\stackrel{{\scriptstyle\mu\to\infty}}{{=}}6x(1-x), enters in the expression of its elastic electromagnetic form factor at very large momentum transfers Efremov:1978rn ; Lepage:1980fj . Since the LFDAs are scale-dependent and become broader at smaller momenta, they directly influence the momentum dependence of the elastic form factors in momentum regions accessible in collider experiments Chang:2013nia ; Raya:2015gva ; Raya:2019dnh . Weak BB decays into two light(er) mesons are frequently treated as hard exclusive processes in which the decay amplitude is factorized into perturbative short-distance contributions and a nonperturbative transition amplitude. Here too, the LFDAs enter both, the hard-scattering integrals and the heavy-to-light transition amplitudes Beneke:2002jn ; Bauer:2005wb ; El-Bennich:2006rcn ; El-Bennich:2009gqk ; Leitner:2010fq . More recently, the exclusive electroweak production of Ds()D_{s}^{(*)} mesons on an unpolarized nucleon was investigated in the framework of collinear QCD factorization which also involves the heavy meson’s LFDA Pire:2015iza ; Pire:2017lfj ; Pire:2017yge ; Pire:2021dad .

Beyond its numerous applications in hard exclusive processes, these one-dimensional distributions provide a practical probability interpretation of partons, as in this frame the particle number is conserved. Namely, the distributions ϕ(x,μ)\phi(x,\mu) express the light-front fraction of the hadron’s momentum that a valence quark carries. Another compelling feature is that one can observe the qualitative and quantitative impact of dynamical chiral symmetry breaking (DCSB) on the LFDA at a given scale μ\mu. For instance, the distribution amplitude ϕπ(x,μ)\phi_{\pi}(x,\mu) of the pion is a concave function which clearly evolves from its asymptotic μ\mu\to\infty form to a much broader distribution Chang:2013pq . Similarly, the kaon’s distribution amplitude, ϕK(x,μ)\phi_{K}(x,\mu), is not symmetric about the midpoint x=1/2x=1/2, which expresses nothing but SU(3) flavor symmetry breaking, and that asymmetry is exacerbated with increasing mass difference of the quarks Shi:2015esa ; Serna:2020txe .

The question arises of how DCSB impacts antiquark-quark states in other JPCJ^{PC} channels and an extension to the vector mesons is natural. Moreover, the LFDA of vector mesons arises in the collinear factorization of weak BB-decay amplitudes Beneke:2000wa and in diffractive vector-meson production Forshaw:2010py ; Forshaw:2012im . Within the combined framework of the Dyson-Schwinger equation (DSE) and the Bethe-Salpeter equation (BSE) Bashir:2012fs the LFDAs of the ρ\rho and ϕ\phi mesons were calculated in Ref. Gao:2014bca and later the LFDAs of heavy quarkonia were obtained in Ref. Ding:2015rkn . In here, using a kindred DSE and BSE framework, we extend earlier work on DD and DsD_{s} distribution amplitudes Serna:2020txe to those of their vector partners and make predictions for the twist-2 LFDA of the DD^{*} and DsD_{s}^{*} mesons considering the two-quark Fock-state of their light front wave function. Along the way, we compute the LFDA of the ρ\rho, KK^{*} ϕ\phi and J/ΨJ/\Psi mesons and compare them with the distribution amplitudes of other approaches Forshaw:2010py ; Forshaw:2012im ; Ball:2007zt ; Boyle:2008nj ; Hua:2020gnw ; Ding:2015rkn .

II Twist-Two Distribution Amplitudes

A vector meson with total momentum PP and mass mVm_{V}, P2=mV2P^{2}=-m_{V}^{2}, made of a quark and an antiquark of flavors ff and gg is described by four twist-two distribution amplitudes, though only two of them are independent at leading twist as a consequence of a Wandzura-Wilczek type of relation Ball:2007zt . The two LFDAs we consider, ϕV(x,μ)\phi^{\parallel}_{V}(x,\mu) and ϕV(x,μ)\phi^{\perp}_{V}(x,\mu), describe the fraction of total momentum on the light front, x=k+/P+=(k0+kz)/(P0+Pz)x=k^{+}/P^{+}=(k_{0}+k_{z})/(P_{0}+P_{z}), carried by the quark in longitudinally and transversely polarized mesons, respectively. They can be extracted from the Bethe-Salpeter wave function, χVνfg(k,P)\chi^{fg}_{V\nu}(k,P), with the following projections onto the light front Gao:2014bca ; Ding:2015rkn :

fVϕV(x,μ)=mVNc𝒵22nP\displaystyle f_{V}\phi^{\parallel}_{V}(x,\mu)=\frac{m_{V}N_{c}{\cal Z}_{2}}{\sqrt{2}\ n\cdot P} TrDΛd4k(2π)4δ(nkηxnP)\displaystyle\ \mathrm{Tr}_{D}\!\int^{\Lambda}\!\!\frac{d^{4}k}{(2\pi)^{4}}\,\delta(n\cdot k_{\eta}-x\,n\cdot P)
×γnnνχVνfg(k,P),\displaystyle\times\,\gamma\cdotp n\,n_{\nu}\,\chi^{fg}_{V\nu}(k,P)\ , (1)
fVϕV(x,μ)=Nc𝒵T22\displaystyle f^{\perp}_{V}\phi^{\perp}_{V}(x,\mu)=-\frac{N_{c}{\cal Z}_{T}}{2\sqrt{2}} TrDΛd4k(2π)4δ(nkηxnP)\displaystyle\ \mathrm{Tr}_{D}\!\int^{\Lambda}\!\!\frac{d^{4}k}{(2\pi)^{4}}\,\delta(n\cdot k_{\eta}-x\,n\cdot P)
×nμσμρ𝒪ρνχVνfg(k,P),\displaystyle\times\,n_{\mu}\sigma_{\mu\rho}\,\mathcal{O}^{\perp}_{\rho\nu}\,\chi^{fg}_{V\nu}(k,P)\ , (2)

