This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

institutetext: Institute for Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences ,
Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria

Braiding Fibonacci anyons

Ludmil Hadjiivanov    and Lachezar S. Georgiev lhadji@inrne.bas.bg lgeorg@inrne.bas.bg
Abstract

Fibonacci anyons ε\varepsilon\, provide the simplest possible model of non-Abelian fusion rules: [1]×[1]=[0][1].[1]\times[1]=[0]\oplus[1]\,. We propose a conformal field theory construction of topological quantum registers based on Fibonacci anyons realized as quasiparticle excitations in the 3\mathbb{Z}_{3}\, parafermion fractional quantum Hall state. To this end, the results of Ardonne and Schoutens for the correlation function of four Fibonacci fields are extended to the case of arbitrary number nn\, of quasi-holes and N=3rN=3\,r\, electrons. Special attention is paid to the braiding properties of the obtained correlators. We explain in details the construction of a monodromy representation of the Artin braid group n{\cal B}_{n}\, acting on nn-point conformal blocks of Fibonacci anyons. The matrices of braid group generators are displayed explicitly for all n8.n\leq 8\,. A simple recursion formula makes it possible to extend without efforts the construction to any n.n\,. Finally, we construct 𝒩{\cal N}\, qubit computational spaces in terms of conformal blocks of 2𝒩+22\,{\cal N}+2\, Fibonacci anyons.

Keywords:
Topological States of Matter, Anyons, Field Theories in Lower Dimensions

1 Introduction

Noise and decoherence are basic challenges to quantum computation. The limitation of quantum data vulnerability by fundamental physical principles is therefore highly welcomed. Such theoretical possibility is provided by Topological Quantum Computation (TQC) (cf. e.g. the recent textbook S23 ). An experimentally promising setting of this type in which quantum information processing is protected from noise and decoherence by the topological properties of the quantum system is based on braiding of non-Abelian anyons realized as quasiparticle excitations in certain fractional quantum Hall (FQH) states. We will focus in what follows on the Fibonacci anyons realized as the ε\varepsilon\, field in the 3\mathbb{Z}_{3}\, parafermion FQH state in the second Landau level with filling factor 125.\frac{12}{5}\,. This construction is introduced and discussed in details in the parallel paper GHM24 where the reader could find as well an extensive list of literature on the subject.

The aim of present article is to provide a description of the monodromy representation of the braid group n{\cal B}_{n}\, (see e.g. TH01 and the references therein) realized on the set of chiral conformal blocks of nn\, Fibonacci anyons ε\varepsilon\, and 3r3\,r\, electrons. To this end we will follow the Ardonne and Schoutens’ approach AS07 which we will generalize in two different directions. While AS07 only covers the case of four (n=4n=4\,) ε\varepsilon\, fields and no electrons (r=0r=0\,), we will consider also arbitrary rr\, case and then the most general case thus opening a theoretical perspective to constructing 𝒩{\cal N} qubit quantum registers.

We will also pay the due attention to the properties of the obtained nn-point multivalued correlation functions with respect to the exchange of neighboring fields along certain (homotopy classes of) paths. These "half monodromy" transformations define the generators of the braid group n{\cal B}_{n}\, and hence, must satisfy the corresponding Artin relations. The proper treatment of the subject requires the introduction of dual bases related by the so called fusion matrices, cf. e.g. John Preskill’s classical lectures P04 or Steven Simon’s modern textbook S23 . The basic, four point (n=4n=4\,) case is dealt with care and the obtained results are generalized to arbitrary number nn\, of the Fibonacci fields. A recursive formula for the matrices of the n{\cal B}_{n}\, generators in a suitable basis of conformal blocks is given which also allows, in principle, an easy verification of the Artin relations.

The organization of the paper is the following. In Section 2 we perform a derivation of the conformal blocks of four Fibonacci anyons in full detail reproducing the results obtained in AS07 . We shed light on some crucial points and introduce our own conventions. We conclude this section with the calculation of the (diagonal) matrices of the generators b1b_{1}\, and b3b_{3}\, in the corresponding two dimensional representation of the braid group 4.{\cal B}_{4}\,. In Section 3 we define the dual basis and the fusion matrix F,F\,, calculate the matrix of b2b_{2}\, and verify the Artin triple relations. In Section 4 we generalize the obtained results to the case when electrons are also present (due to the 3\mathbb{Z}_{3}\, symmetry, the functions are only nonzero when their number is a multiple of three), applying a slightly different technique to compute the braid matrices. In Section 5 we construct a basis in the space of Fibonacci conformal blocks for arbitrary nn\, and propose an algorithm for finding the braid group action on it. The results are made explicit in Section 6, for n=5, 6, 7n=5\,,\,6\,,\,7\, and 8.8\,. A recursive construction of the braid group action in the general case is introduced in Section 7. In the concluding Section 8 we construct 𝒩{\cal N}\, qubit computational spaces in terms of conformal blocks of 2𝒩+22\,{\cal N}+2\, Fibonacci anyons.

There is a vast literature on Fibonacci anyons and their possible use in TQC. On top of the fundamental papers by Preskill and Ardonne-Schoutens mentioned above we have taken inspiration from the work of N. Bonesteel, L. Hormozi, G. Zikos and S. Simon BHZS05 ; HZBS07 and from others. Albeit having some technical overlap with the present article, GHL22 that appeared in the course of our investigation is quite different in scope from it.

TQC based on non-Abelian and, in particular, Fibonacci anyons has been subject of intensive study already for more than a quarter of a century. From a broader perspective, one can ask if the conformal field theory (CFT) methods based on the coordinate representation of the anyon wave function in terms of CFT correlators are more efficient than some abstract computational methods of algebraic, e.g. quantum group SB01 , or categorical FKLW02 ; FLW02 type focused on topological rather than dynamical aspects of the relevant low dimensional physical systems. In this respect we would agree with the authors of SB01 that each of these approaches provides a useful way of thinking complementary to the other.

To conclude, we will summarize the most important results of the present paper as we see them:

- the Ardonne and Schoutens’ analytic result for n=4n=4\, Fibonacci anyons (ε\varepsilon\, fields) AS07 has been generalized to any nn\, and any (presumably, great) number 3r3r\, of electrons and the basic Fibonacci RR\, and FF\, matrices have been derived in the general case by analytic continuation. This is a new theoretical result which could be of practical use as well (see GHM24 ).

- the braid generating matrices in the natural basis of conformal blocks have been found explicitly for any nn\, (and proved to be independent of rr\,) by following a new, algorithmic and efficient prescription based on the natural chain of inclusions n2n1n.{\cal B}_{n-2}\subset{\cal B}_{n-1}\subset{\cal B}_{n}\,.

- 𝒩{\cal N}\, qubit computational subspaces of the space of n=2𝒩+2n=2\,{\cal N}+2\, anyon conformal blocks have been identified in this setting111On a more abstract level, qubit encoding by pairs of Fibonacci anyons has been considered already by Freedman et al. FKLW02 ; FLW02 . The idea to devise qubit encoding in terms of Fibonacci anyon pairs is actually quite natural as, due to the fusion rules, the latter form effectively two level quantum systems. for any 𝒩.{\cal N}\,.

2 Conformal blocks of four Fibonacci anyons (n=4n=4)

As shown in GHM24 , it is physically plausible to present the coordinate wave function of 4 Fibonacci anyons and N=3rN=3\,r\, electron holes in the plane, up to a non-holomorphic Gaussian exponential factor, into the following split form containing a 3\mathbb{Z}_{3}\, parafermion (PF) part and another, Abelian u(1)^{\widehat{u(1)}}\, one of Laughlin type:

Ψ4F(w1,,w4;z1,,z3r)=ε(w1)ε(w4)i=13rψ1(zi)PF×\displaystyle\Psi_{4F}(w_{1},\dots,w_{4};\,z_{1},\dots,z_{3r})=\langle\,\varepsilon(w_{1})\dots\varepsilon(w_{4})\,\prod_{i=1}^{3r}\psi_{1}(z_{i})\,\rangle_{PF}\times
×1a<b4(wawb)35a=14i=1N(wazi)1j<(zjz)53.\displaystyle\times\,\prod_{1\leq a<b\leq 4}(w_{a}-w_{b})^{\frac{3}{5}}\,\prod_{a=1}^{4}\prod_{i=1}^{N}(w_{a}-z_{i})\,\prod_{1\leq j<\leq\ell}(z_{j}-z_{\ell})^{\frac{5}{3}}\ . (2.1)

The complex coordinates wa,a=1,2,3,4w_{a}\,,\ a=1,2,3,4\, and zi,i=1,,3rz_{i}\,,\ i=1,\dots,3\,r\, correspond to the positions of the anyons and the electron holes, respectively.

The Abelian current algebra (extended with a conjugate pair of appropriate vertex exponents) plays an important role, as it allows the model to incorporate the electrically charged edge excitations in the FQH liquid. However, we will be interested exclusively in this paper in the exchange (braiding) properties of the neighboring Fibonacci fields, and from this point of view the contribution of the Abelian part in (2.1) is trivial. For this reason we will concentrate in what follows on the parafermionic part only. This will lead to the lack of an overall factor ei3π5e^{i\frac{3\pi}{5}}\, ( =q3,=q^{3}\,, see below) in the braiding matrices derived in the present paper with respect to those in GHM24 ; the Artin braid relations are indifferent to this change.

