This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bottom-charmed baryons in a nonrelativistic quark model

Qing-Fu Song Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, China    Qi-Fang Lü lvqifang@hunnu.edu.cn Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, China Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan    Atsushi Hosaka hosaka@rcnp.osaka-u.ac.jp Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
Abstract

In this work, we study the low-lying mass spectra for bottom-charmed baryons in a nonrelativistic quark model by solving the three-body Schrödinger equation. The lowest Ξbc\Xi_{bc}, Ξbc\Xi_{bc}^{\prime}, Ωbc\Omega_{bc}, and Ωbc\Omega_{bc}^{\prime} states are predicted to be about 6979, 6953, 7109, and 7092 MeV, respectively. Also, the strong decays for the low-lying excited states are investigated. Our results indicate that some of λ\lambda-mode PP-wave bottom-charmed baryons are relatively narrow, which can be searched for in future experiments. For the low-lying ρ\rho-mode and ρλ\rho-\lambda hybrid states, their strong decays are highly suppressed and they can survive as extremely narrow states. Moreover, the mass spectra and strong decays for bottom-charmed baryons preserve the heavy quark symmetry well. We hope our calculations can provide helpful information for further experimental and theoretical researches.

bottom-charmed baryons, mass spectra, strong decays

I Introduction

In the past years, with the development of the large-scale accelerator facilities, plenty of heavy baryons have been observed and significant progress has been achieved in experiments. These discoveries have triggered wide attentions of theorists, which leads the study on mass spectra and internal structures of heavy baryons to a hot topic in hadron physics Chen:2016spr ; Cheng:2021qpd . Understanding the nature of heavy baryons and searching for the missing heavy resonances can help us to establish and complete the hadron spectroscopy and provide a good platform to better investigate the heavy quark symmetry. Until now, most experimental observations in heavy baryon sector belong to the singly heavy baryons, while the doubly heavy baryons are rare. Due to the lack of experimental data, our understanding of the doubly heavy baryons is still scarce, and more experimental and theoretical efforts are encouraged and needed.

In 2002, the SELEX Collaboration reported an evidence of a doubly charmed baryon Ξcc+\Xi_{cc}^{+} that has a mass of 3519 ±\pm 1 MeV in the Λc+Kπ+\Lambda_{c}^{+}K^{-}\pi^{+} final state Mattson:2002vu and pD+KpD^{+}K^{-} decay mode Ocherashvili:2004hi . However, the existence of Ξcc+(3519)\Xi_{cc}^{+}(3519) was disfavored by the following FOCUS, BaBar, Belle and LHCb Collaborations Ratti:2003ez ; Aubert:2006qw ; Chistov:2006zj ; Aaij:2013voa , and the following theoretical works do not also support this discovery. In 2017, a highly significant structure Ξcc++(3621)\Xi_{cc}^{++}(3621) with a mass of 3621.40 ±\pm 0.72 ±\pm 0.27 ±\pm 0.14 MeV was observed in the Λc+Kπ+π+\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+} mass spectrum by the LHCb Collaboration Aaij:2017ueg . Subsequently, the LHCb Collaboration measured its lifetime LHCb:2018zpl ; LHCb:2019qed and other decay modes LHCb:2018pcs ; LHCb:2019ybf ; LHCb:2019epo ; LHCb:2022rpd . Meanwhile, the LHCb Collaboration paid lots of attentions to hunt for more doubly heavy baryons, however no more signal has been found so far LHCb:2021eaf ; LHCb:2020iko ; LHCb:2021xba ; LHCb:2021rkb ; LHCb:2019gqy ; LHCb:2022fbu . In particular, the Ξbc\Xi_{bc} and Ξbc\Xi_{bc}^{\prime} state was placed great expectations to be discovered in the near future, where one charm quark in Ξcc\Xi_{cc} is replaced by a bottom quark.

Theoretically, there are various methods to predict the mass spectra of doubly heavy baryons, such as potential models Kiselev:2001fw ; Ebert:1996ec ; Tong:1999qs ; Ebert:2002ig ; Gershtein:2000nx ; Roberts:2007ni ; Giannuzzi:2009gh ; Martynenko:2007je ; Valcarce:2008dr ; Eakins:2012jk ; Shah:2017liu ; Wang:2021rjk ; Yu:2022lel ; Li:2022ywz ; Soto:2020pfa , heavy quark symmetry and mass formulas Savage:1990di ; Song:2022csw ; Roncaglia:1995az ; Cohen:2006jg ; Karliner:2014gca ; Wei:2015gsa ; Wei:2016jyk ; Oudichhya:2022ssc , QCD sum rule Zhang:2008rt ; Tang:2011fv ; Wang:2010hs ; Aliev:2012ru ; Aliev:2012nn ; Aliev:2012iv , lattice QCD Liu:2009jc ; Brown:2014ena ; Padmanath:2015jea ; Mathur:2018rwu ; Mathur:2018epb , and so on. Besides the mass spectra, the weak and radiative decays of the doubly heavy baryons are also widely discussed in the literature Faessler:2001mr ; Faessler:2009xn ; Albertus:2009ww ; White:1991hz ; Li:2017ndo ; Yu:2017zst ; Ebert:2004ck ; Roberts:2008wq ; Branz:2010pq ; Hackman:1977am ; Bernotas:2013eia ; Dai:2000hza ; Albertus:2010hi ; Qin:2021zqx ; Bahtiyar:2018vub , which provide helpful information for the experimental searches. Among these fruitful theoretical studies, there were only a few works on strong decay behaviors Eakins:2012fq ; Xiao:2017udy ; Mehen:2017nrh ; Ma:2017nik ; Xiao:2017dly ; Yan:2018zdt ; He:2021iwx ; Chen:2022fye . Based on the experimental and theoretical status, the strong decay of doubly heavy baryons should be urgently investigated and highly valued.

In this work, we concentrate on the bottom-charmed family that is made up of a bottom quark bb, a charm quark cc and a light quark (uu, dd, or ss). When the light quark belongs to up or down quark, the bottom-charmed baryon is named as Ξbc\Xi_{bc} or Ξbc\Xi_{bc}^{\prime}; When the light quark is a strange quark, the bottom-charmed baryon is denoted as Ωbc\Omega_{bc} or Ωbc\Omega_{bc}^{\prime}. The study of bottom-charmed baryons does not only provide an opportunity for us to investigate the heavy quark symmetry and chiral dynamics simultaneously, but also supplies a unique platform about the conventional baryons with three non-identical quarks. Moreover, the excited states and their strong decay behaviors are essential for better understanding the spectroscopy for bottom-charmed baryons and helping experimentalists to hunt for more hadrons. Among various properties, the Okubo-Zweig-Iizuka-allowed (OZI-allowed) two-body decay processes are particularly interesting where one light meson is, especially the pion, emitted from the parent baryon. In this process, the meson couples to the light quark, and the heavy quark subsystem behaves simply as a spectator. Hence this provides a good platform to investigate dynamics of chiral symmetry at the single quark level. However, the study on strong decays for bottom-charmed baryon is very scarce Eakins:2012fq , and then it is time to explore this topic systematically.

In a previous work, a nonrelativistic quark model was adopted to study the mass spectrum of heavy baryons with two identical quarks, and gained significant achievements Yoshida:2015tia . However, the case of all three quarks with different masses were not studied. Here, we employ the same quark model to bottom-charmed system by solving the three-body Schrödinger equation in order to get the mass spectrum consistently. Besides the masses, the realistic wave functions are obtained simultaneously, and can be used for strong decay calculations. The lowest Ξbc\Xi_{bc}, Ξbc\Xi_{bc}^{\prime}, Ωbc\Omega_{bc}, and Ωbc\Omega_{bc}^{\prime} states are predicted to be about 6979, 6953, 7109, and 7092 MeV, respectively. Our results indicate that some of λ\lambda-mode Ξbc(1P)\Xi_{bc}(1P), Ξbc(1P)\Xi_{bc}^{\prime}(1P), Ωbc(1P)\Omega_{bc}(1P), Ωbc(1P)\Omega_{bc}^{\prime}(1P) states are narrow, which have good potentials to be observed by future experiments. Also, the strong decays of the low-lying ρ\rho-mode and ρλ\rho-\lambda hybrid states are highly suppressed and can be searched for in the processes with electromagnetic and weak interactions.

This paper is organized as follows. The formalism of potential model and pseudoscalar meson emissions is briefly introduced in Sec. II. We present the numerical results and discussions for the bottom-charmed baryons in Sec. III. A summary is given in the last section.

II FORMALISM

II.1 Potential Model

In order to calculate the spectrum of the low-lying bottom-charmed baryons, we adopt a nonrelativistic quark model, where the Hamiltonian can be expressed as

H=T+i<j3V(rij)H=T+\sum_{i<j}^{3}V(r_{ij}) (1)

with the kinetic energy

T=i=13(mi+𝒑𝒊𝟐2mi)TCMT=\sum_{i=1}^{3}\left(m_{i}+\frac{\bm{p_{i}^{2}}}{2m_{i}}\right)-T_{CM} (2)

and the effective potential

V(rij)=Vconf(rij)+Vcoul(rij)+VSD(rij).V\left(r_{ij}\right)=V^{conf}\left(r_{ij}\right)+V^{coul}\left(r_{ij}\right)+V^{SD}\left(r_{ij}\right). (3)

Here TCMT_{CM} is the center-of-mass energy, rijr_{ij} is the distance between the iith and jjth quarks. The linear confinement potential Vconf(rij)V^{conf}\left(r_{ij}\right) and one-gluon-exchange potential Vcoul(rij)V^{coul}\left(r_{ij}\right) are as follows

Vconf(rij)=brij2+C,V^{conf}\left(r_{ij}\right)=\frac{br_{ij}}{2}+C, (4)
Vcoul(rij)=2αcoul3rij,V^{coul}\left(r_{ij}\right)=-\frac{2\alpha^{coul}}{3r_{ij}}, (5)

where CC is the overall zero-point-energy parameter. The spin-dependent interaction VSD(rij)V^{SD}\left(r_{ij}\right) is the sum of spin-spin term VSS(rij)V^{SS}\left(r_{ij}\right), spin-orbit term VLS(rij)V^{LS}\left(r_{ij}\right), and tensor term VTen(rij)V^{Ten}\left(r_{ij}\right)

VSS(rij)=16παss9mimj𝒔𝒊𝒔𝒋Λ24πrijexp(Λrij),V^{SS}\left({r_{ij}}\right)=\frac{16\pi\alpha^{ss}}{9m_{i}m_{j}}\bm{s_{i}}\cdot\bm{s_{j}}\frac{\Lambda^{2}}{4\pi r_{ij}}\exp(-\Lambda r_{ij}), (6)
VLS(rij)\displaystyle V^{LS}\left({r_{ij}}\right) =\displaystyle= αso(1exp(Λrij))23rij3\displaystyle\frac{{\alpha}^{\rm{so}}(1-\exp(-\Lambda r_{ij}))^{2}}{3{r_{ij}}^{3}} (7)
×[(1mi2+1mj2+4mimj)𝑳ij(𝒔i+𝒔j)\displaystyle\times\bigg{[}\bigg{(}\frac{1}{m_{i}^{2}}+\frac{1}{m_{j}^{2}}+\frac{4}{m_{i}m_{j}}\bigg{)}\bm{L}_{ij}\cdot\left(\bm{s}_{i}+\bm{s}_{j}\right)
+(1mi21mj2)𝑳ij(𝒔i𝒔j)],\displaystyle+\bigg{(}\frac{1}{m_{i}^{2}}-\frac{1}{m_{j}^{2}}\bigg{)}\bm{L}_{ij}\cdot\left(\bm{s}_{i}-\bm{s}_{j}\right)\bigg{]},
VTen(rij)\displaystyle V^{Ten}\left({r_{ij}}\right) =\displaystyle= 2αten(1exp(Λrij))23mimjrij3(3(𝒔i𝒓𝒊𝒋)(𝒔j𝒓𝒊𝒋)rij2\displaystyle\left.\frac{{2\alpha}^{\rm{ten}}(1-\exp(-\Lambda r_{ij}))^{2}}{3m_{i}m_{j}{r_{ij}}^{3}}\left(\frac{3(\bm{s}_{i}\cdot\bm{r_{ij}})(\bm{s}_{j}\cdot\bm{r_{ij}})}{{r_{ij}}^{2}}\right.\right. (8)
𝒔i𝒔j).\displaystyle-\left.\bm{s}_{i}\cdot\bm{s}_{j}\biggr{)}\right..

The parameters are taken from the original work Yoshida:2015tia and listed in the Table 1. Also, the overall constant CC is adjusted by fixing the mass of ground state Ξcc(3621)\Xi_{cc}(3621), which is suitable for present bottom-charmed baryons systems.

