This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

BPHZ Renormalization in Gaussian Rough Paths

Hayahide Ito Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan h-ito@sigmath.es.osaka-u.ac.jp
Abstract.

We construct a procedure for Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ) renormalization of a rough path in view of the relation between rough path theory and regularity structure. We also provide a plain expression of the BPHZ-renormalized model in a rough path. BPHZ renormalization plays a central role in the theory of singular stochastic partial differential equations and assures the convergence of the model in the regularity structure. Here we demonstrate that the renormalization is also effective in a rough path setting by considering its application to rough path theory and mathematical finance.

2020 Mathematics Subject Classification:
Primary 60L30, Secondary 60L20, 91-10

1. Introduction

We consider the following Itô-type stochastic integral: for T>0T>0 and a smooth function f:f:\mathbb{R}\to\mathbb{R},

(1.1) 0Tf(WtH)𝑑Wt,\int_{0}^{T}f(W_{t}^{H})dW_{t},

where WtW_{t} is a standard one-dimensional Brownian motion, and WtHW_{t}^{H} is a fractional Brownian motion with Hurst parameter H(0,1/2)H\in(0,1/2) given by

WtH=2H0t|ts|H1/2𝑑Ws.W_{t}^{H}=\sqrt{2H}\int_{0}^{t}|t-s|^{H-1/2}dW_{s}.

Integral (1.1) emerges in option pricing in a financial market with rough volatility (see [1]), so the Wong–Zakai approximation of (1.1) is valuable for financial mathematics. However, for any mollifier ϱ:\varrho:\mathbb{R}\to\mathbb{R}, the limit

limε00Tf(WtH,ε)𝑑Wtε\lim_{\varepsilon\to 0}\int_{0}^{T}f(W_{t}^{H,\varepsilon})dW_{t}^{\varepsilon}

does not exist in general, where ϱε()=ϱ(/ε)/ε\varrho^{\varepsilon}(\cdot)=\varrho(\cdot/\varepsilon)/\varepsilon, WtH,ε=(ϱεWH)tW_{t}^{H,\varepsilon}=(\varrho^{\varepsilon}\ast W^{H})_{t}, and Wtε=(ϱεW)tW_{t}^{\varepsilon}=(\varrho^{\varepsilon}\ast W)_{t}. This failure is due to fractional Brownian motion WtHW_{t}^{H} having lower regularity than Brownian motion WtW_{t}. Bayer et al. [1] demonstrated the following revised Wong–Zakai approximation by adding a term to prevent the divergence.

Theorem 1.1.

Let 𝒞ε(t)=E[W˙ε(t)WH,ε(t)]\mathscr{C}^{\varepsilon}(t)=E[\dot{W}^{\varepsilon}(t)W^{H,\varepsilon}(t)]. Then, we have the following limit:

(1.2) 0Tf(WtH,ε)𝑑Wtε0T𝒞ε(t)f(WtH,ε)𝑑t0Tf(WtH)𝑑Wt,ε0.\int_{0}^{T}f(W_{t}^{H,\varepsilon})dW_{t}^{\varepsilon}-\int_{0}^{T}\mathscr{C}^{\varepsilon}(t)f^{\prime}(W_{t}^{H,\varepsilon})dt\to\int_{0}^{T}f(W_{t}^{H})dW_{t},\,\,\,\,\varepsilon\to 0.

The result is proved by the theory of regularity structures by Hairer [8]. The following sketch illustrates the relations between the convergence of the integral and the regularity structure.

Πε\textstyle{\Pi^{\varepsilon}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}R\scriptstyle{R}ΠB,ε\textstyle{{\Pi}^{B,\varepsilon}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ε0\scriptstyle{\varepsilon\to 0}Π\textstyle{\Pi\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0Tf(WtH,ε)𝑑Wtε\textstyle{\int_{0}^{T}f(W_{t}^{H,\varepsilon})dW_{t}^{\varepsilon}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0Tf(WtH,ε)𝑑WtεCε\textstyle{\int_{0}^{T}f(W_{t}^{H,\varepsilon})dW_{t}^{\varepsilon}-C^{\varepsilon}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0Tf(WtH)𝑑Wt\textstyle{\int_{0}^{T}f(W_{t}^{H})dW_{t}}

We construct a regularity structure and a model Πε\Pi^{\varepsilon} compatible with the integral 0Tf(WtH,ε)𝑑Wt\int_{0}^{T}f(W_{t}^{H,\varepsilon})dW_{t}. Because model Πε\Pi^{\varepsilon} does not converge to any model simply , we revise it by adding some terms to obtain model ΠB,ε\Pi^{B,\varepsilon}. This procedure ΠεΠB,ε\Pi^{\varepsilon}\mapsto\Pi^{B,\varepsilon} is called renormalization, and ΠB,ε\Pi^{B,\varepsilon} is called a renormalized model. We can show that the renormalized model ΠB,ε\Pi^{B,\varepsilon} converges to a model Π\Pi in the norm of model . We can also show that the renormalized model ΠB,ε\Pi^{B,\varepsilon} and the model Π\Pi correspond to the revised integral 0Tf(WtH,ε)𝑑Wtε0T𝒞ε(t)f(WtH,ε)𝑑t\int_{0}^{T}f(W_{t}^{H,\varepsilon})dW_{t}^{\varepsilon}-\int_{0}^{T}\mathscr{C}^{\varepsilon}(t)f^{\prime}(W_{t}^{H,\varepsilon})dt and the Itô integral 0Tf(WtH)𝑑Wt\int_{0}^{T}f(W_{t}^{H})dW_{t}, respectively. The renormalized model ΠB,ε\Pi^{B,\varepsilon} can be written explicitly as

ΠsB,ε(𝟏)=Πsε(𝟏),ΠsB,ε(Ξ)=Πsε(Ξ),ΠsB,ε((Ξ^)n)=Πsε((Ξ^)n),\displaystyle\Pi_{s}^{B,\varepsilon}({\bf 1})=\Pi_{s}^{\varepsilon}({\bf 1}),\,\,\Pi_{s}^{B,\varepsilon}(\Xi)=\Pi_{s}^{\varepsilon}(\Xi),\,\,\Pi_{s}^{B,\varepsilon}(\mathcal{I}(\hat{\Xi})^{n})=\Pi_{s}^{\varepsilon}(\mathcal{I}(\hat{\Xi})^{n}),
(1.3) ΠsB,ε(Ξ(Ξ^)n)=Πsε(Ξ(Ξ)n)n𝒞ε(t)Πsε(Ξ(Ξ)n1),n1.\displaystyle\Pi_{s}^{B,\varepsilon}(\Xi\mathcal{I}(\hat{\Xi})^{n})=\Pi_{s}^{\varepsilon}(\Xi\mathcal{I}(\Xi)^{n})-n\mathscr{C}^{\varepsilon}(t)\Pi_{s}^{\varepsilon}(\Xi\mathcal{I}(\Xi)^{n-1}),\,\,\,\,n\geq 1.

This renormalization stems from probabilistic and analytic results such as a decomposition by the Wick product and a transformation into the Skorokhod integral; see, for example, [1, Lemma 3.9] and [1, Lemma 3.11].

Meanwhile, Bruned et al. [6] demonstrated an algebraic procedure for renormalization in regularity structures, known as Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ) renormalization, and Chandra and Hairer [7] showed that a model subjected to BPHZ renormalization converges to some model under desired conditions. Thus, BPHZ renormalization is key in the theory of regularity structures. Also, study of the relation between rough paths and regularity structures gave rise to discussion on the renormalization of rough paths, given that they are a counterpart of regularity structures ([3], [4], [5]).

To supplement the current trend in the theory of regularity structures, herein we focus on BPHZ renormalization of a regularity structure corresponding to a rough path generated by Gaussian processes. We also consider an application of BPHZ renormalization to the Wong–Zakai approximation of integral (1.1). The central theorem in this article is as follows, which corresponds to Theorem 2.7.

Theorem 1.2.

Let symbols Ξ1,,Ξd\Xi_{1},\ldots,\Xi_{d} correspond to Gaussian processes ξ1,,ξd\xi_{1},\ldots,\xi_{d}, respectively. Let Π\Pi be a model expressing the rough path generated by ξ1,,ξd\xi_{1},\ldots,\xi_{d}, and let Π^\hat{\Pi} be the BPHZ-renormalized model of Π\Pi. Assume that for any a1,,ad,b1,,bda_{1},\ldots,a_{d},b_{1},\ldots,b_{d}\in\mathbb{R}, i=1daiξ˙i(0)+j=1dbj(0)ξj\sum_{i=1}^{d}a_{i}\dot{\xi}_{i}(0)+\sum_{j=1}^{d}b_{j}(0)\xi_{j} is a normal distribution with zero mean. For 1id1\leq i\leq d and n1n\geq 1, we have

(1.4) Π^z(𝟏)=Πz(𝟏),Π^z(Ξ)=Πz(Ξ),Π^z((Ξi)n)=Πz((Ξi)n).\hat{\Pi}_{z}({\bf 1})=\Pi_{z}({\bf 1}),\,\,\,\,\hat{\Pi}_{z}(\Xi)=\Pi_{z}(\Xi),\,\,\,\,\hat{\Pi}_{z}(\mathcal{I}(\Xi_{i})^{n})=\Pi_{z}(\mathcal{I}(\Xi_{i})^{n}).

In addition, if |Ξi(Ξj)n|<0|\Xi_{i}\mathcal{I}(\Xi_{j})^{n}|<0 for 1i,jd1\leq i,j\leq d, and nn\in\mathbb{N}, then we have

(1.5) Π^z(Ξi(Ξj)n)=Πz(Ξi(Ξj)n)nE[ξ˙i(0)ξj(0)]Πz((Ξj)n1).\hat{\Pi}_{z}(\Xi_{i}\mathcal{I}(\Xi_{j})^{n})=\Pi_{z}(\Xi_{i}\mathcal{I}(\Xi_{j})^{n})-nE[\dot{\xi}_{i}(0)\xi_{j}(0)]\Pi_{z}(\mathcal{I}(\Xi_{j})^{n-1}).

The result of Theorem 1.2 demonstrates a plain and handy expression of BPHZ renormalization under the assumption of a rough path generated by Gaussian processes, while Bruned et al. [6] provided BPHZ renormalization in a more general setting. We apply Theorem 1.2 to the Wong–Zakai approximation, leading to the following theorem that corresponds to Theorem 3.4.

Theorem 1.3.

