This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bounds on the Phillips calculus of abstract first order differential operators

Himani Sharma
Abstract.

For an operator generating a group on LpL^{p} spaces transference results give bounds on the Phillips functional calculus also known as spectral multiplier estimates. In this paper we consider specific group generators which are abstraction of first order differential operators and prove similar spectral multiplier estimates assuming only that the group is bounded on L2L^{2} rather than LpL^{p}. We also prove an R-bounded Hörmander calculus result by assuming an abstract Sobolev embedding property and show that the square of a perturbed Hodge-Dirac operator has such calculus.

Mathematics Subject Classification(2020): 47A60, 42B20, 42A45, 47D03, 47F05
Key Words: spectral multiplier estimates, Phillips calculus, Hörmander calculus, Sobolev embedding.

Email ID: himani.sharma@anu.edu.au, Department Address: Mathematical Sciences Institute, Australian National University, Canberra ACT-2600, Australia. ORCID-0000-0001-8248-1044

1. Introduction

Let XX be a Banach space and iDiD generate a bounded C0C_{0}-group (U(t))t(U(t))_{t\in\mathbb{R}} on XX. For gL1()g\in L^{1}(\mathbb{R}) we define

Φg(D)x:=g(t)U(t)x𝑑t,xX.\Phi_{g}(D)x:=\int_{-\infty}^{\infty}g(t)U(t)xdt,\;x\in X.

The map (gΦg(D)):L1()B(X)(g\mapsto\Phi_{g}(D)):L^{1}(\mathbb{R})\to B(X), where B(X)B(X) is the set of all bounded operators on XX and Φg\Phi_{g} is obtained using the inverse Fourier-Stieltjes transform, is called the Phillips calculus. It is immediate that the integral exists and

Φg(D)B(X)gL1suptU(t)B(X).||\Phi_{g}(D)||_{B(X)}\leq||g||_{L^{1}}\sup_{t\in\mathbb{R}}||U(t)||_{B(X)}.

The idea behind getting a bound on the Phillips calculus of some operators is to achieve such estimates for function classes other than L1L^{1}. The transference principle introduced by Cofiman and Weiss in [9] gives a great functional calculus result for such group generators. They proved that if gL1()g\in L^{1}(\mathbb{R}) and Kg:Lp(,X)Lp(,X)K_{g}:L^{p}(\mathbb{R},X)\to L^{p}(\mathbb{R},X) for p[1,)p\in[1,\infty) is defined as

Kgf(t):=g(s)f(ts)𝑑s,fLp(,X)K_{g}f(t):=\int_{-\infty}^{\infty}g(s)f(t-s)ds,\;f\in L^{p}(\mathbb{R},X)

then,

Φg(D)B(X)KgB(Lp(,X))suptU(t)B(X)2||\Phi_{g}(D)||_{B(X)}\leq||K_{g}||_{B(L^{p}(\mathbb{R},X))}\sup_{t\in\mathbb{R}}||U(t)||^{2}_{B(X)}

Inspired by them, Haase later in 2009 (see Theorem 3.2,[15]), where the technique for the proof of this theorem is explained very well in (Section 3,[16]) proved a transference principle where the group can grow exponentially. In this case the functions gg need to have holomorphic extensions to a strip of the complex plane. Kriegler in 2012 (Theorem 4.9, [20]) proved a similar result for a group that grows at most polynomially on LpL^{p}. In the case of both Coifman-Weiss and Kriegler’s results the functions can be compactly supported. In fact, the class of functions they consider is a variation of the Hörmander class and involves functions which are differentiable sufficiently many times and whose derivatives have appropriate decay. Since the class of smooth and compactly supported functions is not contained in HH^{\infty}, therefore to obtain a calculus that works for such functions we need a result similar to Coifman-Weiss or Kriegler’s result. Kriegler and Weis (Theorem 1.1, [21]) have given a very general approach in the case of semigroup generators and proved that these operators have Hörmander calculus but their result has a little weakness as their R-boundedness assumption is quite difficult to check.

This paper deals with the case when there is no available LpL^{p} information (which would be required to use transference) on the group and the only information given to us is on L2L^{2}, that is, the group generator is either self-adjoint or similar to a self-adjoint operator. The question then arises: “what extra properties do we need on the group or its generator?” Notice that some of the transference results that we have talked about before transfer to the derivative despite the fact that a general group generator does not have to be a differential operator whatsoever. Thus, it will turn out that our framework is well suited for (Hodge-Dirac) differential operators. The question is how are we going to exploit this structure, given only L2L^{2} information? We show in this paper that if we know some LpL2L^{p}-L^{2} mapping properties (which look like Sobolev embeddings and are likely to happen when the operator is differential) then we get something which is very reminiscent of Kriegler’s result.

Chen, Ouhabaz, Sikora and Yan in [6] considered second order differential operators acting on LpL^{p} spaces over a doubling measure metric space and exploited certain properties including the finite-speed propagation property to obtain sharp spectral multiplier results. What we have done is similar but slightly more abstract. In fact, our results are in the same spirit, but for slightly more specific operators, as the result in their recent paper [7]. For instance, the Hörmander calculus result that we have obtained in our Theorem 3.3 for the square of the Hodge-Dirac operator ΠB\Pi_{B} (defined in preliminaries) implies their main result (Theorem 3.1, [7]) for uniformly elliptic operators in divergence form (for example, divAdivA\nabla, ALA\in L^{\infty}) and generalises it to all of the squares of Dirac operators defined in [5], by Axelsson, Keith and McIntosh. Our result thus complements [7] by giving a different approach and substantially simpler proof. The motivation is the same: to develop techniques that are abstract enough to be applied in a wide range of settings, yet concrete enough to give strong results for differential operators.

It is worth noticing that given a self-adjoint differential operator on L2L^{2} it is generally difficult to decide whether or not it generates a group on LpL^{p}. For instance, the first derivative in Lp()L^{p}(\mathbb{R}) generates the group of translation but ii times the second derivative generates a group only if p=2p=2. See [13] by Frey and Portal for fairly specific examples of groups generated by operators with rough coefficients in LpL^{p}. Exponential growth of a group can be obtained by perturbation but polynomial boundedness is quite difficult to establish as can be seen in the paper by Rozendaal and Veraar (Theorem 1.1, [25]). Coifman-Weiss and Kriegler’s transference results thus have assumptions that are difficult to establish while general transference results do not give a large functional calculus. We present an intermediate result suited to differential operators.

In addition to this, we have exploited the case where we take our operator to be a perturbed Hodge-Dirac operator as described in the paper [12] by Frey, McIntosh and Portal. For these operators, we prove a much stronger result which shows that their square has R-bounded Hörmander calculus on LpL^{p} spaces for pp in some interval. This is possible by combining the results of Frey, McIntosh, Portal [12] with that of Kriegler-Weis (see Theorem 2.3) and Kunstmann (see Theorem 2.2) where an off diagonal assumption gives us the appropriate R-bound.

1.1. Acknowledgement

I am extremely thankful to my supervisor Pierre Portal for his continuous support and encouragement. It was his perseverance and foresight which made me kept working on this problem even after facing so many ups and downs. I am also very grateful to Dorothee Frey for her valuable suggestion to Pierre to look at the paper of Peer Kunstmann. I would like to express my heartfelt thanks to Christoph Kriegler as well for suggesting changes in our Theorem 3.2 and improving the result.

1.2. Declarations

  • Funding: This research is supported by the Australian Government Research Training Program (AGRTP) scholarship.

  • Conflict of Interest-Not applicable

  • Availability of data and material-Not applicable

  • Code availability-Not applicable

2. Preliminaries

This section consists of the notations used in this paper and some definitions and auxiliary results required to prove the main theorems.

2.1. Notations

Henceforth, we fix two positive natural numbers dd and nn and denote inequalities “up to a constant” between two positive quantities x,yx,y by xyx\lesssim y. By this we mean that there exists a constant C>0C>0, independent of all relevant quantities in the statement, such that xCyx\leq Cy. We denote equivalence “up to a constant” by xyx\simeq y which means that there exist constants cc and cc^{\prime} such that 1cxycx\frac{1}{c}x\leq y\leq c^{\prime}x.
The set of all bounded linear operators on XX is denoted by B(X)B(X) and we write ={0}\mathbb{R}^{*}=\mathbb{R}\setminus\{0\}.
In this paper we will be taking all our function spaces to be n\mathbb{C}^{n}-valued without mentioning the explicit value of nn which might change from one theorem to another. In fact, all the results and definitions that we are using, for instance, Lemma 1,Theorem 2.2 and Theorem 2.3 are valid for n\mathbb{C}^{n}-valued LpL^{p} spaces.
For p(1,)p\in(1,\infty) and an unbounded operator DD on Lp(d;n)L^{p}(\mathbb{R}^{d};\mathbb{C}^{n}), we denote by 𝒟p(D),\mathcal{D}_{p}(D), p(D),\mathcal{R}_{p}(D), 𝒩p(D)\mathcal{N}_{p}(D) its domain, range and null space, respectively.
We use pp_{*} to denote Sobolev exponents below pp. That is, for p[1,)p\in[1,\infty), p=dpd+pp_{*}=\frac{dp}{d+p}. Since 22_{*} denotes one Sobolev exponent below 2 similarly 22_{**} denotes two Sobolev exponent below 2. We use the notation 2()m2_{(*)m} to denote the mthm^{th} Sobolev exponent below 2 where mm\in\mathbb{N}.

2.2. Definitions and some known results

In this subsection we are focusing on some fundamental results and definitions needed in the main body of the paper.

This paper deals with self-adjoint first order differential operators which have a holomorphic functional calculus (also called HH^{\infty}-calculus). On LpL^{p} the main results concerning this calculus have been developed in [3, 10, 24] and for more information about them one can refer to the lecture notes [1, 23] and book [14].

Definition 1 (Finite propagation speed).

Let DD be a self-adjoint operator on L2(d;n)L^{2}(\mathbb{R}^{d};\mathbb{C}^{n}). Then eitDe^{itD} is said to have finite propagation speed κDκ\kappa_{D}\leq\kappa if

supp(eitDu)Kκ|t|:={xd;dist(x,K)κ|t|}t\mathrm{supp}(e^{itD}u)\subset K_{\kappa|t|}:=\{x\in\mathbb{R}^{d};\;\mathrm{dist}(x,K)\leq\kappa|t|\}\;\;\;\forall t\in\mathbb{R}

whenever supp(u)Kd\mathrm{supp}(u)\subset K\subset\mathbb{R}^{d}, for some compact set KK. Here dist(x,K):=inf{d(x,y):yK}\mathrm{dist}(x,K):=\inf\{d(x,y):y\in K\}

Definition 2 (Off-diagonal bounds).

Let p[1,2]p\in[1,2]. A family of operators {Tt:t}B(L2(d;n))\{T_{t}:t\in\mathcal{B}\}\subset B(L^{2}(\mathbb{R}^{d};\mathbb{C}^{n})), where \mathcal{B}\subseteq\mathbb{R}^{*}, is said to have LpL2L^{p}-L^{2} off-diagonal estimates of order MM if there exists a constant CM>0C_{M}>0 such that for all tt\in\mathcal{B}, all Borel sets E,FdE,F\subseteq\mathbb{R}^{d} and all uLp(d;n)u\in L^{p}(\mathbb{R}^{d};\mathbb{C}^{n}) with support in FF we have

TtuL2(E)CM|t|d(1p12)(1+d(E,F)t)MuLp(F)||T_{t}u||_{L^{2}(E)}\leq C_{M}|t|^{-d\big{(}\frac{1}{p}-\frac{1}{2}\big{)}}\bigg{(}1+\frac{d(E,F)}{t}\bigg{)}^{-M}||u||_{L^{p}(F)}

where d(E,F)=inf{|xy|:xE,yF}d(E,F)=\inf\{|x-y|:x\in E,y\in F\}.

Lemma 1 (Lemma 4.3, [2]).

Let p[1,2]p\in[1,2] and TT be a linear operator which satisfies LpL2L^{p}-L^{2} off-diagonal estimates in the form ||Tu||L2(E)g(d(E,F))||Tu||_{L^{2}(E)}\leq g(d(E,F))\cdot uLp(F)||u||_{L^{p}(F)} where E,FE,F are closed cubes with supp(u)F\mathrm{supp}(u)\subseteq F and gg is some function such that sd|1p12|kdg(sup(|k|1,0)s)s^{d|\frac{1}{p}-\frac{1}{2}|}\sum_{k\in\mathbb{Z}^{d}}g(\sup(|k|-1,0)s) is finite for any s>0s>0. Then TT is a bounded operator on Lp(d)L^{p}(\mathbb{R}^{d}).

We shall now recall the following definition and result of operators acting on tent spaces which is of great importance in proving Theorem 3.2.