Table 1: The relevant parameters adopted in this work.
Parameters Value
mu/d(GeV)m_{u/d}(\textrm{GeV}) 0.300
msm_{s} (GeV)(\textrm{GeV}) 0.510
mcm_{c}(GeV)(\textrm{GeV}) 1.750
mbm_{b}(GeV)(\textrm{GeV}) 5.112
bb (GeV2)(\textrm{GeV}^{2}) 0.165
KK (GeV)(\textrm{GeV}) 0.090
αss\alpha^{ss} 1.200
αso\alpha^{so} 0.077
αten\alpha^{ten} 0.077
Λ\Lambda(fm1)(\textrm{fm}^{-1}) 3.500
C{C}(GeV)(\textrm{GeV}) -1.203

The bottom-charmed baryon is a three-quark system, where the Jacobi coordinates can be introduced to eliminate the center-of-mass energy. As illustrated in Figure 1, the Jacobi coordinates are defined as

𝝆=𝒓𝟐𝒓𝟏,\bm{\rho}=\bm{r_{2}}-\bm{r_{1}}, (9)
𝝀=𝒓𝟑m1𝒓𝟏+m2𝒓𝟐m1+m2,\bm{\lambda}=\bm{r_{3}}-\frac{{m_{1}}\bm{r_{1}}+m_{2}\bm{r_{2}}}{m_{1}+m_{2}}, (10)
𝑹=m1𝒓𝟏+m2𝒓𝟐+m3𝒓𝟑m1+m2+m3.\bm{R}=\frac{{m_{1}}\bm{r_{1}}+m_{2}\bm{r_{2}}+m_{3}\bm{r_{3}}}{m_{1}+m_{2}+m_{3}}. (11)

where rir_{i} and mim_{i} denote the position vector and the mass of the iith quark, respectively. The 𝝆\bm{\rho} stands for the relative coordinate between bottom and charm quarks, the 𝝀\bm{\lambda} represents the relative coordinate between the light and heavy subsystems, and the 𝑹\bm{R} is mass center coordinate.

Refer to caption
Figure 1: A typical sketch of the bottom-charmed baryons

The bottom-charmed baryons can be divided into four types according to the total wave functions, which are denoted as Ξbc\Xi_{bc} Ξbc\Xi_{bc}^{\prime}, Ωbc\Omega_{bc}, and Ωbc\Omega_{bc}^{\prime}, respectively. These notations follow those of the singly heavy baryons Ξc\Xi_{c}, Ξc\Xi_{c}^{\prime}, Ξb\Xi_{b}, and Ξb\Xi_{b}^{\prime}, and the naming scheme can be referred to Refs. Chen:2016spr ; Eakins:2012jk ; Li:2022ywz . In the present work, the orbital wave functions are expanded in terms of a set of Gaussian basis functions that forms an approximate complete set Hiyama:2003cu ; Hiyama:2018ivm . Then, the explicit expression for spatial part can be written as

Ψ(𝝆,𝝀)=n,NCn,Nϕn(𝝆)ϕN(𝝀)\Psi(\bm{\rho},\bm{\lambda})=\sum_{n,N}C_{n,N}\phi_{n}(\bm{\rho})\phi_{N}(\bm{\lambda}) (12)

with

ϕn(𝝆)=Nnlρρlρeνnρ2Ylρmlρ(𝝆^){}\phi_{n}(\bm{\rho})=N_{nl_{\rho}}\rho^{l_{\rho}}e^{-\nu_{n}\rho^{2}}Y_{l_{\rho}m_{l_{\rho}}}\left(\bm{\hat{\rho}}\right) (13)

and

ϕN(𝝀)=NNlλλlλeνNλ2Ylλmlλ(𝝀^),{}\phi_{N}(\bm{\lambda})=N_{Nl_{\lambda}}\lambda^{l_{\lambda}}e^{-\nu_{N}\lambda^{2}}Y_{l_{\lambda}m_{l_{\lambda}}}(\bm{\hat{\lambda}}), (14)

where Cn,NC_{n,N} are the expansion coefficients. It is worth noting that the ρ\rho and λ\lambda mode can be hardly separated in the strict sense for the systems with three non-identical masses. However, in view of the heavy quark symmetry, the orbital wave functions for bottom-charmed baryons can be separated approximately and we prefer to adopt the above trial wave functions to solve the three-body Schrödinger equation.

The range parameters of Gaussian functions are given as

νn=1/rn2,rn=r1an1(n=1,,nmax),\nu_{n}=1/r_{n}^{2},r_{n}=r_{1}a^{n-1}(n=1,...,n_{max}), (15)
νN=1/RN2,RN=R1AN1(N=1,,Nmax),\nu_{N}=1/R_{N}^{2},R_{N}=R_{1}A^{N-1}(N=1,...,N_{max}), (16)

where nn and NN are the number of Gaussian functions, and aa and AA are the ratio coefficients. According to the Rayleigh-Ritz variational principle, one can have

jnmax×Nmax[HijENij]Cj=0,(i=1nmax×Nmax),\sum_{j}^{n_{max}\times N_{max}}[H_{ij}-EN_{ij}]C_{j}=0,(i=1\sim n_{max}\times N_{max}), (17)

where the HijH_{ij} are the matrix elements in the total color-flavor-spin-orbital bases, EE stands for the eigenvalue, and CjC_{j} are the relevant eigenvectors. Finally, the spectrum of bottom-charmed baryons can be obtained by solving the generalized eigenvalue problem.

In constructing the total wave functions, we adopt the jjj-j coupling scheme to investigate the bottom-charmed baryons, where the states are defined as

JP,j=[(lρSρ)Jρ(lλs3)j]JP\mid J^{P},j\rangle=\mid[(l_{\rho}S_{\rho})_{J_{\rho}}(l_{\lambda}s_{3})_{j}]_{J^{P}}\rangle (18)

The label lρl_{\rho} is the orbital quantum number between the two heavy quarks, the lλl_{\lambda} the orbital quantum number between the light and heavy subsystems, SρS_{\rho} the spin quantum number of two heavy quarks, JρJ_{\rho} the total angular momentum of heavy quark subsystem, jj the total angular momentum of light quark system that is usually known as the light quark spin, and JPJ^{P} the spin-parity for hadrons. More details of different coupling schemes and their relations can be found in our previous work He:2021iwx .

II.2 Pseudoscalar meson emissions

Besides the mass spectrum, the strong decays can reflect the internal structures of hadrons more explicitly. In this subsection, the approach of strong decays for bottom-charmed baryons is introduced briefly. In the quark model, the pseudoscalar meson can couple to the light quark inside a bottom-charmed baryons through the Yukawa interaction, which is considered to contribute predominantly to one-meson emission decays Ybci(Pi)Y_{bc}^{i}(P_{i}) \to Ybcf(Pf)Y_{bc}^{f}(P_{f})+Mp(q)M_{p}(q) in Figure 2. The axial-vector coupling between the pseudoscalar meson and a light quark can be written as

Mpqq=gAq2fpq¯γμγ5τqμMp,\mathcal{L}_{M_{p}qq}=\frac{g_{A}^{q}}{2f_{p}}\bar{q}\gamma_{\mu}\gamma_{5}\vec{\tau}q\cdot\partial^{\mu}\vec{M_{p}}, (19)

where the qq stands for the quark field, gAqg_{A}^{q} is the quark-axial-vector coupling and fpf_{p} is the decay constant. In present work, fπf_{\pi}= 93 MeV\mathrm{MeV}and fKf_{K} =111 MeV\mathrm{MeV} are adopted that have been widely used in quark model calculations Arifi:2022ntc ; Arifi:2021orx ; Nagahiro:2016nsx ; Xiao:2017udy ; Wang:2018fjm ; Liu:2019wdr ; Lu:2022puv .

Refer to caption
Figure 2: One meson emission for bottom-charmed baryons

The wave function for the YbcY_{bc} (Ybc=Ξbc(Y_{bc}=\Xi_{bc}, Ξbc\Xi_{bc}^{\prime}, Ωbc\Omega_{bc}, and Ωbc)\Omega_{bc}^{\prime}) baryon with mass MYbcM_{Y_{bc}} in the rest frame can be expressed in the momentum representation as

|Ybc(J)=\displaystyle\left|Y_{bc}(J)\right\rangle= 2MYbc{s,l}d3𝐩ρ(2π)3d3𝐩λ(2π)312m112m2\displaystyle\sqrt{2M_{Y_{bc}}}\sum_{\{s,l\}}\int\frac{d^{3}\mathbf{p}_{\rho}}{(2\pi)^{3}}\int\frac{d^{3}\mathbf{p}_{\lambda}}{(2\pi)^{3}}\frac{1}{\sqrt{2m_{1}}}\frac{1}{\sqrt{2m_{2}}} (20)
12m3ψlρ(𝐩ρ)ψlλ(𝐩λ)|q1(p1,s1)|q2(p2,s2)\displaystyle\frac{1}{\sqrt{2m_{3}}}\psi_{l_{\rho}}(\mathbf{p}_{\rho})\psi_{l_{\lambda}}\left(\mathbf{p}_{\lambda}\right)\left|q_{1}\left(p_{1},s_{1}\right)\right\rangle\left|q_{2}\left(p_{2},s_{2}\right)\right\rangle
|q3(p3,s3).\displaystyle\left|q_{3}\left(p_{3},s_{3}\right)\right\rangle.

Then, the decay amplitude for Ybci(Pi)Y_{bc}^{i}(P_{i}) \to Ybcf(Pf)Y_{bc}^{f}(P_{f})+Mp(q)M_{p}(q) can be obtained by

i𝒯=\displaystyle-i\mathcal{T}= igAqgf2fp2Mi2Mfd3λei𝐪λλ\displaystyle-i\frac{g_{A}^{q}g_{f}}{2f_{p}}\sqrt{2M_{i}}\sqrt{2M_{f}}\int d^{3}\lambda e^{i\mathbf{q}_{\lambda}\cdot\mathbf{\lambda}} (21)
×Ybcf|i{(1ω2m3+ωm1+m2+m3)σ𝐪\displaystyle\times\Bigg{\langle}Y_{bc}^{f}\Bigg{|}i\Bigg{\{}\Bigg{(}1-\frac{\omega}{2m_{3}}+\frac{\omega}{m_{1}+m_{2}+m_{3}}\Bigg{)}\mathbf{\sigma}\cdot\mathbf{q}
+ωm3σ𝐩λ}|Ybci,\displaystyle+\frac{\omega}{m_{3}}\sigma\cdot\mathbf{p}_{\lambda}\Bigg{\}}\Bigg{|}Y_{bc}^{i}\Bigg{\rangle},

and the 𝐪λ\mathbf{q_{\lambda}} is defined as

𝐪λ=m1+m2m1+m2+m3𝐪.\mathbf{q_{\lambda}}=\frac{m_{1}+m_{2}}{m_{1}+m_{2}+m_{3}}\mathbf{q}. (22)

The gfg_{f} denotes the flavor matrix, MiM_{i} is the mass of initial baryon, MfM_{f} is the mass of final baryon, q=(ω,𝒒)q=(\omega,\bm{q}) is the 4-momentum of outgoing pseudoscalar meson, mim_{i} is the constituent quark mass with m1=mbm_{1}=m_{b}, m2=mcm_{2}=m_{c}, and m3=mu/d/sm_{3}=m_{u/d/s}.

After calculating the mass spectrum, one can get the wave functions for bottom-charmed baryons, which are applied to estimate the root mean square and the range parameters αλ\alpha_{\lambda}. These effective values αλ\alpha_{\lambda} are obtained by equating the root mean square radius of simple harmonic oscillator wave functions to that obtained in the nonrelativistic quark model, which has been widely used in the previous studies of strong decays Close:2005se ; Li:2010vx ; Godfrey:2015dia ; Godfrey:2015dva ; Chen:2016iyi . Then, the helicity amplitude 𝒜h\mathcal{A}_{h} can be derived from the transition operator and effective parameters αλ\alpha_{\lambda} in the harmonic oscillator wave functions. To calculate the strong decay widths for the pseudoscalar meson emissions, one also need to take into account the phase space factor. Finally, the strong decays for bottom-charmed baryons can be obtained within the helicity bases straightforwardly,

Γ=14πq2Mi212J+1h|𝒜h|2.{}\Gamma=\frac{1}{4\pi}\frac{q}{2M_{i}^{2}}\frac{1}{2J+1}\sum_{h}\left|\mathcal{A}_{h}\right|^{2}. (23)

III Results and discussion

In this section, we first calculated the mass spectrum of bottom-charmed baryons, and then estimate the strong decays for λ\lambda-mode low-lying excited states. Also, we discuss the relativistic corrections for the Roper-like resonances, the mixture of λ\lambda-mode states with the same spin-parity, and the suppression of strong decays for ρ\rho-mode and ρλ\rho-\lambda hybrid states. In analogy with singly heavy baryons Chen:2007xf , we adopt the symbols \sim, \wedge, \vee, and \smile on the top of capital Ξ\Xi and Ω\Omega to denote the ρ\rho-mode PP-wave, ρ\rho-mode DD-wave, ρλ\rho-\lambda hybrid, and ρ\rho-mode radially excited states, respectively.