Following the procedure well described in AS07 , the correlation functions

ε(w1)ε(w4)j=53r+4ψ1(zj)(p),p=0,1\langle\,\varepsilon(w_{1})\dots\varepsilon(w_{4})\,\prod_{j=5}^{3r+4}\psi_{1}(z_{j})\,\rangle^{(p)}\ ,\quad p=0,1\, (2.2)

of four Fibonacci anyons and 3r3\,r\, "electrons"222A somewhat loosely attributed name, for short, which generalizes a special case (M=1M=1\, in (2.9)). can be obtained by fusing 3\mathbb{Z}_{3}\, parafermionic fields σ1\sigma_{1}\, and ψ1\psi_{1}\, with arguments at {w2,w1,w3,w4}\{w_{2},w_{1},w_{3},w_{4}\}\, and {z1,z2,z3,z4},\{z_{1},z_{2},z_{3},z_{4}\}\,, respectively, subject to the operator product expansion (OPE)

σ1(w)ψ1(z)=23(wz)13ε(z)+o(wz),orσ1ψ1=23ε\sigma_{1}(w)\,\psi_{1}(z)=\sqrt{\frac{2}{3}}\,(w-z)^{-\frac{1}{3}}\,\varepsilon(z)\,+\,o(w-z)\ ,\qquad{\rm or}\qquad\sigma_{1}\,\psi_{1}=\sqrt{\frac{2}{3}}\,\,\varepsilon (2.3)

for short, so that

ε(w1)ε(w4)j=53r+4ψ1(zj)(p)=\displaystyle\langle\,\varepsilon(w_{1})\dots\varepsilon(w_{4})\,\prod_{j=5}^{3r+4}\psi_{1}(z_{j})\,\rangle^{(p)}=
=94lim{z}{w}j=14(wjzj)13σ1(w1)σ1(w4)ψ1(z1)ψ1(z4)j=53r+4ψ1(zj)(p).\displaystyle=\ \frac{9}{4}\,\lim\limits_{\{z\}\to\{w\}}\,\prod_{j=1}^{4}(w_{j}-z_{j})^{\frac{1}{3}}\,\langle\,\sigma_{1}(w_{1})\dots\sigma_{1}(w_{4})\,\psi_{1}(z_{1})\dots\psi_{1}(z_{4})\,\prod_{j=5}^{3r+4}\psi_{1}(z_{j})\rangle^{(p)}\ .\qquad (2.4)

The chiral fields in (2.3) with conformal dimensions

Δσ1=115,Δψ1=23,Δε=25\Delta_{\sigma_{1}}=\frac{1}{15}\ ,\quad\Delta_{\psi_{1}}=\frac{2}{3}\ ,\quad\Delta_{\varepsilon}=\frac{2}{5} (2.5)

are special cases (k=3k=3\, and εε(1)\varepsilon\equiv\varepsilon^{(1)}) of the general setting in ZF85 for k\mathbb{Z}_{k}\, parafermions where

Δσ=(k)2k(k+2),Δψ=(k)k,=1,2,k1,\displaystyle\Delta_{\sigma_{\ell}}=\frac{\ell(k-\ell)}{2\,k(k+2)}\ ,\quad\Delta_{\psi_{\ell}}=\frac{\ell(k-\ell)}{k}\ ,\quad\ell=1,2,\dots k-1\ ,
Δε(j)=j(j+1)k+2,j=1,,[k/2]\displaystyle\Delta_{\varepsilon^{(j)}}=\frac{j(j+1)}{k+2}\ ,\quad j=1,\dots,[k/2] (2.6)

are the dimensions of the order parameters σ,\sigma_{\ell}\,, the parafermionic currents ψ,\psi_{\ell}\,, and the k\mathbb{Z}_{k}-neutral fields ε(j),\varepsilon^{(j)}\,, respectively. The fusion of two σ1\sigma_{1}\, reads

σ1σ1=13ψ1+2Cσ2,2C=Γ(15)Γ3(35)Γ(45)Γ3(25)\sigma_{1}\,\sigma_{1}=\frac{1}{\sqrt{3}}\,\psi_{1}+\sqrt{2\,C}\,\sigma_{2}\ ,\qquad 2\,C=\sqrt{\frac{\Gamma(\frac{1}{5})\Gamma^{3}(\frac{3}{5})}{\Gamma(\frac{4}{5})\Gamma^{3}(\frac{2}{5})}} (2.7)

and the two fusion channels (0)(0)\, and (1)(1)\, for the parafermion correlator correspond to σ1σ1ψ1\sigma_{1}\,\sigma_{1}\,\sim\,\psi_{1}\, and σ1σ1σ2,\sigma_{1}\,\sigma_{1}\,\sim\,\sigma_{2}\,, respectively. Eq.(3.3) in AS07 is equivalent in the case under consideration to

σ1(w1)σ1(w4)ψ1(z1)ψ1(z4)j=53r+4ψ1(zj)(p)=\displaystyle\langle\sigma_{1}(w_{1})\dots\sigma_{1}(w_{4})\,\psi_{1}(z_{1})\dots\psi_{1}(z_{4})\,\prod_{j=5}^{3r+4}\psi_{1}(z_{j})\,\rangle^{(p)}= (2.8)
=P({w},{z})ΨRR(0,1)(w1,w2,w3,w4;z1,z2,z3,z4,z5,,z3r+4).\displaystyle=P(\{w\},\{z\})\ \Psi_{RR}^{(0,1)}(w_{1},w_{2},w_{3},w_{4};z_{1},z_{2},z_{3},z_{4},z_{5},\dots,z_{3r+4})\ .

Here the prefactor is given by

P({w},{z})=1i<j3r+4zij23Mi=14j=13r+4(wizj)131i<j4wij16+M2(3M+2)P(\{w\},\{z\})=\prod_{1\leq i<j\leq 3r+4}z_{ij}^{-\frac{2}{3}-M}\,\prod_{i=1}^{4}\prod_{j=1}^{3r+4}(w_{i}-z_{j})^{-\frac{1}{3}}\,\prod_{1\leq i<j\leq 4}w_{ij}^{-\frac{1}{6}+\frac{M}{2(3M+2)}} (2.9)

where zij=zizj,wij=wiwj,z_{ij}=z_{i}-z_{j}\,,\ w_{ij}=w_{i}-w_{j}\,, and the k=3k=3\, Read-Rezayi (RR) wave functions ΨRR(p),p=0,1\Psi_{RR}^{(p)}\,,\ p=0,1\, of n=4n=4\, quasi-holes and N=3r+4N=3\,r+4\, electrons are expressed as

ΨRR(p)(w1,w2,w3,w4;z1,z2,z3,z4,z5,,z3r+4)=\displaystyle\Psi_{RR}^{(p)}(w_{1},w_{2},w_{3},w_{4};z_{1},z_{2},z_{3},z_{4},z_{5},\dots,z_{3r+4})= (2.10)
=A(p)({w})Ψ12,34({w};{z})+B(p)({w})Ψ13,24({w};{z}),p=0,1,\displaystyle=A^{(p)}(\{w\})\,\Psi_{12,34}(\{w\};\{z\})+B^{(p)}(\{w\})\,\Psi_{13,24}(\{w\};\{z\})\ ,\quad p=0,1\ ,

cf. NW96 ; CGT01 . The coefficient functions A(p)({w})A^{(p)}(\{w\})\, and B(p)({w})B^{(p)}(\{w\})\, calculated in AS07 are given by

A(0)({w})=(w12w34)710x3101(0)(x),\displaystyle A^{(0)}(\{w\})=(w_{12}w_{34})^{\frac{7}{10}}\,x^{\frac{3}{10}}\,{\cal F}^{(0)}_{1}(x)\ ,
B(0)({w})=(w12w34)710x710(1x)2(0)(x),\displaystyle B^{(0)}(\{w\})=-(w_{12}w_{34})^{\frac{7}{10}}\,x^{-\frac{7}{10}}\,(1-x)\,{\cal F}^{(0)}_{2}(x)\ ,
A(1)({w})=(1)25C(w12w34)710x3101(1)(x),\displaystyle A^{(1)}(\{w\})=-(-1)^{\frac{2}{5}}\,C\,(w_{12}w_{34})^{\frac{7}{10}}\,x^{\frac{3}{10}}\,{\cal F}^{(1)}_{1}(x)\ ,
B(1)({w})=(1)25C(w12w34)710x710(1x)2(1)(x),\displaystyle B^{(1)}(\{w\})=(-1)^{\frac{2}{5}}\,C\,(w_{12}w_{34})^{\frac{7}{10}}\,x^{-\frac{7}{10}}\,(1-x)\,{\cal F}^{(1)}_{2}(x)\ , (2.11)

the harmonic ratio xx\, being defined as

x=w12w34w14w32x=\frac{w_{12}w_{34}}{w_{14}w_{32}} (2.12)

and the functions 1,2(p)(x){\cal F}^{(p)}_{1,2}(x)\, are expressed in terms of hypergeometric functions as follows:

1(0)(x)=x310(1x)110F(15,15,35;x),\displaystyle{\cal F}^{(0)}_{1}(x)=x^{-\frac{3}{10}}\,(1-x)^{\frac{1}{10}}\,F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};x)\ ,
2(0)(x)=13x710(1x)110F(65,45,85;x),\displaystyle{\cal F}^{(0)}_{2}(x)=\frac{1}{3}\,x^{\frac{7}{10}}\,(1-x)^{\frac{1}{10}}\,F(\frac{6}{5},\frac{4}{5},\frac{8}{5};x)\ ,
1(1)(x)=x110(1x)110F(15,35,75;x),\displaystyle{\cal F}^{(1)}_{1}(x)=x^{\frac{1}{10}}\,(1-x)^{\frac{1}{10}}\,F(\frac{1}{5},\frac{3}{5},\frac{7}{5};x)\ ,
2(1)(x)=2x110(1x)110F(15,35,25;x).\displaystyle{\cal F}^{(1)}_{2}(x)=-2\,x^{\frac{1}{10}}\,(1-x)^{\frac{1}{10}}\,F(\frac{1}{5},\frac{3}{5},\frac{2}{5};x)\ . (2.13)

The factors Ψ12,34({w};{z})\Psi_{12,34}(\{w\};\{z\})\, and Ψ13,24({w};{z})\Psi_{13,24}(\{w\};\{z\})\, in (2.10) correspond to two of the possible splittings of the four quasi-holes into two pairs so that, in principle, there is one more possibility which, however, does not produce an independent function NW96 , as