Definition 3 (Tent spaces).

The tent space Tp,2(+d+1;n)T^{p,2}(\mathbb{R}_{+}^{d+1};\mathbb{C}^{n}), first introduced by Coifman, Meyer, and Stein in [8], is defined as the completion of Cc(+d+1;n)C_{c}^{\infty}(\mathbb{R}_{+}^{d+1};\mathbb{C}^{n}) with respect to the following norm for p[1,)p\in[1,\infty)

FTp,2\displaystyle||F||_{T^{p,2}} =(d(0B(x,t)|F(t,y)|2dydttd+1)p2𝑑x)1p,\displaystyle=\bigg{(}\int_{\mathbb{R}^{d}}\bigg{(}\int_{0}^{\infty}\int_{B(x,t)}|F(t,y)|^{2}\frac{dydt}{t^{d+1}}\bigg{)}^{\frac{p}{2}}dx\bigg{)}^{\frac{1}{p}},

where B(x,t)B(x,t) denote balls in +d+1\mathbb{R}^{d+1}_{+} with center at xx and radius tt.

Lemma 2 (Lemma 2.9, [12]).

Let p(1,)p\in(1,\infty) and let {Ut}t>0\{U_{t}\}_{t>0} be a family of operators on L2(d;n)L^{2}(\mathbb{R}^{d};\mathbb{C}^{n}) with L2L2L^{2}-L^{2} off diagonal bounds of order M>dmin{p,2}M>\frac{d}{\min\{p,2\}}. Then there exists C>0C>0 such that for all FTp,2(+d+1;n)F\in T^{p,2}(\mathbb{R}_{+}^{d+1};\mathbb{C}^{n})

||(t,x)UtF(t,.)(x)||Tp,2C||F||Tp,2.||(t,x)\mapsto U_{t}F(t,.)(x)||_{T^{p,2}}\leq C||F||_{T^{p,2}}.
Definition 4.

Let 0θ<μ<π20\leq\theta<\mu<\frac{\pi}{2}. Define closed and open sectors and double sectors in the complex plane by

Σθ+\displaystyle\Sigma_{\theta+} :={z:|argz|θ}{0},Σθ:=Σθ+,\displaystyle:=\{z\in\mathbb{C}:|\arg z|\leq\theta\}\cup\{0\},\;\Sigma_{\theta-}:=-\Sigma_{\theta+},
Σμ+0\displaystyle\Sigma^{0}_{\mu+} :={z:z0,|argz|<μ},Σμ0:=Σμ+0,\displaystyle:=\{z\in\mathbb{C}:z\neq 0,|\arg z|<\mu\},\;\Sigma^{0}_{\mu-}:=-\Sigma^{0}_{\mu+},
Σθ\displaystyle\Sigma_{\theta} :=Σθ+Σθ,Σμ0:=Σμ+0Σμ0.\displaystyle:=\Sigma_{\theta+}\cup\Sigma_{\theta-},\;\Sigma^{0}_{\mu}:=\Sigma^{0}_{\mu+}\cup\Sigma^{0}_{\mu-}.

Denote by H(Σμ0)H(\Sigma^{0}_{\mu}) the space of all holomorphic functions on Σμ0\Sigma^{0}_{\mu}. Let further

Ψab(Σμ0):={ψH(Σμ0):C>0:|ψ(z)|C|z|a(1+|z|a+b)1zΣμ0}\Psi_{a}^{b}(\Sigma_{\mu}^{0}):=\{\psi\in H(\Sigma^{0}_{\mu}):\exists C>0:|\psi(z)|\leq C|z|^{a}(1+|z|^{a+b})^{-1}\forall z\in\Sigma^{0}_{\mu}\}

for every a,b>0a,b>0, and set Ψ(Σμ0):=a,b>0Ψab(Σμ0)\Psi(\Sigma^{0}_{\mu}):=\bigcup_{a,b>0}\Psi^{b}_{a}(\Sigma^{0}_{\mu}). We say that ψΨ(Σμ0)\psi\in\Psi(\Sigma^{0}_{\mu}) is non-degenerate if neither of the restrictions ψ|Σμ±0\psi|_{\Sigma^{0}_{\mu\pm}} vanishes identically.

Recall now the main definition and results related to Hardy spaces associated with bisectorial operators and refer to [4, 11, 18] and the references therein for detailed description.

Definition 5 (Hardy spaces associated with bisectorial operators).

Let 0θ<μ<π20\leq\theta<\mu<\frac{\pi}{2} and DD be a θ\theta- bisectorial operator on L2(d,n)L^{2}(\mathbb{R}^{d},\mathbb{C}^{n}) such that {(I+itD)1;t{0}}\{(I+itD)^{-1};t\in\mathbb{R}\setminus\{0\}\} has L2L2L^{2}-L^{2} off diagonal bounds of order M>d2M>\frac{d}{2}. Suppose that DD has a bounded HH^{\infty} functional calculus of angle ω(θ,μ)\omega\in(\theta,\mu) on L2L^{2}. Then for p[1,)p\in[1,\infty) and non-degenerate ψΨ(Σμ0)\psi\in\Psi(\Sigma^{0}_{\mu}), the Hardy space HD,ψp(d,n)H^{p}_{D,\psi}(\mathbb{R}^{d},\mathbb{C}^{n}) associated with DD and ψ\psi is defined as the completion of the space

{u2(D)¯:𝒬ψuTp,2(+d+1,n)}\{u\in\overline{\mathcal{R}_{2}(D)}:\mathcal{Q}_{\psi}u\in T^{p,2}(\mathbb{R}_{+}^{d+1},\mathbb{C}^{n})\}

with respect to the norm

uHD,ψp:=𝒬ψuTp,2||u||_{H^{p}_{D,\psi}}:=||\mathcal{Q}_{\psi}u||_{T^{p,2}}

where 𝒬ψu(x,t):=ψ(tD)u(x), for uL2(d,n) and t>0\mathcal{Q}_{\psi}u(x,t):=\psi(tD)u(x),\text{ for }u\in L^{2}(\mathbb{R}^{d},\mathbb{C}^{n})\text{ and }t>0.

Theorem 2.1 (Theorem 7.10, [18]).

Recall that DD is bisectorial here. Let ϵ>0\epsilon>0. Let p(1,2]p\in(1,2] and ϕ,ψΨϵd2+ϵ(Σμ0)\phi,\psi\in\Psi_{\epsilon}^{\frac{d}{2}+\epsilon}(\Sigma_{\mu}^{0}), or p[2,)p\in[2,\infty) and ϕ,ψΨd2+ϵϵ(Σμ0)\phi,\psi\in\Psi_{\frac{d}{2}+\epsilon}^{\epsilon}(\Sigma^{0}_{\mu}), where μ>θ\mu>\theta and both ϕ\phi and ψ\psi are non-degenerate. Then,

  • (1)

    HD,ϕp(d,n)=HD,ψp(d,n)=:HDp(d,n)H^{p}_{D,\phi}(\mathbb{R}^{d},\mathbb{C}^{n})=H^{p}_{D,\psi}(\mathbb{R}^{d},\mathbb{C}^{n})=:H^{p}_{D}(\mathbb{R}^{d},\mathbb{C}^{n});

  • (2)

    For all uΨ(Σμ0)u\in\Psi(\Sigma^{0}_{\mu}) and all uHDp(d,n)u\in H^{p}_{D}(\mathbb{R}^{d},\mathbb{C}^{n}), we have

    ||(t,x)ψ(tD)f(D)u(x)||Tp,2||f||||u||HDp.||(t,x)\mapsto\psi(tD)f(D)u(x)||_{T^{p,2}}\lesssim||f||_{\infty}||u||_{H^{p}_{D}}.

In particular, DD has a bounded HH^{\infty} functional calculus on HDp(d,n).H^{p}_{D}(\mathbb{R}^{d},\mathbb{C}^{n}).

Definition 6 (RR-boundedness).

Let 𝒯\mathcal{T} be a subset of B(X,Y)B(X,Y) where XX and YY are Banach spaces. We say that 𝒯\mathcal{T} is R-bounded if there exists a C<C<\infty such that

𝔼k=1nϵkTkxkC𝔼k=1nϵkxk\mathbb{E}\bigg{|}\bigg{|}\sum_{k=1}^{n}\epsilon_{k}T_{k}x_{k}\bigg{|}\bigg{|}\leq C\mathbb{E}\bigg{|}\bigg{|}\sum_{k=1}^{n}\epsilon_{k}x_{k}\bigg{|}\bigg{|}

for any n,T1,T2,,Tn𝒯n\in\mathbb{N},\;T_{1},T_{2},...,T_{n}\in\mathcal{T} and x1,x2,,xnXx_{1},x_{2},...,x_{n}\in X. The smallest admissible constant is denoted by (𝒯)\mathscr{R}(\mathcal{T}). The Rademacher sequence (ϵk)k(\epsilon_{k})_{k} is i.i.d., and satisfies P(ϵk=1)=P(ϵk=1)=12P(\epsilon_{k}=1)=P(\epsilon_{k}=-1)=\frac{1}{2}.

Definition 7 (RsR_{s}-boundedness).

Let s[1,]s\in[1,\infty]. A subset 𝒯\mathcal{T} of bounded (sub)linear operators on Lp(Ω)L^{p}(\Omega) is called RsR_{s}-bounded in Lp(Ω)L^{p}(\Omega) if there exists a constant C>0C>0 such that for all finite families (Tk)(T_{k}) in 𝒯\mathcal{T} and (fk)(f_{k}) in Lp(Ω)L^{p}(\Omega), we have

(k|Tkfk|s)1sp\displaystyle\big{|}\big{|}\big{(}\sum_{k}|T_{k}f_{k}|^{s}\big{)}^{\frac{1}{s}}\big{|}\big{|}_{p} C(k|fk|s)1sp,if 1s<\displaystyle\leq C\big{|}\big{|}\big{(}\sum_{k}|f_{k}|^{s}\big{)}^{\frac{1}{s}}\big{|}\big{|}_{p},\;\text{if }1\leq s<\infty
supk|Tkfk|p\displaystyle||\sup_{k}|T_{k}f_{k}|\;||_{p} Csupk|fk|p,if s=.\displaystyle\leq C||\sup_{k}|f_{k}|\;||_{p},\;\text{if }s=\infty.

The infimum of all such CC is denoted by s(𝒯;Lp)\mathscr{R}_{s}(\mathcal{T};L^{p}).

Note: For s=2s=2, RsR_{s}-boundedness is RR-boundedness.

Theorem 2.2 (Theorem 2.2, [22]).

Let (Ω,N,||)(\Omega,N,|\cdot|) be a space of homogeneous type such that B(x,λρ)cΩλN|B(x,ρ)|B(x,\lambda\rho)\leq c_{\Omega}\lambda^{N}|B(x,\rho)|, ρ>0,λ1,xΩ.\rho>0,\lambda\geq 1,x\in\Omega. Let 1pq1\leq p\leq q\leq\infty, and assume that (S(t))tτ(S(t))_{t\in\tau} is a family of linear operators on LpLqL^{p}\cap L^{q} such that

1B(x,ρ(t))S(t)1A(x,ρ(t),k)pq|B(x,ρ(t))|(1p1q)h(k),tτ,xΩ,k0,||1_{B(x,\rho(t))}S(t)1_{A(x,\rho(t),k)}||_{p\to q}\leq|B(x,\rho(t))|^{-(\frac{1}{p}-\frac{1}{q})}h(k),\;t\in\tau,x\in\Omega,k\in\mathbb{N}_{0},

where ρ:τ(0,)\rho:\tau\to(0,\infty) is a function and the sequence (h(k))k0(h(k))_{k\in\mathbb{N}_{0}} satisfies h(k)cδ(k+1)δh(k)\leq c_{\delta}(k+1)^{-\delta} for some δ>dp+1p\delta>\frac{d}{p}+\frac{1}{p^{\prime}}. Then we have

{S(t):tτ} is Rs- bounded in Lr(Ω)\{S(t):t\in\tau\}\text{ is }R_{s}\text{- bounded in }L^{r}(\Omega)

for all (r,s)(p,q)×[p,q]{(p,p),(q,q)}(r,s)\in(p,q)\times[p,q]\cup\{(p,p),(q,q)\}.

We shall now briefly introduce the Hörmander functional calculus and the result on it given by Kriegler and Weis in [21].

