This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Box dimension of fractal functions on attractors

Abstract

We study a wide class of fractal interpolation functions in a single platform by considering the domains of these functions as general attractors. We obtain lower and upper bounds of the box dimension of these functions in a more general setup where the interpolation points need not be equally spaced, the scale vectors can be variables and the maps in the corresponding IFS can be non-affine. In particular, we obtain the exact value of the box dimension of non-affine fractal functions on general m-dimensional cubes and Sierpiński Gasket.

R. Pasupathi

Sobolev Institute of Mathematics SB RAS, 630090, Novosibirsk, Russia

Email: pasupathi4074@gmail.com

Keywords: Fractal interpolation function, Attractor, Box dimension, Sierpiński Gasket

MSC Classification: 28A80, 41A05, 37E05

1 Introduction

In 1986, Barnsley [2] proposed the concept of a fractal interpolation function (FIF) on intervals using the notion of iterated function system. This work was extended to many different domains such as triangles [19], mm-dimensional cubes [22], Sierpiński Gasket [8], post critically finite (p.c.f.) self-similar sets [24] etc.

The graph of a function, and its box and Hausdorff dimensions, have been of qualitative interest for many researchers since the past few decades. Several theories concerning the box dimension of fractal functions have been explored in the literature. Some of recent works on FIF and dimension theory can be found in [7, 17, 15, 21, 23].

Hardin and Massopust [13] have estimated the value of the box dimension of graph of FIF on an interval when the maps in the corresponding IFS are affine and the interpolation points are equally spaced. Barnsley and Massopust [3] studied the box dimension of bilinear FIF on an interval in the case of equally spaced data points. Nasim et al. [1] obtained the box dimension of non-affine FIF in the case of equally spaced data points by using Hölder exponent. Feng and Sun [11] studied the box dimension of FIFs on a rectangle derived from affine FIFs on an interval with arbitrary interpolation nodes. Geronimo and Hardin [12] have estimated the box dimension of self-affine FIF on polygonal regions. Bouboulis et al. [4] introduced recurrent FIF (RFIF) on a rectangle as the invariant set of the recurrent IFS (RIFS) in order to gain more flexibility, and studied the value of the box dimension of RFIF when the maps in the corresponding RIFS are affine with respect to each variable and the interpolation points are equally spaced. Bouboulis and Dalla [5] generalized the theory of RFIF and its box dimension to higher dimensions.

In the literature, we found that, in most of the cases, the authors assumed that the interpolation points are equally spaced and the maps in the corresponding IFS are affine when the box dimension of FIF was considered, and there was no discussion about the box dimension of FIFs on p.c.f. self-similar sets except the Sierpiński Gasket. Even in the case of Sierpiński Gasket also, the authors [25] obtained only a non-trivial upper bound of the box dimension of FIFs by using Hölder exponent. The authors always assumed all the scale variables to be constants for estimating a non-trivial lower bound of the box dimension of fractal functions.

In this paper, we consider FIFs on attractors and we study lower and upper bounds of the box dimension of these functions without assuming that the interpolation points are equally spaced, the maps in the corresponding IFSs are affine and all the scale vectors are constants. We derive upper bounds of the box dimension of fractal functions using a function space called the oscillation space, which contains the collection of Hölder continuous functions. We provide non-trivial lower bounds of the box dimension of FIF on mm-dimensional cubes and Sierpiński Gasket.

2 Preliminaries

Definition 2.1.

An iterated function system (IFS) consists of a complete metric space (X,d)(X,d) together with a finite set of continuous mappings fi:XX,i=1,2,,Nf_{i}:X\to X,i=1,2,\dots,N. We denote it as 𝒮={(X,d),(fi)i=1N}\mathcal{S}=\{(X,d),(f_{i})_{i=1}^{N}\}.

For an IFS, we can define an operator (called Hutchinson operator) 𝒮:((X),h)((X),h)\mathcal{F}_{\mathcal{S}}:(\mathcal{H}(X),h)\to(\mathcal{H}(X),h) by

𝒮(B)=i=1𝑁fi(B)forB(X),\mathcal{F}_{\mathcal{S}}(B)=\underset{i=1}{\overset{N}{\cup}}f_{i}(B)\;\;\;\text{for}\;B\in\mathcal{H}(X),

where ((X),h)(\mathcal{H}(X),h) is the Hausdorff metric space on XX i.e., (X)\mathcal{H}(X) is the collection of all non-empty compact subsets of XX and hh is the Hausdorff distance.
If 𝒮\mathcal{F}_{\mathcal{S}} has a unique fixed point A𝒮A_{\mathcal{S}} (say) and limn𝒮[n](B)=A𝒮\underset{n\to\infty}{\lim}\mathcal{F}_{\mathcal{S}}^{[n]}(B)=A_{\mathcal{S}} for every B(X)B\in\mathcal{H}(X), then A𝒮A_{\mathcal{S}} is called the attractor of the IFS, where by f[n]f^{[n]}, we mean the composition of a function ff with itself nn times.

Definition 2.2.

Let (X,d)(X,d) be a metric space and f:XXf:X\rightarrow X be a function. If there is a constant r[0,1)r\in[0,1) such that:

  • -
    d(f(x),f(y))rd(x,y)forx,yX,d(f(x),f(y))\leq r~{}d(x,y)~{}~{}\text{for}~{}x,y\in X,

    then ff is called contraction;

  • -
    d(f(x),f(y))=rd(x,y)forx,yX,d(f(x),f(y))=r~{}d(x,y)~{}~{}\text{for}~{}x,y\in X,

    then ff is called similarity.

The constant rr is called the contractivity factor of ff.

Remark 2.1.

[14] An IFS {(X,d),(fi)i=1N}\{(X,d),(f_{i})_{i=1}^{N}\} has an attractor provided that fif_{i}’s are contractions.

Remark 2.2.

If a function f:kkf:\mathbb{R}^{k}\to\mathbb{R}^{k} is similarity, then it is an affine map.

For an IFS 𝒮={(X,d),(fi)i=1N}\mathcal{S}=\{(X,d),(f_{i})_{i=1}^{N}\}, we denote 𝒩={1,2,,N}\mathcal{N}=\{1,2,\dots,N\}, 𝒩k={(ω1,ω2,,ωk):ωi𝒩}\mathcal{N}^{k}=\left\{(\omega_{1},\omega_{2},\dots,\omega_{k}):\omega_{i}\in\mathcal{N}\right\} and 𝒩={(ωi)i=1:ωi𝒩}\mathcal{N}^{\infty}=\left\{(\omega_{i})_{i=1}^{\infty}:\omega_{i}\in\mathcal{N}\right\}, and we define

fω=fω1fω2fωkforω=(ω1,ω2,,ωk)𝒩k,k.f_{\omega}=f_{\omega_{1}}\circ f_{\omega_{2}}\circ\dots\circ f_{\omega_{k}}\;\;\;\text{for}\;\omega=(\omega_{1},\omega_{2},\dots,\omega_{k})\in\mathcal{N}^{k},k\in\mathbb{N}.

Let π:𝒩A𝒮\pi:\mathcal{N}^{\infty}\to A_{\mathcal{S}} be defined by

π(ω)=kfω1ω2ωk(A𝒮)forω𝒩.\pi(\omega)=\underset{k\in\mathbb{N}}{\bigcap}f_{\omega_{1}\omega_{2}\cdots\omega_{k}}(A_{\mathcal{S}})~{}~{}~{}~{}\text{for}~{}~{}\omega\in\mathcal{N}^{\infty}.

Following Kigami [16], we define the critical set 𝒞\mathcal{C} and the post critical set 𝒫\mathcal{P} of A𝒮A_{\mathcal{S}} by

𝒞=π1(i,j𝒩ij(fi(A𝒮)fj(A𝒮)))and𝒫=kτ[k](𝒞),\mathcal{C}=\pi^{-1}\left(\underset{\begin{subarray}{c}i,j\in\mathcal{N}\\ i\neq j\end{subarray}}{\bigcup}\left(f_{i}(A_{\mathcal{S}})\cap f_{j}(A_{\mathcal{S}})\right)\right)~{}~{}~{}\text{and}~{}~{}~{}\mathcal{P}=\underset{k\in\mathbb{N}}{\bigcup}\tau^{[k]}(\mathcal{C}),

where τ\tau is the left shift operator on 𝒩\mathcal{N}^{\infty}. If 𝒫\mathcal{P} is a finite set, then A𝒮A_{\mathcal{S}} is called a post critical finite (p.c.f.) self-similar set. The boundary of A𝒮A_{\mathcal{S}} is defined by V0=π(𝒫)V_{0}^{*}=\pi(\mathcal{P}) and we define

Vk=ω𝒩kfω(V0)fork.V_{k}=\underset{\omega\in\mathcal{N}^{k}}{\bigcup}f_{\omega}(V_{0}^{*})~{}~{}~{}\text{for}~{}k\in\mathbb{N}.
Remark 2.3.

[16]

  • (i)

    V0V1V2Vk1VkV_{0}^{*}\subseteq V_{1}\subseteq V_{2}\subseteq\cdots V_{k-1}\subseteq V_{k}\subseteq\cdots.

  • (ii)

    For ω,ω𝒩k,k\omega,\omega^{\prime}\in\mathcal{N}^{k},k\in\mathbb{N} with ωω\omega\neq\omega^{\prime}, we get

    fω(A𝒮)fω(A𝒮)=fω(V0)fω(V0).~{}~{}~{}~{}f_{\omega}(A_{\mathcal{S}})\cap f_{\omega^{\prime}}(A_{\mathcal{S}})=f_{\omega}(V_{0}^{*})\cap f_{\omega^{\prime}}(V_{0}^{*}).
Definition 2.3.

For a nonempty bounded subset FF of k\mathbb{R}^{k}, the lower and upper box dimensions are defined by

dim¯B(F)=lim infδ0+logNδ(F)log(1δ)anddim¯B(F)=lim supδ0+logNδ(F)log(1δ),\underline{\dim}_{B}(F)=\liminf\limits_{\delta\to 0^{+}}\frac{\log{N}_{\delta}(F)}{\log\left(\frac{1}{\delta}\right)}~{}~{}~{}~{}~{}\text{and}~{}~{}~{}~{}~{}~{}\overline{\dim}_{B}(F)=\limsup\limits_{\delta\to 0^{+}}\frac{\log{N}_{\delta}(F)}{\log\left(\frac{1}{\delta}\right)},

where Nδ(F){N}_{\delta}(F) is the minimum number of boxes with side length δ\delta and sides parallel to the axes, whose union contains FF. If dim¯B(F)=dim¯B(F)\underline{\dim}_{B}(F)=\overline{\dim}_{B}(F), this common value is denoted by dimB(F)\dim_{B}(F) and is called the box dimension or Minkowski dimension of FF.

Remark 2.4.

[10] For a nonempty bounded subset FF of k\mathbb{R}^{k} and a continuous function f:Ff:F\to\mathbb{R}, we have the following inequalities

dimH(F)dim¯B(F)dim¯B(F)anddimH(F)dimH(Gf),\dim_{H}(F)\leq\underline{\dim}_{B}(F)\leq\overline{\dim}_{B}(F)\;\;\text{and}\;\;\dim_{H}(F)\leq\dim_{H}(G_{f}),

where dimH(F)\dim_{H}(F) means the Hausdorff dimension of FF.

Definition 2.4.