III.1 Mass spectrum

In the quark model, for the Ξbc\Xi_{bc} or Ωbc\Omega_{bc} family, there should be one ground state, five ρ\rho-mode PP-wave states, two λ\lambda-mode PP-wave states, two ρ\rho-mode DD-wave states, two λ\lambda-mode DD-wave states, thirteen ρλ\rho-\lambda hybrid DD-wave states, and two radially excited states; for the Ξbc\Xi_{bc}^{\prime} or Ωbc\Omega_{bc}^{\prime} family should exist two ground states, two ρ\rho-mode PP-wave states, five λ\lambda-mode PP-wave states, six ρ\rho-mode DD-wave states, six λ\lambda-mode DD-wave states, five ρλ\rho-\lambda hybrid DD-wave states, and four radially excited states. Within the potential model, we obtain the masses and perform them in Table 2,  3,  4, and  5. Also, the full mass spectra are plotted in Figure 3 and 4 for reference.

Table 2: The mass spectrum of Ξbc\Xi_{bc} in MeV.
States nρn_{\rho} nλn_{\lambda} lρl_{\rho} lλl_{\lambda} SρS_{\rho} JρJ_{\rho} jj JPJ^{P} αλ\alpha_{\lambda} Mass
Ξbc(1S)\Xi_{bc}(1S) 0 0 0 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 347 6979
Ξ˘bc(2S)\breve{\Xi}_{bc}(2S) 1 0 0 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 507 7344
Ξbc(2S)\Xi_{bc}(2S) 0 1 0 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 489 7640
Ξ~bc(12,12)\tilde{\Xi}_{bc}(\frac{1}{2}^{-},\frac{1}{2}) 0 0 1 0 1 0 12\frac{1}{2} 12\frac{1}{2}^{-} 438 7157
Ξ~bc(32,12)\tilde{\Xi}_{bc}(\frac{3}{2}^{-},\frac{1}{2}) 0 0 1 0 1 1 12\frac{1}{2} 32\frac{3}{2}^{-} 437 7159
Ξ~bc(12,12)\tilde{\Xi}_{bc}(\frac{1}{2}^{-},\frac{1}{2}) 0 0 1 0 1 1 12\frac{1}{2} 12\frac{1}{2}^{-} 441 7192
Ξ~bc(32,12)\tilde{\Xi}_{bc}(\frac{3}{2}^{-},\frac{1}{2}) 0 0 1 0 1 2 12\frac{1}{2} 32\frac{3}{2}^{-} 440 7192
Ξ~bc(52,12)\tilde{\Xi}_{bc}(\frac{5}{2}^{-},\frac{1}{2}) 0 0 1 0 1 2 12\frac{1}{2} 52\frac{5}{2}^{-} 432 7193
Ξbc(12,12)\Xi_{bc}(\frac{1}{2}^{-},\frac{1}{2}) 0 0 0 1 0 0 12\frac{1}{2} 12\frac{1}{2}^{-} 305 7391
Ξbc(32,32)\Xi_{bc}(\frac{3}{2}^{-},\frac{3}{2}) 0 0 0 1 0 0 32\frac{3}{2} 32\frac{3}{2}^{-} 302 7403
Ξ^bc(32+,12)\hat{\Xi}_{bc}(\frac{3}{2}^{+},\frac{1}{2}) 0 0 2 0 0 2 12\frac{1}{2} 32+\frac{3}{2}^{+} 501 7352
Ξ^bc(52+,12)\hat{\Xi}_{bc}(\frac{5}{2}^{+},\frac{1}{2}) 0 0 2 0 0 2 12\frac{1}{2} 52+\frac{5}{2}^{+} 500 7354
Ξbc(32+,32)\Xi_{bc}(\frac{3}{2}^{+},\frac{3}{2}) 0 0 0 2 0 0 32\frac{3}{2} 32+\frac{3}{2}^{+} 291 7732
Ξbc(52+,52)\Xi_{bc}(\frac{5}{2}^{+},\frac{5}{2}) 0 0 0 2 0 0 52\frac{5}{2} 52+\frac{5}{2}^{+} 282 7746
Ξˇbc(12+,12)\check{\Xi}_{bc}(\frac{1}{2}^{+},\frac{1}{2}) 0 0 1 1 1 0 12\frac{1}{2} 12+\frac{1}{2}^{+} 368 7543
Ξˇbc(32+,32)\check{\Xi}_{bc}(\frac{3}{2}^{+},\frac{3}{2}) 0 0 1 1 1 0 32\frac{3}{2} 32+\frac{3}{2}^{+} 367 7564
Ξˇbc(12+,12)\check{\Xi}_{bc}(\frac{1}{2}^{+},\frac{1}{2}) 0 0 1 1 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 366 7572
Ξˇbc(32+,12)\check{\Xi}_{bc}(\frac{3}{2}^{+},\frac{1}{2}) 0 0 1 1 1 1 12\frac{1}{2} 32+\frac{3}{2}^{+} 366 7575
Ξˇbc(12+,32)\check{\Xi}_{bc}(\frac{1}{2}^{+},\frac{3}{2}) 0 0 1 1 1 1 32\frac{3}{2} 12+\frac{1}{2}^{+} 359 7597
Ξˇbc(32+,32)\check{\Xi}_{bc}(\frac{3}{2}^{+},\frac{3}{2}) 0 0 1 1 1 1 32\frac{3}{2} 32+\frac{3}{2}^{+} 359 7599
Ξˇbc(52+,32)\check{\Xi}_{bc}(\frac{5}{2}^{+},\frac{3}{2}) 0 0 1 1 1 1 32\frac{3}{2} 52+\frac{5}{2}^{+} 352 7604
Ξˇbc(32+,12)\check{\Xi}_{bc}(\frac{3}{2}^{+},\frac{1}{2}) 0 0 1 1 1 2 12\frac{1}{2} 32+\frac{3}{2}^{+} 367 7565
Ξˇbc(52+,12)\check{\Xi}_{bc}(\frac{5}{2}^{+},\frac{1}{2}) 0 0 1 1 0 2 12\frac{1}{2} 52+\frac{5}{2}^{+} 366 7578
Ξˇbc(12+,32)\check{\Xi}_{bc}(\frac{1}{2}^{+},\frac{3}{2}) 0 0 1 1 0 2 32\frac{3}{2} 12+\frac{1}{2}^{+} 353 7595
Ξˇbc(32+,32)\check{\Xi}_{bc}(\frac{3}{2}^{+},\frac{3}{2}) 0 0 1 1 0 2 32\frac{3}{2} 32+\frac{3}{2}^{+} 352 7598
Ξˇbc(52+,32)\check{\Xi}_{bc}(\frac{5}{2}^{+},\frac{3}{2}) 0 0 1 1 0 2 32\frac{3}{2} 52+\frac{5}{2}^{+} 352 7601
Ξˇbc(72+,32)\check{\Xi}_{bc}(\frac{7}{2}^{+},\frac{3}{2}) 0 0 1 1 0 2 32\frac{3}{2} 72+\frac{7}{2}^{+} 350 7609
Table 3: The mass spectrum of Ωbc\Omega_{bc} in MeV.
States nρn_{\rho} nλn_{\lambda} lρl_{\rho} lλl_{\lambda} SρS_{\rho} JρJ_{\rho} jj JPJ^{P} αλ\alpha_{\lambda} Mass
Ωbc(1S)\Omega_{bc}(1S) 0 0 0 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 419 7109
Ω˘bc(2S)\breve{\Omega}_{bc}(2S) 1 0 0 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 601 7480
Ωbc(2S)\Omega_{bc}(2S) 0 1 0 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 351 7670
Ω~bc(12,12)\tilde{\Omega}_{bc}(\frac{1}{2}^{-},\frac{1}{2}) 0 0 1 0 1 0 12\frac{1}{2} 12\frac{1}{2}^{-} 506 7297
Ω~bc(32,12)\tilde{\Omega}_{bc}(\frac{3}{2}^{-},\frac{1}{2}) 0 0 1 0 1 1 12\frac{1}{2} 32\frac{3}{2}^{-} 506 7298
Ω~bc(12,12)\tilde{\Omega}_{bc}(\frac{1}{2}^{-},\frac{1}{2}) 0 0 1 0 1 1 12\frac{1}{2} 12\frac{1}{2}^{-} 500 7322
Ω~bc(32,12)\tilde{\Omega}_{bc}(\frac{3}{2}^{-},\frac{1}{2}) 0 0 1 0 1 2 12\frac{1}{2} 32\frac{3}{2}^{-} 500 7322
Ω~bc(52,12)\tilde{\Omega}_{bc}(\frac{5}{2}^{-},\frac{1}{2}) 0 0 1 0 1 2 12\frac{1}{2} 52\frac{5}{2}^{-} 500 7323
Ωbc(12,12)\Omega_{bc}(\frac{1}{2}^{-},\frac{1}{2}) 0 0 0 1 0 0 12\frac{1}{2} 12\frac{1}{2}^{-} 362 7451
Ωbc(32,32)\Omega_{bc}(\frac{3}{2}^{-},\frac{3}{2}) 0 0 0 1 0 0 32\frac{3}{2} 32\frac{3}{2}^{-} 360 7458
Ω^bc(32+,12)\hat{\Omega}_{bc}(\frac{3}{2}^{+},\frac{1}{2}) 0 0 2 0 0 2 12\frac{1}{2} 32+\frac{3}{2}^{+} 583 7488
Ω^bc(52+,12)\hat{\Omega}_{bc}(\frac{5}{2}^{+},\frac{1}{2}) 0 0 2 0 0 2 12\frac{1}{2} 52+\frac{5}{2}^{+} 582 7489
Ωbc(32+,32)\Omega_{bc}(\frac{3}{2}^{+},\frac{3}{2}) 0 0 0 2 0 0 32\frac{3}{2} 32+\frac{3}{2}^{+} 306 7761
Ωbc(52+,52)\Omega_{bc}(\frac{5}{2}^{+},\frac{5}{2}) 0 0 0 2 0 0 52\frac{5}{2} 52+\frac{5}{2}^{+} 305 7768
Ωˇbc(12+,12)\check{\Omega}_{bc}(\frac{1}{2}^{+},\frac{1}{2}) 0 0 1 1 1 0 12\frac{1}{2} 12+\frac{1}{2}+ 431 7607
Ωˇbc(32+,32)\check{\Omega}_{bc}(\frac{3}{2}^{+},\frac{3}{2}) 0 0 1 1 1 0 32\frac{3}{2} 32+\frac{3}{2}^{+} 422 7625
Ωˇbc(12+,12)\check{\Omega}_{bc}(\frac{1}{2}^{+},\frac{1}{2}) 0 0 1 1 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 417 7632
Ωˇbc(32+,12)\check{\Omega}_{bc}(\frac{3}{2}^{+},\frac{1}{2}) 0 0 1 1 1 1 12\frac{1}{2} 32+\frac{3}{2}^{+} 417 7634
Ωˇbc(12+,32)\check{\Omega}_{bc}(\frac{1}{2}^{+},\frac{3}{2}) 0 0 1 1 1 1 32\frac{3}{2} 12+\frac{1}{2}^{+} 413 7652
Ωˇbc(32+,32)\check{\Omega}_{bc}(\frac{3}{2}^{+},\frac{3}{2}) 0 0 1 1 1 1 32\frac{3}{2} 32+\frac{3}{2}^{+} 413 7650
Ωˇbc(52+,32)\check{\Omega}_{bc}(\frac{5}{2}^{+},\frac{3}{2}) 0 0 1 1 1 1 32\frac{3}{2} 52+\frac{5}{2}^{+} 412 7654
Ωˇbc(32+,12)\check{\Omega}_{bc}(\frac{3}{2}^{+},\frac{1}{2}) 0 0 1 1 1 2 12\frac{1}{2} 32+\frac{3}{2}^{+} 417 7637
Ωˇbc(52+,12)\check{\Omega}_{bc}(\frac{5}{2}^{+},\frac{1}{2}) 0 0 1 1 0 2 12\frac{1}{2} 52+\frac{5}{2}^{+} 412 7652
Ωˇbc(12+,32)\check{\Omega}_{bc}(\frac{1}{2}^{+},\frac{3}{2}) 0 0 1 1 0 2 32\frac{3}{2} 12+\frac{1}{2}^{+} 411 7658
Ωˇbc(32+,32)\check{\Omega}_{bc}(\frac{3}{2}^{+},\frac{3}{2}) 0 0 1 1 0 2 32\frac{3}{2} 32+\frac{3}{2}^{+} 411 7659
Ωˇbc(52+,32)\check{\Omega}_{bc}(\frac{5}{2}^{+},\frac{3}{2}) 0 0 1 1 0 2 32\frac{3}{2} 52+\frac{5}{2}^{+} 409 7661
Ωˇbc(72+,32)\check{\Omega}_{bc}(\frac{7}{2}^{+},\frac{3}{2}) 0 0 1 1 0 2 32\frac{3}{2} 72+\frac{7}{2}^{+} 405 7667
Table 4: The mass spectrum of Ξbc\Xi_{bc}^{\prime} in MeV.
States nρn_{\rho} nλn_{\lambda} lρl_{\rho} lλl_{\lambda} SρS_{\rho} JρJ_{\rho} jj JPJ^{P} αλ\alpha_{\lambda} Mass