Ψ14,23({w};{z})=xΨ12,34({w};{z})+(1x)Ψ13,24({w};{z}).\Psi_{14,23}(\{w\};\{z\})=x\,\Psi_{12,34}(\{w\};\{z\})+(1-x)\,\Psi_{13,24}(\{w\};\{z\})\ . (2.14)

One divides the N=3r+4N=3\,r+4\, electrons into three groups, S1S_{1}\, containing r+2r+2\, electrons, and S2S_{2}\, and S3,S_{3}\,, containing r+1r+1\, electrons each. The two remaining factors are homogeneous polynomials in the differences of the quasi-hole and electron coordinates of the kind

Ψ12,34({w};{z})=332r9×\displaystyle\Psi_{12,34}(\{w\};\{z\})=\frac{3^{-\frac{3}{2}r}}{9}\times
×S1,S2,S3iS2(ziw1)(ziw2)jS3(zjw3)(zjw4)ΨS12({z})ΨS22({z})ΨS32({z}),\displaystyle\times\,\sum_{S_{1},S_{2},S_{3}}\,\prod_{{i\in S_{2}}}(z_{i}-w_{1})(z_{i}-w_{2})\,\prod_{j\in S_{3}}(z_{j}-w_{3})(z_{j}-w_{4})\,\Psi_{S_{1}}^{2}(\{z\})\,\Psi_{S_{2}}^{2}(\{z\})\,\Psi_{S_{3}}^{2}(\{z\})\ ,
Ψ13,24({w};{z})=332r9×\displaystyle\Psi_{13,24}(\{w\};\{z\})=\frac{3^{-\frac{3}{2}r}}{9}\times (2.15)
×S1,S2,S3iS2(ziw1)(ziw3)jS3(zjw2)(zjw4)ΨS12({z})ΨS22({z})ΨS32({z}),\displaystyle\times\,\sum_{S_{1},S_{2},S_{3}}\,\prod_{{i\in S_{2}}}(z_{i}-w_{1})(z_{i}-w_{3})\,\prod_{j\in S_{3}}(z_{j}-w_{2})(z_{j}-w_{4})\,\Psi_{S_{1}}^{2}(\{z\})\,\Psi_{S_{2}}^{2}(\{z\})\,\Psi_{S_{3}}^{2}(\{z\})\ ,

where

ΨSi2({z})=i<ji,jSizij2,i=1,2,3.\Psi_{S_{i}}^{2}(\{z\})=\prod_{{i<j}\atop{i,j\in S_{i}}}z_{ij}^{2}\ ,\qquad i=1,2,3\ . (2.16)

Obviously, each of the sums in (2.15) contains

(3r+4r+2,r+1,r+1)=(3r+4)!(r+2)!(r+1)!(r+1)!\binom{3r+4}{r+2\,,\,r+1\,,\,r+1}=\frac{(3r+4)!}{(r+2)!\,(r+1)!\,(r+1)!}\,

terms (corresponding to the various options of attributing r+2r+2\, of the 3r+43r+4\, electrons to the group S1S_{1}\, times the (2r+2r+1)\binom{2r+2}{r+1}\, different choices to evenly distribute the remaining 2r+22r+2\, ones between S2S_{2}\, and S3S_{3}). The corresponding dimension in "mass" (inverse length) units is equal to minus the overall order of the homogeneous polynomials (2.15):

ΔΨ=3(r+1)(r+2)=3r29r6.\Delta_{\Psi}=-3(r+1)(r+2)=-3\,r^{2}-9\,r-6\,. (2.17)

Due to the identity w12w34=w14w32+w13w24,w_{12}w_{34}=w_{14}w_{32}+w_{13}w_{24}\,, one has

x=w12w34w14w321x=w13w42w14w32,x1x=w12w34w13w42.x=\frac{w_{12}w_{34}}{w_{14}w_{32}}\qquad\Rightarrow\qquad 1-x=\frac{w_{13}w_{42}}{w_{14}w_{32}}\ ,\qquad\frac{x}{1-x}=\frac{w_{12}w_{34}}{w_{13}w_{42}}\ . (2.18)

We will use in what follows an alternative harmonic ratio as well,

η=w12w34w13w24=xx1sothatx=ηη1,1x=11ηand\displaystyle\eta=\frac{w_{12}w_{34}}{w_{13}w_{24}}=\frac{x}{x-1}\quad{\rm so\ that}\quad x=\frac{\eta}{\eta-1}\ ,\quad 1-x=\frac{1}{1-\eta}\quad{\rm and}
w13w24=1ηw12w34,w14w23=1ηηw12w34.\displaystyle w_{13}w_{24}=\frac{1}{\eta}\,w_{12}w_{34}\ ,\quad w_{14}w_{23}=\frac{1-\eta}{\eta}\,w_{12}w_{34}\ . (2.19)

Note that for wiw_{i}\, real and naturally ordered, w1>w2>w3>w4,w_{1}>w_{2}>w_{3}>w_{4}\,, one has 0<η<1.0<\eta<1\,.

We will first compute the coefficient of i=14(wizi)13\prod_{i=1}^{4}(w_{i}-z_{i})^{-\frac{1}{3}}\, arising in the limit ziwi,i=1,,4z_{i}\to w_{i}\,,\ i=1,\dots,4\, of the prefactor P({w},{z})P(\{w\},\{z\})\, (2.9) of overall dimension (in mass units)

ΔP=3r2+11r+313+M[(3r+42)33M+2].\Delta_{P}=3\,r^{2}+11\,r+\frac{31}{3}+M\left[\binom{3r+4}{2}-\frac{3}{3M+2}\,\right]\ . (2.20)

The result is

limziwii=14(wizi)13P({w},{z})=\displaystyle\lim\limits_{z_{i}\to w_{i}}\,\prod_{i=1}^{4}(w_{i}-z_{i})^{\frac{1}{3}}\,P(\{w\},\{z\})=
=1i<j4wij3(M+1)23M+2i=14j=53r+4(wizj)(M+1)5i<j3r+4zij(M+23).\displaystyle=\prod_{1\leq i<j\leq 4}w_{ij}^{-3\frac{(M+1)^{2}}{3M+2}}\prod_{i=1}^{4}\prod_{j=5}^{3r+4}(w_{i}-z_{j})^{-(M+1)}\,\prod_{5\leq i<j\leq 3r+4}z_{ij}^{-(M+\frac{2}{3})}\ .\qquad\quad (2.21)

We will assume from now on that M=0.M=0\,. Combining (2.20) with (2.17) and the 75-\frac{7}{5}\, factor coming from (2.11), we can easily find that their sum (for M=0M=0) reproduces the dimension of the parafermionic correlator in (2.8),

3r2+11r+3133r29r675(=2r+4415)=415+23(3r+4),3\,r^{2}+11\,r+\frac{31}{3}-3\,r^{2}-9\,r-6-\frac{7}{5}\ (\,=2\,r+\frac{44}{15}\,)\,=\frac{4}{15}+\frac{2}{3}\,(3\,r+4)\ , (2.22)

thus verifying an obvious consistency condition implied by scale invariance (the invariance with respect to ϕ(z)λΔϕϕ(λz)\phi(z)\to\lambda^{\Delta_{\phi}}\,\phi(\lambda\,z) for all conformal fields).

The n=4,r=0n=4,\ r=0\, case

Our next step will be to recover the results obtained in AS07 for the conformal blocks of four Fibonacci fields, assuming to this end r=0.r=0\,. In this case the limit (2.21) reads

limziwi1i<j4zij231ij4(wizj)131i<j4wij16=(w12w34w13w24w14w23)32=\displaystyle\lim\limits_{z_{i}\to w_{i}}\,\prod_{1\leq i<j\leq 4}z^{-\frac{2}{3}}_{ij}\prod_{1\leq i\neq j\leq 4}(w_{i}-z_{j})^{-\frac{1}{3}}\prod_{1\leq i<j\leq 4}w^{-\frac{1}{6}}_{ij}=\left(w_{12}w_{34}\,w_{13}w_{24}\,w_{14}w_{23}\right)^{-\frac{3}{2}}=
=(w12w34)92(1x)32x3=i=14(wizi)13(w12w34)92(1η)32η3,\displaystyle=\left(w_{12}w_{34}\right)^{-\frac{9}{2}}(1-x)^{-\frac{3}{2}}\,x^{3}=\prod_{i=1}^{4}(w_{i}-z_{i})^{-\frac{1}{3}}\left(w_{12}w_{34}\right)^{-\frac{9}{2}}(1-\eta)^{-\frac{3}{2}}\,\eta^{3}\ ,\qquad (2.23)

where we have used (2.12) and (2.19) to obtain the last two equalities. Further, the terms in (2.15) that survive in this limit are displayed in Table 1 (the last column of which will not be needed immediately).