The classical spectral multiplier theorem of Mikhlin- Hörmander shows that if ff is a bounded function defined on (0,)(0,\infty) and u(f)=f(Δ)u(f)=f(-\Delta) is an operator on Lp(d)L^{p}(\mathbb{R}^{d}) defined as [u(f)g](ξ)=f(|ξ|2)[g](ξ)\mathcal{F}[u(f)g](\xi)=f(|\xi|^{2})\mathcal{F}[g](\xi), then u(f)u(f) is bounded on Lp(d)L^{p}(\mathbb{R}^{d}) for p(1,)p\in(1,\infty) provided ff satisfies

(2.1) supR>0R/22R|tk(ddt)(k)f(t)|2dtt<(k=0,1,,α),α=d/2.\underset{R>0}{\sup}\int_{R/2}^{2R}\Big{|}t^{k}\Big{(}\frac{d}{dt}\Big{)}^{(k)}f(t)\Big{|}^{2}\frac{dt}{t}<\infty\;\;\;(k=0,1,...,\alpha),\;\alpha=\left\lceil d/2\right\rceil.

Let us denote by 2α\mathcal{H}^{\alpha}_{2} the “Hörmander class” of all functions ff satisfying (2.1). Then by the above Fourier multiplier theorem

f2αf(Δ)B(Lp(d)).f\in\mathcal{H}^{\alpha}_{2}\mapsto f(-\Delta)\in B(L^{p}(\mathbb{R}^{d})).

Let α>12\alpha>\frac{1}{2}. We can also define the 2α\mathcal{H}^{\alpha}_{2} class as

2α={fLloc2(+):||f||2α=supt>0||ϕf(t)||W2α()<},\mathcal{H}^{\alpha}_{2}=\{f\in L^{2}_{loc}(\mathbb{R}_{+}):||f||_{\mathcal{H}^{\alpha}_{2}}=\underset{t>0}{\sup}||\phi f(t\cdot)||_{W^{\alpha}_{2}(\mathbb{R})}<\infty\},

where ϕ\phi is a non-zero Cc(0,)C_{c}^{\infty}(0,\infty) function (different choices resulting in equivalent norms) and W2α()W^{\alpha}_{2}(\mathbb{R}) stands for the usual Sobolev space. We say that an operator DD defined on a Banach space XX has a Hörmander calculus if for some θ(0,π)\theta\in(0,\pi) and any fH(Σθ)f\in H^{\infty}(\Sigma_{\theta})

f(D)B(X)f2α.||f(D)||_{B(X)}\lesssim||f||_{\mathcal{H}^{\alpha}_{2}}.
Theorem 2.3 (Theorem 1.1, [21]).

Let AA be a 0-sectorial operator on a space Lp(U),1<p<L^{p}(U),1<p<\infty, where UU is an open subset of d\mathbb{R}^{d}. Suppose further that AA has a bounded H(Σθ)H^{\infty}(\Sigma_{\theta}) calculus for some θ(0,π2)\theta\in(0,\frac{\pi}{2}). Then R-boundedness of the set

(S)α:={(π2|θ|)αexp(teiθA):t>0,θ(π2,π2)}(S)_{\alpha}:=\bigg{\{}\bigg{(}\frac{\pi}{2}-|\theta|\bigg{)}^{\alpha}\exp(-te^{i\theta}A):t>0,\theta\in\bigg{(}\frac{-\pi}{2},\frac{\pi}{2}\bigg{)}\bigg{\}}

implies that AA has an R-bounded 2γ\mathcal{H}^{\gamma}_{2} calculus for γ>α+12\gamma>\alpha+\frac{1}{2}, that is, the set

{f(A):f2γ1} is R-bounded.\Big{\{}f(A):||f||_{\mathcal{H}^{\gamma}_{2}}\leq 1\Big{\}}\;\text{ is R-bounded}.

As a specific case of a first order differential operator we have considered perturbed Hodge-Dirac operators of the form ΠB=Γ+ΓB=Γ+B1ΓB2\Pi_{B}=\Gamma+\Gamma^{*}_{B}=\Gamma+B_{1}\Gamma^{*}B_{2}, where Π=Γ+Γ\Pi=\Gamma+\Gamma^{*} is a Hodge-Dirac operator. One simple example of it is given by taking a 2×22\times 2 matrix Π=(0div0)\Pi=\begin{pmatrix}0&-div\\ \nabla&0\end{pmatrix} defined on L2(d;)L2(d;n)L^{2}(\mathbb{R}^{d};\mathbb{C})\oplus L^{2}(\mathbb{R}^{d};\mathbb{C}^{n}) where, Γ=(0div00)\Gamma=\begin{pmatrix}0&-div\\ 0&0\end{pmatrix} and Γ=(000)\Gamma^{*}=\begin{pmatrix}0&0\\ \nabla&0\end{pmatrix} . The type of ΠB\Pi_{B} we need on L2(d;n)L^{2}(\mathbb{R}^{d};\mathbb{C}^{n}) is defined and explained below. We refer to the papers [5, 17, 12] for more details on this operator. See Corollary 3.2.1 and Corollary 3.3.1 for results on it.

Definition 8 (Perturbed Hodge-Dirac operators).

A perturbed Hodge-Dirac operator defined on L2(d;n)L^{2}(\mathbb{R}^{d};\mathbb{C}^{n}) is an operator of the form

ΠB:=Γ+ΓB:=Γ+B1ΓB2,\Pi_{B}:=\Gamma+\Gamma_{B}^{*}:=\Gamma+B_{1}\Gamma^{*}B_{2},

where Π=Γ+Γ\Pi=\Gamma+\Gamma^{*} is a Hodge-Dirac operator with constant coefficients, and B1,B2B_{1},B_{2} are multiplication operators by L(d,B(n))L^{\infty}(\mathbb{R}^{d},B(\mathbb{C}^{n})) functions which satisfy

ΓB2B1Γ\displaystyle\Gamma^{*}B_{2}B_{1}\Gamma^{*} =0, in the sense that 2(B2B1Γ)𝒩2(Γ);\displaystyle=0,\text{ in the sense that }\mathcal{R}_{2}(B_{2}B_{1}\Gamma^{*})\subset\mathcal{N}_{2}(\Gamma^{*});
ΓB1B2Γ\displaystyle\Gamma B_{1}B_{2}\Gamma =0, in the sense that 2(B1B2Γ)𝒩2(Γ);\displaystyle=0,\text{ in the sense that }\mathcal{R}_{2}(B_{1}B_{2}\Gamma)\subset\mathcal{N}_{2}(\Gamma);
Re(B1Γu,Γu)\displaystyle Re(B_{1}\Gamma^{*}u,\Gamma^{*}u) κ1Γu22,u𝒟2(Γ), and\displaystyle\geq\kappa_{1}||\Gamma^{*}u||_{2}^{2},\;\forall u\in\mathcal{D}_{2}(\Gamma^{*}),\text{ and }
Re(B2Γu,Γu)\displaystyle Re(B_{2}\Gamma u,\Gamma u) κ2Γu22,u𝒟2(Γ)\displaystyle\geq\kappa_{2}||\Gamma u||_{2}^{2},\;\forall u\in\mathcal{D}_{2}(\Gamma)

for some κ1,κ2>0.\kappa_{1},\kappa_{2}>0.

Such operators satisfy the following invertibility properties, where 1p+1p=1\frac{1}{p}+\frac{1}{p^{\prime}}=1

(ΠB(p))upCpB1upup(Γ)¯ and vpCpB2vpvp(Γ)¯(\Pi_{B}(p))\;\;\;\;||u||_{p}\leq C_{p}||B_{1}u||_{p}\;\forall u\in\overline{\mathcal{R}_{p}(\Gamma^{*})}\;\text{ and }\;||v||_{p^{\prime}}\leq C_{p^{\prime}}||B_{2}^{*}v||_{p^{\prime}}\;\forall v\in\overline{\mathcal{R}_{p^{\prime}}(\Gamma)}

when p=2p=2. A perturbed Hodge-Dirac operator ΠB\Pi_{B} Hodge decomposes Lp(d;n)L^{p}(\mathbb{R}^{d};\mathbb{C}^{n}) for some p(1,)p\in(1,\infty), if (ΠB(p))(\Pi_{B}(p)) holds and there is a splitting into complemented subspaces

Lp(d;n)=𝒩p(ΠB)p(ΠB)¯=𝒩p(ΠB)p(Γ)¯p(Γ)¯.L^{p}(\mathbb{R}^{d};\mathbb{C}^{n})=\mathcal{N}_{p}(\Pi_{B})\oplus\overline{\mathcal{R}_{p}(\Pi_{B})}=\mathcal{N}_{p}(\Pi_{B})\oplus\overline{\mathcal{R}_{p}(\Gamma)}\oplus\overline{\mathcal{R}_{p}(\Gamma^{*})}.

It is proved in (Proposition 2.2,[5]) for p=2p=2. Here we consider the open interval (pH,pH)(p_{H},p^{H}), where 1pH<2<pH1\leq p_{H}<2<p^{H}\leq\infty (see Proposition 2.17,[12]) on which ΠB\Pi_{B} Hodge decomposes LpL^{p}. Such pH<2<pHp_{H}<2<p^{H} always exist.

One of the important and very useful results that Frey, McIntosh and Portal have obtained in [12] is that the Hardy space HΠBpH^{p}_{\Pi_{B}} associated with the perturbed Hodge-Dirac operator ΠB\Pi_{B} coincides with the LpL^{p} closure of the p(ΠB)\mathcal{R}_{p}(\Pi_{B}) whenever p(pH,pH)p\in(p_{H},p^{H}).

3. Main Results

The following lemma is very useful in proving our first theorem. It can be seen that the idea to have an assumption on the resolvent operator, to be bounded from LpLpL^{p_{*}}-L^{p}, in this lemma comes from [Lemma 7.1, [12]] for the operator ΠB\Pi_{B}.

Lemma 3.

Let DD be a self-adjoint operator on L2(d;n)L^{2}(\mathbb{R}^{d};\mathbb{C}^{n}) and suppose that (I+D2)1/2B(Lp,Lp)(I+D^{2})^{-1/2}\in B(L^{p_{*}},L^{p}) for all p(1,2]p\in(1,2]. Let k=d(1p12)k=d\big{(}\frac{1}{p}-\frac{1}{2}\big{)}, then (I+D2)k/2B(Lp,L2)(I+D^{2})^{-k/2}\in B(L^{p},L^{2}).

Proof.

Let T=I+D2T=I+D^{2}. By hypothesis we have T(1+is)2B(L2,L2)<||T^{\frac{-(1+is)}{2}}||_{B(L^{2_{*}},L^{2})}<\infty and Tis2B(L2,L2)||T^{\frac{-is}{2}}||_{B(L^{2},L^{2})} <<\infty. Thus, by applying Stein’s Interpolation Theorem (Theorem 1, [26]) we obtain that Tk/2B(Lq,L2)<||T^{-k/2}||_{B(L^{q},L^{2})}<\infty for k=d(1q12)k=d(\frac{1}{q}-\frac{1}{2}) where q[2,2]q\in[2_{*},2]. Now notice that T(1+is)B(L2,L2)||T^{-(1+is)}||_{B(L^{2_{**}},L^{2})} <<\infty and TisB(L2,L2)<||T^{-is}||_{B(L^{2},L^{2})}<\infty for all ss\in\mathbb{R}. Again applying Stein’s interpolation theorem we obtain TkB(Lr,L2)<||T^{-k^{\prime}}||_{B(L^{r},L^{2})}<\infty where k=d2(1r12)k^{\prime}=\frac{d}{2}(\frac{1}{r}-\frac{1}{2}) for r[2,2]r\in[2_{**},2]. Replacing kk^{\prime} by k/2k/2 we obtain that Tk/2B(Lr,L2)<||T^{-k/2}||_{B(L^{r},L^{2})}<\infty for k=d(1r12)k=d(\frac{1}{r}-\frac{1}{2}). By induction, we obtain that for any p[2()m,2]p\in[2_{(*)m},2] where 2()m>12_{(*)m}>1 for some mm and k=d(1p12)k=d(\frac{1}{p}-\frac{1}{2}) we have Tk/2B(Lp,L2)<||T^{-k/2}||_{B(L^{p},L^{2})}<\infty. Thus for a given p(1,2]p\in(1,2] there exists a q>pq>p such that q=pq_{*}=p and there exists an mm\in\mathbb{N} such that 2()m+1<q2()m2_{(*){m+1}}<q_{*}\leq 2_{(*)m}. Hence, by the above argument for k=d(1p12)k=d(\frac{1}{p}-\frac{1}{2}) we have Tk/2B(Lp,L2)<||T^{-k/2}||_{B(L^{p},L^{2})}<\infty. ∎

Theorem 3.1.

