This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

institutetext: Department of Physics, Korea University, Seoul 02841, Korea

𝑵\bm{N}-jettiness in electroweak high-energy processes

Junegone Chay    Taewook Ha    and Taehyun Kwon chay@korea.ac.kr hahah@korea.ac.kr aieamfirst@korea.ac.kr
Abstract

We study NN-jettiness in electroweak processes at extreme high energies, in which the mass of the weak gauge bosons can be regarded as small. The description of the scattering process such as ee+μμ++Xe^{-}e^{+}\rightarrow\mu^{-}\mu^{+}+X is similar to QCD. The incoming leptons emit initial-state radiation and the resultant particles, highly off-shell, participate in the hard scattering, which are expressed by the beam functions. After the hard scattering, the final-state leptons or leptonic jets are observed, described by the fragmenting jet functions or the jet functions respectively. At present, electroweak processes are prevailed by the processes induced by the strong interaction, but they will be relevant at future ee+e^{-}e^{+} colliders at high energy. The main difference between QCD and electroweak processes is that the initial- and final-state particles should appear in the form of hadrons, that is, color singlets in QCD, while there can be weak nonsinglets as well in electroweak interactions. We analyze the factorization theorems for the NN-jettiness in ee+μμ++Xe^{-}e^{+}\rightarrow\mu^{-}\mu^{+}+X, and compute the factorized parts to next-to-leading logarithmic accuracy. To simplify the comparison with QCD, we only consider the SU(2)WSU(2)_{W} gauge interaction, and the extension to the Standard Model is straightforward. Put it in a different way, it corresponds to an imaginary world in which colored particles can be observed in QCD, and the richer structure of effective theories is probed. Various nonzero nonsinglet matrix elements are interwoven to produce the factorized results, in contrast to QCD in which there are only contributions from the singlets. Another distinct feature is that the rapidity divergence is prevalent in the contributions from weak nonsinglets due to the different group theory factors between the real and virtual corrections. We verify that the rapidity divergence cancels in all the contributions with a different number of nonsinglet channels. We also consider the renormalization group evolution of each factorized part to resum large logarithms, which are distinct from QCD.

Keywords:
jettiness, electroweak processes, rapidity divergence, resummation

1 Introduction

The understanding of high-energy scattering has reached a state of the art with the advent of the effective theories such as soft-collinear effective theory (SCET) Bauer:2000ew ; Bauer:2000yr ; Bauer:2001ct ; Bauer:2001yt . The basic picture to this understanding lies in the following procedure. The partons from the incoming protons, as in Large Hadron Collider, participate in the hard scattering and produce a plethora of final-state particles including hadrons, electroweak gauge bosons, Higgs particles and possibly heavy particles beyond the Standard Model. Quantum chromodynamics (QCD) plays a major role in comprehending collider physics phenomenology because the strong interaction acts in every stage of the scattering process with disparate energy scales.

The essence of disentangling the strong interaction is to construct factorization theorems which decompose the high-energy processes into hard, collinear and soft parts. SCET is the appropriate effective theory of QCD for high-energy processes, in which energetic, collinear particles form jets immersed in the sea of soft particles. In SCET we select the relevant collinear and soft modes and integrate out all the other degrees of freedom. Factorization of high-energy processes can be accomplished in SCET by decoupling the soft interaction from the collinear particles. Subsequently the collinear sectors in different directions do not interact with each other. Depending on the observables of interest, the phase space is divided by the definite properties of the specific modes and the factorization theorem is constructed according to how the modes or the phase spaces are organized. Each mode has its own characteristic scale, and typically there is a hierarchy of such scales. The scattering cross sections or event shape observables are expressed in terms of the logarithms of the ratios of the different energy scales, which necessitates the resummation of the large logarithms. Because each factorized part is governed by a single scale in each phase space, the large logarithms in each sector can be resummed to all orders using the renormalization group (RG) equations.

So far, we have described the factorization of high-energy processes in QCD. Here we change gears to employ SCET in extremely high-energy electroweak processes, in which all the masses of the particles including the weak gauge bosons can be regarded as small. By way of illustration, we consider the process ee+μjet,μ+jet+Xe^{-}e^{+}\rightarrow\mu^{-}\ \mathrm{jet},\mu^{+}\ \mathrm{jet}+X, where XX denotes arbitrary final states, and the μ\mu jet denotes the jet which includes the muon in the final state.111From now on, we will write ee+μμ++Xe^{-}e^{+}\rightarrow\mu^{-}\mu^{+}+X for the jets including muons. If we refer to the muons instead of the muon jets, we will explicitly state it. In order to simplify the situation, we consider only the weak SU(2)WSU(2)_{W} gauge interaction by turning off all the other gauge interactions. Therefore we imagine a world with the SU(2)WSU(2)_{W} weak gauge interaction out of the full SU(3)C×SU(2)W×U(1)BSU(3)_{C}\times SU(2)_{W}\times U(1)_{B} gauge interactions of the Standard Model. The extension to the Standard Model is complicated, but straightforward. In the high-energy limit, the incoming electron can be regarded as a collection of the “partons” which consist of leptons, weak gauge bosons. These partons undergo a hard collision and produce final-state energetic particles, along with soft particles.

This scenario may sound rather dull because everything mimics the processes in QCD, and one may wonder what, if any, can be learned from this imaginary world. The most interesting issue in this context is that the weak gauge interaction is not confining. It means that the incoming particles or the outgoing particles do not have to be gauge singlets. This is in contrast to QCD, where all the strongly-interacting particles are produced as color singlets, that is, hadrons. Due to this constraint, various matrix elements of the operators in QCD in, say, the parton distribution functions (PDF) or the jet functions are evaluated only for the color singlet configurations. However, the gauge singlets, as well as the gauge nonsinglets participate in weak high-energy processes. It makes the procedure of the factorization more sophisticated, and requires more care in analyzing the interwoven structure. Put it in a different way, it corresponds to imagining QCD without confinement and ask how the factorization works if there are free quarks and gluons. The underlying hard scattering processes can be traced directly and the measurement of the jets and the properties can be reconstructed explicitly by the constituents without worrying about hadronization.

We sketch electroweak high-energy processes by analogy with QCD. The incoming on-shell “partons” (electrons in our case) possess certain fractions of the energy from the initial particles and they radiate away gauge bosons to be far off-shell. This process is described by the electroweak beam functions. Then the energetic partons undergo a hard scattering and the final-state particles can be observed in terms of individual particles, described by the fragmentation functions, or jets by the jet functions or the fragmenting jet functions (FJF). And the soft interaction is interspersed between the collinear parts. In electroweak high-energy processes, gauge singlets and nonsinglets are involved in all these factorized components, which makes the analysis more intriguing. This study will be relevant in high-energy electron-positron colliders such as CEPC dEnterria:2016sca , ILC Djouadi:2007ik , FCC-ee Abada:2019zxq , and CLIC Charles:2018vfv . Our analysis can be extended to include the production of the Higgs boson, weak gauge bosons and top quarks.

There appear many different energy scales, the energy of the hard scattering QQ, the invariant masses of the initial- and final-states as a typical collinear scale, and the soft scale, and possibly more if we are interested in more differential processes describing event shapes. In addition, the mass of the weak gauge bosons MM also enters into the picture as a physical mass. In radiative corrections, there are logarithms of the ratios of these scales and we need to resum the large logarithms to all orders. In SCET, the factorization is achieved by dissecting the phase space and devising the modes in that phase space such that the radiative corrections depend on a single scale in each phase space. Then the resummation is obtained by solving the RG equation.

Besides the conventional RG behavior, there is additional rapidity divergence because the phase space is divided into different regions. It is obviously absent in the full theory because there is no separation of the phase space. Therefore it is a good consistency check for an effective theory to see whether the rapidity divergences are cancelled when all the factorized contributions are added. It is one of the goals in this paper to check this point even in the presence of the nonsinglets participating in the scattering.

Though the sum of the rapidity divergences cancels, the rapidity divergence remains in each sector and it affects the RG behavior of the factorized parts. The rapidity divergence has been regulated using diverse methods, such as the use of the Wilson lines off the lightcone collins_2011 , the δ\delta-regulator Idilbi:2007ff ; Idilbi:2007yi , the analytic regulator Becher:2011dz , the rapidity regulator Chiu:2011qc ; Chiu:2012ir , the exponential regulator Li:2016axz , and the pure rapidity regulator Ebert:2018gsn , etc.. Recently one of us has proposed a consistent scheme of applying rapidity regulators to the soft and collinear sectors Chay:2020jzn . It correctly produces the directional dependence in the soft function, which is essential in our case because there are four different collinear directions involved. The independence of the rapidity scale in the cross section critically depends on the interplay between the collinear and the soft functions.

The dependence on the rapidity scale in each sector becomes highly nontrivial and more interesting when gauge nonsinglets as well as singlets participate in high-energy scattering. First of all, let us describe the rapidity divergence for singlets, which is well understood in QCD. The rapidity divergence appears distinctively in SCETI\mathrm{SCET_{I}} and SCETII\mathrm{SCET}_{\mathrm{II}}. In SCETI\mathrm{SCET_{I}}, since collinear and soft particles have different offshellness, there is no overlap in rapidity between these modes, hence no rapidity divergence arises. In other words, the rapidity divergence cancels in each sector. On the other hand, in SCETII\mathrm{SCET}_{\mathrm{II}}, where collinear and soft particles have the same offshellness, they overlap near the rapidity boundary. The soft particles with small rapidity cannot perceive the large rapidity region which belongs to collinear sector, causing the rapidity divergence in the soft sector. In the collinear sector, according to our regularization scheme of the rapidity divergence, which will be described in detail, the rapidity divergence arises from the zero-bin subtraction Chiu:2011qc ; Chiu:2012ir . The zero-bin subtraction replaces the spurious rapidity divergence in the naive contribution. It is analogous to the pullup mechanism Manohar:2000kr ; Hoang:2001rr in the dimensional regularization, in which the IR divergence is replaced by the UV divergence. The rapidity divergence may survive in each sector, but their sum cancels. However, the persistent existence of the rapidity divergence in each sector offers additional evolution to complete the resummation.

In weak interaction, the structure of the rapidity divergence is more intricate. For gauge singlets, there is no rapidity divergence as in QCD. For gauge nonsinglets, regardless of SCETI\mathrm{SCET_{I}} or SCETII\mathrm{SCET_{II}}, the rapidity divergence is not cancelled in each sector when the weak charges of the initial or final states are specified. Nor are the Sudakov logarithms. The non-cancellation of the electroweak logarithms is known as the Block-Nordsieck violation in electroweak processes Ciafaloni:2000df ; Ciafaloni:2001vt ; Ciafaloni:2006qu ; Manohar:2014vxa . In contrast, the Sudakov logarithms in QCD cancel from virtual and real contributions in inclusive processes. It yields, for example, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution of the PDF. The non-cancellation in weak interaction affects the UV behavior as well as the rapidity behavior. Our result is, in some sense, a manifestation of the non-cancellation in considering the event shape through the jettiness.

In the framework of SCET, it was pointed out in ref. Manohar:2018kfx that the nonsinglet electroweak PDFs possess this property. It is also true for the beam function in the initial state, and for the jet functions, or the FJFs in the final state, and for the soft function. The purposes of this paper are to analyze the structure of the factorization in the weak processes, and to resum large logarithms by probing the structure of the divergences including the rapidity divergence from the nonsinglet contributions.

As a concrete example, we consider an event shape, especially the NN-jettiness Stewart:2010tn ; Jouttenus:2011wh (in fact, 2-jettiness) in ee+μμ++Xe^{-}e^{+}\rightarrow\mu^{-}\mu^{+}+X. By considering the jettiness, we can probe the hierarchy of scales in effective theories, and the characteristics of a measurement-dependent factorization can be discussed. In addition, we are interested in the case in which there are four distinct lightlike directions. For this reason, NN-jettiness is better suited than the beam thrust in the Drell-Yan process Stewart:2010pd or the jet thrust in ee+e^{-}e^{+} collisions. In terms of QCD, it corresponds to the NN-jettiness from the partonic subprocess qq¯qq¯+Xq\overline{q}\rightarrow q^{\prime}\overline{q}^{\prime}+X.

The rest of the paper is organized as follows. In section 2, we explain the NN-jettiness, and establish the power counting of the relevant momenta and the jettiness to choose the appropriate effective theories. In section 3, we first construct the factorization of the NN-jettiness in SCETI\mathrm{SCET_{I}}, in which the ingredients of the factorized parts are extracted and defined. The beam functions, the semi-inclusive jet functions, and the soft functions are constructed in the context of SCETI\mathrm{SCET_{I}} with the weak singlet and nonsinglet contributions. Then we scale down to SCETII\mathrm{SCET_{II}}  and establish the factorization by probing the relations between the beam function in SCETI\mathrm{SCET_{I}}, and the PDF in SCETII\mathrm{SCET_{II}}, or those between the fragmenting jet functions and the fragmentation functions. In section 4, we examine the source of the rapidity divergence, set up the rapidity regulators in the collinear and the soft sectors and discuss their characteristics.

In section 5, we present the radiative corrections of the collinear parts at next-to-leading order (NLO), which consist of the beam functions, the PDFs, the jet functions, the fragmentation functions and the FJFs. In section 6, the hard functions are collected for the process e¯eμ¯μ\ell_{e}\overline{\ell}_{e}\rightarrow\ell_{\mu}\overline{\ell}_{\mu} with the left-handed electron and muon doublets, and the hard anomalous dimension matrix is presented. The soft functions are analyzed in section 7, which are expressed in terms of the matrices in weak-charge space. In section 8, we combine all the factorized parts to show the RG evolution of the NN-jettiness, and we conclude in section 9. Long technical calculations are relegated to appendices. In appendix A, we list the Laplace transforms of the distributions. In appendices B and C, we present how to obtain the collinear functions and the matching coefficients in the limit of small MM. In appendix D, we illustrate the color matrices for the soft functions at tree level, and we show that there is no mixing at one loop for the soft functions with four nonsinglets.

2 SCET setup for the jettiness in ee+μμ+Xe^{-}e^{+}\rightarrow\mu^{-}\mu^{+}X

We consider the NN-jettiness222We keep using the terminology NN-jettiness, bearing in mind that we actually consider the 2-jettiness 𝒯2\mathcal{T}_{2} in our case., which is defined as Stewart:2010tn ; Jouttenus:2011wh

𝒯N=kmin{2qipkωi},\mathcal{T}_{N}=\sum_{k}\mathrm{min}\ \Bigl{\{}\frac{2q_{i}\cdot p_{k}}{\omega_{i}}\Bigr{\}}, (1)

where ii runs over 1, 2 for the beams, and 3,,N+23,\cdots,N+2 for the final-state jets. Here qiq_{i} are the reference momenta of the beams and the jets with the normalization factors ωi=n¯iqi\omega_{i}=\overline{n}_{i}\cdot q_{i}, and pkp_{k} are the momenta of all the measured particles in the final state.

q1,2μ=12z1,2Ecmn1,2μ=12ω1,2n1,2μ,qiμ=12ωiniμ,(i=3,,N+2),q_{1,2}^{\mu}=\frac{1}{2}z_{1,2}E_{\mathrm{cm}}n_{1,2}^{\mu}=\frac{1}{2}\omega_{1,2}n_{1,2}^{\mu},\ q_{i}^{\mu}=\frac{1}{2}\omega_{i}n_{i}^{\mu},(i=3,\cdots,N+2), (2)

where z1,2z_{1,2} are the momentum fractions of the beams. Here n1n_{1} and n2n_{2} are lightcone vectors for the beams, which are aligned to the zz direction, n1μ=(1,0,0,1),n2μ=(1,0,0,1)n_{1}^{\mu}=(1,0,0,1),\ n_{2}^{\mu}=(1,0,0,-1), and nin_{i} are the lightcone vectors specifying the jet directions. Typically we write the lightlike vectors as ni=(1,𝐧i)n_{i}=(1,\mathbf{n}_{i}) , n¯i=(1,𝐧i)\overline{n}_{i}=(1,-\mathbf{n}_{i}), where the unit vector 𝐧i\mathbf{n}_{i} denotes the direction of the spatial momentum 𝐩i\mathbf{p}_{i}. The NN-jettiness in eq. (1) can also be expressed in terms of some arbitrary hard scales instead of the normalization factor ωi\omega_{i}.

In references Jouttenus:2011wh ; Bertolini:2017efs , the authors have considered the differential distribution with respect to the individual jettiness, which is defined as

𝒯~i=k2qipkωiijθ(njpknipk).\tilde{\mathcal{T}}_{i}=\sum_{k}\frac{2q_{i}\cdot p_{k}}{\omega_{i}}\prod_{i\neq j}\theta(n_{j}\cdot p_{k}-n_{i}\cdot p_{k}). (3)

Here we consider the total NN-jettiness 𝒯N\mathcal{T}_{N}, which is given by 𝒯N=i𝒯~i\mathcal{T}_{N}=\sum_{i}\tilde{\mathcal{T}}_{i}.

For 𝒯2Q\mathcal{T}_{2}\ll Q, SCET can be applied to the process ee+μμ++Xe^{-}e^{+}\rightarrow\mu^{-}\mu^{+}+X, but we should determine which effective theories are to be employed, depending on the hierarchy of the scales in the collinear and soft momenta and the magnitude of the jettiness. The nn-collinear momentum scales as pcμ=(n¯pc,pc,npc)=(pc,pc,pc+)Q(1,λ,λ2)p_{c}^{\mu}=(\overline{n}\cdot p_{c},p_{c\perp},n\cdot p_{c})=(p_{c}^{-},p_{c\perp},p_{c}^{+})\sim Q(1,\lambda,\lambda^{2}), where λpc/n¯pc\lambda\sim p_{c\perp}/\overline{n}\cdot p_{c} is the small parameter in SCET. We can consider either SCETI\mathrm{SCET_{I}}, or continue down to SCETII\mathrm{SCET_{II}}, depending on the power counting of the soft momentum.

In SCETI\mathrm{SCET}_{\mathrm{I}}, the ultrasoft (usoft) momentum scales as pusμ=(pus,pus,pus+)Q(λ2,λ2,λ2)p_{us}^{\mu}=(p_{us}^{-},p_{us\perp},p_{us}^{+})\sim Q(\lambda^{2},\lambda^{2},\lambda^{2}), while the soft momentum in SCETII\mathrm{SCET}_{\mathrm{II}} scales as psμ=(ps,ps,ps+)Q(λ,λ,λ)p_{s}^{\mu}=(p_{s}^{-},p_{s\perp},p_{s}^{+})\sim Q(\lambda,\lambda,\lambda). The gauge boson mass MM is another mass scale which enters into the system. When the usoft or the soft gauge bosons are on their mass shell, pus2ps2M2p_{us}^{2}\sim p_{s}^{2}\sim M^{2}, it implies that the gauge boson mass MM is power counted as Qλ2Q\lambda^{2} in SCETI\mathrm{SCET_{I}}, and QλQ\lambda in SCETII\mathrm{SCET_{II}}.

The scale of the NN-jettiness 𝒯N\mathcal{T}_{N} from eq. (1), is extracted from the lightcone component p+p^{+}. Note, however, that the magnitudes of p+p^{+} for the collinear and the usoft momenta in SCETI\mathrm{SCET_{I}} are comparable to each other, hence the contribution to the NN-jettiness comes both from the collinear and the usoft sectors. On the other hand, the magnitude of p+p^{+} for the collinear momentum is much smaller than that for the soft momentum in SCETII\mathrm{SCET_{II}}. In this case, the contribution to the NN-jettiness comes only from the soft sector. Therefore we expect that the structure of the factorization takes different forms in SCETI\mathrm{SCET_{I}} and in SCETII\mathrm{SCET_{II}}.

In SCETI\mathrm{SCET_{I}}, the hierarchy of the scales is given as 𝒯2M2pc2Q𝒯Q2\mathcal{T}^{2}\sim M^{2}\ll p_{c}^{2}\sim Q\mathcal{T}\ll Q^{2}. The relevant modes scale as

n-collinear:pcμ(Q,Q𝒯,𝒯)(Q,QM,M)(Q,p,p2/Q),\displaystyle n\mbox{-}\mathrm{collinear:}\ p_{c}^{\mu}\sim(Q,\sqrt{Q\mathcal{T}},\mathcal{T})\sim(Q,\sqrt{QM},M)\sim(Q,p_{\perp},p_{\perp}^{2}/Q),
usoft:pusμ(𝒯,𝒯,𝒯)(M,M,M).\displaystyle\mathrm{usoft:}\ p_{us}^{\mu}\sim(\mathcal{T},\mathcal{T},\mathcal{T})\sim(M,M,M). (4)

The NN-jettiness probes the scale of order pc+pus+Qλ2𝒯p_{c}^{+}\sim p_{us}^{+}\sim Q\lambda^{2}\sim\mathcal{T}, hence both the collinear and the usoft parts contribute to the NN-jettiness.

If we consider the kinematical situation in which M2pc2Q𝒯M^{2}\ll p_{c}^{2}\sim Q\mathcal{T}, the framework of SCETI\mathrm{SCET_{I}} suffices to describe the NN-jettiness. However, we would like to include another kinematical case, in which the jet becomes narrower, and we reach the region M2pc2𝒯2M^{2}\sim p_{c}^{2}\sim\mathcal{T}^{2}. Then the plus component pc+𝒯2/Qp_{c}^{+}\sim\mathcal{T}^{2}/Q does not contribute to the jettiness. However, there remains large logarithms associated with Q/MQ/M, which should be resummed. This can be achieved by going from SCETI\mathrm{SCET_{I}} to SCETII\mathrm{SCET_{II}} through the matching. The beam functions and the jet functions in SCETI\mathrm{SCET_{I}} have virtuality pc2QMp_{c}^{2}\sim QM, and we need a second stage of matching to separate these scales. And the ultrasoft function is scaled down to the soft function, which develops the rapidity divergence. These necessitate the use of SCETII\mathrm{SCET_{II}}.

In SCETII\mathrm{SCET_{II}}, the hierarchy of scales is given by 𝒯2M2pc2Q𝒯Q2\mathcal{T}^{2}\sim M^{2}\sim p_{c}^{2}\ll Q\mathcal{T}\ll Q^{2}. The hard-collinear, collinear and soft modes scale as

n-hard-collinear:phcμ(Q,Q𝒯,𝒯)(Q,QM,M),\displaystyle n\mbox{-}\mathrm{hard}\mbox{-}\mathrm{collinear:}\ p_{hc}^{\mu}\sim(Q,\sqrt{Q\mathcal{T}},\mathcal{T})\sim(Q,\sqrt{QM},M),
n-collinear:pcμ(Q,𝒯,𝒯2/Q)(Q,M,M2/Q)(Q,p,p2/Q),\displaystyle n\mbox{-}\mathrm{collinear:}\ p_{c}^{\mu}\sim(Q,\mathcal{T},\mathcal{T}^{2}/Q)\sim(Q,M,M^{2}/Q)\sim(Q,p_{\perp},p_{\perp}^{2}/Q),
soft:psμ(𝒯,𝒯,𝒯)(M,M,M).\displaystyle\mathrm{soft:}\ p_{s}^{\mu}\sim(\mathcal{T},\mathcal{T},\mathcal{T})\sim(M,M,M). (5)

In fact, the hard-collinear modes are not the dynamical degrees of freedom in SCETII\mathrm{SCET_{II}}, but these are the modes from SCETI\mathrm{SCET_{I}} to be integrated out to obtain SCETII\mathrm{SCET_{II}}. The NN-jettiness probes the scale of order ps+QλMp_{s}^{+}\sim Q\lambda\sim M, and the collinear contribution with pc+Qλ2M2/Qp_{c}^{+}\sim Q\lambda^{2}\sim M^{2}/Q does not contribute to the jettiness. This is also recognized in ref. Lustermans:2019plv in a different context of measuring the transverse momentum qTq_{T} and the 0-jettiness 𝒯0\mathcal{T}_{0}.

We first describe SCETI\mathrm{SCET_{I}} in order to set up the elements of the factorization. In order to obtain SCETII\mathrm{SCET_{II}}, the hard-collinear modes, which are previously collinear modes in SCETI\mathrm{SCET_{I}}, are integrated out to reach the collinear modes in SCETII\mathrm{SCET_{II}}. Note that the scaling of the usoft momentum in SCETI\mathrm{SCET_{I}}, and the soft momentum in SCETII\mathrm{SCET_{II}} remain the same, but the small parameter λ\lambda, responsible for the power counting, is rescaled from 𝒯/Q\sqrt{\mathcal{T}/Q} to 𝒯/Q\mathcal{T}/Q. We present the results in both cases.

3 Factorization for the NN-jettiness

3.1 SCETI\mathrm{SCET_{I}}: 𝒯2M2pc2Q𝒯Q2\mathcal{T}^{2}\sim M^{2}\ll p_{c}^{2}\sim Q\mathcal{T}\ll Q^{2}

The procedure of obtaining the effective operators by integrating out the degrees of freedom of order QQ with their Wilson coefficients was previously studied extensively in constructing the weak effective Hamiltonian with the QCD radiative corrections Buchalla:1995vs . We follow the same technique, and the Wilson coefficients DID_{I} for the operators OIO_{I} are obtained by matching the full theory onto SCET at any fixed order. The four-lepton operators for the process ee+μμ+Xe^{-}e^{+}\rightarrow\mu^{-}\mu^{+}X in SCET are given as333In ref. Manohar:2018kfx , other four-fermion operators are listed for neutrino scattering νpX\nu p\rightarrow\ell X.

OI(x)=¯L2(x)TIγμL1(x)¯L3(x)TIγμL4(x),(I=1,2),O_{I}(x)=\overline{\ell}_{L2}(x)T_{I}\gamma^{\mu}\ell_{L1}(x)\cdot\overline{\ell}_{L3}(x)T_{I}\gamma_{\mu}\ell_{L4}(x),\ (I=1,2), (6)

at leading order in M/QM/Q. We label the incoming leptons as 1 and 2, and the outgoing leptons as 3 and 4. The index II refers to the weak charge (T1=taT_{1}=t^{a} for the nonsinglet and T2=1T_{2}=1 for the singlet). At tree level, O1O_{1} is obtained by the exchange of a gauge boson, which leads to the matching coefficient

D1(0)=ig22p1p2,D_{1}^{(0)}=\frac{ig^{2}}{2p_{1}\cdot p_{2}}, (7)

where the incoming momenta are p1p_{1} and p2p_{2} for the weak doublets L1\ell_{L1} and L2\ell_{L2} with 2p1p2Q22p_{1}\cdot p_{2}\sim Q^{2}. The matching coefficient D2D_{2} for O2O_{2} begins at order g4g^{4}. Here we can utilize the results of the corresponding four-quark operators in QCD for qq¯qq¯q\overline{q}\rightarrow q^{\prime}\overline{q}^{\prime} at NLO, and the Wilson coefficients can be read off from those in QCD in ref. Kelley:2010fn by adjusting the group theory factors for SU(2)WSU(2)_{W}. In constructing the Wilson coefficients for our process, note that only the left-handed doublets participate in the scattering. The effective Lagrangian for the leptonic high-energy scattering can be written as

eff=iIDIOI+hermitianconjugate.\mathcal{L}_{\mathrm{eff}}=-i\sum_{I}D_{I}O_{I}+\mathrm{hermitian\ conjugate}. (8)

The fields in the operators OIO_{I} are now expressed in terms of the collinear fields in SCET. We refer to refs. Bauer:2000ew ; Bauer:2000yr ; Bauer:2001ct ; Bauer:2001yt for the detailed formulation of SCET, and here we collect the necessary ingredients to express the operators in SCET. We introduce a lightcone vector nμn^{\mu}, and its conjugate light-cone vector n¯μ\overline{n}^{\mu} such that n2=n¯2=0n^{2}=\overline{n}^{2}=0 and nn¯=2n\cdot\overline{n}=2. A four-vector pμp^{\mu} can be decomposed as pμ=(p,p,p+)p^{\mu}=(p^{-},p_{\perp},p^{+}), and the nn-collinear momentum pcμp_{c}^{\mu} scales as pcμ=(pc,pc,pc+)pc(1,λ,λ2)p_{c}^{\mu}=(p_{c}^{-},p_{c\perp},p_{c}^{+})\sim p_{c}^{-}(1,\lambda,\lambda^{2}), where λ\lambda is a small parameter in SCET. The usoft momentum scales as pusμ=(pus,pus,pus+)pc(λ2,λ2,λ2)p_{us}^{\mu}=(p_{us}^{-},p_{us\perp},p_{us}^{+})\sim p_{c}^{-}(\lambda^{2},\lambda^{2},\lambda^{2}).

The collinear operators, which are invariant under collinear gauge transformations, are constructed in terms of the product of the fields and the Wilson lines. The basic building blocks for the lepton and the gauge bosons are defined as

n(x)=Wn(x)ξn(x),nμ(x)=1g[Wn(x)iDnμWn(x)],\ell_{n}(x)=W_{n}^{\dagger}(x)\xi_{n}(x),\ \ \mathcal{B}_{n\perp}^{\mu}(x)=\frac{1}{g}[W_{n}^{\dagger}(x)iD_{n\perp}^{\mu}W_{n}(x)], (9)

where iDnμ=𝒫nμ+gAnμiD_{n\perp}^{\mu}=\mathcal{P}_{n\perp}^{\mu}+gA_{n\perp}^{\mu} is the covariant derivative. The collinear Wilson line is given as

Wn(x)=Pexp(ig0𝑑sn¯An(x+sn¯))=perm.exp[gn¯An(x)n¯𝒫],W_{n}(x)=\mathrm{P}\exp\Bigl{(}ig\int_{-\infty}^{0}ds\overline{n}\cdot A_{n}(x+s\overline{n})\Bigr{)}=\sum_{\mathrm{perm.}}\exp\Bigl{[}-g\frac{\overline{n}\cdot A_{n}(x)}{\overline{n}\cdot\mathcal{P}}\Bigr{]}, (10)

where P denotes the path ordering along the integration path.

At leading order in SCET, the interactions of soft gauge bosons with collinear fields exponentiate to form eikonal soft Wilson lines444When no confusion arises, we refer to the usoft momentum as the soft momentum.. The soft gauge bosons are decoupled by the field redefinition Bauer:2001yt

n(0)(x)=Yn(x)n(x),nμ(0)(x)=Yn(x)nμ(x)Yn(x).\ell_{n}^{(0)}(x)=Y_{n}^{\dagger}(x)\ell_{n}(x),\ \ \mathcal{B}_{n\perp}^{\mu(0)}(x)=Y_{n}^{\dagger}(x)\mathcal{B}_{n\perp}^{\mu}(x)Y_{n}(x). (11)

In this paper we use the fields after the decoupling and we drop the superscript (0) for simplicity. Here Yn(x)Y_{n}(x) is the soft Wilson line in the fundamental representation

Yn(x)=Pexp(ig0𝑑snAus(x+sn))=perm.exp[gnAus(x)n𝒫].Y_{n}(x)=\mathrm{P}\exp\Bigl{(}ig\int_{-\infty}^{0}dsn\cdot A_{us}(x+sn)\Bigr{)}=\sum_{\mathrm{perm.}}\exp\Bigl{[}-g\frac{n\cdot A_{us}(x)}{n\cdot\mathcal{P}}\Bigr{]}. (12)

Employing SCET, the operators OIO_{I} in eq. (6) are written as

OI=¯L2Y2γμTIY1L1¯L3Y3γμTIY4L4.O_{I}=\overline{\ell}_{L2}Y_{2}^{\dagger}\gamma^{\mu}T_{I}Y_{1}\ell_{L1}\cdot\overline{\ell}_{L3}Y_{3}^{\dagger}\gamma_{\mu}T_{I}Y_{4}\ell_{L4}. (13)

The differential cross section for the 2-jettiness 𝒯2\mathcal{T}_{2} is given by Bauer:2008jx

dσd𝒯2=12sd4xXI|eff(x)|XX|eff(0)|Iδ(𝒯2g(X)),\frac{d\sigma}{d\mathcal{T}_{2}}=\frac{1}{2s}\int d^{4}x\sum_{X}\langle I|\mathcal{L}_{\mathrm{eff}}(x)|X\rangle\langle X|\mathcal{L}_{\mathrm{eff}}(0)|I\rangle\delta\Bigl{(}\mathcal{T}_{2}-g(X)\Bigr{)}, (14)

where |I|I\rangle represents the initial state, |X|X\rangle denotes the final state, and the sum over XX includes a sum over states with the appropriate phase space. The function g(X)g(X) computes the value of the jettiness for the final state XX. In SCET, the final states |X|X\rangle consist of the collinear states |Xi|X_{i}\rangle in the nin_{i} directions (i=1,2,3,4i=1,2,3,4) and the soft states |Xs|X_{s}\rangle. Since the nin_{i}-collinear particles do not interact with each other, and the soft particles are decoupled from the collinear sectors by the redefinition in eq. (11), the final states |X|X\rangle in the Hilbert space can be expressed in terms of the tensor product of the collinear states |Xi|X_{i}\rangle and the soft states |Xs|X_{s}\rangle as

|X=|X1|X2|X3|X4|Xs.|X\rangle=|X_{1}\rangle\otimes|X_{2}\rangle\otimes|X_{3}\rangle\otimes|X_{4}\rangle\otimes|X_{s}\rangle. (15)

The factorization in SCET is established in the scattering cross section, that is, at the amplitude-squared level, instead of at the amplitude level, as shown in eq. (14). Therefore we need to factorize the product of the operators OI(x)OJ(0)O_{I}^{\dagger}(x)O_{J}(0), which will be reorganized in terms of the collinear operators in each collinear direction along with the soft Wilson lines, and it will be implemented in eq. (14) to express the factorized result for the NN-jettiness. The product of the operators OI(x)OJ(0)O_{I}^{\dagger}(x)O_{J}(0) is given as

OI(x)OJ(0)\displaystyle O_{I}^{\dagger}(x)O_{J}(0) =(¯L1Y1γνTIY2L2¯L4Y4γνTIY3L3)(x)\displaystyle=\Bigl{(}\overline{\ell}_{L1}Y_{1}^{\dagger}\gamma^{\nu}T_{I}Y_{2}\ell_{L2}\cdot\overline{\ell}_{L4}Y_{4}^{\dagger}\gamma_{\nu}T_{I}Y_{3}\ell_{L3}\Bigr{)}(x)
×(¯L2Y2γμTJY1L1¯L3Y3γμTJY4L4)(0).\displaystyle\times\Bigl{(}\overline{\ell}_{L2}Y_{2}^{\dagger}\gamma^{\mu}T_{J}Y_{1}\ell_{L1}\cdot\overline{\ell}_{L3}Y_{3}^{\dagger}\gamma_{\mu}T_{J}Y_{4}\ell_{L4}\Bigr{)}(0). (16)

We rewrite the product by grouping the fields in respective collinear directions, and use the relation Manohar:2018kfx

(¯n)αi(n)βj\displaystyle(\overline{\ell}_{n})^{i}_{\alpha}(\ell_{n})^{j}_{\beta} =12Nδij(𝒫Ln/)βα¯nn¯/2n+(tc)ji(𝒫Ln/)βα¯nn¯/2tcn\displaystyle=\frac{1}{2N}\delta^{ij}(\mathcal{P}_{L}{n}\!\!\!/)_{\beta\alpha}\overline{\ell}_{n}\frac{{\overline{n}}\!\!\!/}{2}\ell_{n}+(t^{c})^{ji}(\mathcal{P}_{L}{n}\!\!\!/)_{\beta\alpha}\overline{\ell}_{n}\frac{{\overline{n}}\!\!\!/}{2}t^{c}\ell_{n}
δij(𝒫Ln/)βαC0+(tc)ji(𝒫Ln/)βαCc,\displaystyle\equiv\delta^{ij}(\mathcal{P}_{L}{n}\!\!\!/)_{\beta\alpha}C_{\ell}^{0}+(t^{c})^{ji}(\mathcal{P}_{L}{n}\!\!\!/)_{\beta\alpha}C_{\ell}^{c}, (17)

where ii, jj are the gauge indices, α\alpha, β\beta are the Dirac indices, and 𝒫L=(1γ5)/2\mathcal{P}_{L}=(1-\gamma_{5})/2. To make the notation concise, we have extended the index to 0 such that

C0(x,y)=12N¯Ln(x)n¯/2T0Ln(y),Ca(x,y)=¯Ln(x)n¯/2TaLn(y),C_{\ell}^{0}(x,y)=\frac{1}{2N}\overline{\ell}_{Ln}(x)\frac{{\overline{n}}\!\!\!/}{2}T^{0}\ell_{Ln}(y),\ C_{\ell}^{a}(x,y)=\overline{\ell}_{Ln}(x)\frac{{\overline{n}}\!\!\!/}{2}T^{a}\ell_{Ln}(y), (18)

with T0=1T^{0}=1 and Ta=taT^{a}=t^{a} are the gauge generators for a=1,,N21a=1,\cdots,N^{2}-1. We keep NN as it is for the SU(N)SU(N) gauge interaction, and the Casimir invariants are denoted by CF=(N21)/(2N)C_{F}=(N^{2}-1)/(2N) and CA=NC_{A}=N. For the SU(2)WSU(2)_{W} gauge group, we put N=2N=2.