where Nc=3N_{c}=3, n=(0,0,1,i)n=(0,0,1,i) is a light-like vector and n¯=12(0,0,1,i)\bar{n}=\tfrac{1}{2}(0,0,-1,i) its conjugate with n2=n¯2=0n^{2}=\bar{n}^{2}=0, nP=mVn\cdot P=-m_{V}, n¯P=mV/2\bar{n}\cdot P=-m_{V}/2 and nn¯=1n\cdot\bar{n}=-1.111We use Euclidean metric with the Dirac algebra: {γμ,γν}=2δμν\{\gamma_{\mu},\gamma_{\nu}\}=2\delta_{\mu\nu}; γμ=γμ\gamma_{\mu}^{\dagger}=\gamma_{\mu}; γ5=γ4γ1γ2γ3\gamma_{5}=\gamma_{4}\gamma_{1}\gamma_{2}\gamma_{3}, tr[γ4γμγνγργσ]=4ϵμνρσ[\gamma_{4}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}]=-4\,\epsilon_{\mu\nu\rho\sigma}; σμν=(i/2)[γμ,γν]\sigma_{\mu\nu}=(i/2)[\gamma_{\mu},\gamma_{\nu}]; ab=i=14aibia\cdot b=\sum_{i=1}^{4}a_{i}b_{i}. A time-like vector PμP_{\mu} satisfies P2<0P^{2}<0. In Eq. (2) the Dirac commutator σμν\sigma_{\mu\nu} is contracted with the tensor Lu:2021sgg ,

𝒪ρν=δρν+nρn¯ν+n¯ρnν.\mathcal{O}^{\perp}_{\rho\nu}=\delta_{\rho\nu}+n_{\rho}\bar{n}_{\nu}+\bar{n}_{\rho}n_{\nu}\ . (3)

In Eqs. (1) and (2), χVνfg(k,P)=Sf(kη)\chi^{fg}_{V\nu}(k,P)=S_{f}(k_{\eta}) ΓVνfg(k,P)Sg(kη¯)\Gamma^{fg}_{V\nu}(k,P)S_{g}(k_{\bar{\eta}}) is the projected wave function, where ΓVνfg(k,P)\Gamma^{fg}_{V\nu}(k,P) denotes the Bethe-Salpeter amplitude (BSA) and Sf(kη)S_{f}(k_{\eta}) and Sg(kη¯)S_{g}(k_{\bar{\eta}}) are respectively the quark and antiquark propagators with momenta kη=k+ηPk_{\eta}=k+\eta P and kη¯=kη¯Pk_{\bar{\eta}}=k-\bar{\eta}P. The details of their calculation, solving numerically the DSE for the quarks of a given flavor and the BSE for a vector meson, in particular the DD and DD^{*} mesons, are provided elsewhere Serna:2020txe ; Mojica:2017tvh ; El-Bennich:2021ldv . The parameters η+η¯=1\eta+\bar{\eta}=1 define momentum fractions and Λ\Lambda is an ultraviolet regularization mass-scale; no observables can depend on η\eta, η¯\bar{\eta} and Λ\Lambda owing to Poincaré covariance. Furthermore, 𝒵2(μ,Λ){\cal Z}_{2}(\mu,\Lambda) is the wave-function renormalization constant and 𝒵T(μ,Λ){\cal Z}_{T}(\mu,\Lambda) is the tensor-vertex renormalisation constant of the quark. Both constants as well as fVf^{\perp}_{V} depend on the renormalization scale μ\mu, whereas fVf_{V} is renormalization-point independent and measures the strength of the ρ0e+e\rho^{0}\to e^{+}e^{-} decay amplitude.

The expressions for ϕV(x,μ)\phi^{\parallel}_{V}(x,\mu) and ϕV(x,μ)\phi^{\perp}_{V}(x,\mu) in Eqs. (1) and (2) are not amenable to straightforward numerical integration. Instead, one computes Mellin moments Chang:2013pq ,

xm\displaystyle\langle x^{m}\rangle_{\parallel} =01xmϕV(x,μ)𝑑x,\displaystyle=\int^{1}_{0}x^{m}\,\phi^{\parallel}_{V}(x,\mu)\,dx\ , (4)
xm\displaystyle\langle x^{m}\rangle_{\perp} =01xmϕV(x,μ)𝑑x,\displaystyle=\int^{1}_{0}x^{m}\,\phi^{\perp}_{V}(x,\mu)\,dx\ , (5)

from which one can reconstruct the distribution amplitudes on the domain x[0,1]x\in[0,1]. The BSA normalization ensures that x0=x0=1\langle x^{0}\rangle_{\parallel}=\langle x^{0}\rangle_{\perp}=1 which in turn defines the vector and tensor decay constants, fVf_{V}^{\parallel} and fVf^{\perp}_{V}.