Let DD be a self-adjoint operator on L2(d;n)L^{2}(\mathbb{R}^{d};\mathbb{C}^{n}) and let the C0C_{0}-group (eiξD)ξ(e^{i\xi D})_{\xi\in\mathbb{R}} generated by iDiD have finite speed of propagation. Suppose also that for all q(1,2]q\in(1,2],  (I+D2)1/2B(Lq,Lq)(I+D^{2})^{-1/2}\in B(L^{q_{*}},L^{q}), such that q>1q_{*}>1. Let p(1,)p\in(1,\infty), then for all aCc()a\in C_{c}^{\infty}(\mathbb{R}), β=d|1p12|+1\beta=d\big{|}\frac{1}{p}-\frac{1}{2}\big{|}+1 and for any positive integer M>1+dp2M>1+d\cdot\frac{p^{\prime}}{2} where 1p+1p=1\frac{1}{p}+\frac{1}{p^{\prime}}=1 we have,

(3.1) ||a(D)||B(Lp)j=0M||{(1+||2)β/2(dd())(j)a()}||.||a(D)||_{B(L^{p})}\lesssim\sum_{j=0}^{M}\bigg{|}\bigg{|}\mathcal{F}\big{\{}(1+|\cdot|^{2})^{\beta/2}\bigg{(}\frac{d}{d(\cdot)}\bigg{)}^{(j)}a(\cdot)\big{\}}\bigg{|}\bigg{|}_{\infty}.
Proof.

Let q(1,2)q\in(1,2). To prove the LpL^{p} boundedness (for all p(1,)p\in(1,\infty)) of the operator a(D)a(D) for all aCc()a\in C_{c}^{\infty}(\mathbb{R}) we shall start with the operator b(D)(I+D2)k2b(D)(I+D^{2})^{-\frac{k}{2}} for bCc()b\in C_{c}^{\infty}(\mathbb{R}), where k=d(1q12)k=d(\frac{1}{q}-\frac{1}{2}).

Now for uLq(d)u\in L^{q}(\mathbb{R}^{d}), consider b(D)(I+D2)k2u2||b(D)(I+D^{2})^{-\frac{k}{2}}u||_{2}

=b^(ξ)exp(iξD)(I+D2)k2u𝑑ξ2, (by Phillips calculus)\displaystyle=\Big{|}\Big{|}\int_{\mathbb{R}}\hat{b}(\xi)\exp(i\xi D)(I+D^{2})^{-\frac{k}{2}}ud\xi\Big{|}\Big{|}_{2},\text{ (by Phillips calculus) }
|b^(ξ)|exp(iξD)(I+D2)k2u2𝑑ξ\displaystyle\lesssim\int_{\mathbb{R}}|\hat{b}(\xi)|\;||\exp(i\xi D)(I+D^{2})^{-\frac{k}{2}}u||_{2}d\xi
|b^(ξ)|||(I+D2)k2u||2dξ (by uniform boundedness of exp(iξD) on L2)\displaystyle\lesssim\int_{\mathbb{R}}|\hat{b}(\xi)|\;||(I+D^{2})^{-\frac{k}{2}}u||_{2}d\xi\;\text{ (by uniform boundedness of }\exp(i\xi D)\text{ on }L^{2})
uqb^L1 (by Lemma 3)\displaystyle\lesssim||u||_{q}||\hat{b}||_{L^{1}}\text{ (by Lemma \ref{Lem3})}
||u||q||(1+||)2b^||\displaystyle\lesssim||u||_{q}||(1+|\cdot|)^{2}\hat{b}||_{\infty}
uqj=02{(dd())(j)b()}\displaystyle\lesssim||u||_{q}\sum_{j=0}^{2}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}\bigg{(}\frac{d}{d(\cdot)}\bigg{)}^{(j)}b(\cdot)\bigg{\}}\bigg{|}\bigg{|}_{\infty}
||u||qj=02||{(dd())(j)b~()}|| (where b~(x)=b(x)(1+x2)1/2).\displaystyle\lesssim||u||_{q}\sum_{j=0}^{2}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}\bigg{(}\frac{d}{d(\cdot)}\bigg{)}^{(j)}\tilde{b}(\cdot)\bigg{\}}\bigg{|}\bigg{|}_{\infty}\text{ (where }\tilde{b}(x)=b(x)(1+x^{2})^{1/2}).

The reason behind writing in terms of b~(x)\tilde{b}(x) can be seen later. We shall now see that the operator b(D)(I+D2)k2b(D)(I+D^{2})^{-\frac{k}{2}} is L2L2L^{2}-L^{2} off diagonal bounded for any k>0k>0, in particular for kk as above.

Let EE and FF be two Borel subsets of d\mathbb{R}^{d} and uL2(d)u\in L^{2}(\mathbb{R}^{d}). Consider

1Eb(D)(I+D2)k21Fu2=1Ebk(D)1Fu2\displaystyle||1_{E}b(D)(I+D^{2})^{-\frac{k}{2}}1_{F}u||_{2}=||1_{E}b_{k}(D)1_{F}u||_{2}

where bk(D)=b(D)(I+D2)k2b_{k}(D)=b(D)(I+D^{2})^{-\frac{k}{2}}. We will now obtain the bound using the Phillips calculus. Since the group generated by iDiD has finite speed of propagation, therefore for arbitrary Borel set E,FdE,F\subseteq\mathbb{R}^{d} there exists c>0c>0 (independent of E,FE,F and ξ\xi) such that

1Eexp(iξD)1F=0, if d(E,F)|ξ|c.1_{E}\exp(i\xi D)1_{F}=0,\text{ if }\frac{d(E,F)}{|\xi|}\geq c.\\

For any closed cubes E,Fd,E,F\subseteq\mathbb{R}^{d}, and uL2(d;n)u\in L^{2}(\mathbb{R}^{d};\mathbb{C}^{n}) such that uu is supported in FF consider 1Ebk(D)1Fu2||1_{E}b_{k}(D)1_{F}u||_{2}

=b^k(ξ)1Eexp(iξD)1Fu𝑑ξ2\displaystyle=\bigg{|}\bigg{|}\int_{\mathbb{R}}\hat{b}_{k}(\xi)1_{E}\exp(i\xi D)1_{F}ud\xi\bigg{|}\bigg{|}_{2}
d(E,F)c|b^k(ξ)|𝑑ξ1Fu2+d(E,F)c|b^k(ξ)|𝑑ξ1Fu2\displaystyle\lesssim\int_{-\infty}^{-\frac{d(E,F)}{c}}|\hat{b}_{k}(\xi)|d\xi||1_{F}u||_{2}+\int_{\frac{d(E,F)}{c}}^{\infty}|\hat{b}_{k}(\xi)|d\xi||1_{F}u||_{2}
d(E,F)c|(1+c|ξ|)Mb^k(ξ)|dξ(1+c|ξ|)M||1Fu||2, for all M>1\displaystyle\lesssim\int_{\frac{d(E,F)}{c}}^{\infty}|(1+c|\xi|)^{M}\hat{b}_{k}(\xi)|\frac{d\xi}{(1+c|\xi|)^{M}}||1_{F}u||_{2},\text{ for all }M>1
||(1+c||)Mb^k||d(E,F)cdξ(1+c|ξ|)M||1Fu||2\displaystyle\lesssim\big{|}\big{|}(1+c|\cdot|)^{M}\hat{b}_{k}\big{|}\big{|}_{\infty}\int_{\frac{d(E,F)}{c}}^{\infty}\frac{d\xi}{(1+c|\xi|)^{M}}||1_{F}u||_{2}
||(1+c||)Mb^k||(1+d(E,F))M+1||1Fu||2\displaystyle\lesssim\big{|}\big{|}(1+c|\cdot|)^{M}\hat{b}_{k}\big{|}\big{|}_{\infty}(1+d(E,F))^{-M+1}||1_{F}u||_{2}
j=0M{(dd())(j)bk()}(1+d(E,F))M+11Fu2\displaystyle\lesssim\sum_{j=0}^{M}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}\Big{(}\frac{d}{d(\cdot)}\Big{)}^{(j)}b_{k}(\cdot)\bigg{\}}\bigg{|}\bigg{|}_{\infty}(1+d(E,F))^{-M+1}||1_{F}u||_{2}
j=0M{(dd())(j)[b~()(1+()2)(k+12)]}(1+d(E,F))M+11Fu2,\displaystyle\lesssim\sum_{j=0}^{M}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}\Big{(}\frac{d}{d(\cdot)}\Big{)}^{(j)}\bigg{[}\tilde{b}(\cdot)(1+(\cdot)^{2})^{-(\frac{k+1}{2})}\bigg{]}\bigg{\}}\bigg{|}\bigg{|}_{\infty}(1+d(E,F))^{-M+1}||1_{F}u||_{2},
j=0M{(dd())(j)b~()(l=0Mj(dd())(l)(1+()2)(k+12))}\displaystyle\simeq\sum_{j=0}^{M}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}\Big{(}\frac{d}{d(\cdot)}\Big{)}^{(j)}\tilde{b}(\cdot)\bigg{(}\sum_{l=0}^{M-j}\bigg{(}\frac{d}{d(\cdot)}\bigg{)}^{(l)}(1+(\cdot)^{2})^{-(\frac{k+1}{2})}\bigg{)}\bigg{\}}\bigg{|}\bigg{|}_{\infty}
(1+d(E,F))M+11Fu2\displaystyle\hskip 42.67912pt(1+d(E,F))^{-M+1}||1_{F}u||_{2}
j=0Ml=0Mj{(dd())(j)b~()}{(dd())(l)gk}(1+d(E,F))M+11Fu2\displaystyle\lesssim\sum_{j=0}^{M}\sum_{l=0}^{M-j}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}\Big{(}\frac{d}{d(\cdot)}\Big{)}^{(j)}\tilde{b}(\cdot)\bigg{\}}*\mathcal{F}\bigg{\{}\bigg{(}\frac{d}{d(\cdot)}\bigg{)}^{(l)}g_{k}\bigg{\}}\bigg{|}\bigg{|}_{\infty}(1+d(E,F))^{-M+1}||1_{F}u||_{2}
 where gk(x)=(1+x2)(k+12)\displaystyle\;\;\;\;\text{ where }g_{k}(x)=(1+x^{2})^{-(\frac{k+1}{2})}
j=0Ml=0Mj{(dd())(j)b~()}{(dd())(l)gk}L1(1+d(E,F))M+11Fu2.\displaystyle\lesssim\sum_{j=0}^{M}\sum_{l=0}^{M-j}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}\Big{(}\frac{d}{d(\cdot)}\Big{)}^{(j)}\tilde{b}(\cdot)\bigg{\}}\bigg{|}\bigg{|}_{\infty}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}\bigg{(}\frac{d}{d(\cdot)}\bigg{)}^{(l)}g_{k}\bigg{\}}\bigg{|}\bigg{|}_{L^{1}}(1+d(E,F))^{-M+1}||1_{F}u||_{2}.

Thus,

1Eb(D)(I+D2)k21Fu2\displaystyle\big{|}\big{|}1_{E}b(D)(I+D^{2})^{-\frac{k}{2}}1_{F}u\big{|}\big{|}_{2}\lesssim j=0M{(dd())(j)b~()}(1+d(E,F))M+11Fu2,M>1\displaystyle\sum_{j=0}^{M}\Big{|}\Big{|}\mathcal{F}\Big{\{}\Big{(}\frac{d}{d(\cdot)}\Big{)}^{(j)}\tilde{b}(\cdot)\Big{\}}\Big{|}\Big{|}_{\infty}(1+d(E,F))^{-M+1}||1_{F}u||_{2},\;\forall M>1

where, by simple computation, for all 0lM0\leq l\leq M we have

{(dd())(l)gk}L1\displaystyle\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}\bigg{(}\frac{d}{d(\cdot)}\bigg{)}^{(l)}g_{k}\bigg{\}}\bigg{|}\bigg{|}_{L^{1}} =||(1+||)1(1+||){(dd())(l)gk}||L1\displaystyle=\bigg{|}\bigg{|}(1+|\cdot|)^{-1}(1+|\cdot|)\mathcal{F}\bigg{\{}\bigg{(}\frac{d}{d(\cdot)}\bigg{)}^{(l)}g_{k}\bigg{\}}\bigg{|}\bigg{|}_{L^{1}}
||(1+||)1||2||(1+||){(dd())(l)gk}||2\displaystyle\leq||(1+|\cdot|)^{-1}||_{2}\bigg{|}\bigg{|}(1+|\cdot|)\mathcal{F}\bigg{\{}\bigg{(}\frac{d}{d(\cdot)}\bigg{)}^{(l)}g_{k}\bigg{\}}\bigg{|}\bigg{|}_{2}
(dd())(l)gk2+(dd())(l+1)gk2<.\displaystyle\lesssim\bigg{|}\bigg{|}\bigg{(}\frac{d}{d(\cdot)}\bigg{)}^{(l)}g_{k}\bigg{|}\bigg{|}_{2}+\bigg{|}\bigg{|}\bigg{(}\frac{d}{d(\cdot)}\bigg{)}^{(l+1)}g_{k}\bigg{|}\bigg{|}_{2}<\infty.

