This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Boundary concentration phenomena for an anisotropic Neumann problem in 2\mathbb{R}^{2}

Yibin Zhang College of Sciences, Nanjing Agricultural University, Nanjing 210095, China yibin10201029@njau.edu.cn
Abstract.

Given a smooth bounded domain Ω\Omega in 2\mathbb{R}^{2}, we study the following anisotropic Neumann problem

{(a(x)u)+a(x)u=λa(x)up1eup,u>0inΩ,uν=0onΩ,\begin{cases}-\nabla(a(x)\nabla u)+a(x)u=\lambda a(x)u^{p-1}e^{u^{p}},\,\,\,\,u>0\,\,\,\,\,\textrm{in}\,\,\,\,\,\Omega,\\[5.69054pt] \frac{\partial u}{\partial\nu}=0\,\,\qquad\quad\qquad\qquad\qquad\qquad\qquad\ \ \ \ \,\qquad\quad\,\textrm{on}\,\,\,\partial\Omega,\end{cases}

where λ>0\lambda>0 is a small parameter, 0<p<20<p<2, a(x)a(x) is a positive smooth function over Ω¯\overline{\Omega} and ν\nu denotes the outer unit normal vector to Ω\partial\Omega. Under suitable assumptions on anisotropic coefficient a(x)a(x), we construct solutions of this problem with arbitrarily many mixed interior and boundary bubbles which concentrate at totally different strict local maximum or minimal boundary points of a(x)a(x) restricted to Ω\partial\Omega, or accumulate to the same strict local maximum boundary point of a(x)a(x) over Ω¯\overline{\Omega} as λ0\lambda\rightarrow 0.

Key words and phrases:
Boundary concentration phenomena; Lyapunov-Schmidt reduction method; Anisotropic Neumann problem.
2010 Mathematics Subject Classification:
Primary 35B25; Secondary 35B38, 35J25.

1. Introduction

This paper is concerned with the analysis of solutions to the anisotropic Neumann problem

{(a(x)u)+a(x)u=λa(x)up1eup,u>0inΩ,uν=0onΩ,\left\{\begin{aligned} &-\nabla(a(x)\nabla u)+a(x)u=\lambda a(x)u^{p-1}e^{u^{p}},\,\,\,\,u>0\,\,\,\,\,\textrm{in}\,\,\,\,\,\Omega,\\[2.84526pt] &\frac{\partial u}{\partial\nu}=0\,\,\qquad\quad\qquad\qquad\qquad\qquad\qquad\ \ \ \ \,\qquad\quad\,\textrm{on}\,\,\,\partial\Omega,\end{aligned}\right. (1.1)

where Ω\Omega is a smooth bounded domain in 2\mathbb{R}^{2}, λ>0\lambda>0 is a small parameter, 0<p<20<p<2, a(x)a(x) is a positive smooth function over Ω¯\overline{\Omega} and ν\nu denotes the outer unit normal vector to Ω\partial\Omega. This problem is the Euler-Lagrange equation for the energy functional

Jλ(u)=12Ωa(x)(|u|2+u2)λpΩa(x)eup,uH1(Ω),\displaystyle J_{\lambda}(u)=\frac{1}{2}\int_{\Omega}a(x)(|\nabla u|^{2}+u^{2})-\frac{\lambda}{p}\int_{\Omega}a(x)e^{u^{p}},\,\,\ \ \,\,u\in H^{1}(\Omega), (1.2)

which is well defined because the critical Moser-Trudinger inequality implies the validity of the Sobolev-Orlicz compact subcritical embedding

supuH1(Ω){0}Ωa(x)exp(upuH1(Ω)p)<+.\displaystyle\sup_{u\in H^{1}(\Omega)\setminus\{0\}}\int_{\Omega}a(x)\exp\left(\frac{u^{p}}{\|u\|_{H^{1}(\Omega)}^{p}}\right)<+\infty.

We are interested in the existence of solutions of equation (1.1) that exhibit the boundary concentration phenomenon as the parameter λ\lambda tends to zero. This work is strongly stimulated by some extensive research involving the isotropic case a(x)1a(x)\equiv 1 in equation (1.1):

{Δυ+υ=λυp1eυp,υ>0in𝒟,υν=0on𝒟,\left\{\begin{aligned} &-\Delta\upsilon+\upsilon=\lambda\upsilon^{p-1}e^{\upsilon^{p}},\,\,\,\ \,\upsilon>0\,\,\,\,\,\textrm{in}\,\,\,\,\,\mathcal{D},\\[2.84526pt] &\frac{\partial\upsilon}{\partial\nu}=0\,\ \ \,\qquad\quad\qquad\qquad\qquad\quad\textrm{on}\,\,\,\partial\mathcal{D},\end{aligned}\right. (1.3)

where 𝒟\mathcal{D} is a smooth bounded domain in N\mathbb{R}^{N} with N2N\geq 2. In the case of p=1p=1, this scalar equation is equivalent to an elliptic system representing the stationary Keller-Segel chemotaxis system with linear sensitivity:

{Δψ(ψυ)=0,in𝒟,Δυυ+ψ=0,in𝒟,υ,ψ>0,in𝒟,νυ=νψ=0,on𝒟,\left\{\begin{array}[]{ll}\Delta\psi-\nabla(\psi\nabla\upsilon)=0,\,\,\,\textrm{in}\quad\,\,\,\,\mathcal{D},\\ \Delta\upsilon-\upsilon+\psi=0,\,\,\,\,\quad\,\textrm{in}\quad\,\,\,\,\mathcal{D},\\ \upsilon,\,\psi>0,\quad\quad\quad\quad\quad\textrm{in}\quad\,\,\,\,\mathcal{D},\\ \frac{\partial}{\partial\nu}\upsilon=\frac{\partial}{\partial\nu}\psi=0,\,\,\,\,\quad\,\textrm{on}\quad\,\,\partial\mathcal{D},\end{array}\right. (1.4)

because the first equation in system (1.4) implies

𝒟ψ|(logψυ)|2=0,\displaystyle\int_{\mathcal{D}}\psi|\nabla(\log\psi-\upsilon)|^{2}=0,

and hence ψ=λeυ\psi=\lambda e^{\upsilon} for some positive constant λ\lambda. Steady states of system (1.4), namely its solutions, are of basic importance for a better understanding of global dynamics to the following Keller-Segel system with τ0\tau\geq 0:

{ψt=Δψ(ψυ),in𝒟,τυt=Δυυ+ψ,in𝒟,υ,ψ>0,in𝒟,νυ=νψ=0,on𝒟,\left\{\begin{array}[]{ll}\psi_{t}=\Delta\psi-\nabla(\psi\nabla\upsilon),\,\,\,\,\,\,\textrm{in}\quad\,\,\,\,\mathcal{D},\\ \tau\upsilon_{t}=\Delta\upsilon-\upsilon+\psi,\,\,\,\,\quad\,\textrm{in}\quad\,\,\,\,\mathcal{D},\\ \upsilon,\,\psi>0,\quad\quad\quad\quad\quad\quad\textrm{in}\quad\,\,\,\,\mathcal{D},\\ \frac{\partial}{\partial\nu}\upsilon=\frac{\partial}{\partial\nu}\psi=0,\,\,\,\,\quad\quad\,\textrm{on}\quad\,\,\partial\mathcal{D},\end{array}\right. (1.5)

which describes chemotactic feature of cellular slime molds sensitive to the gradient of a chemical substance secreted by themselves (see [15]). The one-dimensional form of system (1.4) was first studied by Schaaf [19]. In higher dimensions N2N\geq 2 Biler [2] established the existence of non-constant radially symmetric solution to (1.4) when the domain 𝒟\mathcal{D} is a ball. In the general two-dimensional case, Wang-Wei [22], independently of Senba-Suzuki [20], proved that for any μ(0,1/|Ω|+μ1){4πm|m=1,2,}\mu\in(0,1/|\Omega|+\mu_{1})\setminus\{4\pi m|m=1,2,\ldots\} (where μ1\mu_{1} denotes the first positive eigenvalue of Δ-\Delta with Neumann boundary condition), system (1.4) has a non-constant solution such that 𝒟ψ=μ|Ω|\int_{\mathcal{D}}\psi=\mu|\Omega|. Meanwhile, if space dimension is N=2N=2, it is known that as infinite time blow-up solutions of the parabolic-elliptic system (1.5) from chemotaxis, steady states of (1.4) produce a significant concentration phenomenon in mathematical biology referred as ‘chemotactic collapse’, namely the blow-up for the quantity ψ\psi in (1.4) takes place as a finite sum of Dirac measure at points with masses equal to 8π8\pi or 4π4\pi, respectively, depending on whether the blow-up points lie inside the domain or on the boundary. By analyzing the asymptotic behavior of families of solutions to equation (1.3)|p=1(\ref{1.3})|_{p=1} Senba-Suzuki [20, 21] exhibited this phenomenon for the term λeυ\lambda e^{\upsilon} in (1.3)|p=1(\ref{1.3})|_{p=1} with positive, uniformly bounded mass λ𝒟eυ\lambda\int_{\mathcal{D}}e^{\upsilon} as λ\lambda tends to zero. More precisely, if υλ\upsilon_{\lambda} is a family of solutions of (1.3)(\ref{1.3}) under p=1p=1 and N=2N=2, such that

limλ0λ𝒟eυλ=L>0,\displaystyle\lim_{\lambda\rightarrow 0}\lambda\int_{\mathcal{D}}e^{\upsilon_{\lambda}}=L>0,

then there exist non-negative integers kk, ll with k+l1k+l\geq 1 for which L=4π(k+2l)L=4\pi(k+2l). Moreover, once λ\lambda tends to zero, this family of solutions concentrate at ll different points ξ1,,ξl\xi_{1},\ldots,\xi_{l} inside the domain 𝒟\mathcal{D} and kk different points ξl+1,,ξk+l\xi_{l+1},\ldots,\xi_{k+l} on the boundary 𝒟\partial\mathcal{D}. In particular, far away from these concentration points the asymptotic profile of υλ\upsilon_{\lambda} is uniformly described as

υλ(x)i=1l8πG(x,ξi)+i=l+1k+l4πG(x,ξi).\displaystyle\upsilon_{\lambda}(x)\rightarrow\sum\limits_{i=1}^{l}8\pi G(x,\xi_{i})+\sum\limits_{i=l+1}^{k+l}4\pi G(x,\xi_{i}).

In addition, these concentration points or blow-up points ξ=(ξ1,,ξk+l)\xi=(\xi_{1},\ldots,\xi_{k+l}) are nothing but critical points of a functional

φk+l(ξ)=φk+l(ξ1,,ξk+l)=i=1k+lci2H(ξi,ξi)+ijk+lcicjG(ξi,ξj),\displaystyle\varphi_{k+l}(\xi)=\varphi_{k+l}(\xi_{1},\ldots,\xi_{k+l})=\sum_{i=1}^{k+l}c_{i}^{2}H(\xi_{i},\xi_{i})+\sum\limits_{i\neq j}^{k+l}c_{i}c_{j}G(\xi_{i},\xi_{j}),

where ci=8πc_{i}=8\pi for i=1,,li=1,\ldots,l, but ci=4πc_{i}=4\pi for i=l+1,,k+li=l+1,\ldots,k+l, G(x,y)G(x,y) denotes the Green’s function of the problem

{ΔxG(x,y)+G(x,y)=δy(x),xΩ,Gνx(x,y)=0,xΩ,\left\{\begin{aligned} &-\Delta_{x}G(x,y)+G(x,y)=\delta_{y}(x),\,\,\,\,\,\,\,x\in\Omega,\\ &\frac{\partial G}{\partial\nu_{x}}(x,y)=0,\qquad\,\,\qquad\qquad\qquad\,\,x\in\partial\Omega,\end{aligned}\right.

and H(x,y)H(x,y) its regular part defined as

H(x,y)={G(x,y)+12πlog|xy|,yΩ,G(x,y)+1πlog|xy|,yΩ.\displaystyle H(x,y)=\left\{\begin{aligned} &G(x,y)+\frac{1}{2\pi}\log|x-y|,\,\quad\,y\in\Omega,\\[2.84526pt] &G(x,y)+\frac{1}{\pi}\log|x-y|,\,\ \quad\,y\in\partial\Omega.\end{aligned}\right.

Reciprocally, in the spirit of the Lyapunov-Schmidt finite-dimensional reduction method del Pino-Wei [12] constructed a family of mixed interior and boundary bubbling solutions for equation (1.3)|p=1,N=2(\ref{1.3})|_{p=1,N=2} with exactly the asymptotic profile above. Successively, when N=2N=2 and pp is between 0 and 22, Deng [13] used a reductional argument to build solutions for equation (1.3) with bubbling profiles at points inside 𝒟\mathcal{D} and on the boundary 𝒟\partial\mathcal{D}, which recovered the result in [12] when p=1p=1. In general, such bubbling solutions are called solutions concentrating on 0-dimensional sets with uniformly bounded mass.

Clearly, a natural question is to ask whether there exist a family of solutions of equation (1.3) concentrating on higher dimensional subsets of 𝒟¯\overline{\mathcal{D}} with or without uniformly bounded mass as the parameter λ\lambda tends to zero. The first result in this direction was obtained by Pistoia-Vaira [17] in the case that p=1p=1 and the domain 𝒟\mathcal{D} is a ball with dimension N2N\geq 2. Based on a fixed-point argument, they constructed a family of uniformly unbounded mass radial solutions of (1.3)|p=1(\ref{1.3})|_{p=1} in the ball, which blow up on the entire boundary and hence produce the boundary concentration layer. Following closely the techniques of (1.3)|p=1(\ref{1.3})|_{p=1} in [17], Bonheure-Casteras-Noris [5] constructed a family of boundary layer solutions in the annulus blowing up simultaneously along both boundaries, a family of internal layer solutions in the unit ball blowing up on an interior sphere, and a family of solutions in the unit ball with an internal layer and a boundary layer blowing up simultaneously on an interior sphere and the boundary. Very recently, when the domain 𝒟\mathcal{D} is a unit disk (corresponding to a unit ball with dimension N=2N=2), Bonheure-Casteras-Román [7] have successfully constructed a family of uniformly unbounded mass radial solutions of (1.3)|p=1(\ref{1.3})|_{p=1} which concentrate at the origin and blow up on the entire boundary. Additionally, some bifurcation analyses of radial solutions to (1.3)|p=1(\ref{1.3})|_{p=1} in a ball with dimension N2N\geq 2 were also performed by Bonheure et al. in [4, 6]. As for a general smooth two-dimensional domain 𝒟\mathcal{D}, it is very worth mentioning that inspired by the novel result in [17], del Pino-Pistoia-Varia [11] applied an infinite-dimensional form of Lyapunov-Schmidt reduction to establish the existence of a family of solution υλ\upsilon_{\lambda} for equation (1.3)|p=1,N=2(\ref{1.3})|_{p=1,N=2} with unbounded mass λ𝒟eυλ\lambda\int_{\mathcal{D}}e^{\upsilon_{\lambda}}, which exhibit a sharp boundary layer and blow up along the entire 𝒟\partial\mathcal{D} as λ\lambda tends to zero but remains suitably away from a sequence of critical small values where certain resonance phenomenon occurs. Finally, when the domain 𝒟\mathcal{D} has suitable rational symmetries in higher dimensions N3N\geq 3, Agudelo-Pistoia [1] constructed several families of layered solutions υλ\upsilon_{\lambda} of the stationary Keller-Segel chemotaxis equation (1.3)|p=1(\ref{1.3})|_{p=1} with uniformly bounded mass λ𝒟eυλ\lambda\int_{\mathcal{D}}e^{\upsilon_{\lambda}}, which exhibit three different types of chemoattractant concentration along suitable (N2)(N-2)-dimensional minimal submanifolds of the boundary.

Problem (1.1) is seemingly similar to equation (1.3). Our original motivation in equation (1.3) is based on the fact that except for p=1p=1, nothing is known about the existence or the boundary concentration phenomenon for solutions of equation (1.3) in higher dimensions N3N\geq 3. For this aim our idea is to consider partially axially symmetric solutions of equation (1.3) when the domain 𝒟\mathcal{D} has some rotational symmetries, which implies that problem (1.1) can be viewed as a special case of equation (1.3) in higher dimensions N3N\geq 3. Indeed, take n{1,2}n\in\{1,2\} as a fixed integer. Let Ω\Omega be a smooth bounded domain in 2\mathbb{R}^{2} such that

Ω¯{(x1,xn,x)n×2n|xi>0,i=1,n}.\displaystyle\overline{\Omega}\subset\{(x_{1},x_{n},x^{\prime})\in\mathbb{R}^{n}\times\mathbb{R}^{2-n}|\,\,\,x_{i}>0,\,\,\,i=1,n\}.

Fix k1,knk_{1},k_{n}\in\mathbb{N} with k1+kn=N21k_{1}+k_{n}=N-2\geq 1 and set

𝒟:={(y1,yn,x)k1+1×kn+1×2n|(|y1|,|yn|,x)Ω}.\displaystyle\mathcal{D}:=\big{\{}(y_{1},y_{n},x^{\prime})\in\mathbb{R}^{k_{1}+1}\times\mathbb{R}^{k_{n}+1}\times\mathbb{R}^{2-n}|\,\,(|y_{1}|,|y_{n}|,x^{\prime})\in\Omega\big{\}}.

Then 𝒟\mathcal{D} is a smooth bounded domain in N\mathbb{R}^{N} which is invariant under the action of the group Υ:=𝒪(k1+1)×𝒪(kn+1)\Upsilon:=\mathcal{O}(k_{1}+1)\times\mathcal{O}(k_{n}+1) on RNR^{N} given by

(g1,gn)(y1,yn,x):=(g1y1,gnyn,x).\displaystyle(g_{1},g_{n})(y_{1},y_{n},x^{\prime}):=(g_{1}y_{1},g_{n}y_{n},x^{\prime}).

Note that 𝒪(ki+1)\mathcal{O}(k_{i}+1) is the group of linear isometries of ki+1\mathbb{R}^{k_{i}+1} and 𝕊ki\mathbb{S}^{k_{i}} is the unit sphere in ki+1\mathbb{R}^{k_{i}+1}. If we seek Υ\Upsilon-invariant solutions of equation (1.3), i.e. solutions υ\upsilon of the form

υ(y1,yn,x)=u(|y1|,|yn|,x),\displaystyle\upsilon(y_{1},y_{n},x^{\prime})=u(|y_{1}|,|y_{n}|,x^{\prime}),

a direct calculus shows that equation (1.3) is transformed to

{Δui=1nkixiuxi+u=λup1eup,u>0inΩ,uν=0onΩ.\left\{\begin{aligned} &-\Delta u-\sum_{i=1}^{n}\frac{k_{i}}{\,x_{i}\,}\frac{\partial u}{\partial x_{i}}+u=\lambda u^{p-1}e^{u^{p}},\,\,\,\,\,u>0\,\,\,\,\,\,\textrm{in}\,\,\,\,\,\Omega,\\ &\frac{\partial u}{\partial\nu}=0\,\,\,\,\,\ \,\ \,\qquad\qquad\qquad\qquad\,\,\,\,\,\ \,\,\quad\qquad\qquad\,\,\ \textrm{on}\,\,\,\,\partial\Omega.\end{aligned}\right. (1.6)

Thus if we take anisotropic coefficient

a(x)=a(x1,xn,x):=x1k1xnkn,\displaystyle a(x)=a(x_{1},x_{n},x^{\prime}):=x_{1}^{k_{1}}\cdot x_{n}^{k_{n}}, (1.7)

then equation (1.6) can be rewritten as problem (1.1). Hence by considering rotational symmetry of 𝒟\mathcal{D}, a fruitful approach for seeking layered solutions of equation (1.3) with concentration along some (N2)(N-2)-dimensional minimal submanifolds of 𝒟¯\overline{\mathcal{D}} diffeomorphic to 𝕊k1×𝕊kn\mathbb{S}^{k_{1}}\times\mathbb{S}^{k_{n}} is to reduce it to produce point-wise blow-up solutions of the anisotropic problem (1.1) in the domain Ω\Omega of dimension 22. This approach, together with some Lyapunov-Schmidt finite-dimensional reduction arguments, has recently been taken to construct multi-layer positive solutions of equation (1.3) concentrating along some (N2)(N-2)-dimensional minimal submanifolds of 𝒟\partial\mathcal{D}, which can be found in [1] only for the case p=1p=1.

In this paper, our goal is to obtain the existence of boundary separated or clustered layer positive solutions for equation (1.3) in the higher-dimensional domain with some rotational symmetries, by constructing bubbling solutions for the anisotropic planar problem (1.1) with simple or non-simple boundary concentration points when pp is between 0 and 22. We try to use a new reductional argument to investigate the effect of anisotropic coefficient a(x)a(x) on the existence of boundary concentrating solutions to problem (1.1). As a result, with the help of some suitable assumptions on anisotropic coefficient a(x)a(x) we prove that there exist a family of positive solutions of problem (1.1) with an arbitrary number of mixed interior and boundary bubbles which concentrate at totally different strict local maximum or minimal boundary points of a(x)a(x) restricted to Ω\partial\Omega, or accumulate to the same strict local maximum boundary point of a(x)a(x) over Ω¯\overline{\Omega} as λ\lambda tends to zero. In particular, we recover and improve the result in [1] when p=1p=1.

Before precisely stating our results, let us start with some notations. Let ε\varepsilon be a positive parameter given by the relation

pλ(4plogε)2(p1)pε2(p2)p=1.\displaystyle p\lambda\left(-\frac{4}{p}\log\varepsilon\right)^{\frac{2(p-1)}{p}}\varepsilon^{\frac{2(p-2)}{p}}=1. (1.8)

Clearly, λ0\lambda\rightarrow 0 if and only if ε0\varepsilon\rightarrow 0, and λ=ε2\lambda=\varepsilon^{2} if p=1p=1. Let

Δau=1a(x)(a(x)u)=Δu+loga(x)u,\displaystyle\Delta_{a}u=\frac{1}{a(x)}\nabla(a(x)\nabla u)=\Delta u+\nabla\log a(x)\nabla u,

and Ga(x,y)G_{a}(x,y) be the anisotropic Green’s function associated to the Neumann equation

{ΔaGa(x,y)+Ga(x,y)=δy(x),xΩ,Gaνx(x,y)=0,xΩ,\left\{\begin{aligned} &-\Delta_{a}G_{a}(x,y)+G_{a}(x,y)=\delta_{y}(x),\,\,\,\,\,\,\,x\in\Omega,\\ &\frac{\partial G_{a}}{\partial\nu_{x}}(x,y)=0,\qquad\,\,\qquad\qquad\qquad\ \,\,\,x\in\partial\Omega,\end{aligned}\right. (1.9)

for every yΩ¯y\in\overline{\Omega}. The regular part of Ga(x,y)G_{a}(x,y) is defined depending on whether yy lies inside the domain or on its boundary as

Ha(x,y)={Ga(x,y)+12πlog|xy|,yΩ,Ga(x,y)+1πlog|xy|,yΩ.\displaystyle H_{a}(x,y)=\left\{\begin{aligned} &G_{a}(x,y)+\frac{1}{2\pi}\log|x-y|,\,\quad\,y\in\Omega,\\ &G_{a}(x,y)+\frac{1}{\pi}\log|x-y|,\,\ \quad\,y\in\partial\Omega.\end{aligned}\right. (1.10)

In this way, yΩ¯Ha(,y)C(Ω,Cα(Ω¯))C(Ω,Cα(Ω¯))y\in\overline{\Omega}\mapsto H_{a}(\cdot,y)\in C\big{(}\Omega,C^{\alpha}(\overline{\Omega})\big{)}\cap C\big{(}\partial\Omega,C^{\alpha}(\overline{\Omega})\big{)} and Ha(x,y)Cα(Ω¯×Ω)Cα(Ω¯×Ω)C1(Ω¯×Ω{x=y})C1(Ω¯×Ω{x=y})H_{a}(x,y)\in C^{\alpha}\big{(}\overline{\Omega}\times\Omega\big{)}\cap C^{\alpha}\big{(}\overline{\Omega}\times\partial\Omega\big{)}\cap C^{1}\big{(}\overline{\Omega}\times\Omega\setminus\{x=y\}\big{)}\cap C^{1}\big{(}\overline{\Omega}\times\partial\Omega\setminus\{x=y\}\big{)} for any α(0,1)\alpha\in(0,1), and the corresponding Robin’s function yΩ¯Ha(y,y)y\in\overline{\Omega}\mapsto H_{a}(y,y) belongs to C1(Ω)C1(Ω)C^{1}(\Omega)\cap C^{1}(\partial\Omega) (see [1]). Moreover, by the maximum principle, for any yΩ¯y\in\overline{\Omega}, Ga(,y)>0G_{a}(\cdot,y)>0 over Ω¯\overline{\Omega}.

Our first result concerns the existence of solutions of problem (1.1) whose mixed interior and boundary bubbles are uniformly far away from each other and interior bubbles lie in the domain with distance to the boundary uniformly approaching zero.

Theorem 1.1.   Let kk, ll be any non-negative integers with k+l1k+l\geq 1, 0<p<20<p<2 and assume that there exist k+lk+l different points ξ1,,ξk+lΩ\xi^{*}_{1},\ldots,\xi^{*}_{k+l}\in\partial\Omega such that each ξi\xi_{i}^{*} is either a strict local maximum or a strict local minimum point of a(x)a(x) restricted to Ω\partial\Omega and satisfies for all i=1,,li=1,\ldots,l, νa(ξi):=a(ξi),ν(ξi)>0\partial_{\nu}a(\xi_{i}^{*}):=\langle\nabla a(\xi_{i}^{*}),\,\nu(\xi_{i}^{*})\rangle>0. Then for any sufficiently small λ\lambda, there exist a family of positive solutions uλu_{\lambda} for problem (1.1) with kk different boundary bubbles and ll different interior bubbles located at distance O(1/|logε|)O\left(1/|\log\varepsilon|\right) from Ω\partial\Omega such that

limλ0ε2(2p)pΩa(x)e(uλ)p=i=1k+lcia(ξi),\displaystyle\lim\limits_{\lambda\rightarrow 0}\varepsilon^{\frac{2(2-p)}{p}}\int_{\Omega}a(x)e^{(u_{\lambda})^{p}}=\sum_{i=1}^{k+l}c_{i}a(\xi_{i}^{*}),

where ε\varepsilon is defined in (1.8), ci=8πc_{i}=8\pi for i=1,,li=1,\ldots,l, but ci=4πc_{i}=4\pi for i=l+1,,k+li=l+1,\ldots,k+l. More precisely,

uλ(x)=1p(4plogε)1ppi=1k+l[log1(ε2μi2+|xξiε|2)2+ciHa(x,ξiε)+o(1)],\displaystyle u_{\lambda}(x)=\frac{1}{p}\left(-\frac{4}{p}\log\varepsilon\right)^{\frac{1-p}{p}}\sum\limits_{i=1}^{k+l}\left[\,\log\frac{1}{(\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}^{\varepsilon}|^{2})^{2}}+c_{i}H_{a}(x,\xi_{i}^{\varepsilon})+o(1)\,\right],

where o(1)0o(1)\rightarrow 0, as λ0\lambda\rightarrow 0, on each compact subset of Ω¯{ξ1ε,,ξk+lε}\overline{\Omega}\setminus\{\xi^{\varepsilon}_{1},\ldots,\xi^{\varepsilon}_{k+l}\}, the parameter μi\mu_{i} satisfies

1Cμi|logε|C,\displaystyle\frac{1}{C}\leq\mu_{i}\leq|\log\varepsilon|^{C},

for some C>0C>0, and (ξ1ε,,ξk+lε)Ωl×(Ω)k(\xi^{\varepsilon}_{1},\ldots,\xi^{\varepsilon}_{k+l})\in\Omega^{l}\times(\partial\Omega)^{k} satisfies

ξiεξifor alli,anddist(ξiε,Ω)=O(1/|logε|)i=1,,l.\displaystyle\xi^{\varepsilon}_{i}\rightarrow\xi^{*}_{i}\,\quad\,\textrm{for all}\,\,\,i,\,\qquad\quad\,\textrm{and}\,\qquad\quad\,\text{dist}(\xi^{\varepsilon}_{i},\partial\Omega)=O\left(1/|\log\varepsilon|\right)\quad\,\,\forall\,\,i=1,\ldots,l.

In particular, for some d>0d>0, as λ0\lambda\rightarrow 0,

p(4plogε)p1puλ(x)i=1k+lciGa(x,ξi)uniformly inΩ¯i=1k+lBd(ξi).\displaystyle p\left(-\frac{4}{p}\log\varepsilon\right)^{\frac{p-1}{p}}u_{\lambda}(x)\rightarrow\sum\limits_{i=1}^{k+l}c_{i}G_{a}(x,\xi_{i}^{*})\,\quad\textrm{uniformly in}\,\,\,\,\overline{\Omega}\setminus\bigcup_{i=1}^{k+l}B_{d}(\xi_{i}^{*}).

Our next result concerns the existence of solutions of problem (1.1) with mixed interior and boundary bubbles which accumulate to the same boundary point.

Theorem 1.2.   Let kk, ll be any non-negative integers with k+l1k+l\geq 1, 0<p<20<p<2 and assume that ξΩ\xi_{*}\in\partial\Omega is a strict local maximum point of a(x)a(x) over Ω¯\overline{\Omega} and satisfies νa(ξ):=a(ξ),ν(ξ)=0\partial_{\nu}a(\xi_{*}):=\langle\nabla a(\xi_{*}),\,\nu(\xi_{*})\rangle=0. Then for any sufficiently small λ\lambda, there exist a family of positive solutions uλu_{\lambda} for problem (1.1) with kk different boundary bubbles and ll different interior bubbles which accumulate to ξ\xi_{*} as λ0\lambda\rightarrow 0, such that

limλ0ε2(2p)pΩa(x)e(uλ)p=4π(k+2l)a(ξ),\displaystyle\lim\limits_{\lambda\rightarrow 0}\varepsilon^{\frac{2(2-p)}{p}}\int_{\Omega}a(x)e^{(u_{\lambda})^{p}}=4\pi(k+2l)a(\xi_{*}),

where ε\varepsilon is defined in (1.8). More precisely,

uλ(x)=1p(4plogε)1ppi=1k+l[log1(ε2μi2+|xξiε|2)2+ciHa(x,ξiε)+o(1)],\displaystyle u_{\lambda}(x)=\frac{1}{p}\left(-\frac{4}{p}\log\varepsilon\right)^{\frac{1-p}{p}}\sum\limits_{i=1}^{k+l}\left[\,\log\frac{1}{(\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}^{\varepsilon}|^{2})^{2}}+c_{i}H_{a}(x,\xi_{i}^{\varepsilon})+o(1)\,\right],

where o(1)0o(1)\rightarrow 0, as λ0\lambda\rightarrow 0, on each compact subset of Ω¯{ξ1ε,,ξk+lε}\overline{\Omega}\setminus\{\xi^{\varepsilon}_{1},\ldots,\xi^{\varepsilon}_{k+l}\}, ci=8πc_{i}=8\pi for i=1,,li=1,\ldots,l, but ci=4πc_{i}=4\pi for i=l+1,,k+li=l+1,\ldots,k+l, the parameter μi\mu_{i} satisfies

1Cμi|logε|C,\displaystyle\frac{1}{C}\leq\mu_{i}\leq|\log\varepsilon|^{C},

for some C>0C>0, and (ξ1ε,,ξk+lε)Ωl×(Ω)k(\xi^{\varepsilon}_{1},\ldots,\xi^{\varepsilon}_{k+l})\in\Omega^{l}\times(\partial\Omega)^{k} satisfies

ξiεξi,|ξiεξjε|>1|logε|2(m2+1)ij,anddist(ξiε,Ω)>1|logε|2(m2+1)i=1,,l.\displaystyle\xi^{\varepsilon}_{i}\rightarrow\xi_{*}\,\quad\,\forall\,\,i,\qquad|\xi^{\varepsilon}_{i}-\xi^{\varepsilon}_{j}|>\frac{1}{\,|\log\varepsilon|^{2(m^{2}+1)}}\quad\forall\,\,i\neq j,\qquad\textrm{and}\qquad\text{dist}(\xi^{\varepsilon}_{i},\partial\Omega)>\frac{1}{\,|\log\varepsilon|^{2(m^{2}+1)}}\quad\forall\,\,i=1,\ldots,l.

In particular, for some d>0d>0, as λ0\lambda\rightarrow 0,

p(4plogε)p1puλ(x)4π(k+2l)Ga(x,ξ)uniformly inΩ¯Bd(ξ).\displaystyle p\left(-\frac{4}{p}\log\varepsilon\right)^{\frac{p-1}{p}}u_{\lambda}(x)\rightarrow 4\pi(k+2l)G_{a}(x,\xi_{*})\,\quad\textrm{uniformly in}\,\,\,\,\overline{\Omega}\setminus B_{d}(\xi_{*}).

Now we find that if 0<p<20<p<2 and the domain 𝒟\mathcal{D} has some rational symmetries in higher dimensions N3N\geq 3 such that the corresponding anisotropic coefficient a(x)a(x) given by (1.7) satisfies the assumptions in Theorem 1.2, then equation (1.3) has a family of positive solutions with arbitrarily many mixed interior and boundary layers which collapse to the same (N2)(N-2)-dimensional minimal submanifold of 𝒟\partial\mathcal{D} as λ\lambda tends to zero. Meanwhile, we observe that the assumptions in Theorem 1.21.2 contain the following two cases:
(C1)   ξΩ\xi_{*}\in\partial\Omega is a strict local maximum point of a(x)a(x) restricted to Ω\partial\Omega;
(C2)   ξΩ\xi_{*}\in\partial\Omega is a strict local maximum point of a(x)a(x) restricted in Ω\Omega and satisfies νa(ξ)=a(ξ),ν(ξ)=0\partial_{\nu}a(\xi_{*})=\langle\nabla a(\xi_{*}),\,\nu(\xi_{*})\rangle=0.
Arguing as in the proof of Theorem 1.21.2, we readily prove that if (C1) holds, then problem (1.1) has positive solutions with arbitrarily many boundary bubbles which accumulate to ξ\xi_{*} along Ω\partial\Omega; while if (C2) holds, then problem (1.1) has positive solutions with arbitrarily many interior bubbles which accumulate to ξ\xi_{*} along the neighborhood near the inner normal direction of Ω\partial\Omega. As for the latter case, our result seems to close some gap which was left open in the literature [1] regarding such type of chemoattractant concentration from the stationary Keller-Segel system with linear chemotactical sensitivity function, namely involving the existence of solutions of equation (1.3)|p=1,N3(\ref{1.3})|_{p=1,N\geq 3} with an arbitrary number of interior layers which simultaneously accumulate along a suitable (N2)(N-2)-dimensional minimal submanifold of 𝒟\partial\mathcal{D} as λ\lambda tends to zero. Finally, it is necessary to point out that radial solutions of equation (1.3)|p=1(\ref{1.3})|_{p=1} with concentration on an arbitrary number of internal spheres were built by Bonheure-Casteras-Noris [6] when the domain 𝒟\mathcal{D} is a ball with dimension N2N\geq 2, but a remarkable fact is that, in opposition to our result or an analogous one given by Malchiodi-Ni-Wei [16] for a singularly perturbed elliptic Neumann problem on a ball, the layers of those solutions do not accumulate to the boundary of 𝒟\mathcal{D} as λ\lambda tends to zero.

The proof of our results relies on a very well known Lyapunov-Schmidt finite-dimensional reduction procedure. In Section 22 we provide a good approximation for the solution of problem (1.1) and estimate the scaling error created by this approximation. Then we rewrite problem (1.1) in terms of a linear operator \mathcal{L} for which a solvability theory is performed through solving a linearized problem in Section 33. In Section 44 we solve an auxiliary nonlinear problem. In Section 55 we reduce the problem of finding bubbling solutions of (1.1) to that of finding a critical point of a finite-dimensional function. In section 66 we give an asymptotic expansion of the energy functional associated to the approximate solution. In Section 77 we provide the detailed proof of Theorems 1.11.1-1.21.2. Finally, we give some technical explanations in Appendix 88.

Notation: In this paper the letters CC and DD will always denote a universal positive constant independent of λ\lambda, which could be changed from one line to another. The symbol o(t)o(t) (respectively O(t)O(t)) will denote a quantity for which o(t)|t|\frac{o(t)}{|t|} tends to zero (respectively, O(t)|t|\frac{O(t)}{|t|} stays bounded ) as parameter tt goes to zero. Moreover, we will use the notation o(1)o(1) (respectively O(1)O(1)) to stand for a quantity which tends to zero (respectively, which remains uniformly bounded) as λ\lambda tends to zero.

2. An approximation for the solution

The original cells for the construction of an approximate solution of problem (1.1) are based on the four-parameter family of functions

ωε,μ,ξ(z)=log8μ2(ε2μ2+|zξ|2)2,ε>0,μ>0,ξ2,\displaystyle\omega_{\varepsilon,\mu,\xi}(z)=\log\frac{8\mu^{2}}{(\varepsilon^{2}\mu^{2}+|z-\xi|^{2})^{2}},\quad\,\,\varepsilon>0,\,\,\,\,\mu>0,\,\,\,\,\xi\in\mathbb{R}^{2}, (2.1)

which exactly solve

Δω=ε2eωin2,2ε2eω=8π.\displaystyle-\Delta\omega=\varepsilon^{2}e^{\omega}\,\ \,\,\,\,\textrm{in}\,\,\,\,\mathbb{R}^{2},\qquad\quad\qquad\int_{\mathbb{R}^{2}}\varepsilon^{2}e^{\omega}=8\pi.