Integrating both sides of Eqs. (1) and (2) and applying the Dirac-function property 01xmδ(axb)𝑑x=ambm+1θ(ba)\int_{0}^{1}x^{m}\delta(a-xb)dx=\frac{a^{m}}{b^{m+1}}\,\theta(b-a), leads to the expressions,

xm=mVNc𝒵22fV\displaystyle\langle x^{m}\rangle_{\parallel}=\frac{m_{V}N_{c}{\cal Z}_{2}}{\sqrt{2}\,f_{V}} TrDΛd4k(2π)4(nkη)m(nP)m+2\displaystyle\,\mathrm{Tr}_{D}\!\int^{\Lambda}\!\frac{d^{4}k}{(2\pi)^{4}}\frac{(n\cdot k_{\eta})^{m}}{(n\cdot P)^{m+2}}
×γnnνχVνfg(k,P),\displaystyle\times\,\gamma\cdot n\,n_{\nu}\,\chi^{fg}_{V\nu}(k,P)\,, (6)
xm=Nc𝒵T22fV\displaystyle\langle x^{m}\rangle_{\perp}=-\frac{N_{c}{\cal Z}_{T}}{2\sqrt{2}\,f^{\perp}_{V}} TrDΛd4k(2π)4(nkη)m(nP)m+1\displaystyle\,\mathrm{Tr}_{D}\!\int^{\Lambda}\!\frac{d^{4}k}{(2\pi)^{4}}\frac{(n\cdot k_{\eta})^{m}}{(n\cdot P)^{m+1}}
×nμσμρ𝒪ρνχVνfg(k,P).\displaystyle\times\,n_{\mu}\sigma_{\mu\rho}\,\mathcal{O}^{\perp}_{\rho\nu}\,\chi^{fg}_{V\nu}(k,P)\,.\hskip 8.53581pt (7)

With this, we are in principle able to compute Mellin moments to arbitrary order mm. We do so by employing the numerical solutions of the quark propagators for complex momenta defined by the parabolas, kη2=k2η2mV2+2iηmV|k|zkk_{\eta}^{2}=k^{2}-\eta^{2}m^{2}_{V}+2i\eta\,m_{V}|k|z_{k} and kη¯2=k2η¯2mV22iη¯mV|k|zkk_{\bar{\eta}}^{2}=k^{2}-{\bar{\eta}}^{2}m^{2}_{V}-2i\bar{\eta}\,m_{V}|k|z_{k}, where zk=kP/|k||P|z_{k}=k\cdot P/|k||P|, 1z+1-1\leq z\leq+1, and of the BSA of the vector mesons El-Bennich:2021ldv . That is, other than in Ref. Serna:2020txe , we do not rely on complex-conjugate pole parametrizations of the propagators nor on Nakanishi representations of the BSA, as the latter introduce ambiguities when fitted to numerical solutions. However, direct integration comes at the price that we can only access moments up to mmax=46m_{\mathrm{max}}=4-6, as the numerical error of the integral becomes significant for larger moments. These moments, though, are sufficient to reconstruct the desired LFDA.

x,\langle x\rangle_{\parallel,\perp} x2,\langle x^{2}\rangle_{\parallel,\perp} x3,\langle x^{3}\rangle_{\parallel,\perp} x4,\langle x^{4}\rangle_{\parallel,\perp} a1,a_{1}^{\parallel,\perp} a2,a_{2}^{\parallel,\perp} α,\alpha^{\parallel,\perp}
ρ\rho_{\parallel} 0.500 0.312 0.226 0.161 0.0 0.003±0.0380.003\pm 0.038 0.908±0.0230.908\pm 0.023
ρ\rho_{\perp} 0.500 0.312 0.218 0.160 0.0 0.136±0.007-0.136\pm 0.007 0.799±0.0060.799\pm 0.006
ϕ\phi_{\parallel} 0.500 0.296 0.195 0.134 0.0 0.372±0.010-0.372\pm 0.010 0.864±0.0100.864\pm 0.010
ϕ\phi_{\perp} 0.500 0.296 0.193 0.134 0.0 0.386±0.002-0.386\pm 0.002 0.870±0.0020.870\pm 0.002
KK^{*}_{\parallel} 0.509 0.323 0.236 0.179 0.041±0.0270.041\pm 0.027 0.191±0.048-0.191\pm 0.048 0.643±0.0310.643\pm 0.031
KK^{*}_{\perp} 0.528 0.351 0.262 0.204 0.119±0.0030.119\pm 0.003 0.122±0.0150.122\pm 0.015 0.840±0.0190.840\pm 0.019
Table 1: The first four Mellin moments, xm\langle x^{m}\rangle_{\parallel} and xm\langle x^{m}\rangle_{\perp}, of the light vector mesons and the coefficients of their reconstructed Gegenbauer expansion (8). The errors on a1a_{1}, a2a_{2} and α\alpha stem from the minimization.
ρ,\rho_{\parallel,\perp} ξ2\langle\xi^{2}\rangle_{\parallel} ξ2\langle\xi^{2}\rangle_{\perp} ξ4\langle\xi^{4}\rangle_{\parallel} ξ4\langle\xi^{4}\rangle_{\perp} ξ6\langle\xi^{6}\rangle_{\parallel} ξ6\langle\xi^{6}\rangle_{\perp} ξ8\langle\xi^{8}\rangle_{\parallel} ξ8\langle\xi^{8}\rangle_{\perp}
Herein 0.263 0.250 0.136 0.127 0.090 0.081 0.062 0.044
DSE Gao:2014bca 0.231 0.252 0.109 0.126 0.065 0.079 0.044 0.056
QCDSR Ball:2007zt 0.234 0.238 0.109 0.111 0.063 0.065 0.042 0.043
HERA Forshaw:2010py ; Forshaw:2012im 0.227 0.260 0.105 0.130 0.062 0.079 0.041 0.054
LQCD Boyle:2008nj 0.240(40)
ϕ,\phi_{\parallel,\perp} ξ2\langle\xi^{2}\rangle_{\parallel} ξ2\langle\xi^{2}\rangle_{\perp} ξ4\langle\xi^{4}\rangle_{\parallel} ξ4\langle\xi^{4}\rangle_{\perp} ξ6\langle\xi^{6}\rangle_{\parallel} ξ6\langle\xi^{6}\rangle_{\perp} ξ8\langle\xi^{8}\rangle_{\parallel} ξ8\langle\xi^{8}\rangle_{\perp}
Herein 0.186 0.182 0.077 0.073 0.042 0.039 0.026 0.024
DSE Gao:2014bca 0.233 0.253 0.111 0.127 0.067 0.080 0.046 0.056
QCDSR Ball:2007zt 0.245 0.238 0.115 0.111 0.068 0.065 0.045 0.043
LQCD Hua:2020gnw 0.212 0.250 0.097 0.127 0.057 0.081 0.039 0.058
K,K^{*}_{\parallel,\perp} ξ2\langle\xi^{2}\rangle_{\parallel} ξ2\langle\xi^{2}\rangle_{\perp} ξ4\langle\xi^{4}\rangle_{\parallel} ξ4\langle\xi^{4}\rangle_{\perp} ξ6\langle\xi^{6}\rangle_{\parallel} ξ6\langle\xi^{6}\rangle_{\perp} ξ8\langle\xi^{8}\rangle_{\parallel} ξ8\langle\xi^{8}\rangle_{\perp}
Herein 0.272 0.298 0.146 0.164 0.097 0.109 0.072 0.080
QCDSR Ball:2007zt 0.227 0.227 0.104 0.104 0.060 0.060 0.039 0.039
LQCD Hua:2020gnw 0.200 0.292 0.088 0.162 0.050 0.111 0.032 0.084
Table 2: Comparison of ξ2m,\langle\xi^{2m}\rangle_{\parallel,\perp} moments for the ρ\rho, ϕ\phi and KK^{*} mesons. The QCDSR values are obtained with Eqs. (4) and (5) employing the Gegenbauer expansion (8) with α=3/2\alpha=3/2 and the value for a2a_{2} in Ref. Ball:2007zt . Similarly, we fit the tabulated values of ϕV(x,μ)\phi^{\parallel}_{V}(x,\mu) and ϕV(x,μ)\phi^{\perp}_{V}(x,\mu) provided in Ref. Hua:2020gnw with the same Gegenbauer expansion and use them to calculate the moments.