S1S_{1} S2S_{2} S3S_{3} limziwiΨ12,34\lim\limits_{z_{i}\to w_{i}}\,\Psi_{12,34} limziwiΨ13,24\lim\limits_{z_{i}\to w_{i}}\,\Psi_{13,24} limziwiΨ14,23\lim\limits_{z_{i}\to w_{i}}\,\Psi_{14,23}
1,21\,,2 33 44 0 0 w122(w13w43)(w24w34)w_{12}^{2}(w_{13}w_{43})(w_{24}w_{34})
1,21\,,2 44 33 0 w122(w41w43)(w32w34)w_{12}^{2}(w_{41}w_{43})(w_{32}w_{34}) 0
1,31\,,3 22 44 0 0 w132(w12w42)(w24w34)w_{13}^{2}(w_{12}w_{42})(w_{24}w_{34})
1,31\,,3 44 22 w132(w41w42)(w23w24)w_{13}^{2}(w_{41}w_{42})(w_{23}w_{24}) 0 0
1,41\,,4 22 33 0 w142(w21w23)(w32w34)w_{14}^{2}(w_{21}w_{23})(w_{32}w_{34}) 0
1,41\,,4 33 22 w142(w31w32)(w23w24)w_{14}^{2}(w_{31}w_{32})(w_{23}w_{24}) 0 0
2,32\,,3 11 44 0 0 0
2,32\,,3 44 11 w232(w41w42)(w13w14)w_{23}^{2}(w_{41}w_{42})(w_{13}w_{14}) w232(w41w43)(w12w14)w_{23}^{2}(w_{41}w_{43})(w_{12}w_{14}) 0
2,42\,,4 11 33 0 0 0
2,42\,,4 33 11 w242(w31w32)(w13w14)w_{24}^{2}(w_{31}w_{32})(w_{13}w_{14}) 0 w242(w13w43)(w21w31)w_{24}^{2}(w_{13}w_{43})(w_{21}w_{31})
3,43\,,4 11 22 0 0 0
3,43\,,4 22 11 0 w342(w21w23)(w12w14)w_{34}^{2}(w_{21}w_{23})(w_{12}w_{14}) w342(w12w42)(w21w41)w_{34}^{2}(w_{12}w_{42})(w_{21}w_{41})
Table 1: The terms in Ψ12,34,Ψ13,24\Psi_{12,34}\,,\Psi_{13,24}\, and Ψ14,23\Psi_{14,23}\, for r=0r=0\, surviving in the limit ziwi,i=1,,4z_{i}\to w_{i}\,,\ i=1,\dots,4\

Putting everything together, we obtain

limziwiΨ12,34({w};{z})=29(w13w24)(w14w32)(w14w32+w13w42)=\displaystyle\lim\limits_{z_{i}\to w_{i}}\,\Psi_{12,34}(\{w\};\{z\})=-\frac{2}{9}\,(w_{13}w_{24})(w_{14}w_{32})\left(w_{14}w_{32}+w_{13}w_{42}\right)=
=29(w12w34)3(1x)(2x)x3=29(w12w34)3(1η)(2η)η3,\displaystyle=-\frac{2}{9}\,(w_{12}w_{34})^{3}\,\frac{(1-x)(2-x)}{x^{3}}=\frac{2}{9}\,(w_{12}w_{34})^{3}\,\frac{(1-\eta)(2-\eta)}{\eta^{3}}\ ,
limziwiΨ13,24({w};{z})=29(w12w34)(w14w32)(w14w32+w12w34)=\displaystyle\lim\limits_{z_{i}\to w_{i}}\,\Psi_{13,24}(\{w\};\{z\})=\frac{2}{9}\,(w_{12}w_{34})(w_{14}w_{32})\left(w_{14}w_{32}+w_{12}w_{34}\right)=
=29(w12w34)31+xx2=29(w12w34)3(1η)(12η)η2.\displaystyle=\frac{2}{9}\,(w_{12}w_{34})^{3}\,\frac{1+x}{x^{2}}=\frac{2}{9}\,(w_{12}w_{34})^{3}\,\frac{(1-\eta)(1-2\eta)}{\eta^{2}}\ . (2.24)
limziwiΨ14,23({w};{z})=29(w12w34)(w13w42)(w12w34w13w42)=\displaystyle\lim\limits_{z_{i}\to w_{i}}\,\Psi_{14,23}(\{w\};\{z\})=\frac{2}{9}\,(w_{12}w_{34})(w_{13}w_{42})\left(w_{12}w_{34}-w_{13}w_{42}\right)=
=29(w12w34)3(1x)(12x)x2=29(w12w34)31+ηη2.\displaystyle=-\frac{2}{9}\,(w_{12}w_{34})^{3}\,\frac{(1-x)(1-2x)}{x^{2}}=-\frac{2}{9}\,(w_{12}w_{34})^{3}\,\frac{1+\eta}{\eta^{2}}\ .

It is easy to verify that the last expression for limziwiΨ14,23\lim\limits_{z_{i}\to w_{i}}\,\Psi_{14,23}\, satisfies the linear relation (2.14) whose counterpart in terms of η\eta\, (cf. (2.19)) reads

(1η)Ψ14,23({w};{z})=ηΨ12,34({w};{z})+Ψ13,24({w};{z}).(1-\eta)\,\Psi_{14,23}(\{w\};\{z\})=-\eta\,\Psi_{12,34}(\{w\};\{z\})+\Psi_{13,24}(\{w\};\{z\})\ . (2.25)

We now have all the ingredients to perform the calculation of the correlator of four Fibonacci fields.

Formulae (A.18), (A.12) of AS07 for the two four point chiral conformal blocks of the Fibonacci field ε(w),Δε=25,\varepsilon(w)\,,\ \Delta_{\varepsilon}=\frac{2}{5}\,, expressed in terms of hypergeometric functions read

Φ(0)({w}):=ε(w1)ε(w4)(0)=12(w12w34)45(1x)25×\displaystyle\Phi^{(0)}(\{w\}):=\langle\,\varepsilon(w_{1})\dots\varepsilon(w_{4})\,\rangle^{(0)}=\frac{1}{2}\left(w_{12}w_{34}\right)^{-\frac{4}{5}}(1-x)^{-\frac{2}{5}}\,\times
×[(2x)F(15,15,35;x)+13x(1+x)F(65,45,85;x)],\displaystyle\times\,[\,(2-x)\,F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};x)\,+\,\frac{1}{3}\,x(1+x)\,F(\frac{6}{5},\frac{4}{5},\frac{8}{5};x)\,]\ ,
Φ(1)({w}):=ε(w1)ε(w4)(1)=q2C2(w12w34)45x25(1x)25×\displaystyle\Phi^{(1)}(\{w\}):=\langle\,\varepsilon(w_{1})\dots\varepsilon(w_{4})\,\rangle^{(1)}=\frac{q^{2}\,C}{2}\,\left(w_{12}w_{34}\right)^{-\frac{4}{5}}x^{\frac{2}{5}}(1-x)^{-\frac{2}{5}}\,\times
×[(2x)F(15,35,75;x)2(1+x)F(15,35,25;x)],\displaystyle\times\,[\,(2-x)\,F(\frac{1}{5},\frac{3}{5},\frac{7}{5};x)-2\,(1+x)\,F(\frac{1}{5},\frac{3}{5},\frac{2}{5};x)\,]\ , (2.26)
q:=eiπ5,2C=Γ(15)Γ3(35)Γ(45)Γ3(25).\displaystyle q:=e^{i\frac{\pi}{5}}\ ,\qquad 2\,C=\sqrt{\frac{\Gamma(\frac{1}{5})\,\Gamma^{3}(\frac{3}{5})}{\Gamma(\frac{4}{5})\,\Gamma^{3}(\frac{2}{5})}}\ .

It is straightforward to verify that they are reproduced by our own detailed calculations by choosing appropriately some sign factors (also needed to match the natural conditions (2.31) and (2.32), see below).

Using the analytic continuation formula333All the information about hypergeometric functions needed in what follows can be found in any decent handbook on the subject like e.g. BE53 or AS72 .

F(a,b,c;ηη1)=(1η)aF(a,cb,c;η),F(a,b,c;\frac{\eta}{\eta-1})=(1-\eta)^{a}\,F(a,c-b,c;\eta)\ , (2.27)

we obtain from (2.11) and (2.13)

A(0)({w})=(w12w34)710(1η)110F(15,45,35;η),\displaystyle A^{(0)}(\{w\})=(w_{12}w_{34})^{\frac{7}{10}}\,(1-\eta)^{\frac{1}{10}}\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};\eta)\ ,
B(0)({w})=13(w12w34)710(1η)110F(65,45,85;η),\displaystyle B^{(0)}(\{w\})=-\frac{1}{3}\,(w_{12}w_{34})^{\frac{7}{10}}\,(1-\eta)^{\frac{1}{10}}\,F(\frac{6}{5},\frac{4}{5},\frac{8}{5};\eta)\ ,
A(1)({w})=C(w12w34)710η25(1η)310F(15,45,75;η),\displaystyle A^{(1)}(\{w\})=-\,C\,(w_{12}w_{34})^{\frac{7}{10}}\,\eta^{\frac{2}{5}}\,(1-\eta)^{-\frac{3}{10}}\,F(\frac{1}{5},\frac{4}{5},\frac{7}{5};\eta)\ ,
B(1)({w})=2C(w12w34)710η35(1η)310F(15,15,25;η),\displaystyle B^{(1)}(\{w\})=2\,C\,(w_{12}w_{34})^{\frac{7}{10}}\,\eta^{-\frac{3}{5}}\,(1-\eta)^{-\frac{3}{10}}\,F(\frac{1}{5},-\frac{1}{5},\frac{2}{5};\eta)\ , (2.28)

and from (2.26),

Φ(0)({w})=12(w12w34)45(1η)25×\displaystyle\Phi^{(0)}(\{w\})=\frac{1}{2}\left(w_{12}w_{34}\right)^{-\frac{4}{5}}(1-\eta)^{-\frac{2}{5}}\,\times
×[(2η)F(15,45,35;η)13η(12η)F(65,45,85;η)],\displaystyle\times[\,(2-\eta)F(\frac{1}{5},\frac{4}{5},\frac{3}{5};\eta)-\frac{1}{3}\,\eta\,(1-2\eta)\,F(\frac{6}{5},\frac{4}{5},\frac{8}{5};\eta)\,]\ ,\quad (2.29)
Φ(1)({w})=C2(w12w34)45η25(1η)45×\displaystyle\Phi^{(1)}(\{w\})=\frac{C}{2}\,\left(w_{12}w_{34}\right)^{-\frac{4}{5}}\eta^{\frac{2}{5}}(1-\eta)^{-\frac{4}{5}}\,\times
×[(2η)F(15,45,75;η)2(12η)F(15,15,25;η)].\displaystyle\times\,[\,(2-\eta)\,F(\frac{1}{5},\frac{4}{5},\frac{7}{5};\eta)-2\,(1-2\eta)\,F(\frac{1}{5},-\frac{1}{5},\frac{2}{5};\eta)\,]\ .\qquad\quad (2.30)

Formulae (2.29), (2.30) will be the starting point of our calculations that follow.