The processes ξε\xi^{\varepsilon} and ξ^ε\hat{\xi}^{\varepsilon} correspond to Brownian motion and fractional Brownian motion convoluted by a mollifier, respectively. Then, we have

Π^zε𝟏=Πzε(𝟏),Π^zεΞ=Πzε(Ξ),Π^zε((Ξ^)n)=Πzε((Ξ^)n),\displaystyle\hat{\Pi}_{z}^{\varepsilon}{\bf 1}=\Pi_{z}^{\varepsilon}({\bf 1}),\,\,\hat{\Pi}_{z}^{\varepsilon}\Xi=\Pi_{z}^{\varepsilon}(\Xi),\,\,\hat{\Pi}_{z}^{\varepsilon}(\mathcal{I}(\hat{\Xi})^{n})=\Pi_{z}^{\varepsilon}(\mathcal{I}(\hat{\Xi})^{n}),
(1.6) Π^zεΞ(Ξ^)n=ΠzεΞ(Ξ^)nnE[ξ˙ε(0)ξ^ε(0)]ΠzεΞ(Ξ^)n1,n1.\displaystyle\hat{\Pi}_{z}^{\varepsilon}\Xi\mathcal{I}(\hat{\Xi})^{n}=\Pi_{z}^{\varepsilon}\Xi\mathcal{I}(\hat{\Xi})^{n}-nE[\dot{\xi}^{\varepsilon}(0)\hat{\xi}^{\varepsilon}(0)]\Pi_{z}^{\varepsilon}\Xi\mathcal{I}(\hat{\Xi})^{n-1},\,\,n\geq 1.

Comparing (1.3) with (1.6), we realize that BPHZ renormalization is mostly similar to the counterpart given by Bayer et al. [1]. In addition, Theorem 3.5 shows that the BPHZ-renormalized model Π^ε\hat{\Pi}^{\varepsilon} converges to a naive model Π\Pi, leading to BPHZ renormalization also being effective in the Wong–Zakai approximation in integral (1.1).

This article is organized as follows. In Section 2, we discuss the construction of a model on the regularity structure and define the BPHZ renormalization of that model. In particular, we provide a simple expression of the BPHZ-renormalized model in symbols corresponding to a geometric rough path, provided that the noises are Gaussian. In Section 3, we consider applying these results to a rough volatility model in a financial market, and we demonstrate the correspondence between the renormalization in [1] and BPHZ renormalization.

2. Regularity Structure of Gaussian Rough Paths

In this section, we construct a regularity structure of Gaussian rough paths, which reflects a regularity structure expressing integral (1.1). We also consider BPHZ renormalization in the regularity structure and provide a plain expression of the renormalization.

Let ξ¯i(1id)\bar{\xi}_{i}\,\,(1\leq i\leq d) be a stochastic process on \mathbb{R} such that it has αi\alpha_{i}-continuity almost surely, where αi(0,1)\alpha_{i}\in(0,1). Also, let ξiε:=ϱεξ¯i\xi_{i}^{\varepsilon}:=\varrho_{\varepsilon}\ast\bar{\xi}_{i}, where ϱε=ϱ(/ε)/ε,ε>0\varrho_{\varepsilon}=\varrho(\cdot/\varepsilon)/\varepsilon,\,\,\varepsilon>0 and ϱ\varrho is a smoothing mollifier. We denote ξiε\xi_{i}^{\varepsilon} simply by ξi\xi_{i} unless ε\varepsilon must be emphasized. Now, we construct a regularity structure that can express the integrals

(2.1) 0Tξi𝑑ξj,0Tξi2ξj,,0Tξin𝑑ξj,,  1i,jd.\int_{0}^{T}\xi_{i}d\xi_{j},\int_{0}^{T}\xi_{i}^{2}\xi_{j},\ldots,\int_{0}^{T}\xi_{i}^{n}d\xi_{j},\ldots,\,\,1\leq i,j\leq d.

2.1. Symbols and Tree Expression

First, we introduce symbols corresponding to the integrands and integrations in (2.1), which are fundamental elements in the regularity structure. A finite set 𝔏\mathfrak{L} and a map ||:𝔏|\cdot|:\mathfrak{L}\to\mathbb{R} are defined respectively as

(2.2) 𝔏:={,Ξi;i=1,2,,d},\displaystyle\mathfrak{L}:=\{\mathcal{I},\Xi_{i};i=1,2,\ldots,d\},
(2.3) ||:=1,|Ξi|:=αi1.\displaystyle|\mathcal{I}|:=1,\,\,|\Xi_{i}|:=\alpha_{i}-1.
Remark 2.1.

The set 𝔏\mathfrak{L} corresponds to the symbols that express kernels and noises, so we set 𝔏={,Ξ1,,Ξd}\mathfrak{L}=\{\mathcal{I},\Xi_{1},\ldots,\Xi_{d}\}. Also, \mathcal{I} corresponds to the convolution of the kernel KK with Ξ1,,Ξd\Xi_{1},\ldots,\Xi_{d} to ξ¯1,,ξ¯d\bar{\xi}_{1},\ldots,\bar{\xi}_{d}, respectively. The degree corresponds to the regularity of the noise or kernel, so we set ||=1|\mathcal{I}|=1 and |Ξi|=αi1|\Xi_{i}|=\alpha_{i}-1 where αi(0,1)\alpha_{i}\in(0,1).

We construct a triplet (A,T,G)(A,T,G) as follows.

  • We define a set SS and a vector space TT as

    (2.4) S:={𝟏,Ξi,n,Ξin,(Ξi),Ξi(Ξj)n;1i,jd,n},\displaystyle S:=\{{\bf 1},\Xi_{i},\mathcal{I}^{n},\Xi_{i}\mathcal{I}^{n},\mathcal{I}(\Xi_{i}),\Xi_{i}\mathcal{I}(\Xi_{j})^{n};1\leq i,j\leq d,n\in\mathbb{N}\},
    T:=S,\displaystyle T:=\langle S\rangle,

    where S\langle S\rangle is a vector space spanned by elements in SS.

  • A set AA\subset\mathbb{R} is given by

    A:={|τ|;τS},A:=\{|\tau|;\tau\in S\},

    where a map ||:S|\cdot|:S\to\mathbb{R} is defined as (2.3) and

    |τ|=τ|τ|,|\tau|=\sum_{\tau^{\prime}}|\tau^{\prime}|,

    where the sum is over all τ𝔏\tau^{\prime}\in\mathfrak{L} emerging in τ\tau. For example,

    |Ξi(Ξj)|=|Ξi|+||+|Ξj|=αi+αj1,\displaystyle|\Xi_{i}\mathcal{I}(\Xi_{j})|=|\Xi_{i}|+|\mathcal{I}|+|\Xi_{j}|=\alpha_{i}+\alpha_{j}-1,
    |Ξi(Ξj)n|=|Ξi|+n(||+|Ξj|)=αi+nαj1.\displaystyle|\Xi_{i}\mathcal{I}(\Xi_{j})^{n}|=|\Xi_{i}|+n(|\mathcal{I}|+|\Xi_{j}|)=\alpha_{i}+n\alpha_{j}-1.
  • A group G:={Γh;h=(h0,h1,,hd)d+1}G:=\{\Gamma_{h};h=(h_{0},h_{1},\ldots,h_{d})\in\mathbb{R}^{d+1}\} is given by

    (2.5) Γh𝟏=𝟏,ΓhΞi=Ξi,Γh(Ξi)=(Ξi)+hi𝟏,Γh=+h0𝟏,\displaystyle\Gamma_{h}{\bf 1}={\bf 1},\,\,\Gamma_{h}\Xi_{i}=\Xi_{i},\,\,\Gamma_{h}\mathcal{I}(\Xi_{i})=\mathcal{I}(\Xi_{i})+h_{i}{\bf 1},\Gamma_{h}\mathcal{I}=\mathcal{I}+h_{0}{\bf 1},
    (2.6) Γh(ττ)=ΓhτΓhτ\displaystyle\Gamma_{h}(\tau\cdot\tau^{\prime})=\Gamma_{h}\tau\cdot\Gamma_{h}\tau^{\prime}

    for τ,τS\tau,\tau^{\prime}\in S such that ττS\tau\cdot\tau^{\prime}\in S.

We can easily show that the triplet (A,T,G)(A,T,G) is a regularity structure. An element in SS can be viewed as a rooted tree by the relations shown below (see Appendix A for details of rooted trees).

\mathcal{I}\longleftrightarrow\mathcal{I}Ξi\Xi_{i}\longleftrightarrowΞi\Xi_{i}
\longleftrightarrow\mathcal{I}Ξi\Xi_{i}(Ξi)\mathcal{I}(\Xi_{i})Ξi(Ξj)\Xi_{i}\mathcal{I}(\Xi_{j})\longleftrightarrow\mathcal{I}Ξi\Xi_{i}Ξj\Xi_{j}
Ξi(Ξj)n\Xi_{i}\mathcal{I}(\Xi_{j})^{n}\longleftrightarrowΞj\Xi_{j}Ξj\Xi_{j}\mathcal{I}\mathcal{I}Ξi\Xi_{i}ntimes\overbrace{\hskip 56.9055pt}^{n\mathrm{-times}}\cdots

2.2. Model on the Regularity Structure

We construct a model on the regularity structure (A,T,G)(A,T,G) to translate an abstract symbol in SS into a concrete function. We define 𝚷:TC(){\bf\Pi}:T\to C^{\infty}(\mathbb{R}) as

𝚷(𝟏)=1,𝚷(Ξi)(t)=ξ˙i(t),𝚷((Ξi))(t)=ξi(t),𝚷()(t)=t,\displaystyle{\bf\Pi}({\bf 1})=1,\,\,{\bf\Pi}(\Xi_{i})(t)=\dot{\xi}_{i}(t),\,\,{\bf\Pi}(\mathcal{I}(\Xi_{i}))(t)=\xi_{i}(t),{\bf\Pi}(\mathcal{I})(t)=t,
𝚷(ττ)=𝚷(τ)𝚷(τ).\displaystyle{\bf\Pi}(\tau\cdot\tau^{\prime})={\bf\Pi}(\tau)\cdot{\bf\Pi}(\tau^{\prime}).

Now, we define a model on (A,T,G)(A,T,G) by using the map 𝚷{\bf\Pi}. The pair (Π,Γ)(\Pi,\Gamma) is given by the following.