Let (X,dX)(X,d_{X}) and (Y,dY)(Y,d_{Y}) be metric spaces. A function f:XYf:X\to Y is called Hölder continuous with exponent η\eta if η(0,1]\eta\in(0,1] and there exists H[0,)H\in[0,\infty) such that

dY(f(x),f(x))HdX(x,x)ηforx,xX.d_{Y}(f(x),f(x^{\prime}))\leq H~{}d_{X}(x,x^{\prime})^{\eta}~{}~{}\text{for}~{}x,x^{\prime}\in X.

3 Fractal interpolation function

Let p:V:=i𝒩li(V0)p:V:=\underset{i\in\mathcal{N}}{\bigcup}l_{i}(V_{0})\to\mathbb{R} be a given function (data), where

  • -

    V0={k1,k2,,kr}VKV_{0}=\{k_{1},k_{2},\dots,k_{r}\}\subseteq V\subseteq K,

  • -

    KK is an attractor of an IFS {(m,.2),(li)i𝒩}\{(\mathbb{R}^{m},\|.\|_{2}),(l_{i})_{i\in\mathcal{N}}\}, .2\|.\|_{2} is the Euclidean metric on m\mathbb{R}^{m}, 𝒩={1,2,,N}\mathcal{N}=\{1,2,\dots,N\} and lil_{i} is a similarity map on m\mathbb{R}^{m} with the contractivity factor rir_{i} for i𝒩i\in\mathcal{N}.

Let us consider gi:K×g_{i}:K\times\mathbb{R}\to\mathbb{R} defined by

gi(x,z)=si(x)z+qi(x)for(x,z)K×,i𝒩,g_{i}(x,z)=s_{i}(x)z+q_{i}(x)\;\;\;\text{for}\;(x,z)\in K\times\mathbb{R},i\in\mathcal{N}, (3.1)

where sis_{i} is a continuous function with s:=max{si:i𝒩}<1\|s\|_{\infty}:=\max\{\|s_{i}\|_{\infty}:~{}i\in\mathcal{N}\}<1, .\|.\|_{\infty} is the uniform metric and qiq_{i} is a continuous function which satisfy the following ‘join-up’ conditions

qi(kj)=p(li(kj))si(kj)p(kj)forj{1,2,,r}.q_{i}(k_{j})=p(l_{i}(k_{j}))-s_{i}(k_{j})p(k_{j})\;\;\;\;\;\text{for}\;j\in\{1,2,\dots,r\}. (3.2)

We consider the IFS 𝒮={(K×,.2),(fi)i𝒩}\mathcal{S}=\left\{(K\times\mathbb{R},\|.\|_{2}),(f_{i})_{i\in\mathcal{N}}\right\}, where

fi(x,z)=(li(x),gi(x,z))for(x,z)K×.f_{i}(x,z)=(l_{i}(x),g_{i}(x,z))~{}\;\text{for}~{}(x,z)\in K\times\mathbb{R}.

Let us suppose that the map T:𝒞𝒞T:\mathcal{C}^{*}\to\mathcal{C} given by

T(f)(x)=gi(li1(x),f(li1(x))forxli(K),i𝒩,f𝒞T(f)(x)=g_{i}(l_{i}^{-1}(x),f(l_{i}^{-1}(x))~{}\;\;\text{for}~{}x\in l_{i}(K),i\in\mathcal{N},f\in\mathcal{C}^{*}

is well-defined, where 𝒞={f:K:fis continuous}\mathcal{C}=\left\{f:K\to\mathbb{R}~{}:~{}f~{}\text{is continuous}\right\} and 𝒞={f𝒞:f|V0=p|V0}\mathcal{C}^{*}=\\ \left\{f\in\mathcal{C}~{}:f|_{V_{0}}=p|_{V_{0}}\right\}.

Lemma 3.1.
T(𝒞)𝒞𝒞,T(\mathcal{C}^{*})\subseteq\mathcal{C}^{**}\subseteq\mathcal{C}^{*},

where 𝒞={f𝒞:f|V=p|V}\mathcal{C}^{**}=\left\{f\in\mathcal{C}~{}:f|_{V}=p|_{V}\right\}.

Proof.

Since

T(f)(li(kj))=gi(kj,f(kj))=gi(kj,p(kj))=(3.1)&(3.2)p(li(kj)),T(f)(l_{i}(k_{j}))=g_{i}(k_{j},f(k_{j}))=g_{i}(k_{j},p(k_{j}))\overset{(\ref{0702e1})\&(\ref{1324e2})}{=}p(l_{i}(k_{j})), (3.3)

for j{1,2,,r},i𝒩j\in\{1,2,\dots,r\},i\in\mathcal{N} and f𝒞f\in\mathcal{C}^{*}, we get the proof. ∎

Theorem 3.1.

TT is a contraction map on the complete space (𝒞,.)(\mathcal{C}^{*},\|.\|_{\infty}).

Proof.

For f1,f2𝒞f_{1},f_{2}\in\mathcal{C}^{*}, we get

T(f1)T(f2)\displaystyle\|T(f_{1})-T(f_{2})\|_{\infty} maxi𝒩maxxK|gi(x,f1(x)gi(x,f2(x)|\displaystyle\leq\underset{i\in\mathcal{N}}{\max}~{}\underset{x\in K}{\max}~{}|g_{i}(x,f_{1}(x)-g_{i}(x,f_{2}(x)|
=maxi𝒩maxxK|si(x)||f1(x)f2(x)|=sf1f2.\displaystyle=\underset{i\in\mathcal{N}}{\max}~{}\underset{x\in K}{\max}~{}|s_{i}(x)||f_{1}(x)-f_{2}(x)|=\|s\|_{\infty}\|f_{1}-f_{2}\|_{\infty}.

Corollary 3.1.

There exists a unique continuous function f:Kf^{*}:K\to\mathbb{R} such that f|V=p|Vf^{*}|_{V}=p|_{V} and

f(li(x))=si(x)f(x)+qi(x)forxK,i𝒩.f^{*}\left(l_{i}(x)\right)=s_{i}(x)f^{*}(x)+q_{i}(x)\;\;\;\text{for}~{}x\in K,i\in\mathcal{N}. (3.4)
Proof.

From Theorem 3.1 and the Banach contraction principle, we conclude that there exists f𝒞f^{*}\in\mathcal{C}^{*} such that f=T(f)Lemma3.1𝒞f^{*}=T(f^{*})\overset{\text{Lemma}\ref{1706r1}}{\in}\mathcal{C}^{**}. ∎

We call this unique map ff^{*} fractal interpolation function (FIF) on KK.

Proposition 3.1.

GfG_{f^{*}} is a fixed point of the Hutchison operator 𝒮\mathcal{F}_{\mathcal{S}} of 𝒮\mathcal{S}, where GfG_{f^{*}} denotes the graph of ff^{*}.

Proof.

Since Gf(K×)G_{f^{*}}\in\mathcal{H}(K\times\mathbb{R}) and

Gf\displaystyle G_{f^{*}} =i=1𝑁{(x,f(x)):xli(K)}=f=T(f)i=1𝑁{(li(x),gi(x,f(x))):xK}\displaystyle=\underset{i=1}{\overset{N}{\cup}}\{\left(x,f^{*}(x)\right):x\in l_{i}(K)\}\overset{f^{*}=T(f^{*})}{=}\underset{i=1}{\overset{N}{\cup}}\{(l_{i}(x),g_{i}(x,f^{*}(x))):x\in K\}
=i=1𝑁fi(Gf),\displaystyle=\underset{i=1}{\overset{N}{\cup}}f_{i}(G_{f^{*}}), (3.5)

we get the result. ∎

Theorem 3.2.

If 𝒮\mathcal{S} has an attractor A𝒮A_{\mathcal{S}} (say), then

A𝒮=Gf,A_{\mathcal{S}}=G_{f^{*}},
Proof.

Since A𝒮A_{\mathcal{S}} is the unique fixed point of the Hutchison operator of 𝒮\mathcal{S}, from Proposition 3.1, we get the result. ∎

Lemma 3.2.

fi:K×[M,M]K×[M,M],i𝒩f_{i}:K\times[-M,M]\to K\times[-M,M],i\in\mathcal{N} are well-defined operators, where M:=maxi𝒩qi1sM:=\frac{\underset{i\in\mathcal{N}}{\max}~{}\|q_{i}\|_{\infty}}{1-\|s\|_{\infty}}.

Proof.

For (x,z)K×[M,M](x,z)\in K\times[-M,M] and i𝒩i\in\mathcal{N}, we get

|gi(x,z)|siz+qisM+maxi𝒩qi=M.\displaystyle|g_{i}(x,z)|\leq\|s_{i}\|_{\infty}z+\|q_{i}\|_{\infty}\leq\|s\|_{\infty}M+\underset{i\in\mathcal{N}}{\max}~{}\|q_{i}\|_{\infty}=M.

Proposition 3.2.

If sis_{i}’s are Hölder continuous, then 𝒮\mathcal{S} has an attractor.

Proof.

From (3.4), we get

fsf+maxi𝒩qifM.\|f^{*}\|_{\infty}\leq\|s\|_{\infty}\|f^{*}\|_{\infty}+\underset{i\in\mathcal{N}}{\max}~{}\|q_{i}\|_{\infty}~{}~{}\Rightarrow~{}~{}\|f^{*}\|_{\infty}\leq M. (3.6)

From the assumption, there exist Hi[0,)H_{i}\in[0,\infty) for i𝒩i\in\mathcal{N} and η(0,1]\eta\in(0,1] such that

|si(x)si(x)|Hixx2ηforx,xK,i𝒩.|s_{i}(x)-s_{i}(x^{\prime})|\leq H_{i}\|x-x^{\prime}\|_{2}^{\eta}\;\;\;\text{for}\;x,x^{\prime}\in K,i\in\mathcal{N}. (3.7)

For θ=1maxi𝒩riη2Mmaxi𝒩Hi+1>0,\theta=\frac{1-\underset{i\in\mathcal{N}}{\max}~{}r_{i}^{\eta}}{2M\underset{i\in\mathcal{N}}{\max}~{}H_{i}+1}>0, let us consider the metric dd on K×K\times\mathbb{R}, given by

d((x,z),(x,z))=xx2η+θ|(zf(x))(zf(x))|,d((x,z),(x^{\prime},z^{\prime}))=\|x-x^{\prime}\|_{2}^{\eta}+\theta|(z-f^{*}(x))-(z^{\prime}-f^{*}(x^{\prime}))|,

for (x,z),(x,z)K×(x,z),(x^{\prime},z^{\prime})\in K\times\mathbb{R}, which is equivalent to the Euclidean metric.
For i𝒩i\in\mathcal{N} and (x,z),(x,z)K×[M,M](x,z),(x^{\prime},z^{\prime})\in K\times[-M,M], we have

d(fi(x,z),fi(x,z))\displaystyle d(f_{i}(x,z),f_{i}(x^{\prime},z^{\prime}))
=li(x)li(x)2η+θ|si(x)z+qi(x)f(li(x)))(si(x)z+qi(x)f(li(x)))|\displaystyle=\|l_{i}(x)-l_{i}(x^{\prime})\|_{2}^{\eta}+\theta|s_{i}(x)z+q_{i}(x)-f^{*}(l_{i}(x)))-(s_{i}(x^{\prime})z^{\prime}+q_{i}(x^{\prime})-f^{*}(l_{i}(x^{\prime})))|
=(3.4)riηxx2η+θ|si(x)(zf(x))si(x)(zf(x)))|\displaystyle\overset{(\ref{2101e1})}{=}r_{i}^{\eta}\|x-x^{\prime}\|_{2}^{\eta}+\theta|s_{i}(x)(z-f^{*}(x))-s_{i}(x^{\prime})(z^{\prime}-f^{*}(x^{\prime})))|
riηxx2η+θsi|(zf(x))(zf(x))|\displaystyle\leq r_{i}^{\eta}\|x-x^{\prime}\|_{2}^{\eta}+\theta\|s_{i}\|_{\infty}|(z-f^{*}(x))-(z^{\prime}-f^{*}(x^{\prime}))|
+θ|(zf(x))||si(x)si(x)|\displaystyle~{}~{}~{}+\theta|(z^{\prime}-f^{*}(x^{\prime}))||s_{i}(x)-s_{i}(x^{\prime})|
(3.6)&(3.7)riηxx2η+θs|(zf(x))(zf(x))|+θ2MHixx2η\displaystyle\overset{(\ref{0702e2})\&(\ref{0702e11})}{\leq}r_{i}^{\eta}\|x-x^{\prime}\|_{2}^{\eta}+\theta\|s\|_{\infty}|(z-f^{*}(x))-(z^{\prime}-f^{*}(x^{\prime}))|+\theta 2MH_{i}\|x-x^{\prime}\|_{2}^{\eta}
cid((x,z),(x,z)),\displaystyle\leq c_{i}d((x,z),(x^{\prime},z^{\prime})),

where ci=max{riη+θ2MHi,s}<1c_{i}=\max\left\{r_{i}^{\eta}+\theta 2MH_{i},\|s\|_{\infty}\right\}<1.
Thus, fif_{i}’s are contractions on (K×[M,M],d)(K\times[-M,M],d).
From Remark 2.1, we get the result. ∎

Case 1.