We proceed as in Refs. Chang:2013pq ; Shi:2015esa ; Serna:2020txe ; Gao:2014bca ; Ding:2015rkn and in the case of the light vector mesons we use an expansion in terms of Gegenbauer moments Cnα(2x1)C_{n}^{\alpha}(2x-1), which form a complete orthonormal set on x[0,1]x\in[0,1] with respect to the measure [x(1x)]α1/2[x(1-x)]^{\alpha-1/2}, in order to reconstruct their two independent twist-two LFDAs (x¯=1x\bar{x}=1-x):

ϕVrec.,(x,μ)=𝒩(α)[xx¯]α12[1+n=1NanCnα(2x1)].\phi^{\parallel,\perp}_{V\mathrm{rec.}}(x,\mu)=\mathcal{N}(\alpha)[x\bar{x}]^{\alpha-\tfrac{1}{2}}\Bigg{[}1+\sum^{N}_{n=1}a_{n}C^{\alpha}_{n}(2x-1)\Bigg{]}. (8)

This expansion is employed for neutral mesons as well as for flavored mesons, which are not CC-parity eigenstates. In case of the former, the odd components ana_{n} vanish. In fitting the calculated moments in Eqs. (6) and (7), we consider, besides the coefficients ana_{n}, the power α\alpha itself a parameter rather than projecting on the α=3/2\alpha=3/2 basis. This allows to limit the expansion to N=2N=2 and considerably simplifies the fits discussed below Chang:2013pq . The normalization is obtained as,

𝒩(α)=Γ(2α+1)[Γ(α+1/2)]2.\mathcal{N}(\alpha)=\frac{\Gamma(2\alpha+1)}{[\Gamma(\alpha+1/2)]^{2}}\ . (9)

The heavy vector mesons, i.e. the DD^{*}, DsD^{*}_{s} and J/ψJ/\psi, are parametrized with a different expression:

ϕVrec.,(x,μ)=𝒩(α,β) 4xx¯e4αxx¯+β(xx¯).\phi_{V\mathrm{rec.}}^{\parallel,\perp}(x,\mu)=\mathcal{N}(\alpha,\beta)\,4x\bar{x}\,e^{4\,\alpha x\bar{x}+\beta(x-\bar{x})}\ . (10)

This functional form is more appropriate for a distribution amplitude with a convex-concave-convex functional behavior that tends to a δ\delta-function in the infinite heavy quark limit, as the use of an expansion, such as in Eq. (8), leaves one no choice but to retain a large number of Gegenbauer moments. A very similar functional expression is also found when the Nakanishi weight function is extracted from the quarkonia’s Bethe-Salpeter wave function Gao:2016jka . The normalization is given by Serna:2021xnr ,

𝒩(α,β)\displaystyle\mathcal{N}(\alpha,\beta) = 16α5/2[4α(βsinhβ+2αcoshβ)\displaystyle=\ 16\,\alpha^{5/2}\Bigg{[}4\sqrt{\alpha}\,\left(\beta\sinh\beta+2\alpha\cosh\beta\right)
+\displaystyle+ πeα+β24α(2α+4α2β2)\displaystyle\ \sqrt{\pi}\,e^{\alpha+\frac{\beta^{2}}{4\alpha}}\left(-2\alpha+4\alpha^{2}-\beta^{2}\right)
×\displaystyle\times {Erf(2αβ2α)+Erf(2α+β2α)}]1,\displaystyle\,\Bigg{\{}\operatorname{Erf}\left(\frac{2\alpha-\beta}{2\sqrt{\alpha}}\right)+\operatorname{Erf}\left(\frac{2\alpha+\beta}{2\sqrt{\alpha}}\right)\Bigg{\}}\Bigg{]}^{-1}, (11)

in which the error function is defined as: Erf(x)=2π0x𝑑tet2\operatorname{Erf}(x)=\frac{2}{\sqrt{\pi}}\int^{x}_{0}dt\,e^{t^{2}}.