The two conformal blocks Φ(p)({w}),p=0,1\Phi^{(p)}(\{w\})\,,\ p=0,1\, are characterized by the following two basic properties (which fix their normalization as well).

  • The short distance asymptotics of the Φ\Phi\, basis vectors for w120w_{12}\to 0\, reproduces the two- and the three-point function, respectively,

    Φ(0)({w})=ε(w1)ε(w4)(0)w120w1245ε(w3)ε(w4)=(w12w34)45,\displaystyle\Phi^{(0)}(\{w\})=\langle\,\varepsilon(w_{1})\dots\varepsilon(w_{4})\rangle^{(0)}\,\underset{w_{12}\to 0}{\sim}\,w_{12}^{-\frac{4}{5}}\,\langle\,\varepsilon(w_{3})\,\varepsilon(w_{4})\rangle=(w_{12}w_{34})^{-\frac{4}{5}}\ ,\qquad\quad (2.31)
    Φ(1)({w})=ε(w1)ε(w4)(1)w120Cεεεw1235ε(w2)ε(w3)ε(w4)=\displaystyle\Phi^{(1)}(\{w\})=\langle\,\varepsilon(w_{1})\dots\varepsilon(w_{4})\rangle^{(1)}\,\underset{w_{12}\to 0}{\sim}\,C_{\varepsilon^{\prime}\varepsilon\varepsilon}\,w_{12}^{\frac{3}{5}}\,\langle\,\varepsilon^{\prime}(w_{2})\,\varepsilon(w_{3})\,\varepsilon(w_{4})\rangle=\qquad\qquad\,
    =(Cεεε)2(w12w34)35(w23w24)75w120(Cεεε)2(w12w34)45η75,\displaystyle=(C_{\varepsilon^{\prime}\varepsilon\varepsilon})^{2}\,(w_{12}w_{34})^{\frac{3}{5}}\,(w_{23}w_{24})^{-\frac{7}{5}}\,\underset{w_{12}\to 0}{\sim}\,(C_{\varepsilon^{\prime}\varepsilon\varepsilon})^{2}\,(w_{12}w_{34})^{-\frac{4}{5}}\,\eta^{\frac{7}{5}}\ ,\qquad\qquad\qquad\qquad\ (2.32)

    in accord with the operator product expansion (OPE)

    ε(w1)ε(w2)w120w12451I+Cεεεw1235ε(w2),Δε=75.\varepsilon(w_{1})\,\varepsilon(w_{2})\,\underset{w_{12}\to 0}{\sim}\,w_{12}^{-\frac{4}{5}}\mbox{\em 1\hskip-3.4ptI}+C_{\varepsilon^{\prime}\varepsilon\varepsilon}\,w_{12}^{\frac{3}{5}}\,\varepsilon^{\prime}(w_{2})\ ,\qquad\Delta_{\varepsilon^{\prime}}=\frac{7}{5}\ . (2.33)

    Similar conditions appear for w340.w_{34}\to 0\,.

    Remark 1  One can infer from the OPE εεY+ε,ΔY=3\varepsilon^{\prime}\,\varepsilon\sim Y+\varepsilon\,,\ \Delta_{Y}=3\, (see Eq.(54) in D84 or Table 10.2 in DiFMS97 ) that all 33-point structure constants Cεεε,CεεεC_{\varepsilon^{\prime}\varepsilon\varepsilon}\,,\ C_{\varepsilon\varepsilon^{\prime}\varepsilon}\, and CεεεC_{\varepsilon\varepsilon\varepsilon^{\prime}}\, are equal. Here is the complete list of non-trivial fusion relations in this sector of (3\mathbb{Z}_{3}\, Potts thermal) Virasoro fields:

    εε1I+ε,εεY+ε,εYε,εYε,εε1I+ε,YY1I.\varepsilon\,\varepsilon\sim\mbox{\em 1\hskip-3.4ptI}+\varepsilon^{\prime}\ ,\quad\varepsilon^{\prime}\,\varepsilon\sim Y+\varepsilon\ ,\quad\varepsilon\,Y\sim\varepsilon^{\prime}\ ,\quad\varepsilon^{\prime}\,Y\sim\varepsilon\ ,\quad\varepsilon^{\prime}\varepsilon^{\prime}\sim\mbox{\em 1\hskip-3.4ptI}+\varepsilon^{\prime}\ ,\quad Y\,Y\sim\mbox{\em 1\hskip-3.4ptI}\ . (2.34)

    Remark 2  The short distance behavior (2.31) and (2.32) which we are going to prove below provides an "internal" characterization of the two channels, or conformal blocks indexed by p=0,1,p=0,1,\, respectively. The fact that the channels, originally introduced with reference to the fusion (2.7) also correspond to the two possible outcomes in the OPE of two ε\varepsilon\, fields (2.33) will be used later to introduce the conformal blocks corresponding to a higher number of Fibonacci anyons, n>4.n>4\,. (Of course, the two definitions are consistent.)

  • The following two braidings (homotopy classes of analytic continuation) are diagonal in the Φ\Phi\, basis:

    b1b12:w12w21:=eiπw12,b3b34:w34w43:=eiπw34\displaystyle b_{1}\equiv b_{12}:\ w_{12}\stackrel{{\scriptstyle\curvearrowleft}}{{\longrightarrow}}w_{21}:=e^{i\pi}w_{12}\ ,\quad b_{3}\equiv b_{34}:\ w_{34}\stackrel{{\scriptstyle\curvearrowleft}}{{\longrightarrow}}w_{43}:=e^{i\pi}w_{34}
    (biq4)Φ(0)({w})=0,(biq3)Φ(1)({w})=0,i=1,3,\displaystyle(b_{i}-q^{-4})\,\Phi^{(0)}(\{w\})=0\ ,\quad(b_{i}-q^{3})\,\Phi^{(1)}(\{w\})=0\ ,\ i=1,3\ , (2.35)

    or

    biΦ({w})=RΦ({w}),Φ({w}):=(Φ(0)({w})Φ(1)({w})),R=(q400q3).b_{i}\,\Phi(\{w\})=R\,\Phi(\{w\})\ ,\quad\Phi(\{w\}):=\begin{pmatrix}\Phi^{(0)}(\{w\})\cr\Phi^{(1)}(\{w\})\end{pmatrix}\ ,\quad R=\begin{pmatrix}q^{-4}&0\cr 0&q^{3}\end{pmatrix}\ . (2.36)

The short distance asymptotics (2.31) and (2.32) are easily verified by taking into account the fact that η0\eta\to 0\, if either w12w_{12}\, or w34w_{34}\, goes to zero and that the hypergeometric series expansion for small η\eta\, starts with

F(a,b,c;η)=1+abcη+𝒪(η2).F(a,b,c;\eta)=1+\frac{ab}{c}\,\eta+{\cal O}(\eta^{2})\ . (2.37)

The specific combination appearing in the expression (2.30) for Φ(1)({w})\Phi^{(1)}(\{w\})\,

(2η)F(15,45,75;η)2(12η)F(15,15,25;η)=\displaystyle(2-\eta)\,F(\frac{1}{5},\frac{4}{5},\frac{7}{5};\eta)-2(1-2\,\eta)\,F(\frac{1}{5},-\frac{1}{5},\frac{2}{5};\eta)= (2.38)
=(2η)(1+435η)2(12η)(1110η)+=247η+𝒪(η2)\displaystyle=(2-\eta)(1+\frac{4}{35}\eta)-2(1-2\,\eta)(1-\frac{1}{10}\eta)+\dots=\frac{24}{7}\,\eta+{\cal O}(\eta^{2})

provides, in particular, the additional (to η25\eta^{\frac{2}{5}}) power of η\eta\, needed to satisfy the last equality in (2.32), and also fixes the three-point structure constant

Cεεε=127C.C_{\varepsilon^{\prime}\varepsilon\varepsilon}=\sqrt{\frac{12}{7}\,C}\ . (2.39)

As noted in AS07 , this detail is actually the manifestation of the field ε(w)\varepsilon^{\prime}(w)\, of conformal dimension Δε=75\Delta_{\varepsilon^{\prime}}=\frac{7}{5}\, whose appearance in the operator algebra of ε(w)\varepsilon(w)\, has been discovered long ago, see e.g. D84 .

It is obvious that the effect of the b1b_{1}\, and b3b_{3}\, braidings on the Φ\Phi\, basis (2.29), (2.30) is the same since in both cases

(w12w34)45(eiπw12w34)45=q4(w12w34)45,and\displaystyle(w_{12}w_{34})^{-\frac{4}{5}}\to(e^{i\pi}w_{12}w_{34})^{-\frac{4}{5}}=q^{-4}(w_{12}w_{34})^{-\frac{4}{5}}\ ,\qquad{\rm and}
η=w12w34w13w24w12w34w23w14=ηη1(=eiπη(1η)1)\displaystyle\eta=\frac{w_{12}w_{34}}{w_{13}w_{24}}\to-\frac{w_{12}w_{34}}{w_{23}w_{14}}=\frac{\eta}{\eta-1}\ \ (\,=\,e^{i\pi}\eta\,(1-\eta)^{-1}\,)\quad\Rightarrow
1η11η,2η2η1η,12η1+η1η.\displaystyle 1-\eta\to\frac{1}{1-\eta}\ ,\quad 2-\eta\to\frac{2-\eta}{1-\eta}\ ,\quad 1-2\,\eta\to\frac{1+\eta}{1-\eta}\ . (2.40)

So, for example, we obtain from (2.29) by using (2.27) and (2.40)

b1Φ(0)({w})=q42(w12w34)45(1η)25×\displaystyle b_{1}\Phi^{(0)}(\{w\})=\frac{q^{-4}}{2}\left(w_{12}w_{34}\right)^{-\frac{4}{5}}(1-\eta)^{\frac{2}{5}}\times
×[2η1η(1η)15F(15,15,35;η)+13η(1+η)(1η)2(1η)65F(65,45,85;η)],\displaystyle\times[\,\frac{2-\eta}{1-\eta}(1-\eta)^{\frac{1}{5}}F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};\eta)+\frac{1}{3}\frac{\eta\,(1+\eta)}{(1-\eta)^{2}}\,(1-\eta)^{\frac{6}{5}}F(\frac{6}{5},\frac{4}{5},\frac{8}{5};\eta)\,]\ ,\qquad\qquad (2.41)

and it remains to apply one of the Gauss’ contiguous relations,

F(15,15,35;η)=F(15,45,35;η)13ηF(65,45,85;η)F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};\eta)=F(\frac{1}{5},\frac{4}{5},\frac{3}{5};\eta)-\frac{1}{3}\,\eta\,F(\frac{6}{5},\frac{4}{5},\frac{8}{5};\eta) (2.42)

to confirm the first equality in (2.35), the one for the braiding

b1Φ(0)({w})=q4Φ(0)({w}).b_{1}\Phi^{(0)}(\{w\})=q^{-4}\,\Phi^{(0)}(\{w\})\ .