Ξbc(1S)\Xi_{bc}^{\prime}(1S) 0 0 0 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 373 6953
Ξbc(1S)\Xi_{bc}^{\prime*}(1S) 0 0 0 0 1 1 12\frac{1}{2} 32+\frac{3}{2}^{+} 357 6997
Ξ˘bc(2S)\breve{\Xi}_{bc}^{\prime}(2S) 1 0 0 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 533 7301
Ξ˘bc(2S)\breve{\Xi}_{bc}^{\prime*}(2S) 1 0 0 0 1 1 12\frac{1}{2} 32+\frac{3}{2}^{+} 520 7332
Ξbc(2S)\Xi_{bc}^{\prime}(2S) 0 1 0 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 508 7593
Ξbc(2S)\Xi_{bc}^{\prime*}(2S) 0 1 0 0 1 1 32\frac{3}{2} 32+\frac{3}{2}^{+} 501 7619
Ξ~bc(12,12)\tilde{\Xi}_{bc}^{\prime}(\frac{1}{2}^{-},\frac{1}{2}) 0 0 1 0 0 1 12\frac{1}{2} 12\frac{1}{2}^{-} 438 7176
Ξ~bc(32,12)\tilde{\Xi}_{bc}^{\prime}(\frac{3}{2}^{-},\frac{1}{2}) 0 0 1 0 0 1 12\frac{1}{2} 32\frac{3}{2}^{-} 437 7178
Ξbc(12,12)\Xi_{bc}^{\prime}(\frac{1}{2}^{-},\frac{1}{2}) 0 0 0 1 1 1 12\frac{1}{2} 12\frac{1}{2}^{-} 319 7382
Ξbc(32,12)\Xi_{bc}^{\prime}(\frac{3}{2}^{-},\frac{1}{2}) 0 0 0 1 1 1 12\frac{1}{2} 32\frac{3}{2}^{-} 315 7387
Ξbc(12,32)\Xi_{bc}^{\prime}(\frac{1}{2}^{-},\frac{3}{2}) 0 0 0 1 1 1 32\frac{3}{2} 12\frac{1}{2}^{-} 313 7396
Ξbc(32,32)\Xi_{bc}^{\prime}(\frac{3}{2}^{-},\frac{3}{2}) 0 0 0 1 1 1 32\frac{3}{2} 32\frac{3}{2}^{-} 311 7404
Ξbc(52,32)\Xi_{bc}^{\prime}(\frac{5}{2}^{-},\frac{3}{2}) 0 0 0 1 1 1 32\frac{3}{2} 52\frac{5}{2}^{-} 310 7408
Ξ^bc(32+,12)\hat{\Xi}_{bc}^{\prime}(\frac{3}{2}^{+},\frac{1}{2}) 0 0 2 0 1 2 12\frac{1}{2} 32+\frac{3}{2}^{+} 514 7331
Ξ^bc(52+,12)\hat{\Xi}_{bc}^{\prime}(\frac{5}{2}^{+},\frac{1}{2}) 0 0 2 0 1 2 12\frac{1}{2} 52+\frac{5}{2}^{+} 514 7334
Ξ^bc(12+,12)\hat{\Xi}_{bc}^{\prime}(\frac{1}{2}^{+},\frac{1}{2}) 0 0 2 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 503 7359
Ξ^bc(32+,12)\hat{\Xi}_{bc}^{\prime}(\frac{3}{2}^{+},\frac{1}{2}) 0 0 2 0 1 1 12\frac{1}{2} 32+\frac{3}{2}^{+} 502 7360
Ξ^bc(52+,12)\hat{\Xi}_{bc}^{\prime}(\frac{5}{2}^{+},\frac{1}{2}) 0 0 2 0 1 3 12\frac{1}{2} 52+\frac{5}{2}^{+} 502 7361
Ξ^bc(72+,12)\hat{\Xi}_{bc}^{\prime}(\frac{7}{2}^{+},\frac{1}{2}) 0 0 2 0 1 3 12\frac{1}{2} 72+\frac{7}{2}^{+} 502 7362
Ξbc(32+,32)\Xi_{bc}^{\prime}(\frac{3}{2}^{+},\frac{3}{2}) 0 0 0 2 1 1 32\frac{3}{2} 32+\frac{3}{2}^{+} 295 7732
Ξbc(52+,32)\Xi_{bc}^{\prime}(\frac{5}{2}^{+},\frac{3}{2}) 0 0 0 2 1 1 32\frac{3}{2} 52+\frac{5}{2}^{+} 295 7733
Ξbc(12+,32)\Xi_{bc}^{\prime}(\frac{1}{2}^{+},\frac{3}{2}) 0 0 0 2 1 1 32\frac{3}{2} 12+\frac{1}{2}^{+} 280 7755
Ξbc(32+,52)\Xi_{bc}^{\prime}(\frac{3}{2}^{+},\frac{5}{2}) 0 0 0 2 1 1 52\frac{5}{2} 32+\frac{3}{2}^{+} 279 7759
Ξbc(52+,52)\Xi_{bc}^{\prime}(\frac{5}{2}^{+},\frac{5}{2}) 0 0 0 2 1 1 52\frac{5}{2} 52+\frac{5}{2}^{+} 278 7764
Ξbc(72+,52)\Xi_{bc}^{\prime}(\frac{7}{2}^{+},\frac{5}{2}) 0 0 0 2 1 1 52\frac{5}{2} 72+\frac{7}{2}^{+} 276 7770
Ξˇbc(12+,12)\check{\Xi}_{bc}^{\prime}(\frac{1}{2}^{+},\frac{1}{2}) 0 0 1 1 0 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 388 7549
Ξˇbc(32+,12)\check{\Xi}_{bc}^{\prime}(\frac{3}{2}^{+},\frac{1}{2}) 0 0 1 1 0 1 12\frac{1}{2} 32+\frac{3}{2}^{+} 370 7581
Ξˇbc(12+,32)\check{\Xi}_{bc}^{\prime}(\frac{1}{2}^{+},\frac{3}{2}) 0 0 1 1 0 1 32\frac{3}{2} 12+\frac{1}{2}^{+} 368 7587
Ξˇbc(32+,32)\check{\Xi}_{bc}^{\prime}(\frac{3}{2}^{+},\frac{3}{2}) 0 0 1 1 0 1 32\frac{3}{2} 32+\frac{3}{2}^{+} 369 7583
Ξˇbc(52+,32)\check{\Xi}_{bc}^{\prime}(\frac{5}{2}^{+},\frac{3}{2}) 0 0 1 1 0 1 32\frac{3}{2} 52+\frac{5}{2}^{+} 350 7606
Table 5: The mass spectrum of Ωbc\Omega_{bc}^{\prime} in MeV.
States nρn_{\rho} nλn_{\lambda} lρl_{\rho} lλl_{\lambda} SρS_{\rho} JρJ_{\rho} jj JPJ^{P} αλ\alpha_{\lambda} Mass
Ωbc(1S)\Omega_{bc}^{\prime}(1S) 0 0 0 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 455 7092
Ωbc(1S)\Omega_{bc}^{\prime*}(1S) 0 0 0 0 1 1 12\frac{1}{2} 32+\frac{3}{2}^{+} 397 7125
Ω˘bc(2S)\breve{\Omega}_{bc}^{\prime}(2S) 1 0 0 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 635 7441
Ω˘bc(2S)\breve{\Omega}_{bc}^{\prime*}(2S) 1 0 0 0 1 1 12\frac{1}{2} 32+\frac{3}{2}^{+} 622 7464
Ωbc(2S)\Omega_{bc}^{\prime}(2S) 0 1 0 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 345 7664
Ωbc(2S)\Omega_{bc}^{\prime*}(2S) 0 1 0 0 1 1 12\frac{1}{2} 32+\frac{3}{2}^{+} 343 7681
Ω~bc(12,12)\tilde{\Omega}_{bc}^{\prime}(\frac{1}{2}^{-},\frac{1}{2}) 0 0 1 0 0 1 12\frac{1}{2} 12\frac{1}{2}^{-} 505 7310
Ω~bc(32,12)\tilde{\Omega}_{bc}^{\prime}(\frac{3}{2}^{-},\frac{1}{2}) 0 0 1 0 0 1 12\frac{1}{2} 32\frac{3}{2}^{-} 504 7312
Ωbc(12,12)\Omega_{bc}^{\prime}(\frac{1}{2}^{-},\frac{1}{2}) 0 0 0 1 1 1 12\frac{1}{2} 12\frac{1}{2}^{-} 374 7439
Ωbc(32,12)\Omega_{bc}^{\prime}(\frac{3}{2}^{-},\frac{1}{2}) 0 0 0 1 1 1 12\frac{1}{2} 32\frac{3}{2}^{-} 369 7448
Ωbc(12,32)\Omega_{bc}^{\prime}(\frac{1}{2}^{-},\frac{3}{2}) 0 0 0 1 1 1 32\frac{3}{2} 12\frac{1}{2}^{-} 366 7453
Ωbc(32,32)\Omega_{bc}^{\prime}(\frac{3}{2}^{-},\frac{3}{2}) 0 0 0 1 1 1 32\frac{3}{2} 32\frac{3}{2}^{-} 365 7458
Ωbc(52,32)\Omega_{bc}^{\prime}(\frac{5}{2}^{-},\frac{3}{2}) 0 0 0 1 1 1 32\frac{3}{2} 52\frac{5}{2}^{-} 364 7460
Ω^bc(32+,12)\hat{\Omega}_{bc}^{\prime}(\frac{3}{2}^{+},\frac{1}{2}) 0 0 2 0 1 2 12\frac{1}{2} 32+\frac{3}{2}^{+} 590 7472
Ω^bc(52+,12)\hat{\Omega}_{bc}^{\prime}(\frac{5}{2}^{+},\frac{1}{2}) 0 0 2 0 1 2 12\frac{1}{2} 52+\frac{5}{2}^{+} 589 7474
Ω^bc(12+,12)\hat{\Omega}_{bc}^{\prime}(\frac{1}{2}^{+},\frac{1}{2}) 0 0 2 0 1 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 583 7492
Ω^bc(32+,12)\hat{\Omega}_{bc}^{\prime}(\frac{3}{2}^{+},\frac{1}{2}) 0 0 2 0 1 1 12\frac{1}{2} 32+\frac{3}{2}^{+} 583 7493
Ω^bc(52+,12)\hat{\Omega}_{bc}^{\prime}(\frac{5}{2}^{+},\frac{1}{2}) 0 0 2 0 1 3 12\frac{1}{2} 52+\frac{5}{2}^{+} 582 7494
Ω^bc(72+,12)\hat{\Omega}_{bc}^{\prime}(\frac{7}{2}^{+},\frac{1}{2}) 0 0 2 0 1 3 12\frac{1}{2} 72+\frac{7}{2}^{+} 582 7494
Ω^bc(32+,32)\hat{\Omega}_{bc}^{\prime}(\frac{3}{2}^{+},\frac{3}{2}) 0 0 0 2 1 1 32\frac{3}{2} 32+\frac{3}{2}^{+} 365 7731
Ωbc(52+,32)\Omega_{bc}^{\prime}(\frac{5}{2}^{+},\frac{3}{2}) 0 0 0 2 1 1 32\frac{3}{2} 52+\frac{5}{2}^{+} 365 7732
Ωbc(12+,32)\Omega_{bc}^{\prime}(\frac{1}{2}^{+},\frac{3}{2}) 0 0 0 2 1 1 32\frac{3}{2} 12+\frac{1}{2}^{+} 348 7774
Ωbc(32+,52)\Omega_{bc}^{\prime}(\frac{3}{2}^{+},\frac{5}{2}) 0 0 0 2 1 1 52\frac{5}{2} 32+\frac{3}{2}^{+} 349 7769
Ωbc(52+,52)\Omega_{bc}^{\prime}(\frac{5}{2}^{+},\frac{5}{2}) 0 0 0 2 1 1 52\frac{5}{2} 52+\frac{5}{2}^{+} 348 7773
Ωbc(72+,52)\Omega_{bc}^{\prime}(\frac{7}{2}^{+},\frac{5}{2}) 0 0 0 2 1 1 52\frac{5}{2} 72+\frac{7}{2}^{+} 343 7784
Ωˇbc(12+,12)\check{\Omega}_{bc}^{\prime}(\frac{1}{2}^{+},\frac{1}{2}) 0 0 1 1 0 1 12\frac{1}{2} 12+\frac{1}{2}^{+} 445 7608
Ωˇbc(32+,12)\check{\Omega}_{bc}^{\prime}(\frac{3}{2}^{+},\frac{1}{2}) 0 0 1 1 0 1 12\frac{1}{2} 32+\frac{3}{2}^{+} 438 7641
Ωˇbc(12+,32)\check{\Omega}_{bc}^{\prime}(\frac{1}{2}^{+},\frac{3}{2}) 0 0 1 1 0 1 32\frac{3}{2} 12+\frac{1}{2}^{+} 437 7645
Ωˇbc(32+,32)\check{\Omega}_{bc}^{\prime}(\frac{3}{2}^{+},\frac{3}{2}) 0 0 1 1 0 1 32\frac{3}{2} 32+\frac{3}{2}^{+} 433 7648
Ωˇbc(52+,32)\check{\Omega}_{bc}^{\prime}(\frac{5}{2}^{+},\frac{3}{2}) 0 0 1 1 0 1 32\frac{3}{2} 52+\frac{5}{2}^{+} 424 7661
Refer to caption
Figure 3: The calculated mass spectra for Ξbc\Xi_{bc} and Ωbc\Omega_{bc} families
Refer to caption
Figure 4: The calculated mass spectra for Ξbc\Xi_{bc}^{\prime} and Ωbc\Omega_{bc}^{\prime} families