  • For ss\in\mathbb{R}, a map Πs:T\Pi_{s}:T\to\mathbb{R} is defined as

    Πs𝟏=1,ΠsΞi(t)=𝚷(Ξi)(t),\displaystyle\Pi_{s}{\bf 1}=1,\,\,\Pi_{s}\Xi_{i}(t)={\bf\Pi}(\Xi_{i})(t),
    Πs()(t)=𝚷()(t)𝚷()(s),\displaystyle\Pi_{s}(\mathcal{I})(t)={\bf\Pi}(\mathcal{I})(t)-{\bf\Pi}(\mathcal{I})(s),
    Πs((Ξi))(t)=𝚷((Ξi))(t)𝚷((Ξi))(s),\displaystyle\Pi_{s}(\mathcal{I}(\Xi_{i}))(t)={\bf\Pi}(\mathcal{I}(\Xi_{i}))(t)-{\bf\Pi}(\mathcal{I}(\Xi_{i}))(s),
    Πs(ττ)(t)=Πs(τ)(t)Πs(τ)(t)\displaystyle\Pi_{s}(\tau\cdot\tau^{\prime})(t)=\Pi_{s}(\tau)(t)\cdot\Pi_{s}(\tau^{\prime})(t)

    for τ,τS\tau,\tau^{\prime}\in S such that ττS\tau\cdot\tau^{\prime}\in S, and the domain is extended by imposing linearity.

  • For s,ts,t\in\mathbb{R}, a map Γts:TT\Gamma_{ts}:T\to T is defined as

    Γts𝟏=𝟏,Γts(Ξi)=Ξi,\displaystyle\Gamma_{ts}{\bf 1}={\bf 1},\,\,\Gamma_{ts}(\Xi_{i})=\Xi_{i},
    Γts()=+(𝚷()(t)𝚷((s)))𝟏,\displaystyle\Gamma_{ts}(\mathcal{I})=\mathcal{I}+({\bf\Pi}(\mathcal{I})(t)-{\bf\Pi}(\mathcal{I}(s))){\bf 1},
    Γts((Ξi))=(Ξi)+(𝚷((Ξi)(t)𝚷((Ξi))(s))𝟏,\displaystyle\Gamma_{ts}(\mathcal{I}(\Xi_{i}))=\mathcal{I}(\Xi_{i})+({\bf\Pi}(\mathcal{I}(\Xi_{i})(t)-{\bf\Pi}(\mathcal{I}(\Xi_{i}))(s)){\bf 1},
    Γts(ττ)=Γts(τ)Γts(τ)\displaystyle\Gamma_{ts}(\tau\cdot\tau^{\prime})=\Gamma_{ts}(\tau)\cdot\Gamma_{ts}(\tau^{\prime})

    for τ,τS\tau,\tau^{\prime}\in S such that ττS\tau\cdot\tau^{\prime}\in S, and the domain is extended by imposing linearity.

2.3. BPHZ Renormalization

We revise the model (Π,Γ)(\Pi,\Gamma) defined in Section 2.2 along the lines of the discussion in [6]. First, we introduce negative renormalization in a regularity structure. As follows, we define a set TT_{-} that plays a central role in negative renormalization:

(2.7) S:={τ1τn;τiS{𝟏},n}{𝟏},\displaystyle S_{-}:=\{\tau_{1}\sqcup\cdots\sqcup\tau_{n};\tau_{i}\in S\setminus\{{\bf 1}\},n\in\mathbb{N}\}\cup\{{\bf 1}\},
(2.8) T^:=S,\displaystyle\hat{T}_{-}:=\langle S_{-}\rangle,

where \sqcup is the disjoint union in set theory. By convention, we replace \bullet with \sqcup, which is called a forest product in [6].

Definition 2.2.
  1. (1)

    Let τT^\tau\in\hat{T}_{-}. Let AA be a subforest of τ\tau, that is, A=𝟏A={\bf 1} or AA consists of edges included in τ\tau. Then, we define RAτT^R_{A}\tau\in\hat{T}_{-} as a forest obtained by trimming edges of AA from τ\tau. RAτR_{A}\tau is called a contraction of τ\tau by AA.

  2. (2)

    We define a map Δ:T^T^T^\Delta_{-}:\hat{T}_{-}\to\hat{T}_{-}\otimes\hat{T}_{-} as

    (2.9) Δτ:=Aτ;ASARAτ,τS,\Delta_{-}\tau:=\sum_{A\subset\tau;A\in S_{-}}A\otimes R_{A}\tau,\,\,\,\,\tau\in S_{-},

    where AτA\subset\tau is a subforest of τ\tau and RAτR_{A}\tau is the contraction of τ\tau by AA, and

    Δ(i=1naiτi):=i=1naiΔτi,\Delta_{-}\left(\sum_{i=1}^{n}a_{i}\tau_{i}\right):=\sum_{i=1}^{n}a_{i}\Delta_{-}\tau_{i},

    where a1,,ana_{1},\ldots,a_{n}\in\mathbb{R} and τ1,,τnS\tau_{1},\ldots,\tau_{n}\in S_{-}. The restriction Δ|T:TT^T\Delta_{-}|_{T}:T\to\hat{T}_{-}\otimes T denotes simply Δ\Delta_{-} unless confusion occurs.

Example 2.3.
  1. (1)

    Let τ=Ξ1(Ξ2)\tau=\Xi_{1}\mathcal{I}(\Xi_{2}), A=Ξ1A=\Xi_{1}, and B=Ξ1Ξ2B=\Xi_{1}\bullet\Xi_{2}. Then, we have

    RAτ=(Ξ2),RBτ=R_{A}\tau=\mathcal{I}(\Xi_{2}),\,\,R_{B}\tau=\mathcal{I}

    because RAτR_{A}\tau and RBτR_{B}\tau are obtained by trimming the edge Ξ1\Xi_{1} and Ξ1Ξ2\Xi_{1}\bullet\Xi_{2}, respectively.

  2. (2)

    We have

    ΔΞ1\displaystyle\Delta_{-}\Xi_{1} =1Ξ1+Ξ11,\displaystyle=1\otimes\Xi_{1}+\Xi_{1}\otimes 1,
    Δ((Ξ1))\displaystyle\Delta_{-}(\mathcal{I}(\Xi_{1})) =1(Ξ1)+Ξ1+Ξ1+(Ξ1)1,\displaystyle=1\otimes\mathcal{I}(\Xi_{1})+\mathcal{I}\otimes\Xi_{1}+\Xi_{1}\otimes\mathcal{I}+\mathcal{I}(\Xi_{1})\otimes 1,
    Δ(Ξ1(Ξ1))\displaystyle\Delta_{-}(\Xi_{1}\mathcal{I}(\Xi_{1})) =1Ξ1(Ξ1)+Ξ1(Ξ1)+Ξ1Ξ1+(Ξ1)Ξ1\displaystyle=1\otimes\Xi_{1}\mathcal{I}(\Xi_{1})+\Xi_{1}\otimes\mathcal{I}(\Xi_{1})+\Xi_{1}\otimes\Xi_{1}\mathcal{I}+\mathcal{I}(\Xi_{1})\otimes\Xi_{1}
    +(Ξ1)Ξ1+Ξ1Ξ1+Ξ1Ξ1+Ξ1(Ξ1).\displaystyle+\mathcal{I}(\Xi_{1})\otimes\Xi_{1}+\Xi_{1}\mathcal{I}\otimes\Xi_{1}+\Xi_{1}\bullet\Xi_{1}\otimes\mathcal{I}+\Xi_{1}\mathcal{I}(\Xi_{1}).
Definition 2.4.
  1. (1)

    A subspace J+TJ_{+}\subset T_{-} is defined as

    J+:={τS;τ=σσ¯,σ,σ¯S,|σ|0}.J_{+}:=\langle\{\tau\in S_{-};\tau=\sigma\bullet\bar{\sigma},\,\,\sigma,\bar{\sigma}\in S_{-},\,\,|\sigma|\geq 0\}\rangle.
  2. (2)

    A quotient space TT_{-} is defined as T:=T^/J+T_{-}:=\hat{T}_{-}/J_{+}, and 𝔭ex:T^T\mathfrak{p}^{\mathrm{ex}}_{-}:\hat{T}_{-}\to T_{-} denotes the canonical projection.

  3. (3)

    We define a map Δex:TTT\Delta_{-}^{\mathrm{ex}}:T\to T_{-}\otimes T as Δex:=(𝔭exId)Δ\Delta_{-}^{\mathrm{ex}}:=(\mathfrak{p}^{\mathrm{ex}}_{-}\otimes\mathrm{Id})\Delta_{-}.

The map Δex\Delta_{-}^{\mathrm{ex}} takes forests including a tree with negative degree, which is ill-posed in taking a limit, from a whole tree. BPHZ renormalization involves finding ill-posed symbols and adding extra terms there to prevent divergence, so Δex\Delta_{-}^{\mathrm{ex}} becomes a part of BPHZ renormalization and plays a role in finding these symbols.

Definition 2.5.

For the random linear map 𝚷:TC(){\bf\Pi}:T\to C^{\infty}(\mathbb{R}) defined above, we define the following.

  1. (1)

    A character g(𝚷)g^{-}({\bf\Pi}) on T^\hat{T}_{-} is defined inductively as

    g(𝚷)(τ)=E[𝚷τ(0)],τT,\displaystyle g^{-}({\bf\Pi})(\tau)=E[{\bf\Pi}\tau(0)],\,\,\,\,\tau\in T,
    g(𝚷)(ττ)=g(𝚷)(τ)g(𝚷)(τ),τ,τT^.\displaystyle g^{-}({\bf\Pi})(\tau\bullet\tau^{\prime})=g^{-}({\bf\Pi})(\tau)\cdot g^{-}({\bf\Pi})(\tau^{\prime}),\,\,\,\,\tau,\tau^{\prime}\in\hat{T}_{-}.
  2. (2)

    A twisted negative antipode 𝒜~ex:TT^\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}:T_{-}\to\hat{T}_{-} is defined recursively as

    𝒜~ex1=1,\displaystyle\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}1=1,
    𝒜~exτ=^ex(𝒜~exId)(Δex𝔦exττ1),τT{1},\displaystyle\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\tau=-\hat{\mathcal{M}}_{-}^{\mathrm{ex}}(\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\mathrm{Id})(\Delta_{-}^{\mathrm{ex}}\mathfrak{i}_{-}^{\mathrm{ex}}\tau-\tau\otimes 1),\,\,\,\,\tau\in T_{-}\setminus\{1\},

    where ^ex\hat{\mathcal{M}}_{-}^{\mathrm{ex}} maps (τ,τ)T^×T^(\tau,\tau^{\prime})\in\hat{T}_{-}\times\hat{T}_{-} to ττT^\tau\bullet\tau^{\prime}\in\hat{T}_{-}, and 𝔦ex:TT^\mathfrak{i}_{-}^{\mathrm{ex}}:T_{-}\to\hat{T}_{-} is a canonical injective.