Similarly,

b1Φ(1)({w})=C2q4(w12w34)45q2η25(1η)25×\displaystyle b_{1}\Phi^{(1)}(\{w\})=\frac{C}{2}\,q^{-4}(w_{12}w_{34})^{-\frac{4}{5}}q^{2}\,\eta^{\frac{2}{5}}(1-\eta)^{\frac{2}{5}}\times
×[2η1η(1η)15F(15,35,75;η)21+η1η(1η)15F(15,35,25;η)]=\displaystyle\times\,[\,\frac{2-\eta}{1-\eta}\,(1-\eta)^{\frac{1}{5}}F(\frac{1}{5},\frac{3}{5},\frac{7}{5};\eta)-2\,\frac{1+\eta}{1-\eta}\,(1-\eta)^{\frac{1}{5}}F(\frac{1}{5},\frac{3}{5},\frac{2}{5};\eta)\,]\ =
=q2C2(w12w34)45η25(1η)25×\displaystyle=q^{-2}\,\frac{C}{2}(w_{12}w_{34})^{-\frac{4}{5}}\eta^{\frac{2}{5}}(1-\eta)^{-\frac{2}{5}}\times (2.43)
×[(2η)(1η)35F(65,45,75;η)2(1+η)(1η)25F(15,15,25;η)],\displaystyle\times\,[\,(2-\eta)\,(1-\eta)^{\frac{3}{5}}F(\frac{6}{5},\frac{4}{5},\frac{7}{5};\eta)-2\,(1+\eta)\,(1-\eta)^{-\frac{2}{5}}F(\frac{1}{5},-\frac{1}{5},\frac{2}{5};\eta)\,]\ ,

the last expression following from the previous one due to

F(a,b,c;η)=(1η)cabF(ca,cb,c;η).F(a,b,c;\eta)=(1-\eta)^{c-a-b}\,F(c-a,c-b,c;\eta)\ . (2.44)

In the final step we apply another Gauss’ contiguous relation,

(1η)F(65,45,75;η)=F(15,45,75;η)+2F(15,15,25;η)(1-\eta)\,F(\frac{6}{5},\frac{4}{5},\frac{7}{5};\eta)=-F(\frac{1}{5},\frac{4}{5},\frac{7}{5};\eta)+2\,F(\frac{1}{5},-\frac{1}{5},\frac{2}{5};\eta) (2.45)

to obtain also the second equality in (2.35),

b1Φ(1)({w})=q2Φ(1)({w})=q3Φ(1)({w}).b_{1}\Phi^{(1)}(\{w\})=-q^{-2}\,\Phi^{(1)}(\{w\})=q^{3}\,\Phi^{(1)}(\{w\})\ .

3 The dual basis and the fusion matrix (n=4,r=0n=4\,,\ r=0)

The Φ\Phi\, basis (2.29), (2.30) of four-point Fibonacci field conformal blocks is well adapted to study the η0\eta\sim 0\, behaviour (which means small w12w_{12}\, or w34w_{34}). The braiding of the two middle fields is however related to small w23w_{23}\, or, equivalently, 1η0,1-\eta\sim 0\,, i.e. η1.\eta\sim 1\,. This requires the introduction of a "dual" basis (denoted as Θ\Theta\, below) the vectors of which correspond to the two channels appearing after fusing the second and third ε\varepsilon\, fields (and not the first and second, or the third and the fourth one, as it is assumed in the construction of the Φ\Phi\, basis)444This situation is very well known in high energy physics where the ”dual” description of four-point scattering amplitudes (the Φ\Phi\, and Θ\Theta\, bases corresponding to the ss- and uu-channels, respectively, following the standard notation for the Mandelstam variables) led to the Veneziano formula (1968) and, subsequently, to the first idea of using string theory in the form of the so called dual resonance model of strong interactions..

Thus, technically the dual basis Θ({w})=(Θ(0)({w})Θ(1)({w}))\Theta(\{w\})=\begin{pmatrix}\Theta^{(0)}(\{w\})\cr\Theta^{(1)}(\{w\})\end{pmatrix}\, has to be determined by the following three conditions:

  • The vectors Θ(p)({w}),p=0,1\Theta^{(p)}(\{w\})\,,\ p=0,1\, are linear combinations of Φ(q)({w}),q=0,1.\Phi^{(q)}(\{w\})\,,\ q=0,1\,.

  • The short distance asymptotics of the Θ\Theta\, basis vectors for w230w_{23}\to 0\, reproduces the corresponding two- and the three-point function (compare with (2.31) and (2.32) and note that 1η=w23w14w13w241-\eta=\frac{w_{23}w_{14}}{w_{13}w_{24}}\,) :

    Θ(0)({w})w230w2345ε(w1)ε(w4)=(w23w14)45,\displaystyle\Theta^{(0)}(\{w\})\,\underset{w_{23}\to 0}{\sim}\,w_{23}^{-\frac{4}{5}}\,\langle\,\varepsilon(w_{1})\,\varepsilon(w_{4})\rangle=(w_{23}w_{14})^{-\frac{4}{5}}\ ,\, (3.1)
    Θ(1)({w})w230Cεεεw2335ε(w1)ε(w3)ε(w4)=\displaystyle\Theta^{(1)}(\{w\})\underset{w_{23}\to 0}{\sim}\,C_{\varepsilon\varepsilon^{\prime}\varepsilon}\,w_{23}^{\frac{3}{5}}\,\langle\,\varepsilon(w_{1})\,\varepsilon^{\prime}(w_{3})\,\varepsilon(w_{4})\rangle=\qquad\qquad\,\
    =(Cεεε)2(w23w14)35(w13w34)75w230127C(w23w14)45(1η)75.\displaystyle=(C_{\varepsilon\varepsilon^{\prime}\varepsilon})^{2}\,(w_{23}w_{14})^{\frac{3}{5}}\,(w_{13}w_{34})^{-\frac{7}{5}}\,\underset{w_{23}\to 0}{\sim}\,\frac{12}{7}\,C\,(w_{23}w_{14})^{-\frac{4}{5}}\,(1-\eta)^{\frac{7}{5}}\ .\qquad (3.2)
  • The braiding

    b2b23:w23w32:=eiπw23b_{2}\equiv b_{23}:\ w_{23}\stackrel{{\scriptstyle\curvearrowleft}}{{\longrightarrow}}w_{32}:=e^{i\pi}w_{23} (3.3)

    is diagonal in the (dual) Θ\Theta\, basis with the same eigenvalues as in (2.36) :

    b2Θ({w})=RΘ({w}),R=(q400q3).b_{2}\,\Theta(\{w\})=R\,\Theta(\{w\})\,,\quad R=\begin{pmatrix}q^{-4}&0\cr 0&q^{3}\end{pmatrix}\ . (3.4)

To this end we will start by performing an innocent procedure by just recasting the expressions for Φ(q)({w}),q=0,1\Phi^{(q)}(\{w\})\,,\ q=0,1\, (2.29), (2.30) replacing w12w34w_{12}w_{34}\, with w23w14,w_{23}w_{14}\,,

w12w34=w23w14η1ηw_{12}w_{34}=w_{23}w_{14}\,\frac{\eta}{1-\eta}

as well the argument η\eta\, of hypergeometric series with 1η1-\eta\, by using the equality

F(a,b,c;η)=Γ(c)Γ(cab)Γ(ca)Γ(cb)F(a,b,a+bc+1;1η)+\displaystyle F(a,b,c;\eta)=\frac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\,\Gamma(c-b)}\,F(a,b,a+b-c+1;1-\eta)+ (3.5)
+Γ(c)Γ(a+bc)Γ(a)Γ(b)(1η)cabF(ca,cb,cab+1;1η)\displaystyle+\,\frac{\Gamma(c)\,\Gamma(a+b-c)}{\Gamma(a)\,\Gamma(b)}\,(1-\eta)^{c-a-b}\,F(c-a,c-b,c-a-b+1;1-\eta)

which gives

F(15,45,35;η)\displaystyle F(\frac{1}{5},\frac{4}{5},\frac{3}{5};\eta) =\displaystyle= η25[τ(1η)25F(15,45,35;1η)+D12F(65,35,75;1η)],\displaystyle\eta^{\frac{2}{5}}\,[\tau\,(1-\eta)^{-\frac{2}{5}}\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};1-\eta)+\frac{D_{1}}{2}\,F(\frac{6}{5},\frac{3}{5},\frac{7}{5};1-\eta)\,]\ ,
F(65,45,85;η)\displaystyle F(\frac{6}{5},\frac{4}{5},\frac{8}{5};\eta) =\displaystyle= 3η35[D12F(15,35,75;1η)+τ(1η)25F(15,15,35;1η)],\displaystyle 3\,\eta^{-\frac{3}{5}}\,[\,-\frac{D_{1}}{2}\,F(\frac{1}{5},\frac{3}{5},\frac{7}{5};1-\eta)+\tau\,(1-\eta)^{-\frac{2}{5}}\,F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};1-\eta)\,]\ ,
F(15,45,75;η)\displaystyle F(\frac{1}{5},\frac{4}{5},\frac{7}{5};\eta) =\displaystyle= τ(1η)25F(65,35,75;1η)+2D2F(15,45,35;1η),\displaystyle-\tau\,(1-\eta)^{\frac{2}{5}}\,F(\frac{6}{5},\frac{3}{5},\frac{7}{5};1-\eta)+2\,D_{2}\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};1-\eta)\ , (3.6)
F(15,15,25;η)\displaystyle F(\frac{1}{5},-\frac{1}{5},\frac{2}{5};\eta) =\displaystyle= 12[ 2D2F(15,15,35;1η)+τ(1η)25F(15,35,75;1η)].\displaystyle\frac{1}{2}\,[\,2\,D_{2}\,F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};1-\eta)+\tau\,(1-\eta)^{\frac{2}{5}}\,F(\frac{1}{5},\frac{3}{5},\frac{7}{5};1-\eta)\,]\ .