We first refer to the ground states for bottom-charmed baryons. From the Table 6 and Figure 5, The lowest Ξbc\Xi_{bc}, Ξbc\Xi_{bc}^{\prime}, Ωbc\Omega_{bc}, and Ωbc\Omega_{bc}^{\prime} states are predicted to be about 6979, 6953, 7109, and 7092 MeV, respectively. It can be seen that our results are consistent with some works Ebert:1996ec ; Ebert:2002ig ; Li:2022ywz , while differ with others about 5010050\sim 100 MeV Roberts:2007ni ; Oudichhya:2022ssc ; Giannuzzi:2009gh . In the singly heavy baryons Ξc/b()\Xi_{c/b}^{(\prime)}, the lowest states are Ξc/b\Xi_{c/b} rather than Ξc/b\Xi_{c/b}^{\prime}. However, for the bottom-charmed baryons, the lowest states are Ξbc\Xi_{bc}^{\prime} and Ωbc\Omega_{bc}^{\prime}, which is totally different with singly heavy sector. This is due to the different masses in spin-spin term VSS(rij)V^{SS}\left(r_{ij}\right) in the nonrelativistic quark model for singly and doubly heavy baryons, where the pairwise interactions among three quarks together with spin wave functions compete with each other. Moreover, the mass splittings for ΞbcΞbc\Xi_{bc}^{\prime*}-\Xi_{bc}^{\prime} and ΩbcΩbc\Omega_{bc}^{\prime*}-\Omega_{bc}^{\prime} are 44 and 33 MeV, respectively. These quite small mass gaps are caused by spin-spin interaction which is inversely proportional to quark masses. Because of this, the pion emission between the ground states for bottom-charmed baryons is prohibited and only decay mode is by electroweak processes, which is in contrast with the strange sector allowing the strong decay ΞΞπ\Xi^{*}\to\Xi\pi. In particular, For the lowest Ξbc()\Xi_{bc}^{(\prime)} and Ωbc()\Omega_{bc}^{(\prime)} states, future experiments can search for them in via bcb\to c weak transitions.

Table 6: Masses of ground states for Ξbc()\Xi_{bc}^{(\prime)}and Ωbc()\Omega_{bc}^{(\prime)} baryons compared with different calculations. The units are in MeV.
States JPJ^{P} Our work Ebert:1996ec Ebert:2002ig Li:2022ywz Roberts:2007ni Oudichhya:2022ssc Giannuzzi:2009gh Eakins:2012jk Brown:2014ena Karliner:2014gca Mathur:2018epb Roncaglia:1995az
Ξbc\Xi_{bc} 1/2+1/2^{+} 6979 7000 6963 6955 7047 \cdot\cdot\cdot 6920 7037 6959 6933 6966 7040
Ξbc\Xi_{bc}^{\prime} 1/2+1/2^{+} 6953 6950 6933 6952 7011 6902/6906 6904 7014 6943 6914 6945 6990
Ξbc\Xi_{bc}^{\prime*} 3/2+3/2^{+} 6997 7020 6980 6980 7074 7030/7029 6936 7064 6985 6969 6989 7060
States JPJ^{P} Our work Ebert:1996ec Ebert:2002ig Li:2022ywz Roberts:2007ni Oudichhya:2022ssc Giannuzzi:2009gh Tong:1999qs Brown:2014ena Mathur:2018epb Roncaglia:1995az
Ωbc\Omega_{bc} 1/2+1/2^{+} 7109 7090 7116 7055 7165 \cdot\cdot\cdot 7005 7110 7032 7045 7090 \cdot\cdot\cdot
Ωbc\Omega_{bc}^{\prime} 1/2+1/2^{+} 7092 7050 7088 7053 7136 7035 6994 7050 7045 6994 7060 \cdot\cdot\cdot
Ωbc\Omega_{bc}^{\prime*} 3/2+3/2^{+} 7125 7110 7130 7079 7187 7149 7017 7130 7059 7056 7120 \cdot\cdot\cdot
Refer to caption
Figure 5: A comparison of the ground states for bottom-charmed baryons from various model predictions.

Unlike singly heavy baryons, the heavy quark subsystem is more easily excited owing to its larger reduced mass, and then the ρ\rho-mode excited states are lower than the λ\lambda-mode ones. It can be seen that our calculated mass spectra for bottom-charmed baryons faithfully reflect this specific feature. Meanwhile, the fine structures of excited states are small and the spectra are highly degenerate, especially for the DD-wave states. Therefore, the low-lying PP-wave excitations are more likely to be recognized both theoretically and experimentally. Moreover, the mass spectra for bottom-charmed baryons show quite similar patterns as other heavy-light systems, such as conventional charmed or bottom mesons, which suggests that the approximate light flavor SU(3) symmetry and heavy super-flavor symmetry are preserved well. Indeed, analogous to the doubly bottom baryons He:2021iwx , the bottom and charm quarks stay close to each other like a static color source, and the light quark is shared by these two heavy quarks.

Here, we can also discuss the theoretical uncertainties arising from parameters αss\alpha_{ss} and αso\alpha_{so} for doubly heavy baryons. We first vary αss\alpha_{ss} in the range of 1.10\sim1.30, and find that the discrepancies between theoretical results and experimental data for the mass splittings of singly heavy baryons can reach up to 39 MeV. Even with this large variation, the uncertainties for doubly heavy baryons are about 7 MeV, which are small enough. The same procedure should also be done for αso\alpha_{so}, but the established excited heavy baryons relevant with this parameter are few. Here, we vary this value in a wide range of 0 \sim 0.154, and find the uncertainties for doubly heavy baryons are about 10 MeV, which suggests that our predictions are also stable against the parameter αso\alpha_{so}.

III.2 Strong decays for λ\lambda-mode Ξbc\Xi_{bc} and Ωbc\Omega_{bc} states

The strong decays for λ\lambda-mode Ξbc\Xi_{bc} and Ωbc\Omega_{bc} states are calculated and listed in Table 7 and  11. For the two Ξbc(1P)\Xi_{bc}(1P) states, they have the light quark spins j=1/2j=1/2 and 3/23/2 , and the decay widths for Ξbc(1/2,1/2)\Xi_{bc}(1/2^{-},1/2) and Ξbc(3/2,3/2)\Xi_{bc}(3/2^{-},3/2) states are about 95 and 21 MeV, respectively. Owing to the limited phase space, both of them can only decay into the Ξbcπ\Xi_{bc}\pi channel. Because of relevant partial waves of decaying channels, we have found a rather broad JP=1/2J^{P}=1/2^{-} state with SS-wave decay and a narrow JP=3/2J^{P}=3/2^{-} state with DD-wave decay, which are roughly consistent with previous work Eakins:2012fq . The distinctions of predicted decay widths may arise from the different phase spaces, wave functions, and phenomenological models.

Table 7: The predicted strong decay widths of Ξbc(1P)\Xi_{bc}(1P) and Ωbc(1P)\Omega_{bc}(1P) states in MeV. The \cdot\cdot\cdot stands for the closed channel.
State Ξbc(12,12)\Xi_{bc}(\frac{1}{2}^{-},\frac{1}{2}) Ξbc(32,32)\Xi_{bc}(\frac{3}{2}^{-},\frac{3}{2})
Ξbc\Xi_{bc} π\pi 94.98 20.89
Total 94.98 20.89
State Ωbc(12,12)\Omega_{bc}(\frac{1}{2}^{-},\frac{1}{2}) Ωbc(32,32)\Omega_{bc}(\frac{3}{2}^{-},\frac{3}{2})
Ξbc\Xi_{bc} K¯\bar{K} \cdot\cdot\cdot \cdot\cdot\cdot
Total Narrow Narrow
Table 8: The predicted strong decay widths of Ξbc(2S,1D)\Xi_{bc}(2S,1D) and Ωbc(2S,1D)\Omega_{bc}(2S,1D) states in MeV.
State Ξbc(2S)\Xi_{bc}(2S) Ξbc(32+,32)\Xi_{bc}(\frac{3}{2}^{+},\frac{3}{2}) Ξbc(52+,52)\Xi_{bc}(\frac{5}{2}^{+},\frac{5}{2})
Ξbc\Xi_{bc} π\pi 370.92 297.85 142.99
Ξbc\Xi_{bc} η\eta 68.18 155.72 145.35
Ωbc\Omega_{bc} K¯\bar{K} 22.28 87.85 89.66
Ξbc(12,12)\Xi_{bc}(\frac{1}{2}^{-},\frac{1}{2}) π\pi 1.52 18.91 15.06
Ξbc(32,32)\Xi_{bc}(\frac{3}{2}^{-},\frac{3}{2}) π\pi 2.30 27.96 32.41
Total 465.20 588.29 425.47
State Ωbc(2S)\Omega_{bc}(2S) Ωbc(32+,32)\Omega_{bc}(\frac{3}{2}^{+},\frac{3}{2}) Ωbc(52+,52)\Omega_{bc}(\frac{5}{2}^{+},\frac{5}{2})
Ξbc\Xi_{bc} K¯\bar{K} 48.19 438.76 63.59
Ωbc\Omega_{bc} η\eta 0.08 24.71 0.32
Total 48.27 463.47 63.91

For the two Ωbc(1P)\Omega_{bc}(1P) states, they lie below the ΞbcK¯\Xi_{bc}\bar{K} threshold, and then the OZI-allowed strong decay is forbidden. The dominating decay channels should be Ωbcπ\Omega_{bc}\pi and Ωbcγ\Omega_{bc}\gamma. This situation is quite similar to Ds0(2317)D_{s0}^{*}(2317) and Ds1(2460)D_{s1}(2460) resonances, where the isospin breaking decay and radiative decay modes dominate. Actually, based on the heavy super-flavor symmetry Savage:1990di , the two Ωbc(1P)\Omega_{bc}(1P) states can be related to the charmed mesons and Ωbb(1P)\Omega_{bb}(1P) states He:2021iwx . More theoretical studies on this topic can help us to better understand the Ds0(2317)D_{s0}(2317) resonance.

From the Table  11, it can be seen that most of the 2S2S and 1D1D states are broad, which can hardly be observed in experiments. For the Ωbc(2S)\Omega_{bc}(2S) state, the total width is relatively small, and the dominant decay mode is ΞbcK¯\Xi_{bc}\bar{K} within leading terms of the nonrelativistic transition amplitude Eq. (21). Compared to the Ωbc(2S)\Omega_{bc}(2S) state, the Ξbc(2S)\Xi_{bc}(2S) state is broad, which results from the larger momentum of emitted pion and phase space. If we adopt a smaller initial hadronic mass, the partial width of Ξbcπ\Xi_{bc}\pi mode and total decay width will decrease rapidly. We will discuss the relativistic corrections for these radially excited states in the following subsection. Moreover, the narrow Ωbc(5/2+,5/2)\Omega_{bc}(5/2^{+},5/2) state mainly decays into the ΞbcK¯\Xi_{bc}\bar{K} final states, which can be tested by future experiments.

III.3 Strong decays for λ\lambda-mode Ξbc\Xi_{bc}^{\prime} and Ωbc\Omega_{bc}^{\prime} states

The strong decays for λ\lambda-mode Ξbc\Xi_{bc}^{\prime} and Ωbc\Omega_{bc}^{\prime} states are estimated and shown in Table 9 and  10. In the jjj-j coupling scheme, there are five λ\lambda mode Ξbc(1P)\Xi_{bc}^{\prime}(1P) states, which can be classified into two groups according to the light quark spin jj: j=1/2j=1/2 doublet and j=3/2j=3/2 triplet. For the j=1/2j=1/2 doublet, the calculated decay widths are rather broad with the current mass predictions of initial and final states, which agree with the calculations in the quark pair creation model Eakins:2012fq . For the j=3/2j=3/2 triplet, the predicted decay widths are about 65, 75, and 92 MeV for the JP=1/2J^{P}=1/2^{-}, 3/23/2^{-}, and 5/25/2^{-} states, respectively. The strong decay for Ξbc(1/2,3/2)\Xi_{bc}(1/2^{-},3/2) is governed by Ξbcπ\Xi_{bc}^{\prime*}\pi decay mode , while Ξbc(3/2,3/2)\Xi_{bc}(3/2^{-},3/2) and Ξbc(5/2,3/2)\Xi_{bc}(5/2^{-},3/2) states can decay into both Ξbcπ\Xi_{bc}^{\prime}\pi and Ξbcπ\Xi_{bc}^{\prime*}\pi channels. The broad j=1/2j=1/2 doublet and narrow j=3/2j=3/2 triplet are expected by the heavy quark symmetry, which arise from the enhancement or cancellation in the amplitude with different Clebsch-Gordan coefficients.