  3. (3)

    A pair (Π^,Γ^)(\hat{\Pi},\hat{\Gamma}) is defined as

    (2.10) Π^zτ=(g(𝚷)𝒜~exΠz)Δexτ,\displaystyle\hat{\Pi}_{z}\tau=(g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\Pi_{z})\Delta_{-}^{\mathrm{ex}}\tau,
    (2.11) Γ^zz¯τ=Γzz¯τ.\displaystyle\hat{\Gamma}_{z\bar{z}}\tau=\Gamma_{z\bar{z}}\tau.

    This pair is actually a model on TT by [6, Theorem 6.16], and we call this the BPHZ-renormalized model.

Remark 2.6.

In [6], Γ^zz¯\hat{\Gamma}_{z\bar{z}} is given by

Γ^zz¯τ=(Idγzz¯(g(𝚷)Id)Δex)Δ+exτ,\hat{\Gamma}_{z\bar{z}}\tau=(\mathrm{Id}\otimes\gamma_{z\bar{z}}(g^{-}({\bf\Pi})\otimes\mathrm{Id})\Delta_{-}^{\mathrm{ex}})\Delta_{+}^{\mathrm{ex}}\tau,

so it is not obvious that Γ^\hat{\Gamma} is equal to Γ\Gamma. For the proof of that equality, see the Appendix B.

Now, we give a plain expression of the BPHZ-renormalized model in a branched rough path, which is the central result herein.

Theorem 2.7.

Assume that for any a1,,ad,b1,,bda_{1},\ldots,a_{d},b_{1},\ldots,b_{d}\in\mathbb{R}, i=1daiξ˙i(0)+j=1dbjξj(0)\sum_{i=1}^{d}a_{i}\dot{\xi}_{i}(0)+\sum_{j=1}^{d}b_{j}\xi_{j}(0) is a normal distribution with zero mean. Then, for any 1id1\leq i\leq d, we have

(2.12) Π^z(Ξi)=Πz(Ξi),Π^z((Ξi)n)=Πz((Ξi)n).\hat{\Pi}_{z}(\Xi_{i})=\Pi_{z}(\Xi_{i}),\,\,\hat{\Pi}_{z}(\mathcal{I}(\Xi_{i})^{n})=\Pi_{z}(\mathcal{I}(\Xi_{i})^{n}).

In addition, if |Ξi(Ξj)n|<0|\Xi_{i}\mathcal{I}(\Xi_{j})^{n}|<0 for 1i,jd1\leq i,j\leq d, and nn\in\mathbb{N}, then we have

(2.13) Π^z(Ξi(Ξj)n)=Πz(Ξi(Ξj)n)nE[ξ˙i(0)ξj(0)]Πz((Ξj)n1).\hat{\Pi}_{z}(\Xi_{i}\mathcal{I}(\Xi_{j})^{n})=\Pi_{z}(\Xi_{i}\mathcal{I}(\Xi_{j})^{n})-nE[\dot{\xi}_{i}(0)\xi_{j}(0)]\Pi_{z}(\mathcal{I}(\Xi_{j})^{n-1}).

Before proving this theorem, we prepare the following lemmas.

Lemma 2.8.

Let random variables X1,,XnX_{1},\ldots,X_{n} be centered jointly normal variables. Then we have

(2.14) E[i=1nXi]=k[XikXjk],E\left[\prod_{i=1}^{n}X_{i}\right]=\sum\prod_{k}\left[X_{i_{k}}X_{j_{k}}\right],

where the sum is taken over the set of disjoint partitions {ik,jk}\{i_{k},j_{k}\} of {1,,n}\{1,\ldots,n\}. In particular, the left-hand side of the above expression is identical to zero if nn is odd.

Proof.

See [9, Theorem 1.28]. ∎

Lemma 2.9.

If |Ξi(Ξj)n|<0|\Xi_{i}\mathcal{I}(\Xi_{j})^{n}|<0 for 1i,jd1\leq i,j\leq d, and n2n\geq 2, then we have

(2.15) g(𝚷)𝒜~ex(Ξi(Ξj)n)\displaystyle g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\left(\Xi_{i}\mathcal{I}(\Xi_{j})^{n}\right) =l=0n(nl)g(𝚷)^ex(𝒜~exId)(Ξi(Ξj)l(Ξj)nl)\displaystyle=\sum_{l=0}^{n}\binom{n}{l}g^{-}({\bf\Pi})\hat{\mathcal{M}}_{-}^{\mathrm{ex}}(\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\mathrm{Id})(\Xi_{i}\mathcal{I}(\Xi_{j})^{l}\otimes\mathcal{I}(\Xi_{j})^{n-l})
(2.16) =0.\displaystyle=0.
Proof.

First, we show (2.15). Because g(𝚷)g^{-}({\bf\Pi}) and 𝒜~ex\tilde{\mathcal{A}}_{-}^{\mathrm{ex}} are multiplicative in terms of the forest product \bullet, for 1id1\leq i\leq d we have

g(𝚷)𝒜~ex(Ξiτ)\displaystyle g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}(\Xi_{i}\bullet\tau) =g(𝚷)𝒜~ex(Ξi)g(𝚷)𝒜~ex(τ)\displaystyle=g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}(\Xi_{i})\cdot g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}(\tau)
=g(𝚷)(Ξi)g(𝚷)𝒜~ex(τ)\displaystyle=-g^{-}({\bf\Pi})(\Xi_{i})\cdot g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}(\tau)
(2.17) =0.\displaystyle=0.

We denote Δex𝔦ex(Ξi(Ξj)n)\Delta_{-}^{\mathrm{ex}}\mathfrak{i}_{-}^{\mathrm{ex}}(\Xi_{i}\mathcal{I}(\Xi_{j})^{n}) by Δex𝔦ex(Ξi(Ξj)n)=pτ1(p)τ2(p)\Delta_{-}^{\mathrm{ex}}\mathfrak{i}_{-}^{\mathrm{ex}}(\Xi_{i}\mathcal{I}(\Xi_{j})^{n})=\sum_{p}\tau_{1}^{(p)}\otimes\tau_{2}^{(p)}, where τ1(p)T\tau_{1}^{(p)}\in T_{-} and τ2(p)T^\tau_{2}^{(p)}\in\hat{T}_{-}. Because |Ξi(Ξj)n|=|τ1(p)|+|τ2(p)||\Xi_{i}\mathcal{I}(\Xi_{j})^{n}|=|\tau_{1}^{(p)}|+|\tau_{2}^{(p)}|, we have the decomposition τ1(p)=τ1τm\tau_{1}^{(p)}=\tau_{1}^{\prime}\bullet\cdots\bullet\tau_{m}^{\prime} such that it satisfies either of the following conditions (a) and (b):

  1. (a)

    for any 1sm1\leq s\leq m, τs=Ξi\tau_{s}^{\prime}=\Xi_{i} or τs=Ξj\tau_{s}^{\prime}=\Xi_{j};

  2. (b)

    we have m=1m=1 and τ1=Ξi(Ξj)l(1ln)\tau_{1}^{\prime}=\Xi_{i}\mathcal{I}(\Xi_{j})^{l}\,\ (1\leq l\leq n).

By this result and (2.17), we have

g(𝚷)𝒜~ex(Ξi(Ξ)n)\displaystyle g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}(\Xi_{i}\mathcal{I}(\Xi)^{n}) =^ex(𝒜~exId)(Δex𝔦ex(Ξi(Ξj)n)Ξi(Ξj)n𝟏)\displaystyle=-\hat{\mathcal{M}}_{-}^{\mathrm{ex}}(\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\mathrm{Id})(\Delta_{-}^{\mathrm{ex}}\mathfrak{i}_{-}^{\mathrm{ex}}(\Xi_{i}\mathcal{I}(\Xi_{j})^{n})-\Xi_{i}\mathcal{I}(\Xi_{j})^{n}\otimes{\bf 1})
=l=0n(nl)g(𝚷)^ex(𝒜~exId)(Ξi(Ξj)l(Ξj)nl),\displaystyle=\sum_{l=0}^{n}\binom{n}{l}g^{-}({\bf\Pi})\hat{\mathcal{M}}_{-}^{\mathrm{ex}}(\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\mathrm{Id})(\Xi_{i}\mathcal{I}(\Xi_{j})^{l}\otimes\mathcal{I}(\Xi_{j})^{n-l}),

which is identical to (2.15).

We show (2.16) by induction. We begin by considering the case of n=2n=2. By (2.15), we have

g(𝚷)𝒜~ex(Ξi(Ξj)2)\displaystyle g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}(\Xi_{i}\mathcal{I}(\Xi_{j})^{2}) =2g(𝚷)^ex(𝒜~exId)(Ξi(Ξj)(Ξj))g(𝚷)(Ξi(Ξj)2)\displaystyle=-2g^{-}({\bf\Pi})\hat{\mathcal{M}}_{-}^{\mathrm{ex}}(\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\mathrm{Id})(\Xi_{i}\mathcal{I}(\Xi_{j})\otimes\mathcal{I}(\Xi_{j}))-g^{-}({\bf\Pi})(\Xi_{i}\mathcal{I}(\Xi_{j})^{2})
=2g(𝚷)(Ξi(Ξj)(Ξj))g(𝚷)(Ξi(Ξj)2)\displaystyle=2g^{-}({\bf\Pi})(\Xi_{i}\mathcal{I}(\Xi_{j})\bullet\mathcal{I}(\Xi_{j}))-g^{-}({\bf\Pi})(\Xi_{i}\mathcal{I}(\Xi_{j})^{2})
=2E[ξ˙i(0)ξj(0)]E[ξj(0)]E[ξ˙i(0)ξj(0)2].\displaystyle=2E[\dot{\xi}_{i}(0)\xi_{j}(0)]E[\xi_{j}(0)]-E[\dot{\xi}_{i}(0)\xi_{j}(0)^{2}].