We thus reconstruct the vector LFDAs by minimizing the sum,

ϵ,=m=1mmax|xm,rec.xm,1|,\epsilon_{\parallel,\perp}=\sum^{m_{\textrm{max}}}_{m=1}\left|\frac{\langle x^{m}\rangle^{\textrm{rec.}}_{\parallel,\perp}}{\langle x^{m}\rangle_{\parallel,\perp}}-1\right|\ , (12)

where the moments xm,rec.\langle x^{m}\rangle^{\textrm{rec.}}_{\parallel,\perp} are calculated using Eqs. (4) and (5) and the expansion in either Eq. (8) or Eq. (10), whereas xm,\langle x^{m}\rangle_{\parallel,\perp} denotes the moments in Eqs. (6) and (7). It is useful to contrast our predictions for the longitudinal and transverse LFDAs with those obtained using other approaches, namely with lattice QCD (LQCD) Boyle:2008nj ; Hua:2020gnw , QCD sum rules (QCDSR) Ball:2007zt and with earlier calculations in the DSE-BSE framework (DSE) Gao:2014bca . In order to do so we also compute the moments,

ξ2m,=01ξ2mϕV,(x,μ)𝑑x,\left\langle\xi^{2m}\right\rangle_{\parallel,\perp}=\int_{0}^{1}\,\xi^{2m}\,\phi^{\parallel,\perp}_{V}(x,\mu)dx\ , (13)

in terms of the difference of momentum fractions, ξ=x(1x)=2x1\xi=x-(1-x)=2x-1.

Refer to caption
Refer to caption
Figure 1: Comparison of the longitudinal and transverse LFDAs for the ρ\rho (top panel) and ϕ\phi (bottom panel) mesons with those of Refs. Gao:2014bca (DSE) and Hua:2020gnw (LQCD) at μ=2\mu=2 GeV. Error bands reflect the uncertainties of the fit parameters in Table 1. The intervals 0x<0.10\leq x<0.1, 1x>0.91\geq x>0.9 are shaded, as LQCD does not provide data for these momentum fractions due to systematic errors. For comparison, we plot the asymptotic LFDA ϕ(x,μ)=μ6xx¯\phi(x,\mu)\stackrel{{\scriptstyle\mu\to\infty}}{{=}}6x\bar{x}.
Refer to caption
Refer to caption
Figure 2: Top panel: longitudinal and transverse distribution amplitudes, ϕK(x,μ)\phi^{\parallel}_{K^{*}}(x,\mu) and ϕK(x,μ)\phi^{\perp}_{K^{*}}(x,\mu) for μ=2\mu=2 GeV. Bottom panel: Comparison of our predictions for the KK^{*} with those of QCDSR Ball:2007zt and LQCD Hua:2020gnw , where we replaced x1xx\rightarrow 1-x in Eq. (12). The shaded areas and error bands are as in Figure 1.

III Results

We begin with the light vector mesons and determine the coefficients an,a_{n}^{\parallel,\perp} of their Gegenbauer expansion via a least-square fit of ϵ,\epsilon_{\parallel,\perp} (12) with the four moments x,x2,x3,x4\langle x\rangle,\langle x^{2}\rangle,\langle x^{3}\rangle,\langle x^{4}\rangle. We report their values and those of the corresponding an,a_{n}^{\parallel,\perp} of the ρ\rho, ϕ\phi and KK^{*} mesons in Table 1 and compare the moments ξ2m,\langle\xi^{2m}\rangle_{\parallel,\perp} (13) with other results in Table 2.

The LFDAs for the ρ\rho and ϕ\phi mesons are compared in Figure 1 with the prediction of a DSE-based calculation and the LDFA reconstructed with moments from LQCD, respectively. We infer that the distributions follow the expected pattern: both LFDAs are symmetric about the midpoint, x=1/2x=1/2. However, the ϕρ,(x,μ)\phi_{\rho}^{\parallel,\perp}(x,\mu) distributions are broad while ϕϕ,(x,μ)\phi_{\phi}^{\parallel,\perp}(x,\mu) tend to the asymptotic form ϕ(x)=μ6xx¯\phi(x)\stackrel{{\scriptstyle\mu\to\infty}}{{=}}6x\bar{x}. In addition, we observe that ϕρ(x,μ)\phi^{\parallel}_{\rho}(x,\mu) is slightly broader than ϕρ(x,μ)\phi^{\perp}_{\rho}(x,\mu), the origin of which are the different values of a2a^{\parallel}_{2} and a2a^{\perp}_{2} in Table 1. It appears from Table 2 that our calculated ξ2m\langle\xi^{2m}\rangle_{\parallel} moments for the ρ\rho meson are overall about 11% larger, whereas the values for ξ2m\langle\xi^{2m}\rangle_{\perp} are in very good agreement with those of Ref. Gao:2014bca and the HERA fit Forshaw:2010py ; Forshaw:2012im .