After some manipulation, eq. (3.1) can be written as

16n1n4n2n3(Y2TJY1(0))i1k1(Y1TIY2(x))i2k2(Y3TJy4(0))i3k3(Y4TIY3(x))i4k4\displaystyle 16n_{1}\cdot n_{4}n_{2}\cdot n_{3}\Bigl{(}Y_{2}^{\dagger}T_{J}Y_{1}(0)\Bigr{)}^{i_{1}k_{1}}\Bigl{(}Y_{1}^{\dagger}T_{I}Y_{2}(x)\Bigr{)}^{i_{2}k_{2}}\Bigl{(}Y_{3}^{\dagger}T_{J}y_{4}(0)\Bigr{)}^{i_{3}k_{3}}\Bigl{(}Y_{4}^{\dagger}T_{I}Y_{3}(x)\Bigr{)}^{i_{4}k_{4}}
×[(Tc)k2i1C2c(0,x)][(Td)k1i2C1d(x,0)][(Te)k4i3C3e(0,x)][(Tf)k3i4C4f(x,0)]\displaystyle\times\Bigl{[}(T^{c})^{k_{2}i_{1}}C^{c}_{\ell_{2}}(0,x)\Bigr{]}\Bigl{[}(T^{d})^{k_{1}i_{2}}C^{d}_{\ell_{1}}(x,0)\Bigr{]}\Bigl{[}(T^{e})^{k_{4}i_{3}}C^{e}_{\ell_{3}}(0,x)\Bigr{]}\Bigl{[}(T^{f})^{k_{3}i_{4}}C^{f}_{\ell_{4}}(x,0)\Bigr{]}
=16n1n4n2n3C2c(0,x)C1d(x,0)C3e(0,x)C4f(x,0)\displaystyle=16n_{1}\cdot n_{4}n_{2}\cdot n_{3}C^{c}_{\ell_{2}}(0,x)C^{d}_{\ell_{1}}(x,0)C^{e}_{\ell_{3}}(0,x)C^{f}_{\ell_{4}}(x,0)
×Tr[TcY2TJY1(0)TdY1TIY2(x)]Tr[TeY3TJY4(0)TfY4TIY3(x)].\displaystyle\times\mathrm{Tr}\ \Bigl{[}T^{c}Y_{2}^{\dagger}T_{J}Y_{1}(0)T^{d}Y_{1}^{\dagger}T_{I}Y_{2}(x)\Bigr{]}\cdot\mathrm{Tr}\ \Bigl{[}T^{e}Y_{3}^{\dagger}T_{J}Y_{4}(0)T^{f}Y_{4}^{\dagger}T_{I}Y_{3}(x)\Bigr{]}. (19)

Here the coefficient n1n4n2n3n_{1}\cdot n_{4}n_{2}\cdot n_{3} will be absorbed into the hard function. In order to construct the expression for the jettiness, all the collinear and the soft parts should be organized in such a way that the contribution to the jettiness from each part becomes manifest.

The NN-jettiness (the 2-jettiness here) can be expressed in terms of the matrix elements for each collinear part and the soft part, which is schematically expressed as

dσd𝒯2\displaystyle\frac{d\sigma}{d\mathcal{T}_{2}} =12sIJHJIe+|C2c(0,x)|e+e|C1d(x,0)|e0|C3e(0,x)|00|C4f(x,0)|0\displaystyle=\frac{1}{2s}\sum_{IJ}H_{JI}\langle e^{+}|C^{c}_{\ell_{2}}(0,x)|e^{+}\rangle\langle e^{-}|C^{d}_{\ell_{1}}(x,0)|e^{-}\rangle\langle 0|C^{e}_{\ell_{3}}(0,x)|0\rangle\langle 0|C^{f}_{\ell_{4}}(x,0)|0\rangle
×0|Tr[TcY2TJY1(0)TdY1TIY2(x)]Tr[TeY3TJY4(0)TfY4TIY3(x)]|0\displaystyle\times\langle 0|\mathrm{Tr}\ \Bigl{[}T^{c}Y_{2}^{\dagger}T_{J}Y_{1}(0)T^{d}Y_{1}^{\dagger}T_{I}Y_{2}(x)\Bigr{]}\cdot\mathrm{Tr}\ \Bigl{[}T^{e}Y_{3}^{\dagger}T_{J}Y_{4}(0)T^{f}Y_{4}^{\dagger}T_{I}Y_{3}(x)\Bigr{]}|0\rangle
×δ(𝒯2g(X)).\displaystyle\times\delta\Bigl{(}\mathcal{T}_{2}-g(X)\Bigr{)}. (20)

Eq. (3.1) is unavoidably complicated due to the presence of the gauge indices, compared to the corresponding expression in QCD, in which there are only singlet contributions.

The matrix elements between the corresponding states in the Hilbert space can be obtained because the collinear currents CaC_{\ell}^{a} in different collinear directions and the soft part are decoupled. For example, e|C1d(x,0)|e\langle e^{-}|C^{d}_{\ell_{1}}(x,0)|e^{-}\rangle yields the electron beam function, and when we consider the intermediate states, the projection into the n1n_{1}-collinear states |X1X1|\sum|X_{1}\rangle\langle X_{1}| is inserted. The matrix element 0|C3e(0,x)|0\langle 0|C^{e}_{\ell_{3}}(0,x)|0\rangle describes the final-state jet and the projection |X3X3|\sum|X_{3}\rangle\langle X_{3}| is inserted for the intermediate states. The matrix element for the soft Wilson lines yields the soft function, and the intermediate states consist of |XsXs|\sum|X_{s}\rangle\langle X_{s}|. The treatment of the matrix elements is delineated below.

3.1.1 The beam function

The beam functions are obtained by taking the matrix elements of C2c(0,x)C^{c}_{\ell_{2}}(0,x) and C1d(x,0)C^{d}_{\ell_{1}}(x,0) in eq. (3.1) between the initial states |e(P1)|e^{-}(P_{1})\rangle or |e+(P2)|e^{+}(P_{2})\rangle. For the matrix element of C1d(x,0)C^{d}_{\ell_{1}}(x,0), the coordinate xx can be expanded around the lightcone coordinate n1xn_{1}\cdot x, and the subleading terms can be neglected. Then by writing p+=n1pp^{+}=n_{1}\cdot p, p=n¯1pp^{-}=\overline{n}_{1}\cdot p, the matrix element can be written as

e|C1d(x,0)|e=kde|¯L1(x+n¯12)n¯/12TdL1(0)|e\displaystyle\langle e^{-}|C_{\ell_{1}}^{d}(x,0)|e^{-}\rangle=k_{d}\langle e^{-}|\overline{\ell}_{L1}\Bigl{(}x^{+}\frac{\overline{n}_{1}}{2}\Bigr{)}\frac{{\overline{n}}\!\!\!/_{1}}{2}T^{d}\ell_{L1}(0)|e^{-}\rangle
=kd𝑑q+𝑑qe|eip^x+/2¯L1(0)eip^x+/2n¯/12Tdδ(q++𝒫+)δ(q+𝒫)L1(0)|e\displaystyle=k_{d}\int dq^{+}dq^{-}\langle e^{-}|e^{i\hat{p}^{-}x^{+}/2}\overline{\ell}_{L1}(0)e^{-i\hat{p}^{-}x^{+}/2}\frac{{\overline{n}}\!\!\!/_{1}}{2}T^{d}\delta(q^{+}+\mathcal{P}^{+})\delta(q^{-}+\mathcal{P}^{-})\ell_{L1}(0)|e^{-}\rangle
=kd𝑑q+𝑑qei(P1q)x+/2e|¯L1(0)n¯/12Tdδ(q++𝒫+)δ(q+𝒫)L1(0)|e,\displaystyle=k_{d}\int dq^{+}dq^{-}e^{i(P_{1}^{-}-q^{-})x^{+}/2}\langle e^{-}|\overline{\ell}_{L1}(0)\frac{{\overline{n}}\!\!\!/_{1}}{2}T^{d}\delta(q^{+}+\mathcal{P}^{+})\delta(q^{-}+\mathcal{P}^{-})\ell_{L1}(0)|e^{-}\rangle, (21)

where k0=1/(2N)k_{0}=1/(2N) for the singlet and kd=1k_{d}=1 (d0d\neq 0) for the nonsinglets. In the second line, the integration of the delta functions, which is equal to the identity, is inserted. The operators 𝒫±\mathcal{P}^{\pm} extract the corresponding momenta for the annihilated particles. And ¯L1(x+n¯1/2)\overline{\ell}_{L1}(x^{+}\overline{n}_{1}/2) is translated to the origin using the momentum operator p^μ\hat{p}^{\mu}.

The last part in the last eq. (3.1.1) can be manipulated as

δ(q+𝒫)L1(0)|e(P1)=dy2πei(𝒫+q)yL1(0)ei𝒫yei𝒫y|e(P1)\displaystyle\delta(q^{-}+\mathcal{P}^{-})\ell_{L1}(0)|e^{-}(P_{1})\rangle=\int\frac{dy}{2\pi}e^{i(\mathcal{P}^{-}+q^{-})y}\ell_{L1}(0)e^{-i\mathcal{P}^{-}y}e^{i\mathcal{P}^{-}y}|e^{-}(P_{1}^{-})\rangle
=dy2πei(P1q)yei𝒫yL1(0)ei𝒫y|e(P1)\displaystyle=\int\frac{dy}{2\pi}e^{-i(P_{1}^{-}-q^{-})y}e^{i\mathcal{P}^{-}y}\ell_{L1}(0)e^{-i\mathcal{P}^{-}y}|e^{-}(P_{1}^{-})\rangle
=dy2πei(P1q)y[ei𝒫yL1(0)]|e(P1)=[δ(P1q𝒫)L1(0)]|e(P1),\displaystyle=\int\frac{dy}{2\pi}e^{-i(P_{1}^{-}-q^{-})y}[e^{i\mathcal{P}^{-}y}\ell_{L1}(0)]|e^{-}(P_{1}^{-})\rangle=[\delta(P_{1}^{-}-q^{-}-\mathcal{P}^{-})\ell_{L1}(0)]|e^{-}(P_{1}^{-})\rangle, (22)

using the relation ei𝒫yL1(0)ei𝒫y=[ei𝒫yL1(0)]e^{i\mathcal{P}^{-}y}\ell_{L1}(0)e^{-i\mathcal{P}^{-}y}=[e^{i\mathcal{P}^{-}y}\ell_{L1}(0)], where the operator 𝒫\mathcal{P}^{-} in the bracket acts only inside the bracket.

Now we change the variables to q=(1z1)n¯1P1q^{-}=(1-z_{1})\overline{n}_{1}\cdot P_{1}, q+=t1/ω1q^{+}=t_{1}/\omega_{1} with ω1=z1n¯1P1\omega_{1}=z_{1}\overline{n}_{1}\cdot P_{1}. Then eq. (3.1.1) is written as

e|C1d(x,0)|e=kddz1z1𝑑t1ω1eiω1n1x/2\displaystyle\langle e^{-}|C_{\ell_{1}}^{d}(x,0)|e^{-}\rangle=k_{d}\int\frac{dz_{1}}{z_{1}}\int dt_{1}\omega_{1}e^{i\omega_{1}n_{1}\cdot x/2}
×e|¯L1(0)n¯/12Tdδ(t1+ω1n1𝒫)[δ(ω1n¯1𝒫)L1(0)]|e\displaystyle\times\langle e^{-}|\overline{\ell}_{L1}(0)\frac{{\overline{n}}\!\!\!/_{1}}{2}T^{d}\delta(t_{1}+\omega_{1}n_{1}\cdot\mathcal{P})\Bigl{[}\delta(\omega_{1}-\overline{n}_{1}\cdot\mathcal{P})\ell_{L1}(0)\Bigr{]}|e^{-}\rangle
=kddz1z1𝑑t1ω1eiω1n1x/2Bed(t1,z1,M,μ),\displaystyle=k_{d}\int\frac{dz_{1}}{z_{1}}\int dt_{1}\omega_{1}e^{i\omega_{1}n_{1}\cdot x/2}B_{e}^{d}(t_{1},z_{1},M,\mu), (23)

where the electron beam function Bed(t1,z1,M,μ)B_{e}^{d}(t_{1},z_{1},M,\mu) is defined as

Bed(t1,z1,M,μ)=e|¯L1(0)n¯/12Tdδ(t1+ω1n1𝒫)[δ(ω1n¯1𝒫)L1(0)]|e.B_{e}^{d}(t_{1},z_{1},M,\mu)=\langle e^{-}|\overline{\ell}_{L1}(0)\frac{{\overline{n}}\!\!\!/_{1}}{2}T^{d}\delta(t_{1}+\omega_{1}n_{1}\cdot\mathcal{P})[\delta(\omega_{1}-\overline{n}_{1}\cdot\mathcal{P})\ell_{L1}(0)]|e^{-}\rangle. (24)

Note that the quantity t1/ω1t_{1}/\omega_{1} is the contribution to the jettiness. Similarly, the matrix element for C2c(0,x)C_{\ell_{2}}^{c}(0,x) can be written as

e+|C2c(0,x)|e+=kcdz2z2𝑑t2ω2eiω2n2x/2Be¯c(t2,z2,M,μ),\langle e^{+}|C_{\ell_{2}}^{c}(0,x)|e^{+}\rangle=k_{c}\int\frac{dz_{2}}{z_{2}}dt_{2}\omega_{2}e^{i\omega_{2}n_{2}\cdot x/2}B_{\bar{e}}^{c}(t_{2},z_{2},M,\mu), (25)

where the anti-electron (positron) beam function Be¯c(t2,z2,M,μ)B_{\bar{e}}^{c}(t_{2},z_{2},M,\mu) is defined as

Be¯c(t2,z2,M,μ)=Tre+|L2(0)δ(t2+ω2n2𝒫)[δ(ω2n¯2𝒫)¯L2(0)n¯/22Tc]|e+.B_{\bar{e}}^{c}(t_{2},z_{2},M,\mu)=\mathrm{Tr}\,\langle e^{+}|\ell_{L2}(0)\delta(t_{2}+\omega_{2}n_{2}\cdot\mathcal{P})[\delta(\omega_{2}-\overline{n}_{2}\cdot\mathcal{P})\overline{\ell}_{L2}(0)\frac{{\overline{n}}\!\!\!/_{2}}{2}T^{c}]|e^{+}\rangle. (26)

3.1.2 The jet function and the semi-inclusive jet function

The matrix element for C3e(0,x)C_{\ell_{3}}^{e}(0,x) can be written, by inserting the identity d4p3δ(4)(p3+𝒫)\int d^{4}p_{3}\delta^{(4)}(p_{3}+\mathcal{P}), and translating L3(n3xn¯3/2)\ell_{L3}(n_{3}\cdot x\overline{n}_{3}/2) to the origin, as

0|C3e(0,x)|0\displaystyle\langle 0|C_{\ell_{3}}^{e}(0,x)|0\rangle =ked4p3eiω3n3x/2Tr0|L3(0)δ(4)(p3+𝒫)¯L3(0)n¯/32Te|0\displaystyle=k_{e}\int d^{4}p_{3}e^{-i\omega_{3}n_{3}\cdot x/2}\mathrm{Tr}\,\langle 0|\ell_{L3}(0)\delta^{(4)}(p_{3}+\mathcal{P})\overline{\ell}_{L3}(0)\frac{{\overline{n}}\!\!\!/_{3}}{2}T^{e}|0\rangle
=ked4p3(2π)3eiω3n3x/2ω3Je(p32,M,μ),\displaystyle=k_{e}\int\frac{d^{4}p_{3}}{(2\pi)^{3}}e^{-i\omega_{3}n_{3}\cdot x/2}\omega_{3}J^{e}(p_{3}^{2},M,\mu), (27)

where ω3=n¯3p3\omega_{3}=\overline{n}_{3}\cdot p_{3}, and the lepton jet function Je(p32,M,μ)J^{e}(p_{3}^{2},M,\mu) is defined as

Je(p32,M,μ)\displaystyle J^{e}(p_{3}^{2},M,\mu) =2(2π)3ω3Tr0|L3(0)δ(n3p3+n3𝒫)δ(2)(p3+𝒫)\displaystyle=\frac{2(2\pi)^{3}}{\omega_{3}}\mathrm{Tr}\,\langle 0|\ell_{L3}(0)\delta(n_{3}\cdot p_{3}+n_{3}\cdot\mathcal{P})\delta^{(2)}(p_{3\perp}+\mathcal{P}_{\perp})
×[δ(ω3+n¯3𝒫)¯L3(0)]n¯/32Te|0.\displaystyle\times[\delta(\omega_{3}+\overline{n}_{3}\cdot\mathcal{P})\overline{\ell}_{L3}(0)]\frac{{\overline{n}}\!\!\!/_{3}}{2}T^{e}|0\rangle. (28)

The quantity p32/ω3p_{3}^{2}/\omega_{3} contributes to the jettiness from the jet function. Here the trace refers to the sum over the Dirac indices and the weak charge indices. The definition of the jet function in eq. (3.1.2) may look different from the conventional one, but it turns out to be the same. Eq. (3.1.2) can be written as

Je(p32,M,μ)\displaystyle J^{e}(p_{3}^{2},M,\mu) =(2π)2dn¯3yω3ein3p3n¯3y/2\displaystyle=(2\pi)^{2}\int\frac{d\overline{n}_{3}\cdot y}{\omega_{3}}e^{in_{3}\cdot p_{3}\bar{n}_{3}\cdot y/2}
×Tr0|L3(0)ein3𝒫n¯3y/2δ(ω3+n¯3𝒫)δ(2)(p3+𝒫)¯L3(0)n¯/32Te|0\displaystyle\times\mathrm{Tr}\,\langle 0|\ell_{L3}(0)e^{in_{3}\cdot\mathcal{P}\bar{n}_{3}\cdot y/2}\delta(\omega_{3}+\overline{n}_{3}\cdot\mathcal{P})\delta^{(2)}(p_{3\perp}+\mathcal{P}_{\perp})\overline{\ell}_{L3}(0)\frac{{\overline{n}}\!\!\!/_{3}}{2}T^{e}|0\rangle
=(2π)2dn¯3yω3ein3p3n¯3y/2\displaystyle=(2\pi)^{2}\int\frac{d\overline{n}_{3}\cdot y}{\omega_{3}}e^{in_{3}\cdot p_{3}\bar{n}_{3}\cdot y/2}
×Tr0|L3(n¯3yn32)δ(ω3+n¯3𝒫)δ(2)(p3+𝒫)¯L3(0)n¯/32Te|0,\displaystyle\times\mathrm{Tr}\,\langle 0|\ell_{L3}\Bigl{(}\overline{n}_{3}\cdot y\frac{n_{3}}{2}\Bigr{)}\delta(\omega_{3}+\overline{n}_{3}\cdot\mathcal{P})\delta^{(2)}(p_{3\perp}+\mathcal{P}_{\perp})\overline{\ell}_{L3}(0)\frac{{\overline{n}}\!\!\!/_{3}}{2}T^{e}|0\rangle, (29)

which is the same as eq. (2.30) in ref. Stewart:2010qs except the factor 1/(2Nc)1/(2N_{c}). Note that the QCD jet functions single out the color singlet components by taking the color and spin averages. However, since we are dealing with the left-handed fields with a given weak charge, we do not average over spin and color.

Note that Je(p32,M,μ)J^{e}(p_{3}^{2},M,\mu) is the inclusive jet function, and the nonsinglet part is zero, because the weak doublets with the opposite weak charges contribute with the opposite sign. It is the reason why there is only the color singlet contribution in QCD. Here we can extend the definition of the jet functions such that the individual nonsinglet contribution can be extracted. And it can be probed by observing a muon and an antimuon in each final jet experimentally. If we are interested in the jet in which, say, a lepton ll (a muon) is observed, we can define the semi-inclusive jet function as

Jla(p32,M,μ)\displaystyle J_{l}^{a}(p_{3}^{2},M,\mu) =dn¯3pln¯3pld2𝐩lω3XTr0|L3(0)δ(n3p3+n3𝒫)δ(2)(p3+𝒫)|lX\displaystyle=\int\frac{d\overline{n}_{3}\cdot p_{l}}{\overline{n}_{3}\cdot p_{l}}\int\frac{d^{2}\mathbf{p}_{l}^{\perp}}{\omega_{3}}\sum_{X}\mathrm{Tr}\langle 0|\ell_{L3}(0)\delta(n_{3}\cdot p_{3}+n_{3}\cdot\mathcal{P})\delta^{(2)}(p_{3\perp}+\mathcal{P}_{\perp})|lX\rangle
×lX|[δ(ω3+n¯3𝒫)¯L3(0)]n¯/32Ta|0,\displaystyle\times\langle lX|[\delta(\omega_{3}+\overline{n}_{3}\cdot\mathcal{P})\overline{\ell}_{L3}(0)]\frac{{\overline{n}}\!\!\!/_{3}}{2}T^{a}|0\rangle, (30)

where the lepton ll is specified in the final state, noting that the phase space for ll can be written as

d3𝐩l(2π)32El=d4pl(2π)3δ(n3pln¯3pl𝐩l2)=12(2π)3dn¯3pln¯3pld2𝐩l.\int\frac{d^{3}\mathbf{p}_{l}}{(2\pi)^{3}2E_{l}}=\int\frac{d^{4}p_{l}}{(2\pi)^{3}}\delta(n_{3}\cdot p_{l}\overline{n}_{3}\cdot p_{l}-\mathbf{p}_{l}^{\perp 2})=\frac{1}{2(2\pi)^{3}}\int\frac{d\overline{n}_{3}\cdot p_{l}}{\overline{n}_{3}\cdot p_{l}}\int d^{2}\mathbf{p}_{l}^{\perp}. (31)

Then the semi-inclusive jet function at tree level is normalized as Jla(0)(p2)=δ(p2)Tr(TaPl)J_{l}^{a(0)}(p^{2})=\delta(p^{2})\mathrm{Tr}(T^{a}P_{l}), where PlP_{l} is the projection operator to the given lepton ll. For example, the projection operator for the muon is given by Pμ=(1t3)/2P_{\mu}=(1-t^{3})/2 in the SU(2)SU(2) weak interaction, and Pνμ=(1+t3)/2P_{\nu_{\mu}}=(1+t^{3})/2 for the muon neutrino.

The terminology ‘semi-inclusive jet function’ was used in ref. Kang:2016mcy , but it is different from ours. Their definition corresponds to our fragmentation function with the final jet instead of a final lepton. It is called the fragmentation function to a jet (FFJ) in ref. Dai:2016hzf . The relation among the FJF, the semi-inclusive jet function and the fragmentation function will be discussed in section 5.3.

In terms of the semi-inclusive lepton jet function, 0|C3e(0,x)|0l\langle 0|C_{\ell_{3}}^{e}(0,x)|0\rangle_{l}, with the lepton ll in the final state, can be written as

0|C3e(0,x)|0l=ked4p3(2π)3eiω3n3x/2ω3Jle(p32,M,μ).\langle 0|C_{\ell_{3}}^{e}(0,x)|0\rangle_{l}=k_{e}\int\frac{d^{4}p_{3}}{(2\pi)^{3}}e^{-i\omega_{3}n_{3}\cdot x/2}\omega_{3}J_{l}^{e}(p_{3}^{2},M,\mu). (32)

In a similar way, the collinear matrix element, 0|C4f(x,0)|0l\langle 0|C_{\ell_{4}}^{f}(x,0)|0\rangle_{l} can be written as

0|C4f(x,0)|0l=kfd4p4(2π)3eiω4n4x/2ω4Jlf(p42,M,μ),\langle 0|C_{\ell_{4}}^{f}(x,0)|0\rangle_{l}=k_{f}\int\frac{d^{4}p_{4}}{(2\pi)^{3}}e^{-i\omega_{4}n_{4}\cdot x/2}\omega_{4}J_{l}^{f}(p_{4}^{2},M,\mu), (33)

where the semi-inclusive antilepton jet function Jlf(p42,M,μ)J_{l}^{f}(p_{4}^{2},M,\mu) is given as

Jlf(p42,M,μ)\displaystyle J_{l}^{f}(p_{4}^{2},M,\mu) =dn¯4pln¯4pld2𝐩lω4X0|¯L4(0)δ(n4p4+n4𝒫)δ(2)(p4+𝒫)|lX\displaystyle=\int\frac{d\overline{n}_{4}\cdot p_{l}}{\overline{n}_{4}\cdot p_{l}}\int\frac{d^{2}\mathbf{p}_{l}^{\perp}}{\omega_{4}}\sum_{X}\langle 0|\overline{\ell}_{L4}(0)\delta(n_{4}\cdot p_{4}+n_{4}\cdot\mathcal{P})\delta^{(2)}(p_{4\perp}+\mathcal{P}_{\perp})|lX\rangle
×lX|n¯/42Tf[δ(ω4+n¯4𝒫)L4(0)]|0.\displaystyle\times\langle lX|\frac{{\overline{n}}\!\!\!/_{4}}{2}T^{f}[\delta(\omega_{4}+\overline{n}_{4}\cdot\mathcal{P})\ell_{L4}(0)]|0\rangle. (34)

The fragmentation function or the FJF will be discussed later.

3.1.3 The soft function

The soft matrix elements from eq. (3.1) are written as

0|Tr(TcY2TJY1(0)TdY1TIY2(x))Tr(TeY3TJY4(0)TfY4TIY3(x))|0\displaystyle\langle 0|\mathrm{Tr}\Bigl{(}T^{c}Y_{2}^{\dagger}T_{J}Y_{1}(0)T^{d}Y_{1}^{\dagger}T_{I}Y_{2}(x)\Bigr{)}\mathrm{Tr}\Bigl{(}T^{e}Y_{3}^{\dagger}T_{J}Y_{4}(0)T^{f}Y_{4}^{\dagger}T_{I}Y_{3}(x)\Bigr{)}|0\rangle
=0|(Y1TIY2(x)Tc)ij(Y4TIY3(x)Te)kl(Y2TJY1(0)Td)ji(Y3TJY4(0)Tf)lk|0\displaystyle=\langle 0|\Bigl{(}Y_{1}^{\dagger}T_{I}Y_{2}(x)T^{c}\Bigr{)}^{ij}\Bigl{(}Y_{4}^{\dagger}T_{I}Y_{3}(x)T^{e}\Bigr{)}^{kl}\Bigl{(}Y_{2}^{\dagger}T_{J}Y_{1}(0)T^{d}\Bigr{)}^{ji}\Bigl{(}Y_{3}^{\dagger}T_{J}Y_{4}(0)T^{f}\Bigr{)}^{lk}|0\rangle
=𝑑𝒯Sd4pseipsx𝒮IJcdef(𝒯S,M,μ,ps),\displaystyle=\int d\mathcal{T}_{S}\int d^{4}p_{s}e^{-ip_{s}\cdot x}\mathcal{S}^{cdef}_{IJ}(\mathcal{T}_{S},M,\mu,p_{s}), (35)

where 𝒮IJcdef(𝒯S,M,μ,ps)\mathcal{S}^{cdef}_{IJ}(\mathcal{T}_{S},M,\mu,p_{s}) is given by

𝒮IJcdef(𝒯S,M,μ,ps)\displaystyle\mathcal{S}^{cdef}_{IJ}(\mathcal{T}_{S},M,\mu,p_{s}) =0|(Y1TIY2(0)Tc)ij(Y4TIY3(0)Te)klδ(4)(ps+𝒫)\displaystyle=\langle 0|\Bigl{(}Y_{1}^{\dagger}T_{I}Y_{2}(0)T^{c}\Bigr{)}^{ij}\Bigl{(}Y_{4}^{\dagger}T_{I}Y_{3}(0)T^{e}\Bigr{)}^{kl}\delta^{(4)}(p_{s}+\mathcal{P}) (36)
×δ(𝒯SXsmin({nipXs}))(Y2TJY1(0)Td)ji(Y3TJY4(0)Tf)lk|0.\displaystyle\times\delta\Bigl{(}\mathcal{T}_{S}-\sum_{X_{s}}\mathrm{min}(\{n_{i}\cdot p_{X_{s}}\})\Bigr{)}\Bigl{(}Y_{2}^{\dagger}T_{J}Y_{1}(0)T^{d}\Bigr{)}^{ji}\Bigl{(}Y_{3}^{\dagger}T_{J}Y_{4}(0)T^{f}\Bigr{)}^{lk}|0\rangle.

Note that we have reshuffled the Wilson lines such that those with the coordinate xx are moved to the left.

The exponential factor eipsxe^{-ip_{s}\cdot x} in eq. (3.1.3) disappears by appropriate reparameterization transformations Ellis:2010rwa , and eq. (3.1.3) can be written as 𝑑𝒯SSIJcdef(𝒯S,M,μ)\int d\mathcal{T}_{S}S^{cdef}_{IJ}(\mathcal{T}_{S},M,\mu), where the soft function for the 2-jettiness is defined as

SIJcdef(𝒯S,M,μ)\displaystyle S^{cdef}_{IJ}(\mathcal{T}_{S},M,\mu) =0|(Y1TIY2Tc)ij(Y4TIY3Te)kl\displaystyle=\langle 0|\Bigl{(}Y_{1}^{\dagger}T_{I}Y_{2}T^{c}\Bigr{)}^{ij}\Bigl{(}Y_{4}^{\dagger}T_{I}Y_{3}T^{e}\Bigr{)}^{kl}
×δ(𝒯SXsmin({nipXs}))(Y2TJY1Td)ji(Y3TJY4Tf)lk|0.\displaystyle\times\delta\Bigl{(}\mathcal{T}_{S}-\sum_{X_{s}}\mathrm{min}(\{n_{i}\cdot p_{X_{s}}\})\Bigr{)}\Bigl{(}Y_{2}^{\dagger}T_{J}Y_{1}T^{d}\Bigr{)}^{ji}\Bigl{(}Y_{3}^{\dagger}T_{J}Y_{4}T^{f}\Bigr{)}^{lk}|0\rangle. (37)

In this form, the virtual contribution comes from the contraction of the soft Wilson lines to the left-hand side or to the right-hand side of the delta function. The real contribution can be obtained by contracting the Wilson lines across the delta function.