Set

ωμ(z)=ω1,μ,(0,0)(|z|)log8μ2(μ2+|z|2)2.\displaystyle\omega_{\mu}(z)=\omega_{1,\mu,(0,0)}(|z|)\equiv\log\frac{8\mu^{2}}{(\mu^{2}+|z|^{2})^{2}}. (2.2)

The configuration space for mm concentration points ξ=(ξ1,,ξm)\xi=(\xi_{1},\ldots,\xi_{m}) we try to look for is the following

𝒪ε:={ξ=(ξ1,,ξm)Ωl×(Ω)ml|mini,j=1,,m,ij|ξiξj|>1|logε|κ,min1ildist(ξi,Ω)>1|logε|κ},\displaystyle\mathcal{O}_{\varepsilon}:=\left\{\,\xi=(\xi_{1},\ldots,\xi_{m})\in\Omega^{l}\times(\partial\Omega)^{m-l}\left|\,\min_{i,j=1,\ldots,m,\,i\neq j}|\xi_{i}-\xi_{j}|>\frac{1}{|\log\varepsilon|^{\kappa}},\,\,\,\,\,\,\,\min_{1\leq i\leq l}\text{dist}(\xi_{i},\partial\Omega)>\frac{1}{|\log\varepsilon|^{\kappa}}\right.\right\}, (2.3)

where l{0,,m}l\in\{0,\ldots,m\}, ε\varepsilon is sufficiently small and uniquely defined by λ\lambda in (1.8), and κ\kappa is given by

κ=2(m2+1).\displaystyle\kappa=2(m^{2}+1). (2.4)

Let mm\in\mathbb{N}^{*} and ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon} be fixed. For numbers μi\mu_{i}, i=1,,mi=1,\ldots,m, yet to be determined, but we always assume

1/Cμi|logε|C,i=1,,m,\displaystyle 1/C\leq\mu_{i}\leq|\log\varepsilon|^{C},\qquad i=1,\ldots,m, (2.5)

for some C>0C>0, independent of ε\varepsilon. Define

pγp=4logε,\displaystyle p\gamma^{p}=-4\log\varepsilon, (2.6)

and for each i=1,,mi=1,\ldots,m,

Ui(x)=1pγp1[ωε,μi,ξi(x)+j=14(p1p)j1γjpωμij(xξiε)].\displaystyle U_{i}(x)=\frac{1}{p\gamma^{p-1}}\left[\omega_{\varepsilon,\mu_{i},\xi_{i}}(x)+\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{1}{\gamma^{jp}}\omega^{j}_{\mu_{i}}\left(\frac{x-\xi_{i}}{\varepsilon}\right)\right]. (2.7)

Here, ωμij\omega^{j}_{\mu_{i}}, j=1,2,3,4j=1,2,3,4, are radial solutions of

Δωμij+eωμi(|z|)ωμij=eωμi(|z|)fμijin2,\displaystyle\Delta\omega^{j}_{\mu_{i}}+e^{\omega_{\mu_{i}}(|z|)}\omega^{j}_{\mu_{i}}=e^{\omega_{\mu_{i}}(|z|)}f^{j}_{\mu_{i}}\qquad\textrm{in}\,\,\ \,\,\mathbb{R}^{2}, (2.8)

with

fμi1=[ωμi+12(ωμi)2],\displaystyle f^{1}_{\mu_{i}}=-\left[\omega_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right], (2.9)

and

fμi2={[ωμi1+p22(p1)(ωμi)2]+ωμi[ωμi1+12(ωμi)2]+ωμiωμi1+p26(p1)(ωμi)3+12[ωμi1+12(ωμi)2]2},\displaystyle f^{2}_{\mu_{i}}=-\left\{\left[\omega^{1}_{\mu_{i}}+\frac{p-2}{2(p-1)}(\omega_{\mu_{i}})^{2}\right]+\omega_{\mu_{i}}\left[\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right]+\omega_{\mu_{i}}\omega^{1}_{\mu_{i}}+\frac{p-2}{6(p-1)}(\omega_{\mu_{i}})^{3}+\frac{1}{2}\left[\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right]^{2}\right\}, (2.10)

and

fμi3={[ωμi2+p2p1ωμiωμi1+(p2)(p3)6(p1)2(ωμi)3]+[ωμi1+p22(p1)(ωμi)2][ωμi1+12(ωμi)2]\displaystyle f^{3}_{\mu_{i}}=-\left\{\left[\omega^{2}_{\mu_{i}}+\frac{p-2}{p-1}\omega_{\mu_{i}}\omega^{1}_{\mu_{i}}+\frac{(p-2)(p-3)}{6(p-1)^{2}}(\omega_{\mu_{i}})^{3}\right]+\left[\omega^{1}_{\mu_{i}}+\frac{p-2}{2(p-1)}(\omega_{\mu_{i}})^{2}\right]\left[\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right]\right.\qquad\qquad\quad\,
+ωμi[ωμi2+ωμiωμi1+p26(p1)(ωμi)3+12(ωμi1+12(ωμi)2)2]+12(ωμi1)2+ωμiωμi2+p22(p1)(ωμi)2ωμi1\displaystyle\left.+\omega_{\mu_{i}}\left[\omega^{2}_{\mu_{i}}+\omega_{\mu_{i}}\omega^{1}_{\mu_{i}}+\frac{p-2}{6(p-1)}(\omega_{\mu_{i}})^{3}+\frac{1}{2}\left(\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right)^{2}\right]+\frac{1}{2}(\omega^{1}_{\mu_{i}})^{2}+\omega_{\mu_{i}}\omega^{2}_{\mu_{i}}+\frac{p-2}{2(p-1)}(\omega_{\mu_{i}})^{2}\omega^{1}_{\mu_{i}}\right.
+(p2)(p3)24(p1)2(ωμi)4+[ωμi1+12(ωμi)2][ωμi2+ωμiωμi1+p26(p1)(ωμi)3]+16[ωμi1+12(ωμi)2]3},\displaystyle\left.+\frac{(p-2)(p-3)}{24(p-1)^{2}}(\omega_{\mu_{i}})^{4}+\left[\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right]\left[\omega^{2}_{\mu_{i}}+\omega_{\mu_{i}}\omega^{1}_{\mu_{i}}+\frac{p-2}{6(p-1)}(\omega_{\mu_{i}})^{3}\right]+\frac{1}{6}\left[\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right]^{3}\right\},\quad\,\,\,\, (2.11)

and

fμi4={[ωμi3+p22(p1)(ωμi1)2+p2p1ωμiωμi2+(p2)(p3)2(p1)2(ωμi)2ωμi1+(p2)(p3)(p4)24(p1)3(ωμi)4]\displaystyle f^{4}_{\mu_{i}}=-\left\{\left[\omega^{3}_{\mu_{i}}+\frac{p-2}{2(p-1)}(\omega^{1}_{\mu_{i}})^{2}+\frac{p-2}{p-1}\omega_{\mu_{i}}\omega^{2}_{\mu_{i}}+\frac{(p-2)(p-3)}{2(p-1)^{2}}(\omega_{\mu_{i}})^{2}\omega^{1}_{\mu_{i}}+\frac{(p-2)(p-3)(p-4)}{24(p-1)^{3}}(\omega_{\mu_{i}})^{4}\right]\right.\qquad\qquad\ \,
+[ωμi2+p2p1ωμiωμi1+(p2)(p3)6(p1)2(ωμi)3][ωμi1+12(ωμi)2]+124[ωμi1+12(ωμi)2]4\displaystyle+\left[\omega^{2}_{\mu_{i}}+\frac{p-2}{p-1}\omega_{\mu_{i}}\omega^{1}_{\mu_{i}}+\frac{(p-2)(p-3)}{6(p-1)^{2}}(\omega_{\mu_{i}})^{3}\right]\left[\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right]+\frac{1}{24}\left[\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right]^{4}\qquad\qquad\qquad\qquad\quad\,\ \,\,\,
+[ωμi1+p22(p1)(ωμi)2][ωμi2+ωμiωμi1+p26(p1)(ωμi)3+12(ωμi1+12(ωμi)2)2]\displaystyle+\left[\omega^{1}_{\mu_{i}}+\frac{p-2}{2(p-1)}(\omega_{\mu_{i}})^{2}\right]\left[\omega^{2}_{\mu_{i}}+\omega_{\mu_{i}}\omega^{1}_{\mu_{i}}+\frac{p-2}{6(p-1)}(\omega_{\mu_{i}})^{3}+\frac{1}{2}\left(\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right)^{2}\right]\qquad\qquad\qquad\qquad\qquad\qquad
+ωμi[ωμi3+12(ωμi1)2+ωμiωμi2+p22(p1)(ωμi)2ωμi1+(p2)(p3)24(p1)2(ωμi)4\displaystyle+\,\omega_{\mu_{i}}\left[\omega^{3}_{\mu_{i}}+\frac{1}{2}(\omega^{1}_{\mu_{i}})^{2}+\omega_{\mu_{i}}\omega^{2}_{\mu_{i}}+\frac{p-2}{2(p-1)}(\omega_{\mu_{i}})^{2}\omega^{1}_{\mu_{i}}+\frac{(p-2)(p-3)}{24(p-1)^{2}}(\omega_{\mu_{i}})^{4}\right.\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\,
+(ωμi1+12(ωμi)2)(ωμi2+ωμiωμi1+p26(p1)(ωμi)3)+16(ωμi1+12(ωμi)2)3]\displaystyle\left.+\left(\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right)\left(\omega^{2}_{\mu_{i}}+\omega_{\mu_{i}}\omega^{1}_{\mu_{i}}+\frac{p-2}{6(p-1)}(\omega_{\mu_{i}})^{3}\right)+\frac{1}{6}\left(\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right)^{3}\right]\qquad\qquad\qquad\qquad\qquad\qquad\quad\,\,\,\,
+[ωμi1ωμi2+p22(p1)(ωμi)2ωμi2+p22(p1)ωμi(ωμi1)2+(p2)(p3)6(p1)2(ωμi)3ωμi1+(p2)(p3)(p4)120(p1)3(ωμi)5]\displaystyle+\left[\omega^{1}_{\mu_{i}}\omega^{2}_{\mu_{i}}+\frac{p-2}{2(p-1)}(\omega_{\mu_{i}})^{2}\omega^{2}_{\mu_{i}}+\frac{p-2}{2(p-1)}\omega_{\mu_{i}}(\omega^{1}_{\mu_{i}})^{2}+\frac{(p-2)(p-3)}{6(p-1)^{2}}(\omega_{\mu_{i}})^{3}\omega^{1}_{\mu_{i}}+\frac{(p-2)(p-3)(p-4)}{120(p-1)^{3}}(\omega_{\mu_{i}})^{5}\right]
+[ωμi1+12(ωμi)2][ωμi3+12(ωμi1)2+ωμiωμi2+p22(p1)(ωμi)2ωμi1+(p2)(p3)24(p1)2(ωμi)4]\displaystyle+\left[\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right]\left[\omega^{3}_{\mu_{i}}+\frac{1}{2}(\omega^{1}_{\mu_{i}})^{2}+\omega_{\mu_{i}}\omega^{2}_{\mu_{i}}+\frac{p-2}{2(p-1)}(\omega_{\mu_{i}})^{2}\omega^{1}_{\mu_{i}}+\frac{(p-2)(p-3)}{24(p-1)^{2}}(\omega_{\mu_{i}})^{4}\right]\qquad\qquad\qquad\qquad\quad
+12[ωμi2+ωμiωμi1+p26(p1)(ωμi)3]2+12[ωμi1+12(ωμi)2]2[ωμi2+ωμiωμi1+p26(p1)(ωμi)3]},forp1.\displaystyle\left.+\frac{1}{2}\left[\omega^{2}_{\mu_{i}}+\omega_{\mu_{i}}\omega^{1}_{\mu_{i}}+\frac{p-2}{6(p-1)}(\omega_{\mu_{i}})^{3}\right]^{2}+\frac{1}{2}\left[\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right]^{2}\left[\omega^{2}_{\mu_{i}}+\omega_{\mu_{i}}\omega^{1}_{\mu_{i}}+\frac{p-2}{6(p-1)}(\omega_{\mu_{i}})^{3}\right]\right\},\,\,\,\,\,\textrm{for}\,\,p\neq 1.\quad (2.12)

According to [8], it readily follows that for any j=1,2,3,4j=1,2,3,4,

ωμij(r)=Dμij2log(1+r2μi2)+O(μiμi+r),rωμij(r)=Dμijrμi2+r2+O(μiμi2+r2)asr+,r=|z|,\displaystyle\omega^{j}_{\mu_{i}}(r)=\frac{D^{j}_{\mu_{i}}}{2}\log\left(1+\frac{r^{2}}{\mu_{i}^{2}}\right)+O\left(\frac{\mu_{i}}{\mu_{i}+r}\right),\,\,\quad\,\,\partial_{r}\omega^{j}_{\mu_{i}}(r)=\frac{D^{j}_{\mu_{i}}r}{\mu_{i}^{2}+r^{2}}+O\left(\frac{\mu_{i}}{\mu_{i}^{2}+r^{2}}\right)\quad\,\,\,\textrm{as}\,\,\,r\rightarrow+\infty,\,\,\,r=|z|, (2.13)

where

Dμij=80+tt21(t2+1)3fμij(μit)𝑑t.\displaystyle D^{j}_{\mu_{i}}=8\int_{0}^{+\infty}t\frac{t^{2}-1}{(t^{2}+1)^{3}}f^{j}_{\mu_{i}}(\mu_{i}t)dt. (2.14)

Obviously, for every j=1,2,3,4j=1,2,3,4, the coefficient DμijD^{j}_{\mu_{i}} has at most polynomial growth with respect to logμi\log\mu_{i}. Moreover,

Dμi1=4log888logμi.\displaystyle D^{1}_{\mu_{i}}=4\log 8-8-8\log\mu_{i}. (2.15)

Now we construct the approximate solution of problem (1.1) by

Uξ(x):=i=1mPUi(x)=i=1m[Ui(x)+Hi(x)],\displaystyle U_{\xi}(x):=\sum_{i=1}^{m}PU_{i}(x)=\sum_{i=1}^{m}\big{[}U_{i}(x)+H_{i}(x)\big{]}, (2.16)

where HiH_{i} is a correction term defined as the solution of

{ΔaHi+Hi=loga(x)UiUiinΩ,Hiν=UiνonΩ.\displaystyle\left\{\begin{aligned} &-\Delta_{a}H_{i}+H_{i}=\nabla\log a(x)\nabla U_{i}-U_{i}\,\,\,\,\,\,\textrm{in}\,\,\,\,\,\,\Omega,\\[2.84526pt] &\frac{\partial H_{i}}{\partial\nu}=-\frac{\partial U_{i}}{\partial\nu}\,\,\qquad\qquad\qquad\qquad\qquad\,\,\,\textrm{on}\,\,\,\,\partial\Omega.\end{aligned}\right. (2.17)

To state the asymptotic behavior of each correction term HiH_{i} in terms of ε\varepsilon, μi\mu_{i} and ξi\xi_{i}, we first use the convention

ci={8π,ifξiΩ,4π,ifξiΩ.\displaystyle c_{i}=\left\{\begin{aligned} &8\pi,\qquad\textrm{if}\quad\,\xi_{i}\in\Omega,\\[2.84526pt] &4\pi,\qquad\textrm{if}\quad\xi_{i}\in\partial\Omega.\end{aligned}\right. (2.18)

Lemma 2.1.  For any ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon} and α(0,1)\alpha\in(0,1), then we have

Hi(x)=1pγp1{[114j=14(p1p)jDμijγjp]ciHa(x,ξi)log(8μi2)+[j=14(p1p)jDμijγjp]log(εμi)+O((εμi)α/2)}\displaystyle H_{i}(x)=\frac{1}{p\gamma^{p-1}}\left\{\left[1-\frac{1}{4}\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]c_{i}H_{a}(x,\xi_{i})-\log(8\mu_{i}^{2})+\left[\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\log(\varepsilon\mu_{i})+O\left((\varepsilon\mu_{i})^{\alpha/2}\right)\right\} (2.19)

uniformly in Ω¯\overline{\Omega}, where HaH_{a} is the regular part of the anisotropic Green’s function defined in (1.10).

Proof.

Inserting (2.1), (2.7) and (2.13) into (2.17), we have that for any β(0,1)\beta\in(0,1),

{ΔaHi+Hi=1pγp1{[4+j=14(p1p)jDμijγjp][(xξi)loga(x)ε2μi2+|xξi|212log(ε2μi2+|xξi|2)]log(8μi2)+[j=14(p1p)jDμijγjp]log(εμi)+p1p1γpOL(ΩB(εμi)β/2(ξi))(εμiεμi+|xξi|+εμiε2μi2+|xξi|2)+[j=14(p1p)jDμijγjp]OL(ΩB(εμi)β/2(ξi))(|(xξi)loga(x)|ε2μi2+|xξi|2+logε2μi2+|xξi|2ε2μi2)}inΩ,Hiν=1pγp1{[4+j=14(p1p)jDμijγjp](xξi)ν(x)ε2μi2+|xξi|2+p1p1γpOL(ΩB(εμi)β/2(ξi))(εμiε2μi2+|xξi|2)+[j=14(p1p)jDμijγjp]OL(ΩB(εμi)β/2(ξi))(|(xξi)ν(x)|ε2μi2+|xξi|2)}onΩ.\displaystyle\left\{\begin{aligned} &-\Delta_{a}H_{i}+H_{i}=\frac{1}{p\gamma^{p-1}}\left\{\left[-4+\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\left[\frac{(x-\xi_{i})\cdot\nabla\log a(x)}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}-\frac{1}{2}\log\big{(}\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}\big{)}\right]-\log(8\mu_{i}^{2})\right.\\[2.84526pt] &\left.\,\quad\qquad+\left[\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\log(\varepsilon\mu_{i})+\frac{p-1}{p}\frac{1}{\gamma^{p}}O_{\large L^{\infty}\big{(}\Omega\setminus B_{(\varepsilon\mu_{i})^{\beta/2}}(\xi_{i})\big{)}}\left(\frac{\varepsilon\mu_{i}}{\varepsilon\mu_{i}+|x-\xi_{i}|}+\frac{\varepsilon\mu_{i}}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right)\right.\\[2.84526pt] &\left.\,\quad\qquad+\left[\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]O_{\large L^{\infty}\big{(}\Omega\bigcap B_{(\varepsilon\mu_{i})^{\beta/2}}(\xi_{i})\big{)}}\left(\frac{|(x-\xi_{i})\cdot\nabla\log a(x)|}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}+\log\frac{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}{\varepsilon^{2}\mu_{i}^{2}}\right)\right\}\quad\,\,\textrm{in}\,\,\,\ \ \,\Omega,\\[2.84526pt] &\frac{\partial H_{i}}{\partial\nu}=-\frac{1}{p\gamma^{p-1}}\left\{\left[-4+\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\frac{(x-\xi_{i})\cdot\nu(x)}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}+\frac{p-1}{p}\frac{1}{\gamma^{p}}O_{\large L^{\infty}\big{(}\partial\Omega\setminus B_{(\varepsilon\mu_{i})^{\beta/2}}(\xi_{i})\big{)}}\left(\frac{\varepsilon\mu_{i}}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right)\right.\\[2.84526pt] &\left.\,\quad\qquad+\left[\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]O_{\large L^{\infty}\big{(}\partial\Omega\bigcap B_{(\varepsilon\mu_{i})^{\beta/2}}(\xi_{i})\big{)}}\left(\frac{|(x-\xi_{i})\cdot\nu(x)|}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right)\right\}\,\qquad\qquad\qquad\qquad\qquad\qquad\,\,\textrm{on}\,\,\ \ \,\partial\Omega.\end{aligned}\right.

Using (1.9)-(1.10) we get that the regular part of Green’s function, Ha(x,ξi)H_{a}(x,\xi_{i}), satisfies

{ΔaHa(x,ξi)+Ha(x,ξi)=4cilog|xξi|4ci(xξi)loga(x)|xξi|2inΩ,Ha(x,ξi)ν=4ci(xξi)ν(x)|xξi|2onΩ.\left\{\begin{aligned} &-\Delta_{a}H_{a}(x,\xi_{i})+H_{a}(x,\xi_{i})=\frac{4}{c_{i}}\log|x-\xi_{i}|-\frac{4}{c_{i}}\frac{(x-\xi_{i})\cdot\nabla\log a(x)}{|x-\xi_{i}|^{2}}\quad\,\,\textrm{in}\,\,\,\,\,\Omega,\\[2.84526pt] &\frac{\partial H_{a}(x,\xi_{i})}{\partial\nu}=\frac{4}{c_{i}}\frac{(x-\xi_{i})\cdot\nu(x)}{|x-\xi_{i}|^{2}}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\textrm{on}\,\,\,\partial\Omega.\end{aligned}\right.

Set

Zi(x)=pγp1Hi(x)[114j=14(p1p)jDμijγjp]ciHa(x,ξi)+log(8μi2)[j=14(p1p)jDμijγjp]log(εμi).\displaystyle Z_{i}(x)=p\gamma^{p-1}H_{i}(x)-\left[1-\frac{1}{4}\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]c_{i}H_{a}(x,\xi_{i})+\log(8\mu_{i}^{2})-\left[\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\log(\varepsilon\mu_{i}).

Then

{ΔaZi+Zi=[4+j=14(p1p)jDμijγjp][12log(|xξi|2ε2μi2+|xξi|2)(xξi)loga(x)|xξi|2ε2μi2ε2μi2+|xξi|2]+[j=14(p1p)jDμijγjp]OL(ΩB(εμi)β/2(ξi))(|(xξi)loga(x)|ε2μi2+|xξi|2+logε2μi2+|xξi|2ε2μi2)+p1p1γpOL(ΩB(εμi)β/2(ξi))(εμiεμi+|xξi|+εμiε2μi2+|xξi|2)inΩ,Ziν=[4+j=14(p1p)jDμijγjp](xξi)ν(x)|xξi|2ε2μi2ε2μi2+|xξi|2+p1p1γpOL(ΩB(εμi)β/2(ξi))(εμiε2μi2+|xξi|2)+[j=14(p1p)jDμijγjp]OL(ΩB(εμi)β/2(ξi))(|(xξi)ν(x)|ε2μi2+|xξi|2)onΩ.\displaystyle\left\{\begin{aligned} &-\Delta_{a}Z_{i}+Z_{i}=\left[-4+\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\left[\,\frac{1}{2}\log\left(\frac{|x-\xi_{i}|^{2}}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right)-\frac{(x-\xi_{i})\cdot\nabla\log a(x)}{|x-\xi_{i}|^{2}}\cdot\frac{\varepsilon^{2}\mu_{i}^{2}}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right]\\[2.84526pt] &\quad\qquad+\left[\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]O_{\large L^{\infty}\big{(}\Omega\bigcap B_{(\varepsilon\mu_{i})^{\beta/2}}(\xi_{i})\big{)}}\left(\frac{|(x-\xi_{i})\cdot\nabla\log a(x)|}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}+\log\frac{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}{\varepsilon^{2}\mu_{i}^{2}}\right)\\[2.84526pt] &\quad\qquad+\frac{p-1}{p}\frac{1}{\gamma^{p}}O_{\large L^{\infty}\big{(}\Omega\setminus B_{(\varepsilon\mu_{i})^{\beta/2}}(\xi_{i})\big{)}}\left(\frac{\varepsilon\mu_{i}}{\varepsilon\mu_{i}+|x-\xi_{i}|}+\frac{\varepsilon\mu_{i}}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right)\quad\qquad\qquad\qquad\qquad\qquad\,\qquad\textrm{in}\,\,\ \,\,\ \,\,\Omega,\\[2.84526pt] &\frac{\partial Z_{i}}{\partial\nu}=\left[-4+\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\frac{(x-\xi_{i})\cdot\nu(x)}{|x-\xi_{i}|^{2}}\frac{\varepsilon^{2}\mu_{i}^{2}}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}+\frac{p-1}{p}\frac{1}{\gamma^{p}}O_{\large L^{\infty}\big{(}\partial\Omega\setminus B_{(\varepsilon\mu_{i})^{\beta/2}}(\xi_{i})\big{)}}\left(\frac{\varepsilon\mu_{i}}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right)\\[2.84526pt] &\qquad\quad+\left[\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]O_{\large L^{\infty}\big{(}\partial\Omega\bigcap B_{(\varepsilon\mu_{i})^{\beta/2}}(\xi_{i})\big{)}}\left(\frac{|(x-\xi_{i})\cdot\nu(x)|}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right)\qquad\qquad\qquad\qquad\qquad\qquad\quad\,\,\,\textrm{on}\,\ \ \,\,\,\partial\Omega.\end{aligned}\right.

Direct computations show that there exists a constant C>0C>0 such that for any q>1q>1,

log(|xξi|2ε2μi2+|xξi|2)Lq(Ω)C(εμi)2q,\displaystyle\left\|\log\left(\frac{|x-\xi_{i}|^{2}}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right)\right\|_{L^{q}(\Omega)}\leq C(\varepsilon\mu_{i})^{\frac{2}{q}},

and

εμiεμi+|xξi|+εμiε2μi2+|xξi|2Lq(ΩB(εμi)β/2(ξi))C(εμi)1β+βq,\displaystyle\left\|\frac{\varepsilon\mu_{i}}{\varepsilon\mu_{i}+|x-\xi_{i}|}+\frac{\varepsilon\mu_{i}}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right\|_{L^{q}\big{(}\Omega\setminus B_{(\varepsilon\mu_{i})^{\beta/2}}(\xi_{i})\big{)}}\leq C(\varepsilon\mu_{i})^{1-\beta+\frac{\beta}{q}},

and for any 1<q<21<q<2,

|(xξi)loga(x)|ε2μi2+|xξi|2+logε2μi2+|xξi|2ε2μi2Lq(ΩB(εμi)β/2(ξi))C(εμi)β(1q12),\displaystyle\left\|\frac{|(x-\xi_{i})\cdot\nabla\log a(x)|}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}+\log\frac{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}{\varepsilon^{2}\mu_{i}^{2}}\right\|_{L^{q}\big{(}\Omega\bigcap B_{(\varepsilon\mu_{i})^{\beta/2}}(\xi_{i})\big{)}}\leq C(\varepsilon\mu_{i})^{\beta(\frac{1}{q}-\frac{1}{2})},

and

(xξi)loga(x)|xξi|2ε2μi2ε2μi2+|xξi|2Lq(Ω)C(εμi)2q1.\displaystyle\left\|\frac{(x-\xi_{i})\cdot\nabla\log a(x)}{|x-\xi_{i}|^{2}}\cdot\frac{\varepsilon^{2}\mu_{i}^{2}}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right\|_{L^{q}(\Omega)}\leq C(\varepsilon\mu_{i})^{\frac{2}{q}-1}.

Hence for any ξiΩ¯\xi_{i}\in\overline{\Omega} and any 1<q<21<q<2,

ΔaZi+ZiLq(Ω)C(εμi)β(1q12).\displaystyle\big{\|}-\Delta_{a}Z_{i}+Z_{i}\big{\|}_{L^{q}(\Omega)}\leq C(\varepsilon\mu_{i})^{\beta(\frac{1}{q}-\frac{1}{2})}.

On the other hand, if ξiΩ\xi_{i}\in\partial\Omega, from the fact that |(xξi)ν(x)|C|xξi|2|(x-\xi_{i})\cdot\nu(x)|\leq C|x-\xi_{i}|^{2} for any xΩx\in\partial\Omega (see [1]) we can compute that for any q>1q>1,

(xξi)ν(x)|xξi|2ε2μi2ε2μi2+|xξi|2Lq(Ω)C(εμi)1q,\displaystyle\left\|\frac{(x-\xi_{i})\cdot\nu(x)}{|x-\xi_{i}|^{2}}\cdot\frac{\varepsilon^{2}\mu_{i}^{2}}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right\|_{L^{q}(\partial\Omega)}\leq C(\varepsilon\mu_{i})^{\frac{1}{q}},
(xξi)ν(x)ε2μi2+|xξi|2Lq(ΩB(εμi)β/2(ξi))C(εμi)β2q,\displaystyle\left\|\frac{(x-\xi_{i})\cdot\nu(x)}{\,\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}\,}\right\|_{L^{q}\big{(}\partial\Omega\bigcap B_{(\varepsilon\mu_{i})^{\beta/2}}(\xi_{i})\big{)}}\leq C(\varepsilon\mu_{i})^{\frac{\beta}{2q}},
εμiε2μi2+|xξi|2Lq(ΩB(εμi)β/2(ξi))C[εμi+(εμi)1β+β2q],\displaystyle\left\|\frac{\varepsilon\mu_{i}}{\,\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}\,}\right\|_{L^{q}\big{(}\partial\Omega\setminus B_{(\varepsilon\mu_{i})^{\beta/2}}(\xi_{i})\big{)}}\leq C\left[\varepsilon\mu_{i}+(\varepsilon\mu_{i})^{1-\beta+\frac{\beta}{2q}}\right],

then

ZiνLq(Ω)C(εμi)β2q.\displaystyle\left\|\frac{\partial Z_{i}}{\partial\nu}\right\|_{L^{q}(\partial\Omega)}\leq C(\varepsilon\mu_{i})^{\frac{\beta}{2q}}.

While if ξiΩ\xi_{i}\in\Omega, by the definition of 𝒪ε\mathcal{O}_{\varepsilon} in (2.3) we easily find

εμiε2μi2+|xξi|2L(Ω)εμi|logε|2κ,\displaystyle\left\|\frac{\varepsilon\mu_{i}}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right\|_{L^{\infty}(\partial\Omega)}\leq\varepsilon\mu_{i}|\log\varepsilon|^{2\kappa},
(xξi)ν(x)|xξi|2ε2μi2ε2μi2+|xξi|2L(Ω)ε2μi2|logε|3κ,\displaystyle\left\|\frac{(x-\xi_{i})\cdot\nu(x)}{|x-\xi_{i}|^{2}}\cdot\frac{\varepsilon^{2}\mu_{i}^{2}}{\varepsilon^{2}\mu_{i}^{2}+|x-\xi_{i}|^{2}}\right\|_{L^{\infty}(\partial\Omega)}\leq\varepsilon^{2}\mu_{i}^{2}|\log\varepsilon|^{3\kappa},

then

ZiνL(Ω)Cεμi|logε|2κ1.\displaystyle\left\|\frac{\partial Z_{i}}{\partial\nu}\right\|_{L^{\infty}(\partial\Omega)}\leq C\varepsilon\mu_{i}|\log\varepsilon|^{2\kappa-1}.

As a consequence, from elliptic regularity theory we have that for any 1<q<21<q<2 and any 0<θ<1/q0<\theta<1/q,

ZiW1+θ,q(Ω)C(ΔaZi+ZiLq(Ω)+ZiνLq(Ω))C(εμi)β(1q12).\displaystyle\left\|Z_{i}\right\|_{W^{1+\theta,q}(\Omega)}\leq C\left(\big{\|}-\Delta_{a}Z_{i}+Z_{i}\big{\|}_{L^{q}(\Omega)}+\left\|\frac{\partial Z_{i}}{\partial\nu}\right\|_{L^{q}(\partial\Omega)}\right)\leq C(\varepsilon\mu_{i})^{\beta(\frac{1}{q}-\frac{1}{2})}.

By Morrey’s embedding theorem,

ZiCτ(Ω¯)C(εμi)β(1q12),\displaystyle\left\|Z_{i}\right\|_{C^{\tau}(\overline{\Omega})}\leq C(\varepsilon\mu_{i})^{\beta(\frac{1}{q}-\frac{1}{2})},

where 0<τ<1/2+1/q0<\tau<1/2+1/q, which implies that expansion (2.19) holds with α=2β(1/q1/2)\alpha=2\beta(1/q-1/2). ∎

From Lemma 2.1 we can easily prove that away from each point ξi\xi_{i}, namely |xξi|1/|logε|2κ|x-\xi_{i}|\geq 1/|\log\varepsilon|^{2\kappa} for any i=1,,mi=1,\ldots,m,

Uξ(x)=1pγp1i=1m{[114j=14(p1p)jDμijγjp]ciGa(x,ξi)+O((εμi)α/2)}.\displaystyle U_{\xi}(x)=\frac{1}{p\gamma^{p-1}}\sum\limits_{i=1}^{m}\left\{\left[1-\frac{1}{4}\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]c_{i}G_{a}(x,\xi_{i})+O\left((\varepsilon\mu_{i})^{\alpha/2}\right)\right\}. (2.20)

While if |xξi|<1/|logε|2κ|x-\xi_{i}|<1/|\log\varepsilon|^{2\kappa} with some ii, from the fact that Ha(,ξk)Cα(Ω¯)H_{a}(\cdot,\xi_{k})\in C^{\alpha}(\overline{\Omega}) for any ξkΩ¯\xi_{k}\in\overline{\Omega} and any α(0,1)\alpha\in(0,1) we find

PUi(x)=\displaystyle PU_{i}(x)= 1pγp1{pγp+ωμi(xξiε)+j=14(p1p)j1γjpωμij(xξiε)+[114j=14(p1p)jDμijγjp]ciHa(ξi,ξi)\displaystyle\,\frac{1}{p\gamma^{p-1}}\left\{p\gamma^{p}+\omega_{\mu_{i}}\left(\frac{x-\xi_{i}}{\varepsilon}\right)+\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{1}{\gamma^{jp}}\omega^{j}_{\mu_{i}}\left(\frac{x-\xi_{i}}{\varepsilon}\right)+\left[1-\frac{1}{4}\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]c_{i}H_{a}(\xi_{i},\xi_{i})\right.
log(8μi2)+[j=14(p1p)jDμijγjp]log(εμi)+O(|xξi|α+(εμi)α/2)},\displaystyle\left.-\log(8\mu_{i}^{2})+\left[\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\log(\varepsilon\mu_{i})+O\left(|x-\xi_{i}|^{\alpha}+(\varepsilon\mu_{i})^{\alpha/2}\right)\right\},

and for any kik\neq i,

PUk(x)=1pγp1{[114j=14(p1p)jDμkjγjp]ckGa(ξi,ξk)+O(|xξi|α+(εμk)α/2)}.\displaystyle PU_{k}(x)=\frac{1}{p\gamma^{p-1}}\left\{\left[1-\frac{1}{4}\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{k}}}{\gamma^{jp}}\right]c_{k}G_{a}(\xi_{i},\xi_{k})+O\left(|x-\xi_{i}|^{\alpha}+(\varepsilon\mu_{k})^{\alpha/2}\right)\right\}.

Thus if |xξi|<1/|logε|2κ|x-\xi_{i}|<1/|\log\varepsilon|^{2\kappa},

Uξ(x)=1pγp1[pγp+ωμi(xξiε)+j=14(p1p)j1γjpωμij(xξiε)+O(|xξi|α+k=1m(εμk)α/2)]\displaystyle U_{\xi}(x)=\frac{1}{p\gamma^{p-1}}\left[p\gamma^{p}+\omega_{\mu_{i}}\left(\frac{x-\xi_{i}}{\varepsilon}\right)+\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{1}{\gamma^{jp}}\omega^{j}_{\mu_{i}}\left(\frac{x-\xi_{i}}{\varepsilon}\right)+\,O\left(|x-\xi_{i}|^{\alpha}+\sum_{k=1}^{m}(\varepsilon\mu_{k})^{\alpha/2}\right)\right] (2.21)

will be a good approximation for the solution of problem (1.1) provided that for each i=1,,mi=1,\ldots,m, the concentration parameter μi\mu_{i} satisfies the nonlinear system

log(8μi2)=[114j=14(p1p)jDμijγjp]ciHa(ξi,ξi)+[j=14(p1p)jDμijγjp]log(εμi)\displaystyle\log\big{(}8\mu_{i}^{2}\big{)}=\left[1-\frac{1}{4}\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]c_{i}H_{a}(\xi_{i},\xi_{i})+\left[\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\log(\varepsilon\mu_{i})
+kim[114j=14(p1p)jDμkjγjp]ckGa(ξi,ξk).\displaystyle+\sum_{k\neq i}^{m}\left[1-\frac{1}{4}\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{k}}}{\gamma^{jp}}\right]c_{k}G_{a}(\xi_{i},\xi_{k}).\qquad\qquad\qquad\qquad\qquad\quad\, (2.22)

It is necessary to point out that from (2.6), (2.14), (2.15) and the Implicit Function Theorem we readily have that for any sufficiently small ε\varepsilon and any points ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon}, there is a unique solution μ=(μ1,,μm)\mu=(\mu_{1},\ldots,\mu_{m}) for system (2) under assumption (2.5). Moreover, for any i=1,,mi=1,\ldots,m,

|Dξlogμi|C|logε|κ,\displaystyle\big{|}D_{\xi}\log\mu_{i}\big{|}\leq C|\log\varepsilon|^{\kappa},

and

log(8μi2)={2(p1)2p(1log8)+12p[ciHa(ξi,ξi)+k=1,kimckGa(ξi,ξk)]}[ 1+O(log2|logε||logε|)].\displaystyle\log\big{(}8\mu_{i}^{2}\big{)}=\left\{\frac{2(p-1)}{2-p}(1-\log 8)+\frac{1}{2-p}\left[c_{i}H_{a}(\xi_{i},\xi_{i})+\sum\large_{k=1,\,k\neq i}^{m}c_{k}G_{a}(\xi_{i},\xi_{k})\right]\right\}\left[\,1+O\left(\frac{\log^{2}|\log\varepsilon|}{|\log\varepsilon|}\right)\right]. (2.23)

Let us perform the change of variables

υ(y)=pγp1u(εy)pγp,yΩε:=ε1Ω.\displaystyle\upsilon(y)=p\gamma^{p-1}u(\varepsilon y)-p\gamma^{p},\,\,\,\,\quad\forall\,\,y\in\Omega_{\varepsilon}:=\varepsilon^{-1}\Omega.

By the definitions of ε\varepsilon and γ\gamma in (1.8) and (2.6), respectively, we can rewrite equation (1.1) in the following form

{Δa(εy)υ+ε2υ=f(υ)pγpε2,inΩε,υν=0onΩε,\begin{array}[]{ll}\left\{\begin{aligned} &-\Delta_{a(\varepsilon y)}\upsilon+\varepsilon^{2}\upsilon=f(\upsilon)-p\gamma^{p}\varepsilon^{2},\,\,\,\,\,\textrm{in}\,\,\,\,\,\Omega_{\varepsilon},\\[2.84526pt] &\frac{\partial\upsilon}{\partial\nu}=0\qquad\qquad\qquad\qquad\qquad\qquad\,\textrm{on}\,\,\,\partial\Omega_{\varepsilon},\end{aligned}\right.\end{array} (2.24)

where

f(υ)=(1+υpγp)p1eγp[(1+υpγp)p1].\displaystyle f(\upsilon)=\left(1+\frac{\upsilon}{p\gamma^{p}}\right)^{p-1}e^{\gamma^{p}\left[\left(1+\frac{\upsilon}{p\gamma^{p}}\right)^{p}-1\right]}. (2.25)

We write ξi=ξi/ε\xi_{i}^{\prime}=\xi_{i}/\varepsilon, i=1,,mi=1,\ldots,m and define the initial approximate solution of (2.24) as

Vξ(y)=pγp1Uξ(εy)pγp,\displaystyle V_{\xi^{\prime}}(y)=p\gamma^{p-1}U_{\xi}(\varepsilon y)-p\gamma^{p}, (2.26)

with ξ=(ξ1,,ξm)\xi^{\prime}=(\xi_{1}^{\prime},\ldots,\xi_{m}^{\prime}) and UξU_{\xi} defined in (2.16). What remains of this paper is to look for solutions of problem (2.24) in the form υ=Vξ+ϕ\upsilon=V_{\xi^{\prime}}+\phi, where ϕ\phi will represent a higher-order correction. In terms of ϕ\phi, problem (2.24) becomes

{(ϕ)=[Eξ+N(ϕ)]inΩε,ϕν=0onΩε,\displaystyle\left\{\begin{aligned} &\mathcal{L}(\phi)=-\big{[}E_{\xi^{\prime}}+N(\phi)\big{]}\quad\textrm{in}\,\,\,\,\,\,\Omega_{\varepsilon},\\ &\frac{\partial\phi}{\partial\nu}=0\quad\qquad\qquad\qquad\,\,\,\,\textrm{on}\,\,\,\,\partial\Omega_{\varepsilon},\end{aligned}\right. (2.27)

where

(ϕ)=Δa(εy)ϕ+ε2ϕWξϕwithWξ=f(Vξ),\displaystyle\mathcal{L}(\phi)=-\Delta_{a(\varepsilon y)}\phi+\varepsilon^{2}\phi-W_{\xi^{\prime}}\phi\,\quad\,\textrm{with}\,\quad\,W_{\xi^{\prime}}=f^{\prime}(V_{\xi^{\prime}}),

and

Eξ=Δa(εy)Vξ+ε2Vξf(Vξ)+pγpε2,N(ϕ)=[f(Vξ+ϕ)f(Vξ)f(Vξ)ϕ].\displaystyle E_{\xi^{\prime}}=-\Delta_{a(\varepsilon y)}V_{\xi^{\prime}}+\varepsilon^{2}V_{\xi^{\prime}}-f(V_{\xi^{\prime}})+p\gamma^{p}\varepsilon^{2},\quad\quad\quad N(\phi)=-\big{[}f(V_{\xi^{\prime}}+\phi)-f(V_{\xi^{\prime}})-f^{\prime}(V_{\xi^{\prime}})\phi\big{]}. (2.28)

For any ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon} and hL(Ωε)h\in L^{\infty}(\Omega_{\varepsilon}), let us introduce a weighted LL^{\infty}-norm defined as

h=supyΩε|(i=1mμiσ(μi+|yξi|)2+σ+ε2)1h(y)|,\displaystyle\|h\|_{*}=\sup_{y\in\Omega_{\varepsilon}}\left|\left(\sum\limits_{i=1}^{m}\frac{\mu_{i}^{\sigma}}{(\mu_{i}+|y-\xi^{\prime}_{i}|)^{2+\sigma}}+\varepsilon^{2}\right)^{-1}h(y)\right|, (2.29)

where σ>0\sigma>0 is small but fixed, independent of ε\varepsilon. With respect to the \|\cdot\|_{*}-norm, the error term EξE_{\xi^{\prime}} defined in (2.28) can be estimated as follows.

Proposition 2.2.  There exists a constant C>0C>0 such that for any ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon} and for any ε\varepsilon small enough,

EξCγ4p=O(1|logε|4).\displaystyle\|E_{\xi^{\prime}}\|_{*}\leq\frac{C}{\gamma^{4p}}=O\left(\frac{1}{|\log\varepsilon|^{4}}\right). (2.30)
Proof.

By (2.16), (2.17) and (2.26) we obtain

Δa(εy)Vξ+ε2Vξ+pγpε2=pγp1ε2i=1m[Δa(Ui+Hi)+(Ui+Hi)]=pγp1ε2i=1mΔUi.\displaystyle-\Delta_{a(\varepsilon y)}V_{\xi^{\prime}}+\varepsilon^{2}V_{\xi^{\prime}}+p\gamma^{p}\varepsilon^{2}=p\gamma^{p-1}\varepsilon^{2}\sum_{i=1}^{m}\left[-\Delta_{a}\big{(}U_{i}+H_{i}\big{)}+\big{(}U_{i}+H_{i}\big{)}\right]=-p\gamma^{p-1}\varepsilon^{2}\sum_{i=1}^{m}\Delta U_{i}.