In the case of the ϕ\phi-meson, we note that ϕϕ(x,μ)ϕϕ(x,μ)\phi^{\parallel}_{\phi}(x,\mu)\approx\phi^{\perp}_{\phi}(x,\mu) since a2a2a^{\parallel}_{2}\approx a^{\perp}_{2} and αα\alpha^{\parallel}\approx\alpha^{\perp}. We remark that our results for ϕϕ,(x,μ)\phi_{\phi}^{\parallel,\perp}(x,\mu) differ from those in Ref. Gao:2014bca as can be inferred from Fig. 1. The reason for this, despite a like-minded BSE approach, is that we use a larger strange-quark mass, ms=166m_{s}=166 MeV at μ=2\mu=2 GeV. With a lower value of ms100m_{s}\approx 100 MeV we find similar distributions as in Ref. Gao:2014bca . However, we prefer to renormalize the DSE with a larger strange mass as it results in a more consistent description of the KK, KK^{*} and ϕ\phi mesons.

x,\langle x\rangle_{\parallel,\perp} x2,\langle x^{2}\rangle_{\parallel,\perp} x3,\langle x^{3}\rangle_{\parallel,\perp} x4,\langle x^{4}\rangle_{\parallel,\perp} α,\alpha_{\parallel,\perp} β,\beta_{\parallel,\perp}
J/ΨJ/\Psi_{\parallel} 0.500 0.274 0.159 0.097 4.549±0.4114.549\pm 0.411 0.081±0.0510.081\pm 0.051
J/ΨJ/\Psi_{\perp} 0.500 0.259 0.139 0.076 12.703±1.93112.703\pm 1.931 0.004±0.7100.004\pm 0.710
DD^{*}_{\parallel} 0.694 0.511 0.396 0.315 0.531±0.2070.531\pm 0.207 2.460±0.1312.460\pm 0.131
DD^{*}_{\perp} 0.742 0.589 0.471 0.389 0.094±0.0010.094\pm 0.001 3.073±0.0013.073\pm 0.001
DsD^{*}_{s\parallel} 0.627 0.418 0.294 0.217 2.582±0.6512.582\pm 0.651 2.263±0.2962.263\pm 0.296
DsD^{*}_{s\perp} 0.655 0.465 0.346 0.272 0.448±0.3050.448\pm 0.305 1.832±0.1361.832\pm 0.136
Table 3: Mellin moments xm\langle x^{m}\rangle_{\parallel} and xm\langle x^{m}\rangle_{\perp} of the J/ΨJ/\Psi, DD^{*} and DsD^{*}_{s} mesons. Fitting these moments with their definitions in Eqs. (4) and (5) and the corresponding ϕV,(x,μ)\phi_{V}^{\parallel,\perp}(x,\mu) parametrization (10) yields α,\alpha_{\parallel,\perp} and β,\beta_{\parallel,\perp}; the fit errors arise in the minimization process.
Refer to caption
Figure 3: Longitudinal and transverse distributions, ϕJ/Ψ(x,μ)\phi^{\parallel}_{J/\Psi}(x,\mu) and ϕJ/Ψ(x,μ)\phi^{\perp}_{J/\Psi}(x,\mu), reconstructed from the moments in Table 3 with Eqs. (4), (5) and (10). The error bands reflect the uncertainties in the fit parameters α,\alpha_{\parallel,\perp} and β,\beta_{\parallel,\perp} in Table 3.

We now turn our attention to the KK^{*} and present the longitudinal and transverse LFDAs in Figure 2 where we juxtapose them with predictions from LQCD and QCDSR. Notably, the longitudinal distribution is a concave, nearly symmetric function of xx, much broader than the asymptotic form, which is a consequence of the smallness of the a1a^{\parallel}_{1} coefficient. The transverse LFDA, on the other hand, is asymmetric around the midpoint and its maximum is located at x=0.78x=0.78, which clearly indicates SU(3) flavor symmetry breaking and that the strange valence quark carries a larger amount of meson momentum. The asymmetric shape is due to the similarity of the Gegenbauer coefficients, a1a2a^{\perp}_{1}\approx a^{\perp}_{2} whereas a1a2a^{\parallel}_{1}\ll a^{\parallel}_{2}, see Table 1. This is in agreement with a recent calculation in LQCD, though in that study ϕK(x,μ)\phi^{\parallel}_{K^{*}}(x,\mu) tends toward the asymptotic distribution Hua:2020gnw . In contrast to these findings, QCDSR predicts ϕK(x,μ)ϕK(x,μ)\phi^{\parallel}_{K^{*}}(x,\mu)\approx\phi^{\perp}_{K^{*}}(x,\mu) Ball:2007zt .

As we noted earlier, the heavier vector charmonium and charmed mesons require a modified description of their LFDA (10) to fit the moments. We report these moments, xm\langle x^{m}\rangle_{\parallel} and xm\langle x^{m}\rangle_{\perp}, for the J/ΨJ/\Psi, DD^{*} and DsD^{*}_{s} in Table 3. The distributions ϕJ/Ψ(x,μ)\phi^{\parallel}_{J/\Psi}(x,\mu) and ϕJ/Ψ(x,μ)\phi^{\perp}_{J/\Psi}(x,\mu) we then reconstruct are plotted in Figure 3. They are reminiscent of their pseudoscalar counterpart, i.e. the LFDA of the ηc\eta_{c}, which exhibits the same convex-concave-convex functional behavior and is more sharply peaked than the asymptotic LFDA Serna:2020txe . It turns out that the longitudinal distribution is broader and less localized as a function of xx than the transverse distribution, an observation also made in Ref. Ding:2015rkn .