We have applied twice a version of (2.44) above to replace

F(25,15,35;1η)byη25F(15,45,35;1η),and\displaystyle F(\frac{2}{5},-\frac{1}{5},\frac{3}{5};1-\eta)\qquad{\rm by}\qquad\eta^{\frac{2}{5}}\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};1-\eta)\ ,\qquad{\rm and}
F(15,45,75;1η)byη25F(65,35,75;1η).\displaystyle F(\frac{1}{5},\frac{4}{5},\frac{7}{5};1-\eta)\qquad\ \ \,{\rm by}\qquad\eta^{\frac{2}{5}}\,F(\frac{6}{5},\frac{3}{5},\frac{7}{5};1-\eta)\ .

In (3.6) τ=512\tau=\frac{\sqrt{5}-1}{2}\, is the inverse of the golden ratio, or

τ=Γ(25)Γ(35)Γ(15)Γ(45)=12cosπ5=1q+q1=q2+q2(τ2+τ=1),and\displaystyle\tau=\frac{\Gamma(\frac{2}{5})\Gamma(\frac{3}{5})}{\Gamma(\frac{1}{5})\,\Gamma(\frac{4}{5})}=\frac{1}{2\,\cos{\frac{\pi}{5}}}=\frac{1}{q+q^{-1}}=q^{2}+q^{-2}\quad(\tau^{2}+\tau=1)\ ,\quad{\rm and}
D1:=Γ2(35)Γ(25)Γ(45)=2Cτ,D2:=Γ2(25)Γ(15)Γ(35)=12Cτ,\displaystyle D_{1}:=\frac{\Gamma^{2}(\frac{3}{5})}{\Gamma(\frac{2}{5})\,\Gamma(\frac{4}{5})}=2\,C\,\sqrt{\tau}\ ,\qquad D_{2}:=\frac{\Gamma^{2}(\frac{2}{5})}{\Gamma(\frac{1}{5})\,\Gamma(\frac{3}{5})}=\frac{1}{2\,C}\,\sqrt{\tau}\ ,\qquad (3.7)

with CC\, as given in (2.26). Putting everything together, we obtain the desired presentation of the Φ\Phi\, basis in the form

Φ(0)({w})=12(w23w14)45η25×\displaystyle\Phi^{(0)}(\{w\})=\frac{1}{2}\left(w_{23}w_{14}\right)^{-\frac{4}{5}}\eta^{-\frac{2}{5}}\times
×{τ[(2η)F(15,45,35;1η)(12η)F(15,15,35;1η)]+\displaystyle\times\{\,\tau\,[\,(2-\eta)\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};1-\eta)-(1-2\eta)\,F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};1-\eta)\,]+ (3.8)
+Cτ(1η)25[(2η)F(65,35,75;1η)+(12η)F(15,35,75;1η)]},\displaystyle+\,C\,\sqrt{\tau}\,(1-\eta)^{\frac{2}{5}}\,[\,(2-\eta)\,F(\frac{6}{5},\frac{3}{5},\frac{7}{5};1-\eta)+(1-2\eta)\,F(\frac{1}{5},\frac{3}{5},\frac{7}{5};1-\eta)\,]\,\}\ ,
Φ(1)({w})=12(w23w14)45η25×\displaystyle\Phi^{(1)}(\{w\})=\frac{1}{2}\left(w_{23}w_{14}\right)^{-\frac{4}{5}}\eta^{-\frac{2}{5}}\times
×{τ[(2η)F(15,45,35;1η)(12η)F(15,15,35;1η)]\displaystyle\times\{\,\sqrt{\tau}\,[\,(2-\eta)\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};1-\eta)-(1-2\eta)\,F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};1-\eta)\,]-
Cτ[(2η)F(65,35,75;1η)+(12η)F(15,35,75;1η)]}.\displaystyle-\,C\,\tau\,[\,(2-\eta)\,F(\frac{6}{5},\frac{3}{5},\frac{7}{5};1-\eta)+(1-2\eta)\,F(\frac{1}{5},\frac{3}{5},\frac{7}{5};1-\eta)\,]\,\}\ . (3.9)

A careful look reveals that our simple exercise actually produced an amazing result, since (3.8), (3.9) can be written compactly as

(Φ(0)({w})Φ(1)({w}))=(ττττ)(Θ(0)({w})Θ(1)({w})),or\displaystyle\begin{pmatrix}\Phi^{(0)}(\{w\})\cr\Phi^{(1)}(\{w\})\end{pmatrix}=\begin{pmatrix}\tau&\sqrt{\tau}\cr\sqrt{\tau}&-\tau\end{pmatrix}\ \begin{pmatrix}\Theta^{(0)}(\{w\})\cr\Theta^{(1)}(\{w\})\end{pmatrix}\ ,\qquad{\rm or}
Φ({w})=FΘ({w}),F=(ττττ)\displaystyle\Phi(\{w\})=F\,\Theta(\{w\})\ ,\qquad F=\begin{pmatrix}\tau&\sqrt{\tau}\cr\sqrt{\tau}&-\tau\end{pmatrix} (3.10)

(note the involutivity of the matrix F,F2=1IF\,,\ F^{2}=\mbox{\em 1\hskip-3.4ptI}\, for τ\tau\, given by (3)), with

Θ(0)({w})=12(w23w14)45η25×\displaystyle\Theta^{(0)}(\{w\})=\frac{1}{2}\left(w_{23}w_{14}\right)^{-\frac{4}{5}}\eta^{-\frac{2}{5}}\times
×[(2η)F(15,45,35;1η)(12η)F(15,15,35;1η)],\displaystyle\times\,[\,(2-\eta)\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};1-\eta)-(1-2\eta)\,F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};1-\eta)\,]\ , (3.11)
Θ(1)({w})=C2(w23w14)45η25(1η)25×\displaystyle\Theta^{(1)}(\{w\})=\frac{C}{2}\left(w_{23}w_{14}\right)^{-\frac{4}{5}}\eta^{-\frac{2}{5}}\,(1-\eta)^{\frac{2}{5}}\times
×[(2η)F(65,35,75;1η)+(12η)F(15,35,75;1η)],\displaystyle\times\,[\,(2-\eta)\,F(\frac{6}{5},\frac{3}{5},\frac{7}{5};1-\eta)+(1-2\eta)\,F(\frac{1}{5},\frac{3}{5},\frac{7}{5};1-\eta)\,]\ , (3.12)

and the matrix FF\, coincides with the canonical solution of the relevant pentagon equation (see e.g. Eq.(9.125) in J. Preskill’s Lecture Notes P04 ). This fact strongly suggests that Θ(0)({w}),Θ(1)({w})\Theta^{(0)}(\{w\})\,,\ \Theta^{(1)}(\{w\})\, (3.11), (3.12) form the dual basis we have been looking for.

We will now prove that Θ(0)({w})\Theta^{(0)}(\{w\})\, and Θ(1)({w})\Theta^{(1)}(\{w\})\, satisfy indeed the requirements spelled out in Eqs. (3.1), (3.2) and (3.4).

The verification of the w230w_{23}\to 0\, (and hence, η1\eta\to 1\,) asymptotics goes quite similarly to the Φ\Phi\, basis case. After substituting

1η=ϵ2η=1+ϵ,12η=2ϵ1(ϵ0),1-\eta=\epsilon\quad\Rightarrow\quad 2-\eta=1+\epsilon\ ,\quad 1-2\,\eta=2\,\epsilon-1\qquad(\epsilon\to 0)\,,

it amounts to showing that

2η(12η)+𝒪(1η)=1+ϵ(2ϵ1)+𝒪(ϵ)=2+𝒪(ϵ)2-\eta-(1-2\eta)+{\cal O}(1-\eta)=1+\epsilon-(2\,\epsilon-1)+{\cal O}(\epsilon)=2+{\cal O}(\epsilon) (3.13)

and

(2η)(1+1835(1η))+(12η)(1+335(1η))+𝒪((1η)2)=\displaystyle(2-\eta)(1+\frac{18}{35}(1-\eta))+(1-2\,\eta)(1+\frac{3}{35}(1-\eta))+{\cal O}((1-\eta)^{2})=
=(1+ϵ)(1+1835ϵ)+(2ϵ1)(1+335ϵ)+𝒪(ϵ2)=247ϵ+𝒪(ϵ2),\displaystyle=(1+\epsilon)(1+\frac{18}{35}\,\epsilon)+(2\,\epsilon-1)(1+\frac{3}{35}\epsilon)+{\cal O}(\epsilon^{2})=\frac{24}{7}\,\epsilon+{\cal O}(\epsilon^{2})\ ,\qquad\quad (3.14)

respectively.