Furthermore, by (2.7)-(2.8),

Δa(εy)Vξ+ε2Vξ+pγpε2=i=1meωμi(yξi)[1+j=14(p1p)j1γjp(ωμijfμij)](yξi).\displaystyle-\Delta_{a(\varepsilon y)}V_{\xi^{\prime}}+\varepsilon^{2}V_{\xi^{\prime}}+p\gamma^{p}\varepsilon^{2}=\sum_{i=1}^{m}e^{\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)}\left[1+\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{1}{\gamma^{jp}}\big{(}\omega^{j}_{\mu_{i}}-f^{j}_{\mu_{i}}\big{)}\right]\left(y-\xi^{\prime}_{i}\right). (2.31)

By (2.2), (2.5) and (2.13) we have that if |yξi|1/(ε|logε|2κ)|y-\xi^{\prime}_{i}|\geq 1/(\varepsilon|\log\varepsilon|^{2\kappa}) for any i=1,,mi=1,\ldots,m,

ωμi(yξi)=4logε+O(log|logε|),ωμij(yξi)=Dμijlogε+O(log|logε|),j=1,2,3,4,\displaystyle\omega_{\mu_{i}}(y-\xi^{\prime}_{i})=4\log\varepsilon+O\big{(}\log|\log\varepsilon|\big{)},\,\qquad\qquad\,\omega_{\mu_{i}}^{j}(y-\xi^{\prime}_{i})=-D^{j}_{\mu_{i}}\log\varepsilon+O\big{(}\log|\log\varepsilon|\big{)},\quad j=1,2,3,4,

and then, by (2.9)-(2),

Δa(εy)Vξ+ε2Vξ+pγpε2=[i=1meωμi(yξi)]O(|logε|4).\displaystyle-\Delta_{a(\varepsilon y)}V_{\xi^{\prime}}+\varepsilon^{2}V_{\xi^{\prime}}+p\gamma^{p}\varepsilon^{2}=\left[\sum_{i=1}^{m}e^{\omega_{\mu_{i}}(y-\xi^{\prime}_{i})}\right]O\left(|\log\varepsilon|^{4}\right). (2.32)

On the other hand, in the same region, by (2.20) and (2.26) we obtain

1+Vξ(y)pγp=pγp1Uξ(εy)pγp=O(log|logε||logε|),\displaystyle 1+\frac{V_{\xi^{\prime}}(y)}{p\gamma^{p}}=\frac{p\gamma^{p-1}U_{\xi}(\varepsilon y)}{p\gamma^{p}}=O\left(\frac{\log|\log\varepsilon|}{|\log\varepsilon|}\right), (2.33)

and hence,

f(Vξ)=(1+Vξpγp)p1eγp[(1+Vξpγp)p1]=O(ε4plogp1|logε|)|logε|p1exp[O(logp|logε||logε|p1)],\displaystyle f(V_{\xi^{\prime}})=\left(1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}\right)^{p-1}e^{\gamma^{p}\left[\left(1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}\right)^{p}-1\right]}=\frac{O(\varepsilon^{\frac{4}{p}}\log^{p-1}|\log\varepsilon|)}{|\log\varepsilon|^{p-1}}\exp\left[O\left(\frac{\log^{p}|\log\varepsilon|}{|\log\varepsilon|^{p-1}}\right)\right],

which, together with (2.5) and (2.32), easily yields

|(i=1mμiσ(μi+|yξi|)2+σ+ε2)1Eξ(y)|Cε42pp(log|logε||logε|)p1exp[O(logp|logε||logε|p1)]=o(1γ4p).\displaystyle\left|\left(\sum\limits_{i=1}^{m}\frac{\mu_{i}^{\sigma}}{(\mu_{i}+|y-\xi^{\prime}_{i}|)^{2+\sigma}}+\varepsilon^{2}\right)^{-1}E_{\xi^{\prime}}(y)\right|\leq C\varepsilon^{\frac{4-2p}{p}}\left(\frac{\log|\log\varepsilon|}{|\log\varepsilon|}\right)^{p-1}\exp\left[O\left(\frac{\log^{p}|\log\varepsilon|}{|\log\varepsilon|^{p-1}}\right)\right]=o\left(\frac{1}{\gamma^{4p}}\right). (2.34)

Let us fix an index i{1,,m}i\in\{1,\ldots,m\} and the region |yξi|1/(εθ|logε|2κ)|y-\xi^{\prime}_{i}|\leq 1/(\varepsilon^{\theta}|\log\varepsilon|^{2\kappa}) with any θ<1\theta<1 but close enough to 11. From (2.21), (2.26) and Taylor expansion we have that in the ball |yξi|<μi|logε|τ|y-\xi^{\prime}_{i}|<\mu_{i}|\log\varepsilon|^{\tau} with τ10\tau\geq 10 large but fixed,

(1+Vξpγp)p1=\displaystyle\left(1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}\right)^{p-1}=  1+p1p1γpωμi(yξi)A1+(p1p)21γ2p[ωμi1+p22(p1)(ωμi)2](yξi)A2\displaystyle\,1+\frac{p-1}{p}\frac{1}{\gamma^{p}}\underbrace{\omega_{\mu_{i}}(y-\xi^{\prime}_{i})}\limits_{A_{1}}+\left(\frac{p-1}{p}\right)^{2}\frac{1}{\gamma^{2p}}\underbrace{\left[\omega^{1}_{\mu_{i}}+\frac{p-2}{2(p-1)}(\omega_{\mu_{i}})^{2}\right](y-\xi^{\prime}_{i})}\limits_{A_{2}}
+(p1p)31γ3p[ωμi2+p2p1ωμiωμi1+(p2)(p3)6(p1)2(ωμi)3](yξi)A3\displaystyle+\left(\frac{p-1}{p}\right)^{3}\frac{1}{\gamma^{3p}}\underbrace{\left[\omega^{2}_{\mu_{i}}+\frac{p-2}{p-1}\omega_{\mu_{i}}\omega^{1}_{\mu_{i}}+\frac{(p-2)(p-3)}{6(p-1)^{2}}(\omega_{\mu_{i}})^{3}\right](y-\xi^{\prime}_{i})}\limits_{A_{3}}
+(p1p)41γ4p[ωμi3+p22(p1)(ωμi1)2+p2p1ωμiωμi2+(p2)(p3)2(p1)2(ωμi)2ωμi1A4\displaystyle+\left(\frac{p-1}{p}\right)^{4}\frac{1}{\gamma^{4p}}\underbrace{\left[\omega^{3}_{\mu_{i}}+\frac{p-2}{2(p-1)}(\omega^{1}_{\mu_{i}})^{2}+\frac{p-2}{p-1}\omega_{\mu_{i}}\omega^{2}_{\mu_{i}}+\frac{(p-2)(p-3)}{2(p-1)^{2}}(\omega_{\mu_{i}})^{2}\omega^{1}_{\mu_{i}}\right.}\limits_{A_{4}}
+(p2)(p3)(p4)24(p1)3(ωμi)4](yξi)A4+O(logβ(μi+|yξi|)γ5p),\displaystyle\underbrace{\left.+\,\frac{(p-2)(p-3)(p-4)}{24(p-1)^{3}}(\omega_{\mu_{i}})^{4}\right](y-\xi^{\prime}_{i})}\limits_{A_{4}}+O\left(\frac{\log^{\beta}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{5p}}\right),

and

γp[(1+Vξpγp)p1]\displaystyle\gamma^{p}\left[\left(1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}\right)^{p}-1\right] =ωμi(yξi)+p1p1γp[ωμi1+12(ωμi)2](yξi)B1\displaystyle=\omega_{\mu_{i}}(y-\xi^{\prime}_{i})+\frac{p-1}{p}\frac{1}{\gamma^{p}}\underbrace{\left[\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right](y-\xi^{\prime}_{i})}\limits_{B_{1}}
+(p1p)21γ2p[ωμi2+ωμiωμi1+p26(p1)(ωμi)3](yξi)B2\displaystyle\,\,+\left(\frac{p-1}{p}\right)^{2}\frac{1}{\gamma^{2p}}\underbrace{\left[\omega^{2}_{\mu_{i}}+\omega_{\mu_{i}}\omega^{1}_{\mu_{i}}+\frac{p-2}{6(p-1)}(\omega_{\mu_{i}})^{3}\right](y-\xi^{\prime}_{i})}\limits_{B_{2}}
+(p1p)31γ3p[ωμi3+12(ωμi1)2+ωμiωμi2+p22(p1)(ωμi)2ωμi1+(p2)(p3)24(p1)2(ωμi)4](yξi)B3\displaystyle\,\,+\left(\frac{p-1}{p}\right)^{3}\frac{1}{\gamma^{3p}}\underbrace{\left[\omega^{3}_{\mu_{i}}+\frac{1}{2}(\omega^{1}_{\mu_{i}})^{2}+\omega_{\mu_{i}}\omega^{2}_{\mu_{i}}+\frac{p-2}{2(p-1)}(\omega_{\mu_{i}})^{2}\omega^{1}_{\mu_{i}}+\frac{(p-2)(p-3)}{24(p-1)^{2}}(\omega_{\mu_{i}})^{4}\right](y-\xi^{\prime}_{i})}\limits_{B_{3}}
+(p1p)41γ4p[ωμi4+ωμi1ωμi2+p22(p1)(ωμi)2ωμi2+p22(p1)ωμi(ωμi1)2+(p2)(p3)6(p1)2(ωμi)3ωμi1B4\displaystyle\,\,+\left(\frac{p-1}{p}\right)^{4}\frac{1}{\gamma^{4p}}\underbrace{\left[\omega^{4}_{\mu_{i}}+\omega^{1}_{\mu_{i}}\omega^{2}_{\mu_{i}}+\frac{p-2}{2(p-1)}(\omega_{\mu_{i}})^{2}\omega^{2}_{\mu_{i}}+\frac{p-2}{2(p-1)}\omega_{\mu_{i}}(\omega^{1}_{\mu_{i}})^{2}+\frac{(p-2)(p-3)}{6(p-1)^{2}}(\omega_{\mu_{i}})^{3}\omega^{1}_{\mu_{i}}\right.}\limits_{B_{4}}
+(p2)(p3)(p4)120(p1)3(ωμi)5](yξi)B4+O(logβ(μi+|yξi|)γ5p),\displaystyle\,\,\underbrace{+\left.\frac{(p-2)(p-3)(p-4)}{120(p-1)^{3}}(\omega_{\mu_{i}})^{5}\right](y-\xi^{\prime}_{i})}\limits_{B_{4}}+O\left(\frac{\log^{\beta}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{5p}}\right),

where β>1\beta>1 is large but fixed, independent of ε\varepsilon. Then

eγp[(1+Vξpγp)p1]=eωμi(yξi){1+p1p1γpB1+(p1p)21γ2p[B2+12(B1)2]+(p1p)31γ3p[B3+B1B2\displaystyle e^{\gamma^{p}\left[\left(1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}\right)^{p}-1\right]}=e^{\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)}\left\{1+\frac{p-1}{p}\frac{1}{\gamma^{p}}B_{1}+\left(\frac{p-1}{p}\right)^{2}\frac{1}{\gamma^{2p}}\left[B_{2}+\frac{1}{2}(B_{1})^{2}\right]+\left(\frac{p-1}{p}\right)^{3}\frac{1}{\gamma^{3p}}\big{[}B_{3}+B_{1}B_{2}\right.\quad
+16(B1)3]+(p1p)41γ4p[B4+12(B2)2+B1B3+12(B1)2B2+124(B1)4]+O(logβ(μi+|yξi|)γ5p)}.\displaystyle\left.\left.+\frac{1}{6}(B_{1})^{3}\right]+\left(\frac{p-1}{p}\right)^{4}\frac{1}{\gamma^{4p}}\left[B_{4}+\frac{1}{2}(B_{2})^{2}+B_{1}B_{3}+\frac{1}{2}(B_{1})^{2}B_{2}+\frac{1}{24}(B_{1})^{4}\right]+O\left(\frac{\log^{\beta}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{5p}}\right)\right\}. (2.35)

Furthermore, by (2.25),

f(Vξ)=eωμi(yξi){1+p1p1γp(A1+B1)+(p1p)21γ2p[A2+A1B1+B2+12(B1)2]+(p1p)31γ3p[A3\displaystyle f(V_{\xi^{\prime}})=e^{\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)}\left\{1+\frac{p-1}{p}\frac{1}{\gamma^{p}}\left(A_{1}+B_{1}\right)+\left(\frac{p-1}{p}\right)^{2}\frac{1}{\gamma^{2p}}\left[A_{2}+A_{1}B_{1}+B_{2}+\frac{1}{2}(B_{1})^{2}\right]+\left(\frac{p-1}{p}\right)^{3}\frac{1}{\gamma^{3p}}\big{[}A_{3}\right.\quad
+A2B1+A1(B2+12(B1)2)+B3+B1B2+16(B1)3]+(p1p)41γ4p[A4+A3B1+A2(B2+12(B1)2)\displaystyle\left.+A_{2}B_{1}+A_{1}\left(B_{2}+\frac{1}{2}(B_{1})^{2}\right)+B_{3}+B_{1}B_{2}+\frac{1}{6}(B_{1})^{3}\right]+\left(\frac{p-1}{p}\right)^{4}\frac{1}{\gamma^{4p}}\left[A_{4}+A_{3}B_{1}+A_{2}\left(B_{2}+\frac{1}{2}(B_{1})^{2}\right)\right.\,\,\,\,
+A1(B3+B1B2+16(B1)3)+B4+12(B2)2+B1B3+12(B1)2B2+124(B1)4]+O(logβ(μi+|yξi|)γ5p)}.\displaystyle\left.\left.+A_{1}\left(B_{3}+B_{1}B_{2}+\frac{1}{6}(B_{1})^{3}\right)+B_{4}+\frac{1}{2}(B_{2})^{2}+B_{1}B_{3}+\frac{1}{2}(B_{1})^{2}B_{2}+\frac{1}{24}(B_{1})^{4}\right]+O\left(\frac{\log^{\beta}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{5p}}\right)\right\}. (2.36)

By (2.31), (2) and the definitions of fμijf^{j}_{\mu_{i}}, j=1,2,3,4j=1,2,3,4 in (2.9)-(2) we can derive that in the region |yξi|<μi|logε|τ|y-\xi^{\prime}_{i}|<\mu_{i}|\log\varepsilon|^{\tau},

Eξ=Δa(εy)Vξ+ε2Vξf(Vξ)+pγpε2=eωμi(yξi)O(logβ(μi+|yξi|)γ5p),\displaystyle E_{\xi^{\prime}}=-\Delta_{a(\varepsilon y)}V_{\xi^{\prime}}+\varepsilon^{2}V_{\xi^{\prime}}-f(V_{\xi^{\prime}})+p\gamma^{p}\varepsilon^{2}=e^{\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)}O\left(\frac{\log^{\beta}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{5p}}\right),

and by (2.5)-(2.6),

|(i=1mμiσ(μi+|yξi|)2+σ+ε2)1Eξ(y)|Cγ5pμi2σlogβ(μi+|yξi|)(μi+|yξi|)2σCγ4p.\displaystyle\left|\left(\sum\limits_{i=1}^{m}\frac{\mu_{i}^{\sigma}}{(\mu_{i}+|y-\xi^{\prime}_{i}|)^{2+\sigma}}+\varepsilon^{2}\right)^{-1}E_{\xi^{\prime}}(y)\right|\leq\frac{C}{\gamma^{5p}}\frac{\,\mu_{i}^{2-\sigma}\log^{\beta}\big{(}\mu_{i}+|y-\xi^{\prime}_{i}|\big{)}\,}{\big{(}\mu_{i}+|y-\xi^{\prime}_{i}|\big{)}^{2-\sigma}}\leq\frac{C}{\gamma^{4p}}. (2.37)

As in the remaining region μi|logε|τ|yξi|1/(εθ|logε|2κ)\mu_{i}|\log\varepsilon|^{\tau}\leq|y-\xi^{\prime}_{i}|\leq 1/(\varepsilon^{\theta}|\log\varepsilon|^{2\kappa}) with any θ<1\theta<1 but close enough to 11, by (2.9)-(2.13) and (2.31) we find that there exists a constant D>0D>0, independent of every θ<1\theta<1, such that

|Δa(εy)Vξ+ε2Vξ+pγpε2|D|logε|4eωμi(yξi).\displaystyle\big{|}-\Delta_{a(\varepsilon y)}V_{\xi^{\prime}}+\varepsilon^{2}V_{\xi^{\prime}}+p\gamma^{p}\varepsilon^{2}\big{|}\leq D|\log\varepsilon|^{4}e^{\omega_{\mu_{i}}(y-\xi^{\prime}_{i})}. (2.38)

On the other hand, in the same region, by (2.5), (2.13), (2.21) and (2.26) we have that

1+Vξpγp=\displaystyle 1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}= 1+1pγp{[114j=14(p1p)jDμijγjp]ωμi(yξi)+[j=14(p1p)jDμijγjp]14log(8μi2)+O(μi|yξi|)}\displaystyle 1+\frac{1}{p\gamma^{p}}\left\{\left[1-\frac{1}{4}\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)+\left[\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\frac{1}{4}\log\left(\frac{8}{\mu_{i}^{2}}\right)+O\left(\frac{\mu_{i}}{|y-\xi^{\prime}_{i}|}\right)\right\}
=\displaystyle= 1+1pγp{[1+O(log|logε||logε|)]ωμi(yξi)+O(log2|logε||logε|)},\displaystyle 1+\frac{1}{p\gamma^{p}}\left\{\left[1+O\left(\frac{\log|\log\varepsilon|}{|\log\varepsilon|}\right)\right]\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)+O\left(\frac{\log^{2}|\log\varepsilon|}{|\log\varepsilon|}\right)\right\},

then

1θ+2κlog|logε||logε|+O(1|logε|)1+Vξpγp1τlog|logε||logε|+O(1|logε|).\displaystyle 1-\theta+2\kappa\frac{\log|\log\varepsilon|}{|\log\varepsilon|}+O\left(\frac{1}{|\log\varepsilon|}\right)\leq 1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}\leq 1-\tau\frac{\log|\log\varepsilon|}{|\log\varepsilon|}+O\left(\frac{1}{|\log\varepsilon|}\right). (2.39)

Furthermore, by the Taylor expansion we find that there exists a constant D>0D>0, independent of every θ<1\theta<1, such that

eγp[(1+Vξpγp)p1]De[114j=14(p1p)jDμijγjp]ωμi(yξi),\displaystyle e^{\gamma^{p}\left[\left(1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}\right)^{p}-1\right]}\leq De^{\left[1-\frac{1}{4}\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)}, (2.40)

and

(1+Vξpγp)p1D(1+logp1|logε||logε|p1).\displaystyle\left(1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}\right)^{p-1}\leq D\left(1+\frac{\log^{p-1}|\log\varepsilon|}{|\log\varepsilon|^{p-1}}\right). (2.41)

Hence in the region μi|logε|τ|yξi|1/(εθ|logε|2κ)\mu_{i}|\log\varepsilon|^{\tau}\leq|y-\xi^{\prime}_{i}|\leq 1/(\varepsilon^{\theta}|\log\varepsilon|^{2\kappa}) with any θ<1\theta<1 but close enough to 11, by (2.38), (2.40) and (2.41),

|(i=1mμiσ(μi+|yξi|)2+σ+ε2)1Eξ(y)|C[|logε|4|yξiμi|σ2+(1μi2)O(log|logε||logε|)|yξiμi|σ1+O(log|logε||logε|)]=o(1γ4p),\displaystyle\left|\left(\sum\limits_{i=1}^{m}\frac{\mu_{i}^{\sigma}}{(\mu_{i}+|y-\xi^{\prime}_{i}|)^{2+\sigma}}+\varepsilon^{2}\right)^{-1}E_{\xi^{\prime}}(y)\right|\leq C\left[|\log\varepsilon|^{4}\left|\frac{y-\xi^{\prime}_{i}}{\mu_{i}}\right|^{\sigma-2}+\left(\frac{1}{\mu_{i}^{2}}\right)^{O\left(\frac{\log|\log\varepsilon|}{|\log\varepsilon|}\right)}\left|\frac{y-\xi^{\prime}_{i}}{\mu_{i}}\right|^{\sigma-1+O\left(\frac{\log|\log\varepsilon|}{|\log\varepsilon|}\right)}\right]=o\left(\frac{1}{\gamma^{4p}}\right),

which, together with (2.34) and (2.37), implies the validity of estimate (2.30). ∎

3. Analysis of the linearized operator

In this section we perform the solvability theory for the linear operator \mathcal{L} under the weighted LL^{\infty}-norm introduced in (2.29), uniformly on ξ𝒪ε\xi\in\mathcal{O}_{\varepsilon}. Notice that (ϕ)=Δa(εy)ϕ+ε2ϕWξϕ\mathcal{L}(\phi)=-\Delta_{a(\varepsilon y)}\phi+\varepsilon^{2}\phi-W_{\xi^{\prime}}\phi, where Wξ=f(Vξ)W_{\xi^{\prime}}=f^{\prime}(V_{\xi^{\prime}}). As in Proposition 2.2, we have the following asymptotical expansions with respect to WξW_{\xi^{\prime}} and f′′(Vξ)f^{\prime\prime}(V_{\xi^{\prime}}), respectively.

Proposition 3.1.  There exists a constant D0>0D_{0}>0 such that for any ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon} and for any ε\varepsilon small enough,

|Wξ(y)|D0i=1me[114j=14(p1p)jDμijγjp]ωμi(yξi)and|f′′(Vξ)|D0i=1me[114j=14(p1p)jDμijγjp]ωμi(yξi),\displaystyle\big{|}W_{\xi^{\prime}}(y)\big{|}\leq D_{0}\sum_{i=1}^{m}e^{\left[1-\frac{1}{4}\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)}\qquad\textrm{and}\qquad\big{|}f^{\prime\prime}(V_{\xi^{\prime}})\big{|}\leq D_{0}\sum_{i=1}^{m}e^{\left[1-\frac{1}{4}\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)}, (3.1)

uniformly in the region μi|logε|τ|yξi|1/(εθ|logε|2κ)\mu_{i}|\log\varepsilon|^{\tau}\leq|y-\xi^{\prime}_{i}|\leq 1/(\varepsilon^{\theta}|\log\varepsilon|^{2\kappa}) with any θ<1\theta<1 but close enough to 11. While if |yξi|<μi|logε|τ|y-\xi^{\prime}_{i}|<\mu_{i}|\log\varepsilon|^{\tau} with τ10\tau\geq 10 large but fixed, then

Wξ(y)=8μi2(μi2+|yξi|2)2{1+p1p1γp[1+ωμi1+12(ωμi)2+2ωμi](yξi)+O(log4(μi+|yξi|)γ2p)}.\displaystyle W_{\xi^{\prime}}(y)=\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}\left\{1+\frac{p-1}{p}\frac{1}{\gamma^{p}}\left[1+\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}+2\omega_{\mu_{i}}\right]\left(y-\xi^{\prime}_{i}\right)+O\left(\frac{\log^{4}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{2p}}\right)\right\}. (3.2)

In addition,

WξCandf′′(Vξ)C.\displaystyle\|W_{\xi^{\prime}}\|_{*}\leq C\,\,\qquad\ \,\,\textrm{and}\,\,\qquad\ \,\,\|f^{\prime\prime}(V_{\xi^{\prime}})\|_{*}\leq C. (3.3)
Proof.

For the sake of simplicity, we consider the estimates for the potential WξW_{\xi^{\prime}} only. By (2.25) we can compute

Wξ=f(Vξ)=p1p1γp(1+Vξpγp)p2eγp[(1+Vξpγp)p1]+(1+Vξpγp)2(p1)eγp[(1+Vξpγp)p1]:=I+J.\displaystyle W_{\xi^{\prime}}=f^{\prime}(V_{\xi^{\prime}})=\frac{p-1}{p}\frac{1}{\gamma^{p}}\left(1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}\right)^{p-2}e^{\gamma^{p}\left[\left(1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}\right)^{p}-1\right]}+\left(1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}\right)^{2(p-1)}e^{\gamma^{p}\left[\left(1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}\right)^{p}-1\right]}:=I+J.

If |yξi|<μi|logε|τ|y-\xi^{\prime}_{i}|<\mu_{i}|\log\varepsilon|^{\tau} with any i{1,,m}i\in\{1,\ldots,m\} and τ10\tau\geq 10 large but fixed, by using (2) and Taylor expansion we obtain

I=\displaystyle I= eωμi(yξi){1+p1p1γp[ωμi1+12(ωμi)2](yξi)+O(log4(μi+|yξi|)γ2p)}\displaystyle e^{\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)}\left\{1+\frac{p-1}{p}\frac{1}{\gamma^{p}}\left[\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right]\left(y-\xi^{\prime}_{i}\right)+O\left(\frac{\log^{4}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{2p}}\right)\right\}
×p2p1γp[p1p2+p1p1γpωμi(yξi)+O(log2(μi+|yξi|)γ2p)],\displaystyle\times\frac{p-2}{p}\frac{1}{\gamma^{p}}\left[\frac{p-1}{p-2}+\frac{p-1}{p}\frac{1}{\gamma^{p}}\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)+O\left(\frac{\log^{2}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{2p}}\right)\right],

and

J=\displaystyle J= eωμi(yξi){1+p1p1γp[ωμi1+12(ωμi)2](yξi)+O(log4(μi+|yξi|)γ2p)}\displaystyle e^{\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)}\left\{1+\frac{p-1}{p}\frac{1}{\gamma^{p}}\left[\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}\right]\left(y-\xi^{\prime}_{i}\right)+O\left(\frac{\log^{4}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{2p}}\right)\right\}
×[1+p1p2γpωμi(yξi)+O(log2(μi+|yξi|)γ2p)],\displaystyle\times\left[1+\frac{p-1}{p}\frac{2}{\gamma^{p}}\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)+O\left(\frac{\log^{2}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{2p}}\right)\right],

and hence

Wξ(y)=eωμi(yξi){1+p1p1γp[1+ωμi1+12(ωμi)2+2ωμi](yξi)+O(log4(μi+|yξi|)γ2p)}.\displaystyle W_{\xi^{\prime}}(y)=e^{\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)}\left\{1+\frac{p-1}{p}\frac{1}{\gamma^{p}}\left[1+\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}+2\omega_{\mu_{i}}\right]\left(y-\xi^{\prime}_{i}\right)+O\left(\frac{\log^{4}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{2p}}\right)\right\}. (3.4)

While if μi|logε|τ|yξi|1/(εθ|logε|2κ)\mu_{i}|\log\varepsilon|^{\tau}\leq|y-\xi^{\prime}_{i}|\leq 1/(\varepsilon^{\theta}|\log\varepsilon|^{2\kappa}) with any θ<1\theta<1 but close enough to 11, by (2.39) we find

(1+Vξ(y)pγp)p2=O(1)and(1+Vξ(y)pγp)2(p1)=O(1),\displaystyle\left(1+\frac{V_{\xi^{\prime}}(y)}{p\gamma^{p}}\right)^{p-2}=O\left(1\right)\qquad\qquad\textrm{and}\qquad\qquad\left(1+\frac{V_{\xi^{\prime}}(y)}{p\gamma^{p}}\right)^{2(p-1)}=O\left(1\right),

and by (2.40),

|Wξ(y)|Ceγp[(1+Vξpγp)p1]=O(1)e[114j=14(p1p)jDμijγjp]ωμi(yξi).\displaystyle\big{|}W_{\xi^{\prime}}(y)\big{|}\leq Ce^{\gamma^{p}\left[\left(1+\frac{V_{\xi^{\prime}}}{p\gamma^{p}}\right)^{p}-1\right]}=O\left(1\right)e^{\left[1-\frac{1}{4}\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{i}}}{\gamma^{jp}}\right]\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)}. (3.5)

Additionally, if |yξi|1/(ε|logε|2κ)|y-\xi^{\prime}_{i}|\geq 1/(\varepsilon|\log\varepsilon|^{2\kappa}) for all i=1,,mi=1,\ldots,m, by (2.33) we deduce

I=O(ε4plogp2|logε|)|logε|p1exp[O(logp|logε||logε|p1)],J=O(ε4plog2(p1)|logε|)|logε|2(p1)exp[O(logp|logε||logε|p1)],\displaystyle I=\frac{O(\varepsilon^{\frac{4}{p}}\log^{p-2}|\log\varepsilon|)}{|\log\varepsilon|^{p-1}}\exp\left[O\left(\frac{\log^{p}|\log\varepsilon|}{|\log\varepsilon|^{p-1}}\right)\right],\,\quad\quad\,J=\frac{O(\varepsilon^{\frac{4}{p}}\log^{2(p-1)}|\log\varepsilon|)}{|\log\varepsilon|^{2(p-1)}}\exp\left[O\left(\frac{\log^{p}|\log\varepsilon|}{|\log\varepsilon|^{p-1}}\right)\right],

and so

|Wξ(y)|=(logp2|logε||logε|p1+log2(p1)|logε||logε|2(p1))O(ε4p)exp[O(logp|logε||logε|p1)].\displaystyle\big{|}W_{\xi^{\prime}}(y)\big{|}=\left(\frac{\log^{p-2}|\log\varepsilon|}{|\log\varepsilon|^{p-1}}+\frac{\log^{2(p-1)}|\log\varepsilon|}{|\log\varepsilon|^{2(p-1)}}\right)O(\varepsilon^{\frac{4}{p}})\exp\left[O\left(\frac{\log^{p}|\log\varepsilon|}{|\log\varepsilon|^{p-1}}\right)\right]. (3.6)

Jointing together (3.4)-(3.6) and the definition of \left\|\cdot\right\|_{*} in (2.29), we obtain the first estimate in (3.3). ∎

Given hL(Ωε)h\in L^{\infty}(\Omega_{\varepsilon}) and points ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon}, we consider the following linear problem of finding a function ϕ\phi and scalars cijc_{ij}\in\mathbb{R}, i=1,,mi=1,\ldots,m, j=1,Jij=1,J_{i}, such that

{(ϕ)=Δa(εy)ϕ+ε2ϕWξϕ=h+1a(εy)i=1mj=1JicijχiZijinΩε,ϕν=0onΩε,ΩεχiZijϕ=0i=1,,m,j=1,Ji,\left\{\begin{aligned} &\mathcal{L}(\phi)=-\Delta_{a(\varepsilon y)}\phi+\varepsilon^{2}\phi-W_{\xi^{\prime}}\phi=h+\frac{1}{a(\varepsilon y)}\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{J_{i}}c_{ij}\chi_{i}\,Z_{ij}\,\,\ \,\,\textrm{in}\,\,\,\,\,\,\Omega_{\varepsilon},\\ &\frac{\partial\phi}{\partial\nu}=0\,\,\,\,\,\,\,\,\ \ \ \ \ \ \ \ \ \ \ \ \ \,\,\qquad\qquad\qquad\quad\qquad\qquad\qquad\qquad\ \,\ \ \ \,\,\,\ \,\ \,\textrm{on}\,\,\,\,\partial\Omega_{\varepsilon},\\[2.84526pt] &\int_{\Omega_{\varepsilon}}\chi_{i}\,Z_{ij}\phi=0\,\qquad\qquad\qquad\quad\qquad\qquad\qquad\forall\,\,i=1,\ldots,m,\,\,\,j=1,J_{i},\end{aligned}\right. (3.7)

where Ji=2J_{i}=2 if i=1,,li=1,\ldots,l while Ji=1J_{i}=1 if i=l+1,,mi=l+1,\ldots,m, and ZijZ_{ij}, χi\chi_{i}, are defined as follows: let R0>0R_{0}>0 be a large but fixed number and χ:[0,1]\chi:\mathbb{R}\rightarrow[0,1] be a smooth, non-increasing cut-off function such that χ(r)=1\chi(r)=1 if rR0r\leq R_{0}, and χ(r)=0\chi(r)=0 if rR0+1r\geq R_{0}+1. Set

Z0(z)=|z|21|z|2+1,Zj(z)=zj|z|2+1,j=1, 2.\displaystyle Z_{0}(z)=\frac{|z|^{2}-1}{|z|^{2}+1},\,\,\quad\qquad\quad\,\,Z_{j}(z)=\frac{z_{j}}{|z|^{2}+1},\,\,\,\,j=1,\,2. (3.8)

For each i=1,,li=1,\ldots,l, we have ξiΩ\xi_{i}\in\Omega and define

χi(y)=χ(|yξi|μi),Zij(y)=1μiZj(yξiμi),j=0,1,2.\displaystyle\chi_{i}(y)=\chi\left(\frac{|y-\xi^{\prime}_{i}|}{\mu_{i}}\right),\,\qquad\qquad\,Z_{ij}(y)=\frac{1}{\mu_{i}}Z_{j}\left(\frac{y-\xi_{i}^{\prime}}{\mu_{i}}\right),\,\quad\,j=0,1,2. (3.9)

For each i=l+1,,mi=l+1,\ldots,m, we have ξiΩ\xi_{i}\in\partial\Omega and define a rotation map Ai:22A_{i}:\mathbb{R}^{2}\mapsto\mathbb{R}^{2} such that AiνΩ(ξi)=ν+2(0)A_{i}\nu_{\Omega}(\xi_{i})=\nu_{\mathbb{R}_{+}^{2}}(0). Let 𝒢(x1)\mathcal{G}(x_{1}) be the defining function for the boundary Ai(Ω{ξi})A_{i}(\partial\Omega-\{\xi_{i}\}) in a small neighborhood of the origin, that is, there exist R1>0R_{1}>0, δ>0\delta>0 small and a smooth function 𝒢:(R1,R1)\mathcal{G}:(-R_{1},R_{1})\mapsto\mathbb{R} satisfying 𝒢(0)=0\mathcal{G}(0)=0, 𝒢(0)=0\mathcal{G}^{\prime}(0)=0 and such that Ai(Ω{ξi})Bδ(0,0)={(x1,x2):R1<x1<R1,x2>𝒢(x1)}Bδ(0,0)A_{i}(\Omega-\{\xi_{i}\})\cap B_{\delta}(0,0)=\{(x_{1},x_{2}):\,-R_{1}<x_{1}<R_{1},\,x_{2}>\mathcal{G}(x_{1})\}\cap B_{\delta}(0,0). Then we consider the flattening change of variables Fi:Bδ(0,0)Ai(Ω{ξi})¯2F_{i}:B_{\delta}(0,0)\cap\overline{A_{i}(\Omega-\{\xi_{i}\})}\mapsto\mathbb{R}^{2} defined by

Fi=(Fi1,Fi2),whereFi1=x1+x2𝒢(x1) 1+|𝒢(x1)|2𝒢(x1),Fi2=x2𝒢(x1).\displaystyle F_{i}=(F_{i1},F_{i2}),\,\qquad\,\textrm{where}\,\quad\,F_{i1}=x_{1}+\frac{x_{2}-\mathcal{G}(x_{1})}{\,1+|\mathcal{G}^{\prime}(x_{1})|^{2}\,}\mathcal{G}^{\prime}(x_{1}),\ \qquad\,F_{i2}=x_{2}-\mathcal{G}(x_{1}).

Then for each i=l+1,,mi=l+1,\ldots,m, we set

Fiε(y)=1εFi(Ai(εyξi)),\displaystyle F_{i}^{\varepsilon}(y)=\frac{1}{\varepsilon}F_{i}\big{(}A_{i}(\varepsilon y-\xi_{i})\big{)},

and define

χi(y)=χ(1μi|Fiε(y)|),Zij(y)=1μiZj(1μiFiε(y)),j=0,1.\displaystyle\chi_{i}(y)=\chi\left(\frac{1}{\mu_{i}}|F_{i}^{\varepsilon}(y)|\right),\,\qquad\qquad\,Z_{ij}(y)=\frac{1}{\mu_{i}}Z_{j}\left(\frac{1}{\mu_{i}}F_{i}^{\varepsilon}(y)\right),\,\quad\,j=0,1. (3.10)

Note that FiεF^{\varepsilon}_{i}, i=l+1,,mi=l+1,\ldots,m, preserves the homogeneous Neumann boundary condition. Moreover,

Δa(εy)Zi0+8μi2(μi2+|yξi|2)2Zi0=O(εμi(μi+|yξi|)3),i=1,,m.\displaystyle\Delta_{a(\varepsilon y)}Z_{i0}+\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}Z_{i0}=O\left(\frac{\varepsilon\mu_{i}}{(\mu_{i}+|y-\xi^{\prime}_{i}|)^{3}}\right),\,\,\,\,\ \,\forall\,\,i=1,\ldots,m. (3.11)

Proposition 3.2.  Let mm be a positive integer. Then there exist constants C>0C>0 and ε0>0\varepsilon_{0}>0 such that for any 0<ε<ε00<\varepsilon<\varepsilon_{0}, any points ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon} and any hL(Ωε)h\in L^{\infty}(\Omega_{\varepsilon}), there is a unique solution ϕL(Ωε)\phi\in L^{\infty}(\Omega_{\varepsilon}) and cijc_{ij}\in\mathbb{R}, i=1,,mi=1,\ldots,m, j=1,Jij=1,J_{i} to problem (3.7). Moreover,

ϕL(Ωε)C|logε|handi=1mj=1Jiμi|cij|Ch.\displaystyle\|\phi\|_{L^{\infty}(\Omega_{\varepsilon})}\leq C|\log\varepsilon|\,\|h\|_{*}\,\,\qquad\,\quad\,\,\textrm{and}\,\,\qquad\,\quad\,\,\sum_{i=1}^{m}\sum_{j=1}^{J_{i}}\mu_{i}|c_{ij}|\leq C\|h\|_{*}.

The proof of this result will be split into a series of lemmas which we state and prove as follows.

Lemma 3.3.  There exist constants R1>0R_{1}>0 and C>0C>0, independent of ε\varepsilon, such that for any sufficiently small ε\varepsilon, any points ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon} and any σ(0,1)\sigma\in(0,1), there is a function

ψ:Ωεi=1mBR1μi(ξi)\displaystyle\psi:\,\,\Omega_{\varepsilon}\setminus\bigcup_{i=1}^{m}B_{R_{1}\mu_{i}}(\xi^{\prime}_{i})\,\,\mapsto\mathbb{R}

smooth and positive so that

(ψ)=Δa(εy)ψ+ε2ψWξψ\displaystyle\mathcal{L}(\psi)=-\Delta_{a(\varepsilon y)}\psi+\varepsilon^{2}\psi-W_{\xi^{\prime}}\psi i=1mμiσ|yξi|2+σ+ε2inΩεi=1mBR1μi(ξi),\displaystyle\geq\sum_{i=1}^{m}\frac{\mu_{i}^{\sigma}}{|y-\xi^{\prime}_{i}|^{2+\sigma}}+\varepsilon^{2}\,\,\,\quad\,\,\textrm{in}\,\,\,\,\,\,\,\Omega_{\varepsilon}\setminus\bigcup_{i=1}^{m}B_{R_{1}\mu_{i}}(\xi^{\prime}_{i}),
ψν\displaystyle\frac{\partial\psi}{\partial\nu} 0onΩεi=1mBR1μi(ξi),\displaystyle\geq 0\,\,\,\qquad\qquad\qquad\qquad\quad\,\,\textrm{on}\,\,\,\,\partial\Omega_{\varepsilon}\setminus\bigcup_{i=1}^{m}B_{R_{1}\mu_{i}}(\xi^{\prime}_{i}),
ψ\displaystyle\psi >0inΩεi=1mBR1μi(ξi),\displaystyle>0\,\,\,\qquad\qquad\qquad\qquad\quad\,\,\textrm{in}\,\,\,\,\,\,\,\Omega_{\varepsilon}\setminus\bigcup_{i=1}^{m}B_{R_{1}\mu_{i}}(\xi^{\prime}_{i}),
ψ\displaystyle\psi 1onΩε(i=1mBR1μi(ξi)).\displaystyle\geq 1\,\,\,\qquad\qquad\qquad\qquad\quad\,\,\textrm{on}\,\,\,\,\Omega_{\varepsilon}\cap\left(\bigcup_{i=1}^{m}\partial B_{R_{1}\mu_{i}}(\xi^{\prime}_{i})\right).