3.1.4 Factorized NN-jettiness in SCETI\mathrm{SCET_{I}}

Combining all these components, the factorized cross section for the 2-jettiness, according to eq. (14), can be written as

dσd𝒯2\displaystyle\frac{d\sigma}{d\mathcal{T}_{2}} =8Q2IJdz1z1dz2z2d4p3(2π)3d4p4(2π)3(2π)4δ(4)(ω1n12+ω2n22ω3n32ω4n42)\displaystyle=\frac{8}{Q^{2}}\sum_{IJ}\int\frac{dz_{1}}{z_{1}}\int\frac{dz_{2}}{z_{2}}\int\frac{d^{4}p_{3}}{(2\pi)^{3}}\frac{d^{4}p_{4}}{(2\pi)^{3}}(2\pi)^{4}\delta^{(4)}\Bigl{(}\frac{\omega_{1}n_{1}}{2}+\frac{\omega_{2}n_{2}}{2}-\frac{\omega_{3}n_{3}}{2}-\frac{\omega_{4}n_{4}}{2}\Bigr{)}
×(ω1ω2ω3ω4n1n4n2n3DIDJ)𝑑𝒯Sδ(𝒯2t1ω1t2ω2p32ω3p42ω4𝒯S)cdefkckdkekf\displaystyle\times\Bigl{(}\omega_{1}\omega_{2}\omega_{3}\omega_{4}n_{1}\cdot n_{4}n_{2}\cdot n_{3}D_{I}^{*}D_{J}\Bigr{)}\int d\mathcal{T}_{S}\delta\Bigl{(}\mathcal{T}_{2}-\frac{t_{1}}{\omega_{1}}-\frac{t_{2}}{\omega_{2}}-\frac{p_{3}^{2}}{\omega_{3}}-\frac{p_{4}^{2}}{\omega_{4}}-\mathcal{T}_{S}\Bigr{)}\sum_{cdef}k_{c}k_{d}k_{e}k_{f}
×dt1Bed(t1,z1,M,μ)dt2Be¯c(t2,z2,M,μ)Jμe(p32,M,μ)Jμ¯f(p42,M,μ)SIJcdef(𝒯S,M,μ)\displaystyle\times\int dt_{1}\,B_{e}^{d}(t_{1},z_{1},M,\mu)\int dt_{2}\,B_{\bar{e}}^{c}(t_{2},z_{2},M,\mu)J_{\mu}^{e}(p_{3}^{2},M,\mu)J_{\bar{\mu}}^{f}(p_{4}^{2},M,\mu)S^{cdef}_{IJ}(\mathcal{T}_{S},M,\mu)
=8Q2dz1z1dz2z2𝑑Φ({pJ})(2π)4δ(4)(ω1n12+ω2n22ω3n32ω4n42)𝑑𝒯S\displaystyle=\frac{8}{Q^{2}}\int\frac{dz_{1}}{z_{1}}\int\frac{dz_{2}}{z_{2}}\int d\Phi(\{p_{J}\})(2\pi)^{4}\delta^{(4)}\Bigl{(}\frac{\omega_{1}n_{1}}{2}+\frac{\omega_{2}n_{2}}{2}-\frac{\omega_{3}n_{3}}{2}-\frac{\omega_{4}n_{4}}{2}\Bigr{)}\int d\mathcal{T}_{S}
×cdefkckdkekfdt1Bed(t1,z1,M,μ)dt2Be¯c(t2,z2,M,μ)Jμe(p32,M,μ)Jμ¯f(p42,M,μ)\displaystyle\times\sum_{cdef}k_{c}k_{d}k_{e}k_{f}\int dt_{1}\,B_{e}^{d}(t_{1},z_{1},M,\mu)\int dt_{2}\,B_{\bar{e}}^{c}(t_{2},z_{2},M,\mu)J_{\mu}^{e}(p_{3}^{2},M,\mu)J_{\bar{\mu}}^{f}(p_{4}^{2},M,\mu)
×IJHJISIJcdef(𝒯S,M,μ)δ(𝒯2t1ω1t2ω2p32ω3p42ω4𝒯S).\displaystyle\times\sum_{IJ}H_{JI}S^{cdef}_{IJ}(\mathcal{T}_{S},M,\mu)\delta\Bigl{(}\mathcal{T}_{2}-\frac{t_{1}}{\omega_{1}}-\frac{t_{2}}{\omega_{2}}-\frac{p_{3}^{2}}{\omega_{3}}-\frac{p_{4}^{2}}{\omega_{4}}-\mathcal{T}_{S}\Bigr{)}. (38)

After integrating over the coordinate xx, the exponential factors in eqs. (3.1.1), (25), (32) and (33) yield the delta function, responsible for the momentum conservation. Note that the last delta function in eq. (3.1.4) corresponds to δ(𝒯2g(X))\delta(\mathcal{T}_{2}-g(X)) in eq. (14). The corresponding factorization formula for the NN-jettiness in QCD in the framework of SCET is presented in refs. Stewart:2009yx ; Stewart:2010tn , and this result is an extension including the nonsinglet contributions.

The Mandelstam variables ss, tt, uu are given by s=(p1+p2)2=(p3+p4)2s=(p_{1}+p_{2})^{2}=(p_{3}+p_{4})^{2}, t=(p1p3)2=(p2p4)2t=(p_{1}-p_{3})^{2}=(p_{2}-p_{4})^{2}, u=(p1p4)2=(p2p3)2u=(p_{1}-p_{4})^{2}=(p_{2}-p_{3})^{2}, where pip_{i} are the partonic momenta. In terms of ωi\omega_{i}, uu is given by u=ω1ω4n1n4/2=ω2ω3n2n3/2.u=\omega_{1}\omega_{4}n_{1}\cdot n_{4}/2=\omega_{2}\omega_{3}n_{2}\cdot n_{3}/2. We set the hard coefficients HJIH_{JI} as

HJI=4u2DIDJ=ω1ω2ω3ω4n1n4n2n3DIDJCICJ,H_{JI}=4u^{2}D_{I}^{*}D_{J}=\omega_{1}\omega_{2}\omega_{3}\omega_{4}n_{1}\cdot n_{4}n_{2}\cdot n_{3}D_{I}^{*}D_{J}\equiv C_{I}^{*}C_{J}, (39)

where the Wilson coefficients CIC_{I} are defined as CI=2uDIC_{I}=2uD_{I}. The phase space is denoted as dΦ({pJ})d\Phi(\{p_{J}\}), which is given by

dΦ({pJ})=Jd4pJ(2π)3.d\Phi(\{p_{J}\})=\prod_{J}\frac{d^{4}p_{J}}{(2\pi)^{3}}. (40)

At tree level, the jet function is proportional to δ(pJ2)\delta(p_{J}^{2}), and when combined with d4pJ/(2π)3d^{4}p_{J}/(2\pi)^{3}, it gives δ(pJ2)d4pJ/(2π)3=d3𝐩J/[2EJ(2π)3]\delta(p_{J}^{2})d^{4}p_{J}/(2\pi)^{3}=d^{3}\mathbf{p}_{J}/[2E_{J}(2\pi)^{3}], which is the phase space for the final-state particle JJ.

3.2 SCETII\mathrm{SCET_{II}}: 𝒯2M2pc2Q𝒯Q2\mathcal{T}^{2}\sim M^{2}\sim p_{c}^{2}\ll Q\mathcal{T}\ll Q^{2}

In SCETII\mathrm{SCET_{II}}, the soft momentum scales as psμ(𝒯,𝒯,𝒯)p_{s}^{\mu}\sim(\mathcal{T},\mathcal{T},\mathcal{T}), while the nn-collinear momentum scales as pnμ(Q,𝒯,𝒯2/Q)p_{n}^{\mu}\sim(Q,\mathcal{T},\mathcal{T}^{2}/Q). Therefore the small component pn+p_{n}^{+} does not contribute to the jettiness, and the factorized form of the 2-jettiness in Eq. (3.1.4) should be changed. If we naively employed the PDFs fiaf_{i}^{a} and the fragmentation functions DiaD_{i}^{a} instead of the beam functions and the jet functions, there would be no contribution to the jettiness from these collinear functions Lustermans:2019plv . Schematically, the 2-jettiness in SCETII\mathrm{SCET_{II}} might be written as

dσd𝒯2fed(z1,μ)fe¯c(z2,μ)Dμe(z3,μ)Dμ¯f(z4,μ)𝑑𝒯SIJHJISIJcdef(𝒯S,μ)δ(𝒯2𝒯S),\frac{d\sigma}{d\mathcal{T}_{2}}\sim f_{e}^{d}(z_{1},\mu)\otimes f_{\bar{e}}^{c}(z_{2},\mu)D_{\mu}^{e}(z_{3},\mu)D_{\bar{\mu}}^{f}(z_{4},\mu)\int d\mathcal{T}_{S}\sum_{IJ}H_{JI}S_{IJ}^{cdef}(\mathcal{T}_{S},\mu)\delta(\mathcal{T}_{2}-\mathcal{T}_{S}), (41)

where the phase space and the integration with respect to other variables are omitted. The imminent problem in this formulation is that the sum of the anomalous dimensions does not cancel. Here the soft anomalous dimension depends on the jettiness 𝒯S\mathcal{T}_{S}. (This will be explicitly shown later.) But, if we use the factorization of the form in eq. (41), there is no dependence of the anomalous dimensions on the jettiness in collinear functions. As a result, the total sum of the anomalous dimensions does not cancel.

Therefore, care must be taken in obtaining SCETII\mathrm{SCET_{II}} from SCETI\mathrm{SCET_{I}}. In fact, the collinear modes in SCETI\mathrm{SCET_{I}}, scaling as pcμ(Q,Q𝒯,𝒯)p_{c}^{\mu}\sim(Q,\sqrt{Q\mathcal{T}},\mathcal{T}), are integrated out to obtain SCETII\mathrm{SCET_{II}}. We call the collinear modes in SCETI\mathrm{SCET_{I}} as the hard-collinear modes in SCETII\mathrm{SCET_{II}}. In fig. 1, the hyperbolas for the collinear and soft modes and for the hard-collinear modes are shown. By integrating out the hard-collinear modes, we obtain the corresponding matching coefficients between SCETI\mathrm{SCET_{I}} and SCETII\mathrm{SCET_{II}}.

Refer to caption
Figure 1: In SCETII\mathrm{SCET_{II}}, the collinear and soft modes lie on the same mass shell pc2ps2M2𝒯2p_{c}^{2}\sim p_{s}^{2}\sim M^{2}\sim\mathcal{T}^{2}. The hard-collinear modes with phc2Q𝒯p_{hc}^{2}\sim Q\mathcal{T} are integrated out to obtain SCETII\mathrm{SCET_{II}} from SCETI\mathrm{SCET_{I}}.

The relation between the beam function and the PDF can be obtained by the operator product expansion (OPE) of the relevant operators. Let us consider the operators

𝒪a(t,ω,M,μ)=¯L(0)n¯/2Taδ(t+ωn𝒫)[δ(ωn¯𝒫)L(0)],\mathcal{O}_{\ell}^{a}(t,\omega,M,\mu)=\overline{\ell}_{L}(0)\frac{{\overline{n}}\!\!\!/}{2}T^{a}\delta(t+\omega n\cdot\mathcal{P})[\delta(\omega-\overline{n}\cdot\mathcal{P})\ell_{L}(0)], (42)

of which the matrix elements yield the beam function in eq. (24), and

𝒬a(ω,M,μ)\displaystyle\mathcal{Q}_{\ell}^{a}(\omega,M,\mu) =¯L(0)n¯/2Ta[δ(ωn¯𝒫)L(0)],\displaystyle=\overline{\ell}_{L}(0)\frac{{\overline{n}}\!\!\!/}{2}T^{a}[\delta(\omega-\overline{n}\cdot\mathcal{P})\ell_{L}(0)],
𝒬¯a(ω,M,μ)\displaystyle\mathcal{Q}_{\bar{\ell}}^{a}(\omega,M,\mu) =Tr(n¯/2TaL(0)[δ(ωn¯𝒫)¯L(0)]),\displaystyle=\mathrm{Tr}\,\Bigl{(}\frac{{\overline{n}}\!\!\!/}{2}T^{a}\ell_{L}(0)[\delta(\omega-\overline{n}\cdot\mathcal{P})\overline{\ell}_{L}(0)]\Bigr{)},
𝒬W(ω,M,μ)\displaystyle\mathcal{Q}_{W}(\omega,M,\mu) =ωδbcnμb(0)[δ(ωn¯𝒫)nμc(0)],\displaystyle=-\omega\delta_{bc}\mathcal{B}_{n\perp\mu}^{b}(0)[\delta(\omega-\overline{n}\cdot\mathcal{P})\mathcal{B}_{n\perp}^{\mu c}(0)], (43)

of which the matrix elements yield the PDFs555For SU(NN) with N>2N>2, there should be an additional nonsiglet gauge boson operator 𝒪Wa\mathcal{O}_{W}^{a}, where δab\delta_{ab} is replaced by the structure constant dabcd_{abc}. It is also true in eq. (3.2) below.. [See eq. (73) below.]

Using the OPE in the limit M2/t0M^{2}/t\rightarrow 0, we can expand the operators 𝒪a\mathcal{O}_{\ell}^{a} in terms of a sum of the operators 𝒬a\mathcal{Q}_{\ell}^{a} Stewart:2010qs

𝒪ia(t,ω,M,μ)=j,bdωωijab(t,ωω,μ)𝒬jb(ω,M,μ)+O(M2/t).\mathcal{O}_{i}^{a}(t,\omega,M,\mu)=\sum_{j,b}\int\frac{d\omega^{\prime}}{\omega^{\prime}}\mathcal{I}_{ij}^{ab}\Bigl{(}t,\frac{\omega}{\omega^{\prime}},\mu\Bigr{)}\mathcal{Q}_{j}^{b}(\omega^{\prime},M,\mu)+O(M^{2}/t). (44)

Eq. (44) shows the matching relation between the operators 𝒪a\mathcal{O}_{\ell}^{a} in SCETI\mathrm{SCET_{I}}, and the operators 𝒬b\mathcal{Q}_{\ell}^{b} in SCETII\mathrm{SCET_{II}}, where ijab\mathcal{I}^{ab}_{ij} are the corresponding Wilson coefficients. When we take the electron matrix element of eq. (44), we obtain the OPE for the beam functions, with z=ω/n¯pz=\omega/\overline{n}\cdot p,

Bia(t,z,M,μ)=j,bz1dzzijab(t,z/z,μ)fjb(z,M,μ)+O(M2/t).B_{i}^{a}(t,z,M,\mu)=\sum_{j,b}\int_{z}^{1}\frac{dz^{\prime}}{z^{\prime}}\mathcal{I}_{ij}^{ab}(t,z/z^{\prime},\mu)f_{j}^{b}(z^{\prime},M,\mu)+O(M^{2}/t). (45)

We can establish the relation between the semi-inclusive jet functions in SCETI\mathrm{SCET_{I}}, and the fragmentation functions in SCETII\mathrm{SCET_{II}} in the same way. Let us consider the operators in SCETI\mathrm{SCET_{I}}

Oa(p2,M,μ)=Tr(L(0)δ(p2+ωn𝒫)δ(2)(𝒫)[δ(ω+n¯𝒫)¯L(0)]n¯/2Ta),O_{\ell}^{a}(p^{2},M,\mu)=\mathrm{Tr}\Bigl{(}\ell_{L}(0)\delta(p^{2}+\omega n\cdot\mathcal{P})\delta^{(2)}(\mathcal{P}_{\perp})[\delta(\omega+\overline{n}\cdot\mathcal{P})\overline{\ell}_{L}(0)]\frac{{\overline{n}}\!\!\!/}{2}T^{a}\Bigr{)}, (46)

which yield the semi-inclusive jet functions, and the operators in SCETII\mathrm{SCET_{II}}

Qa(M,μ)\displaystyle Q_{\ell}^{a}(M,\mu) =Tr(L(0)δ(2)(𝒫)[δ(ω+n¯𝒫)¯L(0)]n¯/2Ta),\displaystyle=\mathrm{Tr}\Bigl{(}\ell_{L}(0)\delta^{(2)}(\mathcal{P}_{\perp})[\delta(\omega+\overline{n}\cdot\mathcal{P})\overline{\ell}_{L}(0)]\frac{{\overline{n}}\!\!\!/}{2}T^{a}\Bigr{)},
Q¯a(M,μ)\displaystyle Q_{\bar{\ell}}^{a}(M,\mu) =¯L(0)n¯/2Taδ(2)(𝒫)[δ(ω+n¯𝒫)L(0)],\displaystyle=\overline{\ell}_{L}(0)\frac{{\overline{n}}\!\!\!/}{2}T^{a}\delta^{(2)}(\mathcal{P}_{\perp})[\delta(\omega+\overline{n}\cdot\mathcal{P})\ell_{L}(0)],
QW(M,μ)\displaystyle Q_{W}(M,\mu) =ωδbcnμb(0)δ(2)(𝒫)[δ(ω+n¯𝒫)nμc(0)],\displaystyle=-\omega\delta_{bc}\mathcal{B}_{n\perp\mu}^{b}(0)\delta^{(2)}(\mathcal{P}_{\perp})[\delta(\omega+\overline{n}\cdot\mathcal{P})\mathcal{B}_{n\perp}^{\mu c}(0)], (47)

where we will choose the frame such that the transverse momentum is zero in taking the matrix elements. We employ the OPE in the limit M2/p20M^{2}/p^{2}\rightarrow 0 to expand the operators OaO_{\ell}^{a} in terms of the operators QaQ_{\ell}^{a} as

Oia(p2,M,μ)=j,bdωω𝒥ijab(p2,ω/ω,μ)Qjb(ω,M,μ)+O(M2/p2).O_{i}^{a}(p^{2},M,\mu)=\sum_{j,b}\int\frac{d\omega^{\prime}}{\omega^{\prime}}\mathcal{J}_{ij}^{ab}(p^{2},\omega/\omega^{\prime},\mu)Q_{j}^{b}(\omega^{\prime},M,\mu)+O(M^{2}/p^{2}). (48)

This equation shows the matching relation between OiaO_{i}^{a} in SCETI\mathrm{SCET_{I}}, and QjbQ_{j}^{b} in SCETII\mathrm{SCET_{II}}, where 𝒥ijab\mathcal{J}_{ij}^{ab} are the corresponding matching coefficients. In order to obtain the relation between the semi-inclusive jet function in SCETI\mathrm{SCET_{I}}, and the fragmentation function in SCETII\mathrm{SCET_{II}}, we take the vacuum expectation values, but with the state ii included in the intermediate states. The result is written as

Jia(p2,μ)=j,b01𝑑zz1dzz𝒥ijab(p2,z/z,μ)Djb(z,μ)+O(M2/p2).J_{i}^{a}(p^{2},\mu)=\sum_{j,b}\int_{0}^{1}dz\int_{z}^{1}\frac{dz^{\prime}}{z^{\prime}}\mathcal{J}_{ij}^{ab}(p^{2},z/z^{\prime},\mu)D_{j}^{b}(z^{\prime},\mu)+O(M^{2}/p^{2}). (49)

In addition, the soft Wilson lines are obtained by integrating out the offshell modes when the soft gauge particles are emitted from the collinear source, which are given by

Si=perm.exp[gniAsni𝒫],S_{i}=\sum_{\mathrm{perm.}}\exp\Bigl{[}-g\frac{n_{i}\cdot A_{s}}{n_{i}\cdot\mathcal{P}}\Bigr{]}, (50)

where AsA_{s} is the soft gauge field. As a result, the soft Wilson line YiY_{i} in SCETI\mathrm{SCET_{I}} is replaced by SiS_{i}, which is the rescaled version in SCETII\mathrm{SCET_{II}}.

With these ingredients, the cross section for the 2-jettiness in SCETII\mathrm{SCET_{II}} is written as

dσd𝒯2\displaystyle\frac{d\sigma}{d\mathcal{T}_{2}} =8Q2dz1dz2z1z2𝑑Φ({pJ})(2π)4δ(4)(ω1n12+ω2n22ω3n32ω4n42)cdefkckdkekf\displaystyle=\frac{8}{Q^{2}}\int\frac{dz_{1}dz_{2}}{z_{1}z_{2}}\int d\Phi(\{p_{J}\})(2\pi)^{4}\delta^{(4)}\Bigl{(}\frac{\omega_{1}n_{1}}{2}+\frac{\omega_{2}n_{2}}{2}-\frac{\omega_{3}n_{3}}{2}-\frac{\omega_{4}n_{4}}{2}\Bigr{)}\sum_{cdef}k_{c}k_{d}k_{e}k_{f}
×d𝒯Sij,abdt1z11dz1z1eida(t1,z1z1,μ)fia(z1,μ)dt2dz2z2e¯jcb(t2,z2z2,μ)fjb(z2,μ)\displaystyle\times\int d\mathcal{T}_{S}\sum_{ij,ab}\int dt_{1}\int_{z_{1}}^{1}\frac{dz_{1}^{\prime}}{z_{1}^{\prime}}\mathcal{I}_{ei}^{da}\Bigl{(}t_{1},\frac{z_{1}}{z_{1}^{\prime}},\mu\Bigr{)}f_{i}^{a}(z_{1}^{\prime},\mu)\int dt_{2}\frac{dz_{2}^{\prime}}{z_{2}^{\prime}}\mathcal{I}_{\bar{e}j}^{cb}\Bigl{(}t_{2},\frac{z_{2}}{z_{2}^{\prime}},\mu\Bigr{)}f_{j}^{b}(z_{2}^{\prime},\mu)
×kl,pqdz3z31dz3z3𝒥μkep(p32,z3z3,μ)Dkp(z3,μ)dz4z41dz4z4𝒥μ¯lfq(p42,z4z4,μ)Dlq(z4,μ)\displaystyle\times\sum_{kl,pq}\int dz_{3}\int_{z_{3}}^{1}\frac{dz_{3}^{\prime}}{z_{3}^{\prime}}\mathcal{J}_{\mu k}^{ep}\Bigl{(}p_{3}^{2},\frac{z_{3}}{z_{3}^{\prime}},\mu\Bigr{)}D_{k}^{p}(z_{3}^{\prime},\mu)\int dz_{4}\int_{z_{4}}^{1}\frac{dz_{4}^{\prime}}{z_{4}^{\prime}}\mathcal{J}_{\bar{\mu}l}^{fq}\Bigl{(}p_{4}^{2},\frac{z_{4}}{z_{4}^{\prime}},\mu\Bigr{)}D_{l}^{q}(z_{4}^{\prime},\mu)
×IJHJISIJcdef(𝒯S,μ)δ(𝒯2t1ω1t2ω2p32ω3p42ω4𝒯S).\displaystyle\times\sum_{IJ}H_{JI}S^{cdef}_{IJ}(\mathcal{T}_{S},\mu)\delta\Bigl{(}\mathcal{T}_{2}-\frac{t_{1}}{\omega_{1}}-\frac{t_{2}}{\omega_{2}}-\frac{p_{3}^{2}}{\omega_{3}}-\frac{p_{4}^{2}}{\omega_{4}}-\mathcal{T}_{S}\Bigr{)}. (51)

In addition to the contribution of the soft function to the 2-jettiness, note that there are contributions from the hard-collinear contributions. The expression in eq. (3.2) also conforms to the consistent RG behavior of the 2-jettiness. That is, the sum of the anomalous dimensions of all the factorized parts should be zero so that the 2-jettiness is independent of the factorization scale. It cancels only when we use eq. (3.2).

We will present the matching coefficients ijab\mathcal{I}_{ij}^{ab} and 𝒥ijab\mathcal{J}_{ij}^{ab} explicitly, but a practical way to calculate the collinear parts in SCETII\mathrm{SCET_{II}} is to compute the beam functions and the jet functions using the power counting in SCETI\mathrm{SCET_{I}}, and perform the soft zero-bin subtraction. That is, we compute the combination of the matching coefficients and the PDF or the fragmentation functions together in SCETII\mathrm{SCET_{II}}, which are equivalent to the computation of the beam functions and the FJF in SCETI\mathrm{SCET_{I}}.

The factorization for the NN-jettiness is established both in SCETI\mathrm{SCET_{I}} and SCETII\mathrm{SCET_{II}}. However, there is an important caveat that Glauber exchange between spectator partons may violate factorization when the weak charges of the final states are specified Baumgart:2018ntv . The possible breakdown of the factorization may start at order α4\alpha^{4} of the magnitude α4ln4(M2/Q2)\sim\alpha^{4}\ln^{4}(M^{2}/Q^{2}), and it is due to the fact that the group-theory factors for the exchange of two Glauber gauge bosons in different configurations across the unitarity cuts are different and the overall effects do not cancel. This should be considered seriously in ascertaining the factorization in electroweak interaction, but it is beyond the scope of this paper, and will not be considered here.

4 Treatment of rapidity divergence

In SCET, the rapidity divergence shows up because the collinear and the soft modes reside in disparate phase spaces. When these modes have the same invariant mass, they are distinguished by their rapidities. The rapidity divergence appears without regard to the UV and IR divergences, hence it has to be regulated independently. As mentioned in section 1, there are various methods to regulate the rapidity divergence collins_2011 ; Idilbi:2007ff ; Idilbi:2007yi ; Becher:2011dz ; Chiu:2011qc ; Chiu:2012ir ; Li:2016axz ; Ebert:2018gsn . In ref. Chay:2020jzn , one of the authors has constructed consistent rapidity regulators both for the collinear and the soft sectors, and we use this prescription here.

The essential idea is to attach a regulator of the form (ν/n¯k)η(\nu/\overline{n}\cdot k)^{\eta} for the nn-collinear field, where the rapidity divergence arises. And the rapidity regulator in the soft sector should have the same form as that of the collinear rapidity regulator because we track the same source of the radiation, which causes the rapidity divergence, as in the collinear sector. However, it can be written in such a way to conform to the expression of the soft Wilson line. As an example, let us specify the rapidity regulator for the collinear current ξ¯n1Wn1Sn1ΓSn2Wn2ξn2\overline{\xi}_{n_{1}}W_{n_{1}}S_{n_{1}}^{\dagger}\Gamma S_{n_{2}}W_{n_{2}}^{\dagger}\xi_{n_{2}} with n1n2𝒪(1)n_{1}\cdot n_{2}\sim\mathcal{O}(1), which is not necessarily back-to-back. The collinear and soft Wilson lines WniW_{n_{i}} and SniS_{n_{i}} are inserted to make the current collinear and soft gauge invariant. For the collinear Wilson line Wn1W_{n_{1}} and the soft Wilson line Sn2S_{n_{2}}, the modified Wilson lines with the rapidity regulator are given as

Wn1\displaystyle W_{n_{1}} =perm.exp[gn¯1𝒫(ν|n¯1𝒫|)ηn¯1An1],\displaystyle=\sum_{\mathrm{perm.}}\exp\Bigl{[}-\frac{g}{\overline{n}_{1}\cdot\mathcal{P}}\Bigl{(}\frac{\nu}{|\overline{n}_{1}\cdot\mathcal{P}|}\Bigr{)}^{\eta}\overline{n}_{1}\cdot A_{n_{1}}\Bigr{]},
Sn2\displaystyle S_{n_{2}} =perm.exp[gn2𝒫(ν|n2𝒫|n1n22)ηn2As],\displaystyle=\sum_{\mathrm{perm.}}\exp\Bigl{[}-\frac{g}{n_{2}\cdot\mathcal{P}}\Bigl{(}\frac{\nu}{|n_{2}\cdot\mathcal{P}|}\frac{n_{1}\cdot n_{2}}{2}\Bigr{)}^{\eta}n_{2}\cdot A_{s}\Bigr{]}, (52)

where 𝒫\mathcal{P} is the operator extracting the momentum. The remaining Wilson lines Wn2W_{n_{2}} and Sn1S_{n_{1}} can be obtained by switching n1n_{1} and n2n_{2}. The point in selecting the rapidity regulator is to trace the same emitted gauge bosons both in the collinear and the soft sectors, which are eikonalized to produce the Wilson lines. Note that the rapidity divergences from Wn1W_{n_{1}} and Sn2S_{n_{2}} have the same origin because the collinear and soft gauge bosons are emitted from the n2n_{2}-collinear quark for both of the Wilson lines. For the soft momentum kk, in the limit n¯1k\overline{n}_{1}\cdot k\rightarrow\infty where the rapidity divergence occurs in the soft sector, it becomes kμ(n¯1k)n1μ/2k^{\mu}\approx(\overline{n}_{1}\cdot k)n_{1}^{\mu}/2 and the soft rapidity regulator approaches

(νn2kn1n22)ηn¯1k(νn¯1k)η,\Bigl{(}\frac{\nu}{n_{2}\cdot k}\frac{n_{1}\cdot n_{2}}{2}\Bigr{)}^{\eta}\xrightarrow[\bar{n}_{1}\cdot k\to\infty]{}\Bigl{(}\frac{\nu}{\overline{n}_{1}\cdot k}\Bigr{)}^{\eta}, (53)

which has the same form as the collinear rapidity regulator for Wn1W_{n_{1}}. Another pair possessing the same source of rapidity divergence is Wn2W_{n_{2}}^{\dagger} and Sn1S_{n_{1}}^{\dagger}. Tracking the same source of the emission of gauge bosons in the soft sector gives the correct directional dependence in the soft anomalous dimensions, in the sense that they cancel the total anomalous dimensions when combined with other factorized parts Bertolini:2017efs .

The source of the rapidity divergence can be understood as follows: For the soft modes with small rapidities, they cannot recognize the region with large rapidity, in which the collinear modes reside. But these collinear modes are obtained by traversing the boundary from the soft sector to the collinear sector. Technically, with the momentum kμ=(k,k,k+)k^{\mu}=(k^{-},k_{\perp},k^{+}), the rapidity divergence arises when k+k^{+} or kk^{-} approaches infinity while 𝐤2\mathbf{k}_{\perp}^{2} is fixed. Therefore we modify the region with large rapidity such that the rapidity divergence can be extracted.

On the other hand, for the nn-collinear modes, kk^{-} cannot approach infinity in the real contribution because it cannot exceed the large scale QQ. Therefore, in our choice of the rapidity regulators, there is no rapidity divergence in the naive collinear contribution, though there appears the divergence associated with the region k0k^{-}\rightarrow 0. However, the true collinear contribution is obtained by performing the zero-bin subtraction Chiu:2011qc ; Chiu:2012ir in which the collinear contribution in the soft limit is removed to avoid double counting. The zero-bin subtraction can be regarded as the matching between the collinear part with large rapidity and the soft part with small rapidity when the soft part is obtained by integrating out the region with large rapidity.

The divergence in the collinear part as k0k^{-}\rightarrow 0 with fixed 𝐤2\mathbf{k}_{\perp}^{2} is cancelled by the zero-bin subtraction in analogy to the cancellation of the IR divergence in matching. Note that the rapidity divergence from the collinear sector has the opposite sign compared to the rapidity divergence in the soft sector. It is the reason why the rapidity divergences cancel when the collinear and the soft sectors are combined. It is consistent with the fact that the full QCD does not have any rapidity divergence since there is no such kinematic constraint, separating the collinear and the soft modes. However, the structure of rapidity divergence and its evolution in each sector sheds light on the intricate nature of the theory.

In electroweak interaction, in which the weak nonsinglets can appear in each factorized part, the behavior of the rapidity divergence is strikingly different from QCD. In collinear quantities such as the jet function, and the FJF, etc., the rapidity divergence cancels for the gauge singlets in each function. Technically, this happens due to the fact that the real and virtual contributions to the rapidity divergence are equal, but with the opposite sign. For gauge nonsinglets, the group theory factors are different for real and virtual contributions, hence producing nontrivial rapidity divergence in each sector. We will present the resummed result at next-to-leading logarithmic (NLL) order for the 2-jettiness in ee+μjetμ+jet+Xe^{-}e^{+}\rightarrow\mu^{-}\ \mathrm{jet}\ \mu^{+}\ \mathrm{jet}+X, evolving both under the renormalization scale and the rapidity scale. The cancellation of the rapidity divergence when all the contributions are added becomes more sophisticated. But the non-cancellation of the rapidity divergence in each sector for the gauge singlets induces the additional evolution with respect to the rapidity scale in the process of resummation.

5 Collinear functions

5.1 Beam function and PDF

The beam functions for QCD are defined in refs. Stewart:2009yx ; Stewart:2010qs , and they describe the initial-state radiations from the incoming particles. We can extend them to those for the weak interaction. The singlet and nonsinglet beam functions are defined as the matrix elements with a target electron ee in our case, which are given as [See eq. (26).]

Bea(t,z=ω/P,M,μ)=e(P)|θ(ω)¯n(0)δ(t+ωn𝒫)n¯/2Ta[δ(ωn¯𝒫)n(0)]|e(P),B_{e}^{a}(t,z=\omega/P^{-},M,\mu)=\langle e(P)|\theta(\omega)\overline{\ell}_{n}(0)\delta(t+\omega n\cdot\mathcal{P})\frac{{\overline{n}}\!\!\!/}{2}T^{a}\Bigl{[}\delta(\omega-\overline{n}\cdot\mathcal{P})\ell_{n}(0)\Bigr{]}|e(P)\rangle, (54)

where T0=1T^{0}=1 and Ta=taT^{a}=t^{a} are the weak generators. The beam functions at tree level are given as

Bea(0)(t,z,M,μ)=δ(t)δ(1z)Tr(TaPe),B^{a(0)}_{e}(t,z,M,\mu)=\delta(t)\delta(1-z)\mathrm{Tr}(T^{a}P_{e}), (55)

where PeP_{e} is the projection operator in the weak charge space to project out the electron ee, because the beam function is initiated by the incoming electron. Otherwise, the nonsinglet beam function vanishes because the contributions from the electron and the electron neutrino cancel. In QCD, since the initial state consists of a color singlet, say, a proton, the color average is performed in the beam function. However it is not true in this case. If we consider the imaginary situation in which the color can be measured in QCD, we should define the beam function with fixed color charges. The beam functions for antileptons can be defined accordingly as

Be¯a(t,z,M,μ)=Tre+|θ(ω)L(0)δ(t+ωn𝒫)[δ(ωn¯𝒫)¯L(0)n¯/2Ta]|e+.B_{\bar{e}}^{a}(t,z,M,\mu)=\mathrm{Tr}\,\langle e^{+}|\theta(\omega)\ell_{L}(0)\delta(t+\omega n\cdot\mathcal{P})[\delta(\omega-\overline{n}\cdot\mathcal{P})\overline{\ell}_{L}(0)\frac{{\overline{n}}\!\!\!/}{2}T^{a}]|e^{+}\rangle. (56)
Refer to caption
Figure 2: Feynman diagrams for the beam function and the PDF at one loop. The mirror images of (b) and (c) are omitted. The wavy lines with solid lines denote collinear gauge bosons. The dashed lines denote the final cuts. For the beam function, the virtuality tt and the longitudinal momentum fraction zz are measured, while only the momentum fraction zz is measured for the PDF.