By applying Riesz-Thorin Interpolation theorem (Theorem 2.1, [27]) on the operator b(D)(I+D2)k2b(D)(I+D^{2})^{-\frac{k}{2}} we obtain the following off- diagonal bound from LpL^{p} to L2L^{2}

1Eb(D)(I+D2)k21Fu2\displaystyle||1_{E}b(D)(I+D^{2})^{-\frac{k}{2}}1_{F}u||_{2}\lesssim j=0M{(dd())(j)b~()}\displaystyle\sum_{j=0}^{M}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}\Big{(}\frac{d}{d(\cdot)}\Big{)}^{(j)}\tilde{b}(\cdot)\bigg{\}}\bigg{|}\bigg{|}_{\infty}
(1+d(E,F))(M1)α1Fup\displaystyle\;\;\;(1+d(E,F))^{-(M-1)\alpha}||1_{F}u||_{p}

for p[q,2]p\in[q,2] and all M>1+dαM>1+\frac{d}{\alpha}, where α\alpha satisfies 1p=1αq+α2\frac{1}{p}=\frac{1-\alpha}{q}+\frac{\alpha}{2} or α=(1q12)1(1q1p)\alpha=(\frac{1}{q}-\frac{1}{2})^{-1}\big{(}\frac{1}{q}-\frac{1}{p}\big{)}. Since q(1,2)q\in(1,2) is any arbitrary number so in the limiting case when qq approaches 1, we can say that the operator b(D)(I+D2)k2b(D)(I+D^{2})^{-\frac{k}{2}} has LpL2L^{p}-L^{2} off-diagonal bound of order >1>1 if M>1+dp2M>1+d\cdot\frac{p^{\prime}}{2} for p(1,2]p\in(1,2] where 1p+1p=1\frac{1}{p}+\frac{1}{p^{\prime}}=1.

Let a(x)=b(x)(1+x2)k2\displaystyle a(x)=b(x)(1+x^{2})^{-\frac{k}{2}} then

1Ea(D)1Fu2\displaystyle\big{|}\big{|}1_{E}a(D)1_{F}u\big{|}\big{|}_{2} =j=0M{(dd())(j)[a()(1+()2)k+12]}(1+d(E,F))(M1)α1Fup\displaystyle=\sum_{j=0}^{M}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}\Big{(}\frac{d}{d(\cdot)}\Big{)}^{(j)}\bigg{[}a(\cdot)(1+(\cdot)^{2})^{\frac{k+1}{2}}\bigg{]}\bigg{\}}\bigg{|}\bigg{|}_{\infty}(1+d(E,F))^{-(M-1)\alpha}||1_{F}u||_{p}
j=0Ml=0Mj||{(1+||2)(k+1)2[(dd())(j)a()][Pl()(1+()2)l]}||\displaystyle\lesssim\sum_{j=0}^{M}\sum_{l=0}^{M-j}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}(1+|\cdot|^{2})^{\frac{(k+1)}{2}}\bigg{[}\Big{(}\frac{d}{d(\cdot)}\Big{)}^{(j)}a(\cdot)\bigg{]}\bigg{[}\frac{P_{l}(\cdot)}{(1+(\cdot)^{2})^{l}}\bigg{]}\bigg{\}}\bigg{|}\bigg{|}_{\infty}
(1+d(E,F))(M1)α1Fup (where Pl(x) is a polynomial of degree<2l,\displaystyle\;\;\;\;\;(1+d(E,F))^{-(M-1)\alpha}||1_{F}u||_{p}\text{ (where }P_{l}(x)\text{ is a polynomial of degree}<2l,
and is obtained by taking lth derivative of (1+x2)k+12)\displaystyle\text{ and is obtained by taking }l^{th}\text{ derivative of }(1+x^{2})^{\frac{k+1}{2}})
j=0Ml=0Mj||{(1+||2)k+12(dd())(j)a()}{Pl()(1+()2)l}||\displaystyle\lesssim\sum_{j=0}^{M}\sum_{l=0}^{M-j}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}(1+|\cdot|^{2})^{\frac{k+1}{2}}\Big{(}\frac{d}{d(\cdot)}\Big{)}^{(j)}a(\cdot)\bigg{\}}*\mathcal{F}\bigg{\{}\frac{P_{l}(\cdot)}{(1+(\cdot)^{2})^{l}}\bigg{\}}\bigg{|}\bigg{|}_{\infty}
(1+d(E,F))(M1)α1Fup\displaystyle\;\;\;\;\;(1+d(E,F))^{-(M-1)\alpha}||1_{F}u||_{p}
j=0Ml=0Mj||{(1+||2)β2(dd())(j)a()}||||{Pl()(1+()2)l}||L1\displaystyle\lesssim\sum_{j=0}^{M}\sum_{l=0}^{M-j}\bigg{|}\bigg{|}\mathcal{F}\Big{\{}(1+|\cdot|^{2})^{\frac{\beta}{2}}\Big{(}\frac{d}{d(\cdot)}\Big{)}^{(j)}a(\cdot)\Big{\}}\bigg{|}\bigg{|}_{\infty}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}\frac{P_{l}(\cdot)}{(1+(\cdot)^{2})^{l}}\bigg{\}}\bigg{|}\bigg{|}_{L^{1}}
(1+d(E,F))(M1)α1Fup\displaystyle\;\;\;\;\;(1+d(E,F))^{-(M-1)\alpha}||1_{F}u||_{p}
j=0M||{(1+||2)β2(dd())(j)a()}||(1+d(E,F))(M1)α||1Fu||p\displaystyle\lesssim\sum_{j=0}^{M}\bigg{|}\bigg{|}\mathcal{F}\Big{\{}(1+|\cdot|^{2})^{\frac{\beta}{2}}\Big{(}\frac{d}{d(\cdot)}\Big{)}^{(j)}a(\cdot)\Big{\}}\bigg{|}\bigg{|}_{\infty}(1+d(E,F))^{-(M-1)\alpha}||1_{F}u||_{p}

where β=k+1=d|1p12|+1\beta=k+1=d\big{|}\frac{1}{p}-\frac{1}{2}\big{|}+1. The L1L^{1} norm in the second last inequality is finite and can be computed in the same way as done for the functions gkg_{k}. Thus, applying Lemma 1 we obtain that for all p(1,2]p\in(1,2]

||a(D)||B(Lp)j=0M||{(1+||2)β2(dd())(j)a()}||.||a(D)||_{B(L^{p})}\lesssim\sum_{j=0}^{M}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}(1+|\cdot|^{2})^{\frac{\beta}{2}}\bigg{(}\frac{d}{d(\cdot)}\bigg{)}^{(j)}a(\cdot)\bigg{\}}\bigg{|}\bigg{|}_{\infty}.

The result for p[2,)p\in[2,\infty) follows by duality. ∎

It can be seen from the following remark that we could obtain similar functional calculus through a simple argument if we knew that the group we have is polynomially bounded.

Remark 1.

Let XX be an arbitrary Banach space and DD is an operator acting on XX. If the group generated by iDiD is polynomially bounded, say by a polynomial of order M>0M>0, then a bound on the Phillips calculus of the operator DD is given by

a(D)B(X)\displaystyle||a(D)||_{B(X)} =a^(ξ)exp(iξD)𝑑ξ\displaystyle=\bigg{|}\bigg{|}\int_{\mathbb{R}}\hat{a}(\xi)\exp(i\xi D)d\xi\bigg{|}\bigg{|}
=(1+|ξ|)Ma^(ξ)exp(iξD)(1+|ξ|)M𝑑ξ\displaystyle=\bigg{|}\bigg{|}\int_{\mathbb{R}}(1+|\xi|)^{M}\hat{a}(\xi)\frac{\exp(i\xi D)}{(1+|\xi|)^{M}}d\xi\bigg{|}\bigg{|}
||(1+||)Ma^||L1||ξexp(iξD)(1+|ξ|)M||L(B(X))\displaystyle\lesssim||(1+|\cdot|)^{M}\hat{a}||_{L^{1}}\bigg{|}\bigg{|}\xi\mapsto\frac{\exp(i\xi D)}{(1+|\xi|)^{M}}\bigg{|}\bigg{|}_{L^{\infty}(B(X))}
j=0M+2{(dd())(j)a()}\displaystyle\lesssim\sum_{j=0}^{M+2}\bigg{|}\bigg{|}\mathcal{F}\bigg{\{}\bigg{(}\frac{d}{d(\cdot)}\bigg{)}^{(j)}a(\cdot)\bigg{\}}\bigg{|}\bigg{|}_{\infty}

On HDpH_{D}^{p} instead of LpL^{p}, we now obtain a better bound without Sobolev embedding assumption.

Theorem 3.2.

Let 1<p<1<p<\infty and let DD be a self-adjoint operator on L2(d;n)L^{2}(\mathbb{R}^{d};\mathbb{C}^{n}). Suppose also that (eiξD)ξ(e^{i\xi D})_{\xi\in\mathbb{R}} has finite speed of propagation. Then for all aCc()a\in C_{c}^{\infty}(\mathbb{R}) and M>dmin(p,2)M>\frac{d}{\min(p,2)}

(3.2) ||a(D)||B(HDp)j=0M+1||η|η|j(ddη)(j)a(η)||.||a(D)||_{B(H^{p}_{D})}\lesssim\sum_{j=0}^{M+1}\bigg{|}\bigg{|}\eta\mapsto|\eta|^{j}\Big{(}\frac{d}{d\eta}\Big{)}^{(j)}a(\eta)\bigg{|}\bigg{|}_{\infty}.
Proof.

Let uL2(d,n)u\in L^{2}(\mathbb{R}^{d},\mathbb{C}^{n}). Fix M=dM=d and for p(1,)p\in(1,\infty) let ψΨd+1d+1(Σμ0)\psi\in\Psi_{d+1}^{d+1}(\Sigma_{\mu}^{0}) where μ(0,π/2)\mu\in(0,\pi/2). Consider a(D)uHDp||a(D)u||_{H^{p}_{D}}

=𝒬ψ(a(D)u)Tp,2(by definition [5])\displaystyle=||\mathcal{Q}_{\psi}(a(D)u)||_{T^{p,2}}\;(\text{by definition }[\ref{Def1}])
=||(x,t)ψ(tD)a(D)u(x)||Tp,2\displaystyle=||(x,t)\mapsto\psi(tD)a(D)u(x)||_{T^{p,2}}
(3.3) ||(x,t)a(D)ψ(tD)ψ(tD)u(x)||Tp,2\displaystyle\lesssim||(x,t)\mapsto a(D)\psi(tD)\psi(tD)u(x)||_{T^{p,2}}
(3.4) C(a)||(x,t)ψ(tD)u(x)||Tp,2\displaystyle\lesssim C(a)||(x,t)\mapsto\psi(tD)u(x)||_{T^{p,2}}

where C(a)C(a)(to be determined) is a constant that depends on aa and the inequality (3.4) holds by Lemma 2. For inequality (3.3), we see by Theorem 2.1 and its proof (Theorem 7.10, [18]) that we can replace ψ\psi by ψ2\psi^{2} as they belong to the same class. To obtain the constant C(a)C(a) we shall see that the operator (aψt)(D)(a\psi_{t})(D) has L2L2L^{2}-L^{2} off diagonal bound of order M>dmin{p,2}M>\frac{d}{\min\{p,2\}} where ψt(D)=ψ(tD)\psi_{t}(D)=\psi(tD). Since (eiξD)ξ(e^{i\xi D})_{\xi\in\mathbb{R}} has finite propagation speed therefore for arbitrary Borel sets E,FdE,F\subseteq\mathbb{R}^{d} there exists a c>0c>0 such that 1Eexp(iξD)1F=0,if d(E,F)|ξ|c1_{E}\exp(i\xi D)1_{F}=0,\;\text{if }\frac{d(E,F)}{|\xi|}\geq c. Let EE and FF be two Borel subsets of d\mathbb{R}^{d} and M=dM=d. Consider 1E(aψt)(D)1Fu2||1_{E}(a\psi_{t})(D)1_{F}u||_{2}

=aψt^(ξ)1Eexp(iξD)1Fu𝑑ξ2 (by Phillips calculus)\displaystyle=\bigg{|}\bigg{|}\int_{\mathbb{R}}\widehat{a\psi_{t}}(\xi)1_{E}\exp(i\xi D)1_{F}ud\xi\bigg{|}\bigg{|}_{2}\text{ (by Phillips calculus)}
||ξ(cξ)M+1aψt^(ξ)||d(E,F)cdξ(cξ)M+1||1Fu||2.\displaystyle\lesssim||\xi\mapsto(c\xi)^{M+1}\widehat{a\psi_{t}}(\xi)||_{\infty}\int_{\frac{d(E,F)}{c}}^{\infty}\frac{d\xi}{(c\xi)^{M+1}}||1_{F}u||_{2}.