Refer to caption
Refer to caption
Figure 4: Longitudinal and transverse LFDAs of the DD^{*} and DsD_{s}^{*} mesons at μ=2\mu=2 GeV; error bands as in Figure 3.

We conclude this section with a first prediction of the DD^{*} and DsD_{s}^{*} meson distribution amplitudes which we compute with the projections in Eqs. (1) and (2) of the Bethe-Salpeter wave functions. The latter are taken from Ref. El-Bennich:2021ldv ; see Table 4 therein for the corresponding masses and weak decay constants. The distributions we reconstruct from xm\langle x^{m}\rangle_{\parallel} and xm\langle x^{m}\rangle_{\perp} listed in Table 3 are shown in Fig. 4. Clearly, in both cases the LFDAs are asymmetric and ϕD(x,μ)\phi^{\parallel}_{D^{*}}(x,\mu) and ϕD(x,μ)\phi^{\perp}_{D^{*}}(x,\mu) peak at about x0.80.85x\approx 0.8-0.85, while ϕDs(x,μ)\phi^{\parallel}_{D^{*}_{s}}(x,\mu) and ϕDs(x,μ)\phi^{\perp}_{D^{*}_{s}}(x,\mu) reach their maximum in the range x0.650.8x\approx 0.65-0.8.

This is readily interpreted as the charm quark carrying most of the light-front momentum in the DD^{*} meson, but less so in the DsD^{*}_{s} meson. Interestingly, the transverse distributions are more asymmetric and the charm seems to carry a larger fraction of the meson momentum than in the longitudinal distribution. Arguably, this observation generalizes our results for the KK^{*}, where the much smaller mass difference between the strange and up quarks leads to an almost symmetric form of ϕK(x,μ)\phi^{\parallel}_{K^{*}}(x,\mu) and to a broad yet asymmetric function ϕK(x,μ)\phi^{\perp}_{K^{*}}(x,\mu).

IV Conclusion

We extracted the LFDAs of the ρ\rho, ϕ\phi, KK^{*}, J/ΨJ/\Psi, DD^{*} and DsD^{*}_{s} mesons from their Bethe-Salpeter wave functions, which we calculated in Refs. Mojica:2017tvh ; El-Bennich:2021ldv , with two projections onto the light front given by Eqs. (1) and (2). The transverse LFDA of the ρ\rho meson is in very good agreement with that obtained in a similar DSE-BSE approach Gao:2014bca and with the HERA fit Forshaw:2010py ; Forshaw:2012im , while our longitudinal moments, ξm\langle\xi^{m}\rangle_{\parallel}, are generally about 11% larger than those in the literature.

We then presented the first calculation of the ϕK(x,μ)\phi^{\parallel}_{K^{*}}(x,\mu) and ϕK(x,μ)\phi^{\perp}_{K^{*}}(x,\mu) within the DSE-BSE framework and confirm the functional form found with LQCD simulations Hua:2020gnw : while the longitudinal distribution of the KK^{*} is almost symmetric about the midpoint x=1/2x=1/2, the transverse distribution is broad and slanted, which we interpret as the strange quark carrying the larger fraction of the meson’s momentum. In the heavy meson sector, both LFDAs of the J/ΨJ/\Psi are alike with that of the ηc\eta_{c}, i.e. they are symmetric and narrow, yet not merely concave distributions.

Last not least, we extended our studies in Ref. Serna:2020txe to the longitudinal and transverse LFDAs of the DD^{*} and DsD_{s}^{*} mesons, a first calculation of these distributions to our knowledge. Our findings are in line with observations for the pseudoscalar DD and DsD_{s} mesons Serna:2020txe : the distributions are asymmetric and reach their maximum at large momentum fractions, namely x0.650.85x\approx 0.65-0.85. In other words, the charm quark is most likely to carry the largest fraction of the D(s)D_{(s)}^{*}-momentum, and this is even more so the case for the transverse distribution.

We remind that we provided all the analytic parametrizations of the LFDAs discussed in this work and the parameters are found in Tables (1) and (3). Therefore, the LFDAs of the J/ΨJ/\Psi and D(s)D^{*}_{(s)} mesons can readily be used in diffractive vector-meson production and are are of interest to the experimental program of the Electron-Ion Collider.

Acknowledgments

We acknowledge helpful discussions with Peter Tandy and Minghui Ding. B.E. and F.E.S. participate in the Brazilian network project INCT-Física Nuclear e Aplicações, no. 464898/2014-5. This work was supported by the São Paulo Research Foundation (FAPESP), grant no. 2018/20218-4, and by the National Council for Scientific and Technological Development (CNPq), grant no. 428003/2018-4. F.E.S. is a CAPES-PNPD postdoctoral fellow financed by grant no. 88882.314890/2013-01.