The Feynman diagrams for the beam function at order α\alpha are shown in figure 2. We choose the reference frame in which the transverse momentum of the incoming particle is zero. Our computational method is different from what was performed in ref. Stewart:2010qs . Here all the massless fermions are on the mass shell with the nonzero gauge boson mass MM. In our computation, we express the beam functions and the PDFs in terms of the variables tt and z=ω/pz=\omega/p^{-}, while we put t=ωp+=zp+p=0t^{\prime}=-\omega p^{+}=-zp^{+}p^{-}=0. Nonzero tt^{\prime} plays the role of an IR regulator in ref. Stewart:2010qs . In our calculation, the massless fermions are on the mass shell and there is no IR divergence because of the physical nonzero gauge boson mass MM.

The radiative correction of the singlet beam function at order α\alpha is different in finite terms from the result in ref. Stewart:2010qs , but the matching coefficients between the beam functions and the PDFs turn out to be the same. However, what is new here is that we include the nonsinglet contributions which show distinct behavior, compared to the singlet contributions. In SCETI\mathrm{SCET_{I}}, since tM2t\gg M^{2}, we take the limit of small MM in the final result. In SCETII\mathrm{SCET_{II}}, the hard-collinear contribution from the matching coefficients \mathcal{I} contains tt, and we also take the small MM limit.

The contribution of figure 2 (a) apart from the group theory factor is given by

Ma\displaystyle M_{a} =2πg2μMS¯2ϵdD(2π)D2(22ϵ)p2(p)2δ(tω+)δ(ωp+)\displaystyle=2\pi g^{2}\mu^{2\epsilon}_{\overline{\mathrm{MS}}}\int\frac{d^{D}{\ell}}{(2\pi)^{D}}\frac{2(2-2\epsilon)p^{-}\bm{\ell}_{\perp}^{2}}{(p-\ell)^{2}}\delta(t-\omega\ell^{+})\delta(\omega-p^{-}+\ell^{-})
×δ(2M2)θ()θ(p)\displaystyle\times\delta(\ell^{2}-M^{2})\theta(\ell^{-})\theta(p^{-}-\ell^{-})
=α2πθ((1z)tzM2)θ(z)θ(1z)(1z)tzM2(tzM2)2\displaystyle=\frac{\alpha}{2\pi}\theta\Bigl{(}(1-z)t-zM^{2}\Bigr{)}\theta(z)\theta(1-z)\frac{(1-z)t-zM^{2}}{(t-zM^{2})^{2}}
(1z)θ(z)θ(1z)[(1+ln(1z)μ2z2M2)δ(t)+1μ20(tμ2)].\displaystyle\longrightarrow(1-z)\theta(z)\theta(1-z)\Bigl{[}\Bigl{(}-1+\ln\frac{(1-z)\mu^{2}}{z^{2}M^{2}}\Bigr{)}\delta(t)+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigl{]}. (57)

The last result is obtained by taking the small MM limit. The detailed calculation taking this limit is presented in appendix B. There is no zero-bin contribution for MaM_{a} at leading order.

The naive collinear contribution in figure 2 (b), with the momentum \ell of the gauge boson, yields

M~b\displaystyle\tilde{M}_{b} =4πg2μMS¯2ϵθ(t)dD(2π)Dp(p)(p)2(ν)ηδ(tω+)δ(ωp+)\displaystyle=-4\pi g^{2}\mu^{2\epsilon}_{\overline{\mathrm{MS}}}\theta(t)\int\frac{d^{D}{\ell}}{(2\pi)^{D}}\frac{p^{-}(p^{-}-\ell^{-})}{\ell^{-}(p-\ell)^{2}}\Bigl{(}\frac{\nu}{\ell^{-}}\Bigr{)}^{\eta}\delta(t-\omega\ell^{+})\delta(\omega-p^{-}+\ell^{-})
×δ(2M2)θ()θ(p)\displaystyle\times\delta(\ell^{2}-M^{2})\theta(\ell^{-})\theta(p^{-}-\ell^{-})
=α2π(μ2eγE)ϵΓ(1ϵ)(νp)ηθ(z)θ(1z)θ(t)((1z)tzM2)ϵz(1z)1+η1tzM2\displaystyle=\frac{\alpha}{2\pi}\frac{(\mu^{2}e^{\gamma_{\mathrm{E}}})^{\epsilon}}{\Gamma(1-\epsilon)}\Bigl{(}\frac{\nu}{p^{-}}\Bigr{)}^{\eta}\theta(z)\theta(1-z)\theta(t)\Bigl{(}\frac{(1-z)t}{z}-M^{2}\Bigr{)}^{-\epsilon}\frac{z}{(1-z)^{1+\eta}}\frac{1}{t-zM^{2}}
=α2πz1z1tzM2θ((1z)tzM2)θ(z)θ(1z)\displaystyle=\frac{\alpha}{2\pi}\frac{z}{1-z}\frac{1}{t-zM^{2}}\theta\Bigl{(}(1-z)t-zM^{2}\Bigr{)}\theta(z)\theta(1-z)
α2π[δ(t)δ(1z)12ln2μ2M2+δ(t)z(lnμ2z2M20(1z)+1(1z))\displaystyle\longrightarrow\frac{\alpha}{2\pi}\Bigl{[}\delta(t)\delta(1-z)\frac{1}{2}\ln^{2}\frac{\mu^{2}}{M^{2}}+\delta(t)z\Bigl{(}\ln\frac{\mu^{2}}{z^{2}M^{2}}\mathcal{L}_{0}(1-z)+\mathcal{L}_{1}(1-z)\Bigr{)}
+δ(1z)(1μ20(tμ2)lnμ2M2+1μ21(tμ2))+zμ20(tμ2)0(1z)].\displaystyle+\delta(1-z)\Bigl{(}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\ln\frac{\mu^{2}}{M^{2}}+\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigr{)}+\frac{z}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\mathcal{L}_{0}(1-z)\Bigr{]}. (58)

We put ϵ=η=0\epsilon=\eta=0 because there is neither UV nor rapidity divergence.

The zero-bin contribution from figure 2 (b), in which the rapidity regulator in eq. (4) is implemented, is given by

Mb\displaystyle M_{b}^{\varnothing} =4πg2μMS¯2ϵθ(t)dD(2π)D(p)2(p)2(ν)ηδ(tω+)δ(ωp)\displaystyle=-4\pi g^{2}\mu^{2\epsilon}_{\overline{\mathrm{MS}}}\theta(t)\int\frac{d^{D}{\ell}}{(2\pi)^{D}}\frac{(p^{-})^{2}}{\ell^{-}(p-\ell)^{2}}\Bigl{(}\frac{\nu}{\ell^{-}}\Bigr{)}^{\eta}\delta(t-\omega\ell^{+})\delta(\omega-p^{-})
×δ(2M2)θ()θ(p)\displaystyle\times\delta(\ell^{2}-M^{2})\theta(\ell^{-})\theta(p^{-})
=α2π(μ2eγE)ϵΓ(1ϵ)δ(1z)θ(t)tωM2/td(ν)η(tωM2)ϵ\displaystyle=\frac{\alpha}{2\pi}\frac{(\mu^{2}e^{\gamma_{\mathrm{E}}})^{\epsilon}}{\Gamma(1-\epsilon)}\delta(1-z)\frac{\theta(t)}{t}\int_{\omega M^{2}/t}^{\infty}\frac{d\ell^{-}}{\ell^{-}}\Bigl{(}\frac{\nu}{\ell^{-}}\Bigr{)}^{\eta}\Bigl{(}\frac{t\ell^{-}}{\omega}-M^{2}\Bigr{)}^{-\epsilon}
=α2π(μ2eγEM2)ϵ(νμ2ωM2)ηΓ(ϵ+η)Γ(1+η)[1ηδ(t)+1μ20(tμ2)]\displaystyle=\frac{\alpha}{2\pi}\Bigl{(}\frac{\mu^{2}e^{\gamma_{\mathrm{E}}}}{M^{2}}\Bigr{)}^{\epsilon}\Bigl{(}\frac{\nu\mu^{2}}{\omega M^{2}}\Bigr{)}^{\eta}\frac{\Gamma(\epsilon+\eta)}{\Gamma(1+\eta)}\Bigl{[}\frac{1}{\eta}\delta(t)+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigr{]}
=α2π{δ(t)[(1η+lnνω)(1ϵ+lnμ2M2)1ϵ2+12ln2μ2M2+π212]\displaystyle=\frac{\alpha}{2\pi}\Bigl{\{}\delta(t)\Bigl{[}\Bigl{(}\frac{1}{\eta}+\ln\frac{\nu}{\omega}\Bigr{)}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}-\frac{1}{\epsilon^{2}}+\frac{1}{2}\ln^{2}\frac{\mu^{2}}{M^{2}}+\frac{\pi^{2}}{12}\Bigr{]}
+1μ20(tμ2)(1ϵ+lnμ2M2)}δ(1z),\displaystyle+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}\Bigr{\}}\delta(1-z), (59)

where the following relation is used.

(μ2)ηt1η=1ηδ(t)+1μ20(tμ2)+𝒪(η).\frac{(\mu^{2})^{-\eta}}{t^{1-\eta}}=\frac{1}{\eta}\delta(t)+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}+\mathcal{O}(\eta). (60)

The distributions n(z)\mathcal{L}_{n}(z) are listed in appendix C.1 Ligeti:2008ac .

By performing the contour integral in the complex +\ell^{+}-plane, the naive collinear contribution of figure 2 (c) is given as

M~c\displaystyle\tilde{M}_{c} =2ig2μMS¯2ϵδ(t)δ(1z)dDl(2π)Dp(2M2+i0)((p)2+i0)(ν)η\displaystyle=2ig^{2}\mu^{2\epsilon}_{\overline{\mathrm{MS}}}\delta(t)\delta(1-z)\int\frac{d^{D}{l}}{(2\pi)^{D}}\frac{p^{-}-\ell^{-}}{\ell^{-}(\ell^{2}-M^{2}+i0)\Bigl{(}(p-\ell)^{2}+i0\Bigr{)}}\Bigl{(}\frac{\nu}{\ell^{-}}\Bigr{)}^{\eta}
=α2π(μ2eγEM2)ϵΓ(ϵ)(νω)ηδ(t)δ(1z)01𝑑x(1x)1ϵx1+η,\displaystyle=-\frac{\alpha}{2\pi}\Bigl{(}\frac{\mu^{2}e^{\gamma_{\mathrm{E}}}}{M^{2}}\Bigr{)}^{\epsilon}\Gamma(\epsilon)\Bigl{(}\frac{\nu}{\omega}\Bigr{)}^{\eta}\delta(t)\delta(1-z)\int_{0}^{1}dx\frac{(1-x)^{1-\epsilon}}{x^{1+\eta}}, (61)

where x=/px=\ell^{-}/p^{-}. And the zero-bin contribution is given as

Mc\displaystyle M_{c}^{\varnothing} =2ig2μMS¯2ϵδ(t)δ(1z)dDl(2π)Dp(2M2+i0)(p++i0)(ν)η\displaystyle=2ig^{2}\mu^{2\epsilon}_{\overline{\mathrm{MS}}}\delta(t)\delta(1-z)\int\frac{d^{D}{l}}{(2\pi)^{D}}\frac{p^{-}}{\ell^{-}(\ell^{2}-M^{2}+i0)(-p^{-}\ell^{+}+i0)}\Bigl{(}\frac{\nu}{\ell^{-}}\Bigr{)}^{\eta}
=α2π(μ2eγEM2)ϵΓ(ϵ)(νω)ηδ(t)δ(1z)0dxx1+η.\displaystyle=-\frac{\alpha}{2\pi}\Bigl{(}\frac{\mu^{2}e^{\gamma_{\mathrm{E}}}}{M^{2}}\Bigr{)}^{\epsilon}\Gamma(\epsilon)\Bigl{(}\frac{\nu}{\omega}\Bigr{)}^{\eta}\delta(t)\delta(1-z)\int_{0}^{\infty}\frac{dx}{x^{1+\eta}}. (62)

The net contribution with the zero-bin subtraction is given as

Mc\displaystyle M_{c} =M~cMc\displaystyle=\tilde{M}_{c}-M_{c}^{\varnothing}
=α2π(μ2eγEM2)ϵΓ(ϵ)(νω)ηδ(t)δ(1z)(01𝑑x(1x)1ϵ1x1+η1dxx1+η)\displaystyle=-\frac{\alpha}{2\pi}\Bigl{(}\frac{\mu^{2}e^{\gamma_{\mathrm{E}}}}{M^{2}}\Bigr{)}^{\epsilon}\Gamma(\epsilon)\Bigl{(}\frac{\nu}{\omega}\Bigr{)}^{\eta}\delta(t)\delta(1-z)\Bigl{(}\int_{0}^{1}dx\frac{(1-x)^{1-\epsilon}-1}{x^{1+\eta}}-\int_{1}^{\infty}\frac{dx}{x^{1+\eta}}\Bigr{)}
=α2πδ(t)δ(1z)[(1ϵ+lnμ2M2)(1η+lnνω+1)+1π26],\displaystyle=\frac{\alpha}{2\pi}\delta(t)\delta(1-z)\Bigl{[}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}\Bigl{(}\frac{1}{\eta}+\ln\frac{\nu}{\omega}+1\Bigr{)}+1-\frac{\pi^{2}}{6}\Bigr{]}, (63)

where the zero-bin contribution is split such that there is no divergence near x=0x=0. Note that the rapidity divergence occurs at large \ell^{-} region due to the zero-bin subtraction which cancels the divergence at small \ell^{-} from the naive collinear contribution. The result is consistent with ref. Chay:2020jzn . The zero-bin contributions can be computed for the jet functions, FJF, etc. in the same spirit. The wavefunction renormalization Z(1)Z^{(1)} and the residue R(1)R^{(1)} at one loop are given by

Z(1)+R(1)=α2π(12ϵ12lnμ2M2+14).Z^{(1)}+R^{(1)}=\frac{\alpha}{2\pi}\Bigl{(}-\frac{1}{2\epsilon}-\frac{1}{2}\ln\frac{\mu^{2}}{M^{2}}+\frac{1}{4}\Bigr{)}. (64)

We express the singlet and nonsinglet beam functions B0B^{0} and BaB^{a} in terms of BsB_{s} and BnB_{n} by extracting and separating the group theory factors as666We will also separate the group theory factors and express the singlet and nonsinglet functions in a similar way for the PDFs [eq. (76)], the matching coefficients between the beam functions and the PDFs [eq. (81)], the jet functions [eq. (84)], the FJFs [eq. (5.3)], and the matching coefficients between the fragmentation functions and the FJFs [eq. (101)].

Be0(t,z,M,μ)=Bs(t,z,M,μ)Tr(T0Pe),Bea(t,z,M,μ)=Bn(t,z,M,μ)Tr(TaPe).B^{0}_{e}(t,z,M,\mu)=B_{s}(t,z,M,\mu)\mathrm{Tr}(T^{0}P_{e}),\ B^{a}_{e}(t,z,M,\mu)=B_{n}(t,z,M,\mu)\mathrm{Tr}(T^{a}P_{e}). (65)

The bare beam functions BsB_{s} and BnB_{n} are given at NLO as

Bs(1)(t,z,M,μ)\displaystyle B_{s}^{(1)}(t,z,M,\mu) =CF(Ma+2(M~bMb)+2Mc+(Z(1)+R(1))δ(t)δ(1z))\displaystyle=C_{F}\Bigl{(}M_{a}+2(\tilde{M}_{b}-M_{b}^{\varnothing})+2M_{c}+(Z^{(1)}+R^{(1)})\delta(t)\delta(1-z)\Bigr{)} (66)
=αCF2π{δ(t)δ(1z)(2ϵ2+32ϵ+94π22)\displaystyle=\frac{\alpha C_{F}}{2\pi}\Bigl{\{}\delta(t)\delta(1-z)\Bigl{(}\frac{2}{\epsilon^{2}}+\frac{3}{2\epsilon}+\frac{9}{4}-\frac{\pi^{2}}{2}\Bigr{)}
+δ(t)[P(z)lnμ2z2M2+(1+z2)1(1z)(1z)θ(z)θ(1z)]\displaystyle+\delta(t)\Bigl{[}P_{\ell\ell}(z)\ln\frac{\mu^{2}}{z^{2}M^{2}}+(1+z^{2})\mathcal{L}_{1}(1-z)-(1-z)\theta(z)\theta(1-z)\Bigr{]}
+δ(1z)[2ϵ1μ20(tμ2)+2μ21(tμ2)]+(1+z2)0(1z)1μ20(tμ2)},\displaystyle+\delta(1-z)\Bigl{[}-\frac{2}{\epsilon}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}+\frac{2}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigr{]}+(1+z^{2})\mathcal{L}_{0}(1-z)\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigr{\}},
Bn(1)(t,z,M,μ)\displaystyle B_{n}^{(1)}(t,z,M,\mu) =[(CFCA2)(Ma+2(M~bMb))+CF(2Mc+(Z(1)+R(1))δ(t)δ(1z))]\displaystyle=\Bigl{[}\Bigl{(}C_{F}-\frac{C_{A}}{2}\Bigr{)}\Bigl{(}M_{a}+2(\tilde{M}_{b}-M_{b}^{\varnothing})\Bigr{)}+C_{F}\Bigl{(}2M_{c}+(Z^{(1)}+R^{(1)})\delta(t)\delta(1-z)\Bigr{)}\Bigr{]}
=Bs(t,z,M,μ)\displaystyle=B_{s}(t,z,M,\mu)
αCA4π{2δ(t)δ(1z)[(1η+lnνω)(1ϵ+lnμ2M2)1ϵ2+π212]\displaystyle-\frac{\alpha C_{A}}{4\pi}\Bigl{\{}-2\delta(t)\delta(1-z)\Bigl{[}\Bigl{(}\frac{1}{\eta}+\ln\frac{\nu}{\omega}\Bigr{)}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}-\frac{1}{\epsilon^{2}}+\frac{\pi^{2}}{12}\Bigr{]}
+δ(t)[(1+z2)0(1z)lnμ2z2M2+(1+z2)1(1z)(1z)θ(z)θ(1z)]\displaystyle+\delta(t)\Bigl{[}(1+z^{2})\mathcal{L}_{0}(1-z)\ln\frac{\mu^{2}}{z^{2}M^{2}}+(1+z^{2})\mathcal{L}_{1}(1-z)-(1-z)\theta(z)\theta(1-z)\Bigr{]}
+δ(1z)[2ϵ1μ20(tμ2)+2μ21(tμ2)]+(1+z2)0(1z)1μ20(tμ2)}.\displaystyle+\delta(1-z)\Bigl{[}-\frac{2}{\epsilon}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}+\frac{2}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigr{]}+(1+z^{2})\mathcal{L}_{0}(1-z)\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigr{\}}.

Here the splitting function P(z)P_{\ell\ell}(z) for W\ell\rightarrow\ell W is the same as the quark splitting function Pqq(z)P_{qq}(z), and is given by

P(z)=Pqq(z)=0(1z)(1+z2)+32δ(1z)=[θ(1z)1+z21z]+.P_{\ell\ell}(z)=P_{qq}(z)=\mathcal{L}_{0}(1-z)(1+z^{2})+\frac{3}{2}\delta(1-z)=\Bigl{[}\theta(1-z)\frac{1+z^{2}}{1-z}\Bigr{]}_{+}. (67)

Note that the group theory factors for the real emission (MaM_{a}, MbM_{b}) and for the virtual correction (McM_{c}, Z(1)Z^{(1)} and R(1)R^{(1)}) are the same for the singlet, while they are different for the nonsinglet. Due to this fact, the rapidity divergence cancels in the singlet, while it does not in the nonsinglet.

The μ\mu-anomalous dimensions γBμ\gamma^{\mu}_{B} and the ν\nu-anomalous dimensions γBν\gamma^{\nu}_{B} of the beam functions are given as

γBsμ=2CFΓc1μ20(tμ2)2γδ(t),γBsν=0\displaystyle\gamma_{Bs}^{\mu}=-2C_{F}\Gamma_{c}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}-2\gamma_{\ell}\delta(t),\ \gamma_{Bs}^{\nu}=0
γBnμ=γBsμ+CAΓc[δ(t)lnνω+1μ20(tμ2)],γBnν=CAΓcδ(t)lnμM,\displaystyle\gamma_{Bn}^{\mu}=\gamma_{B_{s}}^{\mu}+C_{A}\Gamma_{c}\Bigl{[}\delta(t)\ln\frac{\nu}{\omega}+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigr{]},\ \gamma^{\nu}_{Bn}=C_{A}\Gamma_{c}\delta(t)\ln\frac{\mu}{M}, (68)

where γ(1)=3CF/(4π)\gamma_{\ell}^{(1)}=-3C_{F}/(4\pi) at NLO.

The 2-jettiness in eqs. (3.1.4) and (3.2) is expressed in terms of the convolution of the collinear and the soft functions, but it is convenient to express it in terms of the Laplace transform because the 2-jettiness is expressed in terms of the products. For the beam function, we make a Laplace transform with respect to the jettiness k=t/ωk=t/\omega, which is written as

B~i(lnωQLμ2,z,M,μ)=0𝑑keskBi(ωk,z,M,μ),s=1eγEQL.\tilde{B}_{i}\Bigl{(}\ln\frac{\omega Q_{L}}{\mu^{2}},z,M,\mu\Bigr{)}=\int_{0}^{\infty}dk\,e^{-sk}B_{i}(\omega k,z,M,\mu),\ s=\frac{1}{e^{\gamma_{\mathrm{E}}}Q_{L}}. (69)

When we make a Laplace transform of the various collinear functions, each part should contain the same scale, and we choose s=1/(QLeγE)s=1/(Q_{L}e^{\gamma_{\mathrm{E}}}). Here QLQ_{L} is an arbitrary scale involved in the Laplace transform. Various distributions appearing in eq. (5.1) are expressed as regular functions in the Laplace transforms. (See appendix A.) As we will show later, the evolution of the jettiness is independent of the factorization scale μF\mu_{F}, as well as QLQ_{L}.

The anomalous dimensions of the Laplace-transformed beam functions are given as

γ~Bsμ\displaystyle\tilde{\gamma}_{Bs}^{\mu} =2CFΓclnμ2ωQL2γ,γ~Bsν=0,\displaystyle=2C_{F}\Gamma_{c}\ln\frac{\mu^{2}}{\omega Q_{L}}-2\gamma_{\ell},\ \tilde{\gamma}_{Bs}^{\nu}=0,
γ~Bnμ\displaystyle\tilde{\gamma}_{Bn}^{\mu} =γ~BsμCAΓclnμ2νQL,γ~Bnν=CAΓclnμM.\displaystyle=\tilde{\gamma}_{Bs}^{\mu}-C_{A}\Gamma_{c}\ln\frac{\mu^{2}}{\nu Q_{L}},\ \tilde{\gamma}_{Bn}^{\nu}=C_{A}\Gamma_{c}\ln\frac{\mu}{M}. (70)

To be precise, these anomalous dimensions are those of the beam functions in SCETI\mathrm{SCET_{I}}, but in SCETII\mathrm{SCET_{II}}, they are regarded as the anomalous dimensions of the combination of the matching coefficients and the PDFs. Here Γc(α)\Gamma_{c}(\alpha) is the cusp anomalous dimension Korchemsky:1987wg ; Korchemskaya:1992je , which can be expanded as

Γc(α)=α4πΓc0+(α4π)2Γc1+,\Gamma_{c}(\alpha)=\frac{\alpha}{4\pi}\Gamma_{c}^{0}+\Bigl{(}\frac{\alpha}{4\pi}\Bigr{)}^{2}\Gamma_{c}^{1}+\cdots, (71)

with

Γc0=4,Γc1=(268943π2)CA40nf9.\Gamma_{c}^{0}=4,\ \Gamma_{c}^{1}=\Bigl{(}\frac{268}{9}-\frac{4}{3}\pi^{2}\Bigr{)}C_{A}-\frac{40n_{f}}{9}. (72)

To NLL accuracy, the cusp anomalous dimension to two loops is needed.

The PDFs are defined in terms of the matrix elements with a target ee as

fea(z=ω/P,M,μ)=e(P)|θ(ω)¯n(0)n¯/2Ta[δ(ωn¯𝒫)n(0)]|e(P),f^{a}_{e}(z=\omega/P^{-},M,\mu)=\langle e(P)|\theta(\omega)\overline{\ell}_{n}(0)\frac{{\overline{n}}\!\!\!/}{2}T^{a}\Bigl{[}\delta(\omega-\overline{n}\cdot\mathcal{P})\ell_{n}(0)\Bigr{]}|e(P)\rangle, (73)

and it is normalized at tree level as

fea(0)(z)=δ(1z)Tr(TaPe).f_{e}^{a(0)}(z)=\delta(1-z)\mathrm{Tr}(T^{a}P_{e}). (74)

The Feynman diagrams for the PDFs at one loop are shown in figure 2. Note that the Feynman diagrams are the same as those for the beam functions, but the measured quantities are different. Including the zero-bin subtractions, the matrix elements apart from the group theory factors are given as

Ma\displaystyle M_{a} =α2π(1z)(1ϵ2+lnμ2zM2),\displaystyle=\frac{\alpha}{2\pi}(1-z)\Bigl{(}\frac{1}{\epsilon}-2+\ln\frac{\mu^{2}}{zM^{2}}\Bigr{)},
Mb\displaystyle M_{b} =α2π(1ϵ+lnμ2zM2)[δ(1z)(1η+lnνω)+z0(z)],\displaystyle=\frac{\alpha}{2\pi}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{zM^{2}}\Bigr{)}\Bigl{[}-\delta(1-z)\Bigl{(}\frac{1}{\eta}+\ln\frac{\nu}{\omega}\Bigr{)}+z\mathcal{L}_{0}(z)\Bigr{]},
Mc\displaystyle M_{c} =α2πδ(1z)[(1ϵ+lnμ2M2)(1η+lnνω+1)+1π26].\displaystyle=\frac{\alpha}{2\pi}\delta(1-z)\Bigl{[}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}\Bigl{(}\frac{1}{\eta}+\ln\frac{\nu}{\omega}+1\Bigr{)}+1-\frac{\pi^{2}}{6}\Bigr{]}. (75)

The singlet and nonsinglet PDFs are expressed in terms of fsf_{\ell s} and fnf_{\ell n} as

f0(z,M,μ)=fs(z,M,μ)Tr(T0P),fa(z,M,μ)=fn(z,M,μ)Tr(TaP),f_{\ell}^{0}(z,M,\mu)=f_{\ell s}(z,M,\mu)\mathrm{Tr}(T^{0}P_{\ell}),\ f_{\ell}^{a}(z,M,\mu)=f_{\ell n}(z,M,\mu)\mathrm{Tr}(T^{a}P_{\ell}), (76)

where fsf_{\ell s} and fnf_{\ell n} at NLO are given as

fs(1)(z,M,μ)\displaystyle f_{\ell s}^{(1)}(z,M,\mu) =CF(Ma+2Mb+2Mc+(Z(1)+R(1))δ(1z))\displaystyle=C_{F}\Bigl{(}M_{a}+2M_{b}+2M_{c}+(Z^{(1)}+R^{(1)})\delta(1-z)\Bigr{)}
=αCF2π[(1ϵ+lnμ2zM2)P(z)+(94π23)δ(1z)2(1z)θ(1z)],\displaystyle=\frac{\alpha C_{F}}{2\pi}\Bigl{[}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{zM^{2}}\Bigr{)}P_{\ell\ell}(z)+\Bigl{(}\frac{9}{4}-\frac{\pi^{2}}{3}\Bigr{)}\delta(1-z)-2(1-z)\theta(1-z)\Bigr{]},
fn(1)(z,M,μ)\displaystyle f_{\ell n}^{(1)}(z,M,\mu) =(CFCA2)(Ma+2Mb)+CF(2Mc+(Z(1)+R(1))δ(1z))\displaystyle=\Bigl{(}C_{F}-\frac{C_{A}}{2}\Bigr{)}(M_{a}+2M_{b})+C_{F}\Bigl{(}2M_{c}+(Z^{(1)}+R^{(1)})\delta(1-z)\Bigr{)}
=fs(z,M,μ)+αCA2π[δ(1z)(1ϵ+lnμ2M2)(1η+lnνω)+(1z)θ(1z)\displaystyle=f_{\ell s}(z,M,\mu)+\frac{\alpha C_{A}}{2\pi}\Bigl{[}\delta(1-z)\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}\Bigl{(}\frac{1}{\eta}+\ln\frac{\nu}{\omega}\Bigr{)}+(1-z)\theta(1-z)
12(1ϵ+lnμ2zM2)(1+z2)0(1z)].\displaystyle-\frac{1}{2}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{zM^{2}}\Bigr{)}(1+z^{2})\mathcal{L}_{0}(1-z)\Bigr{]}. (77)

Here the rapidity divergence shows up in the nonsinglet PDF for the same reason as in the beam functions. It coincides with the result in ref. Manohar:2018kfx . The μ\mu- and ν\nu-anomalous dimensions of the PDFs are given as

γfsμ\displaystyle\gamma_{fs}^{\mu} =CFΓcP(z),γfsν=0\displaystyle=C_{F}\Gamma_{c}P_{\ell\ell}(z),\ \gamma_{fs}^{\nu}=0 (78)
γfnμ\displaystyle\gamma_{fn}^{\mu} =γfsμ+CAΓc(δ(1z)lnνω12(1+z2)0(1z)),γfnν=CAΓclnμM.\displaystyle=\gamma_{fs}^{\mu}+C_{A}\Gamma_{c}\Bigl{(}\delta(1-z)\ln\frac{\nu}{\omega}-\frac{1}{2}(1+z^{2})\mathcal{L}_{0}(1-z)\Bigr{)},\ \gamma_{fn}^{\nu}=C_{A}\Gamma_{c}\ln\frac{\mu}{M}.

It is noteworthy to compare the distinction between QCD and the weak interaction. The results for the singlets correspond to QCD and there is only a single logarithm in the singlet PDF, and it satisfies the usual DGLAP equation

dfs(z,M,μ)dlnμ=απdzzi=,WPi(zz)fis(z,M,μ),\frac{df_{\ell s}(z,M,\mu)}{d\ln\mu}=\frac{\alpha}{\pi}\int\frac{dz^{\prime}}{z^{\prime}}\sum_{i=\ell,W}P_{\ell i}\Bigl{(}\frac{z}{z^{\prime}}\Bigr{)}f_{is}(z^{\prime},M,\mu), (79)

where PW(z)P_{\ell W}(z) is the analog of the splitting function Pqg(z)P_{qg}(z) in QCD. On the other hand, the nonsinglet PDF shows the double logarithms due to the mismatch of the real and virtual contributions, along with the rapidity divergence. Due to the double logarithms, the nonsinglet PDF satisfies more complicated RG equations. It happens to all the collinear functions and the soft function, which necessitates the introduction of SCETII\mathrm{SCET_{II}}.

The beam functions are related to the PDFs as

Bia(t,z,M,μ)=j,bz1dξξijab(t,zξ,μ)fjb(ξ,M,μ),B_{i}^{a}(t,z,M,\mu)=\sum_{j,b}\int_{z}^{1}\frac{d\xi}{\xi}\mathcal{I}_{ij}^{ab}\Bigl{(}t,\frac{z}{\xi},\mu\Bigr{)}f_{j}^{b}(\xi,M,\mu), (80)

where ijab\mathcal{I}_{ij}^{ab} are the matching coefficients, which describe the collinear initial-state radiation and can be computed perturbatively. Here ii, jj are the indices for particle species, and aa, bb are the weak indices. The only nonzero matching coefficients are those which are diagonal in weak-charge space, from which the singlet and nonsinglet matching coefficients s\mathcal{I}_{\ell\ell}^{s} and n\mathcal{I}_{\ell\ell}^{n} are defined as

s(t,z,μ)=00(t,z,μ),n(t,z,μ)=aa(t,z,μ),a0(t,z,μ)=0.\mathcal{I}_{\ell\ell}^{s}(t,z,\mu)=\mathcal{I}_{\ell\ell}^{00}(t,z,\mu),\ \ \ \mathcal{I}_{\ell\ell}^{n}(t,z,\mu)=\mathcal{I}_{\ell\ell}^{aa}(t,z,\mu),\ \ \ \mathcal{I}_{\ell\ell}^{a0}(t,z,\mu)=0. (81)

The matching coefficients s\mathcal{I}_{\ell\ell}^{s} for the singlet and n\mathcal{I}_{\ell\ell}^{n} for the nonsinglet at NLO are given as

s(1)(t,z,μ)=Bs(1)(t,z,M,μ)fs(1)(z,M,μ)δ(t)\displaystyle\mathcal{I}_{\ell\ell}^{s(1)}(t,z,\mu)=B_{\ell s}^{(1)}(t,z,M,\mu)-f_{\ell s}^{(1)}(z,M,\mu)\delta(t)
=αCF2π{π26δ(t)δ(1z)+δ(t)[(1+z2)1(1z)+θ(1z)(1z1+z21zlnz)]\displaystyle=\frac{\alpha C_{F}}{2\pi}\Bigl{\{}-\frac{\pi^{2}}{6}\delta(t)\delta(1-z)+\delta(t)\Bigl{[}(1+z^{2})\mathcal{L}_{1}(1-z)+\theta(1-z)\Bigl{(}1-z-\frac{1+z^{2}}{1-z}\ln z\Bigr{)}\Bigr{]}
+(P(z)32δ(1z))1μ20(tμ2)+2μ21(tμ2)δ(1z)},\displaystyle+\Bigl{(}P_{\ell\ell}(z)-\frac{3}{2}\delta(1-z)\Bigr{)}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}+\frac{2}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\delta(1-z)\Bigr{\}},
n(1)(t,z,μ)=Bn(1)(t,z,M,μ)fn(1)(z,M,μ)δ(t)=CFCA/2CFs(1).\displaystyle\mathcal{I}_{\ell\ell}^{n(1)}(t,z,\mu)=B_{\ell n}^{(1)}(t,z,M,\mu)-f_{\ell n}^{(1)}(z,M,\mu)\delta(t)=\frac{C_{F}-C_{A}/2}{C_{F}}\mathcal{I}_{\ell\ell s}^{(1)}. (82)

The finite terms in the beam functions and PDFs are different compared to the result in ref. Stewart:2010qs due to the presence of the gauge boson mass MM, but the matching coefficient s(1)\mathcal{I}_{\ell\ell}^{s(1)} is the same. Note that there is no dependence on MM in the matching coefficients, because they should be independent of the low-energy physics. The matching coefficient n(1)\mathcal{I}_{\ell\ell}^{n(1)} for the nonsinglet is new, but interestingly enough, it is proportional to s(1)\mathcal{I}_{\ell\ell}^{s(1)} for the singlet.