Moreover, ψ\psi is uniformly bounded, i.e.

1<ψCinΩεi=1mBR1μi(ξi).\displaystyle 1<\psi\leq C\,\,\,\quad\textrm{in}\,\,\,\,\Omega_{\varepsilon}\setminus\bigcup_{i=1}^{m}B_{R_{1}\mu_{i}}(\xi^{\prime}_{i}).
Proof.

Let us take

ψ=i=1m(1μiσ|yξi|σ)+C1Ψ0(y),\displaystyle\psi=\sum_{i=1}^{m}\left(1-\frac{\mu_{i}^{\sigma}}{|y-\xi^{\prime}_{i}|^{\sigma}}\right)+C_{1}\Psi_{0}(y),

where Ψ0\Psi_{0} is the uniformly bounded solution of

{Δa(εy)Ψ0+ε2Ψ0=ε2inΩε,Ψ0ν=εonΩε.\displaystyle\left\{\begin{aligned} &-\Delta_{a(\varepsilon y)}\Psi_{0}+\varepsilon^{2}\Psi_{0}=\varepsilon^{2}\,\quad\,\,\textrm{in}\,\,\,\,\Omega_{\varepsilon},\\ &\frac{\partial\Psi_{0}}{\partial\nu}=\varepsilon\,\qquad\qquad\qquad\qquad\,\textrm{on}\,\,\,\,\partial\Omega_{\varepsilon}.\end{aligned}\right.

Choosing the positive constant C1C_{1} larger if necessary, it is directly checked that ψ\psi meets all the conditions of the lemma for R1R_{1} large but ε\varepsilon small enough. ∎

Given hL(Ωε)h\in L^{\infty}(\Omega_{\varepsilon}) and ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon}, let us consider the linear equation

{(ϕ)=Δa(εy)ϕ+ε2ϕWξϕ=hinΩε,ϕν=0onΩε.\left\{\begin{aligned} &\mathcal{L}(\phi)=-\Delta_{a(\varepsilon y)}\phi+\varepsilon^{2}\phi-W_{\xi^{\prime}}\phi=h\,\,\ \,\,\textrm{in}\,\,\,\,\,\,\Omega_{\varepsilon},\\ &\frac{\partial\phi}{\partial\nu}=0\,\,\,\,\,\qquad\qquad\qquad\qquad\qquad\qquad\ \,\textrm{on}\,\,\,\,\partial\Omega_{\varepsilon}.\end{aligned}\right. (3.12)

Lemma 3.4.  There exist R0>0R_{0}>0 and ε0>0\varepsilon_{0}>0 such that for any 0<ε<ε00<\varepsilon<\varepsilon_{0} and any solution ϕ\phi of (3.12) with the orthogonality conditions

ΩεχiZijϕ=0i=1,,m,j=0,1,Ji,\displaystyle\int_{\Omega_{\varepsilon}}\chi_{i}Z_{ij}\phi=0\,\,\,\,\,\,\,\,\,\forall\,\,i=1,\ldots,m,\,\,j=0,1,J_{i}, (3.13)

one has

ϕL(Ωε)Ch,\displaystyle\|\phi\|_{L^{\infty}(\Omega_{\varepsilon})}\leq C\|h\|_{*},

where C>0C>0 is independent of ε\varepsilon.

Proof.

Set R0=4R1R_{0}=4R_{1}, R1R_{1} being the constant in Lemma 3.3. By (2.5) it follows that εμi=o(1/|logε|κ)\varepsilon\mu_{i}=o(1/|\log\varepsilon|^{\kappa}) for ε\varepsilon small enough, and by (2.3), all BR1μi(ξi)B_{R_{1}\mu_{i}}(\xi^{\prime}_{i}) are disjointed for any points ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon}. Let hh be bounded and ϕ\phi a solution to (3.12) satisfying (3.13). We define the inner norm of ϕ\phi by

ϕi=supyΩ¯ε(i=1mBR1μi(ξi))|ϕ(y)|,\displaystyle\|\phi\|_{i}=\sup_{y\in\overline{\Omega}_{\varepsilon}\cap\left(\bigcup_{i=1}^{m}B_{R_{1}\mu_{i}}(\xi^{\prime}_{i})\right)}|\phi(y)|,

and claim that there is a constant C>0C>0 independent of ε\varepsilon such that

ϕL(Ωε)C(ϕi+h).\displaystyle\|\phi\|_{L^{\infty}(\Omega_{\varepsilon})}\leq C\left(\|\phi\|_{i}+\|h\|_{*}\right). (3.14)

Indeed, set

ϕ~(y)=C1(ϕi+h)ψ(y)yΩ¯εi=1mBR1μi(ξi),\displaystyle\widetilde{\phi}(y)=C_{1}\left(\|\phi\|_{i}+\|h\|_{*}\right)\psi(y)\,\qquad\forall\,\,\,y\in\overline{\Omega}_{\varepsilon}\setminus\bigcup_{i=1}^{m}B_{R_{1}\mu_{i}}(\xi^{\prime}_{i}),

where ψ\psi is the positive, uniformly bounded barrier constructed by Lemma 3.3 and the constant C1>0C_{1}>0 is chosen larger if necessary, independent of ε\varepsilon. Then for yΩεi=1mBR1μi(ξi)y\in\Omega_{\varepsilon}\setminus\bigcup_{i=1}^{m}B_{R_{1}\mu_{i}}(\xi^{\prime}_{i}),

(ϕ~±ϕ)(y)C1h{i=1mμiσ|yξi|2+σ+ε2}±h(y)|h(y)|±h(y)0,\displaystyle\mathcal{L}(\widetilde{\phi}\pm\phi)(y)\geq C_{1}\,\|h\|_{*}\left\{\sum_{i=1}^{m}\frac{\mu_{i}^{\sigma}}{|y-\xi^{\prime}_{i}|^{2+\sigma}}+\varepsilon^{2}\right\}\pm h(y)\geq|h(y)|\pm h(y)\geq 0,

for yΩεi=1mBR1μi(ξi)y\in\partial\Omega_{\varepsilon}\setminus\bigcup_{i=1}^{m}B_{R_{1}\mu_{i}}(\xi^{\prime}_{i}),

ν(ϕ~±ϕ)(y)0,\displaystyle\frac{\partial}{\partial\nu}(\widetilde{\phi}\pm\phi)(y)\geq 0,

and for yΩε(i=1mBR1μi(ξi))y\in\Omega_{\varepsilon}\cap\left(\bigcup_{i=1}^{m}\partial B_{R_{1}\mu_{i}}(\xi^{\prime}_{i})\right),

(ϕ~±ϕ)(y)>ϕi±ϕ(y)|ϕ(y)|±ϕ(y)0.\displaystyle(\widetilde{\phi}\pm\phi)(y)>\|\phi\|_{i}\pm\phi(y)\geq|\phi(y)|\pm\phi(y)\geq 0.

From the maximum principle (see [18]), it follows that ϕ~ϕϕ~-\widetilde{\phi}\leq\phi\leq\widetilde{\phi} on Ω¯εi=1mBR1μi(ξi)\overline{\Omega}_{\varepsilon}\setminus\bigcup_{i=1}^{m}B_{R_{1}\mu_{i}}(\xi^{\prime}_{i}), which gives estimate (3.14).

We prove the lemma by contradiction. Assume that there exist a sequence εn+\varepsilon_{n}\rightarrow+\infty, points ξn=(ξ1n,,ξmn)𝒪εn\xi^{n}=(\xi_{1}^{n},\ldots,\xi_{m}^{n})\in\mathcal{O}_{\varepsilon_{n}}, functions hnh_{n}, and associated solutions ϕn\phi_{n} of equation (3.12) with orthogonality conditions (3.13) such that

ϕnL(Ωεn)=1andhn0,asn+.\displaystyle\|\phi_{n}\|_{L^{\infty}(\Omega_{\varepsilon_{n}})}=1\,\,\quad\,\,\textrm{and}\,\,\quad\,\,\|h_{n}\|_{*}\rightarrow 0,\,\,\quad\,\,\textrm{as}\,\,\,\,n\rightarrow+\infty. (3.15)

For each k{1,,l}k\in\{1,\ldots,l\}, we have ξknΩ\xi_{k}^{n}\in\Omega and we consider ϕ^kn(z)=ϕn(μknz+(ξkn))\widehat{\phi}^{n}_{k}(z)=\phi_{n}\big{(}\mu_{k}^{n}z+(\xi^{n}_{k})^{\prime}\big{)}, where μn=(μ1n,,μmn)\mu^{n}=(\mu^{n}_{1},\ldots,\mu_{m}^{n}) and (ξkn)=ξkn/εn(\xi^{n}_{k})^{\prime}=\xi^{n}_{k}/\varepsilon_{n}. Note that

hn(y)=(Δa(εny)ϕn+εn2ϕW(ξn)ϕn)|y=μknz+(ξkn)=(μkn)2[Δa^nϕ^kn+εn2(μkn)2ϕ^kn(μkn)2W^nϕ^kn](z),\displaystyle h_{n}(y)=\big{(}-\Delta_{a(\varepsilon_{n}y)}\phi_{n}+\varepsilon_{n}^{2}\phi-W_{(\xi^{n})^{\prime}}\phi_{n}\big{)}\big{|}_{y=\mu_{k}^{n}z+(\xi^{n}_{k})^{\prime}}=(\mu_{k}^{n})^{-2}\left[-\Delta_{\widehat{a}_{n}}\widehat{\phi}_{k}^{n}+\varepsilon_{n}^{2}(\mu_{k}^{n})^{2}\widehat{\phi}_{k}^{n}-(\mu_{k}^{n})^{2}\widehat{W}^{n}\widehat{\phi}_{k}^{n}\right](z),

where

a^n(z)=a(εnμknz+ξkn),W^n(z)=W(ξn)(μknz+(ξkn)).\displaystyle\widehat{a}_{n}(z)=a(\varepsilon_{n}\mu_{k}^{n}z+\xi^{n}_{k}),\qquad\qquad\widehat{W}^{n}(z)=W_{(\xi^{n})^{\prime}}(\mu_{k}^{n}z+(\xi^{n}_{k})^{\prime}).

By the expansion of W(ξn)W_{(\xi^{n})^{\prime}} in (3.2) and elliptic regularity, ϕ^kn\widehat{\phi}^{n}_{k} converges uniformly over compact sets to a bounded solution ϕ^k\widehat{\phi}^{\infty}_{k} of equation

Δϕ+8(1+|z|2)2ϕ=0in2,\displaystyle\Delta\phi+\frac{8}{(1+|z|^{2})^{2}}\phi=0\,\quad\textrm{in}\,\,\,\mathbb{R}^{2},

which satisfies

2χZjϕ^k=0forj=0, 1, 2.\displaystyle\int_{\mathbb{R}^{2}}\chi Z_{j}\widehat{\phi}_{k}^{\infty}=0\quad\,\,\,\textrm{for}\,\,\,\,j=0,\,1,\,2. (3.16)

However, by the result of [3, 9], ϕ^k\widehat{\phi}^{\infty}_{k} must be a linear combination of ZjZ_{j}, j=0,1,2j=0,1,2. Notice that 2χZjZt=0\int_{\mathbb{R}^{2}}\chi Z_{j}Z_{t}=0 for jtj\neq t and 2χZj2>0\int_{\mathbb{R}^{2}}\chi Z_{j}^{2}>0. Hence (3.16) implies ϕ^k0\widehat{\phi}_{k}^{\infty}\equiv 0.

As for each k{l+1,,m}k\in\{l+1,\ldots,m\}, we have ξknΩ\xi_{k}^{n}\in\partial\Omega and we consider ϕ^kn(z)=ϕn((Akn)1μknz+(ξkn))\widehat{\phi}^{n}_{k}(z)=\phi_{n}\big{(}(A^{n}_{k})^{-1}\mu_{k}^{n}z+(\xi^{n}_{k})^{\prime}\big{)}, where Akn:22A_{k}^{n}:\mathbb{R}^{2}\rightarrow\mathbb{R}^{2} is a rotation map such that AknνΩεn((ξkn))=ν+2(0)A_{k}^{n}\nu_{\Omega_{\varepsilon_{n}}}\big{(}(\xi_{k}^{n})^{\prime}\big{)}=\nu_{\mathbb{R}_{+}^{2}}\big{(}0\big{)}. Similarly to the above argument, we have that ϕ^kn\widehat{\phi}^{n}_{k} converges uniformly over compact sets to a bounded solution ϕ^k\widehat{\phi}^{\infty}_{k} of equation

Δϕ+8(1+|z|2)2ϕ=0in+2,ϕν=0on+2,\displaystyle\Delta\phi+\frac{8}{(1+|z|^{2})^{2}}\phi=0\,\quad\textrm{in}\,\,\,\mathbb{R}^{2}_{+},\,\qquad\qquad\,\frac{\partial\phi}{\partial\nu}=0\,\quad\textrm{on}\,\,\,\partial\mathbb{R}^{2}_{+},

which satisfies

+2χZjϕ^k=0forj=0, 1.\displaystyle\int_{\mathbb{R}_{+}^{2}}\chi Z_{j}\widehat{\phi}_{k}^{\infty}=0\quad\,\,\,\textrm{for}\,\,\,\,j=0,\,1. (3.17)

Then ϕ^k\widehat{\phi}^{\infty}_{k} is a linear combination of ZjZ_{j}, j=0,1j=0,1. Notice that +2χZjZt=0\int_{\mathbb{R}_{+}^{2}}\chi Z_{j}Z_{t}=0 for jtj\neq t and +2χZj2>0\int_{\mathbb{R}_{+}^{2}}\chi Z_{j}^{2}>0. Hence (3.17) implies ϕ^k=0\widehat{\phi}_{k}^{\infty}=0 and then limn+ϕni=0\lim_{n\rightarrow+\infty}\|\phi_{n}\|_{i}=0. But by (3.14)-(3.15), lim infn+ϕni>0\liminf_{n\rightarrow+\infty}\|\phi_{n}\|_{i}>0, which is a contradiction. ∎

Lemma 3.5.  For ε>0\varepsilon>0 small enough, if ϕ\phi solves (3.12) and satisfies

ΩεχiZijϕ=0i=1,,m,j=1,Ji,\displaystyle\int_{\Omega_{\varepsilon}}\chi_{i}Z_{ij}\phi=0\,\,\,\,\,\,\,\,\,\forall\,\,i=1,\ldots,m,\,\,j=1,J_{i}, (3.18)

then

ϕL(Ωε)C|logε|h,\displaystyle\|\phi\|_{L^{\infty}(\Omega_{\varepsilon})}\leq C|\log\varepsilon|\,\|h\|_{*}, (3.19)

where C>0C>0 is independent of ε\varepsilon.

Proof.

According to the results in Lemma 3.4 of [12] and Lemma 4.5 of [13], for simplicity we consider the validity of estimate (3.19) only when the mm concentration points ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon} satisfy the relation |ξiξk|2d|\xi_{i}-\xi_{k}|\leq 2d for any i,k=1,,mi,k=1,\ldots,m, iki\neq k and for any d>0d>0 sufficiently small, fixed and independent of ε\varepsilon. Let R>R0+1R>R_{0}+1 be a large but fixed number. For any i=1,,mi=1,\ldots,m, we define

Z^i0(y)=Zi0(y)1μi+ai0Ga(εy,ξi),\displaystyle\widehat{Z}_{i0}(y)=Z_{i0}(y)-\frac{1}{\mu_{i}}+a_{i0}G_{a}(\varepsilon y,\xi_{i}), (3.20)

where

ai0=1μi[Ha(ξi,ξi)4cilog(εμiR)].\displaystyle a_{i0}=\frac{1}{\mu_{i}\big{[}H_{a}(\xi_{i},\xi_{i})-\frac{4}{c_{i}}\log(\varepsilon\mu_{i}R)\big{]}}. (3.21)

From estimate (2.5) and definitions (3.9) and (3.10) we have

C1|logε|log(εμiR)C2|logε|,\displaystyle C_{1}|\log\varepsilon|\leq-\log(\varepsilon\mu_{i}R)\leq C_{2}|\log\varepsilon|, (3.22)

and

Z^i0(y)=O(Ga(εy,ξi)μi|logε|).\displaystyle\widehat{Z}_{i0}(y)=O\left(\frac{\,G_{a}(\varepsilon y,\xi_{i})\,}{\mu_{i}|\log\varepsilon|}\right). (3.23)

Let η1\eta_{1} and η2\eta_{2} be radial smooth cut-off functions in 2\mathbb{R}^{2} such that

0η11;|η1|Cin2;η11inBR(0);η10in2BR+1(0);\displaystyle 0\leq\eta_{1}\leq 1;\,\,\,\ \,\,\,|\nabla\eta_{1}|\leq C\,\,\ \textrm{in}\,\,\,\mathbb{R}^{2};\,\,\,\ \,\,\,\eta_{1}\equiv 1\,\,\ \textrm{in}\,\,\,B_{R}(0);\,\,\,\,\ \,\,\,\,\eta_{1}\equiv 0\,\,\ \textrm{in}\,\,\,\mathbb{R}^{2}\setminus B_{R+1}(0);
0η21;|η2|Cin2;η21inB3d(0);η20in2B6d(0).\displaystyle 0\leq\eta_{2}\leq 1;\,\,\,\ \,\,\,|\nabla\eta_{2}|\leq C\,\,\ \textrm{in}\,\,\,\mathbb{R}^{2};\,\,\,\ \,\,\,\eta_{2}\equiv 1\,\,\ \textrm{in}\,\,\,B_{3d}(0);\,\,\,\,\,\,\,\,\,\eta_{2}\equiv 0\,\,\ \textrm{in}\,\,\,\mathbb{R}^{2}\setminus B_{6d}(0).

Denote that for any i=1,,li=1,\ldots,l,

ηi1(y)=η1(1μi|yξi|),ηi2(y)=η2(ε|yξi|),\displaystyle\eta_{i1}(y)=\eta_{1}\left(\frac{1}{\mu_{i}}\big{|}y-\xi_{i}^{\prime}\big{|}\right),\,\,\qquad\quad\,\,\eta_{i2}(y)=\eta_{2}\left(\varepsilon\big{|}y-\xi^{\prime}_{i}\big{|}\right), (3.24)

and for any i=l+1,,mi=l+1,\ldots,m,

ηi1(y)=η1(1μi|Fiε(y)|),ηi2(y)=η2(ε|Fiε(y)|).\displaystyle\eta_{i1}(y)=\eta_{1}\left(\frac{1}{\mu_{i}}\big{|}F_{i}^{\varepsilon}(y)\big{|}\right),\,\,\qquad\quad\,\,\eta_{i2}(y)=\eta_{2}\left(\varepsilon\big{|}F_{i}^{\varepsilon}(y)\big{|}\right). (3.25)

Now define

Z~i0(y)=ηi1Zi0+(1ηi1)ηi2Z^i0.\displaystyle\widetilde{Z}_{i0}(y)=\eta_{i1}Z_{i0}+(1-\eta_{i1})\eta_{i2}\widehat{Z}_{i0}. (3.26)

Given ϕ\phi satisfying (3.12) and (3.18), let

ϕ~=ϕ+i=1mdiZ~i0+i=1mj=1JieijχiZij.\displaystyle\widetilde{\phi}=\phi+\sum\limits_{i=1}^{m}d_{i}\widetilde{Z}_{i0}+\sum_{i=1}^{m}\sum\limits_{j=1}^{J_{i}}e_{ij}\chi_{i}Z_{ij}. (3.27)

We can adjust did_{i} and eije_{ij} such that ϕ~\widetilde{\phi} satisfies the orthogonality conditions

ΩεχiZijϕ~=0,i=1,,m,j=0,1,Ji.\displaystyle\int_{\Omega_{\varepsilon}}\chi_{i}Z_{ij}\widetilde{\phi}=0,\,\,\quad\,\,\,\,i=1,\ldots,m,\,\,j=0,1,J_{i}. (3.28)

Indeed, testing (3.27) by χiZij\chi_{i}Z_{ij}, i=1,,mi=1,\ldots,m, j=0,1,Jij=0,1,J_{i} and using (3.18), (3.28) and the fact that χiχk0\chi_{i}\chi_{k}\equiv 0 if iki\neq k, we find

diΩεχiZi0Z~i0+kimdkΩεχiZi0Z~k0+t=1JieitΩεχi2Zi0Zit=ΩεχiZi0ϕ,\displaystyle d_{i}\int_{\Omega_{\varepsilon}}\chi_{i}Z_{i0}\widetilde{Z}_{i0}+\sum_{k\neq i}^{m}d_{k}\int_{\Omega_{\varepsilon}}\chi_{i}Z_{i0}\widetilde{Z}_{k0}+\sum\limits_{t=1}^{J_{i}}e_{it}\int_{\Omega_{\varepsilon}}\chi_{i}^{2}Z_{i0}Z_{it}=-\int_{\Omega_{\varepsilon}}\chi_{i}Z_{i0}\phi, (3.29)
diΩεχiZijZ~i0+kimdkΩεχiZijZ~k0+t=1JieitΩεχi2ZijZit=0,j=1,Ji.\displaystyle d_{i}\int_{\Omega_{\varepsilon}}\chi_{i}Z_{ij}\widetilde{Z}_{i0}+\sum_{k\neq i}^{m}d_{k}\int_{\Omega_{\varepsilon}}\chi_{i}Z_{ij}\widetilde{Z}_{k0}+\sum_{t=1}^{J_{i}}e_{it}\int_{\Omega_{\varepsilon}}\chi^{2}_{i}Z_{ij}Z_{it}=0,\,\quad\ \ \,\ \,j=1,\,J_{i}. (3.30)

Note that for any i=1,,l,i=1,\ldots,l,\, j=1,2j=1,2\, and t=1,2\,t=1,2,

ΩεχiZi0Z~i0=2χZ02=C0>0,Ωεχi2Zi0Zit=2χ2Z0Zt=0,\displaystyle\int_{\Omega_{\varepsilon}}\chi_{i}Z_{i0}\widetilde{Z}_{i0}=\int_{\mathbb{R}^{2}}\chi Z^{2}_{0}=C_{0}>0,\qquad\qquad\qquad\qquad\int_{\Omega_{\varepsilon}}\chi_{i}^{2}Z_{i0}Z_{it}=\int_{\mathbb{R}^{2}}\chi^{2}Z_{0}Z_{t}=0,
ΩεχiZijZ~i0=2χZjZ0=0,Ωεχi2ZijZit=2χ2ZjZt=Cjδjt,\displaystyle\int_{\Omega_{\varepsilon}}\chi_{i}Z_{ij}\widetilde{Z}_{i0}=\int_{\mathbb{R}^{2}}\chi Z_{j}Z_{0}=0,\qquad\qquad\qquad\qquad\int_{\Omega_{\varepsilon}}\chi^{2}_{i}Z_{ij}Z_{it}=\int_{\mathbb{R}^{2}}\chi^{2}Z_{j}Z_{t}=C_{j}\delta_{jt},

where δjt\delta_{jt} denotes the Kronecker’s symbol, but for any i=l+1,,mi=l+1,\ldots,m and j=t=Ji=1j=t=J_{i}=1,

ΩεχiZi0Z~i0=+2χZ02[1+O(εμi|z|)]=C02+O(εμi),Ωεχi2Zi0Zi1=+2χ2Z0Z1[1+O(εμi|z|)]=O(εμi),\displaystyle\int_{\Omega_{\varepsilon}}\chi_{i}Z_{i0}\widetilde{Z}_{i0}=\int_{\mathbb{R}_{+}^{2}}\chi Z^{2}_{0}[1+O\big{(}\varepsilon\mu_{i}|z|\big{)}]=\frac{C_{0}}{2}+O\left(\varepsilon\mu_{i}\right),\qquad\int_{\Omega_{\varepsilon}}\chi_{i}^{2}Z_{i0}Z_{i1}=\int_{\mathbb{R}_{+}^{2}}\chi^{2}Z_{0}Z_{1}[1+O\big{(}\varepsilon\mu_{i}|z|\big{)}]=O\left(\varepsilon\mu_{i}\right),
ΩεχiZi1Z~i0=+2χZ1Z0[1+O(εμi|z|)]=O(εμi),Ωεχi2Zi12=+2χ2Z12[1+O(εμi|z|)]=C12+O(εμi).\displaystyle\int_{\Omega_{\varepsilon}}\chi_{i}Z_{i1}\widetilde{Z}_{i0}=\int_{\mathbb{R}_{+}^{2}}\chi Z_{1}Z_{0}[1+O\big{(}\varepsilon\mu_{i}|z|\big{)}]=O\left(\varepsilon\mu_{i}\right),\,\,\qquad\,\,\int_{\Omega_{\varepsilon}}\chi^{2}_{i}Z_{i1}^{2}=\int_{\mathbb{R}_{+}^{2}}\chi^{2}Z_{1}^{2}[1+O\big{(}\varepsilon\mu_{i}|z|\big{)}]=\frac{C_{1}}{2}+O\left(\varepsilon\mu_{i}\right).

From (3.23) and (3.26) it follows that for any i=1,,mi=1,\ldots,m and j=0,1,Jij=0,1,J_{i},

ΩεχiZijZ~k0=O(μilog|logε|μk|logε|),ki.\displaystyle\int_{\Omega_{\varepsilon}}\chi_{i}Z_{ij}\widetilde{Z}_{k0}=O\left(\frac{\mu_{i}\log|\log\varepsilon|}{\mu_{k}|\log\varepsilon|}\right),\,\quad\,\forall\,\,k\neq i.

Hence by (3.30) we can get that for any i=1,,mi=1,\ldots,m and j=1,Jij=1,J_{i},

eij=(diΩεχiZijZ~i0kimdkΩεχiZijZ~k0)/Ωεχi2Zij2,\displaystyle e_{ij}=\left(-d_{i}\int_{\Omega_{\varepsilon}}\chi_{i}Z_{ij}\widetilde{Z}_{i0}-\sum_{k\neq i}^{m}d_{k}\int_{\Omega_{\varepsilon}}\chi_{i}Z_{ij}\widetilde{Z}_{k0}\right)\left/\int_{\Omega_{\varepsilon}}\chi^{2}_{i}Z^{2}_{ij},\right.

and then

|eij|C(εμi|di|+kimμilog|logε|μk|logε||dk|).\displaystyle|e_{ij}|\leq C\left(\varepsilon\mu_{i}|d_{i}|+\sum_{k\neq i}^{m}\frac{\mu_{i}\log|\log\varepsilon|}{\mu_{k}|\log\varepsilon|}|d_{k}|\right). (3.31)

We need just to consider did_{i}. From (3.29) it follows that for any i=1,,li=1,\ldots,l,

diC0+kimdkO(μilog|logε|μk|logε|)=ΩεχiZi0ϕ,\displaystyle d_{i}C_{0}+\sum_{k\neq i}^{m}d_{k}O\left(\frac{\mu_{i}\log|\log\varepsilon|}{\mu_{k}|\log\varepsilon|}\right)=-\int_{\Omega_{\varepsilon}}\chi_{i}Z_{i0}\phi, (3.32)

and for any i=l+1,,mi=l+1,\ldots,m,

12diC0[1+O(εμi)]+kimdkO(μilog|logε|μk|logε|)+ei1O(εμi)=ΩεχiZi0ϕ,\displaystyle\frac{1}{2}d_{i}C_{0}\big{[}1+O\big{(}\varepsilon\mu_{i}\big{)}\big{]}+\sum_{k\neq i}^{m}d_{k}O\left(\frac{\mu_{i}\log|\log\varepsilon|}{\mu_{k}|\log\varepsilon|}\right)+e_{i1}O\big{(}\varepsilon\mu_{i}\big{)}=-\int_{\Omega_{\varepsilon}}\chi_{i}Z_{i0}\phi, (3.33)

where ei1e_{i1} satisfies (3.31). We denote 𝒜\mathcal{A} the coefficient matrix of equations (3.32)-(3.33) with respect to (d1,,dm)(d_{1},\ldots,d_{m}). By the above estimates, 1𝒜\mathcal{M}^{-1}\mathcal{A}\mathcal{M} is diagonally dominant, so invertible, where =diag(μ1,,μm)\mathcal{M}=\text{diag}(\mu_{1},\ldots,\mu_{m}). Hence 𝒜\mathcal{A} is invertible and (d1,,dm)(d_{1},\ldots,d_{m}) is well defined.

Estimate (3.19) is a direct consequence of the following two claims.

Claim 1.  Let =Δa(εy)+ε2Wξ\mathcal{L}=-\Delta_{a(\varepsilon y)}+\varepsilon^{2}-W_{\xi^{\prime}}, then for any i=1,,mi=1,\ldots,m and j=1,Jij=1,J_{i},

(χiZij)Cμi,(Z~i0)Clog2|logε|μi|logε|.\displaystyle\big{\|}\mathcal{L}(\chi_{i}Z_{ij})\big{\|}_{*}\leq\frac{C}{\mu_{i}},\,\quad\quad\quad\ \,\,\,\quad\,\big{\|}\mathcal{L}(\widetilde{Z}_{i0})\big{\|}_{*}\leq C\frac{\log^{2}|\log\varepsilon|}{\mu_{i}|\log\varepsilon|}. (3.34)

Claim 2.  For any i=1,,mi=1,\ldots,m and j=1,Jij=1,J_{i},

|di|Cμi|logε|h,|eij|Cμilog(|logε|)h.\displaystyle|d_{i}|\leq C\mu_{i}|\log\varepsilon|\,\|h\|_{*},\,\quad\qquad\quad\,\,\quad|e_{ij}|\leq C\mu_{i}\log(|\log\varepsilon|)\,\|h\|_{*}.

In fact, by the definition of ϕ~\widetilde{\phi} in (3.27) we obtain

{(ϕ~)=h+i=1mdi(Z~i0)+i=1mj=1Jieij(χiZij)inΩε,ϕ~ν=0onΩε.\displaystyle\left\{\begin{aligned} &\mathcal{L}(\widetilde{\phi})=h+\sum\limits_{i=1}^{m}d_{i}\mathcal{L}(\widetilde{Z}_{i0})+\sum_{i=1}^{m}\sum_{j=1}^{J_{i}}e_{ij}\mathcal{L}(\chi_{i}Z_{ij})\,\quad\,\textrm{in}\,\,\,\ \,\,\Omega_{\varepsilon},\\ &\frac{\partial\widetilde{\phi}}{\partial\nu}=0\,\qquad\qquad\qquad\qquad\quad\qquad\,\,\qquad\qquad\qquad\,\,\,\textrm{on}\,\,\,\,\,\partial\Omega_{\varepsilon}.\end{aligned}\right. (3.35)

Since (3.28) holds, the previous lemma allows us to conclude

ϕ~L(Ωε)C{h+i=1m|di|(Z~i0)+i=1mj=1Ji|eij|(χiZij)}Clog2(|logε|)h.\displaystyle\|\widetilde{\phi}\|_{L^{\infty}(\Omega_{\varepsilon})}\leq C\left\{\|h\|_{*}+\sum\limits_{i=1}^{m}|d_{i}|\big{\|}\mathcal{L}(\widetilde{Z}_{i0})\big{\|}_{*}+\sum_{i=1}^{m}\sum_{j=1}^{J_{i}}|e_{ij}|\big{\|}\mathcal{L}(\chi_{i}Z_{ij})\big{\|}_{*}\right\}\leq C\log^{2}(|\log\varepsilon|)\,\|h\|_{*}. (3.36)

Using the definition of ϕ~\widetilde{\phi} again and the fact that

Z~i0L(Ωε)CμiandχiZijL(Ωε)Cμi,i=1,,m,j=1,Ji,\displaystyle\big{\|}\widetilde{Z}_{i0}\big{\|}_{L^{\infty}(\Omega_{\varepsilon})}\leq\frac{C}{\mu_{i}}\quad\quad\,\textrm{and}\,\quad\quad\big{\|}\chi_{i}Z_{ij}\big{\|}_{L^{\infty}(\Omega_{\varepsilon})}\leq\frac{C}{\mu_{i}},\,\,\quad\,\forall\,\,\,i=1,\ldots,m,\,\,j=1,J_{i}, (3.37)

estimate (3.19) then follows from estimate (3.36) and Claim 2.

Proof of Claim 1. Let us first denote that zi:=yξiz_{i}:=y-\xi^{\prime}_{i} for any i=1,,li=1,\ldots,l, but zi:=Fiε(y)z_{i}:=F_{i}^{\varepsilon}(y) for any i=l+1,,mi=l+1,\ldots,m. For any i=l+1,,mi=l+1,\ldots,m, due to Fiε(ξi)=(0,0)F_{i}^{\varepsilon}(\xi^{\prime}_{i})=(0,0) and Fiε(ξi)=Ai\nabla F_{i}^{\varepsilon}(\xi^{\prime}_{i})=A_{i}, we find

zi=Fiε(y)=1εFi(Ai(εyξi))=Ai(yξi){1+O(εAi(yξi))},\displaystyle z_{i}=F_{i}^{\varepsilon}(y)=\frac{1}{\varepsilon}F_{i}\big{(}A_{i}(\varepsilon y-\xi_{i})\big{)}=A_{i}(y-\xi_{i}^{\prime})\big{\{}1+O\big{(}\varepsilon A_{i}(y-\xi_{i}^{\prime})\big{)}\big{\}}, (3.38)

and

y=Aizi+O(ε|zi|)zi,Δy=Δzi+O(ε|zi|)zi2+O(ε)zi.\displaystyle\nabla_{y}=A_{i}\nabla_{z_{i}}+O(\varepsilon|z_{i}|)\nabla_{z_{i}},\,\quad\,\,\,\quad\,\quad\,\quad\,\,\,\quad\,-\Delta_{y}=-\Delta_{z_{i}}+O(\varepsilon|z_{i}|)\nabla_{z_{i}}^{2}+O(\varepsilon)\nabla_{z_{i}}. (3.39)

Then for any i=1,,mi=1,\ldots,m and j=1,Jij=1,J_{i}, by (3.2), (3.9) and (3.10) we have that in the region |zi|μi(R0+1)|z_{i}|\leq\mu_{i}(R_{0}+1),

(Zij)=\displaystyle\mathcal{L}(Z_{ij})= (ΔyWξ)[1μiZj(ziμi)]εyloga(εy)y[1μiZj(ziμi)]+ε2μiZj(yξiμi)\displaystyle\big{(}-\Delta_{y}-W_{\xi^{\prime}}\big{)}\left[\frac{1}{\mu_{i}}Z_{j}\left(\frac{z_{i}}{\mu_{i}}\right)\right]-\varepsilon\nabla_{y}\log a(\varepsilon y)\nabla_{y}\left[\frac{1}{\mu_{i}}Z_{j}\left(\frac{z_{i}}{\mu_{i}}\right)\right]+\frac{\varepsilon^{2}}{\mu_{i}}Z_{j}\left(\frac{y-\xi^{\prime}_{i}}{\mu_{i}}\right)
=\displaystyle= O(1μi|logε|8μi2(μi2+|yξi|2)2)+O(εμi2+|yξi|2)+O(ε2(μi2+|yξi|2)1/2).\displaystyle O\left(\frac{1}{\mu_{i}|\log\varepsilon|}\cdot\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}\right)+O\left(\frac{\varepsilon}{\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2}}\right)+O\left(\frac{\varepsilon^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{1/2}}\right).

Hence

(χiZij)=χi(Zij)2χiZijZij[Δχi+εloga(εy)χi]\displaystyle\mathcal{L}(\chi_{i}Z_{ij})=\,\chi_{i}\mathcal{L}(Z_{ij})-2\nabla\chi_{i}\nabla Z_{ij}-Z_{ij}\big{[}\Delta\chi_{i}+\varepsilon\nabla\log a(\varepsilon y)\nabla\chi_{i}\big{]}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\,\,\,\,\,
=O(1μi|logε|8μi2(μi2+|yξi|2)2)+O(1μi1μi2+|yξi|2)+O(1μi21(μi2+|yξi|2)1/2),\displaystyle=O\left(\frac{1}{\mu_{i}|\log\varepsilon|}\cdot\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}\right)+O\left(\frac{1}{\mu_{i}}\cdot\frac{1}{\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2}}\right)+O\left(\frac{1}{\mu_{i}^{2}}\cdot\frac{1}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{1/2}}\right),

which, together with the definition of \|\cdot\|_{*} in (2.29), implies (χiZij)=O(1/μi)\big{\|}\mathcal{L}(\chi_{i}Z_{ij})\big{\|}_{*}=O\left(1/\mu_{i}\right) for all i=1,,mi=1,\ldots,m and j=1,Jij=1,J_{i}.

Let us prove the second inequality in (3.34). Consider four regions

Ω1={yΩε||zi|μiR},Ω2={yΩε|μiR<|zi|μi(R+1)},\displaystyle\Omega_{1}=\left\{y\in\Omega_{\varepsilon}\big{|}\,|z_{i}|\leq\mu_{i}R\right\},\,\quad\,\quad\quad\quad\quad\quad\quad\quad\,\Omega_{2}=\left\{y\in\Omega_{\varepsilon}\big{|}\,\mu_{i}R<|z_{i}|\leq\mu_{i}(R+1)\right\},
Ω3={yΩε|μi(R+1)<|zi|3d/ε},Ω4={yΩε| 3d/ε<|zi|6d/ε}.\displaystyle\Omega_{3}=\left\{y\in\Omega_{\varepsilon}\left|\,\mu_{i}(R+1)<|z_{i}|\leq 3d/\varepsilon\right.\right\},\,\quad\quad\quad\quad\,\,\,\,\,\,\,\Omega_{4}=\left\{y\in\Omega_{\varepsilon}\left|\,3d/\varepsilon<|z_{i}|\leq 6d/\varepsilon\right.\right\}.

Notice first that

|Zi01μi|=2μiμi2+|zi|2=O(μi(μi+|yξi|)2),\displaystyle\left|Z_{i0}-\frac{1}{\mu_{i}}\right|=\frac{2\mu_{i}}{\mu_{i}^{2}+|z_{i}|^{2}}=O\left(\frac{\mu_{i}}{(\mu_{i}+|y-\xi_{i}^{\prime}|)^{2}}\right), (3.40)

and for any μiR<|zi|6d/ε\mu_{i}R<|z_{i}|\leq 6d/\varepsilon,

Zi0Z^i0=1μiai0Ga(εy,ξi)=1μi[Ha(ξi,ξi)4cilog(εμiR)][4cilog|yξi|μiR+O(εα|yξi|α)],\displaystyle Z_{i0}-\widehat{Z}_{i0}=\frac{1}{\mu_{i}}-a_{i0}G_{a}(\varepsilon y,\xi_{i})=\frac{1}{\mu_{i}\big{[}H_{a}(\xi_{i},\xi_{i})-\frac{4}{c_{i}}\log(\varepsilon\mu_{i}R)\big{]}}\left[\frac{4}{c_{i}}\log\frac{|y-\xi_{i}^{\prime}|}{\mu_{i}R}+O\big{(}\varepsilon^{\alpha}|y-\xi_{i}^{\prime}|^{\alpha}\big{)}\right], (3.41)

and for any |zi|μi(R+1)|z_{i}|\leq\mu_{i}(R+1), by (3.2) and (8.7),

[8μi2(μi2+|yξi|2)2Wξ]Zi0=O(log2μiμi|logε|8μi2(μi2+|yξi|2)2).\displaystyle\left[\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}-W_{\xi^{\prime}}\right]Z_{i0}=O\left(\frac{\log^{2}\mu_{i}}{\mu_{i}|\log\varepsilon|}\cdot\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}\right). (3.42)

In Ω1\Omega_{1},

(Z~i0)=(Zi0)=[Δa(εy)Zi08μi2(μi2+|yξi|2)2Zi0]+[8μi2(μi2+|yξi|2)2Wξ]Zi0+ε2Zi0.\displaystyle\mathcal{L}(\widetilde{Z}_{i0})=\mathcal{L}(Z_{i0})=\left[-\Delta_{a(\varepsilon y)}Z_{i0}-\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}Z_{i0}\right]+\left[\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}-W_{\xi^{\prime}}\right]Z_{i0}+\varepsilon^{2}Z_{i0}.