Now consider ||ξ(cξ)M+1aψt^(ξ)||||\xi\mapsto(c\xi)^{M+1}\widehat{a\psi_{t}}(\xi)||_{\infty}

||ηdM+1dηM+1aψt(η)||L1\displaystyle\lesssim\Big{|}\Big{|}\eta\mapsto\frac{d^{M+1}}{d\eta^{M+1}}a\psi_{t}(\eta)\Big{|}\Big{|}_{L^{1}}
j=0M+1||η|η|j(ddη)(j)a(η)|||tM+1jψ(M+1j)(tη)dη|η|j|\displaystyle\lesssim\sum_{j=0}^{M+1}\Big{|}\Big{|}\eta\mapsto|\eta|^{j}\Big{(}\frac{d}{d\eta}\Big{)}^{(j)}a(\eta)\Big{|}\Big{|}_{\infty}\int_{\mathbb{R}}\Big{|}t^{M+1-j}\psi^{(M+1-j)}(t\eta)\frac{d\eta}{|\eta|^{j}}\Big{|}
j=0M+1||η|η|j(ddη)(j)a(η)|||t|M|ψ(M+1j)(tη)tdη(t|η|))j|\displaystyle\lesssim\sum_{j=0}^{M+1}\Big{|}\Big{|}\eta\mapsto|\eta|^{j}\Big{(}\frac{d}{d\eta}\Big{)}^{(j)}a(\eta)\Big{|}\Big{|}_{\infty}|t|^{M}\int_{\mathbb{R}}\Big{|}\psi^{(M+1-j)}(t\eta)\frac{td\eta}{(t|\eta|))^{j}}\Big{|}
j=0M+1||η|η|j(ddη)(j)a(η)|||t|M|ψ(M+1j)(η)dη(t|η|)j|\displaystyle\lesssim\sum_{j=0}^{M+1}\Big{|}\Big{|}\eta\mapsto|\eta|^{j}\Big{(}\frac{d}{d\eta}\Big{)}^{(j)}a(\eta)\Big{|}\Big{|}_{\infty}|t|^{M}\int_{\mathbb{R}}\Big{|}\psi^{(M+1-j)}(\eta)\frac{d\eta}{(t|\eta|)^{j}}\Big{|}
(by change of variables)
tMj=0M+1||η|η|j(ddη)(j)a(η)||, since t+\displaystyle\lesssim t^{M}\sum_{j=0}^{M+1}\Big{|}\Big{|}\eta\mapsto|\eta|^{j}\Big{(}\frac{d}{d\eta}\Big{)}^{(j)}a(\eta)\Big{|}\Big{|}_{\infty},\text{ since }t\in\mathbb{R}^{+}

where the integral |ψ(M+1j)(η)dη(t|η|)j|\displaystyle\int_{\mathbb{R}}\Big{|}\psi^{(M+1-j)}(\eta)\frac{d\eta}{(t|\eta|)^{j}}\Big{|} is finite since for ψΨd+1d+1(Σμ0)\psi\in\Psi_{d+1}^{d+1}(\Sigma^{0}_{\mu}) the derivatives ψ(j)\psi^{(j)} lie in the class Ψd+1jd+1(Σμ0)\Psi_{d+1-j}^{d+1}(\Sigma^{0}_{\mu}) for j=0,1,,M+1j=0,1,...,M+1 or we can say that ηjψ(j)(η)Ψd+1d+1(Σμ0)\eta^{j}\psi^{(j)}(\eta)\in\Psi_{d+1}^{d+1}(\Sigma^{0}_{\mu}) and hence by simple computation we obtain that the integral is uniformly bounded in tt. Thus,
||1E(aψt)(D)1Fu||2(d(E,F)t)Mj=0M+1||η|η|j(ddη)(j)a(η)||||1Fu||2\displaystyle||1_{E}(a\psi_{t})(D)1_{F}u||_{2}\lesssim\Big{(}\frac{d(E,F)}{t}\Big{)}^{-M}\sum_{j=0}^{M+1}\Big{|}\Big{|}\eta\mapsto|\eta|^{j}\Big{(}\frac{d}{d\eta}\Big{)}^{(j)}a(\eta)\Big{|}\Big{|}_{\infty}||1_{F}u||_{2}.
Now to get the off diagonal bound consider two cases

  • 1.

    If d(E,F)tc1\frac{d(E,F)}{t}\geq c\geq 1 then by some algebraic computation we can see that
    (d(E,F)t)M(1+d(E,F)t)M.\Big{(}\frac{d(E,F)}{t}\Big{)}^{-M}\lesssim\Big{(}1+\frac{d(E,F)}{t}\Big{)}^{-M}.

  • 2.

    If 1>d(E,F)tc1>\frac{d(E,F)}{t}\geq c then 1E(aψt)(D)1FB(L2)||1_{E}(a\psi_{t})(D)1_{F}||_{B(L^{2})} is uniformly bounded by a||a||_{\infty}.

Thus (aψt)(D)(a\psi_{t})(D) has L2L2L^{2}-L^{2} off diagonal bound and hence,

a(D)uHDp\displaystyle||a(D)u||_{H^{p}_{D}} j=0M+1||η|η|j(ddη)(j)a(η)||||(x,t)ψ(tD)u(x)||Tp,2\displaystyle\lesssim\sum_{j=0}^{M+1}\Big{|}\Big{|}\eta\mapsto|\eta|^{j}\Big{(}\frac{d}{d\eta}\Big{)}^{(j)}a(\eta)\Big{|}\Big{|}_{\infty}||(x,t)\mapsto\psi(tD)u(x)||_{T^{p,2}}
j=0M+1||η|η|j(ddη)(j)a(η)||||𝒬ψu||Tp,2\displaystyle\lesssim\sum_{j=0}^{M+1}\Big{|}\Big{|}\eta\mapsto|\eta|^{j}\Big{(}\frac{d}{d\eta}\Big{)}^{(j)}a(\eta)\Big{|}\Big{|}_{\infty}||\mathcal{Q}_{\psi}u||_{T^{p,2}}
j=0M+1||η|η|j(ddη)(j)a(η)||||u||HDp\displaystyle\simeq\sum_{j=0}^{M+1}\Big{|}\Big{|}\eta\mapsto|\eta|^{j}\Big{(}\frac{d}{d\eta}\Big{)}^{(j)}a(\eta)\Big{|}\Big{|}_{\infty}||u||_{H^{p}_{D}}

where the last equivalence holds by definition. ∎

The following Corollary is a specific case of the above Theorem for the operator ΠB\Pi_{B} given in Definition 8.

Corollary 3.2.1.

Let p(pH,pH)p\in(p_{H},p^{H}) as given in definition 8. If D=ΠBD=\Pi_{B} in the above theorem is such that it is self-adjoint then for all aCc()a\in C_{c}^{\infty}(\mathbb{R}) we have

(3.5) ||a(D)||B(Lp)j=0M+1||η|η|j(ddη)(j)a(η)||.||a(D)||_{B(L^{p})}\lesssim\sum_{j=0}^{M+1}\Big{|}\Big{|}\eta\mapsto|\eta|^{j}\Big{(}\frac{d}{d\eta}\Big{)}^{(j)}a(\eta)\Big{|}\Big{|}_{\infty}.
Proof.

Using Corollary 3.2, [12] we obtain that HΠBP=p(ΠB)¯H^{P}_{\Pi_{B}}=\overline{\mathcal{R}_{p}(\Pi_{B})} for p(pH,pH)p\in(p_{H},p^{H}) and since ΠB\Pi_{B} is bisectorial in Lp(d,n)L^{p}(\mathbb{R}^{d},\mathbb{C}^{n}) for p(1,)p\in(1,\infty) we know that Lp(d,n)=𝒩p(ΠB)p(ΠB)¯L^{p}(\mathbb{R}^{d},\mathbb{C}^{n})=\mathcal{N}_{p}(\Pi_{B})\oplus\overline{\mathcal{R}_{p}(\Pi_{B})}. Thus for all p(pH,pH),𝒩p(ΠB)HΠBp=Lp(d,n)p\in(p_{H},p^{H}),\;\mathcal{N}_{p}(\Pi_{B})\oplus H^{p}_{\Pi_{B}}=L^{p}(\mathbb{R}^{d},\mathbb{C}^{n}). ∎

Finally, we show that for operators that generate group with finite-speed of propagation on L2L^{2}, Kriegler-Weis result (Theorem 2.3) on Hörmander calculus can be improved to require only boundedness (rather than R-boundedness) assumption.

Theorem 3.3.

Let DD be a self-adjoint operator on L2(d;n)L^{2}(\mathbb{R}^{d};\mathbb{C}^{n}) such that the group (eitD)t(e^{itD})_{t\in\mathbb{R}} has finite speed of propagation. Suppose also that the following set is LqLqL^{q_{*}}-L^{q} bounded for q(1,2]q\in(1,2] and α>12\alpha>\frac{1}{2}

(I)α:={(π2|θ|)αtexp(teiθD2):t>0,θ(π2,π2)}.(I)_{\alpha}:=\bigg{\{}\bigg{(}\frac{\pi}{2}-|\theta|\bigg{)}^{\alpha}\sqrt{t}\exp(-te^{i\theta}D^{2}):t>0,\theta\in\bigg{(}\frac{-\pi}{2},\frac{\pi}{2}\bigg{)}\bigg{\}}.

Then the set

(S)α:={(π2|θ|)αexp(teiθD2):t>0,θ(π2,π2)}(S)_{\alpha}:=\bigg{\{}\bigg{(}\frac{\pi}{2}-|\theta|\bigg{)}^{\alpha}\exp(-te^{i\theta}D^{2}):t>0,\theta\in\bigg{(}\frac{-\pi}{2},\frac{\pi}{2}\bigg{)}\bigg{\}}

is R-bounded for some α>0\alpha>0(need not be same as above) and the operator D2D^{2} has a R-bounded Hörmander calculus 2γ\mathcal{H}^{\gamma}_{2} for γ>α+12\gamma>\alpha+\frac{1}{2} on Lq(d;n)L^{q}(\mathbb{R}^{d};\mathbb{C}^{n}), q(1,)q\in(1,\infty).

Proof.

We first prove this result for q(1,2]q\in(1,2] and then use duality to prove it for all q(1,)q\in(1,\infty). Now for the former case we shall start proving the boundedness of the set (S)α(S)_{\alpha} for q(2,2]q\in(2_{*},2] which requires the following steps.

Step 1: L2L2L^{2}-L^{2} boundedness of the set

(J)α:={(π2|argz|)αed(E,F)2c2Re(1z)1Eexp(zD2)1F:zΣθ,θ(π2,π2)}(J)_{\alpha}:=\bigg{\{}\bigg{(}\frac{\pi}{2}-|\arg z|\bigg{)}^{\alpha}e^{\frac{d(E,F)^{2}}{c^{2}}Re(\frac{1}{z})}1_{E}\exp(-zD^{2})1_{F}:z\in\Sigma_{\theta},\theta\in(\frac{-\pi}{2},\frac{\pi}{2})\bigg{\}}

where E,FdE,F\subset\mathbb{R}^{d} are arbitrary Borel sets, c>0c>0 is a constant independent of EE and FF, and α>12\alpha>\frac{1}{2}.

We shall prove this boundedness by using Phillips calculus. Since iDiD generates a bounded C0C_{0}-group exp(itD)\exp(itD) on L2(d)L^{2}(\mathbb{R}^{d}), by Phillips calculus we have

Φg(D)u:=g(t)exp(itD)u𝑑t,gL1(),uL2(d).\Phi_{g}(D)u:=\int_{-\infty}^{\infty}g(t)\exp(itD)udt,\;g\in L^{1}(\mathbb{R}),u\in L^{2}(\mathbb{R}^{d}).

Let Φg(D)=exp(zD2)\Phi_{g}(D)=\exp(-zD^{2}) then g(t)=et2/4z2zg(t)=\frac{e^{-t^{2}/4z}}{\sqrt{2}\sqrt{z}}, for Re(z)>0Re(z)>0. Since the group exp(itD)\exp(itD) is bounded and has finite speed of propagation, therefore for arbitrary Borel sets E,FdE,F\subset\mathbb{R}^{d} there exists c>0c>0 (independent of E,FE,F and tt) such that

1Eexp(itD)(1Fu)=0, if d(E,F)|t|c.1_{E}\exp(itD)(1_{F}u)=0,\;\text{ if }\frac{d(E,F)}{|t|}\geq c.