5.2 Semi-inclusive jet functions

The semi-inclusive jet functions are defined in eq. (3.1.2). The Feynman diagrams at order α\alpha are shown in Fig. 3. As in computing the beam functions, the final result is obtained by taking the limit of small MM. All the contributions including the zero-bin contributions without the group theory factors at NLO are given as (See appendix C.1.)

Ma\displaystyle M_{a} =α2πθ(p2M2)p2[12M2p2+12(M2p2)2]α2π[δ(p2)(34+12lnμ2M2)+12μ20(p2μ2)],\displaystyle=\frac{\alpha}{2\pi}\frac{\theta(p^{2}-M^{2})}{p^{2}}\Bigl{[}\frac{1}{2}-\frac{M^{2}}{p^{2}}+\frac{1}{2}\Bigl{(}\frac{M^{2}}{p^{2}}\Bigr{)}^{2}\Bigr{]}\longrightarrow\frac{\alpha}{2\pi}\Bigl{[}\delta(p^{2})\Bigl{(}-\frac{3}{4}+\frac{1}{2}\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}+\frac{1}{2\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{]},
M~b\displaystyle\tilde{M}_{b} =α2πθ(p2M2)1p2[1+M2p2lnM2p2]\displaystyle=\frac{\alpha}{2\pi}\theta(p^{2}-M^{2})\frac{1}{p^{2}}\Bigl{[}-1+\frac{M^{2}}{p^{2}}-\ln\frac{M^{2}}{p^{2}}\Bigr{]}
α2π[δ(p2)(1lnμ2M2+12ln2μ2M2)1μ20(p2μ2)(1lnμ2M2)+1μ21(p2μ2)],\displaystyle\longrightarrow\frac{\alpha}{2\pi}\Bigl{[}\delta(p^{2})\Bigl{(}1-\ln\frac{\mu^{2}}{M^{2}}+\frac{1}{2}\ln^{2}\frac{\mu^{2}}{M^{2}}\Bigr{)}-\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigl{(}1-\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}+\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{]},
Mb\displaystyle M_{b}^{\varnothing} =α2π{δ(p2)[(1η+lnνω)(1ϵ+lnμ2M2)1ϵ2+12ln2μ2M2+π212]\displaystyle=\frac{\alpha}{2\pi}\Bigl{\{}\delta(p^{2})\Bigl{[}\Bigl{(}\frac{1}{\eta}+\ln\frac{\nu}{\omega}\Bigr{)}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}-\frac{1}{\epsilon^{2}}+\frac{1}{2}\ln^{2}\frac{\mu^{2}}{M^{2}}+\frac{\pi^{2}}{12}\Bigr{]}
+(1ϵ+lnμ2M2)1μ20(p2μ2)},\displaystyle+\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{\}},
Mc\displaystyle M_{c} =α2πδ(p2)[(1η+lnνω)(1ϵ+lnμ2M2)+1ϵ+lnμ2M2+1π26],\displaystyle=\frac{\alpha}{2\pi}\delta(p^{2})\Bigl{[}\Bigl{(}\frac{1}{\eta}+\ln\frac{\nu}{\omega}\Bigr{)}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}+\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}+1-\frac{\pi^{2}}{6}\Bigr{]}, (83)

and the wavefunction renormalization and the residue are given by eq. (64). We put p2=ωp+p^{2}=\omega p^{+}, where ω=n¯p\omega=\overline{n}\cdot p, and p+p^{+} is the jettiness from the jet.

Refer to caption
Figure 3: Feynman diagrams for the semi-inclusive jet function at one loop. The dotted lines denote the cut. Mirror images for (b) and (c) are omitted. For the muon semi-inclusive jet functions, the fermions cut by the dotted lines are muons.

The bare singlet and nonsinglet semi-inclusive jet functions Jl0J_{l}^{0} and JlaJ_{l}^{a}, which include the lepton ll in the final state, are given as

Jl0(p2,M,μ)=Js(p2,M,μ)Tr(PlT0),Jla(p2,M,μ)=Jn(p2,M,μ)Tr(PlTa),J_{l}^{0}(p^{2},M,\mu)=J_{s}(p^{2},M,\mu)\mathrm{Tr}(P_{l}T^{0}),\ J_{l}^{a}(p^{2},M,\mu)=J_{n}(p^{2},M,\mu)\mathrm{Tr}(P_{l}T^{a}), (84)

where PlP_{l} is the projection operator to the lepton ll (l=μ,νμl=\mu,\nu_{\mu}). With the appropriate group theory factors, the bare singlet and the nonsinglet jet functions at NLO are given as

Js(1)(p2,M,μ)\displaystyle J_{s}^{(1)}(p^{2},M,\mu) =CF(Ma+2(M~bMb)+2Mc+(Z(1)+R(1))δ(p2))\displaystyle=C_{F}\Bigl{(}M_{a}+2(\tilde{M}_{b}-M_{b}^{\varnothing})+2M_{c}+(Z^{(1)}+R^{(1)})\delta(p^{2})\Bigr{)} (85)
=αCF2π[δ(p2)(2ϵ2+32ϵ+72π22)(2ϵ+32)1μ20(p2μ2)+2μ21(p2μ2)],\displaystyle=\frac{\alpha C_{F}}{2\pi}\Bigl{[}\delta(p^{2})\Bigl{(}\frac{2}{\epsilon^{2}}+\frac{3}{2\epsilon}+\frac{7}{2}-\frac{\pi^{2}}{2}\Bigr{)}-\Bigl{(}\frac{2}{\epsilon}+\frac{3}{2}\Bigr{)}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}+\frac{2}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{]},
Jn(1)(p2,M,μ)\displaystyle J_{n}^{(1)}(p^{2},M,\mu) =(CFCA2)(Ma+2(M~bMb))+CF(2Mc+(Z(1)+R(1))δ(p2))\displaystyle=\Bigl{(}C_{F}-\frac{C_{A}}{2}\Bigr{)}\Bigl{(}M_{a}+2(\tilde{M}_{b}-M_{b}^{\varnothing})\Bigr{)}+C_{F}\Bigl{(}2M_{c}+(Z^{(1)}+R^{(1)})\delta(p^{2})\Bigr{)}
=Js(p2,M,μ)+αCA2π{δ(p2)[1η(1ϵ+lnμ2M2)1ϵ2+1ϵlnνω+lnμ2M2lnνω\displaystyle=J_{s}(p^{2},M,\mu)+\frac{\alpha C_{A}}{2\pi}\Bigl{\{}\delta(p^{2})\Bigl{[}\frac{1}{\eta}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}-\frac{1}{\epsilon^{2}}+\frac{1}{\epsilon}\ln\frac{\nu}{\omega}+\ln\frac{\mu^{2}}{M^{2}}\ln\frac{\nu}{\omega}
+34lnμ2M258+π212]+(1ϵ+34)1μ20(p2μ2)1μ21(p2μ2)}.\displaystyle+\frac{3}{4}\ln\frac{\mu^{2}}{M^{2}}-\frac{5}{8}+\frac{\pi^{2}}{12}\Bigr{]}+\Bigl{(}\frac{1}{\epsilon}+\frac{3}{4}\Bigr{)}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}-\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{\}}.

Here again the nonsinglet jet function develops the rapidity divergence.

The anomalous dimensions are given as

γJsμ\displaystyle\gamma_{Js}^{\mu} =2CFΓc1μ20(p2μ2)2γδ(p2),γJsν=0,\displaystyle=-2C_{F}\Gamma_{c}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}-2\gamma_{\ell}\delta(p^{2}),\ \gamma_{Js}^{\nu}=0,
γJnμ\displaystyle\gamma_{Jn}^{\mu} =γJsμ+CAΓc[δ(p2)lnνω+1μ20(p2μ2)],γJnν=CAΓcδ(p2)lnμM.\displaystyle=\gamma_{Js}^{\mu}+C_{A}\Gamma_{c}\Bigl{[}\delta(p^{2})\ln\frac{\nu}{\omega}+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{]},\ \gamma_{Jn}^{\nu}=C_{A}\Gamma_{c}\delta(p^{2})\ln\frac{\mu}{M}. (86)

The Laplace transforms of the anomalous dimensions with s=1/(QLeγE)s=1/(Q_{L}e^{\gamma_{\mathrm{E}}}) conjugate to the jettiness p+p^{+} are given by

γ~Jsμ\displaystyle\tilde{\gamma}_{Js}^{\mu} =2CFΓclnμ2ωQL2γ,γ~Jsν=0,\displaystyle=2C_{F}\Gamma_{c}\ln\frac{\mu^{2}}{\omega Q_{L}}-2\gamma_{\ell},\ \tilde{\gamma}_{Js}^{\nu}=0,
γ~Jnμ\displaystyle\tilde{\gamma}_{Jn}^{\mu} =γ~JsμCAΓclnμ2νQL,γ~Jnν=CAΓclnμM,\displaystyle=\tilde{\gamma}_{Js}^{\mu}-C_{A}\Gamma_{c}\ln\frac{\mu^{2}}{\nu Q_{L}},\ \tilde{\gamma}_{Jn}^{\nu}=C_{A}\Gamma_{c}\ln\frac{\mu}{M}, (87)

which are the same as the anomalous dimensions of the beam functions in eq. (70).

5.3 Fragmentation functions and fragmenting jet functions

The collinear parts pertaining to the final states are described either by the fragmentation functions or by the FJFs. The fragmentation function is used when a single particle is observed with no properties of the jet to be probed. The FJF describes the fragmentation of a parton ii to another parton jj within a jet originating from ii with the measurement of the momentum fraction and the invariant mass of the jet.

The fragmentation function from \ell to the lepton ll is extended from the definition in QCD Procura:2009vm ; Jain:2011xz to

Dla(z,M,μ)=d2plzXTr0|Tan¯/2[δ(ω+n¯𝒫)δ(2)(𝒫)L(0)]|lXlX|¯L(0)|0,D_{l}^{a}(z,M,\mu)=\int\frac{d^{2}p_{l}^{\perp}}{z}\sum_{X}\mathrm{Tr}\,\langle 0|T^{a}\frac{{\overline{n}}\!\!\!/}{2}[\delta(\omega+\overline{n}\cdot\mathcal{P})\delta^{(2)}(\mathcal{P}_{\perp})\ell_{L}(0)]|lX\rangle\langle lX|\overline{\ell}_{L}(0)|0\rangle, (88)

where z=pl/p=pl/ωz=p_{l}^{-}/p_{\ell}^{-}=p_{l}^{-}/\omega is the fraction of the largest lightcone components of the observed lepton ll originating from \ell. At tree level, the fragmentation functions are normalized as

Dla(0)(z,M,μ)=δ(1z)Tr(PlTa).D_{l}^{a(0)}(z,M,\mu)=\delta(1-z)\mathrm{Tr}(P_{l}T^{a}). (89)

The matrix elements for the fragmentation functions are the same as those for the PDFs in eq. (5.1), and we will not present them here.

The FJF is defined as

𝒢la(p2,z,M,μ)\displaystyle\mathcal{G}_{l}^{a}(p^{2},z,M,\mu) =2(2π)3ωzd2𝐩lX\displaystyle=\frac{2(2\pi)^{3}}{\omega z}\int d^{2}\mathbf{p}_{l\perp}\sum_{X} (90)
×Tr0|Tan¯/2L(0)|lXlX|δ(ω+n¯𝒫)δ(2)(𝒫)δ(p++n𝒫)¯L(0)|0,\displaystyle\times\mathrm{Tr}\,\langle 0|T^{a}\frac{{\overline{n}}\!\!\!/}{2}\ell_{L}(0)|lX\rangle\langle lX|\delta(\omega+\overline{n}\cdot\mathcal{P})\delta^{(2)}(\mathcal{P}_{\perp})\delta(p^{+}+n\cdot\mathcal{P})\overline{\ell}_{L}(0)|0\rangle,

where p2=ωp+p^{2}=\omega p^{+} is the invariant mass of the collinear jet. The small component p+p^{+} is the jettiness from the fragmented lepton. The FJF is normalized at tree level as

𝒢la(0)(p2,z,M,μ)=2(2π)3δ(p2)δ(1z)Tr(PlTa).\mathcal{G}_{l}^{a(0)}(p^{2},z,M,\mu)=2(2\pi)^{3}\delta(p^{2})\delta(1-z)\mathrm{Tr}(P_{l}T^{a}). (91)
Refer to caption
Figure 4: Feynman diagrams for the fragmentation functions and the FJFs at one loop. The dotted lines denote the cut. The mirror images of (b) and (c) are omitted. The dots represent the observed particles in the final state. Note that ω\omega is measured for the fragmentation function, while ω\omega and p+p^{+} are measured for the FJF.

The relations between the FJF, the semi-inclusive jet functions, and the fragmentation functions can be found by comparing eqs. (3.1.2), (88) and (90). The FJF probes the differential distributions with respect to the invariant mass p2p^{2} and the momentum fraction zz. If we integrate the FJF over all the possible invariant masses, it yields the fragmentation functions which shows the distributions of the momentum fraction of the observed lepton. On the other hand, if we integrate the FJF over the momentum fraction zz, it yields the semi-inclusive jet function for the lepton ll in the final state. Therefore the relations can be expressed as

Dla(z,M,μ)=0𝑑p2𝒢la(p2,z,M,μ)2(2π)3,Jla(p2,M,μ)=01𝑑z𝒢la(p2,z,M,μ)2(2π)3,D_{l}^{a}(z,M,\mu)=\int_{0}^{\infty}dp^{2}\frac{\mathcal{G}_{l}^{a}(p^{2},z,M,\mu)}{2(2\pi)^{3}},\ J_{l}^{a}(p^{2},M,\mu)=\int_{0}^{1}dz\frac{\mathcal{G}_{l}^{a}(p^{2},z,M,\mu)}{2(2\pi)^{3}}, (92)

and it is confirmed at order α\alpha. Our definition of the semi-inclusive (singlet) jet function is different from that in ref. Kang:2016mcy . As explained by the authors in ref. Kang:2016mcy , their semi-inclusive jet function is similar to the fragmentation function. To be exact, it is the fragmentation function, in which the final-state hadron forms a jet. Our semi-inclusive jet function describes the jet mass distribution with the lepton ll (or the leptonic jet which includes ll) in the final state.

In ref. Jain:2011xz , integrating the FJF with an additional factor zz yields the inclusive jet function Ji(p2,μ)J_{i}(p^{2},\mu). The additional factor of zz is due to the symmetrization of the final states when all the hadrons in the final state are summed over. However, we refer to the semi-inclusive jet function for the lepton ll specified in the final state in eq. (92). If we sum over all the final leptons to yield the inclusive jet functions, the additional factor of zz should be included.

The Feynman diagrams for the fragmentation functions and the FJFs are shown in figure 4. Though we present the same Feynman diagrams for both functions, note that the observed quantities are different. The matrix elements for the FJF without the group theory factors are given at NLO as

Ma\displaystyle M_{a} =α2πθ(z)θ(1z)θ(p2M21z)1p2(1zM2p2)\displaystyle=\frac{\alpha}{2\pi}\theta(z)\theta(1-z)\theta\Bigl{(}p^{2}-\frac{M^{2}}{1-z}\Bigr{)}\frac{1}{p^{2}}\Bigl{(}1-z-\frac{M^{2}}{p^{2}}\Bigr{)}
α2πθ(z)θ(1z)(1z)[δ(p2)(ln(1z)μ2M21)+1μ20(p2μ2)],\displaystyle\longrightarrow\frac{\alpha}{2\pi}\theta(z)\theta(1-z)(1-z)\Bigl{[}\delta(p^{2})\Bigl{(}\ln\frac{(1-z)\mu^{2}}{M^{2}}-1\Bigr{)}+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{]},
M~b\displaystyle\tilde{M}_{b} =α2πθ(z)θ(1z)θ(p2M21z)1p2z1z,\displaystyle=\frac{\alpha}{2\pi}\theta(z)\theta(1-z)\theta\Bigl{(}p^{2}-\frac{M^{2}}{1-z}\Bigr{)}\frac{1}{p^{2}}\frac{z}{1-z},
α2π[δ(p2)δ(1z)12ln2μ2M2+δ(p2)(zlnμ2M20(1z)+z1(1z))\displaystyle\longrightarrow\frac{\alpha}{2\pi}\Bigl{[}\delta(p^{2})\delta(1-z)\frac{1}{2}\ln^{2}\frac{\mu^{2}}{M^{2}}+\delta(p^{2})\Bigl{(}z\ln\frac{\mu^{2}}{M^{2}}\mathcal{L}_{0}(1-z)+z\mathcal{L}_{1}(1-z)\Bigr{)}
+δ(1z)(1μ20(p2μ2)lnμ2M2+1μ21(p2μ2))+zμ20(p2μ2)0(1z)],\displaystyle+\delta(1-z)\Bigl{(}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\ln\frac{\mu^{2}}{M^{2}}+\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{)}+\frac{z}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\mathcal{L}_{0}(1-z)\Bigr{]},
Mb\displaystyle M_{b}^{\varnothing} =α2πδ(1z){(1ϵ+lnμ2M2)[δ(p2)(1η+lnνω)+1μ20(p2μ2)]\displaystyle=\frac{\alpha}{2\pi}\delta(1-z)\Bigl{\{}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}\Bigl{[}\delta(p^{2})\Bigl{(}\frac{1}{\eta}+\ln\frac{\nu}{\omega}\Bigr{)}+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{]}
+δ(p2)(1ϵ2+12ln2μ2M2+π212)}\displaystyle+\delta(p^{2})\Bigl{(}-\frac{1}{\epsilon^{2}}+\frac{1}{2}\ln^{2}\frac{\mu^{2}}{M^{2}}+\frac{\pi^{2}}{12}\Bigr{)}\Bigr{\}}
Mc\displaystyle M_{c} =α2πδ(p2)δ(1z)[(1ϵ+lnμ2M2)(1η+lnνω+1)+1π26].\displaystyle=\frac{\alpha}{2\pi}\delta(p^{2})\delta(1-z)\Bigl{[}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}\Bigl{(}\frac{1}{\eta}+\ln\frac{\nu}{\omega}+1\Bigr{)}+1-\frac{\pi^{2}}{6}\Bigr{]}. (93)

Here we also express the matrix elements in the limit of small mass MM. The detailed derivation of taking the limit is presented in appendix C.2.

The singlet and nonsinglet FJFs are written as

𝒢l0(p2,z,M,μ)\displaystyle\mathcal{G}_{l}^{0}(p^{2},z,M,\mu) =𝒢ls(p2,z,M,μ)Tr(PlT0),\displaystyle=\mathcal{G}_{ls}(p^{2},z,M,\mu)\mathrm{Tr}(P_{l}T^{0}),
𝒢la(p2,z,M,μ)\displaystyle\mathcal{G}_{l}^{a}(p^{2},z,M,\mu) =𝒢ln(p2,z,M,μ)Tr(PlTa).\displaystyle=\mathcal{G}_{ln}(p^{2},z,M,\mu)\mathrm{Tr}(P_{l}T^{a}). (94)

The bare FJFs for the singlet and the nonsinglet at NLO are given as

𝒢ls(1)(p2,z,M,μ)2(2π)3\displaystyle\frac{\mathcal{G}_{ls}^{(1)}(p^{2},z,M,\mu)}{2(2\pi)^{3}} =CF(Ma+2(M~bMb+Mc)+(Z(1)+R(1))δ(p2)δ(1z))\displaystyle=C_{F}\Bigl{(}M_{a}+2(\tilde{M}_{b}-M_{b}^{\varnothing}+M_{c})+(Z^{(1)}+R^{(1)})\delta(p^{2})\delta(1-z)\Bigr{)} (95)
=αCF2π{δ(p2)δ(1z)(2ϵ2+32ϵ+94π22)\displaystyle=\frac{\alpha C_{F}}{2\pi}\Bigl{\{}\delta(p^{2})\delta(1-z)\Bigl{(}\frac{2}{\epsilon^{2}}+\frac{3}{2\epsilon}+\frac{9}{4}-\frac{\pi^{2}}{2}\Bigr{)}
+δ(p2)[P(z)lnμ2M2+(1+z2)1(1z)(1z)θ(z)θ(1z)]\displaystyle+\delta(p^{2})\Bigl{[}P_{\ell\ell}(z)\ln\frac{\mu^{2}}{M^{2}}+(1+z^{2})\mathcal{L}_{1}(1-z)-(1-z)\theta(z)\theta(1-z)\Bigr{]}
+δ(1z)[2ϵ1μ20(p2μ2)+2μ21(p2μ2)]+(1+z2)0(1z)1μ20(p2μ2)},\displaystyle+\delta(1-z)\Bigl{[}-\frac{2}{\epsilon}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}+\frac{2}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{]}+(1+z^{2})\mathcal{L}_{0}(1-z)\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{\}},
𝒢ln(1)(p2,z,M,μ)2(2π)3\displaystyle\frac{\mathcal{G}_{ln}^{(1)}(p^{2},z,M,\mu)}{2(2\pi)^{3}} =(CFCA/2)(Ma+2(M~bMb))\displaystyle=(C_{F}-C_{A}/2)\Bigl{(}M_{a}+2(\tilde{M}_{b}-M_{b}^{\varnothing})\Bigr{)} (96)
+CF(2Mc+(Z(1)+R(1))δ(p2)δ(1z))\displaystyle+C_{F}\Bigl{(}2M_{c}+(Z^{(1)}+R^{(1)})\delta(p^{2})\delta(1-z)\Bigr{)}
=𝒢ls(1)(p2,z,M,μ)2(2π)3\displaystyle=\frac{\mathcal{G}_{ls}^{(1)}(p^{2},z,M,\mu)}{2(2\pi)^{3}}
αCA4π{δ(p2)δ(1z)[2ϵ22(1ϵ+lnμ2M2)(1η+lnνω)π26]\displaystyle-\frac{\alpha C_{A}}{4\pi}\Bigl{\{}\delta(p^{2})\delta(1-z)\Bigl{[}\frac{2}{\epsilon^{2}}-2\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}\Bigl{(}\frac{1}{\eta}+\ln\frac{\nu}{\omega}\Bigr{)}-\frac{\pi^{2}}{6}\Bigr{]}
+δ(p2)[(1+z2)0(1z)lnμ2M2+(1+z2)1(1z)(1z)θ(z)θ(1z)]\displaystyle+\delta(p^{2})\Bigl{[}(1+z^{2})\mathcal{L}_{0}(1-z)\ln\frac{\mu^{2}}{M^{2}}+(1+z^{2})\mathcal{L}_{1}(1-z)-(1-z)\theta(z)\theta(1-z)\Bigr{]}
+δ(1z)[2ϵ1μ20(p2μ2)+2μ21(p2μ2)]+(1+z2)0(1z)1μ20(p2μ2)}.\displaystyle+\delta(1-z)\Bigl{[}-\frac{2}{\epsilon}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}+\frac{2}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{]}+(1+z^{2})\mathcal{L}_{0}(1-z)\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{\}}.

The singlet FJF in eq. (95) is the same as the result in ref. Jain:2011xz though the individual contributions are different. However, the result for the nonsinglet FJFs is new, and note that the dependence on the rapidity scale remains in the nonsinglet FJFs, while there is none for the singlet FJFs.

The anomalous dimensions are given as

γFsμ\displaystyle\gamma_{Fs}^{\mu} =2CFΓc1μ20(p2μ2)2γδ(p2),γFsν=0,\displaystyle=-2C_{F}\Gamma_{c}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}-2\gamma_{\ell}\delta(p^{2}),\ \gamma_{Fs}^{\nu}=0,
γFnμ\displaystyle\gamma_{Fn}^{\mu} =γFsμ+CAΓc[δ(p2)lnνω+1μ20(p2μ2)],γFnν=CAΓcδ(p2)lnμM,\displaystyle=\gamma_{Fs}^{\mu}+C_{A}\Gamma_{c}\Bigl{[}\delta(p^{2})\ln\frac{\nu}{\omega}+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{]},\ \gamma_{Fn}^{\nu}=C_{A}\Gamma_{c}\delta(p^{2})\ln\frac{\mu}{M}, (97)

and their Laplace transforms are given by

γ~Fsμ\displaystyle\tilde{\gamma}_{Fs}^{\mu} =2CFΓclnμ2ωQL2γ,γ~Fsν=0,\displaystyle=2C_{F}\Gamma_{c}\ln\frac{\mu^{2}}{\omega Q_{L}}-2\gamma_{\ell},\ \tilde{\gamma}_{Fs}^{\nu}=0,
γ~Fnμ\displaystyle\tilde{\gamma}_{Fn}^{\mu} =γ~FsμCAΓclnμ2νQL,γ~Fnν=CAΓclnμM.\displaystyle=\tilde{\gamma}_{Fs}^{\mu}-C_{A}\Gamma_{c}\ln\frac{\mu^{2}}{\nu Q_{L}},\ \tilde{\gamma}_{Fn}^{\nu}=C_{A}\Gamma_{c}\ln\frac{\mu}{M}. (98)

Because there is a relation between the semi-inclusive jet function and the FJF in eq. (92), the anomalous dimensions of the jet functions and the FJFs are the same. [See eqs. (5.2) and (5.2).]

The matching between the fragmentation function and the FJF are written as

𝒢ia(p2,z,M,μ)=jz1dzz𝒥ijab(p2,zz,μ)Djb(z,M,μ)\mathcal{G}_{i}^{a}(p^{2},z,M,\mu)=\sum_{j}\int_{z}^{1}\frac{dz^{\prime}}{z^{\prime}}\mathcal{J}_{ij}^{ab}\Bigl{(}p^{2},\frac{z}{z^{\prime}},\mu\Bigr{)}D_{j}^{b}(z^{\prime},M,\mu) (99)

at leading power, where 𝒥ijab\mathcal{J}_{ij}^{ab} are the matching coefficients. At tree-level, it is given by

𝒥ijab(0)(p2,z,μ)=2(2π)3δijδabδ(p2)δ(1z).\mathcal{J}_{ij}^{ab(0)}(p^{2},z,\mu)=2(2\pi)^{3}\delta_{ij}\delta^{ab}\delta(p^{2})\delta(1-z). (100)

If we write

𝒥00(p2,z,μ)=𝒥s(p2,z,μ),𝒥ab(p2,z,μ)=δab𝒥n(p2,z,μ),𝒥a0(p2,z,μ)=0,\mathcal{J}_{\ell\ell}^{00}(p^{2},z,\mu)=\mathcal{J}_{\ell\ell}^{s}(p^{2},z,\mu),\ \mathcal{J}_{\ell\ell}^{ab}(p^{2},z,\mu)=\delta^{ab}\mathcal{J}_{\ell\ell}^{n}(p^{2},z,\mu),\ \mathcal{J}_{\ell\ell}^{a0}(p^{2},z,\mu)=0, (101)

the singlet matching coefficient 𝒥s\mathcal{J}_{\ell\ell}^{s} and the nonsinglet matching coefficient 𝒥n\mathcal{J}_{\ell\ell}^{n} at order α\alpha are given as

𝒥s(1)(p2,z,μ)2(2π)3\displaystyle\frac{\mathcal{J}_{\ell\ell}^{s(1)}(p^{2},z,\mu)}{2(2\pi)^{3}} =αCF2π{π26δ(p2)δ(1z)\displaystyle=\frac{\alpha C_{F}}{2\pi}\Bigl{\{}-\frac{\pi^{2}}{6}\delta(p^{2})\delta(1-z)
+δ(p2)(P(z)lnz+(1+z2)1(1z)+θ(1z)(1z))\displaystyle+\delta(p^{2})\Bigl{(}P_{\ell\ell}(z)\ln z+(1+z^{2})\mathcal{L}_{1}(1-z)+\theta(1-z)(1-z)\Bigr{)}
+δ(1z)2μ21(p2μ2)+(1+z2)0(1z)1μ20(p2μ2)},\displaystyle+\delta(1-z)\frac{2}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}+(1+z^{2})\mathcal{L}_{0}(1-z)\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{\}},
𝒥n(1)(p2,z,μ)2(2π)3\displaystyle\frac{\mathcal{J}_{\ell\ell}^{n(1)}(p^{2},z,\mu)}{2(2\pi)^{3}} =CFCA/2CF𝒥s(1)(p2,z,μ)2(2π)3.\displaystyle=\frac{C_{F}-C_{A}/2}{C_{F}}\frac{\mathcal{J}_{\ell\ell}^{s(1)}(p^{2},z,\mu)}{2(2\pi)^{3}}. (102)

The matching coefficients for the singlet 𝒥s(1)\mathcal{J}_{\ell\ell}^{s(1)} are the same as those in QCD Jain:2011xz . As in the case of the matching coefficients s,n\mathcal{I}_{\ell\ell}^{s,n} for the beam functions and the PDFs, the new nonsinglet matching coefficient is proportional to the singlet matching coefficient. These matching coefficients do not depend on the gauge boson mass MM, as in the matching coefficients in eq. (5.1).

6 Hard function

The hard functions are represented by a matrix in the basis of the singlet and nonsinglet operators OIO_{I}, so are the soft functions. The hard functions are defined in eq. (39) as HJI=4u2DIDJ=CICJH_{JI}=4u^{2}D_{I}^{*}D_{J}=C_{I}^{*}C_{J}, where DID_{I} is the Wilson coefficient of the operators OIO_{I} for the process e¯eμ¯μ\ell_{e}\overline{\ell}_{e}\rightarrow\ell_{\mu}\overline{\ell}_{\mu}. Here e\ell_{e} and μ\ell_{\mu} are electron and muon doublets respectively because the relevant hard processes involve lepton doublets at higher orders. The hard coefficients are determined by matching the results of the full theory onto the effective theory.

We can utilize the results of the hard functions in previous literature. The detailed form of the hard function at one loop for 222\rightarrow 2 partonic processes can be found in ref. Kelley:2010fn for QCD, and in ref. Chiu:2009mg for electroweak interactions. Since we deal with the left-handed fields, all the right-handed contributions are put to zero.