If KK is a p.c.f. self-similar set and V0V_{0} is the boundary of KK, then by Remark 2.3 (ii), we get

li(K)li(K)=li(V0)li(V0)fori,i𝒩withii.l_{i}(K)\cap l_{i^{\prime}}(K)=l_{i}(V_{0})\cap l_{i^{\prime}}(V_{0})~{}~{}\text{for}~{}~{}i,i^{\prime}\in\mathcal{N}~{}\text{with}~{}i\neq i^{\prime}. (3.8)

From equation (3.3), we get

T(f)|li(V0)=p|li(V0)forf𝒞,i𝒩.T(f)|_{l_{i}(V_{0})}=p|_{l_{i}(V_{0})}~{}~{}\text{for}~{}f\in\mathcal{C}^{*},i\in\mathcal{N}. (3.9)

Let f𝒞f\in\mathcal{C}^{*} and xli(K)li(K)x\in l_{i}(K)\cap l_{i^{\prime}}(K) for some i,i𝒩i,i^{\prime}\in\mathcal{N} with iii\neq i^{\prime}.
From equation (3.8) and (3.9), we get

T(f)(x)=p(x)T(f)(x)=p(x)

by viewing xx as an entity belonging to li(K)l_{i}(K) and li(K)l_{i^{\prime}}(K).
Therefore T(f)T(f) is a continuous function. Thus, TT is well defined.

Remark 3.1.

If KK is a p.c.f. self-similar set, then for any given data on it’s boundary V0V_{0}, there exists a unique harmonic function on KK such that it satisfies the given data (see [16]). This gives the guarantee for the existence of qiq_{i}’s as in (3.2).

Remark 3.2.

If KK is a p.c.f. self-similar set and V0V_{0} is its boundary with respect to the IFS {(m,.2),(li)i=1N}\{(\mathbb{R}^{m},\|.\|_{2}),(l_{i})_{i=1}^{N}\}, then for any nn\in\mathbb{N}, KK (V0)(V_{0}) is again a p.c.f. self-similar set (boundary of KK) with respect to the IFS {(2,.2),{lω}ω𝒩n}\{(\mathbb{R}^{2},\|.\|_{2}),\{l_{\omega}\}_{\omega\in\mathcal{N}^{n}}\}. So, for any n,n\in\mathbb{N}, we can get a FIF ff^{*} for the given data on (V=)Vn:=ω𝒩nlω(V0)(V=)V_{n}:=\underset{\omega\in\mathcal{N}^{n}}{{\cup}}l_{\omega}(V_{0}). Note that VnKV_{n}\to K as nn\to\infty.

Remark 3.3.

Sierpiński Gasket (SG), Sierpiński sickle, Koch curve, Hata’s tree-like set are some of the examples of p.c.f. self-similar sets.
The IFS of SG is {(2,.2),{li}i=13}\{(\mathbb{R}^{2},\|.\|_{2}),\{l_{i}\}_{i=1}^{3}\}, where li(x)=12(x+ki)l_{i}(x)=\frac{1}{2}(x+k_{i}) for i{1,2,3}i\in\{1,2,3\} and {k1,k2,k3}\{k_{1},k_{2},k_{3}\} are the vertices of an equilateral triangle. In this case, the boundary of KK is V0={k1,k2,k3}V_{0}=\{k_{1},k_{2},k_{3}\}.

Case 2.

If

V={(x1i1,x2i2,,xmim)m:iu{0,1,,nu},u{1,2,,m}}V=\left\{(x_{1i_{1}},x_{2i_{2}},\dots,x_{mi_{m}})\in\mathbb{R}^{m}:i_{u}\in\{0,1,\dots,n_{u}\},u\in\{1,2,\dots,m\}\right\}

with xu0<xu1<<xunux_{u0}<x_{u1}<\dots<x_{un_{u}} for u{1,2,,m}u\in\{1,2,\dots,m\}, then we define li:mml_{i}:\mathbb{R}^{m}\to\mathbb{R}^{m} to be

li(x)=(l1i1(x1),l2i2(x2),,lmim(xm)),l_{i}(x)=\left(l_{1i_{1}}(x_{1}),l_{2i_{2}}(x_{2}),\dots,l_{mi_{m}}(x_{m})\right),

for x=(x1,x2,,xm)mx=(x_{1},x_{2},\dots,x_{m})\in\mathbb{R}^{m} and i=(i1,i2,,im)𝒩,i=(i_{1},i_{2},\dots,i_{m})\in\mathcal{N}, where

  • -

    𝒩={(i1,i2,im):iu{1,2,,nu},u{1,2,,m}}\mathcal{N}=\{(i_{1},i_{2},\dots i_{m}):i_{u}\in\{1,2,\dots,n_{u}\},u\in\{1,2,\dots,m\}\},

  • -

    luiu(t)=(xu(iuϵuiu)xu(iu1+ϵuiu)xunuxu0)t+(xu(iu1+ϵuiu)xunuxu(iuϵuiu)xu0xunuxu0)l_{ui_{u}}(t)=\left(\frac{x_{u(i_{u}-\epsilon_{ui_{u}})}-x_{u(i_{u}-1+\epsilon_{ui_{u}})}}{x_{un_{u}}-x_{u0}}\right)t+\left(\frac{x_{u(i_{u}-1+\epsilon_{ui_{u}})}x_{un_{u}}-x_{u(i_{u}-\epsilon_{ui_{u}})}x_{u0}}{x_{un_{u}}-x_{u0}}\right) for t,u{1,2,,m}t\in\mathbb{R},u\in\{1,2,\dots,m\} and

  • -

    ϵu=(ϵu1,ϵu2,,ϵunu){0,1}nu\epsilon_{u}=(\epsilon_{u1},\epsilon_{u2},\dots,\epsilon_{un_{u}})\in\{0,1\}^{n_{u}} for u{1,2,,m}u\in\{1,2,\dots,m\} (which is called signature).

We defined luiul_{ui_{u}} for u{1,2,,m}u\in\{1,2,\dots,m\} such that

luiu([xu0,xunu])=[xu(iu1),xuiu]l_{ui_{u}}([x_{u0},x_{un_{u}}])=[x_{u(i_{u}-1)},x_{ui_{u}}]

and

luiu(xu0)=xu(iu1+ϵuiu)andluiu(xunu)=xu(iuϵuiu).l_{ui_{u}}(x_{u0})=x_{u(i_{u}-1+\epsilon_{ui_{u}})}~{}~{}\text{and}~{}~{}~{}l_{ui_{u}}(x_{un_{u}})=x_{u(i_{u}-\epsilon_{ui_{u}})}.

From our construction, we get

  • -

    V0={(x1i1,x2i2,,xmim)m:iu{0,nu},u{1,2,,m}}V_{0}=\left\{(x_{1i_{1}},x_{2i_{2}},\dots,x_{mi_{m}})\in\mathbb{R}^{m}:i_{u}\in\{0,n_{u}\},u\in\{1,2,\dots,m\}\right\} and

  • -

    K=[x10,x1n1]×[x20,x2n2]××[xm0,xmnm]K=[x_{10},x_{1n_{1}}]\times[x_{20},x_{2n_{2}}]\times\dots\times[x_{m0},x_{mn_{m}}].

  • (i)

    If m=1m=1, then KK is a p.c.f. self-similar set and V0V_{0} is its boundary. So, TT is well-defined.
    In this case, we obtain the fractal interpolation function of the zipper on an interval (see [7]).
    If we choose εu=0\varepsilon_{u}=0 for u{1,2,,m}u\in\{1,2,\dots,m\} and sis_{i}’s are constant functions, we get the standard fractal interpolation function on an interval (see [2]).

  • (ii)

    If m>1m>1, then TT is well-defined provided that

    εu=(0,1,0,1,)orεu=(1,0,1,0,)foru{1,2,,m}\varepsilon_{u}=(0,1,0,1,\dots)~{}\text{or}~{}\varepsilon_{u}=(1,0,1,0,\dots)~{}\text{for}~{}u\in\{1,2,\dots,m\}

    and

    Fi(x,z)=F(i1ij1,ij+1,ij+1im)(x,z),F_{i}(x,z)=F_{(i_{1}\dots i_{j-1},i_{j}+1,i_{j+1}\dots i_{m})}(x,z),

    for i=(i1,i2im)𝒩,j{1,2m}i=(i_{1},i_{2}\dots i_{m})\in\mathcal{N},j\in\{1,2\dots m\} with ij{1,2nj1}i_{j}\in\{1,2\dots n_{j}-1\},
    x=(x1xj1,xj,xj+1xm)Kx=(x_{1}\dots x_{j-1},x_{j}^{*},x_{j+1}\dots x_{m})\in K with xj=ljij1(xjij)=lj(ij+1)1(xjij)x_{j}^{*}=l_{ji_{j}}^{-1}(x_{ji_{j}})=l_{j(i_{j}+1)}^{-1}(x_{ji_{j}}) and zz\in\mathbb{R}.
    For more details ref. [20, 22, 17]. In this case, we call ff^{*} multivariate FIF.
    In particular, if εu=(0,1,0,1,)\varepsilon_{u}=(0,1,0,1,\dots) for u{1,2,,m}u\in\{1,2,\dots,m\}, sis_{i}’s are equal constants i.e., there exists unique s(1,1)s\in(-1,1) such that si(x)=ss_{i}(x)=s for xKx\in K and i𝒩i\in\mathcal{N}, and

    qi(x)=J{1,2,,m}ei,JjJxjforx=(x1,x2,,xm)K,i𝒩,q_{i}(x)=\underset{J\subseteq\{1,2,\dots,m\}}{\sum}e_{i,J}\underset{j\in J}{\prod}x_{j}~{}~{}~{}\text{for}~{}x=(x_{1},x_{2},\dots,x_{m})\in K,i\in\mathcal{N},

    where ei,Je_{i,J}’s are constants, then TT is well-defined (see [18]).