By (3.11) and (3.42),

|(Z~i0)(y)|=O(log2μiμi3|logε|),yΩ1.\displaystyle\big{|}\mathcal{L}(\widetilde{Z}_{i0})(y)\big{|}=O\left(\frac{\log^{2}\mu_{i}}{\mu_{i}^{3}|\log\varepsilon|}\right),\qquad\forall\,\,y\in\Omega_{1}. (3.43)

In Ω2\Omega_{2},

(Z~i0)=[Δa(εy)Zi08μi2(μi2+|yξi|2)2Zi0]+[8μi2(μi2+|yξi|2)2Wξ]Zi0+ε2(Zi01μi)\displaystyle\mathcal{L}(\widetilde{Z}_{i0})=\left[-\Delta_{a(\varepsilon y)}Z_{i0}-\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}Z_{i0}\right]+\left[\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}-W_{\xi^{\prime}}\right]Z_{i0}+\varepsilon^{2}\left(Z_{i0}-\frac{1}{\mu_{i}}\right)
+Wξ(1ηi1)(Zi0Z^i0)+ε2μiηi12ηi1(Zi0Z^i0)(Zi0Z^i0)Δa(εy)ηi1.\displaystyle+W_{\xi^{\prime}}(1-\eta_{i1})(Z_{i0}-\widehat{Z}_{i0})+\frac{\varepsilon^{2}}{\mu_{i}}\eta_{i1}-2\nabla\eta_{i1}\nabla(Z_{i0}-\widehat{Z}_{i0})-(Z_{i0}-\widehat{Z}_{i0})\Delta_{a(\varepsilon y)}\eta_{i1}.\qquad\quad

Using (3.22) and (3.41) we conclude that for any μiR<|zi|μi(R+1)\mu_{i}R<|z_{i}|\leq\mu_{i}(R+1),

|Zi0Z^i0|=O(1μiR|logε|)and|(Zi0Z^i0)|=O(1μi2R|logε|).\displaystyle|Z_{i0}-\widehat{Z}_{i0}|=O\left(\frac{1}{\mu_{i}R|\log\varepsilon|}\right)\,\,\quad\quad\,\textrm{and}\,\,\quad\quad\,|\nabla\big{(}Z_{i0}-\widehat{Z}_{i0}\big{)}|=O\left(\frac{1}{\mu_{i}^{2}R|\log\varepsilon|}\right). (3.44)

Moreover, |ηi1|=O(1/μi)|\nabla\eta_{i1}|=O\left(1/\mu_{i}\right) and |Δa(εy)ηi1|=O(1/μi2)|\Delta_{a(\varepsilon y)}\eta_{i1}|=O\left(1/\mu_{i}^{2}\right). From (3.11), (3.40) and (3.42) we can derive that

|(Z~i0)(y)|=O(1μi3R|logε|),yΩ2.\displaystyle\big{|}\mathcal{L}(\widetilde{Z}_{i0})(y)\big{|}=O\left(\frac{1}{\mu_{i}^{3}R|\log\varepsilon|}\right),\qquad\forall\,\,y\in\Omega_{2}. (3.45)

In Ω3\Omega_{3}, by (3.11), (3.40) and (3.41),

(Z~i0)=\displaystyle\mathcal{L}(\widetilde{Z}_{i0})= (Z^i0)=(Zi0)(Zi0Z^i0)\displaystyle\mathcal{L}(\widehat{Z}_{i0})=\mathcal{L}(Z_{i0})-\mathcal{L}(Z_{i0}-\widehat{Z}_{i0})
=\displaystyle= [8μi2(μi2+|yξi|2)2Wξ]Zi0+Wξ[1μiai0Ga(εy,ξi)]+O(εμi(μi+|yξi|)3)+O(ε2μi(μi+|yξi|)2)\displaystyle\left[\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}-W_{\xi^{\prime}}\right]Z_{i0}+W_{\xi^{\prime}}\left[\frac{1}{\mu_{i}}-a_{i0}G_{a}(\varepsilon y,\xi_{i})\right]+O\left(\frac{\varepsilon\mu_{i}}{(\mu_{i}+|y-\xi^{\prime}_{i}|)^{3}}\right)+O\left(\frac{\varepsilon^{2}\mu_{i}}{(\mu_{i}+|y-\xi_{i}^{\prime}|)^{2}}\right)
\displaystyle\equiv 𝒜1+𝒜2+O(εμi(μi+|yξi|)3)+O(ε2μi(μi+|yξi|)2).\displaystyle\mathcal{A}_{1}+\mathcal{A}_{2}+O\left(\frac{\varepsilon\mu_{i}}{(\mu_{i}+|y-\xi^{\prime}_{i}|)^{3}}\right)+O\left(\frac{\varepsilon^{2}\mu_{i}}{(\mu_{i}+|y-\xi_{i}^{\prime}|)^{2}}\right).

For the estimation of the first two terms, we split Ω3\Omega_{3} into some subregions:

Ω3,i={yΩ3|μi(R+1)<|zi|14μi|logε|τ},\displaystyle\Omega_{3,i}=\left\{y\in\Omega_{3}\left|\,\,\mu_{i}(R+1)<|z_{i}|\leq\frac{1}{4}\mu_{i}|\log\varepsilon|^{\tau}\,\right.\right\},
Ω3,k=\displaystyle\Omega_{3,k}= {yΩ3||zk|14μk|logε|τ},ki,andΩ~3=Ω3t=1mΩ3,t.\displaystyle\left\{y\in\Omega_{3}\left|\,\,|z_{k}|\leq\frac{1}{4}\mu_{k}|\log\varepsilon|^{\tau}\,\right.\right\},\,\,\,\,k\neq i,\quad\,\,\textrm{and}\quad\,\,\widetilde{\Omega}_{3}=\Omega_{3}\setminus\bigcup_{t=1}^{m}\Omega_{3,t}.

In Ω3,i\Omega_{3,i}, by (2.13) and (3.2) we find

𝒜1=\displaystyle\mathcal{A}_{1}= 8μi2(μi2+|yξi|2)2{p1p1γp[1+ωμi1+12(ωμi)2+2ωμi](yξi)+O(log4(μi+|yξi|)γ2p)}O(1μi)\displaystyle\frac{8\mu^{2}_{i}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}\left\{\frac{p-1}{p}\frac{1}{\gamma^{p}}\left[1+\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}+2\omega_{\mu_{i}}\right]\left(y-\xi^{\prime}_{i}\right)+O\left(\frac{\log^{4}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{2p}}\right)\right\}O\left(\frac{1}{\mu_{i}}\right)
=\displaystyle= 8μi2(μi2+|yξi|2)2O(log2(μi+|yξi|)μi|logε|),\displaystyle\frac{8\mu^{2}_{i}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}O\left(\frac{\log^{2}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\mu_{i}|\log\varepsilon|}\right),

and by (3.22) and (3.41),

𝒜2=8μi2(μi2+|yξi|2)2O(log|yξi|logμiR+εα|yξi|αμi|logε|),\displaystyle\mathcal{A}_{2}=\frac{8\mu^{2}_{i}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}O\left(\frac{\log|y-\xi_{i}^{\prime}|-\log\mu_{i}R+\varepsilon^{\alpha}|y-\xi_{i}^{\prime}|^{\alpha}}{\mu_{i}|\log\varepsilon|}\right),

which implies

|(Z~i0)(y)|=8μi2(μi2+|yξi|2)2O(log2(μi+|yξi|)μi|logε|+log|yξi|logμiRμi|logε|),yΩ3,i.\displaystyle\big{|}\mathcal{L}(\widetilde{Z}_{i0})(y)\big{|}=\frac{8\mu^{2}_{i}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}O\left(\frac{\log^{2}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\mu_{i}|\log\varepsilon|}+\frac{\log|y-\xi_{i}^{\prime}|-\log\mu_{i}R}{\mu_{i}|\log\varepsilon|}\right),\quad\forall\,\,y\in\Omega_{3,i}. (3.46)

In Ω~3\widetilde{\Omega}_{3}, by (3.1),

|(Z~i0)(y)|=k=1m[8μk2(μk2+|yξk|2)2]1+O(log|logε||logε|)O(1μi+log|yξi|logμiRμi|logε|),yΩ~3.\displaystyle\big{|}\mathcal{L}(\widetilde{Z}_{i0})(y)\big{|}=\sum_{k=1}^{m}\left[\frac{8\mu^{2}_{k}}{(\mu_{k}^{2}+|y-\xi^{\prime}_{k}|^{2})^{2}}\right]^{1+O\left(\frac{\log|\log\varepsilon|}{|\log\varepsilon|}\right)}O\left(\frac{1}{\mu_{i}}+\frac{\,\log|y-\xi_{i}^{\prime}|-\log\mu_{i}R\,}{\mu_{i}|\log\varepsilon|}\right),\quad\forall\,\,y\in\widetilde{\Omega}_{3}. (3.47)

As in Ω3,k\Omega_{3,k} with kik\neq i, by (3.2), (3.11), (3.23) and (3.40),

(Z~i0)=8μi2(μi2+|yξi|2)2Zi0[Δa(εy)Zi0+8μi2(μi2+|yξi|2)2Zi0]+ε2(Zi01μi)WξZ^i0\displaystyle\mathcal{L}(\widetilde{Z}_{i0})=\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}Z_{i0}-\left[\Delta_{a(\varepsilon y)}Z_{i0}+\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}Z_{i0}\right]+\varepsilon^{2}\left(Z_{i0}-\frac{1}{\mu_{i}}\right)-W_{\xi^{\prime}}\widehat{Z}_{i0}
=O(8μk2(μk2+|yξk|2)2log|logε|μi|logε|).\displaystyle=O\left(\frac{8\mu^{2}_{k}}{(\mu^{2}_{k}+|y-\xi^{\prime}_{k}|^{2})^{2}}\cdot\frac{\log|\log\varepsilon|}{\mu_{i}|\log\varepsilon|}\right).\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\qquad\qquad\qquad\,\,\, (3.48)

Finally, in Ω4\Omega_{4},

(Z~i0)=\displaystyle\mathcal{L}(\widetilde{Z}_{i0})= 8μi2(μi2+|yξi|2)2ηi2Zi0ηi2[Δa(εy)Zi0+8μi2(μi2+|yξi|2)2Zi0]+ε2ηi2(Zi01μi)\displaystyle\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}\eta_{i2}Z_{i0}-\eta_{i2}\left[\Delta_{a(\varepsilon y)}Z_{i0}+\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}Z_{i0}\right]+\varepsilon^{2}\eta_{i2}\left(Z_{i0}-\frac{1}{\mu_{i}}\right)
ηi2WξZ^i02ηi2Z^i0Z^i0Δa(εy)ηi2.\displaystyle-\eta_{i2}W_{\xi^{\prime}}\widehat{Z}_{i0}-2\nabla\eta_{i2}\nabla\widehat{Z}_{i0}-\widehat{Z}_{i0}\Delta_{a(\varepsilon y)}\eta_{i2}.

Note that Wξ=O(ε4pσ)W_{\xi^{\prime}}=O(\varepsilon^{\frac{4}{p}-\sigma}) in Ω4\Omega_{4}. Moreover, |ηi2|=O(ε/d)|\nabla\eta_{i2}|=O\left(\varepsilon/d\right), |Δa(εy)ηi2|=O(ε2/d2)|\Delta_{a(\varepsilon y)}\eta_{i2}|=O\left(\varepsilon^{2}/d^{2}\right),

|Z^i0|=O(|logd|μi|logε|)and|Z^i0|=O(εdμi|logε|).\displaystyle|\widehat{Z}_{i0}|=O\left(\frac{|\log d|}{\mu_{i}|\log\varepsilon|}\right)\,\,\qquad\quad\,\textrm{and}\,\,\quad\qquad\,|\nabla\widehat{Z}_{i0}|=O\left(\frac{\varepsilon}{d\mu_{i}|\log\varepsilon|}\right). (3.49)

By (3.11) and (3.40),

|(Z~i0)(y)|=O(ε2|logd|μid2|logε|),yΩ4.\displaystyle\big{|}\mathcal{L}(\widetilde{Z}_{i0})(y)\big{|}=O\left(\frac{\varepsilon^{2}|\log d|}{\mu_{i}d^{2}|\log\varepsilon|}\right),\qquad\forall\,\,y\in\Omega_{4}. (3.50)

Combining (3.43), (3.45), (3.46), (3.47), (3) and (3.50), we arrive at

(Z~i0)C(log2μiμi|logε|+log|logε|μi|logε|)=O(log2|logε|μi|logε|),i=1,,m.\displaystyle\big{\|}\mathcal{L}(\widetilde{Z}_{i0})\big{\|}_{*}\leq C\left(\frac{\log^{2}\mu_{i}}{\mu_{i}|\log\varepsilon|}+\frac{\log|\log\varepsilon|}{\mu_{i}|\log\varepsilon|}\right)=O\left(\frac{\log^{2}|\log\varepsilon|}{\mu_{i}|\log\varepsilon|}\right),\,\,\quad\,\forall\,\,i=1,\ldots,m.

Proof of Claim 2. Testing equation (3.35) against a(εy)Z~i0a(\varepsilon y)\widetilde{Z}_{i0} and using estimates (3.36)-(3.37), we find

k=1mdk\displaystyle\sum_{k=1}^{m}d_{k} Ωεa(εy)Z~k0(Z~i0)\displaystyle\int_{\Omega_{\varepsilon}}a(\varepsilon y)\widetilde{Z}_{k0}\mathcal{L}(\widetilde{Z}_{i0})
=\displaystyle= Ωεa(εy)hZ~i0+Ωεa(εy)ϕ~(Z~i0)k=1mt=1JkektΩεa(εy)χkZkt(Z~i0)\displaystyle-\int_{\Omega_{\varepsilon}}a(\varepsilon y)h\widetilde{Z}_{i0}+\int_{\Omega_{\varepsilon}}a(\varepsilon y)\widetilde{\phi}\mathcal{L}(\widetilde{Z}_{i0})-\sum_{k=1}^{m}\sum_{t=1}^{J_{k}}e_{kt}\int_{\Omega_{\varepsilon}}a(\varepsilon y)\chi_{k}Z_{kt}\mathcal{L}(\widetilde{Z}_{i0})
\displaystyle\leq Chμi+C(Z~i0)(ϕ~L(Ωε)+k=1mt=1Jk1μk|ekt|)\displaystyle C\frac{\|h\|_{*}}{\mu_{i}}+C\big{\|}\mathcal{L}(\widetilde{Z}_{i0})\big{\|}_{*}\left(\|\widetilde{\phi}\|_{L^{\infty}(\Omega_{\varepsilon})}+\sum_{k=1}^{m}\sum_{t=1}^{J_{k}}\frac{1}{\mu_{k}}|e_{kt}|\right)
\displaystyle\leq Chμi+C(Z~i0)[h+k=1m|dk|(Z~k0)+k=1mt=1Jk|ekt|(1μk+(χkZkt))],\displaystyle C\frac{\|h\|_{*}}{\mu_{i}}+C\big{\|}\mathcal{L}(\widetilde{Z}_{i0})\big{\|}_{*}\left[\|h\|_{*}+\sum\limits_{k=1}^{m}|d_{k}|\big{\|}\mathcal{L}(\widetilde{Z}_{k0})\big{\|}_{*}+\sum_{k=1}^{m}\sum_{t=1}^{J_{k}}|e_{kt}|\left(\frac{1}{\mu_{k}}+\big{\|}\mathcal{L}(\chi_{k}Z_{kt})\big{\|}_{*}\right)\right],

where we have used that

Ωεμiσ(|yξi|+μi)2+σC,i=1,,m.\displaystyle\int_{\Omega_{\varepsilon}}\frac{\mu_{i}^{\sigma}}{(|y-\xi^{\prime}_{i}|+\mu_{i})^{2+\sigma}}\leq C,\,\,\,\quad\,\,\,\forall\,\,\,i=1,\ldots,m.

From estimates (3.31) and (3.34) it follows that for any i=1,,mi=1,\ldots,m,

|di||Ωεa(εy)Z~i0(Z~i0)|Chμi+Ck=1m|dk|log4|logε|μiμk|logε|2+kim|dkΩεa(εy)Z~k0(Z~i0)|.\displaystyle|d_{i}|\left|\int_{\Omega_{\varepsilon}}a(\varepsilon y)\widetilde{Z}_{i0}\mathcal{L}(\widetilde{Z}_{i0})\right|\leq C\frac{\|h\|_{*}}{\mu_{i}}+C\sum_{k=1}^{m}\frac{|d_{k}|\log^{4}|\log\varepsilon|}{\mu_{i}\mu_{k}|\log\varepsilon|^{2}}+\sum_{k\neq i}^{m}\left|d_{k}\int_{\Omega_{\varepsilon}}a(\varepsilon y)\widetilde{Z}_{k0}\mathcal{L}(\widetilde{Z}_{i0})\right|. (3.51)

Observe that

(Z~i0)=ηi1(Zi0Z^i0)+ηi2(Z^i0)(Zi0Z^i0)Δa(εy)ηi12ηi1(Zi0Z^i0)2ηi2Z^i0Z^i0Δa(εy)ηi2.\displaystyle\mathcal{L}(\widetilde{Z}_{i0})=\eta_{i1}\mathcal{L}(Z_{i0}-\widehat{Z}_{i0})+\eta_{i2}\mathcal{L}(\widehat{Z}_{i0})-(Z_{i0}-\widehat{Z}_{i0})\Delta_{a(\varepsilon y)}\eta_{i1}-2\nabla\eta_{i1}\nabla(Z_{i0}-\widehat{Z}_{i0})-2\nabla\eta_{i2}\nabla\widehat{Z}_{i0}-\widehat{Z}_{i0}\Delta_{a(\varepsilon y)}\eta_{i2}.

Then by (3.20) and (3.26),

Ωεa(εy)Z~i0(Z~i0):=K+I,\displaystyle\int_{\Omega_{\varepsilon}}a(\varepsilon y)\widetilde{Z}_{i0}\mathcal{L}(\widetilde{Z}_{i0}):=K+I,

where

K=Ωεa(εy)Z~i0[(Zi0Z^i0)Δa(εy)ηi12ηi1(Zi0Z^i0)2ηi2Z^i0Z^i0Δa(εy)ηi2],\displaystyle K=\int_{\Omega_{\varepsilon}}a(\varepsilon y)\widetilde{Z}_{i0}\left[-(Z_{i0}-\widehat{Z}_{i0})\Delta_{a(\varepsilon y)}\eta_{i1}-2\nabla\eta_{i1}\nabla(Z_{i0}-\widehat{Z}_{i0})-2\nabla\eta_{i2}\nabla\widehat{Z}_{i0}-\widehat{Z}_{i0}\Delta_{a(\varepsilon y)}\eta_{i2}\right],

and

I=\displaystyle I= Ωεa(εy)Z~i0[ηi1(Zi0Z^i0)+ηi2(Z^i0)]\displaystyle\int_{\Omega_{\varepsilon}}a(\varepsilon y)\widetilde{Z}_{i0}\left[\eta_{i1}\mathcal{L}(Z_{i0}-\widehat{Z}_{i0})+\eta_{i2}\mathcal{L}(\widehat{Z}_{i0})\right]
=\displaystyle= Ωεa(εy)ηi22{Zi0(1ηi1)[1μiai0Ga(εy,ξi)]}×{Wξ(1ηi1)[1μiai0Ga(εy,ξi)]\displaystyle\int_{\Omega_{\varepsilon}}a(\varepsilon y)\eta_{i2}^{2}\left\{Z_{i0}-\big{(}1-\eta_{i1}\big{)}\left[\frac{1}{\mu_{i}}-a_{i0}G_{a}(\varepsilon y,\xi_{i})\right]\right\}\times\left\{W_{\xi^{\prime}}\big{(}1-\eta_{i1}\big{)}\left[\frac{1}{\mu_{i}}-a_{i0}G_{a}(\varepsilon y,\xi_{i})\right]\right.
[Δa(εy)Zi0+8μi2(μi2+|yξi|2)2Zi0]+[8μi2(μi2+|yξi|2)2Wξ]Zi0+ε2(Zi01μi)+ε2μiηi1}.\displaystyle\left.-\left[\Delta_{a(\varepsilon y)}Z_{i0}+\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}Z_{i0}\right]+\left[\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}-W_{\xi^{\prime}}\right]Z_{i0}+\varepsilon^{2}\left(Z_{i0}-\frac{1}{\mu_{i}}\right)+\frac{\varepsilon^{2}}{\mu_{i}}\eta_{i1}\right\}.

Let us first estimate the expression KK. Integrating by parts the first term and the last term of KK respectively, we find

K=\displaystyle K= Ω2a(εy)Z^i0ηi1(Zi0Z^i0)+Ω2a(εy)(Zi0Z^i0)2|ηi1|2\displaystyle-\int_{\Omega_{2}}a(\varepsilon y)\widehat{Z}_{i0}\nabla\eta_{i1}\nabla(Z_{i0}-\widehat{Z}_{i0})+\int_{\Omega_{2}}a(\varepsilon y)(Z_{i0}-\widehat{Z}_{i0})^{2}|\nabla\eta_{i1}|^{2}
+Ω2a(εy)(Zi0Z^i0)ηi1Z^i0+Ω4a(εy)|Z^i0|2|ηi2|2\displaystyle+\int_{\Omega_{2}}a(\varepsilon y)(Z_{i0}-\widehat{Z}_{i0})\nabla\eta_{i1}\nabla\widehat{Z}_{i0}+\int_{\Omega_{4}}a(\varepsilon y)|\widehat{Z}_{i0}|^{2}|\nabla\eta_{i2}|^{2}
=\displaystyle= K21+K22+K23+K4.\displaystyle K_{21}+K_{22}+K_{23}+K_{4}.

From (3.8), (3.9), (3.10), (3.39) and (3.44) we have that |Z^i0|=O(1μi2R3)|\nabla\widehat{Z}_{i0}|=O\big{(}\frac{1}{\mu_{i}^{2}R^{3}}\big{)} and |ηi1|=O(1μi)|\nabla\eta_{i1}|=O\big{(}\frac{1}{\mu_{i}}\big{)} in Ω2\Omega_{2}. Then

K22=O(1μi2R|logε|2)andK23=O(1μi2R3|logε|).\displaystyle K_{22}=O\left(\frac{1}{\mu_{i}^{2}R|\log\varepsilon|^{2}}\right)\,\,\quad\qquad\quad\,\,\textrm{and}\,\,\quad\qquad\quad\,\,K_{23}=O\left(\frac{1}{\mu^{2}_{i}R^{3}|\log\varepsilon|}\right).

By (3.49),

K4=O(|logd|2μi2|logε|2).\displaystyle K_{4}=O\left(\frac{|\log d|^{2}}{\mu_{i}^{2}|\log\varepsilon|^{2}}\right).

Since Z^i0=Zi0[1+O(1R|logε|)]\widehat{Z}_{i0}=Z_{i0}\big{[}1+O\big{(}\frac{1}{R|\log\varepsilon|}\big{)}\big{]} in Ω2\Omega_{2}, by (2.5), (3.8), (3.9), (3.10), (3.20), (3.21), (3.38) and (3.39) we can derive that

K=ai0μi2{μiR<|zi|μi(R+1)}1|yξi|a(εy)Z0(ziμi)η1(|zi|μi)[4ci+o(1)]𝑑y+O(1μi2R3|logε|)\displaystyle K=-\frac{a_{i0}}{\mu_{i}^{2}}\int_{\{\mu_{i}R<|z_{i}|\leq\mu_{i}(R+1)\}}\frac{1}{|y-\xi^{\prime}_{i}|}a(\varepsilon y)Z_{0}\left(\frac{z_{i}}{\mu_{i}}\right)\eta_{1}^{\prime}\left(\frac{|z_{i}|}{\mu_{i}}\right)\left[\frac{4}{c_{i}}+o(1)\right]dy+O\left(\frac{1}{\mu^{2}_{i}R^{3}|\log\varepsilon|}\right)
=ciai04μiRR+1a(ξi)η1(r)[4ci+O(1r2)]𝑑r+O(1μi2R3|logε|)\displaystyle=-\frac{c_{i}a_{i0}}{4\mu_{i}}\int_{R}^{R+1}a(\xi_{i})\eta_{1}^{\prime}(r)\left[\frac{4}{c_{i}}+O\left(\frac{1}{r^{2}}\right)\right]dr+O\left(\frac{1}{\mu^{2}_{i}R^{3}|\log\varepsilon|}\right)\qquad\qquad\qquad\qquad\qquad\qquad\,\,\,\,
=14cia(ξi)μi2|logε|[1+O(1R2)].\displaystyle=\frac{1}{4}\frac{c_{i}a(\xi_{i})}{\mu_{i}^{2}|\log\varepsilon|}\left[1+O\left(\frac{1}{R^{2}}\right)\right].\qquad\qquad\qquad\qquad\qquad\qquad\qquad\,\qquad\qquad\qquad\qquad\qquad\qquad\qquad (3.52)

Next, we analyze the expression II. From (2.5), (3.1), (3.2), (3.8), (3.9), (3.10), (3.11), (3.40) and (3.41) we can estimate

|zi|14μi|logε|τa(εy)ηi22{Zi0(1ηi1)[1μiai0Ga(εy,ξi)]}×Wξ(1ηi1)[1μiai0Ga(εy,ξi)]𝑑y=O(1μi2R|logε|),\displaystyle\int_{|z_{i}|\leq\frac{1}{4}\mu_{i}|\log\varepsilon|^{\tau}}a(\varepsilon y)\eta_{i2}^{2}\left\{Z_{i0}-(1-\eta_{i1})\left[\frac{1}{\mu_{i}}-a_{i0}G_{a}(\varepsilon y,\xi_{i})\right]\right\}\times W_{\xi^{\prime}}\big{(}1-\eta_{i1}\big{)}\left[\frac{1}{\mu_{i}}-a_{i0}G_{a}(\varepsilon y,\xi_{i})\right]dy=O\left(\frac{1}{\mu_{i}^{2}R|\log\varepsilon|}\right),

and

|zi|14μi|logε|τa(εy)ηi22{Zi0(1ηi1)[1μiai0Ga(εy,ξi)]}×[Δa(εy)Zi0+8μi2(μi2+|yξi|2)2Zi0]𝑑y=O(εμi),\displaystyle\int_{|z_{i}|\leq\frac{1}{4}\mu_{i}|\log\varepsilon|^{\tau}}\,a(\varepsilon y)\eta_{i2}^{2}\left\{Z_{i0}-(1-\eta_{i1})\left[\frac{1}{\mu_{i}}-a_{i0}G_{a}(\varepsilon y,\xi_{i})\right]\right\}\times\left[\Delta_{a(\varepsilon y)}Z_{i0}+\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}Z_{i0}\right]dy=O\left(\frac{\varepsilon}{\mu_{i}}\right),

and

|zi|14μi|logε|τa(εy)ηi22{Zi0(1ηi1)[1μiai0Ga(εy,ξi)]}×[ε2(Zi01μi)+ε2μiηi1]𝑑y=O(ε2|logε|),\displaystyle\int_{|z_{i}|\leq\frac{1}{4}\mu_{i}|\log\varepsilon|^{\tau}}\,a(\varepsilon y)\eta_{i2}^{2}\left\{Z_{i0}-(1-\eta_{i1})\left[\frac{1}{\mu_{i}}-a_{i0}G_{a}(\varepsilon y,\xi_{i})\right]\right\}\times\left[\varepsilon^{2}\left(Z_{i0}-\frac{1}{\mu_{i}}\right)+\frac{\varepsilon^{2}}{\mu_{i}}\eta_{i1}\right]dy=O\left(\varepsilon^{2}|\log\varepsilon|\right),

and

|zi|14μi|logε|τa(εy)ηi22(1ηi1)[1μiai0Ga(εy,ξi)][8μi2(μi2+|yξi|2)2Wξ]Zi0𝑑y\displaystyle\int_{|z_{i}|\leq\frac{1}{4}\mu_{i}|\log\varepsilon|^{\tau}}\,a(\varepsilon y)\eta_{i2}^{2}(1-\eta_{i1})\left[\frac{1}{\mu_{i}}-a_{i0}G_{a}(\varepsilon y,\xi_{i})\right]\left[\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}-W_{\xi^{\prime}}\right]Z_{i0}dy
=\displaystyle= μiR<|zi|14μi|logε|τ8μi2a(εy)(μi2+|yξi|2)2{p1p1γp[1+ωμi1+12(ωμi)2+2ωμi](yξi)+O(log4(μi+|yξi|)γ2p)}\displaystyle\int_{\mu_{i}R<|z_{i}|\leq\frac{1}{4}\mu_{i}|\log\varepsilon|^{\tau}}\,\frac{8\mu^{2}_{i}a(\varepsilon y)}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}\left\{\frac{p-1}{p}\frac{1}{\gamma^{p}}\left[1+\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}+2\omega_{\mu_{i}}\right]\left(y-\xi^{\prime}_{i}\right)+O\left(\frac{\log^{4}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{2p}}\right)\right\}
×O(log|yξi|log(μiR)+εα|yξi|αμi2|logε|)dy\displaystyle\,\,\,\,\times O\left(\frac{\log|y-\xi_{i}^{\prime}|-\log(\mu_{i}R)+\varepsilon^{\alpha}|y-\xi_{i}^{\prime}|^{\alpha}}{\mu_{i}^{2}|\log\varepsilon|}\right)dy
=\displaystyle= O(log2|logε|μi2R|logε|2).\displaystyle\,O\left(\frac{\log^{2}|\log\varepsilon|}{\mu_{i}^{2}R|\log\varepsilon|^{2}}\right).

But by (3.23), (3.47) and (3),

|zi|>14μi|logε|τa(εy)Z~i0[ηi1(Zi0Z^i0)+ηi2(Z^i0)]𝑑y\displaystyle\int_{|z_{i}|>\frac{1}{4}\mu_{i}|\log\varepsilon|^{\tau}}\,a(\varepsilon y)\widetilde{Z}_{i0}\left[\eta_{i1}\mathcal{L}(Z_{i0}-\widehat{Z}_{i0})+\eta_{i2}\mathcal{L}(\widehat{Z}_{i0})\right]dy
=\displaystyle= kimΩ3,ka(εy)ηi22Z^i0(Z^i0)𝑑y+Ω~3Ω4a(εy)ηi22Z^i0(Z^i0)𝑑y\displaystyle\sum_{k\neq i}^{m}\int_{\Omega_{3,k}}a(\varepsilon y)\eta_{i2}^{2}\widehat{Z}_{i0}\mathcal{L}(\widehat{Z}_{i0})dy+\int_{\widetilde{\Omega}_{3}\cup\Omega_{4}}a(\varepsilon y)\eta_{i2}^{2}\widehat{Z}_{i0}\mathcal{L}(\widehat{Z}_{i0})dy
=\displaystyle= kimO(014μk|logε|τ8μk2(μk2+r2)2log2(|logε|)μi2|logε|2r𝑑r)+O(14μi|logε|τ+[8μi2(μi2+r2)2]1+O(log|logε||logε|)logεrμi2|logε|r𝑑r)\displaystyle\sum_{k\neq i}^{m}O\left(\int_{0}^{\frac{1}{4}\mu_{k}|\log\varepsilon|^{\tau}}\frac{8\mu^{2}_{k}}{(\mu_{k}^{2}+r^{2})^{2}}\frac{\log^{2}(|\log\varepsilon|)}{\mu_{i}^{2}|\log\varepsilon|^{2}}rdr\right)+O\left(\int_{\frac{1}{4}\mu_{i}|\log\varepsilon|^{\tau}}^{+\infty}\left[\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+r^{2})^{2}}\right]^{1+O\left(\frac{\log|\log\varepsilon|}{|\log\varepsilon|}\right)}\frac{\log\varepsilon r}{\mu_{i}^{2}|\log\varepsilon|}rdr\right)
=\displaystyle= O(log2(|logε|)μi2|logε|2).\displaystyle\,O\left(\frac{\log^{2}(|\log\varepsilon|)}{\mu^{2}_{i}|\log\varepsilon|^{2}}\right).

So

I=\displaystyle I= |zi|14μi|logε|τa(εy)ηi22Zi02[8μi2(μi2+|yξi|2)2Wξ]𝑑y+O(1μi2R|logε|)\displaystyle\int_{|z_{i}|\leq\frac{1}{4}\mu_{i}|\log\varepsilon|^{\tau}}\,a(\varepsilon y)\eta_{i2}^{2}Z_{i0}^{2}\left[\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}-W_{\xi^{\prime}}\right]dy+O\left(\frac{1}{\mu_{i}^{2}R|\log\varepsilon|}\right)
=\displaystyle= p1p1γp|zi|14μi|logε|τ8a(εy)(μi2+|yξi|2)2[Z0(ziμi)]2[1+ωμi1+12(ωμi)2+2ωμi](yξi)𝑑y+O(1μi2R|logε|).\displaystyle-\frac{p-1}{p}\frac{1}{\gamma^{p}}\int_{|z_{i}|\leq\frac{1}{4}\mu_{i}|\log\varepsilon|^{\tau}}\frac{8a(\varepsilon y)}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}\left[Z_{0}\left(\frac{z_{i}}{\mu_{i}}\right)\right]^{2}\left[1+\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}+2\omega_{\mu_{i}}\right]\left(y-\xi^{\prime}_{i}\right)dy+O\left(\frac{1}{\mu_{i}^{2}R|\log\varepsilon|}\right).

Owing to the relation in the Appendix

28(μi2+|z|2)2[Z0(zμi)]2[1+ωμi1+12(ωμi)2+2ωμi](z)𝑑z=8πμi2,\displaystyle\int_{\mathbb{R}^{2}}\frac{8}{(\mu_{i}^{2}+|z|^{2})^{2}}\left[Z_{0}\left(\frac{z}{\mu_{i}}\right)\right]^{2}\left[1+\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}+2\omega_{\mu_{i}}\right](z)dz=\frac{8\pi}{\mu_{i}^{2}}, (3.53)

by (2.5) and (3.38) we find

I=1p4cia(ξi)μi2|logε|+O(1μi2R|logε|),i=1,,m.\displaystyle I=\frac{1-p}{4}\frac{c_{i}a(\xi_{i})}{\mu_{i}^{2}|\log\varepsilon|}+O\left(\frac{1}{\mu_{i}^{2}R|\log\varepsilon|}\right),\quad\forall\,\,i=1,\ldots,m. (3.54)

Combining estimates (3) and (3.54), we arrive at

Ωεa(εy)Z~i0(Z~i0)=K+I=2p4cia(ξi)μi2|logε|[1+O(1R)],i=1,,m.\displaystyle\int_{\Omega_{\varepsilon}}a(\varepsilon y)\widetilde{Z}_{i0}\mathcal{L}(\widetilde{Z}_{i0})=K+I=\frac{2-p}{4}\frac{c_{i}a(\xi_{i})}{\mu_{i}^{2}|\log\varepsilon|}\left[1+O\left(\frac{1}{R}\right)\right],\quad\forall\,\,i=1,\ldots,m. (3.55)

According to (3.51), we still need to calculate Ωεa(εy)Z~k0(Z~i0)\int_{\Omega_{\varepsilon}}a(\varepsilon y)\widetilde{Z}_{k0}\mathcal{L}(\widetilde{Z}_{i0}) with kik\neq i. From the previous estimates of (Z~i0)\mathcal{L}(\widetilde{Z}_{i0}) and Z~k0\widetilde{Z}_{k0}, we can easily compute

Ω1a(εy)Z~k0(Z~i0)=O(R2(log2μi)log|logε|μiμk|logε|2),Ω2a(εy)Z~k0(Z~i0)=O(log|logε|μiμk|logε|2),\displaystyle\int_{\Omega_{1}}a(\varepsilon y)\widetilde{Z}_{k0}\mathcal{L}(\widetilde{Z}_{i0})=O\left(\frac{R^{2}(\log^{2}\mu_{i})\log|\log\varepsilon|}{\mu_{i}\mu_{k}|\log\varepsilon|^{2}}\right),\,\qquad\quad\quad\,\,\int_{\Omega_{2}}a(\varepsilon y)\widetilde{Z}_{k0}\mathcal{L}(\widetilde{Z}_{i0})=O\left(\frac{\log|\log\varepsilon|}{\mu_{i}\mu_{k}|\log\varepsilon|^{2}}\right),
Ω4a(εy)Z~k0(Z~i0)=O(|logd|2μiμk|logε|2),Ω3,iΩ~3a(εy)Z~k0(Z~i0)=O(log3|logε|μiμk|logε|2),\displaystyle\int_{\Omega_{4}}a(\varepsilon y)\widetilde{Z}_{k0}\mathcal{L}(\widetilde{Z}_{i0})=O\left(\frac{|\log d|^{2}}{\mu_{i}\mu_{k}|\log\varepsilon|^{2}}\right),\,\,\,\,\quad\qquad\,\,\,\,\int_{\Omega_{3,i}\cup\widetilde{\Omega}_{3}}a(\varepsilon y)\widetilde{Z}_{k0}\mathcal{L}(\widetilde{Z}_{i0})=O\left(\frac{\log^{3}|\log\varepsilon|}{\mu_{i}\mu_{k}|\log\varepsilon|^{2}}\right),

and

Ω3,la(εy)Z~k0(Z~i0)=O(log2|logε|μiμk|logε|2)for allliandlk.\displaystyle\int_{\Omega_{3,l}}a(\varepsilon y)\widetilde{Z}_{k0}\mathcal{L}(\widetilde{Z}_{i0})=O\left(\frac{\log^{2}|\log\varepsilon|}{\mu_{i}\mu_{k}|\log\varepsilon|^{2}}\right)\quad\quad\textrm{for all}\,\,\,l\neq i\,\,\,\textrm{and}\,\,\,l\neq k.

It remains to consider the integral over Ω3,k\Omega_{3,k}. Using (3.26) and an integration by parts, we have

Ω3,ka(εy)Z~k0(Z~i0)=Ω3,ka(εy)Z~i0(Z~k0)Ω3,ka(εy)Z^k0Z^i0ν+Ω3,ka(εy)Z^i0Z^k0ν.\displaystyle\int_{\Omega_{3,k}}a(\varepsilon y)\widetilde{Z}_{k0}\mathcal{L}(\widetilde{Z}_{i0})=\int_{\Omega_{3,k}}a(\varepsilon y)\widetilde{Z}_{i0}\mathcal{L}(\widetilde{Z}_{k0})-\int_{\partial\Omega_{3,k}}a(\varepsilon y)\widehat{Z}_{k0}\frac{\partial\widehat{Z}_{i0}}{\partial\nu}+\int_{\partial\Omega_{3,k}}a(\varepsilon y)\widehat{Z}_{i0}\frac{\partial\widehat{Z}_{k0}}{\partial\nu}.

As above, we get

Ω3,ka(εy)Z~i0(Z~k0)=O(log3|logε|μiμk|logε|2).\displaystyle\int_{\Omega_{3,k}}a(\varepsilon y)\widetilde{Z}_{i0}\mathcal{L}(\widetilde{Z}_{k0})=O\left(\frac{\log^{3}|\log\varepsilon|}{\mu_{i}\mu_{k}|\log\varepsilon|^{2}}\right).

On Ω3,k\partial\Omega_{3,k}, by (2.3) and (3.23),

Z^k0=O(1μk),Z^i0=O(log|logε|μi|logε|),\displaystyle\,\,\,\,\,\,\,\widehat{Z}_{k0}=O\left(\frac{1}{\mu_{k}}\right),\,\,\qquad\,\qquad\ \qquad\,\qquad\,\,\widehat{Z}_{i0}=O\left(\frac{\log|\log\varepsilon|}{\mu_{i}|\log\varepsilon|}\right),

and

|Z^k0|=O(1μk2|logε|1+τ),|Z^i0|=O(ε|logε|κ1μi).\displaystyle|\nabla\widehat{Z}_{k0}|=O\left(\frac{1}{\mu_{k}^{2}|\log\varepsilon|^{1+\tau}}\right),\,\qquad\,\,\,\qquad\,|\nabla\widehat{Z}_{i0}|=O\left(\frac{\,\varepsilon|\log\varepsilon|^{\kappa-1}\,}{\mu_{i}}\right).

Then

Ω3,ka(εy)Z~k0(Z~i0)=O(log3|logε|μiμk|logε|2).\displaystyle\int_{\Omega_{3,k}}a(\varepsilon y)\widetilde{Z}_{k0}\mathcal{L}(\widetilde{Z}_{i0})=O\left(\frac{\log^{3}|\log\varepsilon|}{\mu_{i}\mu_{k}|\log\varepsilon|^{2}}\right).