By Theorem 2.8, we have E[ξj(0)]=E[ξ˙i(0)ξj(0)2]=0E[\xi_{j}(0)]=E[\dot{\xi}_{i}(0)\xi_{j}(0)^{2}]=0 so that g(𝚷)𝒜~ex(Ξi(Ξj))=0g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}(\Xi_{i}\mathcal{I}(\Xi_{j}))=0. Next, we consider (2.16) with nn0n\leq n_{0}. Then, by (2.15), we have

g(𝚷)𝒜~ex(Ξi(Ξj)n0+1)\displaystyle g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\left(\Xi_{i}\mathcal{I}(\Xi_{j})^{n_{0}+1}\right) =l=0n0+1(n0+1l)g(𝚷)^ex(𝒜~exId)(Ξi(Ξj)l(Ξj)n0+1l)\displaystyle=-\sum_{l=0}^{n_{0}+1}\binom{n_{0}+1}{l}g^{-}({\bf\Pi})\hat{\mathcal{M}}_{-}^{\mathrm{ex}}(\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\mathrm{Id})(\Xi_{i}\mathcal{I}(\Xi_{j})^{l}\otimes\mathcal{I}(\Xi_{j})^{n_{0}+1-l})
g(𝚷)(Ξi(Ξj)n0+1).\displaystyle-g^{-}({\bf\Pi})(\Xi_{i}\mathcal{I}(\Xi_{j})^{n_{0}+1}).

Using the assumption by induction, we have

g(𝚷)𝒜~ex(Ξi(Ξj)n0+1)\displaystyle g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\left(\Xi_{i}\mathcal{I}(\Xi_{j})^{n_{0}+1}\right) =(n0+1)(g(𝚷)g(𝚷))(𝒜~exId)(Ξi(Ξj)(Ξj)n0)\displaystyle=-(n_{0}+1)(g^{-}({\bf\Pi})\otimes g^{-}({\bf\Pi}))(\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\mathrm{Id})(\Xi_{i}\mathcal{I}(\Xi_{j})\otimes\mathcal{I}(\Xi_{j})^{n_{0}})
g(𝚷)(Ξi(Ξj)n0+1)\displaystyle-g^{-}({\bf\Pi})(\Xi_{i}\mathcal{I}(\Xi_{j})^{n_{0}+1})
=(n0+1)E[ξ˙i(0)ξj(0)]E[ξj(0)n0]E[ξ˙i(0)ξj(0)n0+1].\displaystyle=(n_{0}+1)E[\dot{\xi}_{i}(0)\xi_{j}(0)]E[\xi_{j}(0)^{n_{0}}]-E[\dot{\xi}_{i}(0)\xi_{j}(0)^{n_{0}+1}].

If n0+1n_{0}+1 is even, then we have E[ξj(0)n0+1]=E[ξ˙i(0)ξj(0)n0+1]=0E[\xi_{j}(0)^{n_{0}+1}]=E[\dot{\xi}_{i}(0)\xi_{j}(0)^{n_{0}+1}]=0. If n0+1n_{0}+1 is odd, then by Lemma 2.8 we have (n0+1)E[ξ˙i(0)ξj(0)]E[ξj(0)n0+1]=E[ξ˙i(0)ξj(0)n0+1](n_{0}+1)E[\dot{\xi}_{i}(0)\xi_{j}(0)]E[\xi_{j}(0)^{n_{0}+1}]=E[\dot{\xi}_{i}(0)\xi_{j}(0)^{n_{0}+1}]. Thus, we have g(𝚷)𝒜~ex(Ξi(Ξj)n0+1)=0g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\left(\Xi_{i}\mathcal{I}(\Xi_{j})^{n_{0}+1}\right)=0. ∎

Proof of Theorem 2.7.

First, we show (2.12). Because ΔexΞi=Ξi𝟏+𝟏Ξi\Delta_{-}^{\mathrm{ex}}\Xi_{i}=\Xi_{i}\otimes{\bf 1}+{\bf 1}\otimes\Xi_{i} and g(𝚷)Ξi=E[ξ˙i(0)]=0g^{-}({\bf\Pi})\Xi_{i}=E[\dot{\xi}_{i}(0)]=0, we have

Π^z(Ξi)=Πz(Ξi).\hat{\Pi}_{z}(\Xi_{i})=\Pi_{z}(\Xi_{i}).

We calculate Δex((Ξi)n)\Delta_{-}^{\mathrm{ex}}(\mathcal{I}(\Xi_{i})^{n}). Because there exists no tree τ(Ξi)n\tau\subset\mathcal{I}(\Xi_{i})^{n} such that |τ|<0|\tau|<0 and g(𝚷)𝒜~exτ0g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\tau\neq 0, we have

Π^z((Ξi)n)\displaystyle\hat{\Pi}_{z}(\mathcal{I}(\Xi_{i})^{n}) =(g(𝚷)𝒜~exΠz)Δex((Ξi)n)\displaystyle=(g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\Pi_{z})\Delta_{-}^{\mathrm{ex}}(\mathcal{I}(\Xi_{i})^{n})
=(g(𝚷)𝒜~exΠz)(𝟏(Ξi)n)\displaystyle=(g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\Pi_{z})({\bf 1}\otimes\mathcal{I}(\Xi_{i})^{n})
=Πz((Ξi)n).\displaystyle=\Pi_{z}(\mathcal{I}(\Xi_{i})^{n}).

Next, we show (2.13). By using (2.16) in Lemma 2.9, we have

Π^z(Ξi(Ξj)n)\displaystyle\hat{\Pi}_{z}(\Xi_{i}\mathcal{I}(\Xi_{j})^{n}) =l=1n(nl)(g(𝚷)𝒜~exΠz)(Ξi(Ξj)l(Ξj)nl)+Πz(Ξi(Ξj)n)\displaystyle=\sum_{l=1}^{n}\binom{n}{l}(g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\Pi_{z})(\Xi_{i}\mathcal{I}(\Xi_{j})^{l}\otimes\mathcal{I}(\Xi_{j})^{n-l})+\Pi_{z}(\Xi_{i}\mathcal{I}(\Xi_{j})^{n})
=n(g(𝚷)𝒜~exΠz)(Ξi(Ξj)(Ξj)n1)+Πz(Ξ(Ξj)n)\displaystyle=n(g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\Pi_{z})(\Xi_{i}\mathcal{I}(\Xi_{j})\otimes\mathcal{I}(\Xi_{j})^{n-1})+\Pi_{z}(\Xi\mathcal{I}(\Xi_{j})^{n})
=Πz(Ξi(Ξj)n)nE[ξ˙i(0)ξj(0)]Πz(Ξi(Ξj)n1),\displaystyle=\Pi_{z}(\Xi_{i}\mathcal{I}(\Xi_{j})^{n})-nE[\dot{\xi}_{i}(0)\xi_{j}(0)]\Pi_{z}(\Xi_{i}\mathcal{I}(\Xi_{j})^{n-1}),

and thus we deduce the conclusion. ∎

3. Application to a Rough Volatility Model

In this section, we provide an example of applying BHPZ renormalization to rough paths. As discussed in [1] and [2], we set a regularity structure compatible with a rough volatility model in a financial market. In [1], the following integral is considered:

(3.1) 0Tf(WsH)𝑑Ws,\int_{0}^{T}f({W}_{s}^{H})dW_{s},

where WtW_{t} is a Brownian motion and WtHW_{t}^{H} is a fractional Brownian motion with Hurst parameter H(0,1/2]H\in(0,1/2]. Here, we define the fractional Brownian motion in Riemann–Liouville form, that is, WtH:=2H0tKH(ts)𝑑WsW_{t}^{H}:=\sqrt{2H}\int_{0}^{t}K^{H}(t-s)dW_{s} where KH(t)=|t|H1/2K^{H}(t)=|t|^{H-1/2}.

Remark 3.1.

We do not directly define the model using fractional Brownian motion WHW^{H} as a driving noise because WHW^{H} does not possess stationarity. Instead, as in [2], we use a stationary noise W^\hat{W} to approximate WHW^{H}. Here, the process W^\hat{W} is defined as W^=K^Hξ\hat{W}=\hat{K}^{H}\ast\xi, where ξ\xi is a white noise on \mathbb{R}, and the kernel K^H\hat{K}^{H} is smooth on {0}\mathbb{R}\setminus\{0\}\to\mathbb{R} and satisfies the following properties:

  1. (1)

    K^H=KH\hat{K}^{H}=K^{H} on [0,T][0,T] and suppK^H[0,2T]\mathrm{supp}\,\,\hat{K}^{H}\subset[0,2T];

  2. (2)

    there exists a constant C>0C>0 such that for k=0,1,2k=0,1,2, we have

    |kK^H(u)|C|kKH(u)|.|\partial^{k}\hat{K}^{H}(u)|\leq C|\partial^{k}{K}^{H}(u)|.

We construct a regularity structure (A,T,G)(A,T,G) as follows.

  • We define a vector space TT as

    S\displaystyle S :={Ξ,Ξ(Ξ^),,Ξ(Ξ^)M,𝟏,(Ξ^),,(Ξ^)M},\displaystyle:=\{\Xi,\Xi\mathcal{I}(\hat{\Xi}),\ldots,\Xi\mathcal{I}(\hat{\Xi})^{M},{\bf 1},\mathcal{I}(\hat{\Xi}),\ldots,\mathcal{I}(\hat{\Xi})^{M}\},
    T\displaystyle T :=S,\displaystyle:=\langle S\rangle,

    where M:=min{m;(m+1)(Hκ)1/2κ>0}M:=\min\{m\in\mathbb{N};(m+1)(H-\kappa)-1/2-\kappa>0\}.

  • We define a degree |||\cdot| in TT as

    |Ξ(Ξ^)m|\displaystyle|\Xi\mathcal{I}(\hat{\Xi})^{m}| :=1/2κ+m(Hκ),m0;\displaystyle:=-1/2-\kappa+m(H-\kappa),\,\,m\geq 0;
    |(Ξ^)m|\displaystyle|\mathcal{I}(\hat{\Xi})^{m}| :=m(Hκ),m>0;\displaystyle:=m(H-\kappa),\,\,m>0;
    |𝟏|\displaystyle|{\bf 1}| :=0,\displaystyle:=0,

    and we define a set A:={|τ|;τT}A:=\{|\tau|;\tau\in T\}.

  • We define a structure group G:={Γh;h}G:=\{\Gamma_{h};h\in\mathbb{R}\} as

    Γh𝟏=𝟏,ΓhΞ=Ξ,Γh(Ξ^)=(Ξ^)+h𝟏,\displaystyle\Gamma_{h}{\bf 1}={\bf 1},\,\,\Gamma_{h}\Xi=\Xi,\,\,\Gamma_{h}\mathcal{I}(\hat{\Xi})=\mathcal{I}(\hat{\Xi})+h{\bf 1},
    Γh(ττ)=Γh(τ)Γh(τ),τ,τS.\displaystyle\Gamma_{h}(\tau\cdot\tau^{\prime})=\Gamma_{h}(\tau)\Gamma_{h}(\tau^{\prime}),\,\,\tau,\tau^{\prime}\in S.