4 Box dimension of fractal functions

For a continuous function f:Kf:K\to\mathbb{R} and ω𝒩k\omega\in\mathcal{N}^{k}, we define the oscillation of ff over lω(K)l_{\omega}(K) by

Oscω(f)=supxlω(K)f(x)infxlω(K)f(x)=supx,xlω(K)|f(x)f(x)|\displaystyle\text{Osc}_{\omega}(f)=\underset{x\in l_{\omega}(K)}{\sup}f(x)-\underset{x\in l_{\omega}(K)}{\inf}f(x)=\underset{x,x^{\prime}\in l_{\omega}(K)}{\sup}|f(x)-f(x^{\prime})|

and total oscillation of order kk by

Osc(k,f)=ω𝒩kOscω(f).\text{Osc}(k,f)=\underset{\omega\in\mathcal{N}^{k}}{\sum}\text{Osc}_{\omega}(f).

We define oscillation space on KK, for η[0,logΛN]\eta\in\left[0,\log_{\Lambda}N\right], as follows (Ref. [9])

𝒞η(K)={f:K:fis continuous and[f]η<},\mathcal{C}^{\eta}(K)=\{f:K\to\mathbb{R}:f~{}\text{is continuous and}~{}[f]_{{\eta}}<\infty\},

where [f]η=supkOsc(k,f)Λk(logΛNη)[f]_{{\eta}}=\underset{k\in\mathbb{N}}{\sup}\frac{\text{Osc}(k,f)}{\Lambda^{k\left(\log_{\Lambda}N-\eta\right)}} and Λ1=maxi𝒩ri\Lambda^{-1}=\underset{i\in\mathcal{N}}{\max}~{}r_{i}.

Remark 4.1.

If m=1m=1 and η=logΛN,\eta=\log_{\Lambda}N, then 𝒞η(K)\mathcal{C}^{\eta}(K) is the collection of continuous bounded variation functions on KK.

In the following proposition, we discuss the relation between Hölder continuous functions and oscillation spaces, draws inspiration from [6].

Proposition 4.1.

If f:Kf:K\to\mathbb{R} is a Hölder continuous function with exponent η(0,1],\eta\in(0,1], then f𝒞η(K).f\in\mathcal{C}^{\eta}(K).

Proof.

By assumption, there exists a constant HH such that

|f(x)f(x)|Hxx2ηforx,xK.|f(x)-f(x^{\prime})|\leq H\|x-x^{\prime}\|_{2}^{\eta}\;\;\;\text{for}~{}~{}x,x^{\prime}\in K.

Thus, we have

Osc(k,f)\displaystyle\text{Osc}(k,f) =ω𝒩ksupx,xlω(K)|f(x)f(x)|Hω𝒩ksupx,xKlω(x)lω(x)2η\displaystyle=\underset{\omega\in\mathcal{N}^{k}}{\sum}\underset{x,x^{\prime}\in l_{\omega}(K)}{\sup}|f(x)-f(x^{\prime})|\leq H\underset{\omega\in\mathcal{N}^{k}}{\sum}\underset{x,x^{\prime}\in K}{\sup}\|l_{\omega}(x)-l_{\omega}(x^{\prime})\|_{2}^{\eta}
Hω𝒩k(Λk)ηsupx,xKxx2η=HNkΛkη|K|η\displaystyle\leq H\underset{\omega\in\mathcal{N}^{k}}{\sum}\left(\Lambda^{-k}\right)^{\eta}\underset{x,x^{\prime}\in K}{\sup}\|x-x^{\prime}\|_{2}^{\eta}=HN^{k}\Lambda^{-k\eta}|K|^{\eta}
=H|K|ηΛk(logΛNη),\displaystyle=H|K|^{\eta}\Lambda^{k\left(\log_{\Lambda}N-\eta\right)},

for all kk\in\mathbb{N}, where |K||K| denotes the diameter of KK. ∎

Theorem 4.1.

Let si,qi𝒞η(K)s_{i},q_{i}\in\mathcal{C}^{\eta}(K) for i𝒩i\in\mathcal{N}. If:

  • (i)

    γNΛη,\gamma\leq\frac{N}{\Lambda^{\eta^{\prime}}}, then

    dimH(K)dimH(Gf)dim¯B(Gf)dim¯B(Gf)1η+logΛN;\dim_{H}(K)\leq\dim_{H}\left(G_{f^{*}}\right)\leq\underline{\dim}_{B}\left(G_{f^{*}}\right)\leq\overline{\dim}_{B}\left(G_{f^{*}}\right)\leq 1-\eta^{\prime}+\log_{\Lambda}N;
  • (ii)

    γ>NΛη,\gamma>\frac{N}{\Lambda^{\eta^{\prime}}}, then

    dimH(K)dimH(Gf)dim¯B(Gf)dim¯B(Gf)1+logΛγ,\dim_{H}(K)\leq\dim_{H}\left(G_{f^{*}}\right)\leq\underline{\dim}_{B}\left(G_{f^{*}}\right)\leq\overline{\dim}_{B}\left(G_{f^{*}}\right)\leq 1+\log_{\Lambda}\gamma,

where γ:=i𝒩si\gamma:=\underset{i\in\mathcal{N}}{\sum}\|s_{i}\|_{\infty} and η:=min{1,η}\eta^{\prime}:=\min\{1,\eta\}.

Proof.

Let N(k){N}(k) and N(k,ω){N}(k,\omega) denote the minimum number of cubes of size |K|Λk×|K|Λk×|K|Λk\frac{|K|}{\Lambda^{k}}\times\frac{|K|}{\Lambda^{k}}\times\dots\frac{|K|}{\Lambda^{k}} which covers GfG_{f^{*}} and Gf,ωG_{f^{*},\omega} respectively, where Gf,ω={(x,f(x)):xlω(K)}G_{f^{*},\omega}=\{(x,f^{*}(x)):x\in l_{\omega}(K)\} for ω𝒩k\omega\in\mathcal{N}^{k}.
For i𝒩,ω𝒩k,ki\in\mathcal{N},\omega\in\mathcal{N}^{k},k\in\mathbb{N} and x,xlω(K)x,x^{\prime}\in l_{\omega}(K), we have

|f(li(x))f(li(x))|\displaystyle|f^{*}(l_{i}(x))-f^{*}(l_{i}(x^{\prime}))|
(3.4)si|f(x)f(x)|+f|si(x)si(x)|+|qi(x)qi(x)|\displaystyle\overset{(\ref{2101e1})}{\leq}\|s_{i}\|_{\infty}|f^{*}(x)-f^{*}(x^{\prime})|+\|f^{*}\|_{\infty}|s_{i}(x)-s_{i}(x^{\prime})|+|q_{i}(x)-q_{i}(x^{\prime})|
siN(k,ω)|K|Λk+fOscω(si)+Oscω(qi).\displaystyle\leq\|s_{i}\|_{\infty}\frac{{N}(k,\omega)|K|}{\Lambda^{k}}+\|f^{*}\|_{\infty}\text{Osc}_{\omega}(s_{i})+\text{Osc}_{\omega}(q_{i}).

For i𝒩,ω𝒩ki\in\mathcal{N},\omega\in\mathcal{N}^{k} and kk\in\mathbb{N}, we get Gf,(i,ω)G_{f^{*},(i,\omega)} is contained in a cuboid of size |K|Λk+1×|K|Λk+1×|K|Λk+1×siN(k,ω)|K|Λk+fOscω(si)+Oscω(qi)\frac{|K|}{\Lambda^{k+1}}\times\frac{|K|}{\Lambda^{k+1}}\times\dots\frac{|K|}{\Lambda^{k+1}}\times\frac{\|s_{i}\|_{\infty}{N}(k,\omega)|K|}{\Lambda^{k}}+\|f^{*}\|_{\infty}\text{Osc}_{\omega}(s_{i})+\text{Osc}_{\omega}(q_{i}).
Since Λ>1\Lambda>1 and

Gf=(3)ω𝒩kGf,ωfork,G_{f^{*}}\overset{(\ref{47e4})}{=}\underset{\omega\in\mathcal{N}^{k}}{\cup}G_{f^{*},\omega}~{}\;\;\text{for}~{}k\in\mathbb{N}, (4.10)

we get

N(k+1)ω𝒩k+1N(k+1,ω)=i𝒩ω𝒩kN(k+1,(i,ω))\displaystyle{N}(k+1)\leq\underset{\omega\in\mathcal{N}^{k+1}}{\sum}{N}(k+1,\omega)=\underset{i\in\mathcal{N}}{\sum}\underset{\omega\in\mathcal{N}^{k}}{\sum}{N}(k+1,(i,\omega))
i𝒩ω𝒩k(Λk+1|K|(siN(k,ω)|K|Λk+fOscω(si)+Oscω(qi))+1)\displaystyle~{}~{}\leq\underset{i\in\mathcal{N}}{\sum}\underset{\omega\in\mathcal{N}^{k}}{\sum}\left(\frac{\Lambda^{k+1}}{|K|}\left(\frac{\|s_{i}\|_{\infty}{N}(k,\omega)|K|}{\Lambda^{k}}+\|f^{*}\|_{\infty}\text{Osc}_{\omega}(s_{i})+\text{Osc}_{\omega}(q_{i})\right)+1\right)
ΛγN(k)+Λk+1|K|i𝒩(f[si]η+[qi]η)Λk(logΛNη)+Nk+1\displaystyle~{}~{}\leq\Lambda\gamma{N}(k)+\frac{\Lambda^{k+1}}{|K|}\underset{i\in\mathcal{N}}{\sum}\left(\|f^{*}\|_{\infty}[s_{i}]_{\eta}+[q_{i}]_{\eta}\right)\Lambda^{k\left(\log_{\Lambda}N-\eta\right)}+N^{k+1}
ΛγN(k)+NkΛk(1η)C,\displaystyle~{}~{}\leq\Lambda\gamma{N}(k)+N^{k}\Lambda^{k(1-\eta^{\prime})}C,

for kk\in\mathbb{N}, where C=Λ|K|i𝒩(f[si]η+[qi]η)+NC=\frac{\Lambda}{|K|}\underset{i\in\mathcal{N}}{\sum}\left(\|f^{*}\|_{\infty}[s_{i}]_{\eta}+[q_{i}]_{\eta}\right)+N.
Via the mathematical induction method, for k,k\in\mathbb{N}, we get

N(k+1)(Λγ)2N(k1)+Λγ(NΛ1η)k1C+(NΛ1η)kC\displaystyle{N}(k+1)\leq(\Lambda\gamma)^{2}{N}(k-1)+\Lambda\gamma\left(N\Lambda^{1-\eta^{\prime}}\right)^{k-1}C+\left(N\Lambda^{1-\eta^{\prime}}\right)^{k}C
(Λγ)3N(k2)+C((Λγ)2(NΛ1η)k2+Λγ(NΛ1η)k1+(NΛ1η)k)\displaystyle~{}\leq(\Lambda\gamma)^{3}{N}(k-2)+C\left((\Lambda\gamma)^{2}\left(N\Lambda^{1-\eta^{\prime}}\right)^{k-2}+\Lambda\gamma\left(N\Lambda^{1-\eta^{\prime}}\right)^{k-1}+\left(N\Lambda^{1-\eta^{\prime}}\right)^{k}\right)
(Λγ)kN(1)+C((Λγ)k1NΛ1η+(Λγ)k2(NΛ1η)2++(NΛ1η)k).\displaystyle\leq(\Lambda\gamma)^{k}{N}(1)+C\left((\Lambda\gamma)^{k-1}N\Lambda^{1-\eta^{\prime}}+(\Lambda\gamma)^{k-2}\left(N\Lambda^{1-\eta^{\prime}}\right)^{2}+\dots+\left(N\Lambda^{1-\eta^{\prime}}\right)^{k}\right).