Table 9: The predicted strong decay widths of Ξbc(1P)\Xi_{bc}^{\prime}(1P) and Ωbc(1P)\Omega_{bc}^{\prime}(1P) states in MeV. The \cdot\cdot\cdot stands for the closed channel, and ×\times denotes the forbidden channel due to quantum numbers.
State Ξbc(12,12)\Xi_{bc}^{\prime}(\frac{1}{2}^{-},\frac{1}{2}) Ξbc(32,12)\Xi_{bc}^{\prime}(\frac{3}{2}^{-},\frac{1}{2}) Ξbc(12,32)\Xi_{bc}^{\prime}(\frac{1}{2}^{-},\frac{3}{2}) Ξbc(32,32)\Xi_{bc}^{\prime}(\frac{3}{2}^{-},\frac{3}{2}) Ξbc(52,32)\Xi_{bc}^{\prime}(\frac{5}{2}^{-},\frac{3}{2})
Ξbc\Xi_{bc}^{\prime} π\pi 448.45 × × 20.21 58.43
Ξbc\Xi_{bc}^{\prime*} π\pi × 334.12 65.40 54.50 33.97
Total 448.45 334.12 65.40 74.71 92.40
State Ωbc(12,12)\Omega_{bc}^{\prime}(\frac{1}{2}^{-},\frac{1}{2}) Ωbc(32,12)\Omega_{bc}^{\prime}(\frac{3}{2}^{-},\frac{1}{2}) Ωbc(12,32)\Omega_{bc}^{\prime}(\frac{1}{2}^{-},\frac{3}{2}) Ωbc(32,32)\Omega_{bc}^{\prime}(\frac{3}{2}^{-},\frac{3}{2}) Ωbc(52,32)\Omega_{bc}^{\prime}(\frac{5}{2}^{-},\frac{3}{2})
Ξbc\Xi_{bc}^{\prime} K¯\bar{K} \cdot\cdot\cdot × × 0.00 0.08
Ξbc\Xi_{bc}^{\prime*} K¯\bar{K} × \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot 0.90
Total Narrow Narrow Narrow 0.00 0.98
Table 10: The predicted strong decay widths of Ξbc(2S,1D)\Xi_{bc}^{\prime}(2S,1D) and Ωbc(2S,1D)\Omega_{bc}^{\prime}(2S,1D) states in MeV. The \cdot\cdot\cdot stands for the closed channel, and ×\times denotes the forbidden channel due to quantum numbers.
State Ξbc(2S)\Xi_{bc}^{\prime}(2S) Ξbc(2S)\Xi_{bc}^{\prime*}(2S) Ξbc(12+,32)\Xi_{bc}^{\prime}(\frac{1}{2}^{+},\frac{3}{2}) Ξbc(32+,32)\Xi_{bc}^{\prime}(\frac{3}{2}^{+},\frac{3}{2}) Ξbc(52+,32)\Xi_{bc}^{\prime}(\frac{5}{2}^{+},\frac{3}{2}) Ξbc(32+,52)\Xi_{bc}^{\prime}(\frac{3}{2}^{+},\frac{5}{2}) Ξbc(52+,52)\Xi_{bc}^{\prime}(\frac{5}{2}^{+},\frac{5}{2}) Ξbc(72+,52)\Xi_{bc}^{\prime}(\frac{7}{2}^{+},\frac{5}{2})
Ξbc\Xi_{bc}^{\prime} π\pi 11.11 17.49 66.05 56.84 × × 6.72 16.21
Ξbc\Xi_{bc}^{\prime} η\eta 1.57 8.52 37.13 27.10 × × 0.68 1.71
Ωbc\Omega_{bc}^{\prime} K¯\bar{K} 0.03 0.20 23.40 15.12 × × 0.34 0.91
Ξbc\Xi_{bc}^{\prime*} π\pi 78.72 51.96 7.23 33.92 76.33 30.10 21.84 12.33
Ξbc\Xi_{bc}^{\prime*} η\eta 5.30 5.85 4.14 16.80 37.95 2.16 1.70 1.01
Ωbc\Omega_{bc}^{\prime*} K¯\bar{K} \cdot\cdot\cdot 0.00 3.02 8.09 18.40 0.94 0.75 2.93
Ξbc(12,12)\Xi_{bc}^{\prime}(\frac{1}{2}^{-},\frac{1}{2}) π\pi 0.01 × × 0.08 0.22 7.76 8.07 ×
Ξbc(32,12)\Xi_{bc}^{\prime}(\frac{3}{2}^{-},\frac{1}{2}) π\pi × 0.19 0.71 0.42 0.24 1.85 5.04 9.51
Ξbc(12,32)\Xi_{bc}^{\prime}(\frac{1}{2}^{-},\frac{3}{2}) π\pi × 0.20 0.20 4.99 0.84 6.58 5.03 0.29
Ξbc(32,32)\Xi_{bc}^{\prime}(\frac{3}{2}^{-},\frac{3}{2}) π\pi 0.06 0.31 13.92 40.32 7.88 6.55 6.60 4.79
Ξbc(52,32)\Xi_{bc}^{\prime}(\frac{5}{2}^{-},\frac{3}{2}) π\pi 0.11 0.20 3.08 6.05 44.96 2.10 7.69 13.84
Total 96.91 84.92 158.88 209.73 186.82 58.04 64.46 63.53
State Ωbc(2S)\Omega_{bc}^{\prime}(2S) Ωbc(2S)\Omega_{bc}^{\prime*}(2S) Ωbc(12+,32)\Omega_{bc}^{\prime}(\frac{1}{2}^{+},\frac{3}{2}) Ωbc(32+,32)\Omega_{bc}^{\prime}(\frac{3}{2}^{+},\frac{3}{2}) Ωbc(52+,32)\Omega_{bc}^{\prime}(\frac{5}{2}^{+},\frac{3}{2}) Ωbc(32+,52)\Omega_{bc}^{\prime}(\frac{3}{2}^{+},\frac{5}{2}) Ωbc(52+,52)\Omega_{bc}^{\prime}(\frac{5}{2}^{+},\frac{5}{2}) Ωbc(72+,52)\Omega_{bc}^{\prime}(\frac{7}{2}^{+},\frac{5}{2})
Ξbc\Xi_{bc}^{\prime} K¯\bar{K} 1.79 4.79 95.84 72.40 × × 6.36 15.01
Ωbc\Omega_{bc}^{\prime} η\eta 0.00 0.04 6.66 3.62 × × 0.14 0.06
Ξbc\Xi_{bc}^{\prime*} K¯\bar{K} 16.74 7.89 12.65 54.71 110.63 20.58 23.43 8.15
Ωbc\Omega_{bc}^{\prime*} η\eta \cdot\cdot\cdot 0.00 1.07 1.66 3.74 0.25 0.21 0.02
Total 18.53 12.72 116.22 132.39 114.37 20.83 30.14 23.24

For the five Ωbc(1P)\Omega_{bc}^{\prime}(1P) states, the predicted masses are below or near threshold, and the total decay widths are extremely narrow. Also, according to the heavy supper-flavor symmetry, these states may have similar properties to Ds(1P)D_{s}(1P) mesons, such as the mysterious Ds0(2317)D_{s0}^{*}(2317) state. These states can be hunted for through the pion and photon emissions in future experiments. For Ωbc(5/2,3/2)\Omega_{bc}^{\prime}(5/2^{-},3/2) state, it can also be observed in the ΞbcK¯\Xi_{bc}^{\prime}\bar{K} and ΞbcK¯\Xi_{bc}^{\prime*}\bar{K} invariant masses. Moreover, the narrow Ωbc(1P)\Omega_{bc}^{\prime}(1P) states may be observed more easily than the ground states in the future as well as the singly bottom Ωb\Omega_{b} family.

For the radially excited Ξbc(2S)\Xi_{bc}(2S) and Ωbc(2S)\Omega_{bc}(2S) states, our calculated decay widths are relatively narrow, and the dominant decay modes are Ξbcπ\Xi_{bc}^{\prime*}\pi and ΞbcK¯\Xi_{bc}^{\prime*}\bar{K} with the nonrelativistic transition amplitude Eq. (21), respectively. These relatively narrow decays width for radially excited state are usually obtained within the nonrelativistic reduction of the axial-vector coupling between the pseudoscalar meson and light quark. This is due to the kind of selection rule from the structure of the transition operator in the leading order of nonrelativistic expansion, and consequently due to the orthogonality of the orbital wave functions between initial and final baryons. We will continue to discuss the relativistic corrections for Roper-like resonances in the following subsection.

For the Ξbc(1D)\Xi_{bc}^{\prime}(1D) and Ωbc(1D)\Omega_{bc}^{\prime}(1D) states, they can be divided into j=3/2j=3/2 and j=5/2j=5/2 triplets. the j=3/2j=3/2 triplet are predicted to be relatively broad, while the j=5/2j=5/2 are narrow states. It can be seen that the approximate heavy quark symmetry is preserved well in present calculations.

III.4 Relativistic corrections of order 1/m21/m^{2} for Roper-like resonances

The relativistic corrections of order 1/m21/m^{2} for convetional baryons are investigated in Refs. Arifi:2021orx ; Arifi:2022ntc . The authors found that these corrections of order 1/m21/m^{2} are significant for the radially excited states, that is Roper-like resonances, while the effects for PP-wave and DD-wave states are small enough. In the present work, we also investigate these relativistic corrections for six radially excited bottom-charmed baryons.

We only take into account the ground states in the final states for comparison. The results are listed in Table LABEL:re, and it can be seen that these relativistic corrections for Roper-like resonances are significant. This specific feature has been found in other Roper-like resonances in the literature. Owning to the lack of experimental information for bottom-charmed baryons, more theoretical and experimental efforts are needed for further exploration.

Table 11: The predicted strong decays into ground states for Ξbc(2S)\Xi_{bc}(2S), Ωbc(2S)\Omega_{bc}(2S), Ξbc(2S)\Xi_{bc}^{\prime}(2S), and Ωbc(2S)\Omega_{bc}^{\prime}(2S) states in nonrelativistic transitions together with relativistic corrections (NR+RC) in MeV. The \cdot\cdot\cdot stands for the closed channel.
State Ξbc(ΓNR+ΓRC)\Xi_{bc}(\Gamma_{NR}+\Gamma_{RC})
Ξbc\Xi_{bc} π\pi 370.92+274.00
Ξbc\Xi_{bc} η\eta 68.18+0.25
Ωbc\Omega_{bc} K¯\bar{K} 22.28+19.24
Total 461.38+293.49
State Ωbc(ΓNR+ΓRC)\Omega_{bc}(\Gamma_{NR}+\Gamma_{RC})
Ξbc\Xi_{bc} K¯\bar{K} 0.08+186.70
Ωbc\Omega_{bc} η\eta 48.19+0.81
Total 48.27+187.51
State Ξbc(ΓNR+ΓRC)\Xi_{bc}^{\prime}(\Gamma_{NR}+\Gamma_{RC}) Ξbc(ΓNR+ΓRC)\Xi_{bc}^{\prime*}(\Gamma_{NR}+\Gamma_{RC})
Ξbc\Xi_{bc}^{\prime} π\pi 11.11+31.33 17.49+131.87
Ξbc\Xi_{bc}^{\prime} η\eta 1.57+0.00 8.52+0.26
Ωbc\Omega_{bc}^{\prime} K¯\bar{K} 0.03+0.06 0.20+12.91
Ξbc\Xi_{bc}^{\prime*} π\pi 78.72+121.04 51.96+120.38
Ξbc\Xi_{bc}^{\prime*} η\eta 5.30+0.41 5.85+17.50
Ωbc\Omega_{bc}^{\prime*} K¯\bar{K} \cdot\cdot\cdot 0.00+0.00
Total 96.73+152.84 84.02+282.92
State Ωbc(ΓNR+ΓRC)\Omega_{bc}^{\prime}(\Gamma_{NR}+\Gamma_{RC}) Ωbc(ΓNR+ΓRC)\Omega_{bc}^{\prime*}(\Gamma_{NR}+\Gamma_{RC})
Ξbc\Xi_{bc}^{\prime} K¯\bar{K} 1.79+31.74 4.79+154.91
Ωbc\Omega_{bc}^{\prime} η\eta 0.00+0.31 0.04+2.93
Ξbc\Xi_{bc}^{\prime*} K¯\bar{K} 16.74+139.40 7.89+113.66
Ωbc\Omega_{bc}^{\prime*} η\eta \cdot\cdot\cdot 0.00+0.25
Total 18.53+171.45 12.72+271.75

III.5 Mixing

In our calculation, we adopt the jjj-j coupling scheme and the basis in the heavy quark limit to study mass spectra and strong decays for bottom-charmed baryons. Due to the finite mass of heavy quark subsystem, the physical observed resonances may correspond to the superposition of theoretical states in the quark model. For instance, the mixing scheme for λ\lambda-mode Ξbc(1P)\Xi_{bc}^{\prime}(1P) and Ωbc(1P)\Omega_{bc}^{\prime}(1P) states can be formulated as

(1P1/211P1/22)=(cosθsinθsinθcosθ)(|1/2,j=1/2|1/2,j=3/2),\left(\begin{array}[]{cc}\mid 1P&\left.1/2^{-}\right\rangle_{1}\\ \mid 1P&\left.1/2^{-}\right\rangle_{2}\end{array}\right)=\left(\begin{array}[]{cc}\cos\theta&\sin\theta\\ -\sin\theta&\cos\theta\end{array}\right)\left(\begin{array}[]{l}\left|1/2^{-},j=1/2\right\rangle\\ \left|1/2^{-},j=3/2\right\rangle\end{array}\right), (24)
(1P3/211P3/22)=(cosθsinθsinθcosθ)(|3/2,j=1/2|3/2,j=3/2),\left(\begin{array}[]{cc}\mid 1P&\left.3/2^{-}\right\rangle_{1}\\ \mid 1P&\left.3/2^{-}\right\rangle_{2}\end{array}\right)=\left(\begin{array}[]{cc}\cos\theta&\sin\theta\\ -\sin\theta&\cos\theta\end{array}\right)\left(\begin{array}[]{l}\left|3/2^{-},j=1/2\right\rangle\\ \left|3/2^{-},j=3/2\right\rangle\end{array}\right), (25)

where θ\theta is the mixing angle. Also, the DD-wave excited states with the same spin-parity can mix with each other.