From the above estimates we find

Ωεa(εy)Z~k0(Z~i0)=O(log3|logε|μiμk|logε|2),ifik.\displaystyle\int_{\Omega_{\varepsilon}}a(\varepsilon y)\widetilde{Z}_{k0}\mathcal{L}(\widetilde{Z}_{i0})=O\left(\frac{\log^{3}|\log\varepsilon|}{\mu_{i}\mu_{k}|\log\varepsilon|^{2}}\right),\,\,\quad\,\,\textrm{if}\,\,\,\,i\neq k. (3.56)

Furthermore, substituting (3.55)-(3.56) into (3.51), we obtain

|di|μiC|logε|h+Ck=1m|dk|μklog4|logε||logε|.\displaystyle\frac{|d_{i}|}{\mu_{i}}\leq C|\log\varepsilon|\,\|h\|_{*}+C\sum_{k=1}^{m}\frac{|d_{k}|}{\mu_{k}}\frac{\log^{4}|\log\varepsilon|}{|\log\varepsilon|}.

Using linear algebra arguments, we can conclude Claim 2 for did_{i} and complete the proof by (3.31). ∎

Proof of Proposition 3.2. Let us first prove that for any ϕ\phi, cijc_{ij} solutions of problem (3.7), the a priori estimate

ϕL(Ωε)C|logε|h\displaystyle\|\phi\|_{L^{\infty}(\Omega_{\varepsilon})}\leq C|\log\varepsilon|\,\|h\|_{*} (3.57)

holds. In fact, Lemma 3.5 gives

ϕL(Ωε)C|logε|(h+i=1mj=1Ji|cij|χiZij)C|logε|(h+i=1mj=1Jiμi|cij|).\displaystyle\|\phi\|_{L^{\infty}(\Omega_{\varepsilon})}\leq C|\log\varepsilon|\,\left(\|h\|_{*}+\sum_{i=1}^{m}\sum_{j=1}^{J_{i}}|c_{ij}|\cdot\|\chi_{i}Z_{ij}\|_{*}\right)\leq C|\log\varepsilon|\,\left(\|h\|_{*}+\sum_{i=1}^{m}\sum_{j=1}^{J_{i}}\mu_{i}|c_{ij}|\right).

As in Lemma 3.4, arguing by contradiction to (3.57), we assume further that

ϕnL(Ωεn)=1,|logεn|hn0,|logεn|i=1mj=1Jiμin|cijn|δ>0asn+.\displaystyle\|\phi_{n}\|_{L^{\infty}(\Omega_{\varepsilon_{n}})}=1,\,\,\ \,\quad\,\,|\log\varepsilon_{n}|\,\|h_{n}\|_{*}\rightarrow 0,\,\,\ \,\quad\,\,|\log\varepsilon_{n}|\,\sum_{i=1}^{m}\sum_{j=1}^{J_{i}}\mu_{i}^{n}|c_{ij}^{n}|\geq\delta>0\,\,\,\quad\,\,\,\textrm{as}\,\,\,n\rightarrow+\infty. (3.58)

We omit the dependence on nn. It suffices to prove that |cij|Cμi1h|c_{ij}|\leq C\mu_{i}^{-1}\|h\|_{*}. To this end, we multiply (3.7) by a(εy)ηi2Zija(\varepsilon y)\eta_{i2}Z_{ij}, with ηi2\eta_{i2} the cut-off function defined in (3.24)-(3.25), and integrate by parts to find that for any i=1,,mi=1,\ldots,m and j=1,Jij=1,J_{i},

Ωεa(εy)ϕ(ηi2Zij)=Ωεa(εy)hηi2Zij+k=1mt=1JkcktΩεχkZktηi2Zij.\displaystyle\int_{\Omega_{\varepsilon}}a(\varepsilon y)\phi\mathcal{L}(\eta_{i2}Z_{ij})=\int_{\Omega_{\varepsilon}}a(\varepsilon y)h\eta_{i2}Z_{ij}+\sum_{k=1}^{m}\sum_{t=1}^{J_{k}}c_{kt}\int_{\Omega_{\varepsilon}}\chi_{k}Z_{kt}\eta_{i2}Z_{ij}. (3.59)

From (3.2), (3.8), (3.9), (3.10), (3.38) and (3.39) we can compute

(ηi2Zij)=\displaystyle\mathcal{L}(\eta_{i2}Z_{ij})= ηi2(Zij)ZijΔa(εy)ηi22ηi2Zij\displaystyle\eta_{i2}\mathcal{L}(Z_{ij})-Z_{ij}\Delta_{a(\varepsilon y)}\eta_{i2}-2\nabla\eta_{i2}\nabla Z_{ij}
=\displaystyle= [8μi2(μi2+|yξi|2)2Wξ]ηi2Zij+ε2ηi2Zij+ηi2[Δa(εy)Zij8μi2(μi2+|yξi|2)2Zij]+O(ε3d3)\displaystyle\left[\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}-W_{\xi^{\prime}}\right]\eta_{i2}Z_{ij}+\varepsilon^{2}\eta_{i2}Z_{ij}+\eta_{i2}\left[-\Delta_{a(\varepsilon y)}Z_{ij}-\frac{8\mu_{i}^{2}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}Z_{ij}\right]+O\left(\frac{\,\varepsilon^{3}\,}{d^{3}}\right)
\displaystyle\equiv +ε2ηi2Zij+O(ε(|yξi|+μi)2)+O(ε3d3).\displaystyle\mathcal{B}+\varepsilon^{2}\eta_{i2}Z_{ij}+O\left(\frac{\varepsilon}{(|y-\xi^{\prime}_{i}|+\mu_{i})^{2}}\right)+O\left(\frac{\,\varepsilon^{3}\,}{d^{3}}\right).

For the estimation of the first term, we decompose supp(ηi2)\text{supp}(\eta_{i2}) into several pieces:

Ω^1k={yΩε||zk|14μk|logε|τ},k=1,,m,\displaystyle\widehat{\Omega}_{1k}=\left\{y\in\Omega_{\varepsilon}\big{|}\,|z_{k}|\leq\frac{1}{4}\mu_{k}|\log\varepsilon|^{\tau}\right\},\,\,\ \,\,\forall\,\,k=1,\ldots,m,
Ω^2={yΩε||zi|6dε,|zk|>14μk|logε|τ,k=1,,m},\displaystyle\widehat{\Omega}_{2}=\left\{y\in\Omega_{\varepsilon}\big{|}\,|z_{i}|\leq\frac{6d}{\varepsilon},\,\quad\,|z_{k}|>\frac{1}{4}\mu_{k}|\log\varepsilon|^{\tau},\,\,\,\,\,\,\,\,\,k=1,\ldots,m\right\},

where zk=yξkz_{k}=y-\xi^{\prime}_{k} for k=1,,lk=1,\ldots,l, but zk=Fkε(y)z_{k}=F_{k}^{\varepsilon}(y) for k=l+1,,mk=l+1,\ldots,m. From (2.3), (2.5) and (3.38) we obtain

|yξi||ξiξk||yξk||ξiξk|12μk|logε|τ12ε|logε|κ,\displaystyle|y-\xi^{\prime}_{i}|\geq|\xi_{i}^{\prime}-\xi_{k}^{\prime}|-|y-\xi_{k}^{\prime}|\geq|\xi_{i}^{\prime}-\xi_{k}^{\prime}|-\frac{1}{2}\mu_{k}|\log\varepsilon|^{\tau}\geq\frac{1}{2\varepsilon|\log\varepsilon|^{\kappa}}, (3.60)

uniformly in Ω^1k\widehat{\Omega}_{1k}, kik\neq i. In Ω^1i\widehat{\Omega}_{1i}, by (3.2), (3.8) (3.9) and (3.10) we have that for any i=1,,li=1,\ldots,l and j=1,2j=1,2,

=8μi2(yξi)j(μi2+|yξi|2)3{p1p1γp[1+ωμi1+12(ωμi)2+2ωμi](yξi)+O(log4(μi+|yξi|)γ2p)},\displaystyle\mathcal{B}=-\frac{8\mu^{2}_{i}(y-\xi^{\prime}_{i})_{j}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{3}}\left\{\frac{p-1}{p}\frac{1}{\gamma^{p}}\left[1+\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}+2\omega_{\mu_{i}}\right]\left(y-\xi^{\prime}_{i}\right)+O\left(\frac{\log^{4}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{2p}}\right)\right\},

and for any i=l+1,,mi=l+1,\ldots,m and j=Ji=1j=J_{i}=1,

=8μi2(μi2+|yξi|2)2(Fiε(y))1μi2+|Fiε(y)|2{p1p1γp[1+ωμi1+12(ωμi)2+2ωμi](yξi)+O(log4(μi+|yξi|)γ2p)}.\displaystyle\mathcal{B}=-\frac{8\mu^{2}_{i}}{(\mu_{i}^{2}+|y-\xi^{\prime}_{i}|^{2})^{2}}\frac{(F_{i}^{\varepsilon}(y))_{1}}{\mu_{i}^{2}+|F_{i}^{\varepsilon}(y)|^{2}}\left\{\frac{p-1}{p}\frac{1}{\gamma^{p}}\left[1+\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}+2\omega_{\mu_{i}}\right]\left(y-\xi^{\prime}_{i}\right)+O\left(\frac{\log^{4}(\mu_{i}+|y-\xi^{\prime}_{i}|)}{\gamma^{2p}}\right)\right\}.

In Ω^1k\widehat{\Omega}_{1k}, kik\neq i, by (3.60),

=O(8εμk2|logε|κ(μk2+|yξk|2)2).\displaystyle\mathcal{B}=O\left(\frac{8\varepsilon\mu^{2}_{k}|\log\varepsilon|^{\kappa}}{(\mu_{k}^{2}+|y-\xi^{\prime}_{k}|^{2})^{2}}\right).

In Ω^2\widehat{\Omega}_{2}, by (3.1),

=k=1mO((μk2|yξk|4)1+o(1)1μi|logε|τ).\displaystyle\mathcal{B}=\sum_{k=1}^{m}O\left(\left(\frac{\mu_{k}^{2}}{|y-\xi^{\prime}_{k}|^{4}}\right)^{1+o\left(1\right)}\cdot\frac{1}{\mu_{i}|\log\varepsilon|^{\tau}}\right).

Hence

Ωεa(εy)ϕ(ηi2Zij)=p1p1γp1μia(ξi)Ej(ϕ^i)+O(1μi|logε|2ϕL(Ωε)),\displaystyle\int_{\Omega_{\varepsilon}}a(\varepsilon y)\phi\mathcal{L}(\eta_{i2}Z_{ij})=-\frac{p-1}{p}\frac{1}{\gamma^{p}}\frac{1}{\mu_{i}}a(\xi_{i})E_{j}(\widehat{\phi}_{i})+O\left(\frac{1}{\mu_{i}|\log\varepsilon|^{2}}\|\phi\|_{L^{\infty}(\Omega_{\varepsilon})}\right), (3.61)

where for any i=1,,li=1,\ldots,l and j=1,2j=1,2, ϕ^i(z)=ϕ(ξi+μiz)\widehat{\phi}_{i}(z)=\phi\big{(}\xi_{i}^{\prime}+\mu_{i}z\big{)} and

Ej(ϕ^i)=B18|logε|τ(0)8zj(|z|2+1)3ϕ^i(z)[1+ωμi1+12(ωμi)2+2ωμi](μi|z|)𝑑z,\displaystyle E_{j}(\widehat{\phi}_{i})=\int_{B_{\frac{1}{8}|\log\varepsilon|^{\tau}}\left(0\right)}\frac{8z_{j}}{(|z|^{2}+1)^{3}}\widehat{\phi}_{i}(z)\left[1+\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}+2\omega_{\mu_{i}}\right](\mu_{i}|z|)dz,

but for any i=l+1,,mi=l+1,\ldots,m and j=1j=1, ϕ^i(z)=ϕ((Fiε)1(μiz))\widehat{\phi}_{i}(z)=\phi\big{(}(F_{i}^{\varepsilon})^{-1}(\mu_{i}z)\big{)} and

Ej(ϕ^i)=+2B18|logε|τ(0)8zj(|z|2+1)3ϕ^i(z)[1+ωμi1+12(ωμi)2+2ωμi](μi|z|)𝑑z.\displaystyle E_{j}(\widehat{\phi}_{i})=\int_{\mathbb{R}_{+}^{2}\bigcap B_{\frac{1}{8}|\log\varepsilon|^{\tau}}\left(0\right)}\frac{8z_{j}}{(|z|^{2}+1)^{3}}\widehat{\phi}_{i}(z)\left[1+\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}+2\omega_{\mu_{i}}\right](\mu_{i}|z|)dz.

On the other hand, if 1k=il1\leq k=i\leq l,

ΩεχkZktηi2Zij=2χZtZj𝑑z=Dtδtj,\displaystyle\int_{\Omega_{\varepsilon}}\chi_{k}Z_{kt}\eta_{i2}Z_{ij}=\int_{\mathbb{R}^{2}}\chi Z_{t}Z_{j}dz=D_{t}\delta_{tj}, (3.62)

and if l+1k=iml+1\leq k=i\leq m,

ΩεχkZk1ηi2Zi1=+2χZ12[1+O(εμi|z|)]𝑑z=12D1[1+O(εμi)],\displaystyle\int_{\Omega_{\varepsilon}}\chi_{k}Z_{k1}\eta_{i2}Z_{i1}=\int_{\mathbb{R}_{+}^{2}}\chi Z^{2}_{1}\big{[}1+O\left(\varepsilon\mu_{i}|z|\right)\big{]}dz=\frac{1}{2}D_{1}\big{[}1+O\left(\varepsilon\mu_{i}\right)\big{]}, (3.63)

and if kik\neq i, by (3.60),

ΩεχkZktηi2Zij=O(μkε|logε|κ).\displaystyle\int_{\Omega_{\varepsilon}}\chi_{k}Z_{kt}\eta_{i2}Z_{ij}=O\left(\mu_{k}\varepsilon|\log\varepsilon|^{\kappa}\right). (3.64)

In addition, due to ηi2ZijL(Ωε)Cμi1\|\eta_{i2}Z_{ij}\|_{L^{\infty}(\Omega_{\varepsilon})}\leq C\mu_{i}^{-1}, we obtain

Ωεa(εy)hηi2Zij=O(1μih).\displaystyle\int_{\Omega_{\varepsilon}}a(\varepsilon y)h\eta_{i2}Z_{ij}=O\left(\frac{1}{\mu_{i}}\|h\|_{*}\right). (3.65)

As a consequence, replacing estimates (3.61)-(3.65) to (3.59), we have that for any i=1,,mi=1,\ldots,m and j=1,Jij=1,J_{i},

Djcij+O(kimt=1Jkεμk|logε|κ|ckt|)=O(1μih+1μi|logε|ϕL(Ωε)).\displaystyle D_{j}c_{ij}+O\left(\sum\limits_{k\neq i}^{m}\sum\limits_{t=1}^{J_{k}}\varepsilon\mu_{k}|\log\varepsilon|^{\kappa}|c_{kt}|\right)=O\left(\frac{1}{\mu_{i}}\|h\|_{*}+\frac{1}{\mu_{i}|\log\varepsilon|}\|\phi\|_{L^{\infty}(\Omega_{\varepsilon})}\right).

Then

i=1mj=1Jiμi|cij|=O(1|logε|ϕL(Ωε))+O(h).\displaystyle\sum_{i=1}^{m}\sum_{j=1}^{J_{i}}\mu_{i}|c_{ij}|=O\left(\frac{1}{|\log\varepsilon|}\|\phi\|_{L^{\infty}(\Omega_{\varepsilon})}\right)+O\left(\|h\|_{*}\right). (3.66)

From the first two assumptions in (3.58) we get i=1mj=1Jiμi|cij|=o(1)\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{J_{i}}\mu_{i}|c_{ij}|=o\left(1\right). As in contradiction arguments of Lemma 3.4, we can derive that for any i=1,,li=1,\ldots,l,

ϕ^iCi|z|21|z|2+1uniformly inCloc0(2),\displaystyle\widehat{\phi}_{i}\rightarrow C_{i}\frac{|z|^{2}-1}{|z|^{2}+1}\,\,\ \,\,\,\,\,\textrm{uniformly in}\,\,\,C_{loc}^{0}(\mathbb{R}^{2}),

but for any i=l+1,,mi=l+1,\ldots,m,

ϕ^iCi|z|21|z|2+1uniformly inCloc0(+2),\displaystyle\widehat{\phi}_{i}\rightarrow C_{i}\frac{|z|^{2}-1}{|z|^{2}+1}\,\,\ \,\,\,\,\,\textrm{uniformly in}\,\,\,C_{loc}^{0}(\mathbb{R}_{+}^{2}),

with some constant CiC_{i}. In view of the odd function 8zj(|z|2+1)3\frac{8z_{j}}{(|z|^{2}+1)^{3}} with j=1,2j=1,2, by (8.7) and Lebesgue’s theorem we have that

Ej(ϕ^i)0,i=1,,m,j=1,Ji.\displaystyle E_{j}(\widehat{\phi}_{i})\longrightarrow 0,\quad\,\,\,\,\,\forall\,\,\,i=1,\ldots,m,\,\,\,j=1,J_{i}.

Hence by replacing estimates (3.61)-(3.65) to (3.59) again we have a better estimate

i=1mj=1Jiμi|cij|=o(1|logε|)+O(h),\displaystyle\sum_{i=1}^{m}\sum_{j=1}^{J_{i}}\mu_{i}|c_{ij}|=o\left(\frac{1}{|\log\varepsilon|}\right)+O(\|h\|_{*}),

which is impossible because of the last assumption in (3.58). So estimate (3.57) is established and then by (3.66), we find

|cij|C1μih.\displaystyle|c_{ij}|\leq C\frac{1}{\mu_{i}}\|h\|_{*}.

Let us consider the Hilbert space

Hξ={ϕH1(Ωε)|ΩεχiZijϕ=0for anyi=1,,m,j=1,Ji;ϕν=0onΩε}\displaystyle H_{\xi}=\left\{\phi\in H^{1}(\Omega_{\varepsilon})\left|\,\,\int_{\Omega_{\varepsilon}}\chi_{i}Z_{ij}\phi=0\quad\textrm{for any}\,\,\,i=1,\ldots,m,\,\,j=1,J_{i};\quad\frac{\partial\phi}{\partial\nu}=0\quad\textrm{on}\,\,\,\partial\Omega_{\varepsilon}\right.\right\}

with the norm ϕH1(Ωε)2=Ωεa(εy)(|ϕ|2+ε2ϕ2)\|\phi\|_{H^{1}(\Omega_{\varepsilon})}^{2}=\int_{\Omega_{\varepsilon}}a(\varepsilon y)\big{(}|\nabla\phi|^{2}+\varepsilon^{2}\phi^{2}\big{)}. Equation (3.7) is equivalent to find ϕHξ\phi\in H_{\xi} such that

Ωεa(εy)(ϕψ+ε2ϕψ)Ωεa(εy)Wξϕψ=Ωεa(εy)hψψHξ.\displaystyle\int_{\Omega_{\varepsilon}}a(\varepsilon y)\big{(}\nabla\phi\nabla\psi+\varepsilon^{2}\phi\psi\big{)}-\int_{\Omega_{\varepsilon}}a(\varepsilon y)W_{\xi^{\prime}}\phi\psi=\int_{\Omega_{\varepsilon}}a(\varepsilon y)h\psi\,\,\quad\,\,\forall\,\,\psi\in H_{\xi}.

By Fredholm’s alternative this is equivalent to the uniqueness of solutions to this problem, which in turn follows from estimate (3.57). The proof is complete.                                         \square

Remark 3.6.  Given hL(Ωε)h\in L^{\infty}(\Omega_{\varepsilon}) with h<\|h\|_{*}<\infty, let ϕ\phi be the solution of equation (3.7) given by Proposition 3.2. Multiplying (3.7) by a(εy)ϕa(\varepsilon y)\phi and integrating by parts, we get

ϕH1(Ωε)2=Ωεa(εy)Wξϕ2+Ωεa(εy)hϕ.\displaystyle\|\phi\|_{H^{1}(\Omega_{\varepsilon})}^{2}=\int_{\Omega_{\varepsilon}}a(\varepsilon y)W_{\xi^{\prime}}\phi^{2}+\int_{\Omega_{\varepsilon}}a(\varepsilon y)h\phi.

By Proposition 3.1 we find

ϕH1(Ωε)C(ϕL(Ωε)+h).\displaystyle\|\phi\|_{H^{1}(\Omega_{\varepsilon})}\leq C\big{(}\|\phi\|_{L^{\infty}(\Omega_{\varepsilon})}+\|h\|_{*}\big{)}.

Remark 3.7.  The result of Proposition 3.2 implies that the unique solution ϕ=𝒯(h)\phi=\mathcal{T}(h) of equation (3.7) defines a continuous linear map from the Banach space 𝒞\mathcal{C}_{*} of all functions hh in LL^{\infty} for which h<\|h\|_{*}<\infty, into LL^{\infty}. It is necessary to point out that the operator 𝒯\mathcal{T} is differentiable with respect to the variables ξ=(ξ1,,ξm)\xi=(\xi_{1},\ldots,\xi_{m}) in 𝒪ε\mathcal{O}_{\varepsilon}. More precisely, if we fix h𝒞h\in\mathcal{C}_{*} and set ϕ=T(h)\phi=T(h), then by formally computing the derivative of ϕ\phi with respect to ξ=(ξ1,,ξm)\xi^{\prime}=(\xi^{\prime}_{1},\ldots,\xi^{\prime}_{m}) and using the delicate estimate (ξi)jWξ=O(1)\|\partial_{(\xi^{\prime}_{i})_{j}}W_{\xi^{\prime}}\|_{*}=O\left(1\right) we can obtain the a priori estimate

(ξi)j𝒯(h)L(Ωε)C|logε|2h,i=1,,m,j=1,Ji.\displaystyle\|\partial_{(\xi^{\prime}_{i})_{j}}\mathcal{T}(h)\|_{L^{\infty}(\Omega_{\varepsilon})}\leq C|\log\varepsilon|^{2}\,\|h\|_{*},\quad\,\,\,\,\,\forall\,\,\,i=1,\ldots,m,\,\,\,j=1,J_{i}.

4. The nonlinear problem

Consider the nonlinear problem: for any points ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon}, we find a function ϕ\phi and scalars cijc_{ij}, i=1,,mi=1,\ldots,m, j=1,Jij=1,J_{i} such that

{(ϕ)=[Eξ+N(ϕ)]+1a(εy)i=1mj=1JicijχiZijinΩε,ϕν=0onΩε,ΩεχiZijϕ=0i=1,,m,j=1,Ji,\left\{\begin{aligned} &\mathcal{L}(\phi)=-\big{[}E_{\xi^{\prime}}+N(\phi)\big{]}+\frac{1}{a(\varepsilon y)}\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{J_{i}}c_{ij}\chi_{i}\,Z_{ij}\,\,\ \,\textrm{in}\,\,\,\,\,\,\Omega_{\varepsilon},\\ &\frac{\partial\phi}{\partial\nu}=0\,\,\,\,\,\,\,\qquad\qquad\qquad\quad\qquad\qquad\qquad\qquad\qquad\textrm{on}\,\,\,\,\partial\Omega_{\varepsilon},\\[2.84526pt] &\int_{\Omega_{\varepsilon}}\chi_{i}\,Z_{ij}\phi=0\qquad\qquad\qquad\quad\,\forall\,\,i=1,\ldots,m,\,\,\,j=1,J_{i},\end{aligned}\right. (4.1)

where Wξ=f(Vξ)W_{\xi^{\prime}}=f^{\prime}(V_{\xi^{\prime}}) satisfies (3.1)-(3.3), and EξE_{\xi^{\prime}}, N(ϕ)N(\phi) are defined in (2.28). We have the following result.

Proposition 4.1.  Let mm be a positive integer. Then there exist constants C>0C>0 and ε0>0\varepsilon_{0}>0 such that for any 0<ε<ε00<\varepsilon<\varepsilon_{0} and any points ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon}, problem (4.1) admits a unique solution ϕξ\phi_{\xi^{\prime}} for some coefficients cij(ξ)c_{ij}(\xi^{\prime}), i=1,,mi=1,\ldots,m, j=1,Jij=1,J_{i}, such that

ϕξL(Ωε)C|logε|3,i=1mj=1Jiμi|cij(ξ)|C|logε|4andϕξH1(Ωε)C|logε|3.\displaystyle\|\phi_{\xi^{\prime}}\|_{L^{\infty}(\Omega_{\varepsilon})}\leq\frac{C}{|\log\varepsilon|^{3}},\,\,\quad\,\quad\,\,\sum_{i=1}^{m}\sum_{j=1}^{J_{i}}\mu_{i}|c_{ij}(\xi^{\prime})|\leq\frac{C}{|\log\varepsilon|^{4}}\quad\,\quad\textrm{and}\quad\,\quad\|\phi_{\xi^{\prime}}\|_{H^{1}(\Omega_{\varepsilon})}\leq\frac{C}{|\log\varepsilon|^{3}}. (4.2)

Furthermore, the map ξϕξ\xi^{\prime}\mapsto\phi_{\xi^{\prime}} is a C1C^{1}-function in C(Ω¯ε)C(\overline{\Omega}_{\varepsilon}) and H1(Ωε)H^{1}(\Omega_{\varepsilon}), precisely for any i=1,,mi=1,\ldots,m and j=1,Jij=1,J_{i},

(ξi)jϕξL(Ωε)C|logε|2,\displaystyle\|\partial_{(\xi^{\prime}_{i})_{j}}\phi_{\xi^{\prime}}\|_{L^{\infty}(\Omega_{\varepsilon})}\leq\frac{C}{|\log\varepsilon|^{2}}, (4.3)

where ξ:=(ξ1,,ξm)=(1εξ1,,1εξm)\xi^{\prime}:=(\xi^{\prime}_{1},\ldots,\xi^{\prime}_{m})=(\frac{1}{\varepsilon}\xi_{1},\ldots,\frac{1}{\varepsilon}\xi_{m}).

Proof.

Proposition 3.23.2 and Remarks 3.6-3.7 allow us to apply the Contraction Mapping Theorem and the Implicit Function Theorem to find a unique solution for problem (4.1) satisfying (4.2)-(4.3). Since it is a standard procedure, we omit the details, see Lemmas 4.1-4.2 in [10] for a similar proof. We just mention that N(ϕ)CϕL(Ωε)2\|N(\phi)\|_{*}\leq C\|\phi\|_{L^{\infty}(\Omega_{\varepsilon})}^{2} and (ξi)jEξC|logε|3\|\partial_{(\xi^{\prime}_{i})_{j}}E_{\xi^{\prime}}\|_{*}\leq C|\log\varepsilon|^{-3}. ∎

5. Variational reduction

Since problem (4.1) has been solved, we find a solution of problem (2.27) and hence to the original equation (1.1) if we match ξ\xi^{\prime} with the coefficient cij(ξ)c_{ij}(\xi^{\prime}) in (4.1) so that

cij(ξ)=0for alli=1,,m,j=1,Ji.\displaystyle c_{ij}(\xi^{\prime})=0\,\quad\,\,\textrm{for all}\,\,\,i=1,\ldots,m,\,\,\,j=1,J_{i}. (5.1)

We consider the energy functional JλJ_{\lambda} defined in (1.2) and take its finite-dimensional restriction

Fλ(ξ)=Jλ((Uξ+ϕ~ξ)(x))ξ=(ξ1,,ξm)𝒪ε,\displaystyle F_{\lambda}(\xi)=J_{\lambda}\left(\big{(}U_{\xi}+\widetilde{\phi}_{\xi}\big{)}(x)\right)\,\ \,\,\ \ \,\forall\,\,\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon},

where

(Uξ+ϕ~ξ)(x)=γ+1pγp1(Vξ+ϕξ)(xε),xΩ,\displaystyle\big{(}U_{\xi}+\widetilde{\phi}_{\xi}\big{)}(x)=\gamma+\frac{1}{p\gamma^{p-1}}\big{(}V_{\xi^{\prime}}+\phi_{\xi^{\prime}}\big{)}\left(\frac{x}{\varepsilon}\right),\,\quad\,x\in\Omega,

with VξV_{\xi^{\prime}} defined in (2.26) and ϕξ\phi_{\xi^{\prime}} the unique solution to problem (4.1) given by Proposition 4.1. Define

Iε(υ)=12Ωεa(εy)(|υ|2+ε2υ2)𝑑yΩεa(εy)eγp[(1+υpγp)p1]𝑑y,υH1(Ωε).\displaystyle I_{\varepsilon}(\upsilon)=\frac{1}{2}\int_{\Omega_{\varepsilon}}a(\varepsilon y)\left(|\nabla\upsilon|^{2}+\varepsilon^{2}\upsilon^{2}\right)dy-\int_{\Omega_{\varepsilon}}a(\varepsilon y)e^{\gamma^{p}\left[\left(1+\frac{\upsilon}{p\gamma^{p}}\right)^{p}-1\right]}dy,\,\quad\,\upsilon\in H^{1}(\Omega_{\varepsilon}).

Then by (1.8),

Iε(Vξ+ϕξ)=p2γ2(p1)Fλ(ξ)andIε(Vξ+ϕξ)Iε(Vξ)=p2γ2(p1)[Fλ(ξ)Jλ(Uξ)].\displaystyle I_{\varepsilon}\big{(}V_{\xi^{\prime}}+\phi_{\xi^{\prime}}\big{)}=p^{2}\gamma^{2(p-1)}F_{\lambda}(\xi)\qquad\,\,\textrm{and}\qquad\,\,I_{\varepsilon}\big{(}V_{\xi^{\prime}}+\phi_{\xi^{\prime}}\big{)}-I_{\varepsilon}(V_{\xi^{\prime}})=p^{2}\gamma^{2(p-1)}\big{[}F_{\lambda}(\xi)-J_{\lambda}\left(U_{\xi}\right)\big{]}. (5.2)

Proposition 5.1.  The function Fλ:𝒪εF_{\lambda}:\mathcal{O}_{\varepsilon}\mapsto\mathbb{R} is of class C1C^{1}. Moreover, for all λ\lambda sufficiently small, if DξFλ(ξ)=0D_{\xi}F_{\lambda}(\xi)=0, then ξ=ξ/ε\xi^{\prime}=\xi/\varepsilon satisfies (5.1), that is, Uξ+ϕ~ξU_{\xi}+\widetilde{\phi}_{\xi} is a solution of equation (1.1).

Proof.

Since the map ξϕξ\xi^{\prime}\mapsto\phi_{\xi^{\prime}} is a C1C^{1}-function in C(Ω¯ε)C(\overline{\Omega}_{\varepsilon}) and H1(Ωε)H^{1}(\Omega_{\varepsilon}), we can check that Fλ(ξ)F_{\lambda}(\xi) is a C1C^{1}-function of ξ\xi in 𝒪ε\mathcal{O}_{\varepsilon}. Assume that ϕξ\phi_{\xi^{\prime}} solves problem (4.1) and DξFλ(ξ)=0D_{\xi}F_{\lambda}(\xi)=0. Then by (5.2), we have that for any k=1,,mk=1,\ldots,m and t=1,Jkt=1,J_{k},

0=Iε(Vξ+ϕξ)(ξk)t(Vξ+ϕξ)\displaystyle 0=I^{\prime}_{\varepsilon}\big{(}V_{\xi^{\prime}}+\phi_{\xi^{\prime}}\big{)}\partial_{(\xi^{\prime}_{k})_{t}}\big{(}V_{\xi^{\prime}}+\phi_{\xi^{\prime}}\big{)}
=i=1mj=1Jicij(ξ)ΩεχiZij(ξk)tVξi=1mj=1Jicij(ξ)Ωεϕξ(ξk)t(χiZij).\displaystyle\,\,\,\,\,=\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{J_{i}}c_{ij}(\xi^{\prime})\int_{\Omega_{\varepsilon}}\chi_{i}Z_{ij}\partial_{(\xi^{\prime}_{k})_{t}}V_{\xi^{\prime}}-\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{J_{i}}c_{ij}(\xi^{\prime})\int_{\Omega_{\varepsilon}}\phi_{\xi^{\prime}}\partial_{(\xi^{\prime}_{k})_{t}}\big{(}\chi_{i}Z_{ij}\big{)}. (5.3)

Recall that DξVξ(y)=pγp1DξUξ(εy)D_{\xi^{\prime}}V_{\xi^{\prime}}(y)=p\gamma^{p-1}D_{\xi^{\prime}}U_{\xi}(\varepsilon y). From (2.1), (2.2), (2.7) and (2.16) we know that

(ξk)tVξ(y)=i=1m(ξk)t[ωμi(yξi)+j=14(p1p)j1γjpωμij(yξi)+pγp1Hi(εy)].\displaystyle\partial_{(\xi^{\prime}_{k})_{t}}V_{\xi^{\prime}}(y)=\sum_{i=1}^{m}\partial_{(\xi^{\prime}_{k})_{t}}\left[\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)+\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{1}{\gamma^{jp}}\omega^{j}_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)+p\gamma^{p-1}H_{i}(\varepsilon y)\right].

From the fact that |(ξk)tlogμi|=O(ε|logε|κ)|\partial_{(\xi^{\prime}_{k})_{t}}\log\mu_{i}|=O\left(\varepsilon|\log\varepsilon|^{\kappa}\right) for any i=1,,mi=1,\ldots,m, we have that

(ξk)tωμi(yξi)=4μiδkiZt(yξiμi)+O(ε|logε|κ),\displaystyle\partial_{(\xi^{\prime}_{k})_{t}}\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)=\frac{4}{\mu_{i}}\delta_{ki}Z_{t}\left(\frac{y-\xi^{\prime}_{i}}{\mu_{i}}\right)+O\left(\varepsilon|\log\varepsilon|^{\kappa}\right),

and for each j=1,2,3,4j=1,2,3,4,

(ξk)tωμij(yξi)=1μiδki[DμijZt(yξiμi)+O(μi2|yξi|2+μi2)]+O(ε|logε|κ).\displaystyle\partial_{(\xi^{\prime}_{k})_{t}}\omega^{j}_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)=-\frac{1}{\mu_{i}}\delta_{ki}\left[D^{j}_{\mu_{i}}Z_{t}\left(\frac{y-\xi^{\prime}_{i}}{\mu_{i}}\right)+O\left(\frac{\mu_{i}^{2}}{|y-\xi^{\prime}_{i}|^{2}+\mu_{i}^{2}}\right)\right]+O\left(\varepsilon|\log\varepsilon|^{\kappa}\right).

As in the proof of Lemma 2.1, by the elliptic regularity of the equation we can prove that

(ξk)t[pγp1Hi(εy)]=O(ε|logε|κ).\displaystyle\partial_{(\xi^{\prime}_{k})_{t}}\big{[}p\gamma^{p-1}H_{i}(\varepsilon y)\big{]}=O\left(\varepsilon|\log\varepsilon|^{\kappa}\right).

Then

(ξk)tVξ(y)=1μk{[4j=14(p1p)jDμkjγjp]Zt(yξkμk)+O(1|logε|)}+O(ε|logε|κ).\displaystyle\partial_{(\xi^{\prime}_{k})_{t}}V_{\xi^{\prime}}(y)=\frac{1}{\mu_{k}}\left\{\left[4-\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{D^{j}_{\mu_{k}}}{\gamma^{jp}}\right]Z_{t}\left(\frac{y-\xi^{\prime}_{k}}{\mu_{k}}\right)+O\left(\frac{1}{|\log\varepsilon|}\right)\right\}+O\left(\varepsilon|\log\varepsilon|^{\kappa}\right).

So

ΩεχiZij(ξk)tVξ=\displaystyle\int_{\Omega_{\varepsilon}}\chi_{i}Z_{ij}\partial_{(\xi^{\prime}_{k})_{t}}V_{\xi^{\prime}}= δki[ck2πδtj2χ(|z|)Zt2(z)𝑑z+O(log|logε||logε|)]+(1δki)O(μi|ξiξk|)+O(εμi|logε|κ).\displaystyle\delta_{ki}\left[\frac{c_{k}}{2\pi}\delta_{tj}\int_{\mathbb{R}^{2}}\chi(|z|)Z^{2}_{t}(z)dz+O\left(\frac{\log|\log\varepsilon|}{|\log\varepsilon|}\right)\right]+(1-\delta_{ki})O\left(\frac{\mu_{i}}{|\xi^{\prime}_{i}-\xi^{\prime}_{k}|}\right)+O\left(\varepsilon\mu_{i}|\log\varepsilon|^{\kappa}\right). (5.4)

On the other hand, by (3.8), (3.9), (3.10) and (3.38) we can compute

|(ξk)t(χiZij)|=O(1μiε|logε|κ+1μi2δki).\displaystyle\big{|}\partial_{(\xi^{\prime}_{k})_{t}}\big{(}\chi_{i}Z_{ij}\big{)}\big{|}=O\left(\frac{1}{\mu_{i}}\varepsilon|\log\varepsilon|^{\kappa}+\frac{1}{\mu_{i}^{2}}\delta_{ki}\right).

Then

Ωεϕξ(ξk)t(χiZij)=ϕξL(Ωε)O(εμi|logε|κ+δki)=O(1|logε|3).\displaystyle\int_{\Omega_{\varepsilon}}\phi_{\xi^{\prime}}\partial_{(\xi^{\prime}_{k})_{t}}\big{(}\chi_{i}Z_{ij}\big{)}=\|\phi_{\xi^{\prime}}\|_{L^{\infty}(\Omega_{\varepsilon})}O\big{(}\varepsilon\mu_{i}|\log\varepsilon|^{\kappa}+\delta_{ki}\big{)}=O\left(\frac{1}{|\log\varepsilon|^{3}}\right). (5.5)

Hence by (5.4)-(5.5), equations (5) can be written as, for each k=1,,mk=1,\ldots,m and t=1,Jkt=1,J_{k},

ckt(ξ)[ck2π2χ(|z|)Zt2(z)𝑑z]+i=1mj=1Ji|cij(ξ)|O(log|logε||logε|)=0,\displaystyle c_{kt}(\xi^{\prime})\left[\frac{c_{k}}{2\pi}\int_{\mathbb{R}^{2}}\chi(|z|)Z_{t}^{2}(z)dz\right]+\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{J_{i}}|c_{ij}(\xi^{\prime})|O\left(\frac{\log|\log\varepsilon|}{|\log\varepsilon|}\right)=0,

which is a strictly diagonal dominant system. This implies that ckt(ξ)=0c_{kt}(\xi^{\prime})=0 for each k=1,,mk=1,\ldots,m and t=1,Jkt=1,J_{k}. ∎

In order to solve for critical points of the function FλF_{\lambda}, a delicate ingredient is the expected uniformly C1C^{1}-closeness between the functions Iε(Vξ+ϕξ)I_{\varepsilon}\big{(}V_{\xi^{\prime}}+\phi_{\xi^{\prime}}\big{)} and Iε(Vξ)I_{\varepsilon}\big{(}V_{\xi^{\prime}}\big{)}, which will be applied in the proof of our main theorems.

Proposition 5.2.  For any points ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon} and for any ε\varepsilon small enough, the following expansion uniformly holds

Iε(Vξ+ϕξ)=Iε(Vξ)+θε(ξ),\displaystyle I_{\varepsilon}\big{(}V_{\xi^{\prime}}+\phi_{\xi^{\prime}}\big{)}=I_{\varepsilon}(V_{\xi^{\prime}})+\theta_{\varepsilon}(\xi^{\prime}),

where

|θε(ξ)|+θε(ξ)=O(1|logε|6).\displaystyle|\theta_{\varepsilon}(\xi^{\prime})|+\|\nabla\theta_{\varepsilon}(\xi^{\prime})\|=O\left(\frac{1}{|\log\varepsilon|^{6}}\right).
Proof.