The Wilson coefficients CILLC_{ILL} to order α\alpha are given by Kelley:2010fn ; Chiu:2009mg

C1LL(u,s,t)\displaystyle C_{1LL}(u,s,t) =2g2us{1+α4π[2CFL(s)2+X1(u,s,t)L(s)+Y\displaystyle=2g^{2}\frac{u}{s}\Bigl{\{}1+\frac{\alpha}{4\pi}\Bigl{[}-2C_{F}L(s)^{2}+X_{1}(u,s,t)L(s)+Y
+(CA22CF)Z(u,s,t)]},\displaystyle+\Bigl{(}\frac{C_{A}}{2}-2C_{F}\Bigr{)}Z(u,s,t)\Bigr{]}\Bigr{\}},
C2LL(u,s,t)\displaystyle C_{2LL}(u,s,t) =2g2usα4π[X2(u,s,t)L(s)CF2CAZ(u,s,t)],\displaystyle=2g^{2}\frac{u}{s}\frac{\alpha}{4\pi}\Bigl{[}X_{2}(u,s,t)L(s)-\frac{C_{F}}{2C_{A}}Z(u,s,t)\Bigr{]}, (103)

where

X1(u,s,t)\displaystyle X_{1}(u,s,t) =6CFβ0+8CF[L(u)L(t)]2CA[2L(u)L(s)L(t)],\displaystyle=6C_{F}-\beta_{0}+8C_{F}[L(u)-L(t)]-2C_{A}[2L(u)-L(s)-L(t)],
X2(u,s,t)\displaystyle X_{2}(u,s,t) =2CFCA[L(u)L(t)],\displaystyle=\frac{2C_{F}}{C_{A}}[L(u)-L(t)],
Z(u,s,t)\displaystyle Z(u,s,t) =su(s+2tu[L(t)L(s)]2+2[L(t)L(s)]+s+2tuπ2),\displaystyle=\frac{s}{u}\Bigl{(}\frac{s+2t}{u}[L(t)-L(s)]^{2}+2[L(t)-L(s)]+\frac{s+2t}{u}\pi^{2}\Bigr{)},
Y\displaystyle Y =CA(103+π2)+CF(π2316)+53β0.\displaystyle=C_{A}\Bigl{(}\frac{10}{3}+\pi^{2}\Bigr{)}+C_{F}\Bigl{(}\frac{\pi^{2}}{3}-16\Bigr{)}+\frac{5}{3}\beta_{0}. (104)

The function L(x)L(x) as a function of the Mandelstam variables is given by

L(t)=lntμ2,L(u)=lnuμ2,L(s)=lnsμ2iπ.L(t)=\ln\frac{-t}{\mu^{2}},\ L(u)=\ln\frac{-u}{\mu^{2}},\ L(s)=\ln\frac{s}{\mu^{2}}-i\pi. (105)

The RG equation for CIC_{I} can be written as

ddlnμ(C1C2)=𝚪H(C1C2),\frac{d}{d\ln\mu}\begin{pmatrix}C_{1}\\ C_{2}\end{pmatrix}=\bm{\Gamma}_{H}\begin{pmatrix}C_{1}\\ C_{2}\end{pmatrix}, (106)

where 𝚪H\bm{\Gamma}_{H} is the anomalous dimension matrix for the Wilson coefficients. Then the RG equation for the hard function 𝐇\mathbf{H} is given as

ddlnμ𝐇=𝚪H𝐇+𝐇𝚪H.\frac{d}{d\ln\mu}\mathbf{H}=\mathbf{\Gamma}_{H}\mathbf{H}+\mathbf{H}\mathbf{\Gamma}_{H}^{\dagger}. (107)

The anomalous dimension matrix is given by Kelley:2010fn ; Chiu:2009mg

𝚪H(u,s,t)=[2CFΓc(α)L(s)+4γβ(α)α]𝟏+Γc(α)𝐌,\mathbf{\Gamma}_{H}(u,s,t)=\Bigl{[}2C_{F}\Gamma_{c}(\alpha)L(s)+4\gamma_{\ell}-\frac{\beta(\alpha)}{\alpha}\Bigr{]}\mathbf{1}+\Gamma_{c}(\alpha)\mathbf{M}, (108)

where the β/α\beta/\alpha term compensates the g2(μ)g^{2}(\mu) dependence in the leading Wilson coefficients. Here the beta function β\beta is given by

β(α)=dαdlnμ=2αk=0βk(α4π)k+1,β0=113CA23nf.\beta(\alpha)=\frac{d\alpha}{d\ln\mu}=-2\alpha\sum_{k=0}\beta_{k}\Bigl{(}\frac{\alpha}{4\pi}\Bigr{)}^{k+1},\ \ \beta_{0}=\frac{11}{3}C_{A}-\frac{2}{3}n_{f}. (109)

The matrix 𝐌\mathbf{M} can be written as

𝐌=i<j𝐓i𝐓j[L(sij)L(s)],\mathbf{M}=-\sum_{i<j}\mathbf{T}_{i}\cdot\mathbf{T}_{j}\Bigl{[}L(s_{ij})-L(s)\Bigr{]}, (110)

where s=s12=s34s=s_{12}=s_{34}, t=s13=s24t=s_{13}=s_{24} and u=s14=s23u=s_{14}=s_{23}. By explicitly computing the color factors 𝐓i𝐓j\mathbf{T}_{i}\cdot\mathbf{T}_{j} Chiu:2009mg , the matrix 𝐌\mathbf{M} is written as

𝐌(u,s,t)\displaystyle\mathbf{M}\textdagger(u,s,t) =i<j𝐓i𝐓j[L(sij)L(s)]\displaystyle=-\sum_{i<j}\mathbf{T}_{i}\cdot\mathbf{T}_{j}\Bigl{[}L(s_{ij})-L(s)\Bigr{]} (111)
=((2CFCA/2)lnn13n24n14n23CA2lnn12n34n14n23lnn13n24n14n23CF(CFCA/2)lnn13n24n14n230)+iπ(CA000),\displaystyle=\begin{pmatrix}\displaystyle\Bigl{(}2C_{F}-C_{A}/2\Bigr{)}\ln\frac{n_{13}n_{24}}{n_{14}n_{23}}-\frac{C_{A}}{2}\ln\frac{n_{12}n_{34}}{n_{14}n_{23}}&&\displaystyle\ln\frac{n_{13}n_{24}}{n_{14}n_{23}}\\ \displaystyle-C_{F}\Bigl{(}C_{F}-C_{A}/2\Bigr{)}\ln\frac{n_{13}n_{24}}{n_{14}n_{23}}&&0\end{pmatrix}+i\pi\begin{pmatrix}\displaystyle C_{A}&0\\ 0&0\end{pmatrix},

with nij=ninj/2n_{ij}=n_{i}\cdot n_{j}/2.

7 Soft function

The soft functions for the NN-jettiness or more general jet observables have been discussed in refs. Jouttenus:2011wh ; Bertolini:2017efs . The authors have considered the differential jettiness, that is, the individual jettiness in the NN jets. [See eq. (3).] Here we consider the total jettiness which corresponds to the sum of the individual jettiness. The soft function for the jettiness is defined in eq. (3.1.3). Since the calculation was performed in massless cases in these references, they set the virtual contribution to zero since they consist of scaleless integrals. In our scheme with the nonzero gauge boson mass, there is nonzero virtual contribution, and we present the results here.

7.1 Hemisphere soft function

The diagrams for the emission of a gauge boson between the soft Wilson lines SiS_{i} and SjS_{j}^{\dagger} (YiY_{i} and YjY_{j}^{\dagger} in SCETI\mathrm{SCET_{I}}) are shown in figure 5, where SiS_{i} is the soft Wilson line in the nin_{i} direction. Because ni2=0n_{i}^{2}=0, the emission from the soft Wilson lines with i=ji=j vanishes. Figure 5 (a) [figure 5 (b)] denotes the virtual contribution (the real contribution). In computing the total soft function, we include all the possible combinations of ii and jj with the appropriate group theory factors. The following calculations are based on the contractions of a gauge boson from the soft Wilson lines SiS_{i} and SjS_{j}^{\dagger}. The additional minus signs when the contractions are performed between SiS_{i} and SjS_{j} or SiS_{i}^{\dagger} and SjS_{j}^{\dagger} are included in the group theory factors.

Refer to caption
Figure 5: Schematic diagrams for the emission of a soft gauge boson in SijS_{ij}. The vertical lines are the final-state cut. Diagram (a) denotes the virtual contribution, and diagram (b) denotes the real contribution. The gauge bosons attached to the same ii do not contribute. In order to obtain the soft function, all the possible pairs of contractions with different ii and jj should be included.

The real contribution is decomposed into the hemisphere and the non-hemisphere parts. Only the hemisphere part involves the divergence, and the non-hemisphere parts are finite Jouttenus:2011wh ; Bertolini:2017efs . Our case is relevant to ref. Jouttenus:2011wh , which corresponds to the case βi=2\beta_{i}=2 in ref. Bertolini:2017efs . We concentrate on the hemisphere soft function to extract the anomalous dimensions of the NN-jettiness soft function. The virtual contribution is not affected by the process of choosing the hemisphere functions in the real contribution.

The virtual contribution in figure 5 (a) aside from the group theory factor is written as

Sij,hemiV=2πg2μMS¯2ϵδ(k)dDq(2π)Dδ(q2M2)2nijqiqjR(qi,qj),S_{ij,\mathrm{hemi}}^{V}=-2\pi g^{2}\mu^{2\epsilon}_{\overline{\mathrm{MS}}}\delta(k)\int\frac{d^{D}{q}}{(2\pi)^{D}}\delta(q^{2}-M^{2})\frac{2n_{ij}}{q_{i}q_{j}}R(q_{i},q_{j}), (112)

where qi=niqq_{i}=n_{i}\cdot q and qj=njqq_{j}=n_{j}\cdot q, and R(qi,qj)R(q_{i},q_{j}) is the rapidity regulator, which can be written at NLO as Chay:2020jzn

R(qi,qj)=(νnijqj)ηθ(qjqi)+(νnijqi)ηθ(qiqj).R(q_{i},q_{j})=\Bigl{(}\frac{\nu n_{ij}}{q_{j}}\Bigr{)}^{\eta}\theta(q_{j}-q_{i})+\Bigl{(}\frac{\nu n_{ij}}{q_{i}}\Bigr{)}^{\eta}\theta(q_{i}-q_{j}). (113)

Since the integrand in eq. (112) is symmetric under iji\leftrightarrow j, the contributions from both terms in the rapidity regulator is the same. Here we pick up the first term in the rapidity regulator and multiply two to get the virtual contribution. It is given as

Sij,hemiV\displaystyle S_{ij,\mathrm{hemi}}^{V} =8πg2μMS¯2ϵδ(k)dDq(2π)Dδ(q2M2)nijqiqj(νnijqj)ηθ(qjqi)\displaystyle=-8\pi g^{2}\mu^{2\epsilon}_{\overline{\mathrm{MS}}}\delta(k)\int\frac{d^{D}{q}}{(2\pi)^{D}}\delta(q^{2}-M^{2})\frac{n_{ij}}{q_{i}q_{j}}\Bigl{(}\frac{\nu n_{ij}}{q_{j}}\Bigr{)}^{\eta}\theta(q_{j}-q_{i}) (114)
=απ(μ2eγE)ϵΓ(1ϵ)δ(k)𝑑qj𝑑qi(qiqjnijM2)ϵ1qiqj(νnijqj)ηθ(qiqj>nijM2)θ(qjqi)\displaystyle=-\frac{\alpha}{\pi}\frac{(\mu^{2}e^{\gamma_{\mathrm{E}}})^{\epsilon}}{\Gamma(1-\epsilon)}\delta(k)\int dq_{j}dq_{i}\Bigl{(}\frac{q_{i}q_{j}}{n_{ij}}-M^{2}\Bigr{)}^{-\epsilon}\frac{1}{q_{i}q_{j}}\Bigl{(}\frac{\nu n_{ij}}{q_{j}}\Bigr{)}^{\eta}\theta(q_{i}q_{j}>n_{ij}M^{2})\theta(q_{j}-q_{i})
=απ(μ2eγE)ϵΓ(1ϵ)δ(k)(νnij)ηM2𝑑y1(y1M2)ϵy11+η/21𝑑y212y21+η/2\displaystyle=-\frac{\alpha}{\pi}\frac{(\mu^{2}e^{\gamma_{\mathrm{E}}})^{\epsilon}}{\Gamma(1-\epsilon)}\delta(k)(\nu n_{ij})^{\eta}\int_{M^{2}}^{\infty}dy_{1}\frac{(y_{1}-M^{2})^{-\epsilon}}{y_{1}^{1+\eta/2}}\int_{1}^{\infty}dy_{2}\frac{1}{2y_{2}^{1+\eta/2}}
=απδ(k)eγEϵ(μ2M2)ϵ(νnijM)η1ηΓ(ϵ+η/2)Γ(1+η/2)\displaystyle=-\frac{\alpha}{\pi}\delta(k)e^{\gamma_{\mathrm{E}}\epsilon}\Bigl{(}\frac{\mu^{2}}{M^{2}}\Bigr{)}^{\epsilon}\Bigl{(}\frac{\nu\sqrt{n_{ij}}}{M}\Bigr{)}^{\eta}\frac{1}{\eta}\frac{\Gamma(\epsilon+\eta/2)}{\Gamma(1+\eta/2)}
=α2πδ(k)[1ϵ22η(1ϵ+lnμ2M2)1ϵlnnijν2μ2+12ln2μ2M2lnnijν2M2lnμ2M2π212].\displaystyle=\frac{\alpha}{2\pi}\delta(k)\Bigl{[}\frac{1}{\epsilon^{2}}-\frac{2}{\eta}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}-\frac{1}{\epsilon}\ln\frac{n_{ij}\nu^{2}}{\mu^{2}}+\frac{1}{2}\ln^{2}\frac{\mu^{2}}{M^{2}}-\ln\frac{n_{ij}\nu^{2}}{M^{2}}\ln\frac{\mu^{2}}{M^{2}}-\frac{\pi^{2}}{12}\Bigr{]}.

In the third line, we change variables y1=qiqj/nijy_{1}=q_{i}q_{j}/n_{ij}, y2=qj/qiy_{2}=q_{j}/q_{i}. Then qiq_{i} and qjq_{j} are written as qi=nijy1/y2q_{i}=\sqrt{n_{ij}y_{1}/y_{2}}, qj=nijy1y2q_{j}=\sqrt{n_{ij}y_{1}y_{2}} with dqidqj=nijdy1dy2/(2y2)dq_{i}dq_{j}=n_{ij}dy_{1}dy_{2}/(2y_{2}), with y1>M2y_{1}>M^{2} and y2>1y_{2}>1.

Here we focus on the real part. The imaginary part can be obtained by implementing the iϵi\epsilon prescription for the soft Wilson lines Chay:2004zn . The result can be summarized as follows: The logarithmic term can be expressed in the form ln(σijnijiϵ)\ln(\sigma_{ij}n_{ij}-i\epsilon), where σij=1\sigma_{ij}=-1 when ii and jj are both incoming or outgoing, and σij=1\sigma_{ij}=1 when one is incoming and the other is outgoing. When σij=1\sigma_{ij}=-1, the imaginary part is induced.

The real soft contribution without the group theory factor at order α\alpha is given as

SijR(1)=2πg2μMS¯2ϵdDq(2π)Dδ(q2M2)2nijqiqjR(qi,qj)F(k,{qi}),S^{R(1)}_{ij}=-2\pi g^{2}\mu^{2\epsilon}_{\overline{\mathrm{MS}}}\int\frac{d^{D}{q}}{(2\pi)^{D}}\delta(q^{2}-M^{2})\frac{2n_{ij}}{q_{i}q_{j}}R(q_{i},q_{j})F(k,\{q_{i}\}), (115)

where the function FF constrains the phase space on the emission of a single gauge boson, from which the hemisphere soft function is to be extracted.

For 2-jettiness, we consider four independent labels ii, jj, ll, mm and the constraint function FF is given by

F(k,{qi})\displaystyle F(k,\{q_{i}\}) =θ(qjqi)[δ(kqi)θ(qlqi)θ(qmqi)+δ(kql)θ(qiql)θ(qmql)\displaystyle=\theta(q_{j}-q_{i})\Bigl{[}\delta(k-q_{i})\theta(q_{l}-q_{i})\theta(q_{m}-q_{i})+\delta(k-q_{l})\theta(q_{i}-q_{l})\theta(q_{m}-q_{l})
+δ(kqm)θ(qiqm)θ(qlqm)]+(ij)\displaystyle+\delta(k-q_{m})\theta(q_{i}-q_{m})\theta(q_{l}-q_{m})\Bigr{]}+(i\leftrightarrow j)
=θ(qjqi)[δ(kqi)+θ(qiqm)θ(qlqm)(δ(kqm)δ(kqi))\displaystyle=\theta(q_{j}-q_{i})\Bigl{[}\delta(k-q_{i})+\theta(q_{i}-q_{m})\theta(q_{l}-q_{m})\Bigl{(}\delta(k-q_{m})-\delta(k-q_{i})\Bigr{)}
+θ(qiql)θ(qmql)(δ(kql)δ(kqi))]+(ij)\displaystyle+\theta(q_{i}-q_{l})\theta(q_{m}-q_{l})\Bigl{(}\delta(k-q_{l})-\delta(k-q_{i})\Bigr{)}\Bigr{]}+(i\leftrightarrow j)
Fij,hemi(k,{qi})+Fij,ml(k,{qi})+Fij,lm(k,{qi})+(ij).\displaystyle\equiv F_{ij,\mathrm{hemi}}(k,\{q_{i}\})+F_{ij,ml}(k,\{q_{i}\})+F_{ij,lm}(k,\{q_{i}\})+(i\leftrightarrow j). (116)

(See ref. Jouttenus:2011wh for 1-jettiness.) In obtaining the second relation, the theta functions in the first term is replaced by

θ(qlqi)θ(qmqi)=(1θ(qiql))(1θ(qiqm)).\theta(q_{l}-q_{i})\theta(q_{m}-q_{i})=\Bigl{(}1-\theta(q_{i}-q_{l})\Bigr{)}\Bigl{(}1-\theta(q_{i}-q_{m})\Bigr{)}. (117)

The hemisphere measurement function for the full hemisphere qj>qiq_{j}>q_{i} is given by

Fij,hemi(k,{qi})=θ(qjqi)δ(kqi).F_{ij,\mathrm{hemi}}(k,\{q_{i}\})=\theta(q_{j}-q_{i})\delta(k-q_{i}). (118)
Refer to caption
Figure 6: The real soft contribution is decomposed into the hemisphere soft functions Fij,hemiF_{ij,\mathrm{hemi}} and Fji,hemiF_{ji,\mathrm{hemi}} and the non-hemisphere soft functions. The hemisphere functions contain all the divergences, while the non-hemisphere functions are finite. Here we focus on the hemisphere soft functions.

And the non-hemisphere functions are given by

Fij,ml(k,{qi})\displaystyle F_{ij,ml}(k,\{q_{i}\}) =θ(qjqi)θ(qiqm)θ(qlqm)(δ(kqm)δ(kqi)),\displaystyle=\theta(q_{j}-q_{i})\theta(q_{i}-q_{m})\theta(q_{l}-q_{m})\Bigl{(}\delta(k-q_{m})-\delta(k-q_{i})\Bigr{)},
Fij,lm(k,{qi})\displaystyle F_{ij,lm}(k,\{q_{i}\}) =θ(qjqi)θ(qiql)θ(qmql)(δ(kql)δ(kqi)),\displaystyle=\theta(q_{j}-q_{i})\theta(q_{i}-q_{l})\theta(q_{m}-q_{l})\Bigl{(}\delta(k-q_{l})-\delta(k-q_{i})\Bigr{)}, (119)

which are the non-hemisphere measurement function for region mm and ll respectively. Note that the constraint function FF is constructed for the gauge boson emitted from the soft Wilson lines SiS_{i} and SjS_{j}^{\dagger} (YiY_{i} and YjY_{j}^{\dagger}). The hemisphere function for the ii and jj jet directions contains the collinear and the soft divergences. The contribution to the ll and mm directions only contains the soft divergence, which is subtracted from the corresponding region of the hemisphere parts. Here we focus on the hemisphere soft functions, from which the anomalous dimensions are obtained. The decomposition of the soft real contribution into the hemisphere functions and the non-hemisphere functions are schematically shown in figure 6. As can be seen in the figure, the soft divergence in the non-hemisphere parts is cancelled by the corresponding subtraction from the hemisphere parts.

The phase space for the real emission is shown in figure 7, and we compute the real contribution in the phase space AA, which corresponds to the hemisphere constraint Fij,hemi(k,{qi})F_{ij,\mathrm{hemi}}(k,\{q_{i}\}).

Refer to caption
Figure 7: Phase space for a real, soft gauge boson emission. Region AA [Fij,hemi(k,{qi})F_{ij,\mathrm{hemi}}(k,\{q_{i}\})] corresponds to qiqj>nijM2q_{i}q_{j}>n_{ij}M^{2} and qj>qiq_{j}>q_{i}. Region BB [Fji,hemi(k,{qi})F_{ji,\mathrm{hemi}}(k,\{q_{i}\})] corresponds to qiqj>nijM2q_{i}q_{j}>n_{ij}M^{2} and qi>qjq_{i}>q_{j}. Region AA is subdivided into the region aa with k<nijMk<\sqrt{n_{ij}}M and the region bb with k>nijMk>\sqrt{n_{ij}}M.

The real contribution from the region AA is given by

Sij,hemiRA=α2π(μ2eγE)ϵΓ(1ϵ)(νnij)η𝑑qj1kqj1+η(kqjnijM2)ϵθ(qjk)θ(kqjnijM2).S_{ij,\mathrm{hemi}}^{RA}=-\frac{\alpha}{2\pi}\frac{(\mu^{2}e^{\gamma_{\mathrm{E}}})^{\epsilon}}{\Gamma(1-\epsilon)}(\nu n_{ij})^{\eta}\int dq_{j}\frac{1}{kq_{j}^{1+\eta}}\Bigl{(}\frac{kq_{j}}{n_{ij}}-M^{2}\Bigr{)}^{-\epsilon}\theta(q_{j}-k)\theta(kq_{j}-n_{ij}M^{2}). (120)

We divide the phase space into the region aa with k<nijMk<\sqrt{n_{ij}}M and the region bb with k>nijMk>\sqrt{n_{ij}}M, and the integral in the region aa is given as

Ia\displaystyle I_{a} =α2π(μ2eγE)ϵΓ(1ϵ)(νnij)ηknijM2/k𝑑qj1qj1+η(kqjnijM2)ϵθ(k<nijM)\displaystyle=-\frac{\alpha}{2\pi}\frac{(\mu^{2}e^{\gamma_{\mathrm{E}}})^{\epsilon}}{\Gamma(1-\epsilon)}\frac{(\nu n_{ij})^{\eta}}{k}\int_{n_{ij}M^{2}/k}^{\infty}dq_{j}\frac{1}{q_{j}^{1+\eta}}\Bigl{(}\frac{kq_{j}}{n_{ij}}-M^{2}\Bigr{)}^{-\epsilon}\theta(k<\sqrt{n_{ij}}M)
=α2πeγEϵ(μ2M2)ϵ(μν)η(ν2M2)ηΓ(ϵ+η)Γ(1+η)1μ(μk)1η\displaystyle=-\frac{\alpha}{2\pi}e^{\gamma_{\mathrm{E}}\epsilon}\Bigl{(}\frac{\mu^{2}}{M^{2}}\Bigr{)}^{\epsilon}\Bigl{(}\frac{\mu}{\nu}\Bigr{)}^{\eta}\Bigl{(}\frac{\nu^{2}}{M^{2}}\Bigr{)}^{\eta}\frac{\Gamma(\epsilon+\eta)}{\Gamma(1+\eta)}\frac{1}{\mu}\Bigl{(}\frac{\mu}{k}\Bigr{)}^{1-\eta}
=α2π{δ(k)[1η(1ϵ+lnμ2M2)1ϵ2+1ϵlnνμ+lnνMlnμ2M2+π212]\displaystyle=-\frac{\alpha}{2\pi}\Bigl{\{}\delta(k)\Bigl{[}\frac{1}{\eta}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}-\frac{1}{\epsilon^{2}}+\frac{1}{\epsilon}\ln\frac{\nu}{\mu}+\ln\frac{\nu}{M}\ln\frac{\mu^{2}}{M^{2}}+\frac{\pi^{2}}{12}\Bigr{]}
+(1ϵ+lnμ2M2)1μ0(kμ)θ(k<nijM)},\displaystyle+\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}\frac{1}{\mu}\mathcal{L}_{0}\Bigl{(}\frac{k}{\mu}\Bigr{)}\theta(k<\sqrt{n_{ij}}M)\Bigr{\}}, (121)

where the following relation is used.

1μ(μk)1η=1ηδ(k)+1μ0(kμ)+𝒪(η).\frac{1}{\mu}\Bigl{(}\frac{\mu}{k}\Bigr{)}^{1-\eta}=\frac{1}{\eta}\delta(k)+\frac{1}{\mu}\mathcal{L}_{0}\Bigl{(}\frac{k}{\mu}\Bigr{)}+\mathcal{O}(\eta). (122)

The integral in the region bb is written as

Ib\displaystyle I_{b} =α2π(μ2eγE)ϵΓ(1ϵ)(νnij)ηnijk1+ϵk𝑑qj1qj1+η(qjnijM2k)ϵθ(k>nijM)\displaystyle=-\frac{\alpha}{2\pi}\frac{(\mu^{2}e^{\gamma_{\mathrm{E}}})^{\epsilon}}{\Gamma(1-\epsilon)}(\nu n_{ij})^{\eta}\frac{n_{ij}}{k^{1+\epsilon}}\int_{k}^{\infty}dq_{j}\frac{1}{q_{j}^{1+\eta}}\Bigl{(}q_{j}-\frac{n_{ij}M^{2}}{k}\Bigr{)}^{-\epsilon}\theta(k>\sqrt{n_{ij}}M)
=α2π1k(1ϵ+lnnijμ2k2)θ(k>nijM).\displaystyle=-\frac{\alpha}{2\pi}\frac{1}{k}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{n_{ij}\mu^{2}}{k^{2}}\Bigr{)}\theta(k>\sqrt{n_{ij}}M). (123)

Note that Ia+IbI_{a}+I_{b} is remains the same when ii and jj are switched. Therefore the real contribution is twice Sij,hemiRAS_{ij,\mathrm{hemi}}^{RA} because the integration in the region BB is the same. The real hemisphere contribution is given by

Sij,hemiR\displaystyle S_{ij,\mathrm{hemi}}^{R} =α2π{δ(k)[2η(1ϵ+lnμ2M2)2ϵ2+1ϵlnν2μ2+lnν2M2lnμ2M2+π26]\displaystyle=-\frac{\alpha}{2\pi}\Bigl{\{}\delta(k)\Bigl{[}\frac{2}{\eta}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}-\frac{2}{\epsilon^{2}}+\frac{1}{\epsilon}\ln\frac{\nu^{2}}{\mu^{2}}+\ln\frac{\nu^{2}}{M^{2}}\ln\frac{\mu^{2}}{M^{2}}+\frac{\pi^{2}}{6}\Bigr{]} (124)
+(1ϵ+lnμ2M2)2μ0(kμ)θ(k<nijM)+2k(1ϵ+lnnijμ2k2)θ(k>nijM)}.\displaystyle+\Bigl{(}\frac{1}{\epsilon}+\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}\frac{2}{\mu}\mathcal{L}_{0}\Bigl{(}\frac{k}{\mu}\Bigr{)}\theta(k<\sqrt{n_{ij}}M)+\frac{2}{k}\Bigl{(}\frac{1}{\epsilon}+\ln\frac{n_{ij}\mu^{2}}{k^{2}}\Bigr{)}\theta(k>\sqrt{n_{ij}}M)\Bigr{\}}.

With the virtual contribution in eq. (114) and the real contribution in eq. (124), the hemisphere soft function can be written as

𝐒hemi(a1,a2,a3,a4)=ij[𝐒ijV(a1,a2,a3,a4)Sij,hemiV+𝐒ijR(a1,a2,a3,a4)Sij,hemiR].\mathbf{S}_{\mathrm{hemi}}(a_{1},a_{2},a_{3},a_{4})=\sum_{i\neq j}\Bigl{[}\mathbf{S}_{ij}^{V}(a_{1},a_{2},a_{3},a_{4})S_{ij,\mathrm{hemi}}^{V}+\mathbf{S}_{ij}^{R}(a_{1},a_{2},a_{3},a_{4})S_{ij,\mathrm{hemi}}^{R}\Bigr{]}. (125)

Here we represent the color structure of the soft function in the form 𝐒(a1,a2,a3,a4)\mathbf{S}(a_{1},a_{2},a_{3},a_{4}), in which the indices aia_{i} represent the presence of the nonsinglets from the originating ii-th collinear particle (i=1,2i=1,2 for the incoming particles, and i=3,4i=3,4 for the outgoing particles in our convention). For example, the soft color matrix with all the singlets is given by 𝐒(0,0,0,0)\mathbf{S}(0,0,0,0) and the soft color matrix with the nonsinglet contributions from 1 and 3 is denoted as 𝐒(1,0,1,0)\mathbf{S}(1,0,1,0), etc.. For the soft color matrix at tree level, see appendix D.1. With these color matrices, the real soft function for the nonsinglets 1 and 3 is written as ij𝐒ijR(1,0,1,0)SijR\sum_{i\neq j}\mathbf{S}^{R}_{ij}(1,0,1,0)S_{ij}^{R}, where SijRS_{ij}^{R} is the soft correction, which is given by eq. (124). Using this convention, the hemisphere soft function from 𝐒hemi(1,0,1,0)\mathbf{S}_{\mathrm{hemi}}(1,0,1,0) incorporates SIJc0e0S_{IJ}^{c0e0} by putting the generators TcT^{c} and TeT^{e} for the first and the third indices respectively, and T0T^{0} in the second and the fourth indices.

The virtual and real contributions to the μ\mu and ν\nu soft anomalous dimensions without the group theory factors are given as

dSij,hemiVdlnμ\displaystyle\frac{dS^{V}_{ij,\mathrm{hemi}}}{d\ln\mu} =απδ(k)lnnijν2μ2,dSij,hemiRdlnμ=απ[δ(k)lnν2μ2+2μ0(kμ)],\displaystyle=-\frac{\alpha}{\pi}\delta(k)\ln\frac{n_{ij}\nu^{2}}{\mu^{2}},\ \frac{dS^{R}_{ij,\mathrm{hemi}}}{d\ln\mu}=-\frac{\alpha}{\pi}\Bigl{[}\delta(k)\ln\frac{\nu^{2}}{\mu^{2}}+\frac{2}{\mu}\mathcal{L}_{0}\Bigl{(}\frac{k}{\mu}\Bigr{)}\Bigr{]},\
dSij,hemiVdlnν\displaystyle\frac{dS^{V}_{ij,\mathrm{hemi}}}{d\ln\nu} =απδ(k)lnμ2M2,dSij,hemiRdlnν=απδ(k)lnμ2M2.\displaystyle=-\frac{\alpha}{\pi}\delta(k)\ln\frac{\mu^{2}}{M^{2}},\ \ \frac{dS^{R}_{ij,\mathrm{hemi}}}{d\ln\nu}=-\frac{\alpha}{\pi}\delta(k)\ln\frac{\mu^{2}}{M^{2}}. (126)

The derivatives of the Laplace-transformed soft parts are given by

dS~ij,hemiVdlnμ\displaystyle\frac{d\tilde{S}^{V}_{ij,\mathrm{hemi}}}{d\ln\mu} =απlnnijν2μ2,dS~ij,hemiRdlnμ=απlnν2QL2μ4,\displaystyle=-\frac{\alpha}{\pi}\ln\frac{n_{ij}\nu^{2}}{\mu^{2}},\ \frac{d\tilde{S}^{R}_{ij,\mathrm{hemi}}}{d\ln\mu}=-\frac{\alpha}{\pi}\ln\frac{\nu^{2}Q_{L}^{2}}{\mu^{4}},\ (127)
dS~ij,hemiVdlnν\displaystyle\frac{d\tilde{S}^{V}_{ij,\mathrm{hemi}}}{d\ln\nu} =απlnμ2M2,dS~ij,hemiRdlnν=απlnμ2M2.\displaystyle=-\frac{\alpha}{\pi}\ln\frac{\mu^{2}}{M^{2}},\ \ \frac{d\tilde{S}^{R}_{ij,\mathrm{hemi}}}{d\ln\nu}=-\frac{\alpha}{\pi}\ln\frac{\mu^{2}}{M^{2}}. (128)

It is noteworthy to compare eq. (127) with the results in ref. Manohar:2018kfx , in which the soft anomalous dimensions are given in inclusive cross sections. In ref. Manohar:2018kfx , the virtual and the real contributions at order α\alpha are the same except the sign, and the μ\mu-anomalous dimensions depend on nijn_{ij}. However, in the case of the jettiness in which we give constraints on the phase space in the real emissions, the contribution to the anomalous dimension from the virtual corrections is the same as in ref. Manohar:2018kfx , but the contribution from the real emission is different, especially it is independent of nijn_{ij}.

Due to this difference, the NN-jettiness soft function with four nonsinglets does not have mixing in contrast to the inclusive soft function, in which the mixing is induced at one loop. The virtual corrections do not cause mixing, while the mixing is cancelled in the sum of the real contributions because the real soft anomalous dimensions in eq. (127) is independent of nijn_{ij}. The proof that there is no mixing in the NN-jettiness soft function with four nonsinglets at one loop is presented in detail in appendix D.2.

7.2 Soft anomalous dimensions

The soft functions are written as matrices in the operator basis. The Laplace transform of the soft function is given as

𝐒~(lnQLμ,M,μ)=0𝑑kesk𝐒(k,M,μ),s=1eγEQL.\tilde{\mathbf{S}}\Bigl{(}\ln\frac{Q_{L}}{\mu},M,\mu\Bigr{)}=\int_{0}^{\infty}dke^{-sk}\,\mathbf{S}(k,M,\mu),\ s=\frac{1}{e^{\gamma_{\mathrm{E}}}Q_{L}}. (129)

The RG equation with respect to the renormalization scale μ\mu for the soft function in Laplace transform is written as

ddlnμ𝐒~=𝚪~Sμ𝐒~+𝐒~𝚪~Sμ,\frac{d}{d\ln\mu}\tilde{\mathbf{S}}=\tilde{\bm{\Gamma}}_{S}^{\mu\dagger}\tilde{\mathbf{S}}+\tilde{\mathbf{S}}\tilde{\bm{\Gamma}}_{S}^{\mu}, (130)

where 𝚪~Sμ\tilde{\bm{\Gamma}}_{S}^{\mu} is the μ\mu-anomalous dimension matrix. At NLO, eq. (130) is written as

ddlnμ𝐒~(1)=𝚪~Sμ(1)𝐒~(0)+𝐒~(0)𝚪~Sμ(1),\frac{d}{d\ln\mu}\tilde{\mathbf{S}}^{(1)}=\tilde{\bm{\Gamma}}_{S}^{\mu\dagger(1)}\tilde{\mathbf{S}}^{(0)}+\tilde{\mathbf{S}}^{(0)}\tilde{\bm{\Gamma}}_{S}^{\mu(1)}, (131)

where 𝐒(1)\mathbf{S}^{(1)} is the renormalized soft function. The soft anomalous dimensions can be extracted from the requirement that the sum of the anomalous dimensions from all the factorized parts should cancel. The soft anomalous dimension at one loop is given by

𝚪~Sμ(1)=(𝚪~H(1)+12(γ~B1μ(1)+γ~B2μ(1)+γ~J3μ(1)+γ~J4μ(1))𝟏),\tilde{\bm{\Gamma}}_{S}^{\mu(1)}=-\Bigl{(}\tilde{\bm{\Gamma}}_{H}^{(1)}+\frac{1}{2}(\tilde{\gamma}_{B_{1}}^{\mu(1)}+\tilde{\gamma}_{B_{2}}^{\mu(1)}+\tilde{\gamma}_{J_{3}}^{\mu(1)}+\tilde{\gamma}_{J_{4}}^{\mu(1)})\otimes\mathbf{1}\Bigr{)}, (132)

where γ~Cμ\tilde{\gamma}_{C}^{\mu} is the anomalous dimensions of the beam functions or the jet functions. The μ\mu-anomalous dimensions of the soft function with kk nonsinglets (k=0,2,3,4k=0,2,3,4) are given as

(𝚪~Sμ)k(1)=CFΓc(α)(lnμ4n12n34QL42iπ)×𝟏Γc(α)𝐌+CAΓc2klnμ2νQL×𝟏,(\tilde{\bm{\Gamma}}_{S}^{\mu})_{k}^{(1)}=-C_{F}\Gamma_{c}(\alpha)\Bigl{(}\ln\frac{\mu^{4}n_{12}n_{34}}{Q_{L}^{4}}-2i\pi\Bigr{)}\times\mathbf{1}-\Gamma_{c}(\alpha)\mathbf{M}+\frac{C_{A}\Gamma_{c}}{2}k\ln\frac{\mu^{2}}{\nu Q_{L}}\times\mathbf{1}, (133)

where 𝐌\mathbf{M} is the matrix in eq. (111) appearing in the hard function. As in the hard function, the imaginary part in the identity matrix does not contribute to the evolution.