The next step is to construct the model on (A,T,G)(A,T,G). We prepare the notation 𝕎n:2\mathbb{W}^{n}:\mathbb{R}^{2}\to\mathbb{R} defined as

𝕎n(s,t)\displaystyle\mathbb{W}^{n}(s,t) :=st(W^(r)W^(s))n𝑑ξ(r),st;\displaystyle:=\int_{s}^{t}(\hat{W}(r)-\hat{W}(s))^{n}d\xi(r),\,\,s\leq t;
𝕎n(s,t)\displaystyle\mathbb{W}^{n}(s,t) :=i=0n(ni)(W^(t)W^(s))i𝕎ni(t,s),st.\displaystyle:=-\sum_{i=0}^{n}\binom{n}{i}(\hat{W}(t)-\hat{W}(s))^{i}\mathbb{W}^{n-i}(t,s),\,\,s\geq t.
Definition 3.2.

We set the naive model (Π,Γ)(\Pi,\Gamma) in (A,T,G)(A,T,G) as

Πz𝟏=1,ΠzΞ=ξ,Πz(Ξ^)n=(W^()W^(s))n,\displaystyle\Pi_{z}{\bf 1}=1,\,\,\Pi_{z}\Xi=\xi,\,\,\Pi_{z}\mathcal{I}(\hat{\Xi})^{n}=(\hat{W}(\cdot)-\hat{W}(s))^{n},
ΠzΞ(Ξ^)n={tddt𝕎n(s,t)},\displaystyle\Pi_{z}\Xi\mathcal{I}(\hat{\Xi})^{n}=\left\{t\mapsto\frac{d}{dt}\mathbb{W}^{n}(s,t)\right\},

and

Γts𝟏=𝟏,ΓtsΞ=Ξ,ΓtsΞ(Ξ^)=(Ξ^)+(W^(t)W^(s))𝟏,\displaystyle\Gamma_{ts}{\bf 1}={\bf 1},\,\,\Gamma_{ts}\Xi=\Xi,\,\,\Gamma_{ts}\Xi\mathcal{I}(\hat{\Xi})=\mathcal{I}(\hat{\Xi})+(\hat{W}(t)-\hat{W}(s)){\bf 1},
Γtsττ=ΓtsτΓtsτ,forτ,τSwithττS,\displaystyle\Gamma_{ts}\tau\tau^{\prime}=\Gamma_{ts}\tau\Gamma_{ts}\tau^{\prime},\,\,\mathrm{for}\,\,\tau,\tau^{\prime}\in S\,\,\mathrm{with}\,\,\tau\tau^{\prime}\in S,

where ξ\xi is a white noise on \mathbb{R}, and ddt𝕎n(s,t)\frac{d}{dt}\mathbb{W}^{n}(s,t) is the derivative of 𝕎n(s,t)\mathbb{W}^{n}(s,t) in a distributional sense.

Following the procedure given in Section 2, we generate a model with smoothing noises. We fix a mollifier ϱ:\varrho:\mathbb{R}\to\mathbb{R} and set ϱε()=ϱ(/ε)/ε\varrho_{\varepsilon}(\cdot)=\varrho(\cdot/\varepsilon)/\varepsilon, ξε=ϱεξ\xi^{\varepsilon}=\varrho_{\varepsilon}\ast\xi, and ξ^ε=ϱεW^\hat{\xi}^{\varepsilon}=\varrho_{\varepsilon}\ast\hat{W} for ε>0\varepsilon>0.

Definition 3.3.

We define the smooth model (Πε,Γε)(\Pi^{\varepsilon},\Gamma^{\varepsilon}) in (A,T,G)(A,T,G) as

Πzε𝟏=1,ΠzεΞ=ξ˙ε,Πz(Ξ^)n=(ξ^ε()ξ^ε(z))n,\displaystyle\Pi_{z}^{\varepsilon}{\bf 1}=1,\,\,\Pi_{z}^{\varepsilon}\Xi=\dot{\xi}^{\varepsilon},\,\,\Pi_{z}\mathcal{I}(\hat{\Xi})^{n}=(\hat{\xi}^{\varepsilon}(\cdot)-\hat{\xi}^{\varepsilon}(z))^{n},
ΠzεΞ(Ξ^)n=ξ˙ε(ξ^ε()ξ^ε(z))n,\displaystyle\Pi_{z}^{\varepsilon}\Xi\mathcal{I}(\hat{\Xi})^{n}=\dot{\xi}^{\varepsilon}(\hat{\xi}^{\varepsilon}(\cdot)-\hat{\xi}^{\varepsilon}(z))^{n},

and

Γtsε𝟏=𝟏,ΓtsεΞ=Ξ,ΓtsεΞ(Ξ^)=(Ξ^)+(ξ^ε(t)ξ^ε(s))𝟏,\displaystyle\Gamma_{ts}^{\varepsilon}{\bf 1}={\bf 1},\,\,\Gamma_{ts}^{\varepsilon}\Xi=\Xi,\,\,\Gamma_{ts}^{\varepsilon}\Xi\mathcal{I}(\hat{\Xi})=\mathcal{I}(\hat{\Xi})+(\hat{\xi}^{\varepsilon}(t)-\hat{\xi}^{\varepsilon}(s)){\bf 1},
Γtsεττ=ΓtsετΓtsετ,forτ,τSwithττS.\displaystyle\Gamma_{ts}^{\varepsilon}\tau\tau^{\prime}=\Gamma_{ts}^{\varepsilon}\tau\Gamma_{ts}^{\varepsilon}\tau^{\prime},\,\,\mathrm{for}\,\,\tau,\tau^{\prime}\in S\,\,\mathrm{with}\,\,\tau\tau^{\prime}\in S.

Equations (2.10) and (2.11) are well-defined in each symbol τT\tau\in T so that we can construct the BPHZ-renormalized model (Π^ε,Γ^ε)(\hat{\Pi}^{\varepsilon},\hat{\Gamma}^{\varepsilon}) in (A,T,G)(A,T,G) as in Definition 2.5. By Theorem 2.7, we have the following theorem.

Theorem 3.4.

We have

(3.2) Π^zε𝟏=1,Π^zεΞ=ξ˙ε,Π^zε(Ξ^)n=(ξ^ε()ξ^ε(z))n,\displaystyle\hat{\Pi}_{z}^{\varepsilon}{\bf 1}=1,\,\,\hat{\Pi}_{z}^{\varepsilon}\Xi=\dot{\xi}^{\varepsilon},\,\,\hat{\Pi}_{z}^{\varepsilon}\mathcal{I}(\hat{\Xi})^{n}=(\hat{\xi}^{\varepsilon}(\cdot)-\hat{\xi}^{\varepsilon}(z))^{n},
(3.3) Π^zεΞ(Ξ^)n=ΠzεΞ(Ξ^)nnE[ξ˙ε(0)ξ^ε(0)]ΠzεΞ(Ξ^)n1,\displaystyle\hat{\Pi}_{z}^{\varepsilon}\Xi\mathcal{I}(\hat{\Xi})^{n}=\Pi_{z}^{\varepsilon}\Xi\mathcal{I}(\hat{\Xi})^{n}-nE[\dot{\xi}^{\varepsilon}(0)\hat{\xi}^{\varepsilon}(0)]\Pi_{z}^{\varepsilon}\Xi\mathcal{I}(\hat{\Xi})^{n-1},

and we also have Γ^ε=Γε\hat{\Gamma}^{\varepsilon}=\Gamma^{\varepsilon}.

Proof.

By applying Theorem 2.7 to the case of d=2d=2, ξ1=ξε\xi_{1}=\xi^{\varepsilon}, and ξ2=ξ^ε\xi_{2}=\hat{\xi}^{\varepsilon}, we deduce the conclusion immediately. ∎

This result corresponds to the renormalized model in [1] and [2]. In addition, BPHZ renormalization enables the model to converge to the naive model.

Theorem 3.5.

We have the following convergence in the norm of model :

(3.4) |||Π^εΠ|||0asε0.\mathopen{|\mkern-1.5mu|\mkern-1.5mu|}\hat{\Pi}^{\varepsilon}-\Pi\mathclose{|\mkern-1.5mu|\mkern-1.5mu|}\to 0\,\,\mathrm{as}\,\,\varepsilon\to 0.
Proof.

It is sufficient to prove the following claim: there exists κ>0\kappa>0 such that

|(Πs(Ξ)Π^sε(Ξ))(φsλ)|λ1/2κεκ,\displaystyle\left|(\Pi_{s}(\Xi)-\hat{\Pi}^{\varepsilon}_{s}(\Xi))(\varphi^{\lambda}_{s})\right|\lesssim\lambda^{-1/2-\kappa}\varepsilon^{\kappa},
|(Πs((Ξ^)Π^sε((Ξ^))))(φsλ)|λHκεκ,\displaystyle\left|(\Pi_{s}(\mathcal{I}(\hat{\Xi})-\hat{\Pi}^{\varepsilon}_{s}(\mathcal{I}(\hat{\Xi}))))(\varphi^{\lambda}_{s})\right|\lesssim\lambda^{H-\kappa}\varepsilon^{\kappa},
|(Πs(Ξ(Ξ^)n)Π^sε(Ξ(Ξ^)n))(φsλ)|λ1/2+nHκεκ,\displaystyle\left|(\Pi_{s}(\Xi\mathcal{I}(\hat{\Xi})^{n})-\hat{\Pi}^{\varepsilon}_{s}(\Xi\mathcal{I}(\hat{\Xi})^{n}))(\varphi^{\lambda}_{s})\right|\lesssim\lambda^{-1/2+nH-\kappa}\varepsilon^{\kappa},

where φsλ(t):=φ((ts)/λ)/λ\varphi_{s}^{\lambda}(t):=\varphi((t-s)/\lambda)/\lambda. The proof of these inequalities is similar to that in [1]. ∎

Remark 3.6.