Consider  1Eexp(zD2)(1Fu)2||1_{E}\exp(-zD^{2})(1_{F}u)||_{2}

=et2/4z2z1Eexp(itD)(1Fu)𝑑t2\displaystyle=\bigg{|}\bigg{|}\int_{-\infty}^{\infty}\frac{e^{-t^{2}/4z}}{\sqrt{2}\sqrt{z}}1_{E}\exp(itD)(1_{F}u)dt\bigg{|}\bigg{|}_{2}
et24Re(1z)|z|1Eexp(itD)(1Fu)2𝑑t\displaystyle\lesssim\int_{-\infty}^{\infty}\frac{e^{\frac{-t^{2}}{4}Re(\frac{1}{z})}}{|\sqrt{z}|}||1_{E}\exp(itD)(1_{F}u)||_{2}dt
=d(E,F)cet24Re(1z)|z|1Eexp(itD)(1Fu)2𝑑t+d(E,F)cet24Re(1z)|z|1Eexp(itD)(1Fu)2𝑑t\displaystyle=\int_{-\infty}^{-\frac{d(E,F)}{c}}\frac{e^{\frac{-t^{2}}{4}Re(\frac{1}{z})}}{|\sqrt{z}|}||1_{E}\exp(itD)(1_{F}u)||_{2}dt+\int_{\frac{d(E,F)}{c}}^{\infty}\frac{e^{\frac{-t^{2}}{4}Re(\frac{1}{z})}}{|\sqrt{z}|}||1_{E}\exp(itD)(1_{F}u)||_{2}dt
d(E,F)cet24Re(1z)|z|1Eexp(itD)(1Fu)2𝑑t\displaystyle\simeq\int_{\frac{d(E,F)}{c}}^{\infty}\frac{e^{\frac{-t^{2}}{4}Re(\frac{1}{z})}}{|\sqrt{z}|}||1_{E}\exp(itD)(1_{F}u)||_{2}dt
1Fu21cosθed(E,F)24c2Re(1z)\displaystyle\lesssim||1_{F}u||_{2}\frac{1}{\sqrt{\cos\theta}}e^{-\frac{d(E,F)^{2}}{4c^{2}}Re(\frac{1}{z})}

where the last inequality is obtained by change of variables, assuming z=reiθz=re^{i\theta}. Therefore ed(E,F)24c2Re(1z)1Eexp(zD2)(1Fu)21(π2|argz|)1/21Fu2||e^{\frac{d(E,F)^{2}}{4c^{2}}Re(\frac{1}{z})}1_{E}\exp(-zD^{2})(1_{F}u)||_{2}\lesssim\frac{1}{(\frac{\pi}{2}-|\arg z|)^{1/2}}||1_{F}u||_{2}. Also for α>0\alpha>0 we get,

(π2|argz|)α+1/2ed(E,F)24c2Re(1z)1Eexp(zD2)(1Fu)21Fu2.\bigg{|}\bigg{|}\bigg{(}\frac{\pi}{2}-|\arg z|\bigg{)}^{\alpha+1/2}e^{\frac{d(E,F)^{2}}{4c^{2}}Re(\frac{1}{z})}1_{E}\exp(-zD^{2})(1_{F}u)\bigg{|}\bigg{|}_{2}\lesssim||1_{F}u||_{2}.

In other words,

(π2|argz|)αed(E,F)24c2Re(1z)1Eexp(zD2)(1Fu)21Fu2, for α>12.\bigg{|}\bigg{|}\bigg{(}\frac{\pi}{2}-|\arg z|\bigg{)}^{\alpha}e^{\frac{d(E,F)^{2}}{4c^{2}}Re(\frac{1}{z})}1_{E}\exp(-zD^{2})(1_{F}u)\bigg{|}\bigg{|}_{2}\lesssim||1_{F}u||_{2},\text{ for }\alpha>\frac{1}{2}.

Thus the set (J)α(J)_{\alpha} is bounded on L2L^{2} for α>12\alpha>\frac{1}{2}.

Step 2: L2L2L^{2_{*}}-L^{2} boundedness of (I)α(I)_{\alpha} and L2L2L^{2}-L^{2} boundedness of (J)α(J)_{\alpha} implies LqL2L^{q}-L^{2} boundedness of (K)βα(K)^{\alpha}_{\beta} for q[2,2]q\in[2_{*},2] where (K)βα(K)^{\alpha}_{\beta} is defined as the set

(K)βα:={(π2|argz|)α(Rez)β2ed(E,F)24c2Re(1z)(1β)1Eexp(zD2)1F:Re(z)>0}(K)^{\alpha}_{\beta}:=\bigg{\{}\bigg{(}\frac{\pi}{2}-|\arg z|\bigg{)}^{\alpha}(Re\;z)^{\frac{\beta}{2}}e^{\frac{d(E,F)^{2}}{4c^{2}}Re(\frac{1}{z})(1-\beta)}1_{E}\exp(-zD^{2})1_{F}:Re(z)>0\bigg{\}}

where Re(β)[0,1)Re(\beta)\in[0,1) satisfies 1q=Re(β)2+1Re(β)2\frac{1}{q}=\frac{Re(\beta)}{2_{*}}+\frac{1-Re(\beta)}{2} and α>12\alpha>\frac{1}{2}. To prove this we shall use Stein’s Interpolation Theorem once again. Let ss\in\mathbb{R} and consider the following operators (of the form Tβ,z(K)βαT_{\beta,z}\in(K)^{\alpha}_{\beta})

T1+is,z:=(π2|argz|)α(Rez)(1+is)/2ed(E,F)24c2Re(1z)(is)1Eexp(zD2)1F\displaystyle T_{1+is,z}:=\bigg{(}\frac{\pi}{2}-|\arg z|\bigg{)}^{\alpha}(Re\;z)^{(1+is)/2}e^{\frac{d(E,F)^{2}}{4c^{2}}Re(\frac{1}{z})(is)}1_{E}\exp(-zD^{2})1_{F}
T0+is,z:=(π2|argz|)α(Rez)(is)/2ed(E,F)24c2Re(1z)(1is)1Eexp(zD2)1F\displaystyle T_{0+is,z}:=\bigg{(}\frac{\pi}{2}-|\arg z|\bigg{)}^{\alpha}(Re\;z)^{(is)/2}e^{\frac{d(E,F)^{2}}{4c^{2}}Re(\frac{1}{z})(1-is)}1_{E}\exp(-zD^{2})1_{F}

By the proof in Step 1 and the assumption of the Theorem we have Tβ,zB(L2,L2)T_{\beta,z}\in B(L^{2},L^{2}) for Re(β)=0Re(\beta)=0 and Tβ,zB(L2,L2)T_{\beta,z}\in B(L^{2_{*}},L^{2}) for Re(β)=1Re(\beta)=1, respectively. Now by Stein’s Interpolation Theorem for Reβ[0,1)Re\;\beta\in[0,1) the operator Tβ,z((K)βα)T_{\beta,z}(\in(K)^{\alpha}_{\beta}) belongs to B(Lq,L2)B(L^{q},L^{2}) for q(2,2]q\in(2_{*},2] and Reβ=dqd2Re\;\beta=\frac{d}{q}-\frac{d}{2}. That is, for α>12\alpha>\frac{1}{2} and z=teiθz=te^{i\theta} where θ(π2,π2)\theta\in(\frac{-\pi}{2},\frac{\pi}{2}) and t>0t>0 we have,

(π2|θ|)α(tcosθ)β2ed(E,F)24c2t(1β)cosθ1Eexp(teiθD2)1Fu21Fuq.\bigg{|}\bigg{|}\bigg{(}\frac{\pi}{2}-|\theta|\bigg{)}^{\alpha}(t\cos\theta)^{\frac{\beta}{2}}e^{\frac{d(E,F)^{2}}{4c^{2}t}(1-\beta)\cos\theta}1_{E}\exp(-te^{i\theta}D^{2})1_{F}u\bigg{|}\bigg{|}_{2}\lesssim||1_{F}u||_{q}.

Step 3: Assume now that E=B(x,t)E=B(x,\sqrt{t}) and F=B(x,(k+1)t)B(x,kt)F=B(x,(k+1)\sqrt{t})\setminus B(x,k\sqrt{t}), where xdx\in\mathbb{R}^{d}, k0k\geq 0 and t>0t>0. Then d(E,F)=(k1)td(E,F)=(k-1)\sqrt{t} for k1k\geq 1. Applying Theorem 2.2 by Kunstmann and using

(π2|θ|)α1Eexp(teiθD2)1Fq2\displaystyle\bigg{|}\bigg{|}\bigg{(}\frac{\pi}{2}-|\theta|\bigg{)}^{\alpha}1_{E}\exp(-te^{i\theta}D^{2})1_{F}\bigg{|}\bigg{|}_{q\to 2} (tcosθ)Reβ/2ed(E,F)24c2tcos(θ)Re(1β)\displaystyle\lesssim(t\cos\theta)^{-Re\;\beta/2}e^{-\frac{d(E,F)^{2}}{4c^{2}t}\cos(\theta)Re(1-\beta)}
|B(x,t)|(1q12)(cosθ)Reβ2ec(k1)2Re(1β)cosθ\displaystyle\lesssim\frac{|B(x,\sqrt{t})|^{-\big{(}\frac{1}{q}-\frac{1}{2}\big{)}}}{(\cos\theta)^{\frac{Re\;\beta}{2}}}e^{-c^{\prime}(k-1)^{2}Re(1-\beta)\cos\theta}
|B(x,t)|(1q12)(cosθ)δ2+Reβ21(1+c(k1)2Re(1β))δ/2,\displaystyle\lesssim\frac{|B(x,\sqrt{t})|^{-\big{(}\frac{1}{q}-\frac{1}{2}\big{)}}}{(\cos\theta)^{\frac{\delta}{2}+\frac{Re\;\beta}{2}}}\frac{1}{(1+c^{\prime}(k-1)^{2}Re(1-\beta))^{\delta/2}},
 for δ>dq+1q\displaystyle\hskip 85.35826pt\text{ for }\delta>\frac{d}{q}+\frac{1}{q^{\prime}}
|B(x,t)|(1q12)(cosθ)δ2+Reβ2cδ(1+k)δ,\displaystyle\lesssim\frac{|B(x,\sqrt{t})|^{-\big{(}\frac{1}{q}-\frac{1}{2}\big{)}}}{(\cos\theta)^{\frac{\delta}{2}+\frac{Re\;\beta}{2}}}\frac{c_{\delta}}{(1+k)^{\delta}},

that is, for α>12\alpha>\frac{1}{2} and δ>dq+1q\delta>\frac{d}{q}+\frac{1}{q^{\prime}} we have,

(π2|θ|)α+δ2+Reβ21Eexp(teiθD2)1Fq2|B(x,t)|(1q12)cδ(1+k)δ.\bigg{|}\bigg{|}\bigg{(}\frac{\pi}{2}-|\theta|\bigg{)}^{\alpha+\frac{\delta}{2}+\frac{Re\;\beta}{2}}1_{E}\exp(-te^{i\theta}D^{2})1_{F}\bigg{|}\bigg{|}_{q\to 2}\lesssim|B(x,\sqrt{t})|^{-\big{(}\frac{1}{q}-\frac{1}{2}\big{)}}\frac{c_{\delta}}{(1+k)^{\delta}}.

Or we can write,

(π2|θ|)α1Eexp(teiθD2)1Fq2|B(x,t)|(1q12)cδ(1+k)δ\bigg{|}\bigg{|}\bigg{(}\frac{\pi}{2}-|\theta|\bigg{)}^{\alpha}1_{E}\exp(-te^{i\theta}D^{2})1_{F}\bigg{|}\bigg{|}_{q\to 2}\lesssim|B(x,\sqrt{t})|^{-\big{(}\frac{1}{q}-\frac{1}{2}\big{)}}\frac{c_{\delta}}{(1+k)^{\delta}}

for α>12+δ2+d2(1q12)\alpha>\frac{1}{2}+\frac{\delta}{2}+\frac{d}{2}\big{(}\frac{1}{q}-\frac{1}{2}\big{)}. Thus, by Theorem 2.2 we obtain that the set (S)α(S)_{\alpha} is R-bounded on LqL^{q} for q(2,2]q\in(2_{*},2]. Hence the operator D2D^{2} has R-bounded 2γ\mathcal{H}^{\gamma}_{2} calculus for γ>α+12\gamma>\alpha+\frac{1}{2} on LqL^{q} for q(2,2]q\in(2_{*},2] by Theorem 2.3.

Step 4: We now prove the R-boundedness of (S)α(S)_{\alpha} on LqL^{q} for q(p,p]q\in(p_{*},p] where p(2,2]p\in(2_{*},2] and then take it down to the least Sobolev exponents below 2 which remains greater than 1 so that we can prove the R-boundedness for all p(1,2]p\in(1,2].