The RG equation with respect to the rapidity scale ν\nu is written as

ddlnν𝐒~=Γ~Sν𝐒~.\frac{d}{d\ln\nu}\tilde{\mathbf{S}}=\tilde{\Gamma}_{S}^{\nu}\tilde{\mathbf{S}}. (134)

After color algebra Sjodahl:2012nk , the ν\nu-soft anomalous dimensions with kk nonsinglets (k1k\neq 1) are given as

(Γ~Sν)k(1)=CAΓc2klnμ2M2.(\tilde{\Gamma}^{\nu}_{S})_{k}^{(1)}=-\frac{C_{A}\Gamma_{c}}{2}k\ln\frac{\mu^{2}}{M^{2}}. (135)

Note that there is no contribution from those with one nonsinglet k=1k=1 due to charge conservation.

8 Renormalization group evolution

In order to study the RG evolution, it is convenient to make a Laplace transform of the NN-jettiness which involves the convolution of the jet, beam and the soft functions in the factorization formulae, eqs. (3.1.4) and (3.2). The convolution becomes the product of the factorized parts with their Laplace transforms. Here we choose s=1/[QLexp(γE)]s=1/[Q_{L}\exp(\gamma_{\mathrm{E}})], which is the conjugate variable to the jettiness. Then we can take inverse Laplace transform and express the evolutions accordingly Becher:2006mr .

In order to resum large logarithms, the RG evolutions of the factorized functions start from their own characteristic scales to the common factorization scale μF\mu_{F} and the rapidity scale νF\nu_{F}. The characteristic scales are the scales which minimize the logarithms in the factorized functions, and they are give by

μHωi,μCiωiM,μSM,νCωi,νSM,\mu_{H}\sim\omega_{i},\ \mu_{Ci}\sim\sqrt{\omega_{i}M},\ \mu_{S}\sim M,\ \nu_{C}\sim\omega_{i},\ \nu_{S}\sim M, (136)

where ωi\omega_{i} (i=1,,4i=1,\cdots,4) are the largest collinear components. The characteristic collinear scales (hard-collinear scales in SCETII\mathrm{SCET_{II}}) μCi\mu_{Ci} apply both to the singlets and the nonsinglets of the collinear functions. The collinear rapidity scale νC\nu_{C} belongs to the nonsinglets. The soft scale μS\mu_{S} applies to both the singlets and the nonsinglets, while the scale νS\nu_{S} belongs to the nonsinglet soft functions.

8.1 Hard function

The anomalous dimension of the hard function is given by eq. (108). The evolution of the hard function from the high-energy scale μH\mu_{H} to the factorization scale μF\mu_{F} is written as

𝐇(μF)=ΠH(μF,μH)𝚷H(μF,μH)𝐇(μH)𝚷H(μF,μH),\mathbf{H}(\mu_{F})=\Pi_{H}(\mu_{F},\mu_{H})\bm{\Pi}_{H}(\mu_{F},\mu_{H})\mathbf{H}(\mu_{H})\bm{\Pi}_{H}^{\dagger}(\mu_{F},\mu_{H}), (137)

where ΠH(μF,μH)\Pi_{H}(\mu_{F},\mu_{H}) is the evolution from the identity matrix of the anomalous dimension, and 𝚷H(μF,μH)\bm{\Pi}_{H}(\mu_{F},\mu_{H}) is obtained by the exponentiating the matrix 𝐌\mathbf{M}. They can be written as

ΠH(μF,μH)=exp[8CFS(μF,μH)4CFaΓ(μF,μH)lnμH2s+8aγ(μF,μH)],\Pi_{H}(\mu_{F},\mu_{H})=\exp\Bigl{[}-8C_{F}S(\mu_{F},\mu_{H})-4C_{F}a_{\Gamma}(\mu_{F},\mu_{H})\ln\frac{\mu_{H}^{2}}{s}+8a_{\gamma_{\ell}}(\mu_{F},\mu_{H})\Bigr{]}, (138)

where

μHμFdμμΓc(α)lnμ2s2SΓ(μF,μH)+aΓ(μF,μH)lnμH2s,\displaystyle\int_{\mu_{H}}^{\mu_{F}}\frac{d\mu}{\mu}\Gamma_{c}(\alpha)\ln\frac{\mu^{2}}{s}\equiv 2S_{\Gamma}(\mu_{F},\mu_{H})+a_{\Gamma}(\mu_{F},\mu_{H})\ln\frac{\mu_{H}^{2}}{s}, (139)

and SΓS_{\Gamma} and afa_{f} are given as

SΓ(μ,μi)=α(μi)α(μ)𝑑αΓc(α)β(α)α(μi)αdαβ(α),af(μ,μi)=α(μi)α(μ)dαβ(α)f(α),S_{\Gamma}(\mu,\mu_{i})=\int_{\alpha(\mu_{i})}^{\alpha(\mu)}d\alpha\frac{\Gamma_{c}(\alpha)}{\beta(\alpha)}\int_{\alpha(\mu_{i})}^{\alpha}\frac{d\alpha^{\prime}}{\beta(\alpha^{\prime})},\ \ a_{f}(\mu,\mu_{i})=\int_{\alpha(\mu_{i})}^{\alpha(\mu)}\frac{d\alpha}{\beta(\alpha)}f(\alpha), (140)

for an arbitrary function f(α)f(\alpha). The explicit results of SΓS_{\Gamma}, aΓa_{\Gamma} and aγa_{\gamma_{\ell}} are presented at next-to-next-to-leading-logarithmic accuracy in ref. Stewart:2010qs . And 𝚷H\bm{\Pi}_{H} is obtained by exponentiating 𝐌\mathbf{M} as

𝚷H(μF,μH)=exp[aΓ(μF,μH)𝐌].\bm{\Pi}_{H}(\mu_{F},\mu_{H})=\exp\Bigl{[}a_{\Gamma}(\mu_{F},\mu_{H})\mathbf{M}\Bigr{]}. (141)

8.2 Collinear functions

We present the evolution of the beam functions as a representative of the collinear functions. Since the semi-inclusive jet functions and the FJFs have the same anomalous dimensions as the beam functions, their evolutions can be described in a similar way.

The RG equation with respect to μ\mu for the singlet beam function is given by

ddlnμB~s(μ)=γ~BsμB~s(μ),\frac{d}{d\ln\mu}\tilde{B}_{s}(\mu)=\tilde{\gamma}_{Bs}^{\mu}\tilde{B}_{s}(\mu), (142)

where the μ\mu-anomalous dimension γ~Bsμ\tilde{\gamma}_{Bs}^{\mu} for the singlet is given by eq. (70). The evolution from the collinear scale μC\mu_{C} to the factorization scale μF\mu_{F} is given by

B~s(μF)=UBs(μF,μC)B~s(μC),\tilde{B}_{s}(\mu_{F})=U_{Bs}(\mu_{F},\mu_{C})\tilde{B}_{s}(\mu_{C}), (143)

where the evolution kernel UBsU_{Bs} is given by

UBs(μF,μC)=exp[4CFSΓ(μF,μC)2CFaΓ(μF,μC)lnωQLμC22aγ(μF,μC)].U_{Bs}(\mu_{F},\mu_{C})=\exp\Bigl{[}4C_{F}S_{\Gamma}(\mu_{F},\mu_{C})-2C_{F}a_{\Gamma}(\mu_{F},\mu_{C})\ln\frac{\omega Q_{L}}{\mu_{C}^{2}}-2a_{\gamma_{\ell}}(\mu_{F},\mu_{C})\Bigr{]}. (144)

For the nonsinglet, the μ\mu and ν\nu RG equations are given by

ddlnμB~n(μ,ν)=γ~BnμB~n(μ,ν),ddlnνB~n(μ,ν)=γ~BnνB~n(μ,ν),\frac{d}{d\ln\mu}\tilde{B}_{n}(\mu,\nu)=\tilde{\gamma}_{Bn}^{\mu}\tilde{B}_{n}(\mu,\nu),\ \frac{d}{d\ln\nu}\tilde{B}_{n}(\mu,\nu)=\tilde{\gamma}_{Bn}^{\nu}\tilde{B}_{n}(\mu,\nu), (145)

where the μ\mu-anomalous dimensions γ~Bnμ\tilde{\gamma}_{Bn}^{\mu} and the ν\nu-anomalous dimensions γ~Bnν\tilde{\gamma}_{Bn}^{\nu} for the nonsinglet are given by eq. (70). The order of the evolutions with respect to μ\mu and ν\nu is irrelevant, and here we evolve the beam function with respect to ν\nu first, and then with respect to μ\mu. Since the ν\nu-anomalous dimension contains a large logarithm with μωQLM\mu\sim\sqrt{\omega Q_{L}}\gg M, we resum this large logarithm first in expressing the evolution with respect to ν\nu Chiu:2012ir . Then the evolution is written as

B~n(μF,νF)=UBn(μF,μC;νF)VBn(νF,νC;μC)B~n(μC,νC),\tilde{B}_{n}(\mu_{F},\nu_{F})=U_{Bn}(\mu_{F},\mu_{C};\nu_{F})V_{Bn}(\nu_{F},\nu_{C};\mu_{C})\tilde{B}_{n}(\mu_{C},\nu_{C}), (146)

where the μ\mu-evolution kernel UBnU_{Bn} and the ν\nu-evolution kernel VBnV_{Bn} are given by

VBn(νF,νC;μC)\displaystyle V_{B_{n}}(\nu_{F},\nu_{C};\mu_{C}) =exp[CAaΓ(μC,M)lnνFνC],\displaystyle=\exp\Bigl{[}C_{A}a_{\Gamma}(\mu_{C},M)\ln\frac{\nu_{F}}{\nu_{C}}\Bigr{]}, (147)
UBn(μF,μC;νF)\displaystyle U_{Bn}(\mu_{F},\mu_{C};\nu_{F}) =UBs(μF,μC)exp[2CASΓ(μF,μC)+CAaΓ(μF,μC)lnνFQLμC2].\displaystyle=U_{Bs}(\mu_{F},\mu_{C})\exp\Bigl{[}-2C_{A}S_{\Gamma}(\mu_{F},\mu_{C})+C_{A}a_{\Gamma}(\mu_{F},\mu_{C})\ln\frac{\nu_{F}Q_{L}}{\mu_{C}^{2}}\Bigr{]}.

The anomalous dimensions of the semi-inclusive jet functions in eq. (5.2) are the same as those of the beam functions. Therefore the evolution of the semi-inclusive jet functions is the same as the FJF. However, the largest lightcone component in each ii-th collinear direction is denoted by ωi\omega_{i}, which determines the characteristic collinear scale in each direction. Let us denote the collinear functions as Ci(μF,νF)C_{i}(\mu_{F},\nu_{F}), where it corresponds to the beam functions for i=1,2i=1,2 and to the semi-inclusive jet functions or the FJFs for i=3,4i=3,4. Then the evolution of the collinear functions are written as (i=1,2,3,4i=1,2,3,4)

C~is(μF)\displaystyle\tilde{C}_{is}(\mu_{F}) =Uis(μF,μCi)C~is(μCi),\displaystyle=U_{is}(\mu_{F},\mu_{Ci})\tilde{C}_{is}(\mu_{Ci}),
C~in(μF,νF)\displaystyle\tilde{C}_{in}(\mu_{F},\nu_{F}) =Uin(μF,μCi;νF)Vin(νF,νC;μCi)C~in(μCi,νC),\displaystyle=U_{in}(\mu_{F},\mu_{Ci};\nu_{F})V_{in}(\nu_{F},\nu_{C};\mu_{Ci})\tilde{C}_{in}(\mu_{Ci},\nu_{C}), (148)

where the evolution kernels are given as

Uis(μF,μCi)\displaystyle U_{is}(\mu_{F},\mu_{Ci}) =exp[4CFSΓ(μF,μCi)2CFaΓ(μF,μCi)lnωiQLμCi22aγ(μF,μCi)],\displaystyle=\exp\Bigl{[}4C_{F}S_{\Gamma}(\mu_{F},\mu_{Ci})-2C_{F}a_{\Gamma}(\mu_{F},\mu_{Ci})\ln\frac{\omega_{i}Q_{L}}{\mu_{Ci}^{2}}-2a_{\gamma_{\ell}}(\mu_{F},\mu_{Ci})\Bigr{]},
Uin(μF,μCi;νF)\displaystyle U_{in}(\mu_{F},\mu_{Ci};\nu_{F}) =Uis(μF,μCi)exp[2CASΓ(μF,μCi)+CAaΓ(μF,μCi)lnνFQLμCi2],\displaystyle=U_{is}(\mu_{F},\mu_{Ci})\exp\Bigl{[}-2C_{A}S_{\Gamma}(\mu_{F},\mu_{Ci})+C_{A}a_{\Gamma}(\mu_{F},\mu_{Ci})\ln\frac{\nu_{F}Q_{L}}{\mu_{Ci}^{2}}\Bigr{]},
Vin(νF,νC;μCi)\displaystyle V_{in}(\nu_{F},\nu_{C};\mu_{Ci}) =exp[CAaΓ(μCi,M)lnνFνC].\displaystyle=\exp\Bigl{[}C_{A}a_{\Gamma}(\mu_{Ci},M)\ln\frac{\nu_{F}}{\nu_{C}}\Bigr{]}. (149)

8.3 Soft function

The μ\mu and ν\nu anomalous dimensions for the soft function are given by eqs. (133) and (135) respectively. The evolution of the soft function can be proceeded as in the case of the hard function and the soft evolution with the kk nonsinglets can be written as

𝐒~k(μF,νF)=ΠSk(μF,μS;νF,νS)𝚷S(μF,μS)𝐒~k(μS,νS)𝚷S(μF,μS),\tilde{\mathbf{S}}_{k}(\mu_{F},\nu_{F})=\Pi_{Sk}(\mu_{F},\mu_{S};\nu_{F},\nu_{S})\bm{\Pi}_{S}^{\dagger}(\mu_{F},\mu_{S})\tilde{\mathbf{S}}_{k}(\mu_{S},\nu_{S})\bm{\Pi}_{S}(\mu_{F},\mu_{S}), (150)

where the evolution kernel ΠSk(μF,μS;νF,νS)\Pi_{Sk}(\mu_{F},\mu_{S};\nu_{F},\nu_{S}) comes from the identity matrix, and the evolution kernel 𝚷S(μF,μS)\bm{\Pi}_{S}(\mu_{F},\mu_{S}) from 𝐌\mathbf{M}.

Here we also evolve with respect to ν\nu first, and then μ\mu. The evolution kernel ΠSk\Pi_{Sk} can be written as

ΠSk(μF,μS;νF,νS)=USk(μF,μS;νF)VSk(νF,νS;μS),\Pi_{Sk}(\mu_{F},\mu_{S};\nu_{F},\nu_{S})=U_{Sk}(\mu_{F},\mu_{S};\nu_{F})V_{Sk}(\nu_{F},\nu_{S};\mu_{S}), (151)

where

VSk(νF,νS;μS)\displaystyle V_{Sk}(\nu_{F},\nu_{S};\mu_{S}) =exp[kCAaΓ(μS,M)lnνFνS],\displaystyle=\exp\Bigl{[}-kC_{A}a_{\Gamma}(\mu_{S},M)\ln\frac{\nu_{F}}{\nu_{S}}\Bigr{]},
USk(μF,μS;νF)\displaystyle U_{Sk}(\mu_{F},\mu_{S};\nu_{F}) =exp[8CFSΓ(μF,μS)4CFaΓ(μF,μS)lnμS2QL2\displaystyle=\exp\Bigl{[}-8C_{F}S_{\Gamma}(\mu_{F},\mu_{S})-4C_{F}a_{\Gamma}(\mu_{F},\mu_{S})\ln\frac{\mu_{S}^{2}}{Q_{L}^{2}}
2CFaΓ(μF,μS)ln(n12n34)+2kCASΓ(μF,μS)\displaystyle-2C_{F}a_{\Gamma}(\mu_{F},\mu_{S})\ln(n_{12}n_{34})+2kC_{A}S_{\Gamma}(\mu_{F},\mu_{S})
kCAaΓ(μF,μS)lnνFQLμS2],\displaystyle-kC_{A}a_{\Gamma}(\mu_{F},\mu_{S})\ln\frac{\nu_{F}Q_{L}}{\mu_{S}^{2}}\Bigr{]}, (152)

and 𝚷S(μF,μS)\bm{\Pi}_{S}(\mu_{F},\mu_{S}) is given by

𝚷S(μF,μS)=exp[aΓ(μF,μS)𝐌].\bm{\Pi}_{S}(\mu_{F},\mu_{S})=\exp\Bigl{[}-a_{\Gamma}(\mu_{F},\mu_{S})\mathbf{M}\Bigr{]}. (153)

With the addition of nonsinglets, the anomalous dimension of the hard function is not affected, and the sum of all the other ν\nu-anomalous dimensions for any number of nonsinglets is cancelled.

(Γ~Sν)k(1)+(γ~Bν(ω1)+γ~Bν(ω2)+γ~Jν(ω3)+γ~Jν(ω4))k=0,\displaystyle(\tilde{\Gamma}_{S}^{\nu})_{k}^{(1)}+\Bigl{(}\tilde{\gamma}_{B}^{\nu}(\omega_{1})+\tilde{\gamma}_{B}^{\nu}(\omega_{2})+\tilde{\gamma}_{J}^{\nu}(\omega_{3})+\tilde{\gamma}_{J}^{\nu}(\omega_{4})\Bigr{)}_{k}=0, (154)

where it is understood that the soft function with the kk nonsinglets should be employed, if there are kk nonsinglets in the collinear parts.

9 Conclusion and outlook

The analysis of the NN-jettiness in high-energy electroweak processes is more sophisticated due to the presence of the nonsinglet contributions. It may be looked upon as a mere copy of QCD, but the most notable distinction, compared with QCD, is that a lot of different channels involving nonsinglet contributions enter the expression of the NN-jettiness. In QCD, only the projection to the color singlets for the collinear and the soft functions survives. As a result, the definitions of the factorized collinear and soft functions should be extended to the nonsinglet contributions to include all the possible channels. With these additional ingredients, we have established the factorization theorem for the NN jettiness in weak interaction. We have chosen the simplest SU(2)SU(2) gauge interaction only to show the distinction of the participation of the nonsinglets in the initial and the final states. The extension to the full Standard Model is nontrivial due to the additional particles, the gauge mixing and the effect of the electroweak symmetry breaking, but is necessary for phenomenology. It will be the next subject to pursue, following this development.

According to the different hierarchy of scales, different effective theories are employed. When 𝒯2M2pc2Q𝒯Q2\mathcal{T}^{2}\sim M^{2}\ll p_{c}^{2}\sim Q\mathcal{T}\ll Q^{2}, SCETI\mathrm{SCET_{I}} is appropriate, and both the collinear and the soft functions contribute to the jettiness. On the other hand, when 𝒯2M2pc2Q𝒯Q\mathcal{T}^{2}\sim M^{2}\sim p_{c}^{2}\ll Q\mathcal{T}\ll Q, we employ SCETII\mathrm{SCET_{II}}. In this case, the collinear functions are the PDF or the fragmentation functions, which do not contribute to the jettiness, and only the soft function seems to contribute to the jettiness. However, the effect of the hard-collinear modes by integrating out the SCETI\mathrm{SCET_{I}}-collinear modes through the matching coefficients contributes to the jettiness. Though the detailed physics is different in SCETI\mathrm{SCET_{I}} and in SCETII\mathrm{SCET_{II}}, if we combine the contributions of the matching coefficients and the PDF or the fragmentation functions, and identify them as the beam functions or the FJFs, the jettiness in both cases can be obtained by computing the beam functions and the FJFs in SCETI\mathrm{SCET_{I}}. Taking account of all the intricacies, we have established the factorization of the 2-jettiness both in SCETI\mathrm{SCET_{I}} and in SCETII\mathrm{SCET_{II}}. In the computation of the jettiness, the gauge boson mass is regarded as small, and we take the small mass limit in our final results. Note that there is no IR divergence due to the physical gauge boson mass MM, however small that is.

When the nonsinglets participate in the scattering, the main distinction is the existence of the rapidity divergence in the collinear and soft functions. As in QCD, there is no rapidity divergence in the singlet contributions. However, the rapidity divergence arises when the nonsinglets are involved in the factorized parts owing to the different group theory factors between the real and the virtual contributions. Of course, in the final expression for the NN-jettiness when all the factorized parts are added, the rapidity divergence cancels for any number of nonsinglets. For the effective theory to be consistent, it should hold true because the full theory is free of the rapidity divergence. However, the effect of rapidity divergence in each collinear and soft sectors plays an important role in resumming large logarithms. Due to the presence of the double RG evolutions with respect to the renormalization scale μ\mu and the rapidity scale ν\nu for the nonsinglet contributions, we have to solve the coupled RG equation to evolve with respect to both of them, and the results have been presented here.

As mentioned in section 3, it is important to study the possible violation of the factorization in weak interaction due to the Glauber exchange between the spectator partons. It arises when the nonsinglets participate in the scattering because the group theory factors are not the same for different configurations of the Glauber gauge bosons across the unitarity cuts. The presence of the rapidity divergence due to the nonsinglets appear from a similar source. Therefore it is critical to look into the Glauber exchange in considering the factorization. It is beyond the scope of this paper, and we will investigate this topic in the future.

Despite the fact that we only employed the SU(2)SU(2) gauge interaction, we reiterate that this opens up a lot of possibilities in the phenomenology of the high-energy lepton colliders. The first task will be to include all the interactions to delineate the Standard Model completely. It also involves the electroweak symmetry breaking and the effect of the masses of the heavy particles. Next, the additional ingredients in the factorization should be provided to yield theoretical predictions. We have considered ee+μμ+e^{-}e^{+}\rightarrow\mu^{-}\mu^{+}, but other modes such as ee+W+We^{-}e^{+}\rightarrow W^{+}W^{-}, and the Higgs production should also be included for the study of the phenomenology. These topics will be our next areas of research.

Appendix A Laplace transforms of the distributions

It is convenient to consider the Laplace transform of the NN-jettiness, in which the factorized parts are written as the products of the hard, collinear and soft functions. After the individual parts are evolved, we can make an inverse Laplace transformation Becher:2006mr to obtain the original NN-jettiness. Another advantage is that the anomalous dimensions with the Laplace transforms are ordinary functions, while the original anomalous dimensions may contain distributions. Therefore the solution of the RG equation in the Laplace transform can be written in a more tangible form.

Let us begin with the Laplace transform of the soft function, which is given as

S~(lnQLμ,M,μ)\displaystyle\tilde{S}\Bigl{(}\ln\frac{Q_{L}}{\mu},M,\mu\Bigr{)} =0𝑑keskS(k,M,μ),s=1eγEQL,\displaystyle=\int_{0}^{\infty}dke^{-sk}S(k,M,\mu),\ s=\frac{1}{e^{\gamma_{\mathrm{E}}}Q_{L}},
S(k,M,μ)\displaystyle S(k,M,\mu) =12πicic+i𝑑seskS~(ln1eγEsμ,M,μ).\displaystyle=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}dse^{sk}\tilde{S}\Bigl{(}\ln\frac{1}{e^{\gamma_{\mathrm{E}}}s\mu},M,\mu\Bigr{)}. (155)

where the contour is chosen to stay to the right of all discontinuities (c>0c>0) in the inverse Laplace transform. The scale QLQ_{L} is a conjugate variable to ss.

Note that the variable ss in the Laplace transform should be common to all the factorized parts including the collinear part, that is, it should be conjugate to the jettiness. It is straightforward to express the Laplace transform of the collinear functions with the same form as in eq. (A) by noting that t=ωkt=\omega k in the beam functions and p2=ωkp^{2}=\omega k in the jet functions, where kk represents the jettiness.

B~i(lnωQLμ2,z,M,μ)\displaystyle\tilde{B}_{i}\Bigl{(}\ln\frac{\omega Q_{L}}{\mu^{2}},z,M,\mu\Bigr{)} =0𝑑keskBi(ωk,z,M,μ),\displaystyle=\int_{0}^{\infty}dk\,e^{-sk}B_{i}(\omega k,z,M,\mu),
Bi(ωk,z,M,μ)\displaystyle B_{i}(\omega k,z,M,\mu) =12πicic+i𝑑seskB~i(ln1eγEsμ,M,μ),\displaystyle=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}ds\,e^{sk}\tilde{B}_{i}\Bigl{(}\ln\frac{1}{e^{\gamma_{\mathrm{E}}}s\mu},M,\mu\Bigr{)},
J~i(lnωQLμ2,M,μ)\displaystyle\tilde{J}_{i}\Bigl{(}\ln\frac{\omega Q_{L}}{\mu^{2}},M,\mu\Bigr{)} =0𝑑keskJi(ωk,M,μ),\displaystyle=\int_{0}^{\infty}dke^{-sk}J_{i}(\omega k,M,\mu),
Ji(ωk,M,μ)\displaystyle J_{i}(\omega k,M,\mu) =12πicic+i𝑑seskJ~i(ln1eγEsμ,M,μ),\displaystyle=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}dse^{sk}\tilde{J}_{i}\Bigl{(}\ln\frac{1}{e^{\gamma_{\mathrm{E}}}s\mu},M,\mu\Bigr{)}, (156)

with s=1/(eγEQL)s=1/(e^{\gamma_{\mathrm{E}}}Q_{L}).

In the collinear and the soft functions, the distributions arise from the expressions μ2ϵ/(ωk)1+ϵ\mu^{2\epsilon}/(\omega k)^{1+\epsilon} and μϵ/k1+ϵ\mu^{\epsilon}/k^{1+\epsilon} respectively. They can be expanded in powers of ϵ\epsilon, and can be written as

μ2ϵ(ωk)1+ϵ\displaystyle\frac{\mu^{2\epsilon}}{(\omega k)^{1+\epsilon}} =1ϵδ(ωk)+1μ20(ωkμ2)ϵ1μ21(ωkμ2)+,\displaystyle=-\frac{1}{\epsilon}\delta(\omega k)+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{\omega k}{\mu^{2}}\Bigr{)}-\epsilon\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{\omega k}{\mu^{2}}\Bigr{)}+\cdots,
μϵk1+ϵ\displaystyle\frac{\mu^{\epsilon}}{k^{1+\epsilon}} =1ϵδ(k)+1μ0(kμ)ϵ1μ1(kμ)+.\displaystyle=-\frac{1}{\epsilon}\delta(k)+\frac{1}{\mu}\mathcal{L}_{0}\Bigl{(}\frac{k}{\mu}\Bigr{)}-\epsilon\frac{1}{\mu}\mathcal{L}_{1}\Bigl{(}\frac{k}{\mu}\Bigr{)}+\cdots. (157)

The Laplace transforms of these functions are given as

0esk𝑑kμ2ϵ(ωk)1+ϵ=1ω(sμ2ω)ϵΓ(ϵ),0esk𝑑kμϵk1+ϵ=(sμ)ϵΓ(ϵ).\int_{0}^{\infty}e^{-sk}dk\frac{\mu^{2\epsilon}}{(\omega k)^{1+\epsilon}}=\frac{1}{\omega}\Bigl{(}\frac{s\mu^{2}}{\omega}\Bigr{)}^{\epsilon}\Gamma(-\epsilon),\ \ \int_{0}^{\infty}e^{-sk}dk\frac{\mu^{\epsilon}}{k^{1+\epsilon}}=(s\mu)^{\epsilon}\Gamma(-\epsilon). (158)

By expanding eq. (158) in powers of ϵ\epsilon and by comparing them with eq. (A), we can obtain the Laplace transforms of the distributions. If we denote the Laplace transform of the function f(k)f(k) by L[f(k)]L[f(k)], the Laplace transforms of the first three terms for the collinear parts are given by

L[δ(ωk)]=1ω,L[1μ20(ωkμ2)]=1ωlnseγEμ2ω=1ωlnμ2ωQL,\displaystyle L[\delta(\omega k)]=\frac{1}{\omega},\ \ L\Bigl{[}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{\omega k}{\mu^{2}}\Bigr{)}\Bigr{]}=-\frac{1}{\omega}\ln\frac{se^{\gamma_{\mathrm{E}}}\mu^{2}}{\omega}=-\frac{1}{\omega}\ln\frac{\mu^{2}}{\omega Q_{L}},
L[1μ21(ωkμ2)]=1ω(12ln2seγEμ2ω+π212)=1ω(12ln2μ2ωQL+π212).\displaystyle L\Bigl{[}\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{\omega k}{\mu^{2}}\Bigr{)}\Bigr{]}=\frac{1}{\omega}\Bigl{(}\frac{1}{2}\ln^{2}\frac{se^{\gamma_{\mathrm{E}}}\mu^{2}}{\omega}+\frac{\pi^{2}}{12}\Bigr{)}=\frac{1}{\omega}\Bigl{(}\frac{1}{2}\ln^{2}\frac{\mu^{2}}{\omega Q_{L}}+\frac{\pi^{2}}{12}\Bigr{)}. (159)

and the first three terms from the soft part are given as

L[δ(k)]=1,L[1μ0(kμ)]=ln(seγEμ)=lnμQL,\displaystyle L[\delta(k)]=1,\ \ L\Bigl{[}\frac{1}{\mu}\mathcal{L}_{0}\Bigl{(}\frac{k}{\mu}\Bigr{)}\Bigr{]}=-\ln(se^{\gamma_{\mathrm{E}}}\mu)=-\ln\frac{\mu}{Q_{L}},
L[1μ1(kμ)]=12ln2(seγEμ)+π212=12ln2μQL+π212.\displaystyle L\Bigl{[}\frac{1}{\mu}\mathcal{L}_{1}\Bigl{(}\frac{k}{\mu}\Bigr{)}\Bigr{]}=\frac{1}{2}\ln^{2}(se^{\gamma_{\mathrm{E}}}\mu)+\frac{\pi^{2}}{12}=\frac{1}{2}\ln^{2}\frac{\mu}{Q_{L}}+\frac{\pi^{2}}{12}. (160)

Appendix B Beam functions and the matching coefficients for small MM

The matrix element MaM_{a} in eq. (5.1) is given by

Ma=α2πθ((1z)tzM2)θ(z)θ(1z)(1z)tzM2(tzM2)2.M_{a}=\frac{\alpha}{2\pi}\theta\Bigl{(}(1-z)t-zM^{2}\Bigr{)}\theta(z)\theta(1-z)\frac{(1-z)t-zM^{2}}{(t-zM^{2})^{2}}. (161)

It is regarded as a distribution both in tt and zz for small MM. When MaM_{a} is integrated over tt to an arbitrary renormalization scale μ2\mu^{2}, it is given by

zM2/(1z)μ2𝑑tMaα2π(1z)(1+ln(1z)μ2z2M2)θ(z)θ(1z),\int_{zM^{2}/(1-z)}^{\mu^{2}}dtM_{a}\rightarrow\frac{\alpha}{2\pi}(1-z)\Bigl{(}-1+\ln\frac{(1-z)\mu^{2}}{z^{2}M^{2}}\Bigr{)}\theta(z)\theta(1-z), (162)

which is regarded as the coefficient of δ(t)\delta(t). Because MaM_{a} in this limit behaves like 1/t\sim 1/t, it can be written as

Ma=α2π(1z)θ(z)θ(1z)[(1+ln(1z)μ2z2M2)δ(t)+f(z,μ)1μ20(tμ2)],M_{a}=\frac{\alpha}{2\pi}(1-z)\theta(z)\theta(1-z)\Bigl{[}\Bigl{(}-1+\ln\frac{(1-z)\mu^{2}}{z^{2}M^{2}}\Bigr{)}\delta(t)+f(z,\mu)\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigl{]}, (163)

where the function f(z,μ)f(z,\mu) is to be determined.