In [1], the renormalized model (Π¯ε,Γ¯ε)(\bar{\Pi}^{\varepsilon},\bar{\Gamma}^{\varepsilon}) satisfies the following. For t[0,T]t\in[0,T],

Π¯zε(Ξ(Ξ)n)(t)=ΠzΞ(Ξ)nnE[W˙ε(t)WH,ε(t)]ΠzΞ(Ξ)n1(t),\bar{\Pi}_{z}^{\varepsilon}(\Xi\mathcal{I}(\Xi)^{n})(t)=\Pi_{z}\Xi\mathcal{I}(\Xi)^{n}-nE[\dot{W}^{\varepsilon}(t)W^{H,\varepsilon}(t)]\Pi_{z}\Xi\mathcal{I}(\Xi)^{n-1}(t),

where W˙ε(t):=ddt(ϱεW)(t)\dot{W}^{\varepsilon}(t):=\frac{d}{dt}(\varrho^{\varepsilon}\ast W)(t) and WH,ε(t)=(ϱεWH)(t)W^{H,\varepsilon}(t)=(\varrho^{\varepsilon}\ast W^{H})(t). The reason for this slight difference is that the model use raw noises such as Brownian motion and fractional Brownian motion but not the white noises ξ\xi and W^=K^Hξ\hat{W}=\hat{K}^{H}\ast\xi.

Appendix A Trees and Forests

In this article, trees and forests from graph theory are repeatedly used as symbols of regularity structures.

Definition A.1.

Let NN be an abstract finite set and EE be the subset of N×NN\times N. We define maps s,t:ENs,t:E\to N as e=(v1,v2)s(e)=v1,t(e)=v2e=(v_{1},v_{2})\mapsto s(e)=v_{1},t(e)=v_{2}.

  1. (1)

    We say that the pair T=(N,E)T=(N,E) is a graph. The elements of NN are called vertices or nodes, and the elements of EE are called edges. If we want to emphasize TT, then denote the sets of vertices and edges as NTN_{T} and ETE_{T}, respectively.

  2. (2)

    The pair (N,E)(N,E) is called a simple directed graph if for any (v1,v2)E(v_{1},v_{2})\in E we have (v2,v1)E(v_{2},v_{1})\notin E. For a simple directed graph (N,E)(N,E) and (v1,v2)E(v_{1},v_{2})\in E, v1v_{1} is called the parent of v2v_{2}, and v2v_{2} is called the child of v1v_{1}.

  3. (3)

    We say that (N,E)(N,E) is connected if for any v,vNv,v^{\prime}\in N there exists a sequence of edges e1,,eNe_{1},\ldots,e_{N} such that s(e1)=vs(e_{1})=v, t(eN)=vt(e_{N})=v^{\prime}, and t(ei)=s(ei+1)(1iN1)t(e_{i})=s(e_{i+1})\,\,(1\leq i\leq N-1).

  4. (4)

    We say that (N,E)(N,E) have a cycle if there exists a set of edges e1,,enEe_{1},\ldots,e_{n}\in E such that one has t(ei)=s(ei+1)(1in1)t(e_{i})=s(e_{i+1})\,\,(1\leq i\leq n-1) and t(en)=s(e1)t(e_{n})=s(e_{1}).

  5. (5)

    Let a simple directed graph T=(N,E)T=(N,E) be connected and have no cycle. If there exists a unique node vNv\in N such that t(e)vt(e)\neq v for any eEe\in E, then the graph (N,E)(N,E) is called a rooted tree and the unique node vNv\in N is called the root of (N,E)(N,E). We denote by ϱT\varrho_{T} the root of TT.

  6. (6)

    Let 𝔏\mathfrak{L} be a finite set, (N,E)(N,E) be a rooted tree, and 𝐓𝐲𝐩𝐞:E𝔏{\bf Type}:E\to\mathfrak{L} be a map. The triplet (N,E,𝐓𝐲𝐩𝐞)(N,E,{\bf Type}) is called a typed tree.

  7. (7)

    For any rooted trees T1,T2T_{1},T_{2}, we define T=T1T2T=T_{1}\cdot T_{2} as

    NT\displaystyle N_{T} :=NT1NT2{ϱT},\displaystyle:=N_{T_{1}}^{\prime}\sqcup N_{T_{2}}^{\prime}\sqcup\{\varrho_{T}\},
    ET\displaystyle E_{T} :=ET1ET2{(ϱT,v);vNT1NT2\displaystyle:=E_{T_{1}}^{\prime}\sqcup E_{T_{2}}^{\prime}\sqcup\{(\varrho_{T},v);v\in N_{T_{1}}\sqcup N_{T_{2}}
    suchthat(ϱT1,v)ET1or(ϱT2,v)ET2}\displaystyle\hskip 128.0374pt\mathrm{such\,\,that\,\,}(\varrho_{T_{1}},v)\in E_{T_{1}}\mathrm{\,\,or\,\,}(\varrho_{T_{2}},v)\in E_{T_{2}}\}

    where NTi:=NTi{ϱTi}N_{T_{i}}^{\prime}:=N_{T_{i}}\setminus\{\varrho_{T_{i}}\}, ETi:={e=(v,v)ETi;vϱTi},i=1,2E_{T_{i}}^{\prime}:=\{e=(v,v^{\prime})\in E_{T_{i}};v\neq\varrho_{T_{i}}\},i=1,2. This operation T1,T2T1T2T_{1},T_{2}\mapsto T_{1}\cdot T_{2} is called a tree product.

Throughout this article, we assume that a rooted tree has no node such that it has two or more parents, that is, for any rooted tree τ\tau and any xNτx\in N_{\tau}, we have #(t1({x}))1\#(t^{-1}(\{x\}))\leq 1.

Example A.2.

A rooted tree can be described as placing the root on the bottom as follows:

T1=T_{1}=
T2=T_{2}=

The tree product of T1T_{1} and T2T_{2} is expressed as

T1T2=T_{1}\cdot T_{2}=

However, the graphs T3T_{3} and T4T_{4} defined below are not rooted trees because T3T_{3} has two candidates for the root and T4T_{4} has a loop.

T3=T_{3}=
T4=T_{4}=
Definition A.3.
  1. (1)

    A graph in which each connected component is a tree is called a forest. In addition, the forest is called a rooted forest if each connected component of it is a rooted tree.

  2. (2)

    Let 𝔏\mathfrak{L} be a finite set. The triplet (N,E,𝐓𝐲𝐩𝐞)(N,E,{\bf Type}) such that (N,E)(N,E) is a rooted forest and 𝐓𝐲𝐩𝐞:E𝔏{\bf Type}:E\to\mathfrak{L} is called a typed rooted forest.

Regarding the empty set \emptyset as a forest, a vector space generated by the totality of rooted forests is a unital algebra in which the product is the disjoint union and the unit is the empty set. This product is called a forest product. We denote by 11 the unit of a forest product unless confusion occurs.

Definition A.4.

A colored forest is a pair (F,F^)(F,\hat{F}) satisfying the following conditions.

  1. (1)

    F=(EF,NF,𝐓𝐲𝐩𝐞)F=(E_{F},N_{F},{\bf Type}) is a typed rooted forest.

  2. (2)

    The map F^:EFNF{0}\hat{F}:E_{F}\sqcup N_{F}\to\mathbb{N}\cup\{0\} satisfies the following: for any e=(x,y)EFe=(x,y)\in E_{F} such that F^(e)0\hat{F}(e)\neq 0, we have F^(x)=F^(y)=F^(e)\hat{F}(x)=\hat{F}(y)=\hat{F}(e).

F^\hat{F} is called the coloring of FF. For i>0i>0, we set

F^i=(E^i,N^i),E^i=F^1(i)EF,N^i=F^1(i)NF.\hat{F}_{i}=(\hat{E}_{i},\hat{N}_{i}),\,\,\,\,\hat{E}_{i}=\hat{F}^{-1}(i)\cap E_{F},\,\,\,\,\hat{N}_{i}=\hat{F}^{-1}(i)\cap N_{F}.

Finally, we denote by 𝐂𝐅{\bf CF} the set of all colored forests.

Appendix B BPHZ Renormalization of Γ\Gamma

First, we introduce a positive renormalization, which is the foundation of Γ\Gamma. A map Δ+:TTT\Delta_{+}:T\to T\otimes T is defined as

Δ+𝟏=𝟏𝟏,Δ+Ξi=Ξi𝟏+𝟏Ξi,\displaystyle\Delta_{+}{\bf 1}={\bf 1}\otimes{\bf 1},\,\,\Delta_{+}\Xi_{i}=\Xi_{i}\otimes{\bf 1}+{\bf 1}\otimes\Xi_{i},
Δ+=𝟏+𝟏,\displaystyle\Delta_{+}\mathcal{I}=\mathcal{I}\otimes{\bf 1}+{\bf 1}\otimes\mathcal{I},
Δ+(Ξi)=(Ξi)𝟏+Ξi+𝟏(Ξi),\displaystyle\Delta_{+}\mathcal{I}(\Xi_{i})=\mathcal{I}(\Xi_{i})\otimes{\bf 1}+\mathcal{I}\otimes\Xi_{i}+{\bf 1}\otimes\mathcal{I}(\Xi_{i}),
Δ+(ττ)=Δ+τΔ+τ\displaystyle\Delta_{+}(\tau\cdot\tau^{\prime})=\Delta_{+}\tau\cdot\Delta_{+}\tau^{\prime}

for τ,τS\tau,\tau^{\prime}\in S such that ττS\tau\cdot\tau^{\prime}\in S, and the domain is extended by imposing linearity. Note that a product on TTT\otimes T can be defined as (τ1τ2)(τ1τ2):=(τ1τ1)(τ2τ2)(\tau_{1}\otimes\tau_{2})\cdot(\tau_{1}^{\prime}\otimes\tau_{2}^{\prime}):=(\tau_{1}\cdot\tau_{1}^{\prime})\otimes(\tau_{2}\cdot\tau_{2}^{\prime}).

Definition B.1.
  1. (1)

    A subspace J{J}_{-} is defined as

    J:={τT;τ=σσ¯,σ,σ¯T,σ12,|σ|0},J_{-}:=\langle\{\tau\in T;\tau=\sigma\cdot\bar{\sigma},\,\,\sigma,\bar{\sigma}\in T,\,\,\sigma\neq 1_{2},\,\,|\sigma|\leq 0\}\rangle,

    where \cdot is a tree product.

  2. (2)

    A quotient space generated by the above subspace is defined by

    T+:=T/J,T_{+}:=T/J_{-},

    and 𝔭Gex:TT+\mathfrak{p}^{\mathrm{ex}}_{G}:T\to T_{+} denotes the canonical projection.