𝐶𝑎𝑠𝑒(i).\mathit{Case}~{}(i). Consider γNΛη\gamma\leq\frac{N}{\Lambda^{\eta^{\prime}}}, then for kk\in\mathbb{N}, we have

N(k+1)(Λγ)kN(1)+C(NΛ1η)k(1+ΛηγN++(ΛηγN)k1)\displaystyle{N}(k+1)\leq(\Lambda\gamma)^{k}{N}(1)+C\left(N\Lambda^{1-\eta^{\prime}}\right)^{k}\left(1+\frac{\Lambda^{\eta^{\prime}}\gamma}{N}+\dots+\left(\frac{\Lambda^{\eta^{\prime}}\gamma}{N}\right)^{k-1}\right)
Λk(NΛη)kN(1)+C(NΛ1η)kk\displaystyle~{}~{}\leq\Lambda^{k}\left(\frac{N}{\Lambda^{\eta^{\prime}}}\right)^{k}{N}(1)+C\left(N\Lambda^{1-\eta^{\prime}}\right)^{k}k
(NΛ1η)k+1(k+1)(N(1)+C).\displaystyle~{}~{}\leq\left(N\Lambda^{1-\eta^{\prime}}\right)^{k+1}(k+1)(N(1)+C).

Therefore, we get

dim¯B(Gf)=lim supklogN(k+1)log(Λk+1|K|)1η+logNlogΛ.\displaystyle\overline{\dim}_{B}(G_{f^{*}})=\limsup_{k\to\infty}\frac{\log{N}(k+1)}{\log\left(\frac{\Lambda^{k+1}}{|K|}\right)}\leq 1-\eta^{\prime}+\frac{\log N}{\log\Lambda}.

𝐶𝑎𝑠𝑒(ii).\mathit{Case}~{}(ii). Consider γ>NΛη,\gamma>\frac{N}{\Lambda^{\eta^{\prime}}}, then for kk\in\mathbb{N}, we have

N(k+1)(Λγ)kN(1)+C(Λγ)k1Λ(NΛη)(1+NΛηγ++(NΛηγ)k1)\displaystyle{N}(k+1)\leq(\Lambda\gamma)^{k}{N}(1)+C(\Lambda\gamma)^{k-1}\Lambda\left(\frac{N}{\Lambda^{\eta^{\prime}}}\right)\left(1+\frac{N}{\Lambda^{\eta^{\prime}}\gamma}+\dots+\left(\frac{N}{\Lambda^{\eta^{\prime}}\gamma}\right)^{k-1}\right)
(Λγ)kN(1)+C(Λγ)k1Λγ11NΛηγ\displaystyle\leq(\Lambda\gamma)^{k}{N}(1)+C(\Lambda\gamma)^{k-1}\Lambda\gamma\frac{1}{1-\frac{N}{\Lambda^{\eta^{\prime}}\gamma}}
(Λγ)k+1(N(1)+C1NΛηγ).\displaystyle\leq(\Lambda\gamma)^{k+1}\left({N}(1)+\frac{C}{1-\frac{N}{\Lambda^{\eta^{\prime}}\gamma}}\right).

Hence

dim¯B(Gf)1+logΛγ.\displaystyle\overline{\dim}_{B}(G_{f^{*}})\leq 1+\log_{\Lambda}\gamma.

Let us denote Λ01=mini𝒩ri\Lambda_{0}^{-1}=\underset{i\in\mathcal{N}}{\min}~{}r_{i}, and for r{0,1,2,,m}r\in\{0,1,2,\dots,m\}, we denote:

  • -

    γ1,r=i𝒩si,1,r\gamma_{1,r}=\underset{i\in\mathcal{N}}{\sum}s_{i,1,r}, where

    si,1,r={|si|,if r=0,si is a constant and qi is affine|si|,if r0,si is a constant and qi is affine with respect to the rth co-ordinate 0, otherwise;s_{i,1,r}=\begin{cases}|s_{i}|,&\quad\text{if~{}}r=0,s_{i}\text{~{}is a constant and~{}}q_{i}\text{~{}is affine}\\ |s_{i}|,&\quad\text{if~{}}r\neq 0,s_{i}\text{~{}is a constant and~{}}\\ &\quad q_{i}\text{~{}is affine with respect to the $r^{\text{th}}$ co-ordinate ~{}}\\ 0,&\quad\text{~{}~{}otherwise;}\end{cases}
  • -

    γ2,r=i𝒩si,2,r\gamma_{2,r}=\underset{i\in\mathcal{N}}{\sum}s_{i,2,r}, where

    si,2,r={si,if r=0,si is a non-negative constant and qi is concavesi,if r0,si is a non-negative constant and qi is concave with respect to the rth co-ordinate 0, otherwise;s_{i,2,r}=\begin{cases}s_{i},&\quad\text{if~{}}r=0,s_{i}\text{~{}is a non-negative constant and~{}}q_{i}\text{~{}is concave}\\ s_{i},&\quad\text{if~{}}r\neq 0,s_{i}\text{~{}is a non-negative constant and~{}}\\ &\quad q_{i}\text{~{}is concave with respect to the $r^{\text{th}}$ co-ordinate~{}}\\ 0,&\quad\text{~{}~{}otherwise;}\end{cases}
  • -

    γ3,r=i𝒩si,3,r\gamma_{3,r}=\underset{i\in\mathcal{N}}{\sum}s_{i,3,r}, where

    si,3,r={si,if r=0,si is a non-negative constant and qi is convexsi,if r0,si is a non-negative constant and qi is convex with respect to the rth co-ordinate 0, otherwise.s_{i,3,r}=\begin{cases}s_{i},&\quad\text{if~{}}r=0,s_{i}\text{~{}is a non-negative constant and~{}}q_{i}\text{~{}is convex}\\ s_{i},&\quad\text{if~{}}r\neq 0,s_{i}\text{~{}is a non-negative constant and~{}}\\ &\quad q_{i}\text{~{}is convex with respect to the $r^{\text{th}}$ co-ordinate~{}}\\ 0,&\quad\text{~{}~{}otherwise.}\end{cases}
Lemma 4.1.

Assume that there exist y1,y2,y3Vy_{1},y_{2},y_{3}\in V and λ(0,1)\lambda\in(0,1) such that y3=(1λ)y1+λy2y_{3}=(1-\lambda)y_{1}+\lambda y_{2} and the set {(y1,p(y1)),(y2,p(y2)),(y3,p(y3))}\{(y_{1},p(y_{1})),(y_{2},p(y_{2})),(y_{3},p(y_{3}))\} is not collinear i.e., L:=p(y3)((1λ)p(y1)+λp(y2))0L:=p(y_{3})-((1-\lambda)p(y_{1})+\lambda p(y_{2}))\neq 0. Then for ω𝒩k,k\omega\in\mathcal{N}^{k},k\in\mathbb{N}, we get

  • (i)

    Gf,ωG_{f^{*},\omega} must cover a set of height sω1,1,0sω2,1,0sωk,1,0|L|s_{\omega_{1},1,0}s_{\omega_{2},1,0}\dots s_{\omega_{k},1,0}|L|;

  • (ii)

    Gf,ωG_{f^{*},\omega} must cover a set of height sω1,2,0sω2,2,0sωk,2,0Ls_{\omega_{1},2,0}s_{\omega_{2},2,0}\dots s_{\omega_{k},2,0}L if L>0L>0;

  • (iii)

    Gf,ωG_{f^{*},\omega} must cover a set of height sω1,3,0sω2,3,0sωk,3,0|L|s_{\omega_{1},3,0}s_{\omega_{2},3,0}\dots s_{\omega_{k},3,0}|L| if L<0L<0.

Proof.

Let us suppose that L>0L>0.
Since lil_{i}’s are similarities on m\mathbb{R}^{m}, they are affine maps.
Thus, for ω𝒩k,k\omega\in\mathcal{N}^{k},k\in\mathbb{N}, we get

lω(y3)=(1λ)lω(y1)+λlω(y2).l_{\omega}(y_{3})=(1-\lambda)l_{\omega}(y_{1})+\lambda l_{\omega}(y_{2}). (4.11)

For i𝒩i\in\mathcal{N} such that sis_{i} is a non-negative constant and qiq_{i} is concave, we get

gi(y3,p(y3))((1λ)gi(y1,p(y1))+λgi(y2,p(y2)))\displaystyle g_{i}(y_{3},p(y_{3}))-((1-\lambda)g_{i}(y_{1},p(y_{1}))+\lambda g_{i}(y_{2},p(y_{2})))
=siL+qi((1λ)y1+λy2)((1λ)qi(y1)+λqi(y2))siL.\displaystyle~{}~{}~{}=s_{i}L+q_{i}((1-\lambda)y_{1}+\lambda y_{2})-((1-\lambda)q_{i}(y_{1})+\lambda q_{i}(y_{2}))\geq s_{i}L. (4.12)

For i,j𝒩i,j\in\mathcal{N} such that si,sjs_{i},s_{j} are non-negative constants and qi,qjq_{i},q_{j} are concave, we get

gi(fj(y3,p(y3)))((1λ)gi(fj(y1,p(y1)))+λgi(fj(y2,p(y2))))\displaystyle g_{i}(f_{j}(y_{3},p(y_{3})))-((1-\lambda)g_{i}(f_{j}(y_{1},p(y_{1})))+\lambda g_{i}(f_{j}(y_{2},p(y_{2}))))
=(4.11)si(gj(y3,p(y3))((1λ)gj(y1,p(y1))+λgj(y2,p(y2))))\displaystyle~{}\overset{(\ref{1701e2})}{=}s_{i}(g_{j}(y_{3},p(y_{3}))-((1-\lambda)g_{j}(y_{1},p(y_{1}))+\lambda g_{j}(y_{2},p(y_{2}))))
+qi((1λ)lj(y1)+λlj(y2))((1λ)qi(lj(y1))+λqi(lj(y2)))\displaystyle~{}\;\;+q_{i}((1-\lambda)l_{j}(y_{1})+\lambda l_{j}(y_{2}))-((1-\lambda)q_{i}(l_{j}(y_{1}))+\lambda q_{i}(l_{j}(y_{2})))
(4)sisjL.\displaystyle~{}\;\overset{(\ref{81eq1})}{\geq}s_{i}s_{j}L.

Via the mathematical induction method, for i𝒩i\in\mathcal{N} and ω𝒩k1,k1\omega\in\mathcal{N}^{k-1},k-1\in\mathbb{N}, we get

|gi(fω(y3,p(y3)))((1λ)gi(fω(y1,p(y1)))+λgi(fω(y2,p(y2))))|\displaystyle|g_{i}(f_{\omega}(y_{3},p(y_{3})))-((1-\lambda)g_{i}(f_{\omega}(y_{1},p(y_{1})))+\lambda g_{i}(f_{\omega}(y_{2},p(y_{2}))))|
si,2,0sω1,2,0sω2,2,0sωk,2,0L.\displaystyle\;\geq s_{i,2,0}s_{\omega_{1},2,0}s_{\omega_{2},2,0}\dots s_{\omega_{k},2,0}L. (4.13)

Since ff^{*} is a continuous function passing through fω(y1,p(y1)),fω(y2,p(y2))f_{\omega}(y_{1},p(y_{1})),f_{\omega}(y_{2},p(y_{2})) and fω(y2,p(y2))f_{\omega}(y_{2},p(y_{2})), and by using (4.11) and (4), we get Gf,ωG_{f^{*},\omega} must cover a set of height sω1,2,0sω2,2,0sωk,2,0Ls_{\omega_{1},2,0}s_{\omega_{2},2,0}\dots s_{\omega_{k},2,0}L, for ω𝒩k,k\omega\in\mathcal{N}^{k},k\in\mathbb{N}.
In a similar way, we can prove the other cases also. ∎

Lemma 4.2.