References

  • (1) W. de Paula, E. Ydrefors, J. H. Alvarenga Nogueira, T. Frederico and G. Salmè, Phys. Rev. D 103 (2021) no.1, 014002 doi:10.1103/PhysRevD.103.014002
  • (2) A. V. Efremov and A. V. Radyushkin, Theor. Math. Phys. 42 (1980), 97-110 doi:10.1007/BF01032111
  • (3) G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22 (1980), 2157 doi:10.1103/PhysRevD.22.2157
  • (4) L. Chang, I. C. Cloët, C. D. Roberts, S. M. Schmidt and P. C. Tandy, Phys. Rev. Lett. 111 (2013) no.14, 141802 doi:10.1103/PhysRevLett.111.141802
  • (5) K. Raya, L. Chang, A. Bashir, J. J. Cobos-Martínez, L. X. Gutiérrez-Guerrero, C. D. Roberts and P. C. Tandy, Phys. Rev. D 93 (2016) no.7, 074017 doi:10.1103/PhysRevD.93.074017
  • (6) K. Raya, A. Bashir and P. Roig, Phys. Rev. D 101 (2020) no.7, 074021 doi:10.1103/PhysRevD.101.074021
  • (7) M. Beneke and M. Neubert, Nucl. Phys. B 651 (2003), 225-248 doi:10.1016/S0550-3213(02)01091-X
  • (8) C. W. Bauer, D. Pirjol, I. Z. Rothstein and I. W. Stewart, Phys. Rev. D 72 (2005), 098502 doi:10.1103/PhysRevD.72.098502
  • (9) B. El-Bennich, A. Furman, R. Kaminski, L. Lesniak and B. Loiseau, Phys. Rev. D 74 (2006), 114009 doi:10.1103/PhysRevD.74.114009
  • (10) B. El-Bennich, A. Furman, R. Kaminski, L. Lesniak, B. Loiseau and B. Moussallam, Phys. Rev. D 79 (2009), 094005 [erratum: Phys. Rev. D 83 (2011), 039903] doi:10.1103/PhysRevD.83.039903
  • (11) O. Leitner, J. P. Dedonder, B. Loiseau and B. El-Bennich, Phys. Rev. D 82 (2010), 076006 doi:10.1103/PhysRevD.82.076006
  • (12) B. Pire and L. Szymanowski, Phys. Rev. Lett. 115 (2015) no.9, 092001 doi:10.1103/PhysRevLett.115.092001
  • (13) B. Pire and L. Szymanowski, Phys. Rev. D 96 (2017) no.11, 114008 doi:10.1103/PhysRevD.96.114008
  • (14) B. Pire, L. Szymanowski and J. Wagner, Phys. Rev. D 95 (2017) no.9, 094001 doi:10.1103/PhysRevD.95.094001
  • (15) B. Pire, L. Szymanowski and J. Wagner, Phys. Rev. D 104 (2021) no.9, 094002 doi:10.1103/PhysRevD.104.094002
  • (16) L. Chang, I. C. Cloët, J. J. Cobos-Martínez, C. D. Roberts, S. M. Schmidt and P. C. Tandy, Phys. Rev. Lett. 110 (2013) no.13, 132001 doi:10.1103/PhysRevLett.110.132001
  • (17) C. Shi, C. Chen, L. Chang, C. D. Roberts, S. M. Schmidt and H. S. Zong, Phys. Rev. D 92 (2015), 014035 doi:10.1103/PhysRevD.92.014035
  • (18) F. E. Serna, R. C. da Silveira, J. J. Cobos-Martínez, B. El-Bennich and E. Rojas, Eur. Phys. J. C 80 (2020) no.10, 955 doi:10.1140/epjc/s10052-020-08517-3
  • (19) M. Beneke and T. Feldmann, Nucl. Phys. B 592 (2001), 3-34 doi:10.1016/S0550-3213(00)00585-X
  • (20) J. R. Forshaw and R. Sandapen, JHEP 11 (2010), 037 doi:10.1007/JHEP11(2010)037
  • (21) J. R. Forshaw and R. Sandapen, Phys. Rev. Lett. 109 (2012), 081601 doi:10.1103/PhysRevLett.109.081601
  • (22) A. Bashir, L. Chang, I. C. Cloet, B. El-Bennich, Y. X. Liu, C. D. Roberts and P. C. Tandy, Commun. Theor. Phys. 58 (2012), 79-134 doi:10.1088/0253-6102/58/1/16
  • (23) F. Gao, L. Chang, Y. X. Liu, C. D. Roberts and S. M. Schmidt, Phys. Rev. D 90 (2014) no.1, 014011 doi:10.1103/PhysRevD.90.014011
  • (24) M. Ding, F. Gao, L. Chang, Y. X. Liu and C. D. Roberts, Phys. Lett. B 753 (2016), 330-335 doi:10.1016/j.physletb.2015.11.075
  • (25) P. Ball, V. M. Braun and A. Lenz, JHEP 08 (2007), 090 doi:10.1088/1126-6708/2007/08/090
  • (26) P. A. Boyle et al. [RBC and UKQCD], PoS LATTICE2008 (2008), 165 doi:10.22323/1.066.0165
  • (27) J. Hua et al. [Lattice Parton], Phys. Rev. Lett. 127 (2021) no.6, 062002 doi:10.1103/PhysRevLett.127.062002
  • (28) Y. Lu, D. Binosi, M. Ding, C. D. Roberts, H. Y. Xing and C. Xu, Eur. Phys. J. A 57 (2021) no.4, 115 doi:10.1140/epja/s10050-021-00427-6
  • (29) F. F. Mojica, C. E. Vera, E. Rojas and B. El-Bennich, Phys. Rev. D 96 (2017) no.1, 014012 doi:10.1103/PhysRevD.96.014012
  • (30) B. El-Bennich and F. E. Serna, PoS CHARM2020 (2021), 025 doi:10.22323/1.385.0025
  • (31) F. Gao, L. Chang and Y. x. Liu, Phys. Lett. B 770 (2017), 551-555 doi:10.1016/j.physletb.2017.04.077
  • (32) F. E. Serna and B. El-Bennich, PoS CHARM2020 (2021), 047 doi:10.22323/1.385.0047