In the heavy quark limit, the mixing angle should be zero. Actually, the heavy quark subsystem including bottom and charm quarks are relatively heavy, and heavy quark symmetry should be approximately preserved. Then, the above mixing angles are expected to be small enough. We calculate the mixture for λ\lambda-mode Ξbc(1P)\Xi_{bc}^{\prime}(1P) states as an illustration and list them in Table 12. It can be found that the mixing angles are tiny, and the mixing effects for spectroscopy can be neglected in bottom-charmed sector. Moreover, there may also exist other mixing scheme, which are believed to be even smaller in these bottom-charmed baryons.

Table 12: The superposition of Ξbc(1P)\Xi_{bc}^{\prime}(1P) states with JP=1/2J^{P}=1/2^{-} and 3/23/2^{-}. The mixing angles for JP=1/2J^{P}=1/2^{-} and 3/23/2^{-} states are and respectively.
State H\langle H\rangle (MeV) Mass (MeV) Eigenvector
|1P1/21|1P1/2^{-}\rangle_{1} (7396.332.102.107382.40)\begin{pmatrix}7396.33&-2.10\\ -2.10&7382.40\end{pmatrix} [7396.647382.09]\begin{bmatrix}7396.64\\ 7382.09\end{bmatrix} [(0.99,0.15)(0.15,0.99)]\begin{bmatrix}(0.99,-0.15)\\ (0.15,0.99)\end{bmatrix}
|1P1/22|1P1/2^{-}\rangle_{2}
|1P3/21|1P3/2^{-}\rangle_{1} (7404.082.852.857386.83)\begin{pmatrix}7404.08&-2.85\\ -2.85&7386.83\end{pmatrix} [7404.547386.37]\begin{bmatrix}7404.54\\ 7386.37\end{bmatrix} [(0.99,0.16)(0.16,0.99)]\begin{bmatrix}(0.99,-0.16)\\ (0.16,0.99)\end{bmatrix}
|1P3/22|1P3/2^{-}\rangle_{2}

III.6 Low-lying ρ\rho-mode and ρλ\rho-\lambda hybrid states

In addition to the presence of λ\lambda-mode excitations, the bottom-charmed baryons also have low-lying ρ\rho-mode and ρλ\rho-\lambda hybrid states. For example, when lρ=lλ=1l_{\rho}=l_{\lambda}=1, there exists thirteen Ξˇbc\check{\Xi}_{bc} and five Ξˇbc\check{\Xi}_{bc}^{\prime} states, which can be seen in Figure 6.

Refer to caption
Figure 6: The ρλ\rho-\lambda hybrid states for Ξbc()(1D)\Xi_{bc}^{(\prime)}(1D) states. Here, lρ=lλ=1l_{\rho}=l_{\lambda}=1, and then LL equals to 0, 1, and 2. The capital AA represents anti-symmetric spin wave function, and capital SS stands for symmetric spin wave function.

For these low-lying states, the light meson emissions are supposed to be dominating. However, under the spectator assumption for the two heavy quarks, the orbital wave functions of heavy quark subsystems between initial ρ\rho-mode or ρλ\rho-\lambda hybrid states and final ground states are orthogonal, which results in the vanishing amplitudes and strong decay widths. More explicitly, the light meson emission occurs for λ\lambda-mode excitations, and is irrelevant to the ρ\rho-mode variables. Hence, the orthogonality of the different ρ\rho-mode wave functions leads to the vanishing matrix element, which is shown in Figure 7. That is to say, our calculated decay modes preserve the heavy diquark symmetry automatically, where the heavy quark subsystems with different quantum numbers cannot transit into each other. Thus, these states should be extremely narrow and the weak and radiative decays may become dominating, which can provide good opportunities to be searched by future experiments.

Refer to caption
Figure 7: Schematic diagrams for strong decays of doubly heavy baryons within different exited modes.

IV SUMMARY

In this work, we have studied the low-lying mass spectra for bottom-charmed baryons in a nonrelativistic quark model by solving the three-body Schrödinger equation. With the obtained realistic wave functions, we get the root mean square radius and study the strong decays of bottom-charmed baryons. The lowest Ξbc\Xi_{bc}, Ξbc\Xi_{bc}^{\prime}, Ωbc\Omega_{bc}, and Ωbc\Omega_{bc}^{\prime} states are predicted to be about 6979, 6953, 7109, and 7092 MeV, respectively. Our results indicate that some of λ\lambda-mode Ξbc(1P)\Xi_{bc}(1P), Ξbc(1P)\Xi_{bc}^{\prime}(1P), Ωbc(1P)\Omega_{bc}(1P), Ωbc(1P)\Omega_{bc}^{\prime}(1P) states are relatively narrow, which have good potentials to be observed by future experiments. Also, the strong decays of the low-lying ρ\rho-mode and ρλ\rho-\lambda hybrid states are highly suppressed and can be hunted for in the electroweak processes.

Given the heavy quark symmetry, the heavy quark subsystem in bottom-charmed baryons play a role as a heavy antiquark, and then the heavy super-flavor symmetry emerges. Indeed, our results about the mass spectra and strong decays for bottom-charmed baryons support this claim. With the development of the large-scale accelerator facilities, we expect that more theoretical and experimental efforts are involved to search for more doubly heavy baryons and better understand the heavy quark symmetry.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China under Grants No. 11705056, the Natural Science Foundation of Hunan Province under Grant No. 2023JJ40421, the Key Project of Hunan Provincial Education Department under Grant No. 21A0039, and the State Scholarship Fund of China Scholarship Council under Grant No. 202006725011. A. H. is supported by the Grants-in-Aid for Scientific Research (Grant Numbers 21H04478(A)) and the one on Innovative Areas (No. 18H05407).