Let us consider li(x)=(l1i1(x1),l2i2(x2),,lmim(xm))l_{i}(x)=(l_{1i_{1}}(x_{1}),l_{2i_{2}}(x_{2}),\dots,l_{mi_{m}}(x_{m})) for xmx\in\mathbb{R}^{m} and i𝒩i\in\mathcal{N}, where luiu:l_{ui_{u}}:\mathbb{R}\to\mathbb{R} are affine maps for u{1,2,,m}u\in\{1,2,\dots,m\}. Assume that there exist y1=(t1,t2,,tr1,tr1,tr+1,,tm),y2=(t1,t2,,tr1,tr2,tr+1,,tm),y_{1}=(t_{1},t_{2},\dots,t_{r-1},t_{r_{1}},t_{r+1},\dots,t_{m}),y_{2}=(t_{1},t_{2},\dots,t_{r-1},t_{r_{2}},t_{r+1},\dots,t_{m}), y3=(t1,t2,,tr1,tr3,tr+1,,tm)Vy_{3}=(t_{1},t_{2},\dots,t_{r-1},t_{r_{3}},t_{r+1},\dots,t_{m})\in V for some r{1,2,,m}r\in\{1,2,\dots,m\}, and λ(0,1)\lambda\in(0,1) such that y3=(1λ)y1+λy2y_{3}=(1-\lambda)y_{1}+\lambda y_{2} and L=p(y3)((1λ)p(y1)+λp(y2))0L=p(y_{3})-((1-\lambda)p(y_{1})+\lambda p(y_{2}))\neq 0. Then for ω𝒩k,k\omega\in\mathcal{N}^{k},k\in\mathbb{N}, we get

  • (i)

    Gf,ωG_{f^{*},\omega} must cover a set of height sω1,1,rsω2,1,rsωk,1,r|L|s_{\omega_{1},1,r}s_{\omega_{2},1,r}\dots s_{\omega_{k},1,r}|L|;

  • (ii)

    Gf,ωG_{f^{*},\omega} must cover a set of height sω1,2,rsω2,2,rsωk,2,rLs_{\omega_{1},2,r}s_{\omega_{2},2,r}\dots s_{\omega_{k},2,r}L if L>0L>0;

  • (iii)

    Gf,ωG_{f^{*},\omega} must cover a set of height sω1,3,rsω2,3,rsωk,3,r|L|s_{\omega_{1},3,r}s_{\omega_{2},3,r}\dots s_{\omega_{k},3,r}|L| if L<0L<0.

Proof.

Using similar arguments of Lemma 4.1, we can prove this result. ∎

Theorem 4.2.

Let ff^{*} be a multivariate FIF derived from Case 2. Assume that the interpolation points are not collinear, i.e., there exist r{1,2,,m},y1,y2,y3Vr\in\{1,2,\dots,m\},y_{1},y_{2},y_{3}\in V and L0L\neq 0 as in the framework of Lemma 4.2. If:

  • (i)

    γ1,r0\gamma_{1,r}\neq 0, then

    1+logΛ0(γ1,r)dim¯B(Gf);1+\log_{\Lambda_{0}}(\gamma_{1,r})\leq\underline{\dim}_{B}\left(G_{f^{*}}\right);
  • (ii)

    L>0L>0 and γ2,r0\gamma_{2,r}\neq 0, then

    1+logΛ0(γ2,r)dim¯B(Gf);1+\log_{\Lambda_{0}}(\gamma_{2,r})\leq\underline{\dim}_{B}\left(G_{f^{*}}\right);
  • (iii)

    L<0L<0 and γ3,r0\gamma_{3,r}\neq 0, then

    1+logΛ0(γ3,r)dim¯B(Gf).1+\log_{\Lambda_{0}}(\gamma_{3,r})\leq\underline{\dim}_{B}\left(G_{f^{*}}\right).
Proof.

Let N0(k){N}_{0}(k) denote the minimum number of cubes of side length |K|0Λ0k\frac{|K|_{0}}{\Lambda_{0}^{k}} that covers GfG_{f^{*}}, where |K|0|K|_{0} is the minimum of the side lengths of KK.
Let us suppose that γ1,r0\gamma_{1,r}\neq 0.
From Lemma 4.2, we get Gf,ωG_{f^{*},\omega} must cover a cuboid of size |K|0Λ0k×|K|0Λ0k×sω1,1,rsω2,1,rsωk,1,r|L|\frac{|K|_{0}}{\Lambda_{0}^{k}}\times\dots\frac{|K|_{0}}{\Lambda_{0}^{k}}\times s_{\omega_{1},1,r}s_{\omega_{2},1,r}\dots s_{\omega_{k},1,r}|L|, for ω𝒩k,k\omega\in\mathcal{N}^{k},k\in\mathbb{N}.
Thus

N0(k)ω𝒩kΛ0k|K|0sω1,1,rsω2,1,rsωk,1,r|L|=Λ0k|K|0γ1,rk|L|fork.{N}_{0}(k)\geq\underset{\omega\in\mathcal{N}^{k}}{\sum}\frac{\Lambda_{0}^{k}}{|K|_{0}}s_{\omega_{1},1,r}s_{\omega_{2},1,r}\dots s_{\omega_{k},1,r}|L|=\frac{\Lambda_{0}^{k}}{|K|_{0}}\gamma_{1,r}^{k}|L|~{}~{}~{}\text{for}~{}k\in\mathbb{N}. (4.14)

Therefore

dim¯B(Gf)=lim infklogN0(k)log(Λ0k|K|0)1+logγ1,rlogΛ0.\displaystyle\underline{\dim}_{B}(G_{f^{*}})=\liminf_{k\to\infty}\frac{\log{N}_{0}(k)}{\log\left(\frac{\Lambda_{0}^{k}}{|K|_{0}}\right)}\geq 1+\frac{\log\gamma_{1,r}}{\log\Lambda_{0}}.

A similar argument works for other cases as well. ∎

Corollary 4.1.

Let ff^{*} be a multivariate FIF derived from Case 2, qi𝒞η(K)q_{i}\in\mathcal{C}^{\eta}(K) and sis_{i} be a constant for i𝒩i\in\mathcal{N}. Assume that the interpolation points are not collinear (i.e., there exists r{1,2,,m}r\in\{1,2,\dots,m\} as in Lemma 4.2)

  • -

    and either qiq_{i} is affine with respect to the rthr^{\text{th}} co-ordinate for i𝒩i\in\mathcal{N}
    or

  • -

    L>0L>0, qiq_{i} is concave with respect to the rthr^{\text{th}} co-ordinate and si0s_{i}\geq 0 for i𝒩i\in\mathcal{N}
    or

  • -

    L<0L<0, qiq_{i} is convex with respect to the rthr^{\text{th}} co-ordinate and si0s_{i}\geq 0 for i𝒩i\in\mathcal{N}.

If:

  • (i)

    0<γNΛη,0<\gamma\leq\frac{N}{\Lambda^{\eta^{\prime}}}, then

    1+logΛ0γdim¯B(Gf)dim¯B(Gf)1η+logΛN;1+\log_{\Lambda_{0}}\gamma\leq\underline{\dim}_{B}\left(G_{f^{*}}\right)\leq\overline{\dim}_{B}\left(G_{f^{*}}\right)\leq 1-\eta^{\prime}+\log_{\Lambda}N;
  • (ii)

    γ>NΛη,\gamma>\frac{N}{\Lambda^{\eta^{\prime}}}, then

    1+logΛ0γdim¯B(Gf)dim¯B(Gf)1+logΛγ;1+\log_{\Lambda_{0}}\gamma\leq\underline{\dim}_{B}\left(G_{f^{*}}\right)\leq\overline{\dim}_{B}\left(G_{f^{*}}\right)\leq 1+\log_{\Lambda}\gamma;
  • (iii)

    nu=nn_{u}=n and {xuiu}iu=0nu\{x_{ui_{u}}\}_{i_{u}=0}^{n_{u}} are equally spaced points for u{1,2,,m}u\in\{1,2,\dots,m\}, then

    dimB(Gf)={1+logγlogn,if γ>nmη,m,ifγnm1andη=1.\dim_{B}\left(G_{f^{*}}\right)=\begin{cases}1+\frac{\log\gamma}{\log n},&\quad\text{if~{}}\gamma>n^{m-\eta^{\prime}},\\ m,&\quad\text{if}~{}\gamma\leq n^{m-1}~{}\text{and}~{}\eta^{\prime}=1.\end{cases}
Theorem 4.3.

Let nn\in\mathbb{N} and ff^{*} be a FIF on SG with respect to the data pp on V=VnV=V_{n} as in Remark 3.2. Assume that there exist y1,y2,y3Vy_{1},y_{2},y_{3}\in V and L0L\neq 0 as in the framework of Lemma 4.1. If:

  • (i)

    γ1,00\gamma_{1,0}\neq 0, then

    1+log2nγ1,0dim¯B(Gf);1+\log_{2^{n}}\gamma_{1,0}\leq\underline{\dim}_{B}\left(G_{f^{*}}\right);
  • (ii)

    L>0L>0 and γ2,00\gamma_{2,0}\neq 0, then

    1+log2nγ2,0dim¯B(Gf);1+\log_{2^{n}}\gamma_{2,0}\leq\underline{\dim}_{B}\left(G_{f^{*}}\right);
  • (iii)

    L<0L<0 and γ3,00\gamma_{3,0}\neq 0, then

    1+log2nγ3,0dim¯B(Gf);1+\log_{2^{n}}\gamma_{3,0}\leq\underline{\dim}_{B}\left(G_{f^{*}}\right);
  • (iv)

    si,qi𝒞η(SG)s_{i},q_{i}\in\mathcal{C}^{\eta}(\text{SG}) for i𝒩i\in\mathcal{N} and either γ1,0=γ\gamma_{1,0}=\gamma (or) L>0L>0 and γ2,0=γ\gamma_{2,0}=\gamma (or) L<0L<0 and γ3,0=γ\gamma_{3,0}=\gamma, then

    dimB(Gf)={1+logγlog2n,if γ>(32η)n,log3log2,if γ(32)n and η=1.\dim_{B}\left(G_{f^{*}}\right)=\begin{cases}1+\frac{\log\gamma}{\log 2^{n}},&\quad\text{if~{}}\gamma>\left(\frac{3}{2^{\eta^{\prime}}}\right)^{n},\\ \frac{\log 3}{\log 2},&\quad\text{if~{}}\gamma\leq\left(\frac{3}{2}\right)^{n}\text{~{}and~{}}\eta^{\prime}=1.\end{cases}
Proof.