Note that we have the identity

μ2ϵt1+ϵ=1ϵδ(t)+1μ20(tμ2)ϵ1μ21(tμ2)+.\frac{\mu^{2\epsilon}}{t^{1+\epsilon}}=-\frac{1}{\epsilon}\delta(t)+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}-\epsilon\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}+\cdots. (164)

Taking the logarithmic derivative with respect to μ2\mu^{2}, we get

μ2ddμ2μ2ϵt1+ϵ=ϵμ2ϵt1+ϵ\displaystyle\mu^{2}\frac{d}{d\mu^{2}}\frac{\mu^{2\epsilon}}{t^{1+\epsilon}}=\epsilon\frac{\mu^{2\epsilon}}{t^{1+\epsilon}} =δ(t)+ϵ1μ20(tμ2)+\displaystyle=-\delta(t)+\epsilon\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}+\cdots
=μ2ddμ21μ20(tμ2)ϵμ2ddμ21μ21(tμ2)+.\displaystyle=\mu^{2}\frac{d}{d\mu^{2}}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}-\epsilon\mu^{2}\frac{d}{d\mu^{2}}\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}+\cdots. (165)

Comparing the coefficients of the powers of ϵ\epsilon, we obtain the result

μ2ddμ2[1μ20(tμ2)]=δ(t),μ2ddμ2[1μ21(tμ2)]=1μ20(tμ2),.\mu^{2}\frac{d}{d\mu^{2}}\Bigl{[}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigl{]}=-\delta(t),\ \mu^{2}\frac{d}{d\mu^{2}}\Bigl{[}\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigr{]}=-\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)},\cdots. (166)

In order to determine f(z,μ)f(z,\mu), we use the fact that MaM_{a} in eq. (5.1) is independent of μ2\mu^{2}, μ2dMa/dμ2=0\mu^{2}dM_{a}/d\mu^{2}=0. If we compare the coefficients of δ(t)\delta(t), we obtain f(z,μ)=1f(z,\mu)=1. The final result is given by

Ma=α2π(1z)θ(z)θ(1z)[(1+ln(1z)μ2z2M2)δ(t)+1μ20(tμ2)].M_{a}=\frac{\alpha}{2\pi}(1-z)\theta(z)\theta(1-z)\Bigl{[}\Bigl{(}-1+\ln\frac{(1-z)\mu^{2}}{z^{2}M^{2}}\Bigr{)}\delta(t)+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigl{]}. (167)

The naive collinear contribution MbM_{b} in eq. (5.1) is given by

M~b=α2πz1z1tzM2θ((1z)tzM2)θ(z)θ(1z).\tilde{M}_{b}=\frac{\alpha}{2\pi}\frac{z}{1-z}\frac{1}{t-zM^{2}}\theta\Bigl{(}(1-z)t-zM^{2}\Bigr{)}\theta(z)\theta(1-z). (168)

For small MM, it is proportional to 1/t(1z)1/t(1-z), and should be regarded as distributions both in zz and tt. We first integrate over tt, and it is given as

zM2/(1z)μ2𝑑tM~bα2πθ(z)θ(1z)z1zln(1z)μ2z2M2,\int_{zM^{2}/(1-z)}^{\mu^{2}}dt\tilde{M}_{b}\rightarrow\frac{\alpha}{2\pi}\theta(z)\theta(1-z)\frac{z}{1-z}\ln\frac{(1-z)\mu^{2}}{z^{2}M^{2}}, (169)

which should be regarded as a coefficient of δ(t)\delta(t), but it is also a distribution in zz. Therefore the most general form can be written as

M~b\displaystyle\tilde{M}_{b} =α2π{δ(t)[Aδ(1z)+z0(1z)lnμ2z2M2+z1(1z)]\displaystyle=\frac{\alpha}{2\pi}\Bigl{\{}\delta(t)\Bigl{[}A\delta(1-z)+z\mathcal{L}_{0}(1-z)\ln\frac{\mu^{2}}{z^{2}M^{2}}+z\mathcal{L}_{1}(1-z)\Bigr{]}
+g(z,μ)1μ20(tμ2)+h(z,μ)1μ21(tμ2)}.\displaystyle+g(z,\mu)\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}+h(z,\mu)\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigr{\}}. (170)

Because the integration of M~b\tilde{M}_{b} over zz yields a term proportional to ln(t/μ2)\ln(t/\mu^{2}), the distribution 1(t/μ2)\mathcal{L}_{1}(t/\mu^{2}) is included here. Or we can include n\mathcal{L}_{n} with n2n\geq 2, but the coefficients of those functions turn out to be zero.

Eq. (169) is further integrated over zz to yield

0μ2/(μ2+M2)𝑑zz1zln(1z)μ2z2M2=1+π23lnμ2M2+12ln2μ2M2,\int_{0}^{\mu^{2}/(\mu^{2}+M^{2})}dz\frac{z}{1-z}\ln\frac{(1-z)\mu^{2}}{z^{2}M^{2}}=-1+\frac{\pi^{2}}{3}-\ln\frac{\mu^{2}}{M^{2}}+\frac{1}{2}\ln^{2}\frac{\mu^{2}}{M^{2}}, (171)

and

0μ2/(μ2+M2)𝑑z(z0(1z)lnμ2z2M2+z1(1z))=1+π23lnμ2M2.\int_{0}^{\mu^{2}/(\mu^{2}+M^{2})}dz\Bigl{(}z\mathcal{L}_{0}(1-z)\ln\frac{\mu^{2}}{z^{2}M^{2}}+z\mathcal{L}_{1}(1-z)\Bigr{)}=-1+\frac{\pi^{2}}{3}-\ln\frac{\mu^{2}}{M^{2}}. (172)

Therefore AA is determined to be A=[ln2(μ2/M2)]/2A=[\ln^{2}(\mu^{2}/M^{2})]/2. The unknown quantities g(z,μ)g(z,\mu) and h(z,μ)h(z,\mu) are determined by requiring that M~b\tilde{M}_{b} is independent of μ\mu, that is, μ2dM~b/dμ2=0\mu^{2}d\tilde{M}_{b}/d\mu^{2}=0. They are given by

f(z,μ)=δ(1z)lnμ2z2M2+z0(1z),g(z,μ)=δ(1z).f(z,\mu)=\delta(1-z)\ln\frac{\mu^{2}}{z^{2}M^{2}}+z\mathcal{L}_{0}(1-z),\ g(z,\mu)=\delta(1-z). (173)

The final result is given by

M~b\displaystyle\tilde{M}_{b} =α2π[δ(t)δ(1z)12ln2μ2M2+δ(t)z(lnμ2z2M20(1z)+1(1z))\displaystyle=\frac{\alpha}{2\pi}\Bigl{[}\delta(t)\delta(1-z)\frac{1}{2}\ln^{2}\frac{\mu^{2}}{M^{2}}+\delta(t)z\Bigl{(}\ln\frac{\mu^{2}}{z^{2}M^{2}}\mathcal{L}_{0}(1-z)+\mathcal{L}_{1}(1-z)\Bigr{)}
+δ(1z)(1μ20(tμ2)lnμ2M2+1μ21(tμ2))+zμ20(tμ2)0(1z)].\displaystyle+\delta(1-z)\Bigl{(}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\ln\frac{\mu^{2}}{M^{2}}+\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\Bigr{)}+\frac{z}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{t}{\mu^{2}}\Bigr{)}\mathcal{L}_{0}(1-z)\Bigr{]}. (174)

Appendix C Semi-inclusive jet functions and FJF for small MM in SCETI\mathrm{SCET_{I}}

C.1 Semi-inclusive jet functions

In taking the limit of small MM from eq. (5.2), we use the definition

n(x)[θ(x)lnnxx]+=limβ0[θ(xβ)lnnxx+δ(xβ)lnn+1βn+1],\mathcal{L}_{n}(x)\equiv\Bigl{[}\frac{\theta(x)\ln^{n}x}{x}\Bigr{]}_{+}=\lim_{\beta\rightarrow 0}\Bigl{[}\frac{\theta(x-\beta)\ln^{n}x}{x}+\delta(x-\beta)\frac{\ln^{n+1}\beta}{n+1}\Bigr{]}, (175)

and the following identities:

limβ0[θ(xβ)ln(xβ)x+12δ(xβ)ln2β]=1(x)π26δ(x),\displaystyle\lim_{\beta\rightarrow 0}\Bigl{[}\frac{\theta(x-\beta)\ln(x-\beta)}{x}+\frac{1}{2}\delta(x-\beta)\ln^{2}\beta\Bigl{]}=\mathcal{L}_{1}(x)-\frac{\pi^{2}}{6}\delta(x),
limβ0θ(xβ)βx2=δ(x),limβ0θ(xβ)β2x3=12δ(x).\displaystyle\lim_{\beta\rightarrow 0}\frac{\theta(x-\beta)\beta}{x^{2}}=\delta(x),\ \lim_{\beta\rightarrow 0}\frac{\theta(x-\beta)\beta^{2}}{x^{3}}=\frac{1}{2}\delta(x). (176)

Putting x=p2/μ2x=p^{2}/\mu^{2} and β=M2/μ2\beta=M^{2}/\mu^{2}, and using the relations eqs. (175) and (C.1), MaM_{a} and MbM_{b} in eq. (5.2) are written as

Ma\displaystyle M_{a} =α2π1μ2(12xβx2+12β2x3)θ(xβ)=α2π[δ(p2)(34+12lnμ2M2)+12μ20(p2μ2)],\displaystyle=\frac{\alpha}{2\pi}\frac{1}{\mu^{2}}\Bigl{(}\frac{1}{2x}-\frac{\beta}{x^{2}}+\frac{1}{2}\frac{\beta^{2}}{x^{3}}\Bigr{)}\theta(x-\beta)=\frac{\alpha}{2\pi}\Bigl{[}\delta(p^{2})\Bigl{(}-\frac{3}{4}+\frac{1}{2}\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}+\frac{1}{2\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{]},
Mb\displaystyle M_{b} =α2π1μ2(1+lnβx+lnxx+βx2)θ(xβ)\displaystyle=\frac{\alpha}{2\pi}\frac{1}{\mu^{2}}\Bigl{(}-\frac{1+\ln\beta}{x}+\frac{\ln x}{x}+\frac{\beta}{x^{2}}\Bigr{)}\theta(x-\beta) (177)
=α2π[δ(p2)(1lnμ2M2+12ln2μ2M2)1μ20(p2μ2)(1lnμ2M2)+1μ21(p2μ2)].\displaystyle=\frac{\alpha}{2\pi}\Bigl{[}\delta(p^{2})\Bigl{(}1-\ln\frac{\mu^{2}}{M^{2}}+\frac{1}{2}\ln^{2}\frac{\mu^{2}}{M^{2}}\Bigr{)}-\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigl{(}1-\ln\frac{\mu^{2}}{M^{2}}\Bigr{)}+\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{]}.

The contributions MbM_{b}^{\varnothing} and McM_{c}, and the wavefunction renormalization with the residue remain the same.

C.2 Fragmenting jet functions

Out of the matrix elements in eq. (5.3) for the FJFs, we need to consider MaM_{a} and M~b\tilde{M}_{b} in the limit of small MM and the rest remains the same in the limit. Firstly, MaM_{a} is given by

Ma\displaystyle M_{a} =α2πθ(z)θ(1z)θ(p2M21z)1p2(1zM2p2)\displaystyle=\frac{\alpha}{2\pi}\theta(z)\theta(1-z)\theta\Bigl{(}p^{2}-\frac{M^{2}}{1-z}\Bigr{)}\frac{1}{p^{2}}\Bigl{(}1-z-\frac{M^{2}}{p^{2}}\Bigr{)}
=α2πθ(z)θ(1z)θ(zβ)1zμ2(1zβz2),\displaystyle=\frac{\alpha}{2\pi}\theta(z)\theta(1-z)\theta(z-\beta)\frac{1-z}{\mu^{2}}\Bigl{(}\frac{1}{z}-\frac{\beta}{z^{2}}\Bigr{)}, (178)

where the dimensionless variables z=p2/μ2z=p^{2}/\mu^{2} , β=M2/[(1z)μ2]\beta=M^{2}/[(1-z)\mu^{2}] are introduced. Using the definitions of the distributions and their properties in eqs. (175) and (C.1), MaM_{a} is written as

Ma=α2πθ(z)θ(1z)(1z)[δ(p2)(ln(1z)μ2M21)+1μ20(p2μ2)].M_{a}=\frac{\alpha}{2\pi}\theta(z)\theta(1-z)(1-z)\Bigl{[}\delta(p^{2})\Bigl{(}\ln\frac{(1-z)\mu^{2}}{M^{2}}-1\Bigr{)}+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{]}. (179)

In order to compute the limit of small MM in

M~b=α2πθ(z)θ(1z)θ(p2M21z)1p2z1z,\tilde{M}_{b}=\frac{\alpha}{2\pi}\theta(z)\theta(1-z)\theta\Bigl{(}p^{2}-\frac{M^{2}}{1-z}\Bigr{)}\frac{1}{p^{2}}\frac{z}{1-z}, (180)

we first expand 1/p21/p^{2} as distributions in the form

1p211zθ(p2M21z)=δ(p2)h(z,μ)+1μ20(p2μ2)g(z,μ)+1μ21(p2μ2)f(z,μ)+,\frac{1}{p^{2}}\frac{1}{1-z}\theta\Bigl{(}p^{2}-\frac{M^{2}}{1-z}\Bigr{)}=\delta(p^{2})h(z,\mu)+\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}g(z,\mu)+\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}f(z,\mu)+\cdots, (181)

where the functions h(z,μ)h(z,\mu), g(z,μ)g(z,\mu) and f(z,μ)f(z,\mu) are to be determined. Following the procedure explained in appendix B, M~b\tilde{M}_{b} is given as

M~b\displaystyle\tilde{M}_{b} =α2π[δ(p2)δ(1z)12ln2μ2M2+δ(p2)(zlnμ2M20(1z)+z1(1z))\displaystyle=\frac{\alpha}{2\pi}\Bigl{[}\delta(p^{2})\delta(1-z)\frac{1}{2}\ln^{2}\frac{\mu^{2}}{M^{2}}+\delta(p^{2})\Bigl{(}z\ln\frac{\mu^{2}}{M^{2}}\mathcal{L}_{0}(1-z)+z\mathcal{L}_{1}(1-z)\Bigr{)}
+δ(1z)(1μ20(p2μ2)lnμ2M2+1μ21(p2μ2))+zμ20(p2μ2)0(1z)].\displaystyle+\delta(1-z)\Bigl{(}\frac{1}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\ln\frac{\mu^{2}}{M^{2}}+\frac{1}{\mu^{2}}\mathcal{L}_{1}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\Bigr{)}+\frac{z}{\mu^{2}}\mathcal{L}_{0}\Bigl{(}\frac{p^{2}}{\mu^{2}}\Bigr{)}\mathcal{L}_{0}(1-z)\Bigr{]}. (182)

Appendix D Color structures of the soft functions

D.1 Tree-level color matrices for the soft functions

We present the color factors for the tree-level soft functions with different number of nonsinglets.

𝐒(0)(0,0,0,0)\displaystyle\mathbf{S}^{(0)}(0,0,0,0) =(CACF/200CA2),\displaystyle=\begin{pmatrix}C_{A}C_{F}/2&0\\ 0&C_{A}^{2}\end{pmatrix}, (183)
𝐒(0)(1,1,0,0)\displaystyle\mathbf{S}^{(0)}(1,1,0,0) =12(CFCA2002CA)(12),𝐒(0)(0,0,1,1)=12(CFCA2002CA)(34),\displaystyle=\frac{1}{2}\begin{pmatrix}\displaystyle C_{F}-\frac{C_{A}}{2}&0\\ 0&2C_{A}\end{pmatrix}(12),\ \mathbf{S}^{(0)}(0,0,1,1)=\frac{1}{2}\begin{pmatrix}\displaystyle C_{F}-\frac{C_{A}}{2}&0\\ 0&2C_{A}\end{pmatrix}(34),
𝐒(0)(1,0,1,0)\displaystyle\mathbf{S}^{(0)}(1,0,1,0) =12(2CFCA2110)(13),𝐒(0)(0,1,0,1)=12(2CFCA2110)(24),\displaystyle=\frac{1}{2}\begin{pmatrix}\displaystyle 2C_{F}-\frac{C_{A}}{2}&1\\ 1&0\end{pmatrix}(13),\ \mathbf{S}^{(0)}(0,1,0,1)=\frac{1}{2}\begin{pmatrix}\displaystyle 2C_{F}-\frac{C_{A}}{2}&1\\ 1&0\end{pmatrix}(24),
𝐒(0)(1,0,0,1)\displaystyle\mathbf{S}^{(0)}(1,0,0,1) =12(2CFCA110)(14),𝐒(0)(0,1,1,0)=(CFCA212120)(23),\displaystyle=\frac{1}{2}\begin{pmatrix}2C_{F}-C_{A}&1\\ 1&0\end{pmatrix}(14),\ \mathbf{S}^{(0)}(0,1,1,0)=\begin{pmatrix}\displaystyle C_{F}-\frac{C_{A}}{2}&\displaystyle\frac{1}{2}\\ \displaystyle\frac{1}{2}&0\end{pmatrix}(23),
𝐒(0)(1,1,1,0)\displaystyle\mathbf{S}^{(0)}(1,1,1,0) =12(CFCA2010)(123)+12(CFCA2100)(132),\displaystyle=\frac{1}{2}\begin{pmatrix}\displaystyle C_{F}-\frac{C_{A}}{2}&0\\ 1&0\end{pmatrix}(123)+\frac{1}{2}\begin{pmatrix}\displaystyle C_{F}-\frac{C_{A}}{2}&1\\ 0&0\end{pmatrix}(132),
𝐒(0)(1,1,0,1)\displaystyle\mathbf{S}^{(0)}(1,1,0,1) =12(CFCA2010)(124)+12(CFCA2100)(142),\displaystyle=\frac{1}{2}\begin{pmatrix}\displaystyle C_{F}-\frac{C_{A}}{2}&0\\ 1&0\end{pmatrix}(124)+\frac{1}{2}\begin{pmatrix}\displaystyle C_{F}-\frac{C_{A}}{2}&1\\ 0&0\end{pmatrix}(142),
𝐒(0)(1,0,1,1)\displaystyle\mathbf{S}^{(0)}(1,0,1,1) =12(CFCA2010)(143)+12(CFCA2100)(134),\displaystyle=\frac{1}{2}\begin{pmatrix}\displaystyle C_{F}-\frac{C_{A}}{2}&0\\ 1&0\end{pmatrix}(143)+\frac{1}{2}\begin{pmatrix}\displaystyle C_{F}-\frac{C_{A}}{2}&1\\ 0&0\end{pmatrix}(134),
𝐒(0)(0,1,1,1)\displaystyle\mathbf{S}^{(0)}(0,1,1,1) =12(CFCA2010)(243)+12(CFCA2100)(234).\displaystyle=\frac{1}{2}\begin{pmatrix}\displaystyle C_{F}-\frac{C_{A}}{2}&0\\ 1&0\end{pmatrix}(243)+\frac{1}{2}\begin{pmatrix}\displaystyle C_{F}-\frac{C_{A}}{2}&1\\ 0&0\end{pmatrix}(234).

Here (a1a2an)=Tr(ta1ta2tan)(a_{1}a_{2}\cdots a_{n})=\mathrm{Tr}(t^{a_{1}}t^{a_{2}}\cdots t^{a_{n}}), and the color indices are to be contracted with the corresponding collinear nonsinglet parts. Note that the soft color matrices with a single nonsinglet are zero due to weak charge conservation.777In SU(2), all the color matrices with the odd number of nonsinglets become zero.

𝐒(1,0,0,0)=𝐒(0,1,0,0)=𝐒(0,0,1,0)=𝐒(0,0,0,1)=0.\mathbf{S}(1,0,0,0)=\mathbf{S}(0,1,0,0)=\mathbf{S}(0,0,1,0)=\mathbf{S}(0,0,0,1)=0. (184)

The color structure with all the four nonsinglets is given by

𝐒(0)(1,1,1,1)\displaystyle\mathbf{S}^{(0)}(1,1,1,1) =12(CFCA2010)(1243)+12(CFCA2100)(1342)\displaystyle=\frac{1}{2}\begin{pmatrix}\displaystyle C_{F}-\frac{C_{A}}{2}&0\\ 1&0\end{pmatrix}(1243)+\frac{1}{2}\begin{pmatrix}\displaystyle C_{F}-\frac{C_{A}}{2}&1\\ 0&0\end{pmatrix}(1342)
+((CFCA2)2CFCA2CFCA21)(12)(34)+(14000)(13)(24).\displaystyle+\begin{pmatrix}\displaystyle(C_{F}-\frac{C_{A}}{2})^{2}&\displaystyle C_{F}-\frac{C_{A}}{2}\\ \displaystyle C_{F}-\frac{C_{A}}{2}&1\end{pmatrix}(12)(34)+\begin{pmatrix}\displaystyle\frac{1}{4}&0\\ 0&0\end{pmatrix}(13)(24). (185)

D.2 No mixing in the soft function at order α\alpha

We show that there is no mixing in the NN-jettiness soft function for the case with all the four nonsinglets. In ref. Manohar:2018kfx , there are three independent functions and there is a mixing among these terms at order α\alpha. We treat the soft function in the operator basis as a 2×22\times 2 matrix. Here when we consider the jettiness, there is also a mixing in the real contributions, while there is no mixing in the virtual contributions. But it turns out that the mixing is cancelled in the sum.

The soft color matrix 𝐒(0)(1,1,1,1)\mathbf{S}^{(0)}(1,1,1,1) in eq. (D.1) includes the color factors (1243)(1243), (1342)(1342), (13)(24)(13)(24) and (12)(34)(12)(34). There is mixing because there appear different color factors at one loop, which are not present at tree level. It is helpful to look at the soft part in eq. (3.1.3) with all the nonsinglets, which is given as

0|Tr(tcS2TJS1(0)tdS1TIS2(x))Tr(teS3TJS4(0)tfS4TIS3(x))|0.\langle 0|\mathrm{Tr}\Bigl{(}t^{c}S_{2}^{\dagger}T_{J}S_{1}(0)t^{d}S_{1}^{\dagger}T_{I}S_{2}(x)\Bigr{)}\cdot\mathrm{Tr}\Bigl{(}t^{e}S_{3}^{\dagger}T_{J}S_{4}(0)t^{f}S_{4}^{\dagger}T_{I}S_{3}(x)\Bigr{)}|0\rangle. (186)

The contractions of the fields at 0 or xx yield virtual contributions, while the contraction of the fields with 0 and xx yield real contributions.

Each contraction of ii and jj in the virtual contributions in figure 5 (a) does not produce new color structures, while the real contributions produce new color structures. The contractions of ii with jj in the real contributions at one loop in figure 5 (b) produce the following color structures:

S12+21R(1)(1,1,1,1)\displaystyle S^{R(1)}_{12+21}(1,1,1,1) =(CFCA2)𝐒(0)(1,1,1,1)18(1000)[(1423)+(1324)],\displaystyle=-\Bigl{(}C_{F}-\frac{C_{A}}{2}\Bigr{)}\mathbf{S}^{(0)}(1,1,1,1)-\frac{1}{8}\begin{pmatrix}1&0\\ 0&0\end{pmatrix}\Bigl{[}(1423)+(1324)\Bigr{]},
S13+31R(1)(1,1,1,1)\displaystyle S^{R(1)}_{13+31}(1,1,1,1) =(CFCA2)𝐒(0)(1,1,1,1)18N2(12N2N4N2)[(1432)+(1234)],\displaystyle=-\Bigl{(}C_{F}-\frac{C_{A}}{2}\Bigr{)}\mathbf{S}^{(0)}(1,1,1,1)-\frac{1}{8N^{2}}\begin{pmatrix}1&-2N\\ -2N&4N^{2}\end{pmatrix}\Bigl{[}(1432)+(1234)\Bigr{]},
S14+41R(1)(1,1,1,1)\displaystyle S^{R(1)}_{14+41}(1,1,1,1) =(CFCA2)𝐒(0)(1,1,1,1)+18(1000)[(1423)+(1324)]\displaystyle=-\Bigl{(}C_{F}-\frac{C_{A}}{2}\Bigr{)}\mathbf{S}^{(0)}(1,1,1,1)+\frac{1}{8}\begin{pmatrix}1&0\\ 0&0\end{pmatrix}\Bigl{[}(1423)+(1324)\Bigr{]}
+18N2(12N2N4N2)[(1432)+(1234)],\displaystyle+\frac{1}{8N^{2}}\begin{pmatrix}1&-2N\\ -2N&4N^{2}\end{pmatrix}\Bigl{[}(1432)+(1234)\Bigr{]},
S23+32R(1)(1,1,1,1)\displaystyle S^{R(1)}_{23+32}(1,1,1,1) =(CFCA2)𝐒(0)(1,1,1,1)+18(1000)[(1423)+(1324)]\displaystyle=-\Bigl{(}C_{F}-\frac{C_{A}}{2}\Bigr{)}\mathbf{S}^{(0)}(1,1,1,1)+\frac{1}{8}\begin{pmatrix}1&0\\ 0&0\end{pmatrix}\Bigl{[}(1423)+(1324)\Bigr{]}
+18N2(12N2N4N2)[(1432)+(1234)],\displaystyle+\frac{1}{8N^{2}}\begin{pmatrix}1&-2N\\ -2N&4N^{2}\end{pmatrix}\Bigl{[}(1432)+(1234)\Bigr{]},
S24+42R(1)(1,1,1,1)\displaystyle S^{R(1)}_{24+42}(1,1,1,1) =(CFCA2)𝐒(0)(1,1,1,1)18N2(12N2N4N2)[(1432)+(1234)],\displaystyle=-\Bigl{(}C_{F}-\frac{C_{A}}{2}\Bigr{)}\mathbf{S}^{(0)}(1,1,1,1)-\frac{1}{8N^{2}}\begin{pmatrix}1&-2N\\ -2N&4N^{2}\end{pmatrix}\Bigl{[}(1432)+(1234)\Bigr{]},
S34+43R(1)(1,1,1,1)\displaystyle S^{R(1)}_{34+43}(1,1,1,1) =(CFCA2)𝐒(0)(1,1,1,1)18(1000)[(1423)+(1324)],\displaystyle=-\Bigl{(}C_{F}-\frac{C_{A}}{2}\Bigr{)}\mathbf{S}^{(0)}(1,1,1,1)-\frac{1}{8}\begin{pmatrix}1&0\\ 0&0\end{pmatrix}\Bigl{[}(1423)+(1324)\Bigr{]}, (187)

where the extra terms in each contraction represents the new color structures which are not present in 𝐒(0)(1,1,1,1)\mathbf{S}^{(0)}(1,1,1,1). The first term S12+21R(1)(1,1,1,1)S^{R(1)}_{12+21}(1,1,1,1), for example, represents the sum of the contributions i,j=1,2i,j=1,2 and 2,12,1, where the two contributions have different color factors (1423)(1423) and (1324)(1324).

When summed over all the contractions (ij)(ij), these additional contributions cancel in d𝐒/dlnμd\mathbf{S}/d\ln\mu from eq. (131), because dSij,hemiR/dlnμdS_{ij,\mathrm{hemi}}^{R}/d\ln\mu are independent of nijn_{ij}. Though dSij,hemiV/dlnμdS_{ij,\mathrm{hemi}}^{V}/d\ln\mu depends on nijn_{ij}, there is no mixing in the color structure for the virtual contributions. As a consequence, there is no mixing in the soft anomalous dimensions at one loop. On the other hand, in inclusive cross sections in which both dSijR/dlnμdS_{ij}^{R}/d\ln\mu and dSijV/dlnμdS_{ij}^{V}/d\ln\mu depend on nijn_{ij} Manohar:2018kfx , there appears mixing in the contributions with four nonsinglets.

Acknowledgements.
This work is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2019R1F1A1060396).

References

  • (1) C. W. Bauer, S. Fleming, and M. E. Luke, Summing Sudakov logarithms in BXsγB\to X_{s}\gamma in effective field theory, Phys. Rev. D63 (2000) 014006, [hep-ph/0005275].
  • (2) C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D63 (2001) 114020, [hep-ph/0011336].
  • (3) C. W. Bauer and I. W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134–142, [hep-ph/0107001].
  • (4) C. W. Bauer, D. Pirjol, and I. W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D65 (2002) 054022, [hep-ph/0109045].
  • (5) D. d’Enterria, Physics at the FCC-ee, in 17th Lomonosov Conference on Elementary Particle Physics, 2, 2016. arXiv:1602.05043.
  • (6) ILC Collaboration, G. Aarons et al., International Linear Collider Reference Design Report Volume 2: Physics at the ILC, arXiv:0709.1893.
  • (7) FCC Collaboration, A. Abada et al., FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2, Eur. Phys. J. ST 228 (2019), no. 2 261–623.
  • (8) CLICdp, CLIC Collaboration, T. K. Charles et al., The Compact Linear Collider (CLIC) - 2018 Summary Report, arXiv:1812.06018.
  • (9) J. Collins, Foundations of Perturbative QCD. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press, 2011.
  • (10) A. Idilbi and T. Mehen, On the equivalence of soft and zero-bin subtractions, Phys. Rev. D 75 (2007) 114017, [hep-ph/0702022].
  • (11) A. Idilbi and T. Mehen, Demonstration of the equivalence of soft and zero-bin subtractions, Phys. Rev. D 76 (2007) 094015, [arXiv:0707.1101].
  • (12) T. Becher and G. Bell, Analytic Regularization in Soft-Collinear Effective Theory, Phys. Lett. B 713 (2012) 41–46, [arXiv:1112.3907].
  • (13) J.-y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, The Rapidity Renormalization Group, Phys. Rev. Lett. 108 (2012) 151601, [arXiv:1104.0881].
  • (14) J.-Y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084, [arXiv:1202.0814].
  • (15) Y. Li, D. Neill, and H. X. Zhu, An exponential regulator for rapidity divergences, Nucl. Phys. B 960 (2020) 115193, [arXiv:1604.00392].
  • (16) M. A. Ebert, I. Moult, I. W. Stewart, F. J. Tackmann, G. Vita, and H. X. Zhu, Subleading power rapidity divergences and power corrections for qT, JHEP 04 (2019) 123, [arXiv:1812.08189].
  • (17) J. Chay and C. Kim, Consistent treatment of rapidity divergence in soft-collinear effective theory, JHEP 03 (2021) 300, [arXiv:2008.00617].
  • (18) A. V. Manohar and I. W. Stewart, Running of the heavy quark production current and 1 / v potential in QCD, Phys. Rev. D 63 (2001) 054004, [hep-ph/0003107].
  • (19) A. H. Hoang, A. V. Manohar, and I. W. Stewart, The Running Coulomb potential and Lamb shift in QCD, Phys. Rev. D 64 (2001) 014033, [hep-ph/0102257].
  • (20) M. Ciafaloni, P. Ciafaloni, and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000) 4810–4813, [hep-ph/0001142].
  • (21) M. Ciafaloni, P. Ciafaloni, and D. Comelli, Bloch-Nordsieck violation in spontaneously broken Abelian theories, Phys. Rev. Lett. 87 (2001) 211802, [hep-ph/0103315].
  • (22) P. Ciafaloni and D. Comelli, The Importance of weak bosons emission at LHC, JHEP 09 (2006) 055, [hep-ph/0604070].
  • (23) A. Manohar, B. Shotwell, C. Bauer, and S. Turczyk, Non-cancellation of electroweak logarithms in high-energy scattering, Phys. Lett. B 740 (2015) 179–187, [arXiv:1409.1918].
  • (24) A. V. Manohar and W. J. Waalewijn, Electroweak Logarithms in Inclusive Cross Sections, JHEP 08 (2018) 137, [arXiv:1802.08687].
  • (25) I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002, [arXiv:1004.2489].
  • (26) T. T. Jouttenus, I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, The Soft Function for Exclusive N-Jet Production at Hadron Colliders, Phys. Rev. D 83 (2011) 114030, [arXiv:1102.4344].
  • (27) I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, The Beam Thrust Cross Section for Drell-Yan at NNLL Order, Phys. Rev. Lett. 106 (2011) 032001, [arXiv:1005.4060].
  • (28) D. Bertolini, D. Kolodrubetz, D. Neill, P. Pietrulewicz, I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, Soft Functions for Generic Jet Algorithms and Observables at Hadron Colliders, JHEP 07 (2017) 099, [arXiv:1704.08262].
  • (29) G. Lustermans, J. K. L. Michel, F. J. Tackmann, and W. J. Waalewijn, Joint two-dimensional resummation in qTq_{T} and 0-jettiness at NNLL, JHEP 03 (2019) 124, [arXiv:1901.03331].
  • (30) G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125–1144, [hep-ph/9512380].
  • (31) R. Kelley and M. D. Schwartz, 1-loop matching and NNLL resummation for all partonic 2 to 2 processes in QCD, Phys. Rev. D 83 (2011) 045022, [arXiv:1008.2759].
  • (32) C. W. Bauer, A. Hornig, and F. J. Tackmann, Factorization for generic jet production, Phys. Rev. D 79 (2009) 114013, [arXiv:0808.2191].
  • (33) I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, The Quark Beam Function at NNLL, JHEP 09 (2010) 005, [arXiv:1002.2213].
  • (34) Z.-B. Kang, F. Ringer, and I. Vitev, The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production, JHEP 10 (2016) 125, [arXiv:1606.06732].
  • (35) L. Dai, C. Kim, and A. K. Leibovich, Fragmentation of a Jet with Small Radius, Phys. Rev. D 94 (2016), no. 11 114023, [arXiv:1606.07411].
  • (36) S. D. Ellis, C. K. Vermilion, J. R. Walsh, A. Hornig, and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101, [arXiv:1001.0014].
  • (37) I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D 81 (2010) 094035, [arXiv:0910.0467].
  • (38) M. Baumgart, O. Erdoğan, I. Z. Rothstein, and V. Vaidya, Breakdown of the naive parton model in super-weak scale collisions, Phys. Rev. D 100 (2019), no. 9 096008, [arXiv:1811.04120].
  • (39) Z. Ligeti, I. W. Stewart, and F. J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014, [arXiv:0807.1926].
  • (40) G. P. Korchemsky and A. V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342–364.
  • (41) I. A. Korchemskaya and G. P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169–175.
  • (42) M. Procura and I. W. Stewart, Quark Fragmentation within an Identified Jet, Phys. Rev. D 81 (2010) 074009, [arXiv:0911.4980]. [Erratum: Phys.Rev.D 83, 039902 (2011)].
  • (43) A. Jain, M. Procura, and W. J. Waalewijn, Parton Fragmentation within an Identified Jet at NNLL, JHEP 05 (2011) 035, [arXiv:1101.4953].
  • (44) J.-y. Chiu, A. Fuhrer, R. Kelley, and A. V. Manohar, Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev. D 80 (2009) 094013, [arXiv:0909.0012].
  • (45) J. Chay, C. Kim, Y. G. Kim, and J.-P. Lee, Soft Wilson lines in soft-collinear effective theory, Phys. Rev. D 71 (2005) 056001, [hep-ph/0412110].
  • (46) M. Sjödahl, ColorMath - A package for color summed calculations in SU(Nc), Eur. Phys. J. C 73 (2013), no. 2 2310, [arXiv:1211.2099].
  • (47) T. Becher, M. Neubert, and B. D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076, [hep-ph/0607228].