References

  • (1) H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, A review of the open charm and open bottom systems, Rept. Prog. Phys. 80, 076201 (2017).
  • (2) H. Y. Cheng, Charmed baryon physics circa 2021, Chin. J. Phys. 78, 324-362 (2022).
  • (3) M. Mattson et al. (SELEX Collaboration), First observation of the doubly charmed baryon Ξcc+\Xi_{cc}^{+}, Phys. Rev. Lett.  89, 112001 (2002).
  • (4) A. Ocherashvili et al. (SELEX Collaboration), Confirmation of the double charm baryon Ξcc+(3520)\Xi^{+}_{cc}(3520) via its decay to pD+KpD^{+}K^{-}, Phys. Lett. B 628, 18 (2005).
  • (5) S. P. Ratti, New results on cc-baryons and a search for cccc-baryons in FOCUS, Nucl. Phys. Proc. Suppl.  115, 33 (2003).
  • (6) B. Aubert et al. (BaBar Collaboration), Search for doubly charmed baryons Ξcc+\Xi_{cc}^{+} and Ξcc++\Xi_{cc}^{++} in BABAR, Phys. Rev. D 74, 011103 (2006).
  • (7) R. Chistov et al. (Belle Collaboration), Observation of new states decaying into Λc+Kπ+\Lambda_{c}^{+}K^{-}\pi^{+} and Λc+KS0π\Lambda_{c}^{+}K^{0}_{S}\pi^{-}, Phys. Rev. Lett.  97, 162001 (2006).
  • (8) R. Aaij et al. (LHCb Collaboration), Search for the doubly charmed baryon Ξcc+\Xi_{cc}^{+}, JHEP 1312, 090 (2013).
  • (9) R. Aaij et al. (LHCb Collaboration), Observation of the doubly charmed baryon Ξcc++\Xi_{cc}^{++}, Phys. Rev. Lett. 119, 112001 (2017).
  • (10) R. Aaij et al. (LHCb Collaboration), Measurement of the Lifetime of the Doubly Charmed Baryon Ξcc++\Xi_{cc}^{++}, Phys. Rev. Lett. 121, 052002 (2018).
  • (11) R. Aaij et al. (LHCb Collaboration), Measurement of Ξcc++\mathit{\Xi}_{cc}^{++} production in pppp collisions at s=13\sqrt{s}=13 TeV, Chin. Phys. C 44, 022001 (2020).
  • (12) R. Aaij et al. (LHCb Collaboration), First Observation of the Doubly Charmed Baryon Decay Ξcc++Ξc+π+\Xi_{cc}^{++}\rightarrow\Xi_{c}^{+}\pi^{+}, Phys. Rev. Lett. 121, 162002 (2018).
  • (13) R. Aaij et al. (LHCb Collaboration), A search for Ξ𝑐𝑐++D+𝑝𝐾π+\it{\Xi}^{++}_{cc}\rightarrow D^{+}pK^{-}\pi^{+} decays, JHEP 10, 124 (2019).
  • (14) R. Aaij et al. (LHCb Collaboration), Precision measurement of the Ξcc++\Xi_{cc}^{++} mass, JHEP 02, 049 (2020).
  • (15) R. Aaij et al. (LHCb Collaboration), Observation of the doubly charmed baryon decay Ξcc++Ξc+π+{\Xi}_{cc}^{++}\to{\Xi}_{c}^{\prime+}{\pi}^{+}, JHEP 05, 038 (2022).
  • (16) R. Aaij et al. (LHCb Collaboration), Search for the doubly charmed baryon Ξcc+\Xi_{cc}^{+}, Sci. China Phys. Mech. Astron. 63, 221062 (2020).
  • (17) R. Aaij et al. (LHCb Collaboration), Search for the doubly heavy Ξbc0\Xi_{bc}^{0} baryon via decays to D0pKD^{0}pK^{-}, JHEP 11, 095 (2020).
  • (18) R. Aaij et al. (LHCb Collaboration), Search for the doubly charmed baryon Ξcc+{\varXi}_{cc}^{+} in the Ξc+ππ+{\varXi}_{c}^{+}{\pi}^{-}{\pi}^{+} final state, JHEP 12, 107 (2021).
  • (19) R. Aaij et al. (LHCb Collaboration), Search for the doubly heavy baryons Ωbc0\Omega^{0}_{bc} and Ξbc0\Xi^{0}_{bc} decaying to Λc+π\Lambda^{+}_{c}\pi^{-} and Ξc+π\Xi^{+}_{c}\pi^{-}, Chin. Phys. C 45, 093002 (2021).
  • (20) R. Aaij et al. (LHCb Collaboration), Search for the doubly charmed baryon Ω\Omega+cc{}_{cc}^{+}, Sci. China Phys. Mech. Astron. 64, 101062 (2021).
  • (21) R. Aaij et al. (LHCb Collaboration), Search for the doubly heavy baryon Ξ𝑏𝑐+\it{\Xi}_{bc}^{+} decaying to J/ψΞc+J/\it{\psi}\it{\Xi}_{c}^{+}, arXiv:2204.09541.
  • (22) V. V. Kiselev and A. K. Likhoded, Baryons with two heavy quarks, Phys. Usp.  45, 455 (2002).
  • (23) D. Ebert, R. N. Faustov, V. O. Galkin, A. P. Martynenko and V. A. Saleev, Heavy baryons in the relativistic quark model, Z. Phys. C 76, 111 (1997).
  • (24) D. Ebert, R. N. Faustov, V. O. Galkin and A. P. Martynenko, Mass spectra of doubly heavy baryons in the relativistic quark model, Phys. Rev. D 66, 014008 (2002).
  • (25) S. S. Gershtein, V. V. Kiselev, A. K. Likhoded and A. I. Onishchenko, Spectroscopy of doubly heavy baryons, Phys. Rev. D 62, 054021 (2000).
  • (26) S. P. Tong, Y. B. Ding, X. H. Guo, H. Y. Jin, X. Q. Li, P. N. Shen and R. Zhang, Spectra of baryons containing two heavy quarks in potential model, Phys. Rev. D 62, 054024 (2000).
  • (27) W. Roberts and M. Pervin, Heavy baryons in a quark model, Int. J. Mod. Phys. A 23, 2817 (2008).
  • (28) F. Giannuzzi, Doubly heavy baryons in a Salpeter model with AdS/QCD inspired potential, Phys. Rev. D 79, 094002 (2009).
  • (29) A. P. Martynenko, Ground-state triply and doubly heavy baryons in a relativistic three-quark model, Phys. Lett. B 663, 317 (2008).
  • (30) A. Valcarce, H. Garcilazo and J. Vijande, Towards an understanding of heavy baryon spectroscopy, Eur. Phys. J. A 37, 217 (2008).
  • (31) B. Eakins and W. Roberts, Symmetries and Systematics of Doubly Heavy Hadrons, Int. J. Mod. Phys. A 27, 1250039 (2012).
  • (32) Z. Shah and A. K. Rai, Excited state mass spectra of doubly heavy Ξ\Xi baryons, Eur. Phys. J. C 77, 129 (2017).
  • (33) J. Soto and J. Tarrús Castellà, Effective field theory for double heavy baryons at strong coupling, Phys. Rev. D 102, 014013 (2020); erratum: Phys. Rev. D 104, 059901 (2021).
  • (34) J. B. Wang, G. Li, C. R. Deng, C. S. An and J. J. Xie, Ωcc\Omega_{cc} resonances with negative parity in the chiral constituent quark model, Phys. Rev. D 104, 094008 (2021).
  • (35) G. L. Yu, Z. Y. Li, Z. G. Wang, J. Lu and M. Yan, Systematic analysis of doubly charmed baryons Ξcc\Xi_{cc} and Ωcc\Omega_{cc}, Eur. Phys. J. A 59, 126 (2023).
  • (36) Z. Y. Li, G. L. Yu, Z. G. Wang and J. Z. Gu, Mass spectra of bottom-charmed baryons. arXiv:2211.15111.
  • (37) M. J. Savage and M. B. Wise, Spectrum of baryons with two heavy quarks, Phys. Lett. B 248, 177-180 (1990).
  • (38) R. Roncaglia, D. B. Lichtenberg and E. Predazzi, Predicting the masses of baryons containing one or two heavy quarks, Phys. Rev. D 52, 1722 (1995).
  • (39) T. D. Cohen and P. M. Hohler, Doubly heavy hadrons and the domain of validity of doubly heavy diquark-anti-quark symmetry, Phys. Rev. D 74, 094003 (2006).
  • (40) M. Karliner and J. L. Rosner, Baryons with two heavy quarks: Masses, production, decays, and detection, Phys. Rev. D 90, 094007 (2014).
  • (41) K. W. Wei, B. Chen and X. H. Guo, Masses of doubly and triply charmed baryons, Phys. Rev. D 92, 076008 (2015).
  • (42) K. W. Wei, B. Chen, N. Liu, Q. Q. Wang and X. H. Guo, Spectroscopy of singly, doubly, and triply bottom baryons, Phys. Rev. D 95, 116005 (2017).
  • (43) J. Oudichhya, K. Gandhi and A. Kumar Rai, Mass spectra of Ξ\Xicc, Ξ\Xibc, Ω\Omegacc, and Ω\Omegabc baryons in Regge phenomenology, Phys. Scripta 97, 054001 (2022).
  • (44) Y. Song, D. Jia, W. Zhang and A. Hosaka, Low-lying doubly heavy baryons: Regge relation and mass scaling, Eur. Phys. J. C 83, 1 (2023).
  • (45) J. R. Zhang and M. Q. Huang, Doubly heavy baryons in QCD sum rules, Phys. Rev. D 78, 094007 (2008).
  • (46) L. Tang, X. H. Yuan, C. F. Qiao and X. Q. Li, Study of Doubly Heavy Baryon Spectrum via QCD Sum Rules, Commun. Theor. Phys.  57, 435 (2012).
  • (47) Z. G. Wang, Analysis of the 12+{1\over 2}^{+} doubly heavy baryon states with QCD sum rules, Eur. Phys. J. A 45, 267 (2010).
  • (48) T. M. Aliev, K. Azizi and M. Savci, Doubly Heavy Spin-1/2 Baryon Spectrum in QCD, Nucl. Phys. A 895, 59 (2012).
  • (49) T. M. Aliev, K. Azizi and M. Savci, Mixing angle of doubly heavy baryons in QCD, Phys. Lett. B 715, 149 (2012).
  • (50) T. M. Aliev, K. Azizi and M. Savci, The masses and residues of doubly heavy spin-3/2 baryons, J. Phys. G 40, 065003 (2013).
  • (51) L. Liu, H. W. Lin, K. Orginos and A. Walker-Loud, Singly and Doubly Charmed J=1/2 Baryon Spectrum from Lattice QCD, Phys. Rev. D 81, 094505 (2010).
  • (52) Z. S. Brown, W. Detmold, S. Meinel and K. Orginos, Charmed bottom baryon spectroscopy from lattice QCD, Phys. Rev. D 90, 094507 (2014).
  • (53) M. Padmanath, R. G. Edwards, N. Mathur and M. Peardon, Spectroscopy of doubly-charmed baryons from lattice QCD, Phys. Rev. D 91, 094502 (2015).
  • (54) N. Mathur and M. Padmanath, Lattice QCD study of doubly-charmed strange baryons, Phys. Rev. D 99, 031501 (2019).
  • (55) N. Mathur, M. Padmanath and S. Mondal, Precise predictions of charmed-bottom hadrons from lattice QCD, Phys. Rev. Lett. 121, 202002 (2018).
  • (56) A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Korner and V. E. Lyubovitskij, Semileptonic decays of double heavy baryons, Phys. Lett. B 518, 55 (2001).
  • (57) A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Korner and V. E. Lyubovitskij, Semileptonic decays of double heavy baryons in a relativistic constituent three-quark model, Phys. Rev. D 80, 034025 (2009).
  • (58) C. Albertus, E. Hernandez and J. Nieves, Hyperfine mixing in bcb\to c semileptonic decay of doubly heavy baryons, Phys. Lett. B 683, 21 (2010).
  • (59) M. J. White and M. J. Savage, Semileptonic decay of baryons with two heavy quarks, Phys. Lett. B 271, 410 (1991).
  • (60) R. H. Li, C. D. Lü, W. Wang, F. S. Yu and Z. T. Zou, Doubly-heavy baryon weak decays: Ξbc0pK\Xi_{bc}^{0}\to pK^{-} and Ξcc+Σc++(2520)K\Xi_{cc}^{+}\to\Sigma_{c}^{++}(2520)K^{-}, Phys. Lett. B 767, 232 (2017).
  • (61) F. S. Yu, H. Y. Jiang, R. H. Li, C. D. Lü, W. Wang and Z. X. Zhao, Discovery Potentials of Doubly Charmed Baryons, Chin. Phys. C 42, 051001 (2018).
  • (62) D. Ebert, R. N. Faustov, V. O. Galkin and A. P. Martynenko, Semileptonic decays of doubly heavy baryons in the relativistic quark model, Phys. Rev. D 70, 014018 (2004).
  • (63) W. Roberts and M. Pervin, Hyperfine Mixing and the Semileptonic Decays of Double-Heavy Baryons in a Quark Model, Int. J. Mod. Phys. A 24, 2401 (2009).
  • (64) T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij and B. Oexl, Radiative decays of double heavy baryons in a relativistic constituent three-quark model including hyperfine mixing, Phys. Rev. D 81, 114036 (2010).
  • (65) R. H. Hackman, N. G. Deshpande, D. A. Dicus and V. L. Teplitz, M1 Transitions in the MIT Bag Model, Phys. Rev. D 18, 2537 (1978).
  • (66) A. Bernotas and V. Sˇ\rm{\check{S}}imonis, Radiative M1 transitions of heavy baryons in the bag model, Phys. Rev. D 87, 074016 (2013).
  • (67) W. S. Dai, X. H. Guo, H. Y. Jin and X. Q. Li, Electromagnetic radiation of baryons containing two heavy quarks, Phys. Rev. D 62, 114026 (2000).
  • (68) C. Albertus, E. Hernandez and J. Nieves, Hyperfine mixing in electromagnetic decay of doubly heavy bcbc baryons, Phys. Lett. B 690, 265 (2010).
  • (69) H. Bahtiyar, K. U. Can, G. Erkol, M. Oka and T. T. Takahashi, Radiative transitions of doubly charmed baryons in lattice QCD, Phys. Rev. D 98, 114505 (2018).
  • (70) Q. Qin, Y. J. Shi, W. Wang, G. H. Yang, F. S. Yu and R. Zhu, Inclusive approach to hunt for the beauty-charmed baryons Ξbc\Xi_{bc}, Phys. Rev. D 105, L031902 (2022).
  • (71) B. Eakins and W. Roberts, Heavy Diquark Symmetry Constraints for Strong Decays, Int. J. Mod. Phys. A 27, 1250153 (2012).
  • (72) L. Y. Xiao, K. L. Wang, Q. F. Lü, X. H. Zhong and S. L. Zhu, Strong and radiative decays of the doubly charmed baryons, Phys. Rev. D 96, 094005 (2017).
  • (73) L. Y. Xiao, Q. F. Lü and S. L. Zhu, Strong decays of the 1P and 2D doubly charmed states, Phys. Rev. D 97, 074005 (2018).
  • (74) T. Mehen, Implications of Heavy Quark-Diquark Symmetry for Excited Doubly Heavy Baryons and Tetraquarks, Phys. Rev. D 96, 094028 (2017).
  • (75) Y. L. Ma and M. Harada, Chiral partner structure of doubly heavy baryons with heavy quark spin-flavor symmetry, J. Phys. G 45, 075006 (2018).
  • (76) M. J. Yan, X. H. Liu, S. Gonzàlez-Solís, F. K. Guo, C. Hanhart, U. G. Meißner and B. S. Zou, New spectrum of negative-parity doubly charmed baryons: Possibility of two quasistable states, Phys. Rev. D 98, 091502 (2018).
  • (77) H. Z. He, W. Liang and Q. F. Lü, Strong decays of the low-lying doubly bottom baryons, Phys. Rev. D 105, 014010 (2022).
  • (78) B. Chen, S. Q. Luo, K. W. Wei and X. Liu, bb-hadron spectroscopy study based on the similarity of double bottom baryon and bottom meson, Phys. Rev. D 105, 074014 (2022).
  • (79) T. Yoshida, E. Hiyama, A. Hosaka, M. Oka and K. Sadato, Spectrum of heavy baryons in the quark model, Phys. Rev. D 92, 114029 (2015).
  • (80) E. Hiyama, Y. Kino and M. Kamimura, Gaussian expansion method for few-body systems, Prog. Part. Nucl. Phys. 51, 223-307 (2003).
  • (81) E. Hiyama and M. Kamimura, Study of various few-body systems using Gaussian expansion method (GEM), Front. Phys. (Beijing) 13, 132106 (2018).
  • (82) H. Nagahiro, S. Yasui, A. Hosaka, M. Oka and H. Noumi, Structure of charmed baryons studied by pionic decays, Phys. Rev. D 95, 014023 (2017).
  • (83) A. J. Arifi, D. Suenaga and A. Hosaka, Relativistic corrections to decays of heavy baryons in the quark model, Phys. Rev. D 103, 094003 (2021).
  • (84) A. J. Arifi, D. Suenaga, A. Hosaka and Y. Oh, Strong decays of multistrangeness baryon resonances in the quark model, Phys. Rev. D 105, 094006 (2022).
  • (85) K. L. Wang, Q. F. Lü and X. H. Zhong, Interpretation of the newly observed Σb(6097)±\Sigma_{b}(6097)^{\pm} and Ξb(6227)\Xi_{b}(6227)^{-} states as the PP-wave bottom baryons, Phys. Rev. D 99, 014011 (2019).
  • (86) M. S. Liu, K. L. Wang, Q. F. Lü and X. H. Zhong, Ω\Omega baryon spectrum and their decays in a constituent quark model, Phys. Rev. D 101, 016002 (2020).
  • (87) Q. F. Lü, H. Nagahiro and A. Hosaka, Understanding the nature of Ω(2012)\Omega(2012) in a coupled-channel approach, Phys. Rev. D 107, 014025 (2023).
  • (88) F. E. Close and E. S. Swanson, Dynamics and decay of heavy-light hadrons, Phys. Rev. D 72, 094004 (2005).
  • (89) D. M. Li, P. F. Ji and B. Ma, The newly observed open-charm states in quark model, Eur. Phys. J. C 71, 1582 (2011).
  • (90) S. Godfrey and K. Moats, Bottomonium Mesons and Strategies for their Observation, Phys. Rev. D 92, 054034 (2015).
  • (91) S. Godfrey and K. Moats, Properties of Excited Charm and Charm-Strange Mesons, Phys. Rev. D 93, 034035 (2016).
  • (92) B. Chen, K. W. Wei, X. Liu and T. Matsuki, Low-lying charmed and charmed-strange baryon states, Eur. Phys. J. C 77, 154 (2017).
  • (93) C. Chen, X. L. Chen, X. Liu, W. Z. Deng and S. L. Zhu, Strong decays of charmed baryons, Phys. Rev. D 75, 094017 (2007).