From the assumption, we get N=3n,rν=12nN=3^{n},r_{\nu}=\frac{1}{2^{n}} for ν𝒩={1,2,3}n\nu\in\mathcal{N}=\{1,2,3\}^{n} and Λ0=Λ=2n\Lambda_{0}=\Lambda=2^{n}.
Let NS(k){N}_{\text{S}}(k) and NS(k,ω){N}_{\text{S}}(k,\omega) denote the minimum number of sets belonging to the family

{T×[z,z+|K|2nk]:Tis an equilateral triangle of side length |K|2nk},\left\{T\times\left[z,z+\frac{|K|}{2^{nk}}\right]:T~{}\text{is an equilateral triangle of side length~{}}\frac{|K|}{2^{nk}}\right\},

which covers GfG_{f^{*}} and Gf,ωG_{f^{*},\omega} respectively.
Let us suppose that γ1,00\gamma_{1,0}\neq 0.
From Lemma 4.1, for k,k\in\mathbb{N}, we get

NS(k)=ω𝒩kNS(k,ω)ω𝒩k2nk|K|sω1,1,0sω2,1,0sωk,1,0|L|=2nkγ1,0k|L||K|.{N}_{\text{S}}(k)=\underset{\omega\in\mathcal{N}^{k}}{\sum}{N}_{\text{S}}(k,\omega)\geq\underset{\omega\in\mathcal{N}^{k}}{\sum}\frac{2^{nk}}{|K|}s_{\omega_{1},1,0}s_{\omega_{2},1,0}\dots s_{\omega_{k},1,0}|L|=\frac{2^{nk}\gamma_{1,0}^{k}|L|}{|K|}. (4.15)

Since

N|K|2nk(Gf)NS(k)3N|K|2nk(Gf)fork,{N}_{\frac{|K|}{2^{nk}}}(G_{f^{*}})\leq{N}_{\text{S}}(k)\leq 3{N}_{\frac{|K|}{2^{nk}}}(G_{f^{*}})~{}~{}\text{for}~{}k\in\mathbb{N},

we have

dim¯B(Gf)=lim infklogNS(k)log(2nk|K|)(4.15)1+log2nγ1,0.\displaystyle\underline{\dim}_{B}(G_{f^{*}})=\liminf_{k\to\infty}\frac{\log{N}_{\text{S}}(k)}{\log\left(\frac{2^{nk}}{|K|}\right)}\overset{(\ref{7324e1})}{\geq}1+\log_{2^{n}}\gamma_{1,0}.

In a similar way, we can prove the other cases. ∎

Remark 4.2.

By using Lemma 4.1 and 4.2, in a similar way, we can estimate non-trivial lower bounds of the box dimension of FIFs on many different domains such as triangle, Sierpiński sickle etc.

Theorem 4.4.

Let ff^{*} be a FIF on an interval derived from Case 2, si,qi𝒞η(K)s_{i},q_{i}\in\mathcal{C}^{\eta}(K) for i𝒩i\in\mathcal{N} and {x1i1}i1=0n1\{x_{1i_{1}}\}_{i_{1}=0}^{n_{1}} be a equally spaced points collection. If γ0>N1η\gamma_{0}>N^{1-\eta} and limrN(r)(N2η)r=\underset{r\to\infty}{\lim}\frac{N(r)}{\left(N^{2-\eta}\right)^{r}}=\infty, then

1+logN(γ0)dim¯B(Gf)dim¯B(Gf)1+logN(γ),1+\log_{N}(\gamma_{0})\leq\underline{\dim}_{B}\left(G_{f^{*}}\right)\leq\overline{\dim}_{B}\left(G_{f^{*}}\right)\leq 1+\log_{N}(\gamma),

where γ0:=i𝒩si0\gamma_{0}:=\sum_{i\in\mathcal{N}}\|s_{i}\|_{0} and si0=inf{|si(x)|:xK}\|s_{i}\|_{0}=\inf\{|s_{i}(x)|:x\in K\}.

Proof.

From assumption, we have m=1,ri=1Nm=1,r_{i}=\frac{1}{N} for i𝒩i\in\mathcal{N} and Λ0=Λ=N\Lambda_{0}=\Lambda=N. From Theorem 4.1, we get the upper bound of dim¯B(Gf)\overline{\dim}_{B}\left(G_{f^{*}}\right).
For i𝒩,ω𝒩k,ki\in\mathcal{N},\omega\in\mathcal{N}^{k},k\in\mathbb{N} and x,xlω(K)x,x^{\prime}\in l_{\omega}(K), we have

|f(li(x))f(li(x))|\displaystyle|f^{*}(l_{i}(x))-f^{*}(l_{i}(x^{\prime}))|
(3.4)si0|f(x)f(x)|f|si(x)si(x)||qi(x)qi(x)|.\displaystyle\overset{(\ref{2101e1})}{\geq}\|s_{i}\|_{0}|f^{*}(x)-f^{*}(x^{\prime})|-\|f^{*}\|_{\infty}|s_{i}(x)-s_{i}(x^{\prime})|-|q_{i}(x)-q_{i}(x^{\prime})|.

For i𝒩,ω𝒩ki\in\mathcal{N},\omega\in\mathcal{N}^{k} and kk\in\mathbb{N}, we get Gf,(i,ω)G_{f^{*},(i,\omega)} must cover at least a rectangle of size |K|Nk+1×si0(N(k,ω)2)|K|NkfOscω(si)Oscω(qi)\frac{|K|}{N^{k+1}}\times\frac{\|s_{i}\|_{0}({N}(k,\omega)-2)|K|}{N^{k}}-\|f^{*}\|_{\infty}\text{Osc}_{\omega}(s_{i})-\text{Osc}_{\omega}(q_{i}).
From (4.10), we have

N(k+1)=i𝒩ω𝒩kN(k+1,(i,ω))\displaystyle{N}(k+1)=\underset{i\in\mathcal{N}}{\sum}\underset{\omega\in\mathcal{N}^{k}}{\sum}{N}(k+1,(i,\omega))
i𝒩ω𝒩kNk+1|K|(si0(N(k,ω)2)|K|NkfOscω(si)Oscω(qi))\displaystyle~{}~{}\geq\underset{i\in\mathcal{N}}{\sum}\underset{\omega\in\mathcal{N}^{k}}{\sum}\frac{N^{k+1}}{|K|}\left(\frac{\|s_{i}\|_{0}({N}(k,\omega)-2)|K|}{N^{k}}-\|f^{*}\|_{\infty}\text{Osc}_{\omega}(s_{i})-\text{Osc}_{\omega}(q_{i})\right)
Nγ0(N(k)2Nk)Nk+1|K|i𝒩(f[si]η+[qi]η)Nk(1η)\displaystyle~{}~{}\geq N\gamma_{0}({N}(k)-2N^{k})-\frac{N^{k+1}}{|K|}\underset{i\in\mathcal{N}}{\sum}\left(\|f^{*}\|_{\infty}[s_{i}]_{\eta}+[q_{i}]_{\eta}\right)N^{k\left(1-\eta\right)}
Nγ0N(k)Nk(2η)C,\displaystyle~{}~{}\geq N\gamma_{0}{N}(k)-N^{k(2-\eta)}C^{\prime},

for kk\in\mathbb{N}, where C=N|K|i𝒩(f[si]η+[qi]η)+2Nγ0C^{\prime}=\frac{N}{|K|}\underset{i\in\mathcal{N}}{\sum}\left(\|f^{*}\|_{\infty}[s_{i}]_{\eta}+[q_{i}]_{\eta}\right)+2N\gamma_{0}.
Via the mathematical induction method, we get

N(k)(Nγ0)krN(r)C((Nγ0)kr1(N2η)r+(Nγ0)kr2(N2η)r+1\displaystyle N(k)\geq\left(N\gamma_{0}\right)^{k-r}N(r)-C^{\prime}\left(\left(N\gamma_{0}\right)^{k-r-1}\left(N^{2-\eta}\right)^{r}+\left(N\gamma_{0}\right)^{k-r-2}\left(N^{2-\eta}\right)^{r+1}\right.
++(N2η)k1)\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}\quad\left.+\cdots+\left(N^{2-\eta}\right)^{k-1}\right)
=(Nγ0)krN(r)C(Nγ0)kr1(N2η)r(1+N1ηγ0++(N1ηγ0)kr1)\displaystyle~{}~{}=\left(N\gamma_{0}\right)^{k-r}N(r)-C^{\prime}\left(N\gamma_{0}\right)^{k-r-1}\left(N^{2-\eta}\right)^{r}\left(1+\frac{N^{1-\eta}}{\gamma_{0}}+\cdots+\left(\frac{N^{1-\eta}}{\gamma_{0}}\right)^{k-r-1}\right)
(Nγ0)krN(r)C(Nγ0)kr1(N2η)r11N1ηγ0\displaystyle~{}~{}\geq\left(N\gamma_{0}\right)^{k-r}N(r)-C^{\prime}\left(N\gamma_{0}\right)^{k-r-1}\left(N^{2-\eta}\right)^{r}\frac{1}{1-\frac{N^{1-\eta}}{\gamma_{0}}}
=(Nγ0)k(N2ηNγ0)r(N(r)(N2η)rCNγ0(1N1ηγ0)),\displaystyle~{}~{}=\left(N\gamma_{0}\right)^{k}\left(\frac{N^{2-\eta}}{N\gamma_{0}}\right)^{r}\left(\frac{N(r)}{\left(N^{2-\eta}\right)^{r}}-\frac{C^{\prime}}{N\gamma_{0}\left(1-\frac{N^{1-\eta}}{\gamma_{0}}\right)}\right),

for k>rk>r.
By assumption, there exists rr^{\prime}\in\mathbb{N} such that

N(r)(N2η)rCNγ0(1N1ηγ0)>0.\frac{N(r^{\prime})}{\left(N^{2-\eta}\right)^{r^{\prime}}}-\frac{C^{\prime}}{N\gamma_{0}\left(1-\frac{N^{1-\eta}}{\gamma_{0}}\right)}>0.

Thus

N(k)(Nγ0)kC′′,N(k)\geq\left(N\gamma_{0}\right)^{k}C^{\prime\prime},

for k>rk>r^{\prime}, where C′′=(N1ηγ0)r(N(r)(N2η)rCNγ0(1N1ηγ0))C^{\prime\prime}=\left(\frac{N^{1-\eta}}{\gamma_{0}}\right)^{r^{\prime}}\left(\frac{N(r^{\prime})}{\left(N^{2-\eta}\right)^{r^{\prime}}}-\frac{C^{\prime}}{N\gamma_{0}\left(1-\frac{N^{1-\eta}}{\gamma_{0}}\right)}\right).
Hence

dim¯B(Gf)=lim infklogN(k)log(Nk|K|)limklog(Nγ0)klogNk=1+logγ0logN.\displaystyle\underline{\dim}_{B}(G_{f^{*}})=\liminf_{k\to\infty}\frac{\log{N}(k)}{\log\left(\frac{N^{k}}{|K|}\right)}\geq\lim_{k\to\infty}\frac{\log\left(N\gamma_{0}\right)^{k}}{\log N^{k}}=1+\frac{\log\gamma_{0}}{\log N}.

Corollary 4.2.

Let ff^{*} be a FIF on an interval, si,qis_{i},q_{i} be continuous bounded variation maps for i𝒩i\in\mathcal{N}, {x1i1}i1=0n1\{x_{1i_{1}}\}_{i_{1}=0}^{n_{1}} be a equally spaced points collection. If the interpolation points are not collinear (i.e., there exists L0L\neq 0 as in Lemma 4.1), and either γ1,0>1\gamma_{1,0}>1 (or) L>0L>0 and γ2,0>1\gamma_{2,0}>1 (or) L<0L<0 and γ3,0>1\gamma_{3,0}>1, then

1+logN(γ0)dim¯B(Gf)dim¯B(Gf)1+logN(γ).1+\log_{N}(\gamma_{0})\leq\underline{\dim}_{B}\left(G_{f^{*}}\right)\leq\overline{\dim}_{B}\left(G_{f^{*}}\right)\leq 1+\log_{N}(\gamma).
Proof.

From assumption, we get si,qi𝒞η(K)s_{i},q_{i}\in\mathcal{C}^{\eta}(K) with η=1\eta=1 for i𝒩i\in\mathcal{N}.
Let us suppose that γ1,0>1\gamma_{1,0}>1.
From Lemma 4.1, for k,k\in\mathbb{N}, we get

N(k)=ω𝒩kN(k,ω)ω𝒩kNk|K|sω1,1,0sω2,1,0sωk,1,0|L|=Nkγ1,0k|L||K|.{N}(k)=\underset{\omega\in\mathcal{N}^{k}}{\sum}{N}(k,\omega)\geq\underset{\omega\in\mathcal{N}^{k}}{\sum}\frac{N^{k}}{|K|}s_{\omega_{1},1,0}s_{\omega_{2},1,0}\dots s_{\omega_{k},1,0}|L|=\frac{N^{k}\gamma_{1,0}^{k}|L|}{|K|}.