Using DIε(Vξ+ϕξ)[ϕξ]=0DI_{\varepsilon}(V_{\xi^{\prime}}+\phi_{\xi^{\prime}})[\phi_{\xi^{\prime}}]=0, a Taylor expansion and an integration by parts give

Iε(Vξ+ϕξ)Iε(Vξ)\displaystyle I_{\varepsilon}\big{(}V_{\xi^{\prime}}+\phi_{\xi^{\prime}}\big{)}-I_{\varepsilon}(V_{\xi^{\prime}}) =01D2Iε(Vξ+tϕξ)ϕξ2(1t)𝑑t\displaystyle=\int_{0}^{1}D^{2}I_{\varepsilon}(V_{\xi^{\prime}}+t\phi_{\xi^{\prime}})\phi_{\xi^{\prime}}^{2}(1-t)dt
=01{Ωεa(εy)[f(Vξ)f(Vξ+tϕξ)]ϕξ2a(εy)[Eξ+N(ϕξ)]ϕξ}(1t)𝑑t,\displaystyle=\int_{0}^{1}\left\{\int_{\Omega_{\varepsilon}}a(\varepsilon y)\big{[}f^{\prime}(V_{\xi^{\prime}})-f^{\prime}(V_{\xi^{\prime}}+t\phi_{\xi^{\prime}})\big{]}\phi_{\xi^{\prime}}^{2}-a(\varepsilon y)\big{[}E_{\xi^{\prime}}+N(\phi_{\xi^{\prime}})\big{]}\phi_{\xi^{\prime}}\right\}(1-t)dt,

so we get

θε(ξ)=Iε(Vξ+ϕξ)Iε(Vξ)=O(1|logε|7),\displaystyle\theta_{\varepsilon}(\xi^{\prime})=I_{\varepsilon}\big{(}V_{\xi^{\prime}}+\phi_{\xi^{\prime}}\big{)}-I_{\varepsilon}(V_{\xi^{\prime}})=O\left(\frac{1}{|\log\varepsilon|^{7}}\right),

taking into account ϕξL(Ωε)C|logε|3\|\phi_{\xi^{\prime}}\|_{L^{\infty}(\Omega_{\varepsilon})}\leq C|\log\varepsilon|^{-3}, EξC|logε|4\|E_{\xi^{\prime}}\|_{*}\leq C|\log\varepsilon|^{-4} and N(ϕξ)C|logε|6\|N(\phi_{\xi^{\prime}})\|_{*}\leq C|\log\varepsilon|^{-6} and (3.3). Let us differentiate with respect to ξ\xi^{\prime},

ξ[Iε(Vξ+ϕξ)Iε(Vξ)]=01{Ωεa(εy)ξ{[f(Vξ)f(Vξ+tϕξ)]ϕξ2[Eξ+N(ϕξ)]ϕξ}}(1t)𝑑t.\displaystyle\partial_{\xi^{\prime}}\left[I_{\varepsilon}\big{(}V_{\xi^{\prime}}+\phi_{\xi^{\prime}}\big{)}-I_{\varepsilon}(V_{\xi^{\prime}})\right]=\int_{0}^{1}\left\{\int_{\Omega_{\varepsilon}}a(\varepsilon y)\partial_{\xi^{\prime}}\big{\{}\big{[}f^{\prime}(V_{\xi^{\prime}})-f^{\prime}(V_{\xi^{\prime}}+t\phi_{\xi^{\prime}})\big{]}\phi_{\xi^{\prime}}^{2}-\big{[}E_{\xi^{\prime}}+N(\phi_{\xi^{\prime}})\big{]}\phi_{\xi^{\prime}}\big{\}}\right\}(1-t)dt.

From estimates ξϕξL(Ωε)C|logε|2\|\partial_{\xi^{\prime}}\phi_{\xi^{\prime}}\|_{L^{\infty}(\Omega_{\varepsilon})}\leq C|\log\varepsilon|^{-2}, ξEξC|logε|3\|\partial_{\xi^{\prime}}E_{\xi^{\prime}}\|_{*}\leq C|\log\varepsilon|^{-3}, ξN(ϕξ)C|logε|5\|\partial_{\xi^{\prime}}N(\phi_{\xi^{\prime}})\|_{*}\leq C|\log\varepsilon|^{-5} and ξWξC\|\partial_{\xi^{\prime}}W_{\xi^{\prime}}\|_{*}\leq C we find

ξθε(ξ)=ξ[Iε(Vξ+ϕξ)Iε(Vξ)]=O(1|logε|6).\displaystyle\partial_{\xi^{\prime}}\theta_{\varepsilon}(\xi^{\prime})=\partial_{\xi^{\prime}}\left[I_{\varepsilon}\big{(}V_{\xi^{\prime}}+\phi_{\xi^{\prime}}\big{)}-I_{\varepsilon}(V_{\xi^{\prime}})\right]=O\left(\frac{1}{|\log\varepsilon|^{6}}\right).

The continuity in ξ\xi^{\prime} of all these expressions is inherited from that of ϕξ\phi_{\xi^{\prime}} and its derivatives in ξ\xi^{\prime} in the LL^{\infty} norm. ∎

6. Expansion of the energy

In this section we will give an asymptotic estimate of Jλ(Uξ)J_{\lambda}(U_{\xi}) where UξU_{\xi} is the approximate solution defined in (2.16) and JλJ_{\lambda} is the energy functional (1.2) associated to problem (1.1).

We have

Proposition 6.1.  Let mm be a positive integer. With the choice (2) for the parameters μi\mu_{i}, there exists ε0>0\varepsilon_{0}>0 such that for any 0<ε<ε00<\varepsilon<\varepsilon_{0} and any points ξ=(ξ1,,ξm)𝒪ε\xi=(\xi_{1},\ldots,\xi_{m})\in\mathcal{O}_{\varepsilon}, the following expansion uniformly holds

Jλ(Uξ)=12p2γ2(p1)i=1mcia(ξi){4|logε|+(1+p)K+(p1)LciHa(ξi,ξi)kimckGa(ξi,ξk)+O(logβ|logε||logε|)},\displaystyle J_{\lambda}\left(U_{\xi}\right)=\frac{1}{2p^{2}\gamma^{2(p-1)}}\sum_{i=1}^{m}c_{i}a(\xi_{i})\left\{4\big{|}\log\varepsilon\big{|}+(1+p)K+(p-1)L-c_{i}H_{a}(\xi_{i},\xi_{i})-\sum_{k\neq i}^{m}c_{k}G_{a}(\xi_{i},\xi_{k})+O\left(\frac{\log^{\beta}|\log\varepsilon|}{|\log\varepsilon|}\right)\right\}, (6.1)

where β>1\beta>1 is large but fixed, independent of ε\varepsilon, K=log82K=\log 8-2 and LL is given by

L=18π28(1+|z|2)2[12(υ)2ω0](z)𝑑z1\displaystyle L=\frac{1}{8\pi}\int_{\mathbb{R}^{2}}\frac{8}{(1+|z|^{2})^{2}}\left[\frac{1}{2}\big{(}\upsilon_{\infty}\big{)}^{2}-\omega^{0}_{\infty}\right](z)dz-1 (6.2)

with υ\upsilon_{\infty} and ω0\omega^{0}_{\infty} defined in (8.3) and (8.6), respectively.

Proof.

Observe that

Jλ(Uξ)=12Ωa(x)(|Uξ|2+Uξ2)λpΩa(x)e(Uξ)p:=IAIB.\displaystyle J_{\lambda}\left(U_{\xi}\right)=\frac{1}{2}\int_{\Omega}a(x)\big{(}|\nabla U_{\xi}|^{2}+U_{\xi}^{2}\big{)}-\frac{\lambda}{p}\int_{\Omega}a(x)e^{(U_{\xi})^{p}}:=I_{A}-I_{B}. (6.3)

Let us analyze the behavior of IAI_{A}. From the definition of UξU_{\xi} in (2.16) we get

IA=\displaystyle I_{A}= 12Ωa(x)(ΔaUξ+Uξ)Uξ𝑑x=12i=1mΩa(x)(ΔUi)Uξ𝑑x\displaystyle\frac{1}{2}\int_{\Omega}a(x)\big{(}-\Delta_{a}U_{\xi}+U_{\xi}\big{)}U_{\xi}dx=\frac{1}{2}\sum\limits_{i=1}^{m}\int_{\Omega}a(x)\big{(}-\Delta U_{i}\big{)}U_{\xi}dx
=\displaystyle= 12pγp1ε2i=1mΩa(x)[eωμi(xξiε)j=14(p1p)j1γjpΔωμij(xξiε)]Uξ𝑑x\displaystyle\frac{1}{2p\gamma^{p-1}\varepsilon^{2}}\sum\limits_{i=1}^{m}\int_{\Omega}a(x)\left[e^{\omega_{\mu_{i}}\left(\frac{x-\xi_{i}}{\varepsilon}\right)}-\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{1}{\gamma^{jp}}\Delta\omega^{j}_{\mu_{i}}\left(\frac{x-\xi_{i}}{\varepsilon}\right)\right]U_{\xi}dx
=\displaystyle= 12pγp1ε2i=1mΩa(x)eωμi(xξiε)[1+j=14(p1p)j1γjp(ωμijfμij)(xξiε)]Uξ𝑑x.\displaystyle\frac{1}{2p\gamma^{p-1}\varepsilon^{2}}\sum\limits_{i=1}^{m}\int_{\Omega}a(x)e^{\omega_{\mu_{i}}\left(\frac{x-\xi_{i}}{\varepsilon}\right)}\left[1+\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{1}{\gamma^{jp}}\big{(}\omega^{j}_{\mu_{i}}-f^{j}_{\mu_{i}}\big{)}\left(\frac{x-\xi_{i}}{\varepsilon}\right)\right]U_{\xi}dx.

From (2.20)-(2.21) we can compute

IA=\displaystyle I_{A}= 12p2γ2(p1)ε2i,k=1mΩB1/|logε|2κ(ξk)a(x)eωμi(xξiε)[1+j=14(p1p)j1γjp(ωμijfμij)(xξiε)]\displaystyle\frac{1}{2p^{2}\gamma^{2(p-1)}\varepsilon^{2}}\sum\limits_{i,\,k=1}^{m}\int_{\Omega\cap B_{1/|\log\varepsilon|^{2\kappa}}(\xi_{k})}a(x)e^{\omega_{\mu_{i}}\left(\frac{x-\xi_{i}}{\varepsilon}\right)}\left[1+\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{1}{\gamma^{jp}}\big{(}\omega^{j}_{\mu_{i}}-f^{j}_{\mu_{i}}\big{)}\left(\frac{x-\xi_{i}}{\varepsilon}\right)\right]\quad\ \ \,
×[pγp+ωμk(xξkε)+j=14(p1p)j1γjpωμkj(xξkε)+O(|xξk|α+i=1m(εμi)α/2)]dx+O(εp2γ2(p1))\displaystyle\times\left[p\gamma^{p}+\omega_{\mu_{k}}\left(\frac{x-\xi_{k}}{\varepsilon}\right)+\sum_{j=1}^{4}\left(\frac{p-1}{p}\right)^{j}\frac{1}{\gamma^{jp}}\omega^{j}_{\mu_{k}}\left(\frac{x-\xi_{k}}{\varepsilon}\right)+\,O\left(|x-\xi_{k}|^{\alpha}+\sum_{i=1}^{m}(\varepsilon\mu_{i})^{\alpha/2}\right)\right]dx+O\left(\frac{\varepsilon}{p^{2}\gamma^{2(p-1)}}\right)
=\displaystyle= 12p2γ2(p1){1ε2k=1mΩB1/|logε|2κ(ξk)a(x)eωμk(xξkε)[1+p1p1γp(ωμk1fμk1)(xξkε)]×[pγp+ωμk(xξkε)]dx\displaystyle\frac{1}{2p^{2}\gamma^{2(p-1)}}\left\{\frac{1}{\varepsilon^{2}}\sum\limits_{k=1}^{m}\int_{\Omega\cap B_{1/|\log\varepsilon|^{2\kappa}}(\xi_{k})}a(x)e^{\omega_{\mu_{k}}\left(\frac{x-\xi_{k}}{\varepsilon}\right)}\left[1+\frac{p-1}{p}\frac{1}{\gamma^{p}}\big{(}\omega^{1}_{\mu_{k}}-f^{1}_{\mu_{k}}\big{)}\left(\frac{x-\xi_{k}}{\varepsilon}\right)\right]\times\left[p\gamma^{p}+\omega_{\mu_{k}}\left(\frac{x-\xi_{k}}{\varepsilon}\right)\right]dx\right.
+O(logβ|logε||logε|)}.\displaystyle\left.+O\left(\frac{\log^{\beta}|\log\varepsilon|}{|\log\varepsilon|}\right)\right\}.

Using the relation pγp=4logεp\gamma^{p}=-4\log\varepsilon and the change of variables εμkz=xξk\varepsilon\mu_{k}z=x-\xi_{k}, we obtain

1ε2ΩB1/|logε|2κ(ξk)a(x)eωμk(xξkε)[pγp+ωμk(xξkε)]𝑑x\displaystyle\frac{1}{\varepsilon^{2}}\int_{\Omega\cap B_{1/|\log\varepsilon|^{2\kappa}}(\xi_{k})}a(x)e^{\omega_{\mu_{k}}\left(\frac{x-\xi_{k}}{\varepsilon}\right)}\left[p\gamma^{p}+\omega_{\mu_{k}}\left(\frac{x-\xi_{k}}{\varepsilon}\right)\right]dx
=ΩB1/|logε|2κ(ξk)a(x)8ε2μk2(ε2μk2+|xξk|2)2log8μk2(ε2μk2+|xξk|2)2dx\displaystyle\quad=\int_{\Omega\cap B_{1/|\log\varepsilon|^{2\kappa}}(\xi_{k})}a(x)\frac{8\varepsilon^{2}\mu^{2}_{k}}{(\varepsilon^{2}\mu_{k}^{2}+|x-\xi_{k}|^{2})^{2}}\log\frac{8\mu^{2}_{k}}{(\varepsilon^{2}\mu_{k}^{2}+|x-\xi_{k}|^{2})^{2}}dx
=ΩεμkB1/(εμk|logε|2κ)(0)a(εμkz+ξk)8(1+|z|2)2[log8(1+|z|2)2log(ε4μk2)]𝑑z,\displaystyle\quad=\int_{\Omega_{\varepsilon\mu_{k}}\cap B_{1/(\varepsilon\mu_{k}|\log\varepsilon|^{2\kappa})}(0)}a(\varepsilon\mu_{k}z+\xi_{k})\frac{8}{(1+|z|^{2})^{2}}\left[\log\frac{8}{(1+|z|^{2})^{2}}-\log\left(\varepsilon^{4}\mu_{k}^{2}\right)\right]dz,

where Ωεμk=1εμk(Ω{ξk})\Omega_{\varepsilon\mu_{k}}=\frac{1}{\varepsilon\mu_{k}}(\Omega-\{\xi_{k}\}). But

ΩεμkB1/(εμk|logε|2κ)(0)a(εμkz+ξk)8(1+|z|2)2=cka(ξk)+O(εμk),\displaystyle\int_{\Omega_{\varepsilon\mu_{k}}\cap B_{1/(\varepsilon\mu_{k}|\log\varepsilon|^{2\kappa})}(0)}a(\varepsilon\mu_{k}z+\xi_{k})\frac{8}{(1+|z|^{2})^{2}}=c_{k}a(\xi_{k})+O(\varepsilon\mu_{k}),

and

ΩεμkB1/(εμk|logε|2κ)(0)a(εμkz+ξk)8(1+|z|2)2log1(1+|z|2)2=2cka(ξk)+O(εμk).\displaystyle\int_{\Omega_{\varepsilon\mu_{k}}\cap B_{1/(\varepsilon\mu_{k}|\log\varepsilon|^{2\kappa})}(0)}a(\varepsilon\mu_{k}z+\xi_{k})\frac{8}{(1+|z|^{2})^{2}}\log\frac{1}{(1+|z|^{2})^{2}}=-2c_{k}a(\xi_{k})+O(\varepsilon\mu_{k}).

Then

1ε2ΩB1/|logε|2κ(ξk)a(x)eωμk(xξkε)[pγp+ωμk(xξkε)]𝑑x=cka(ξk)[log8log(ε4μk2)2]+O(εμk).\displaystyle\frac{1}{\varepsilon^{2}}\int_{\Omega\cap B_{1/|\log\varepsilon|^{2\kappa}}(\xi_{k})}a(x)e^{\omega_{\mu_{k}}\left(\frac{x-\xi_{k}}{\varepsilon}\right)}\left[p\gamma^{p}+\omega_{\mu_{k}}\left(\frac{x-\xi_{k}}{\varepsilon}\right)\right]dx=c_{k}a(\xi_{k})\big{[}\log 8-\log\left(\varepsilon^{4}\mu_{k}^{2}\right)-2\big{]}+O(\varepsilon\mu_{k}). (6.4)

Similarly, by (2.9), (8.3) and (8.7) we get

1ε2ΩB1/|logε|2κ(ξk)a(x)eωμk(xξkε)[p1p1γp(ωμk1fμk1)(xξkε)][pγp+ωμk(xξkε)]𝑑x\displaystyle\frac{1}{\varepsilon^{2}}\int_{\Omega\cap B_{1/|\log\varepsilon|^{2\kappa}}(\xi_{k})}a(x)e^{\omega_{\mu_{k}}\left(\frac{x-\xi_{k}}{\varepsilon}\right)}\left[\frac{p-1}{p}\frac{1}{\gamma^{p}}\big{(}\omega^{1}_{\mu_{k}}-f^{1}_{\mu_{k}}\big{)}\left(\frac{x-\xi_{k}}{\varepsilon}\right)\right]\left[p\gamma^{p}+\omega_{\mu_{k}}\left(\frac{x-\xi_{k}}{\varepsilon}\right)\right]dx
=\displaystyle= ΩεμkB1/(εμk|logε|2κ)(0)a(εμkz+ξk)8(p1)(1+|z|2)2{[12(υ)2ω0](z)+(12logμk)(1|z|2|z|2+1log82|z|2|z|2+1)\displaystyle\int_{\Omega_{\varepsilon\mu_{k}}\cap B_{1/(\varepsilon\mu_{k}|\log\varepsilon|^{2\kappa})}(0)}a(\varepsilon\mu_{k}z+\xi_{k})\frac{8(p-1)}{(1+|z|^{2})^{2}}\left\{\left[\frac{1}{2}\big{(}\upsilon_{\infty}\big{)}^{2}-\omega^{0}_{\infty}\right](z)+(1-2\log\mu_{k})\left(\frac{1-|z|^{2}}{|z|^{2}+1}\log 8-\frac{2|z|^{2}}{|z|^{2}+1}\right)\right.
 4(log2μklogμk)|z|2+1+2log2μk2logμk}dz+O(logβ|logε||logε|).\displaystyle\left.-\frac{\,4(\log^{2}\mu_{k}-\log\mu_{k})\,}{\,|z|^{2}+1\,}+2\log^{2}\mu_{k}-2\log\mu_{k}\right\}dz+O\left(\frac{\log^{\beta}|\log\varepsilon|}{|\log\varepsilon|}\right).

Note that

ΩεμkB1/(εμk|logε|2κ)(0)a(εμkz+ξk)8|z|2(1+|z|2)3=12cka(ξk)+O(εμk).\displaystyle\int_{\Omega_{\varepsilon\mu_{k}}\cap B_{1/(\varepsilon\mu_{k}|\log\varepsilon|^{2\kappa})}(0)}a(\varepsilon\mu_{k}z+\xi_{k})\frac{8|z|^{2}}{(1+|z|^{2})^{3}}=\frac{1}{2}c_{k}a(\xi_{k})+O(\varepsilon\mu_{k}).

Then

1ε2ΩB1/|logε|2κ(ξk)a(x)eωμk(xξkε)[p1p1γp(ωμk1fμk1)(xξkε)][pγp+ωμk(xξkε)]𝑑x\displaystyle\frac{1}{\varepsilon^{2}}\int_{\Omega\cap B_{1/|\log\varepsilon|^{2\kappa}}(\xi_{k})}a(x)e^{\omega_{\mu_{k}}\left(\frac{x-\xi_{k}}{\varepsilon}\right)}\left[\frac{p-1}{p}\frac{1}{\gamma^{p}}\big{(}\omega^{1}_{\mu_{k}}-f^{1}_{\mu_{k}}\big{)}\left(\frac{x-\xi_{k}}{\varepsilon}\right)\right]\left[p\gamma^{p}+\omega_{\mu_{k}}\left(\frac{x-\xi_{k}}{\varepsilon}\right)\right]dx
=(p1)cka(ξk){18π28(1+|z|2)2[12(υ)2ω0](z)𝑑z1+2logμk}+O(logβ|logε||logε|).\displaystyle=(p-1)c_{k}a(\xi_{k})\left\{\frac{1}{8\pi}\int_{\mathbb{R}^{2}}\frac{8}{(1+|z|^{2})^{2}}\left[\frac{1}{2}\big{(}\upsilon_{\infty}\big{)}^{2}-\omega^{0}_{\infty}\right](z)dz-1+2\log\mu_{k}\right\}+O\left(\frac{\log^{\beta}|\log\varepsilon|}{|\log\varepsilon|}\right). (6.5)

Hence by (6.2), (6.4) and (6),

IA=12p2γ2(p1)k=1mcka(ξk){4|logε|+2(p2)logμk+(p1)L2+log8+O(logβ|logε||logε|)}.\displaystyle I_{A}=\frac{1}{2p^{2}\gamma^{2(p-1)}}\sum\limits_{k=1}^{m}c_{k}a(\xi_{k})\left\{4|\log\varepsilon|+2(p-2)\log\mu_{k}+(p-1)L-2+\log 8+O\left(\frac{\log^{\beta}|\log\varepsilon|}{|\log\varepsilon|}\right)\right\}. (6.6)

Regarding the expression IBI_{B}, by (2.26) we have

IB=λε2p[i=1m(ΩεBμi|logε|τ(ξi)+Ωε(B1/(ε|logε|2κ)(ξi)Bμi|logε|τ(ξi)))+Ωεi=1mB1/(ε|logε|2κ)(ξi)]a(εy)eγp(1+Vξ(y)pγp)pdy.\displaystyle I_{B}=\frac{\lambda\varepsilon^{2}}{p}\left[\sum\limits_{i=1}^{m}\left(\int_{\Omega_{\varepsilon}\cap B_{\mu_{i}|\log\varepsilon|^{\tau}}(\xi^{\prime}_{i})}+\int_{\Omega_{\varepsilon}\cap\big{(}B_{1/(\varepsilon|\log\varepsilon|^{2\kappa})}(\xi^{\prime}_{i})\setminus B_{\mu_{i}|\log\varepsilon|^{\tau}}(\xi^{\prime}_{i})\big{)}}\right)+\int_{\Omega_{\varepsilon}\setminus\cup_{i=1}^{m}B_{1/(\varepsilon|\log\varepsilon|^{2\kappa})}(\xi^{\prime}_{i})}\right]a(\varepsilon y)e^{\gamma^{p}\left(1+\frac{V_{\xi^{\prime}}(y)}{p\gamma^{p}}\right)^{p}}dy.

By (2.6) and (2.33),

λε2pΩεi=1mB1/(ε|logε|2κ)(ξi)a(εy)eγp(1+Vξ(y)pγp)p𝑑y=O(λ)exp[O(logp|logε||logε|p1)].\displaystyle\frac{\lambda\varepsilon^{2}}{p}\int_{\Omega_{\varepsilon}\setminus\cup_{i=1}^{m}B_{1/(\varepsilon|\log\varepsilon|^{2\kappa})}(\xi^{\prime}_{i})}a(\varepsilon y)e^{\gamma^{p}\left(1+\frac{V_{\xi^{\prime}}(y)}{p\gamma^{p}}\right)^{p}}dy=O(\lambda)\exp\left[O\left(\frac{\log^{p}|\log\varepsilon|}{|\log\varepsilon|^{p-1}}\right)\right].

By (1.8) and (2.40),

λε2p\displaystyle\frac{\lambda\varepsilon^{2}}{p} Ωε(B1/(ε|logε|2κ)(ξi)Bμi|logε|τ(ξi))a(εy)eγp(1+Vξ(y)pγp)p𝑑y\displaystyle\int_{\Omega_{\varepsilon}\cap\big{(}B_{1/(\varepsilon|\log\varepsilon|^{2\kappa})}(\xi^{\prime}_{i})\setminus B_{\mu_{i}|\log\varepsilon|^{\tau}}(\xi^{\prime}_{i})\big{)}}a(\varepsilon y)e^{\gamma^{p}\left(1+\frac{V_{\xi^{\prime}}(y)}{p\gamma^{p}}\right)^{p}}dy
=1p2γ2(p1)Ωε(B1/(ε|logε|2κ)(ξi)Bμi|logε|τ(ξi))a(εy)eγp[(1+Vξ(y)pγp)p1]𝑑y\displaystyle=\frac{1}{p^{2}\gamma^{2(p-1)}}\int_{\Omega_{\varepsilon}\cap\big{(}B_{1/(\varepsilon|\log\varepsilon|^{2\kappa})}(\xi^{\prime}_{i})\setminus B_{\mu_{i}|\log\varepsilon|^{\tau}}(\xi^{\prime}_{i})\big{)}}a(\varepsilon y)e^{\gamma^{p}\left[\left(1+\frac{V_{\xi^{\prime}}(y)}{p\gamma^{p}}\right)^{p}-1\right]}dy
Dp2γ2(p1)Ωε(B1/(ε|logε|2κ)(ξi)Bμi|logε|τ(ξi))e[1+O(log|logε||logε|)]ωμi(yξi)𝑑y\displaystyle\leq\frac{D}{p^{2}\gamma^{2(p-1)}}\int_{\Omega_{\varepsilon}\cap\big{(}B_{1/(\varepsilon|\log\varepsilon|^{2\kappa})}(\xi^{\prime}_{i})\setminus B_{\mu_{i}|\log\varepsilon|^{\tau}}(\xi^{\prime}_{i})\big{)}}e^{\left[1+O\left(\frac{\log|\log\varepsilon|}{|\log\varepsilon|}\right)\right]\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)}dy
=1p2γ2(p1)O(1|logε|τ).\displaystyle=\frac{1}{p^{2}\gamma^{2(p-1)}}O\left(\frac{1}{\,|\log\varepsilon|^{\tau}}\right).

By (2.5), (2) and (8.3)-(8.6),

λε2p\displaystyle\frac{\lambda\varepsilon^{2}}{p} ΩεBμi|logε|τ(ξi)a(εy)eγp(1+Vξ(y)pγp)p𝑑y\displaystyle\int_{\Omega_{\varepsilon}\cap B_{\mu_{i}|\log\varepsilon|^{\tau}}(\xi^{\prime}_{i})}a(\varepsilon y)e^{\gamma^{p}\left(1+\frac{V_{\xi^{\prime}}(y)}{p\gamma^{p}}\right)^{p}}dy
=1p2γ2(p1)ΩεBμi|logε|τ(ξi)a(εy)eγp[(1+Vξ(y)pγp)p1]𝑑y\displaystyle=\frac{1}{p^{2}\gamma^{2(p-1)}}\int_{\Omega_{\varepsilon}\cap B_{\mu_{i}|\log\varepsilon|^{\tau}}(\xi^{\prime}_{i})}a(\varepsilon y)e^{\gamma^{p}\left[\left(1+\frac{V_{\xi^{\prime}}(y)}{p\gamma^{p}}\right)^{p}-1\right]}dy
=1p2γ2(p1)ΩεBμi|logε|τ(ξi)a(εy)eωμi(yξi)[1+O(logβ|logε||logε|)]𝑑y\displaystyle=\frac{1}{p^{2}\gamma^{2(p-1)}}\int_{\Omega_{\varepsilon}\cap B_{\mu_{i}|\log\varepsilon|^{\tau}}(\xi^{\prime}_{i})}a(\varepsilon y)e^{\omega_{\mu_{i}}\left(y-\xi^{\prime}_{i}\right)}\left[1+O\left(\frac{\log^{\beta}|\log\varepsilon|}{|\log\varepsilon|}\right)\right]dy
=1p2γ2(p1)cia(ξi)[1+O(logβ|logε||logε|)].\displaystyle=\frac{1}{p^{2}\gamma^{2(p-1)}}c_{i}a(\xi_{i})\left[1+O\left(\frac{\log^{\beta}|\log\varepsilon|}{|\log\varepsilon|}\right)\right].

Then

IB=1p2γ2(p1)i=1mcia(ξi)[1+O(logβ|logε||logε|)].\displaystyle I_{B}=\frac{1}{p^{2}\gamma^{2(p-1)}}\sum_{i=1}^{m}c_{i}a(\xi_{i})\left[1+O\left(\frac{\log^{\beta}|\log\varepsilon|}{|\log\varepsilon|}\right)\right]. (6.7)

Submitting (6.6)-(6.7) into (6.3), we obtain

Jλ(Uξ)=12p2γ2(p1)i=1mcia(ξi){4|logε|+2(p2)logμi+(p1)L4+log8+O(logβ|logε||logε|)},\displaystyle J_{\lambda}\left(U_{\xi}\right)=\frac{1}{2p^{2}\gamma^{2(p-1)}}\sum\limits_{i=1}^{m}c_{i}a(\xi_{i})\left\{4|\log\varepsilon|+2(p-2)\log\mu_{i}+(p-1)L-4+\log 8+O\left(\frac{\log^{\beta}|\log\varepsilon|}{|\log\varepsilon|}\right)\right\},

which, together with (2.23), implies (6.1). ∎

7. Proofs of theorems

Proof of Theorem 1.1. We will look for a solution of problem (1.1) in the form u=Uξ+ϕ~ξu=U_{\xi}+\widetilde{\phi}_{\xi}, where the concentration points ξ=(ξ1,,ξm)\xi=(\xi_{1},\ldots,\xi_{m}) are determined by the parametrization

ξiξi(𝐬,𝐭)=siti|logε|ν(si),i=1,,l,butξiξi(𝐬,𝐭)=si,i=l+1,,m,\displaystyle\xi_{i}\equiv\xi_{i}(\mathbf{s},\mathbf{t})=s_{i}-\frac{t_{i}}{|\log\varepsilon|}\nu(s_{i}),\quad i=1,\ldots,l,\qquad\quad\textrm{but}\quad\qquad\xi_{i}\equiv\xi_{i}(\mathbf{s},\mathbf{t})=s_{i},\quad i=l+1,\ldots,m,

where 𝐬=(s1,,sm)(Ω)m\mathbf{s}=(s_{1},\ldots,s_{m})\in(\partial\Omega)^{m} and 𝐭=(t1,,tl)(+)l\mathbf{t}=(t_{1},\ldots,t_{l})\in(\mathbb{R}_{+})^{l} belong to the configuration space

Λd={(𝐬,𝐭)(Ω)m×(+)l||sisk|>2d,d<tj<1/d,i,k=1,,m,j=1,,l,ik},\displaystyle\Lambda_{d}=\left\{(\mathbf{s},\,\mathbf{t})\in(\partial\Omega)^{m}\times(\mathbb{R}_{+})^{l}\,\big{|}\,|s_{i}-s_{k}|>2d,\quad\,d<t_{j}<1/d,\quad\forall\,\,\,i,k=1,\ldots,m,\,\,\,j=1,\ldots,l,\,\,\,i\neq k\right\},

for any d>0d>0 small and independent of ε>0\varepsilon>0. Notice that if (𝐬,𝐭)(\mathbf{s},\mathbf{t}) is a critical point of the reduced energy F^λ(𝐬,𝐭):=Fλ(ξ(𝐬,𝐭))\widehat{F}_{\lambda}\big{(}\mathbf{s},\mathbf{t}\big{)}:=F_{\lambda}\big{(}\xi(\mathbf{s},\mathbf{t})\big{)} in Λd\Lambda_{d}, then the function Uξ(𝐬,𝐭)+ϕ~ξ(𝐬,𝐭)U_{\xi(\mathbf{s},\mathbf{t})}+\widetilde{\phi}_{\xi(\mathbf{s},\mathbf{t})} is a solution of problem (1.1) with the qualitative properties described by Theorem 1.1. Hence with the aid of (5.2), Propositions 5.2 and 6.1 we are led to find a critical point of the reduced energy F^λ\widehat{F}_{\lambda}, or equivalently, a critical point of

F~ε(𝐬,𝐭):= 2p2γ2(p1)4|logε|F^λ(𝐬,𝐭)\displaystyle\widetilde{F}_{\varepsilon}\big{(}\mathbf{s},\mathbf{t}\big{)}:=\frac{\,2p^{2}\gamma^{2(p-1)}\,}{4|\log\varepsilon|}\widehat{F}_{\lambda}\big{(}\mathbf{s},\mathbf{t}\big{)}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\,
=i=1mcia(ξi){114|logε|[ciHa(ξi,ξi)+kimckGa(ξi,ξk)(1+p)K(p1)L]}+O(logβ(|logε|)|logε|2).\displaystyle=\sum_{i=1}^{m}c_{i}a(\xi_{i})\left\{1-\frac{1}{4|\log\varepsilon|}\left[c_{i}H_{a}(\xi_{i},\xi_{i})+\sum_{k\neq i}^{m}c_{k}G_{a}(\xi_{i},\xi_{k})-(1+p)K-(p-1)L\right]\right\}+O\left(\frac{\log^{\beta}(|\log\varepsilon|)}{|\log\varepsilon|^{2}}\right). (7.1)

We claim that F~ε(𝐬,𝐭)\widetilde{F}_{\varepsilon}\big{(}\mathbf{s},\mathbf{t}\big{)} can be written as

F~ε(𝐬,𝐭)=8πi=1l{a(si)+1|logε|[a(si)logtitiνa(si)]}+4πk=l+1ma(sk)+Γε(𝐬)+1|logε|Θε(𝐬,𝐭),\displaystyle\widetilde{F}_{\varepsilon}\big{(}\mathbf{s},\mathbf{t}\big{)}=8\pi\sum_{i=1}^{l}\left\{a(s_{i})+\frac{1}{|\log\varepsilon|}\big{[}a(s_{i})\log t_{i}-t_{i}\partial_{\nu}a(s_{i})\big{]}\right\}+4\pi\sum_{k=l+1}^{m}a(s_{k})+\Gamma_{\varepsilon}(\mathbf{s})+\frac{1}{|\log\varepsilon|}\Theta_{\varepsilon}\big{(}\mathbf{s},\mathbf{t}\big{)}, (7.2)

where the smooth functions Θε(𝐬,𝐭)\Theta_{\varepsilon}\big{(}\mathbf{s},\mathbf{t}\big{)} depends on 𝐬\mathbf{s} and 𝐭\mathbf{t} but Γε(𝐬)\Gamma_{\varepsilon}(\mathbf{s}) only depends on 𝐬\mathbf{s}, and Γε(𝐬)\Gamma_{\varepsilon}(\mathbf{s}), Θε(𝐬,𝐭)\Theta_{\varepsilon}\big{(}\mathbf{s},\mathbf{t}\big{)}, |Γε(𝐬)||\nabla\Gamma_{\varepsilon}(\mathbf{s})| and |Θε(𝐬,𝐭)||\nabla\Theta_{\varepsilon}\big{(}\mathbf{s},\mathbf{t}\big{)}| uniformly converge to zero as ε0\varepsilon\rightarrow 0. In fact, using asymptotical properties of the regular part of the anisotropic Green’s function in [1], we have that for any i=1,,mi=1,\ldots,m and k=1,,lk=1,\ldots,l,

Ha(ξi,ξk)=12πlog1|ξiξ^k|+12πloga(ξk)V(ξiξk)12πloga(ξ^k)V(ξiξ^k)+z~(ξi,ξk),\displaystyle H_{a}(\xi_{i},\xi_{k})=\frac{1}{2\pi}\log\frac{1}{|\xi_{i}-\hat{\xi}_{k}|}+\frac{1}{2\pi}\nabla\log a(\xi_{k})\cdot V(\xi_{i}-\xi_{k})-\frac{1}{2\pi}\nabla\log a(\hat{\xi}_{k})\cdot V(\xi_{i}-\hat{\xi}_{k})+\tilde{\mathrm{z}}(\xi_{i},\xi_{k}), (7.3)

where ξ^k=sk+tk|logε|ν(sk)\hat{\xi}_{k}=s_{k}+\frac{t_{k}}{|\log\varepsilon|}\nu(s_{k}), the vector function V()C(2{0})Cα(Br(0)¯)V(\cdot)\in C^{\infty}(\mathbb{R}^{2}\setminus\{0\})\cap C^{\alpha}(\overline{B_{r}(0)}) for any r>0r>0 and 0<α<10<\alpha<1, the mapping yΩdz~(,y)C1(Ωd,C1(Ω¯))y\in\Omega_{d}\mapsto\tilde{\mathrm{z}}(\cdot,y)\in C^{1}\big{(}\Omega_{d},\,C^{1}(\overline{\Omega})\big{)} with Ωd={yΩ¯|dist(y,Ω)<d}\Omega_{d}=\big{\{}y\in\overline{\Omega}\big{|}\,\text{dist}(y,\partial\Omega)<d\big{\}}. Then

Ha(ξi,ξi)=12πlog(2ti|logε|)+z~(si,si)+O(tiα|logε|α),i=1,,l.\displaystyle H_{a}(\xi_{i},\xi_{i})=-\frac{1}{2\pi}\log\left(\frac{2t_{i}}{|\log\varepsilon|}\right)+\tilde{\mathrm{z}}(s_{i},s_{i})+O\left(\frac{t_{i}^{\alpha}}{|\log\varepsilon|^{\alpha}}\right),\quad\forall\,\,i=1,\ldots,l. (7.4)

Moreover, if i,k=1,,li,k=1,\ldots,l with iki\neq k,

Ga(ξi,ξk)=12πlog|siskti|logε|ν(si)+tk|logε|ν(sk)|12πlog|siskti|logε|ν(si)tk|logε|ν(sk)|\displaystyle G_{a}(\xi_{i},\xi_{k})=-\frac{1}{2\pi}\log\left|s_{i}-s_{k}-\frac{t_{i}}{|\log\varepsilon|}\nu(s_{i})+\frac{t_{k}}{|\log\varepsilon|}\nu(s_{k})\right|-\frac{1}{2\pi}\log\left|s_{i}-s_{k}-\frac{t_{i}}{|\log\varepsilon|}\nu(s_{i})-\frac{t_{k}}{|\log\varepsilon|}\nu(s_{k})\right|\,\,\,\,\,
+tkπ|logε|loga(sk),V(sisk)ν(sk)tkπ|logε|(×(loga))(sk)ν(sk),V(sisk)\displaystyle+\frac{t_{k}}{\pi|\log\varepsilon|}\left\langle\nabla\log a(s_{k}),\,\nabla V(s_{i}-s_{k})\cdot\nu(s_{k})\right\rangle-\frac{t_{k}}{\pi|\log\varepsilon|}\left\langle\big{(}\nabla\times(\nabla\log a)\big{)}(s_{k})\cdot\nu(s_{k}),\,V(s_{i}-s_{k})\right\rangle
+z~(si,sk)1|logε|(si,sk)z~(si,sk),(tiν(si),tkν(sk))+O(ti2+tk2|logε|2),\displaystyle+\tilde{\mathrm{z}}(s_{i},s_{k})-\frac{1}{|\log\varepsilon|}\left\langle\nabla_{(s_{i},s_{k})}\tilde{\mathrm{z}}(s_{i},s_{k}),\,\big{(}t_{i}\nu(s_{i}),\,t_{k}\nu(s_{k})\big{)}\right\rangle+O\left(\frac{\,t_{i}^{2}+t_{k}^{2}\,}{|\log\varepsilon|^{2}}\right),\qquad\qquad\qquad\qquad\quad\,\,\, (7.5)

while if i=l+1,,mi=l+1,\ldots,m and k=1,,lk=1,\ldots,l,

Ga(ξi,ξk)=12πlog|sisk+tk|logε|ν(sk)|12πlog|sisktk|logε|ν(sk)|\displaystyle G_{a}(\xi_{i},\xi_{k})=-\frac{1}{2\pi}\log\left|s_{i}-s_{k}+\frac{t_{k}}{|\log\varepsilon|}\nu(s_{k})\right|-\frac{1}{2\pi}\log\left|s_{i}-s_{k}-\frac{t_{k}}{|\log\varepsilon|}\nu(s_{k})\right|\qquad\qquad\qquad\qquad\quad\qquad\qquad\,\,
+tkπ|logε|loga(sk),V(sisk)ν(sk)tkπ|logε|(×(loga))(sk)ν(sk),V(sisk)\displaystyle+\frac{t_{k}}{\pi|\log\varepsilon|}\left\langle\nabla\log a(s_{k}),\,\nabla V(s_{i}-s_{k})\cdot\nu(s_{k})\right\rangle-\frac{t_{k}}{\pi|\log\varepsilon|}\left\langle\big{(}\nabla\times(\nabla\log a)\big{)}(s_{k})\cdot\nu(s_{k}),\,V(s_{i}-s_{k})\right\rangle
+z~(si,sk)tk|logε|skz~(si,sk),ν(sk)+O(tk2|logε|2).\displaystyle+\tilde{\mathrm{z}}(s_{i},s_{k})-\frac{t_{k}}{|\log\varepsilon|}\left\langle\nabla_{s_{k}}\tilde{\mathrm{z}}(s_{i},s_{k}),\,\nu(s_{k})\right\rangle+O\left(\frac{t_{k}^{2}}{\,|\log\varepsilon|^{2}\,}\right).\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\,\, (7.6)

On the other hand, using the smooth property of a(x)a(x) over Ω¯\overline{\Omega}, we perform a Taylor expansion around each boundary point sis_{i} along the inner normal vector ν(si)-\nu(s_{i}) to give

a(ξi)=a(si)ti|logε|νa(si)+O(ti2|logε|2),i=1,,l.\displaystyle a(\xi_{i})=a(s_{i})-\frac{t_{i}}{|\log\varepsilon|}\partial_{\nu}a(s_{i})+O\left(\frac{t_{i}^{2}}{|\log\varepsilon|^{2}}\right),\quad\forall\,\,i=1,\ldots,l. (7.7)

Inserting (7.4)-(7.7) into (7) and using (2.18) and the fact that a(ξi)Ga(ξi,ξk)=a(ξk)Ga(ξk,ξi)a(\xi_{i})G_{a}(\xi_{i},\xi_{k})=a(\xi_{k})G_{a}(\xi_{k},\xi_{i}) for all i,k=1,,mi,k=1,\ldots,m with iki\neq k, we conclude that expansion (7.2) holds.