  3. (3)

    A map Δ+ex:TTT+\Delta_{+}^{\mathrm{ex}}:T\to T\otimes T_{+} is defined as Δ+ex:=(Id𝔭+ex)Δ+\Delta_{+}^{\mathrm{ex}}:=(\mathrm{Id}\otimes\mathfrak{p}^{\mathrm{ex}}_{+})\Delta_{+}.

As defined, the vector space T+T_{+} and the map Δ+ex\Delta_{+}^{\mathrm{ex}} can be given as

T+={𝟏,n,(Ξi)n;1id,n}T_{+}=\langle\{{\bf 1},\mathcal{I}^{n},\mathcal{I}(\Xi_{i})^{n};1\leq i\leq d,n\in\mathbb{N}\}

and

Δ+ex𝟏=𝟏𝟏,Δ+exΞi=Ξi𝟏,\displaystyle\Delta_{+}^{\mathrm{ex}}{\bf 1}={\bf 1}\otimes{\bf 1},\,\,\Delta_{+}^{\mathrm{ex}}\Xi_{i}=\Xi_{i}\otimes{\bf 1},
Δ+ex=𝟏+𝟏,\displaystyle\Delta_{+}^{\mathrm{ex}}\mathcal{I}=\mathcal{I}\otimes{\bf 1}+{\bf 1}\otimes\mathcal{I},
Δ+ex(Ξi)=(Ξi)𝟏+𝟏(Ξi).\displaystyle\Delta_{+}^{\mathrm{ex}}\mathcal{I}(\Xi_{i})=\mathcal{I}(\Xi_{i})\otimes{\bf 1}+{\bf 1}\otimes\mathcal{I}(\Xi_{i}).
Definition B.2.

For s,ts,t\in\mathbb{R}, a map γts:T+\gamma_{ts}:T_{+}\to\mathbb{R} is defined as

γts𝟏=1,γts=𝚷()(t)𝚷()(s),\displaystyle\gamma_{ts}{\bf 1}=1,\,\,\gamma_{ts}\mathcal{I}={\bf\Pi}(\mathcal{I})(t)-{\bf\Pi}(\mathcal{I})(s),
γts(Ξi)=𝚷(Ξi)(t)𝚷(Ξi)(s),\displaystyle\gamma_{ts}\mathcal{I}(\Xi_{i})={\bf\Pi}(\Xi_{i})(t)-{\bf\Pi}(\Xi_{i})(s),
γts(ττ)=γtsτγtsτ\displaystyle\gamma_{ts}(\tau\cdot\tau^{\prime})=\gamma_{ts}\tau\cdot\gamma_{ts}\tau^{\prime}

for τ,τS\tau,\tau^{\prime}\in S such that ττT+\tau\cdot\tau^{\prime}\in T_{+}.

Note that Γts=(Idγts)Δ+ex\Gamma_{ts}=(\mathrm{Id}\otimes\gamma_{ts})\Delta_{+}^{\mathrm{ex}}. The BPHZ renormalization of Γ\Gamma is as follows.

Definition B.3.

Let a pair (Π,Γ)(\Pi,\Gamma) be a model on the regularity structure (A,T,G)(A,T,G). The BPHZ-renormalized model (Π^,Γ^)(\hat{\Pi},\hat{\Gamma}) is defined by

Π^sτ=(g(𝚷)𝒜~exΠz)Δexτ,\displaystyle\hat{\Pi}_{s}\tau=(g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\Pi_{z})\Delta_{-}^{\mathrm{ex}}\tau,
Γ^tsτ=(Idγts(g(𝚷)Id)Δex)Δ+exτ.\displaystyle\hat{\Gamma}_{ts}\tau=(\mathrm{Id}\otimes\gamma_{ts}(g^{-}({\bf\Pi})\otimes\mathrm{Id})\Delta_{-}^{\mathrm{ex}})\Delta_{+}^{\mathrm{ex}}\tau.

The next proposition is the main subject of this subsection.

Proposition B.4.

We have

(B.1) Γ^tsτ=Γtsτ,τT.\hat{\Gamma}_{ts}\tau=\Gamma_{ts}\tau,\,\,\tau\in T.
Proof.

The case where τ=𝟏\tau={\bf 1} or =Ξi=\Xi_{i} is obvious. We consider the case where τ=n\tau=\mathcal{I}^{n}. Then, we have

Δ+exn\displaystyle\Delta_{+}^{\mathrm{ex}}\mathcal{I}^{n} =(𝟏+𝟏)n\displaystyle=(\mathcal{I}\otimes{\bf 1}+{\bf 1}\otimes\mathcal{I})^{n}
=l=0n(nl)(inl).\displaystyle=\sum_{l=0}^{n}\binom{n}{l}(\mathcal{I}^{i}\otimes\mathcal{I}^{n-l}).

The edge \mathcal{I} has positive degree ||=1|\mathcal{I}|=1, so we have Δexl=𝟏l\Delta_{-}^{\mathrm{ex}}\mathcal{I}^{l}={\bf 1}\otimes\mathcal{I}^{l}. Thus, we have

Γ^tsn\displaystyle\hat{\Gamma}_{ts}\mathcal{I}^{n} =(Idγts(g(𝚷)Id)Δex)l=0n(nl)(inl)\displaystyle=(\mathrm{Id}\otimes\gamma_{ts}(g^{-}({\bf\Pi})\otimes\mathrm{Id})\Delta_{-}^{\mathrm{ex}})\sum_{l=0}^{n}\binom{n}{l}(\mathcal{I}^{i}\otimes\mathcal{I}^{n-l})
=(Idγts)l=0n(nl)(inl)\displaystyle=(\mathrm{Id}\otimes\gamma_{ts})\sum_{l=0}^{n}\binom{n}{l}(\mathcal{I}^{i}\otimes\mathcal{I}^{n-l})
=Γtsn.\displaystyle=\Gamma_{ts}\mathcal{I}^{n}.

Next, we show the claim when τ=Ξi(Ξj)n\tau=\Xi_{i}\mathcal{I}(\Xi_{j})^{n}. Then, we have

Δ+exΞi(Ξj)n\displaystyle\Delta_{+}^{\mathrm{ex}}\Xi_{i}\mathcal{I}(\Xi_{j})^{n} =Δ+exΞiΔ+ex(Ξj)n\displaystyle=\Delta_{+}^{\mathrm{ex}}\Xi_{i}\cdot\Delta_{+}^{\mathrm{ex}}\mathcal{I}(\Xi_{j})^{n}
=(Ξi𝟏)((Ξj)𝟏+𝟏(Ξj))n\displaystyle=(\Xi_{i}\otimes{\bf 1})\cdot(\mathcal{I}(\Xi_{j})\otimes{\bf 1}+{\bf 1}\otimes\mathcal{I}(\Xi_{j}))^{n}
=l=0n(nl)Ξi(Ξj)l(Ξj)nl.\displaystyle=\sum_{l=0}^{n}\binom{n}{l}\Xi_{i}\mathcal{I}(\Xi_{j})^{l}\otimes\mathcal{I}(\Xi_{j})^{n-l}.

For l1l\geq 1, we have (g(𝚷)𝒜~exId)Δex((Ξj)l)=(Ξj)l(g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\mathrm{Id})\Delta_{-}^{\mathrm{ex}}(\mathcal{I}(\Xi_{j})^{l})=\mathcal{I}(\Xi_{j})^{l} because there exists no tree τ(Ξj)m\tau^{\prime}\subset\mathcal{I}(\Xi_{j})^{m} such that |τ|<0|\tau^{\prime}|<0 and g(𝚷)𝒜~exτ0g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\tau^{\prime}\neq 0. Thus, we have

Γ^zz¯(Ξi(Ξj)n)\displaystyle\hat{\Gamma}_{z\bar{z}}(\Xi_{i}\mathcal{I}(\Xi_{j})^{n}) =(Idγzz¯(g(𝚷)𝒜~exId)Δex)l=0n(nl)(Ξi(Ξj)l(Ξj)nl)\displaystyle=(\mathrm{Id}\otimes\gamma_{z\bar{z}}(g^{-}({\bf\Pi})\tilde{\mathcal{A}}_{-}^{\mathrm{ex}}\otimes\mathrm{Id})\Delta_{-}^{\mathrm{ex}})\sum_{l=0}^{n}\binom{n}{l}(\Xi_{i}\mathcal{I}(\Xi_{j})^{l}\otimes\mathcal{I}(\Xi_{j})^{n-l})
=(Idγzz¯)l=0n(nl)(Ξi(Ξj)l(Ξj)nl)\displaystyle=(\mathrm{Id}\otimes\gamma_{z\bar{z}})\sum_{l=0}^{n}\binom{n}{l}(\Xi_{i}\mathcal{I}(\Xi_{j})^{l}\otimes\mathcal{I}(\Xi_{j})^{n-l})
=Γzz¯(Ξi(Ξj)n).\displaystyle=\Gamma_{z\bar{z}}(\Xi_{i}\mathcal{I}(\Xi_{j})^{n}).

References

  • [1] C. Bayer, P. K. Friz, P. Gassiat, J. Martin, and B. Stemper. A regularity structure for rough volatility. Mathematical Finance, 30(3):782–832, 2020.
  • [2] C. Bellingeri, P. K. Friz, and M. Gerencsér. Singular paths spaces and applications. arXiv preprint arXiv:2003.03352, 2020.
  • [3] Y. Bruned. Renormalisation from non-geometric to geometric rough paths. arXiv preprint arXiv:2007.14385, 2020.
  • [4] Y. Bruned, I. Chevyrev, and P. K. Friz. Examples of renormalized SDEs. In International Conference on Stochastic Partial Differential Equations and Related Fields, pages 303–317. Springer, 2016.
  • [5] Y. Bruned, I. Chevyrev, P. K. Friz, and R. Preiss. A rough path perspective on renormalization. Journal of Functional Analysis, 277(11):108–283, 2019.
  • [6] Y. Bruned, M. Hairer, and L. Zambotti. Algebraic renormalisation of regularity structures. Inventiones mathematicae, 215(3):1039–1156, 2019.
  • [7] A. Chandra and M. Hairer. An analytic BPHZ theorem for regularity structures. arXiv preprint arXiv:1612.08138, 2016.
  • [8] M. Hairer. A theory of regularity structures. Inventiones mathematicae, 198(2):269–504, 2014.
  • [9] S. Janson. Gaussian Hilbert spaces. Number 129 in Cambridge tracts in mathematics. Cambridge University Press, Cambridge, United Kingdom, 1997.