Since γ1,0>1\gamma_{1,0}>1, we get

limkN(k)Nk=.\underset{k\to\infty}{\lim}\frac{N(k)}{N^{k}}=\infty.

Since γ0γ1,0>1\gamma_{0}\geq\gamma_{1,0}>1, by using Theorem 4.4, we conclude

1+logN(γ0)dim¯B(Gf)dim¯B(Gf)1+logN(γ).1+\log_{N}(\gamma_{0})\leq\underline{\dim}_{B}\left(G_{f^{*}}\right)\leq\overline{\dim}_{B}\left(G_{f^{*}}\right)\leq 1+\log_{N}(\gamma).

In a similar way, we can prove the cases. ∎

Example 4.1.

Let us consider the data set {(x0,0),(x1,1/2),(x2,1/3),(x3,0)}\left\{(x_{0},0),(x_{1},1/2),(x_{2},1/3),(x_{3},0)\right\} and the signature ϵ1=(0,0,0)\epsilon_{1}=(0,0,0), where 0=x0<x1<x2<x3=10=x_{0}<x_{1}<x_{2}<x_{3}=1.
Let gi:[0,1]×,i{1,2,3}g_{i}:[0,1]\times\mathbb{R}\to\mathbb{R},i\in\{1,2,3\} given by

g1(x,z)=xη12+f(x)z4,g2(x,z)=xη26+z2+12,g3(x,z)=xη33+3z4+13,\displaystyle g_{1}(x,z)=\frac{x^{\eta_{1}}}{2}+\frac{f(x)z}{4},g_{2}(x,z)=\frac{-x^{\eta_{2}}}{6}+\frac{z}{2}+\frac{1}{2},g_{3}(x,z)=\frac{-x^{\eta_{3}}}{3}+\frac{3z}{4}+\frac{1}{3},

for (x,z)[0,1]×(x,z)\in[0,1]\times\mathbb{R}, where f(x)=sin(x)f(x)=\sin(x) for x[0,1]x\in[0,1] or f(x)=1f(x)=1 for x[0,1],η1(0,1]x\in[0,1],\eta_{1}\in(0,1] and η2,η3[1,)\eta_{2},\eta_{3}\in[1,\infty).
We have:
-  si,qi𝒞η([0,1])s_{i},q_{i}\in\mathcal{C}^{\eta}([0,1]) for i{1,2,3}i\in\{1,2,3\}, where η=min{1,η1}\eta=\min\{1,\eta_{1}\};
- γ=32,γ2,1=54\gamma=\frac{3}{2},\gamma_{2,1}=\frac{5}{4} if fsinf\equiv\sin and γ2,1=γ\gamma_{2,1}=\gamma if f1f\equiv 1;
- γ3Λη\gamma\leq\frac{3}{\Lambda^{\eta}} if ηlogΛ2\eta\leq\log_{\Lambda}2 and γ>3Λη\gamma>\frac{3}{\Lambda^{\eta}} if η>logΛ2\eta>\log_{\Lambda}2.
𝐶𝑎𝑠𝑒(i).\mathit{Case}~{}(i). Consider x1=4/15x_{1}=4/15 and x2=3/5x_{2}=3/5, then we get Λ0=154\Lambda_{0}=\frac{15}{4}, Λ=52\Lambda=\frac{5}{2}, x1=(149)x0+49x2x_{1}=\left(1-\frac{4}{9}\right)x_{0}+\frac{4}{9}x_{2} and L=p(x1)((149)p(x0)+49p(x2))>0L=p(x_{1})-\left(\left(1-\frac{4}{9}\right)p(x_{0})+\frac{4}{9}p(x_{2})\right)>0.
Based on Theorem 4.1 and 4.2, we get

dim¯B(Gf){1+log154(54),if fsin,1+log154(32),if f1\displaystyle\underline{\dim}_{B}\left(G_{f^{*}}\right)\geq\begin{cases}1+\log_{\frac{15}{4}}\left(\frac{5}{4}\right),&\text{if~{}}f\equiv\sin,\\ 1+\log_{\frac{15}{4}}\left(\frac{3}{2}\right),&\text{if~{}}f\equiv 1\end{cases}

and

dim¯B(Gf){1η+log523,if ηlog2.52,1+log52(32),otherwise.\displaystyle\overline{\dim}_{B}\left(G_{f^{*}}\right)\leq\begin{cases}1-\eta+\log_{\frac{5}{2}}3,&\text{if~{}}\eta\leq\log_{2.5}2,\\ 1+\log_{\frac{5}{2}}\left(\frac{3}{2}\right),&\text{otherwise}.\end{cases}

𝐶𝑎𝑠𝑒(ii).\mathit{Case}~{}(ii). Consider x1=1/3,x2=2/3,f1x_{1}=1/3,x_{2}=2/3,f\equiv 1 and η1>log32\eta_{1}>\log_{3}2, then we get Λ0=Λ=3,γ2,1=γ\Lambda_{0}=\Lambda=3,\gamma_{2,1}=\gammax1=(112)x0+12x2x_{1}=\left(1-\frac{1}{2}\right)x_{0}+\frac{1}{2}x_{2} and L=p(x1)((112)p(x0)+12p(x2))>0L=p(x_{1})-\left(\left(1-\frac{1}{2}\right)p(x_{0})+\frac{1}{2}p(x_{2})\right)>0.
From Corollary 4.1, we get

dimB(Gf)=1+log(1.5)log3.\dim_{B}(G_{f^{*}})=1+\frac{\log\left(1.5\right)}{\log 3}.
Refer to caption
Figure 1: Graph of FIF for fsinf\equiv\sin with (η1,η2,η3)=(0.8,2,1)(\eta_{1},\eta_{2},\eta_{3})=(0.8,2,1) derived from the
Case (i)(i) of Example 4.1 and we get 1.1688dim¯B(Gf)dim¯B(Gf)1.442511.1688\leq\underline{\dim}_{B}\left(G_{f^{*}}\right)\leq\overline{\dim}_{B}\left(G_{f^{*}}\right)\leq 1.44251.
Refer to caption
Figure 2: Graph of FIF for f1f\equiv 1 with (η1,η2,η3)=(0.8,2,1)(\eta_{1},\eta_{2},\eta_{3})=(0.8,2,1) derived from the
Case (i)(i) of Example 4.1 and we get 1.3067dim¯B(Gf)dim¯B(Gf)1.442511.3067\leq\underline{\dim}_{B}\left(G_{f^{*}}\right)\leq\overline{\dim}_{B}\left(G_{f^{*}}\right)\leq 1.44251.

5 Conclusion

According to the research done so far on the dimensional analysis of FIFs, FIFs on specific domains have been taken and their box dimensions have been analyzed. It is important to note that each domain so far considered can be written as the attractor of some suitable IFS. In this paper, we have analyzed the box dimension of FIF with its domain considered as an attractor of an arbitrary IFS. Hence, most of the FIFs constructed so far will become particular cases of our theory. Also, studies have shown that the domain of any new FIF can be likely be obtained as an attractor of a suitable IFS. Hence, in the future, if any new FIF is considered in a different domain, our dimensional results can be applied to such FIFs as well. Hence, the theory on which we have worked will act as a single platform for the study of the dimensional analysis of a large class of FIFs.

References

  • [1] Akhtar, M.N., Guru Prem Prasad, M., Navascués, M.A.: Box dimension of α\alpha-fractal function with variable scaling factors in subintervals. Chaos Solitons Fractals 103, 440–449 (2017)
  • [2] Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2(2), 303–329 (1986)
  • [3] Barnsley, M.F., Massopust, P.R.: Bilinear fractal interpolation and box dimension. J. Approx. Theory 192, 362–378 (2015)
  • [4] Bouboulis, P., Dalla, L., Drakopoulos, V.: Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension. J. Approx. Theory 141(2), 99–117 (2006)
  • [5] Bouboulis, P., Dalla, L.: A general construction of fractal interpolation functions on n\mathbb{R}^{n}. European J. Appl. Math. 18(4), 449–476 (2007)
  • [6] Carvalho, A.: Box dimension, oscillation and smoothness in function spaces. J. Funct. Spaces Appl. 3(3), 287–320 (2005)
  • [7] Chand, A.K.B., Vijender, N., Viswanathan, P., Tetenov, A.V.: Affine zipper fractal interpolation functions. Bit Numer. Math. 60(2), 319–344 (2020)
  • [8] Çelik, D., Koçak, Ş., Özdemir, Y.: Fractal interpolation on the Sierpinski gasket. J. Math. Anal. Appl. 337(1), 343–347 (2008)
  • [9] Deliu, A., Jawerth, B.: Geometrical dimension versus smoothness. Constr. Approx. 8, 211–222 (1992)
  • [10] Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley &\& Sons, Chichester (1990)
  • [11] Feng, Z., Sun, X.: Box-counting dimensions of fractal interpolation surfaces derived from fractal interpolation functions. J. Math. Anal. Appl. 412(1), 416–425 (2014)
  • [12] Geronimo, J.S., Hardin, D.: Fractal interpolation surfaces and a related 2-D multiresolution analysis. J. Math. Anal. Appl. 176(2), 561–586 (1993)
  • [13] Hardin, D.P., Massopust, P.R.: The capacity for a class of fractal functions. Comm. Math. Phys. 105(3), 455–460 (1986)
  • [14] Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)
  • [15] Jha, S., Chand, A.K.B., Navascués, M.A., Sahu, A.: Approximation properties of bivariate α\alpha-fractal functions and dimension results. Appl. Anal. 100(16), 3426–3444 (2021)
  • [16] Kigami, J.: Harmonic calculus on p.c.f. self-similar sets. Trans. Amer. Math. Soc. 335(2), 721–755 (1993)
  • [17] Kumar, D., Chand, A.K.B., Massopust, P.R.: Multivariate zipper fractal functions. Numer. Funct. Anal. Optim. 44(14), 1538–1569 (2023)
  • [18] Małysz, R.: The Minkowski dimension of the bivariate fractal interpolation surfaces. Chaos Solitons Fractals 27, 1147–1156 (2006)
  • [19] Massopust, P.R.: Fractal surfaces. J. Math. Anal. Appl. 151(1), 275–290 (1990)
  • [20] Massopust, P.R.: Fractal Functions, Fractal Surface, and Wavelets. Academic Press, New York (1994)
  • [21] Navascués, M. A.: Approximation of fixed points and fractal functions by means of different iterative algorithms. Chaos Solitons Fractals 180, 1–7 (2024)
  • [22] Pandey, K.K., Viswanathan, P.V.: Multivariate fractal interpolation functions: some approximation aspects and an associated fractal interpolation operator. Electron. Trans. Numer. Anal. 55, 627–651 (2022)
  • [23] Prokaj, R.D., Raith, P., Simon, K.: Fractal dimensions of continuous piecewise linear iterated function systems. Proc. Amer. Math. Soc. 151(11), 4703–4719 (2023)
  • [24] Ruan, H.J.: Fractal interpolation functions on post critically finite self-similar sets. Fractals 18(1), 119–125 (2010)
  • [25] Sahu, A., Priyadarshi, A.: On the box-counting dimension of graphs of harmonic functions on the Sierpiński gasket. J. Math. Anal. Appl. 487(2), 1–16 (2020)