For this we already have LpLpL^{p_{*}}-L^{p} boundedness of (I)α(I)_{\alpha} by hypothesis. Using this and the fact that the set (K)βα(K)^{\alpha}_{\beta} is LpL2L^{p}-L^{2} bounded for p(2,2]p\in(2_{*},2] we obtain that

{(π2|argz|)2α(Rez)1+β2ed(E,F)2c2Re(1z)(1β)1Eexp(2zD2)1F:zΣθ,|θ|<π2}\bigg{\{}\bigg{(}\frac{\pi}{2}-|\arg z|\bigg{)}^{2\alpha}(Re\;z)^{\frac{1+\beta}{2}}e^{\frac{d(E,F)^{2}}{c^{2}}Re(\frac{1}{z})(1-\beta)}1_{E}\exp(-2zD^{2})1_{F}:z\in\Sigma_{\theta},|\theta|<\frac{\pi}{2}\bigg{\}}

is LpL2L^{p_{*}}-L^{2} bounded for α>1\alpha>1. Interpolating this with the L2L2L^{2}-L^{2} bound of

{(π2|argz|)2αexp(2d(E,F)2c2Re(1z))1Eexp(zD2)1F:zΣθ,|θ|<π2}\bigg{\{}\bigg{(}\frac{\pi}{2}-|\arg z|\bigg{)}^{2\alpha}\exp\bigg{(}2\frac{d(E,F)^{2}}{c^{2}}Re(\frac{1}{z})\bigg{)}1_{E}\exp(-zD^{2})1_{F}:z\in\Sigma_{\theta},|\theta|<\frac{\pi}{2}\bigg{\}}

we get LqL2L^{q}-L^{2} boundedness of

{(π2|argz|)2αed(E,F)2c2Re(1z)(2η(1+β))(Rez)(1+β)η21Eexp(2zD2)1F:zΣθ,|θ|<π2}\bigg{\{}\bigg{(}\frac{\pi}{2}-|\arg z|\bigg{)}^{2\alpha}\frac{e^{\frac{d(E,F)^{2}}{c^{2}}Re(\frac{1}{z})(2-\eta(1+\beta))}}{(Re\;z)^{-\frac{(1+\beta)\eta}{2}}}1_{E}\exp(-2zD^{2})1_{F}:z\in\Sigma_{\theta},|\theta|<\frac{\pi}{2}\bigg{\}}

for q(p,2]q\in(p_{*},2] and α>1\alpha>1 and where η\eta satisfies 1q=ηp+1η2\frac{1}{q}=\frac{\eta}{p_{*}}+\frac{1-\eta}{2}. Now proceeding similarly as in Step 3 and using Theorem 2.2 we get that the set {(π2|argz|)2αexp(2zD2)}\Big{\{}\big{(}\frac{\pi}{2}-|\arg z|\big{)}^{2\alpha}\exp(-2zD^{2})\Big{\}} has LqLqL^{q}-L^{q} R-bound, that is, the set (S)2α(S)_{2\alpha} has LqLqL^{q}-L^{q} R-bound for q(2,2]q\in(2_{**},2_{*}] and 2α1+δ2+(1+Reβ)Reη22\alpha\geq 1+\frac{\delta}{2}+\frac{(1+Re\;\beta)Re\;\eta}{2}, where Reβ,Reη(0,1)Re\;\beta,Re\;\eta\in(0,1) or 2α1+δ2+d(1q12)2\alpha\geq 1+\frac{\delta}{2}+d\big{(}\frac{1}{q}-\frac{1}{2}\big{)}. This implies that the operator D2D^{2} has Hörmander calculus 2γ\mathcal{H}^{\gamma}_{2} for γ>2α+12\gamma>2\alpha+\frac{1}{2} on LqL^{q} for q(2,2]q\in(2_{**},2].

By induction we can go down to the Sobolev exponent 2()m2_{(*)m} as long as it is greater than 1 for some mm. If 2()m12_{(*)m}\leq 1 then for any r=1+ϵ,(ϵ>0)r=1+\epsilon,\;(\epsilon>0) there exists a p>2()m1p>2_{(*){m-1}} such that r=pr=p_{*}. Then by same steps as done previously we will have LqLqL^{q}-L^{q} R-bound for (S)α(S)_{\alpha^{\prime}} for q(p,p]q\in(p_{*},p] and some α>0\alpha^{\prime}>0. Therefore we get that (S)α(S)_{\alpha} is R-bounded on LqL^{q} for q(1,2]q\in(1,2] and some α>0\alpha>0 such that αc1+δ2+c2d(1q12)\alpha\geq c_{1}+\frac{\delta}{2}+c_{2}d(\frac{1}{q}-\frac{1}{2}), where c1c_{1}, c2c_{2} and δ\delta depends on the choice of qq. By Kriegler-Weis result (Theorem 2.3) we thus obtain that D2D^{2} has 2γ\mathcal{H}^{\gamma}_{2} calculus on LqL^{q} for q(1,2]q\in(1,2] and γ>α+12\gamma>\alpha+\frac{1}{2} for some α>0\alpha>0.

For q(2,)q\in(2,\infty) we use duality of R-bounded sets (Proposition 8.4.1, [19]) and the fact that the operator D2D^{2} is self-adjoint. Since exp(zD2)B(Lq)\exp(-zD^{2})\in B(L^{q}), exp(zD2)u,v=u,exp(z¯D2)v\langle\exp(-zD^{2})u,v\rangle=\langle u,\exp(-\bar{z}D^{2})v\rangle for all uL2Lq,vL2Lqu\in L^{2}\cap L^{q},\;v\in L^{2}\cap L^{q^{\prime}}. Thus, exp(zD2)v=exp(z¯D2)v,vL2Lq\exp(-zD^{2})^{*}v=\exp(-\bar{z}D^{2})v,\;\forall\;v\in L^{2}\cap L^{q^{\prime}}. By density, exp(zD2)=exp(z¯D2) on B(Lq)\exp(-zD^{2})^{*}=\exp(-\bar{z}D^{2})\text{ on }B(L^{q^{\prime}}). Thus, by duality we get (S)α(S)_{\alpha} is R-bounded on LqL^{q^{\prime}} where 1q+1q=1\frac{1}{q}+\frac{1}{q^{\prime}}=1. Hence, the operator D2D^{2} has Hörmander calculus 2γ\mathcal{H}^{\gamma}_{2} on LqL^{q} for q(1,).q\in(1,\infty).

One of the useful applications of this theorem is that the square of a perturbed Hodge-Dirac operator ΠB\Pi_{B} also has a R-bounded Hörmander calculus, as can be seen in the following corollary.

Corollary 3.3.1.

Let D=ΠBD=\Pi_{B} in the above theorem be self-adjoint. Then ΠB2\Pi_{B}^{2} has a R-bounded Hörmander calculus on Lp(d;n)L^{p}(\mathbb{R}^{d};\mathbb{C}^{n}) for p(pH,pH)p\in(p_{H},p^{H}).

Proof.

Using Lemma 7.1, [12] we can prove the LqLqL^{q_{*}}-L^{q} boundedness of the set (I)α(I)_{\alpha} for q(1,2]q\in(1,2] required in the above theorem for the operator ΠB2\Pi_{B}^{2}. The result then follows from the proof of the above theorem. ∎

Remark 2.

We can, in fact, obtain the R-bounded Hörmander calculus on LpL^{p} for p(1,)p\in(1,\infty) for those perturbed Hodge-Dirac operators for which pH=1p_{H}=1 and pH=p^{H}=\infty (for example, with real or smooth coefficients).

References

  • [1] D. Albrecht, X. Duong, and A. McIntosh. Operator theory and harmonic analysis. In Instructional Workshop on Analysis and Geometry, Part III (Canberra, 1995), volume 34 of Proc. Centre Math. Appl. Austral. Nat. Univ., pages 77–136. Austral. Nat. Univ., Canberra, 1996.
  • [2] P. Auscher. On necessary and sufficient conditions for LpL^{p}-estimates of Riesz transforms associated to elliptic operators on n\mathbb{R}^{n} and related estimates. Mem. Amer. Math. Soc., 186(871):xviii+75, 2007.
  • [3] P. Auscher, A. McIntosh, and A. Nahmod. Holomorphic functional calculi of operators, quadratic estimates and interpolation. Indiana Univ. Math. J., 46(2):375–403, 1997.
  • [4] P. Auscher, A. McIntosh, and E. Russ. Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal., 18(1):192–248, 2008.
  • [5] A. Axelsson, S. Keith, and A. McIntosh. Quadratic estimates and functional calculi of perturbed Dirac operators. Invent. Math., 163(3):455–497, 2006.
  • [6] P. Chen, E. M. Ouhabaz, A. Sikora, and L. Yan. Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner-Riesz means. J. Anal. Math., 129:219–283, 2016.
  • [7] P. Chen, E. M. Ouhabaz, A. Sikora, and L. Yan. Spectral multipliers without semigroup framework and application to random walks. J. Math. Pures Appl. (9), 143:162–191, 2020.
  • [8] R. R. Coifman, Y. Meyer, and E. M. Stein. Some new function spaces and their applications to harmonic analysis. J. Funct. Anal., 62(2):304–335, 1985.
  • [9] R. R. Coifman and G. Weiss. Transference methods in analysis. American Mathematical Society, Providence, R.I., 1976. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31.
  • [10] M. Cowling, I. Doust, A. McIntosh, and A. Yagi. Banach space operators with a bounded HH^{\infty}-functional calculus. J. Austral. Math. Soc. Ser. A, 60(1):51–89, 1996.
  • [11] X. T. Duong and L. Yan. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Amer. Math. Soc., 18(4):943–973, 2005.
  • [12] D. Frey, A. McIntosh, and P. Portal. Conical square function estimates and functional calculi for perturbed Hodge-Dirac operators in LpL^{p}. J. Anal. Math., 134(2):399–453, 2018.
  • [13] D. Frey and P. Portal. LpL^{p} estimates for wave equations with specific C0,1C^{0,1} coefficients, 2020. Preprint available at https://arxiv.org/abs/2010.08326.
  • [14] M. Haase. The functional calculus for sectorial operators, volume 169 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2006.
  • [15] M. Haase. A transference principle for general groups and functional calculus on UMD spaces. Math. Ann., 345(2):245–265, 2009.
  • [16] M. Haase. Transference principles for semigroups and a theorem of Peller. J. Funct. Anal., 261(10):2959–2998, 2011.
  • [17] T. Hytönen, A. McIntosh, and P. Portal. Holomorphic functional calculus of Hodge-Dirac operators in LpL^{p}. J. Evol. Equ., 11(1):71–105, 2011.
  • [18] T. Hytönen, J. van Neerven, and P. Portal. Conical square function estimates in UMD Banach spaces and applications to HH^{\infty}-functional calculi. J. Anal. Math., 106:317–351, 2008.
  • [19] T. Hytönen, J. van Neerven, M. Veraar, and L. Weis. Analysis in Banach Spaces, volume II. Springer International Publishing, 2017.
  • [20] C. Kriegler. Functional calculus and dilation for C0C_{0}-groups of polynomial growth. Semigroup Forum, 84(3):393–433, 2012.
  • [21] C. Kriegler and L. Weis. Spectral multiplier theorems via HH^{\infty}- calculus and RR-bounds. Math. Z., 289(1-2):405–444, 2018.
  • [22] P. C. Kunstmann. On maximal regularity of type Lp-LqL^{p}\text{-}L^{q} under minimal assumptions for elliptic non-divergence operators. J. Funct. Anal., 255(10):2732–2759, 2008.
  • [23] P. C. Kunstmann and L. Weis. Maximal LpL^{p}-regularity for parabolic equations, Fourier multiplier theorems and HH^{\infty}-functional calculus. In Functional analytic methods for evolution equations, volume 1855 of Lecture Notes in Math., pages 65–311. Springer, Berlin, 2004.
  • [24] A. McIntosh. Operators which have an HH^{\infty}-functional calculus. In Miniconference on operator theory and partial differential equations (North Ryde, 1986), volume 14 of Proc. Centre Math. Anal. Austral. Nat. Univ., pages 210–231. Austral. Nat. Univ., Canberra, 1986.
  • [25] J. Rozendaal and M. Veraar. Sharp growth rates for semigroups using resolvent bounds. J. Evol. Equ., 18(4):1721–1744, 2018.
  • [26] E. M. Stein. Interpolation of linear operators. Trans. Amer. Math. Soc., 83:482–492, 1956.
  • [27] E. M. Stein and R. Shakarchi. Fourier analysis, volume 1 of Princeton Lectures in Analysis. Princeton University Press, Princeton, NJ, 2003. An introduction.