We seek a critical point of F~ε\widetilde{F}_{\varepsilon} by degree theory. Let T(si)\partial_{T(s_{i})} be the tangential derivative which is defined on siΩs_{i}\in\partial\Omega. Set

A(si,ti)=a(si)+1|logε|[a(si)logtitiνa(si)],i=1,,l.\displaystyle A(s_{i},t_{i})=a(s_{i})+\frac{1}{|\log\varepsilon|}\big{[}a(s_{i})\log t_{i}-t_{i}\partial_{\nu}a(s_{i})\big{]},\,\,\ \,i=1,\ldots,l.

Then

T(si)A(si,ti)=(1+logti|logε|)Ta(si)ti|logε|Tνa(si),tiA(si,ti)=1|logε|(a(si)tiνa(si)).\displaystyle\partial_{T(s_{i})}A(s_{i},t_{i})=\left(1+\frac{\log t_{i}}{|\log\varepsilon|}\right)\partial_{T}a(s_{i})-\frac{t_{i}}{|\log\varepsilon|}\partial_{T}\partial_{\nu}a(s_{i})\large,\,\qquad\,\partial_{t_{i}}A(s_{i},t_{i})=\frac{1}{|\log\varepsilon|}\left(\frac{a(s_{i})}{t_{i}}-\partial_{\nu}a(s_{i})\right).

Due to νa(ξi)>0\partial_{\nu}a(\xi^{*}_{i})>0 with i=1,,li=1,\ldots,l, we can choose dd small enough so that for any siBd(ξi)Ωs_{i}\in B_{d}(\xi^{*}_{i})\cap\partial\Omega, there exists a unique positive ti=ti(si)=a(si)νa(si)t_{i}=t_{i}(s_{i})=\frac{a(s_{i})}{\partial_{\nu}a(s_{i})} such that tiA(si,ti)=0\partial_{t_{i}}A(s_{i},t_{i})=0 and titi2A(si,ti)<0\partial^{2}_{t_{i}t_{i}}A(s_{i},t_{i})<0. Set ti=ti(ξi)t_{i}^{*}=t_{i}(\xi_{i}^{*}), i=1,,li=1,\ldots,l. Since ξ1,,ξm\xi^{*}_{1},\ldots,\xi^{*}_{m} are mm different strict local maximum or strict local minimum points of a(x)a(x) on Ω\partial\Omega, we have that that for any sufficiently small dd, ε\varepsilon and any i=1,,li=1,\ldots,l, the Brouwer degrees

deg((T(si)A,\displaystyle\deg\big{(}\big{(}\partial_{T(s_{i})}A, tiA),(Bd(ξi)Ω)×(tid,ti+d), 0)\displaystyle\,\partial_{t_{i}}A\big{)},\,\big{(}B_{d}(\xi^{*}_{i})\cap\partial\Omega\big{)}\times\big{(}t_{i}^{*}-d,\,t_{i}^{*}+d\big{)},\,0\big{)}
=\displaystyle= deg((Ta(si),tiA),(Bd(ξi)Ω)×(tid,ti+d), 0)\displaystyle\deg\big{(}\big{(}\partial_{T}a(s_{i}),\,\partial_{t_{i}}A\big{)},\,\big{(}B_{d}(\xi^{*}_{i})\cap\partial\Omega\big{)}\times\big{(}t_{i}^{*}-d,\,t_{i}^{*}+d\big{)},\,0\big{)}
=\displaystyle= signdet[(TT2a(ξi)1|logε|(Ta(ξi)tiTνa(ξi))01|logε|1(ti)2a(ξi))]=±10,\displaystyle\text{sign}\,\det\left[\left(\begin{aligned} \partial^{2}_{TT}a(\xi^{*}_{i})\quad&\quad\frac{1}{|\log\varepsilon|}\left(\frac{\partial_{T}a(\xi^{*}_{i})}{\,t^{*}_{i}\,}-\partial_{T}\partial_{\nu}a(\xi^{*}_{i})\right)\\ 0\quad\quad\quad&\quad\quad\ -\frac{1}{\,|\log\varepsilon|\,}\frac{1}{(t^{*}_{i})^{2}}a(\xi^{*}_{i})\\ \end{aligned}\right)\right]=\pm 1\neq 0,

and

deg((T(sl+1)a,,T(sm)a),k=l+1m(Bd(ξk)Ω), 0)=sign(k=l+1mTT2a(ξk))=±10.\displaystyle\deg\left(\big{(}\partial_{T(s_{l+1})}a,\ldots,\partial_{T(s_{m})}a\big{)},\,\prod_{k=l+1}^{m}\big{(}B_{d}(\xi^{*}_{k})\cap\partial\Omega\big{)},\,0\right)=\text{sign}\left(\prod_{k=l+1}^{m}\partial^{2}_{TT}a(\xi^{*}_{k})\right)=\pm 1\neq 0.

Then by (7.2),

deg((T(𝐬),𝐭)F~ε(𝐬,𝐭),i=1l(Bd(ξi)Ω)×k=l+1m(Bd(ξk)Ω)×i=1l(tid,ti+d),  0)\displaystyle\,\deg\left(\nabla_{\left(T(\mathbf{s}),\mathbf{t}\right)}\widetilde{F}_{\varepsilon}\big{(}\mathbf{s},\mathbf{t}\big{)},\,\,\prod_{i=1}^{l}\big{(}B_{d}(\xi^{*}_{i})\cap\partial\Omega\big{)}\times\prod_{k=l+1}^{m}\big{(}B_{d}(\xi^{*}_{k})\cap\partial\Omega\big{)}\times\prod_{i=1}^{l}\big{(}t_{i}^{*}-d,\,t_{i}^{*}+d\big{)},\,\,0\right)
=\displaystyle= i=1ldeg((T(si)A,tiA),(Bd(ξi)Ω)×(tid,ti+d),0)×deg((T(sl+1)a,,T(sm)a),k=l+1m(Bd(ξk)Ω),0)\displaystyle\prod_{i=1}^{l}\deg\large\big{(}\big{(}\partial_{T(s_{i})}A,\partial_{t_{i}}A\big{)},\big{(}B_{d}(\xi^{*}_{i})\cap\partial\Omega\big{)}\times\big{(}t_{i}^{*}-d,t_{i}^{*}+d\big{)},0\large\big{)}\times\deg\left(\big{(}\partial_{T(s_{l+1})}a,\ldots,\partial_{T(s_{m})}a\big{)},\prod_{k=l+1}^{m}\big{(}B_{d}(\xi^{*}_{k})\cap\partial\Omega\big{)},0\right)
\displaystyle\neq  0.\displaystyle\,0.

Hence if ε\varepsilon is small enough, there exists (𝐬ε,𝐭ε)(\mathbf{s}^{\varepsilon},\mathbf{t}^{\varepsilon}) such that (T(𝐬),𝐭)F~ε(𝐬ε,𝐭ε)=0\nabla_{\left(T(\mathbf{s}),\mathbf{t}\right)}\widetilde{F}_{\varepsilon}\big{(}\mathbf{s}^{\varepsilon},\mathbf{t}^{\varepsilon}\big{)}=0. In particular, 𝐬ε=(s1ε,,smε)(ξ1,,ξm)\mathbf{s}^{\varepsilon}=(s^{\varepsilon}_{1},\ldots,s^{\varepsilon}_{m})\rightarrow(\xi^{*}_{1},\ldots,\xi^{*}_{m}) as ε0\varepsilon\rightarrow 0, which completes the proof.                                      \square

Proof of Theorem 1.2. We need just to find a critical point ξε=(ξ1ε,,ξmε)Ωl×(Ω)ml\xi^{\varepsilon}=(\xi^{\varepsilon}_{1},\ldots,\xi^{\varepsilon}_{m})\in\Omega^{l}\times(\partial\Omega)^{m-l} of FλF_{\lambda} such that points ξ1ε,,ξmε\xi^{\varepsilon}_{1},\ldots,\xi^{\varepsilon}_{m} accumulate to ξ\xi_{*}. For this aim, we consider the configuration space

𝒪d,ε:={ξ=(ξ1,,ξm)(Bd(ξ)Ω)l×(Bd(ξ)Ω)ml|minij|ξiξj|>1|logε|κ,min1kldist(ξk,Ω)>1|logε|κ},\displaystyle\mathcal{O}^{*}_{d,\varepsilon}:=\left\{\xi=(\xi_{1},\ldots,\xi_{m})\in\big{(}B_{d}(\xi_{*})\cap\Omega\big{)}^{l}\times\big{(}B_{d}(\xi_{*})\cap\partial\Omega\big{)}^{m-l}\left|\min\limits_{i\neq j}\big{|}\xi_{i}-\xi_{j}\big{|}>\frac{1}{|\log\varepsilon|^{\kappa}},\quad\min\limits_{1\leq k\leq l}\text{dist}(\xi_{k},\partial\Omega)>\frac{1}{|\log\varepsilon|^{\kappa}}\right.\right\},

where d>0d>0 is a sufficiently small but fixed number, independent of ε\varepsilon. Using (5.2), Propositions 5.2 and 6.1 together with the fact that a(ξi)Ga(ξi,ξk)=a(ξk)Ga(ξk,ξi)a(\xi_{i})G_{a}(\xi_{i},\xi_{k})=a(\xi_{k})G_{a}(\xi_{k},\xi_{i}) for all i,k=1,,mi,k=1,\ldots,m with iki\neq k, we obtain that FλF_{\lambda} reduces to

Fλ(ξ)=8πp2γ2(p1){2i=1la(ξi)[|logε|2πHa(ξi,ξi)2πk=1,kilGa(ξi,ξk)]4πi=1lk=l+1ma(ξk)Ga(ξk,ξi)\displaystyle F_{\lambda}(\xi)=\frac{8\pi}{p^{2}\gamma^{2(p-1)}}\left\{2\sum_{i=1}^{l}a(\xi_{i})\left[|\log\varepsilon|-2\pi H_{a}(\xi_{i},\xi_{i})-2\pi\sum_{k=1,\,k\neq i}^{l}G_{a}(\xi_{i},\xi_{k})\right]-4\pi\sum_{i=1}^{l}\sum_{k=l+1}^{m}a(\xi_{k})G_{a}(\xi_{k},\xi_{i})\right.
+i=l+1ma(ξi)[|logε|+k=l+1,kimlog|ξiξk|]+O(1)}\displaystyle\left.+\sum_{i=l+1}^{m}a(\xi_{i})\left[|\log\varepsilon|+\sum_{k=l+1,\,k\neq i}^{m}\log|\xi_{i}-\xi_{k}|\right]+O\left(1\right)\right\}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\,\,\,\qquad\qquad (7.8)

C0C^{0}-uniformly in 𝒪d,ε\mathcal{O}^{*}_{d,\varepsilon}. Let us claim that for any m1m\geq 1, 0lm0\leq l\leq m and for any ε\varepsilon small enough, the maximization problem

max(ξ1,,ξm)𝒪¯d,εFλ(ξ1,,ξm)\displaystyle\max\limits_{(\xi_{1},\ldots,\xi_{m})\in\overline{\mathcal{O}}^{*}_{d,\varepsilon}}F_{\lambda}(\xi_{1},\ldots,\xi_{m})

has a solution in the interior of 𝒪d,ε\mathcal{O}^{*}_{d,\varepsilon}. Once this claim is proven, we can easily conclude the qualitative properties of solutions of (1.1) described by Theorem 1.2.

Let ξε=(ξε1,,ξεm)𝒪¯d,ε\xi^{\varepsilon}=(\xi^{\varepsilon}_{1},\ldots,\xi^{\varepsilon}_{m})\in\overline{\mathcal{O}}^{*}_{d,\varepsilon} be the maximizer of FλF_{\lambda}. We are led to prove that ξε\xi^{\varepsilon} belongs to the interior of 𝒪d,ε\mathcal{O}^{*}_{d,\varepsilon}. First, we obtain a lower bound for FλF_{\lambda} over 𝒪¯d,ε\overline{\mathcal{O}}^{*}_{d,\varepsilon}. Around the point ξΩ\xi_{*}\in\partial\Omega, we consider a smooth change of variables

Hξε(y)=ε2Hξ(ε2y),\displaystyle H_{\xi_{*}}^{\varepsilon}(y)=\varepsilon^{-2}H_{\xi_{*}}(\varepsilon^{2}y),

where Hξ:Bd(ξ)H_{\xi_{*}}:B_{d}(\xi_{*})\mapsto\mathcal{M} is a diffeomorphism and \mathcal{M} is an open neighborhood of the origin such that Hξ(Bd(ξ)Ω)=+2H_{\xi_{*}}(B_{d}(\xi_{*})\cap\Omega)=\mathcal{M}\cap\mathbb{R}_{+}^{2} and Hξ(Bd(ξ)Ω)=+2H_{\xi_{*}}(B_{d}(\xi_{*})\cap\partial\Omega)=\mathcal{M}\cap\partial\mathbb{R}_{+}^{2}. Let

ξ0i=ξti|logε|ν(ξ),i=1,,l,butξ0i=ε2(Hξε)1(ε2|logε|ξ^i0),i=l+1,,m,\displaystyle\xi^{0}_{i}=\xi_{*}-\frac{t_{i}}{\sqrt{|\log\varepsilon|}}\nu(\xi_{*}),\quad i=1,\ldots,l,\qquad\quad\textrm{but}\quad\qquad\xi^{0}_{i}=\varepsilon^{2}(H_{\xi_{*}}^{\varepsilon})^{-1}\left(\frac{\varepsilon^{-2}}{\sqrt{|\log\varepsilon|}}\hat{\xi}_{i}^{0}\right),\quad i=l+1,\ldots,m,

where ti>0t_{i}>0 and ξ^i0+2\hat{\xi}_{i}^{0}\in\mathcal{M}\cap\partial\mathbb{R}_{+}^{2} satisfy ti+1ti=ρt_{i+1}-t_{i}=\rho, |ξ^i0ξ^0i+1|=ρ|\hat{\xi}_{i}^{0}-\hat{\xi}^{0}_{i+1}|=\rho for all ρ>0\rho>0 sufficiently small, fixed and independent of ε\varepsilon. By using the expansion (Hξε)1(z)=ε2ξ+z+O(ε2|z|)(H_{\xi_{*}}^{\varepsilon})^{-1}(z)=\varepsilon^{-2}\xi_{*}+z+O(\varepsilon^{2}|z|) we find

ξ0i=ξ+1|logε|ξ^i0+O(ε2|logε||ξ^i0|),i=l+1,,m.\displaystyle\xi^{0}_{i}=\xi_{*}+\frac{1}{\sqrt{|\log\varepsilon|}}\hat{\xi}_{i}^{0}+O\left(\frac{\varepsilon^{2}}{\sqrt{|\log\varepsilon|}}|\hat{\xi}_{i}^{0}|\right),\quad i=l+1,\ldots,m.

Then it is clear to see ξ0=(ξ01,,ξ0m)𝒪d,ε\xi^{0}=(\xi^{0}_{1},\ldots,\xi^{0}_{m})\in\mathcal{O}^{*}_{d,\varepsilon} because of κ>1\kappa>1. Since ξΩ\xi_{*}\in\partial\Omega is a strict local maximum point of a(x)a(x) over Ω¯\overline{\Omega} and satisfies νa(ξ)=a(ξ),ν(ξ)=0\partial_{\nu}a(\xi_{*})=\langle\nabla a(\xi_{*}),\,\nu(\xi_{*})\rangle=0, there exists a constant C>0C>0 independent of ε\varepsilon such that

a(ξ)C|logε|a(ξ0i)<a(ξ),i=1,,m.\displaystyle a(\xi_{*})-\frac{C}{\,|\log\varepsilon|\,}\leq a(\xi^{0}_{i})<a(\xi_{*}),\qquad i=1,\ldots,m.

From (7.3) it follows that for any i=1,,li=1,\ldots,l and k=1,,mk=1,\ldots,m with iki\neq k,

Ha(ξ0i,ξ0i)=14πlog|logε|+O(1),Ga(ξ0k,ξ0i)=Ha(ξ0k,ξ0i)12πlog|ξ0kξ0i|=12πlog|logε|+O(1).\displaystyle H_{a}(\xi^{0}_{i},\xi^{0}_{i})=\frac{1}{4\pi}\log|\log\varepsilon|+O\left(1\right),\qquad\quad G_{a}(\xi^{0}_{k},\xi^{0}_{i})=H_{a}(\xi^{0}_{k},\xi^{0}_{i})-\frac{1}{2\pi}\log|\xi^{0}_{k}-\xi^{0}_{i}|=\frac{1}{2\pi}\log|\log\varepsilon|+O\left(1\right).

Moreover, for any i,k=l+1,,mi,k=l+1,\ldots,m with iki\neq k,

log|ξ0iξ0k|=12log|logε|+O(1).\displaystyle\log|\xi^{0}_{i}-\xi^{0}_{k}|=-\frac{1}{2}\log|\log\varepsilon|+O\left(1\right).

Hence by (7),

maxξ𝒪¯d,εFλ(ξ)Fλ(ξ0)8πp2γ2(p1){(m+l)a(ξ)|logε|12(m+l)(m+l1)a(ξ)log|logε|+O(1)}.\displaystyle\max\limits_{\xi\in\overline{\mathcal{O}}^{*}_{d,\varepsilon}}F_{\lambda}(\xi)\geq F_{\lambda}(\xi^{0})\geq\frac{8\pi}{p^{2}\gamma^{2(p-1)}}\left\{(m+l)a(\xi_{*})|\log\varepsilon|-\frac{1}{2}(m+l)(m+l-1)a(\xi_{*})\log|\log\varepsilon|+O(1)\right\}. (7.9)

Next, we suppose ξε=(ξε1,,ξεm)𝒪d,ε\xi^{\varepsilon}=(\xi^{\varepsilon}_{1},\ldots,\xi^{\varepsilon}_{m})\in\partial\mathcal{O}^{*}_{d,\varepsilon}. There are four possibilities:
C1.   There exists an i0{1,,l}i_{0}\in\{1,\ldots,l\} such that ξεi0Bd(ξ)Ω\xi^{\varepsilon}_{i_{0}}\in\partial B_{d}(\xi_{*})\cap\Omega, in which case, a(ξεi0)<a(ξ)d0a(\xi^{\varepsilon}_{i_{0}})<a(\xi_{*})-d_{0} for some
d0>0d_{0}>0 independent of ε\varepsilon;
C2.   There exists an i0{l+1,,m}i_{0}\in\{l+1,\ldots,m\} such that ξεi0Bd(ξ)Ω\xi^{\varepsilon}_{i_{0}}\in\partial B_{d}(\xi_{*})\cap\partial\Omega, in which case, a(ξεi0)<a(ξ)d0a(\xi^{\varepsilon}_{i_{0}})<a(\xi_{*})-d_{0} for
some d0>0d_{0}>0 independent of ε\varepsilon;
C3.   There exists an i0{1,,l}i_{0}\in\{1,\ldots,l\} such that dist(ξi0ε,Ω)=|logε|κ\text{dist}(\xi_{i_{0}}^{\varepsilon},\partial\Omega)=|\log\varepsilon|^{-\kappa};
C4.   There exist indices i0i_{0}, k0k_{0}, i0k0i_{0}\neq k_{0} such that |ξi0εξk0ε|=|logε|κ|\xi_{i_{0}}^{\varepsilon}-\xi_{k_{0}}^{\varepsilon}|=|\log\varepsilon|^{-\kappa}.
From (1.9), (7.3) and the maximum principle we have that for all i=1,,li=1,\ldots,l and k=1,,mk=1,\ldots,m with iki\neq k,

Ga(ξεk,ξεi)>0,Ha(ξεk,ξεi)>0andHa(ξεi,ξεi)=12πlog[dist(ξiε,Ω)]+O(1).\displaystyle G_{a}(\xi^{\varepsilon}_{k},\xi^{\varepsilon}_{i})>0,\qquad\,\,H_{a}(\xi^{\varepsilon}_{k},\xi^{\varepsilon}_{i})>0\qquad\,\,\textrm{and}\qquad\,\,H_{a}(\xi^{\varepsilon}_{i},\xi^{\varepsilon}_{i})=-\frac{1}{2\pi}\log\big{[}\text{dist}(\xi_{i}^{\varepsilon},\partial\Omega)\big{]}+O\left(1\right).

Thus in the first and second cases,

maxξ𝒪¯d,εFλ(ξ)=Fλ(ξε)8πp2γ2(p1){[(m+l)a(ξ)d0]|logε|+O(log|logε|)},\displaystyle\max\limits_{\xi\in\overline{\mathcal{O}}^{*}_{d,\varepsilon}}F_{\lambda}(\xi)=F_{\lambda}(\xi^{\varepsilon})\leq\frac{8\pi}{p^{2}\gamma^{2(p-1)}}\big{\{}\big{[}(m+l)a(\xi_{*})-d_{0}\big{]}|\log\varepsilon|+O\left(\log|\log\varepsilon|\right)\big{\}},

which contradicts to (7.9). This shows that a(ξiε)a(ξ)a(\xi_{i}^{\varepsilon})\rightarrow a(\xi_{*}). By the condition of a(x)a(x) over Ω¯\overline{\Omega}, we deduce ξiεξ\xi_{i}^{\varepsilon}\rightarrow\xi_{*} for all i=1,,mi=1,\ldots,m.
In the third case,

maxξ𝒪¯d,εFλ(ξ)=Fλ(ξε)8πp2γ2(p1){(m+l)a(ξ)|logε|4πa(ξεi0)Ha(ξεi0,ξεi0)+O(1)}\displaystyle\max\limits_{\xi\in\overline{\mathcal{O}}^{*}_{d,\varepsilon}}F_{\lambda}(\xi)=F_{\lambda}(\xi^{\varepsilon})\leq\frac{8\pi}{p^{2}\gamma^{2(p-1)}}\left\{(m+l)a(\xi_{*})|\log\varepsilon|-4\pi a(\xi^{\varepsilon}_{i_{0}})H_{a}(\xi^{\varepsilon}_{i_{0}},\xi^{\varepsilon}_{i_{0}})+O(1)\right\}
8πp2γ2(p1){(m+l)a(ξ)|logε|2κa(ξεi0)log|logε|+O(1)}.\displaystyle\leq\frac{8\pi}{p^{2}\gamma^{2(p-1)}}\left\{(m+l)a(\xi_{*})|\log\varepsilon|-2\kappa a(\xi^{\varepsilon}_{i_{0}})\log|\log\varepsilon|+O(1)\right\}.\,\, (7.10)

In the last case, if i0{1,,m}i_{0}\in\{1,\ldots,m\} and k0{1,,l}k_{0}\in\{1,\ldots,l\},

maxξ𝒪¯d,εFλ(ξ)=Fλ(ξε)8πp2γ2(p1){(m+l)a(ξ)|logε|+2a(ξεi0)log|ξεi0ξεk0|+O(1)}\displaystyle\max\limits_{\xi\in\overline{\mathcal{O}}^{*}_{d,\varepsilon}}F_{\lambda}(\xi)=F_{\lambda}(\xi^{\varepsilon})\leq\frac{8\pi}{p^{2}\gamma^{2(p-1)}}\left\{(m+l)a(\xi_{*})|\log\varepsilon|+2a(\xi^{\varepsilon}_{i_{0}})\log|\xi^{\varepsilon}_{i_{0}}-\xi^{\varepsilon}_{k_{0}}|+O(1)\right\}
8πp2γ2(p1){(m+l)a(ξ)|logε|2κa(ξεi0)log|logε|+O(1)},\displaystyle\leq\frac{8\pi}{p^{2}\gamma^{2(p-1)}}\left\{(m+l)a(\xi_{*})|\log\varepsilon|-2\kappa a(\xi^{\varepsilon}_{i_{0}})\log|\log\varepsilon|+O(1)\right\},\,\ \, (7.11)

while if i0{l+1,,m}i_{0}\in\{l+1,\ldots,m\} and k0{l+1,,m}k_{0}\in\{l+1,\ldots,m\},

maxξ𝒪¯d,εFλ(ξ)=Fλ(ξε)8πp2γ2(p1){(m+l)a(ξ)|logε|+a(ξεi0)log|ξεi0ξεk0|+O(1)}\displaystyle\max\limits_{\xi\in\overline{\mathcal{O}}^{*}_{d,\varepsilon}}F_{\lambda}(\xi)=F_{\lambda}(\xi^{\varepsilon})\leq\frac{8\pi}{p^{2}\gamma^{2(p-1)}}\left\{(m+l)a(\xi_{*})|\log\varepsilon|+a(\xi^{\varepsilon}_{i_{0}})\log|\xi^{\varepsilon}_{i_{0}}-\xi^{\varepsilon}_{k_{0}}|+O(1)\right\}
8πp2γ2(p1){(m+l)a(ξ)|logε|κa(ξεi0)log|logε|+O(1)}.\displaystyle\leq\frac{8\pi}{p^{2}\gamma^{2(p-1)}}\left\{(m+l)a(\xi_{*})|\log\varepsilon|-\kappa a(\xi^{\varepsilon}_{i_{0}})\log|\log\varepsilon|+O(1)\right\}.\,\,\,\, (7.12)

Comparing (7)-(7) with (7.9), we obtain

2κa(ξεi0)log|logε|+O(1)12(m+l)(m+l1)a(ξ)log|logε|+O(1),\displaystyle 2\kappa a(\xi^{\varepsilon}_{i_{0}})\log|\log\varepsilon|+O(1)\leq\frac{1}{2}(m+l)(m+l-1)a(\xi_{*})\log|\log\varepsilon|+O(1), (7.13)

which is impossible by the choice of κ\kappa in (2.4).                                   \square

8. Appendix

According to [8], for a radial function f(y)=f(|y|)f(y)=f(|y|) there exists a radial solution

ω(r)=1r21+r2(0rϕf(s)ϕf(1)(s1)2ds+ϕf(1)r1r)\displaystyle\omega(r)=\frac{1-r^{2}}{1+r^{2}}\left(\int_{0}^{r}\frac{\phi_{f}(s)-\phi_{f}(1)}{(s-1)^{2}}ds+\phi_{f}(1)\frac{r}{1-r}\right) (8.1)

for the equation

Δω+8(1+|y|2)2ω=8(1+|y|2)2f(y)in2,\displaystyle\Delta\omega+\frac{8}{(1+|y|^{2})^{2}}\omega=\frac{8}{(1+|y|^{2})^{2}}f(y)\qquad\textrm{in}\,\,\ \,\,\mathbb{R}^{2},

where

ϕf(s)=8(s2+1s21)2(s1)2s0st1t2(t2+1)3f(t)dtfors1,butϕf(1)=lims1ϕf(s).\displaystyle\phi_{f}(s)=8\left(\frac{s^{2}+1}{s^{2}-1}\right)^{2}\frac{(s-1)^{2}}{s}\int_{0}^{s}t\frac{1-t^{2}}{(t^{2}+1)^{3}}f(t)dt\quad\,\textrm{for}\,\,\,\,s\neq 1,\qquad\textrm{but}\ \,\,\,\,\phi_{f}(1)=\lim_{s\rightarrow 1}\phi_{f}(s).

Moreover, if ff is the smooth function with at most logarithmic growth at infinity, then a direct computation shows that

ω(r)=Df2log(1+r2)+Cf+O(11+r),rω(r)=rDf 1+r2+O(11+r2)asr+,\displaystyle\omega(r)=\frac{D_{f}}{2}\log\left(1+r^{2}\right)+C_{f}+O\left(\frac{1}{1+r}\right),\,\,\qquad\,\,\partial_{r}\omega(r)=\frac{r\,D_{f}}{\,1+r^{2}\,}+O\left(\frac{1}{1+r^{2}}\right)\quad\,\,\,\textrm{as}\,\,\,r\rightarrow+\infty, (8.2)

where

Df=80+tt21(t2+1)3f(t)dt.\displaystyle D_{f}=8\int_{0}^{+\infty}t\frac{t^{2}-1}{(t^{2}+1)^{3}}f(t)dt.

Proof of (3.53). Using the change of variables z=μiyz=\mu_{i}y, we denote that

ω~1μi(y):=ω1μi(μiy),f~1μi(y):=f1μi(μiy)andυ(y):=ωμi(μiy)+2logμi=log8(1+|y|2)2.\displaystyle\widetilde{\omega}^{1}_{\mu_{i}}(y):=\omega^{1}_{\mu_{i}}(\mu_{i}y),\qquad\widetilde{f}^{1}_{\mu_{i}}(y):=f^{1}_{\mu_{i}}(\mu_{i}y)\qquad\textrm{and}\qquad\upsilon_{\infty}(y):=\omega_{\mu_{i}}(\mu_{i}y)+2\log\mu_{i}=\log\frac{8}{(1+|y|^{2})^{2}}. (8.3)

Let ω0\omega^{0}_{\infty}, ω1\omega^{1}_{\infty} and ω2\omega^{2}_{\infty} be some radial solutions of

Δωj+8(1+|y|2)2ωj=8(1+|y|2)2fj(y)in2,j=0,1,2,\displaystyle\Delta\omega^{j}_{\infty}+\frac{8}{(1+|y|^{2})^{2}}\omega^{j}_{\infty}=\frac{8}{(1+|y|^{2})^{2}}f_{j}(y)\quad\,\textrm{in}\,\,\ \,\,\mathbb{R}^{2},\qquad j=0,1,2,

where

f0(y)=12(υ(y))2,f1(y)=υ(y),f2(y)=1.\displaystyle f_{0}(y)=\frac{1}{2}\big{(}\upsilon_{\infty}(y)\big{)}^{2},\qquad\qquad f_{1}(y)=\upsilon_{\infty}(y),\qquad\qquad f_{2}(y)=1.

Obviously,

ω2(y)=1Z0(y)=2|y|2+1.\displaystyle\omega^{2}_{\infty}(y)=1-Z_{0}(y)=\frac{2}{|y|^{2}+1}.

Using formulas (8.1)-(8.2) and replacing ω(r)\omega(r) with ω(r)CfZ0(r)\omega(r)-C_{f}Z_{0}(r), we can compute

ω0(y)=\displaystyle\omega^{0}_{\infty}(y)= 12(υ(y))2+6log(|y|2+1)+2log810|y|2+1+|y|21|y|2+1[4|y|2+log(s+1)s(s+1)ds2log2(|y|2+1)12log28],\displaystyle\,\frac{1}{2}\big{(}\upsilon_{\infty}(y)\big{)}^{2}+6\log(|y|^{2}+1)+\frac{2\log 8-10}{|y|^{2}+1}+\frac{|y|^{2}-1}{|y|^{2}+1}\left[4\int_{|y|^{2}}^{+\infty}\frac{\log(s+1)}{s(s+1)}ds-2\log^{2}(|y|^{2}+1)-\frac{1}{2}\log^{2}8\right], (8.4)

and

ω1(y)=|y|21|y|2+1{2|y|21[υ(y)+|y|2]+υ(y)log82}.\displaystyle\omega^{1}_{\infty}(y)=\frac{|y|^{2}-1}{|y|^{2}+1}\left\{\frac{2}{|y|^{2}-1}\big{[}\upsilon_{\infty}(y)+|y|^{2}\big{]}+\upsilon_{\infty}(y)-\log 8-2\right\}. (8.5)

By (2.9) we obtain

f~1μi(y)=[f0(y)+(12logμi)f1(y)+2(log2μilogμi)f2(y)],\displaystyle\widetilde{f}^{1}_{\mu_{i}}(y)=-\big{[}f_{0}(y)+(1-2\log\mu_{i})f_{1}(y)+2(\log^{2}\mu_{i}-\log\mu_{i})f_{2}(y)\big{]},

and hence

ω~1μi(y)=ω0(y)(12logμi)ω1(y)4(log2μilogμi) 1|y|2+1.\displaystyle\widetilde{\omega}^{1}_{\mu_{i}}(y)=-\omega^{0}_{\infty}(y)-(1-2\log\mu_{i})\omega^{1}_{\infty}(y)-4(\log^{2}\mu_{i}-\log\mu_{i})\frac{\,1\,}{\,|y|^{2}+1\,}. (8.6)

This combined with (8.3)-(8.5) readily implies

[1+ω1μi+12(ωμi)2+2ωμi](μiy)=[12(υ)2+υω0](y)+[2log2μi2logμi+(log8+1)(12logμi)]|y|21|y|2+1.\displaystyle\left[1+\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}+2\omega_{\mu_{i}}\right](\mu_{i}y)=\left[\frac{1}{2}\big{(}\upsilon_{\infty}\big{)}^{2}+\upsilon_{\infty}-\omega_{\infty}^{0}\right](y)+\Big{[}2\log^{2}\mu_{i}-2\log\mu_{i}+(\log 8+1)(1-2\log\mu_{i})\Big{]}\frac{|y|^{2}-1}{|y|^{2}+1}. (8.7)

Furthermore,

28(μi2+|z|2)2[Z0(zμi)]2[1+ω1μi+12(ωμi)2+2ωμi](z)dz\displaystyle\int_{\mathbb{R}^{2}}\frac{8}{(\mu_{i}^{2}+|z|^{2})^{2}}\left[Z_{0}\left(\frac{z}{\mu_{i}}\right)\right]^{2}\left[1+\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}+2\omega_{\mu_{i}}\right](z)dz
=\displaystyle= 1μi228(|y|21)2(|y|2+1)4{[12(υ)2+υω0](y)+[2log2μi2logμi+(log8+1)(12logμi)]|y|21|y|2+1}dy.\displaystyle\frac{1}{\mu_{i}^{2}}\int_{\mathbb{R}^{2}}\frac{8(|y|^{2}-1)^{2}}{(|y|^{2}+1)^{4}}\left\{\left[\frac{1}{2}\big{(}\upsilon_{\infty}\big{)}^{2}+\upsilon_{\infty}-\omega_{\infty}^{0}\right](y)+\Big{[}2\log^{2}\mu_{i}-2\log\mu_{i}+(\log 8+1)(1-2\log\mu_{i})\Big{]}\frac{|y|^{2}-1}{|y|^{2}+1}\right\}dy.

In a straightforward but tedious way, by the explicit expression of ω0(y)\omega^{0}_{\infty}(y) we can compute

28(|y|21)2(|y|2+1)4[12(υ)2+υω0](y)dy=8π,\displaystyle\int_{\mathbb{R}^{2}}\frac{8(|y|^{2}-1)^{2}}{(|y|^{2}+1)^{4}}\left[\frac{1}{2}\big{(}\upsilon_{\infty}\big{)}^{2}+\upsilon_{\infty}-\omega^{0}_{\infty}\right](y)dy=8\pi,

(also see [14] on Page 5050). Moreover,

28(|y|21)2(|y|2+1)4dy=8π3and28(|y|21)2(|y|2+1)4|y|2|y|2+1dy=4π3.\displaystyle\int_{\mathbb{R}^{2}}\frac{8(|y|^{2}-1)^{2}}{(|y|^{2}+1)^{4}}dy=\frac{8\pi}{3}\qquad\quad\textrm{and}\qquad\quad\int_{\mathbb{R}^{2}}\frac{8(|y|^{2}-1)^{2}}{(|y|^{2}+1)^{4}}\frac{|y|^{2}}{|y|^{2}+1}dy=\frac{4\pi}{3}.

Therefore,

28(μi2+|z|2)2[Z0(zμi)]2[1+ω1μi+12(ωμi)2+2ωμi](z)dz=8πμi2.\displaystyle\int_{\mathbb{R}^{2}}\frac{8}{(\mu_{i}^{2}+|z|^{2})^{2}}\left[Z_{0}\left(\frac{z}{\mu_{i}}\right)\right]^{2}\left[1+\omega^{1}_{\mu_{i}}+\frac{1}{2}(\omega_{\mu_{i}})^{2}+2\omega_{\mu_{i}}\right](z)dz=\frac{8\pi}{\mu_{i}^{2}}.

References

  • [1] O. Agudelo, A. Pistoia, Boundary concentration phenomena for the higher-dimensional Keller-Segel system, Calc. Var. Partial Differential Equations (2016) 55:132.
  • [2] P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl. 8 (1998) 715–743.
  • [3] S. Baraket, F. Parcard, Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations 6 (1998) 1–38.
  • [4] D. Bonheure, J.-B. Casteras, J. Foldes, Singular radial solutions for the Keller-Segel equation in high dimension, J. Math. Pure Appl. 134 (2020) 204–254.
  • [5] D. Bonheure, J.-B. Casteras, B. Noris, Layered solutions with unbounded mass for the Keller-Segel equation, J. Fixed Point Theory Appl. 19 (2017) 529–558.
  • [6] D. Bonheure, J.-B. Casteras, B. Noris, Multiple positive solutions of stationary Keller-Segel system, Calc. Var. Partial Differential Equations (2017) 56:74.
  • [7] D. Bonheure, J.-B. Casteras, C. Román, Unbounded mass radial solutions for the Keller-Segel equation in the desk, Calc. Var. Partial Differential Equations (2021) 60:198.
  • [8] D. Chae, O. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215 (2000) 119–142.
  • [9] C.C. Chen, C.S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math. 55 (2002) 728–771.
  • [10] M. del Pino, M. Kowalczyk, M. Musso, Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations 24 (2005) 47–81.
  • [11] M. del Pino, A. Pistoia, G. Vaira, Large mass boundary condensation patterns in the stationary Keller-Segel system, J. Differential Equations, 261 (2016) 3414–3462.
  • [12] M. del Pino, J. Wei, Collapsing steady states of the Keller-Segel system, Nonlinearity 19 (2006) 661–684.
  • [13] S. Deng, Mixed interior and boundary bubbling solutions for Neumann problem in 2\mathbb{R}^{2}, J. Differential Equations 253 (2012) 727–763.
  • [14] P. Esposito, M. Musso, A. Pistoia, Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differential Equations 227 (2006) 29–68.
  • [15] E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoretical Biology 26 (1970) 399–415.
  • [16] A. Malchiodi, W.-M. Ni, J. Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005) 143–163.
  • [17] A. Pistoia, G. Vaira, Steady states with unbounded mass of the Keller-Segel system, Proc. Roy. Soc. Edinb. Sect. A 145 (2015) 203–222.
  • [18] M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equation, Corrected Reprint of the 1967 Original, Springer-Verlag, New York, 1984.
  • [19] R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Am. Math. Soc. 292 (1985) 531–556.
  • [20] T. Senba, T. Suzuki, Some structures of the solution set for a stationary system of chemotaxis, Adv. Math. Sci. Appl. 10 (2000) 191–224.
  • [21] T. Senba, T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis, J. Funct. Anal. 191 (2002) 17–51.
  • [22] G. Wang, J. Wei, Steady state solutions of a reaction-diffusion system modeling Chemotaxis, Math. Nachr. 233-234 (2002) 221–236.