To prove that the action of the braiding b2b_{2}\, (3.3) on the Θ\Theta\, basis (3.12), (3.12) is given by the diagonal matrix R,R\,, we proceed as follows. As the exchange of w2w_{2}\, and w3w_{3}\, induces

η=w12w34w13w24w13w24w12w34=η11η 1η1=1η(1η)1,\eta=\frac{w_{12}w_{34}}{w_{13}w_{24}}\to\frac{w_{13}w_{24}}{w_{12}w_{34}}=\eta^{-1}\quad\Rightarrow\quad 1-\eta\ \to\ 1-\eta^{-1}=\frac{1-\eta}{(1-\eta)-1}\ ,\quad (3.15)

we need a version of the relation (2.27) in the form

F(a,b,c;1η1)=ηaF(a,cb,c;1η).F(a,b,c;1-\eta^{-1})=\eta^{a}\,F(a,c-b,c;1-\eta)\ . (3.16)

Applying it to (3.11), we get

b2Θ(0)({w})=12q4(w23w14)45η25×\displaystyle b_{2}\,\Theta^{(0)}(\{w\})=\frac{1}{2}\,q^{-4}\,\left(w_{23}w_{14}\right)^{-\frac{4}{5}}\eta^{\frac{2}{5}}\times
×[12ηηη15F(15,15,35;1η)+2ηηη15F(15,45,35;1η)]=\displaystyle\times\,[\,-\frac{1-2\,\eta}{\eta}\,\eta^{\frac{1}{5}}\,F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};1-\eta)+\frac{2-\eta}{\eta}\,\eta^{\frac{1}{5}}\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};1-\eta)\,]\,=
=q4Θ(0)({w}).\displaystyle=q^{-4}\,\Theta^{(0)}(\{w\})\ . (3.17)

In the case of (3.12) we obtain

b2Θ(1)({w})=C2q4(w23w14)45η25q2(1ηη)25×\displaystyle b_{2}\,\Theta^{(1)}(\{w\})=\frac{C}{2}\,q^{-4}\,\left(w_{23}w_{14}\right)^{-\frac{4}{5}}\eta^{\frac{2}{5}}\,q^{2}\,\left(\frac{1-\eta}{\eta}\right)^{\frac{2}{5}}\times
×[12ηηη65F(65,45,75;1η)2ηηη15F(15,45,75;1η)]=\displaystyle\times\,[\,-\frac{1-2\,\eta}{\eta}\,\eta^{\frac{6}{5}}\,F(\frac{6}{5},\frac{4}{5},\frac{7}{5};1-\eta)-\frac{2-\eta}{\eta}\,\eta^{\frac{1}{5}}\,F(\frac{1}{5},\frac{4}{5},\frac{7}{5};1-\eta)\,]=
=q2C2(w23w14)45η45(1η)25×\displaystyle=-\,q^{-2}\,\frac{C}{2}\,\left(w_{23}w_{14}\right)^{-\frac{4}{5}}\,\eta^{-\frac{4}{5}}\,(1-\eta)^{\frac{2}{5}}\times
×[(2η)F(15,45,75;1η)+(12η)ηF(65,45,75;1η)]=\displaystyle\times\,[\,(2-\eta)\,F(\frac{1}{5},\frac{4}{5},\frac{7}{5};1-\eta)+(1-2\,\eta)\,\eta\,F(\frac{6}{5},\frac{4}{5},\frac{7}{5};1-\eta)\,]=
=q3Θ(1)({w}),\displaystyle=q^{3}\,\Theta^{(1)}(\{w\})\ , (3.18)

the last equality taking place due to (2.44) which gives

F(15,45,75;1η)=η25F(65,35,75;1η),F(65,45,75;1η)=η35F(15,35,75;1η).F(\frac{1}{5},\frac{4}{5},\frac{7}{5};1-\eta)=\eta^{\frac{2}{5}}\,F(\frac{6}{5},\frac{3}{5},\frac{7}{5};1-\eta)\ ,\quad F(\frac{6}{5},\frac{4}{5},\frac{7}{5};1-\eta)=\eta^{-\frac{3}{5}}\,F(\frac{1}{5},\frac{3}{5},\frac{7}{5};1-\eta)\ . (3.19)

We have thus confirmed (3.4) in the dual basis. Together with (2.36), (3.10) (and F=F1F=F^{-1}\,) it implies that the three generators of the Artin braid group 4{\cal B}_{4}\, acting on the Φ\Phi\, basis are represented by the following matrices:

π(4)(b1)=π(4)(b3)=R=(q400q3),π(4)(b2)=B,B:=FRF=(q4τq3τq3ττ).\pi^{(4)}(b_{1})=\pi^{(4)}(b_{3})=R=\begin{pmatrix}q^{-4}&0\cr 0&q^{3}\end{pmatrix}\ ,\quad\pi^{(4)}(b_{2})=B\ ,\quad B:=F\,R\,F=\begin{pmatrix}q^{4}\tau&q^{-3}\sqrt{\tau}\cr q^{-3}\sqrt{\tau}&-\tau\end{pmatrix}\ . (3.20)

(Of course, in the dual, Θ\Theta\, basis in which b2b_{2}\, acts diagonally by R,b1R\,,\ b_{1}\, and b3b_{3}\, are represented by B.B\,.) To make sure that the generators given by (3.20) satisfy the Artin relations for 4{\cal B}_{4}\,

b1b2b1=b2b1b2,b2b3b2=b3b2b3,b1b3=b3b1,b_{1}\,b_{2}\,b_{1}=b_{2}\,b_{1}\,b_{2}\ ,\quad b_{2}\,b_{3}\,b_{2}=b_{3}\,b_{2}\,b_{3}\ ,\quad b_{1}\,b_{3}=b_{3}\,b_{1}\ , (3.21)

we need to verify the matrix equality

RBR=BRB(forB=FRF).R\,B\,R=B\,R\,B\ \qquad({\rm for}\ B=F\,R\,F)\ . (3.22)

To show that (3.22) holds, one can express τ\tau\, in terms of qq\, using (3); it turns out indeed that both sides are equal (to q4Fq^{-4}\,F). Note also that

detF=1,detR=q1=detB,\det F=-1\ ,\qquad\det R=q^{-1}=\det B\ , (3.23)

the equality of the last two determinants being actually a consistency condition for (3.22).

4 Braiding and fusion for n=4n=4\, and arbitrary rr

In the presence of 3r3\,r\, electrons at points z5,,z3r+4z_{5},\dots,z_{3r+4}\, the prefactor (2.21) (for M=0M=0) contains the product

1i<j4wij32=(w12w34)92η3(1η)32,\prod_{1\leq i<j\leq 4}w_{ij}^{-\frac{3}{2}}=(w_{12}w_{34})^{-\frac{9}{2}}\,\eta^{3}\,(1-\eta)^{-\frac{3}{2}}\ ,

see (2.19) and, in addition (after the fusion limit is taken, cf. (2.3)), the piece

Q=Q({w},{z¯}):=94i=14j=53r+4(wizj)15k<3r+4zk23,{z¯}{z5,,z3r+4}Q=Q(\{w\},\{\underline{z}\}):=\frac{9}{4}\,\prod_{i=1}^{4}\prod_{j=5}^{3r+4}(w_{i}-z_{j})^{-1}\,\prod_{5\leq k<\ell\leq 3r+4}z_{k\ell}^{-\frac{2}{3}}\ ,\quad\{\underline{z}\}\,\equiv\,\{z_{5},\dots,z_{3r+4}\} (4.1)

which is symmetric in wi,i=1,2,3,4.w_{i}\,,\ i=1,2,3,4\,. Accordingly (fixing the sign of Φ(1)({w},{z¯})\Phi^{(1)}(\{w\},\{\underline{z}\})),

Φ(0)({w},{z¯})=Q[(w12w34)3η3(1η)32](w12w34)45(1η)110×\displaystyle\Phi^{(0)}(\{w\},\{\underline{z}\})=Q\,[(w_{12}w_{34})^{-3}\,\eta^{3}\,(1-\eta)^{-\frac{3}{2}}]\,\left(w_{12}w_{34}\right)^{-\frac{4}{5}}(1-\eta)^{\frac{1}{10}}\,\times
×[F(15,45,35;η)Ψ12,3413F(65,45,85;η)Ψ13,24],\displaystyle\times\,[\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};\eta)\,\Psi_{12,34}-\frac{1}{3}\,F(\frac{6}{5},\frac{4}{5},\frac{8}{5};\eta)\,\Psi_{13,24}\,]\ ,\qquad\ (4.2)
Φ(1)({w},{z¯})=CQ[(w12w34)3η3(1η)32](w12w34)45η35(1η)310×\displaystyle\Phi^{(1)}(\{w\},\{\underline{z}\})=C\,Q\,[(w_{12}w_{34})^{-3}\,\eta^{3}\,(1-\eta)^{-\frac{3}{2}}]\left(w_{12}w_{34}\right)^{-\frac{4}{5}}\eta^{-\frac{3}{5}}(1-\eta)^{-\frac{3}{10}}\,\times
×[ηF(15,45,75;η)Ψ12,342F(15,15,25;η)Ψ13,24].\displaystyle\times\,[\,\eta\,F(\frac{1}{5},\frac{4}{5},\frac{7}{5};\eta)\,\Psi_{12,34}-2\,F(\frac{1}{5},-\frac{1}{5},\frac{2}{5};\eta)\,\Psi_{13,24}\,]\ . (4.3)

Note that (w12w34)3η3(1η)32(w_{12}w_{34})^{-3}\,\eta^{3}\,(1-\eta)^{-\frac{3}{2}}\, is invariant with respect to w12eiπw12.w_{12}\to e^{i\pi}\,w_{12}\,. Here

Ψ12,34=Ψ12,34({w},{w,z¯})andΨ13,24=Ψ13,24({w},{w,z¯})\Psi_{12,34}=\Psi_{12,34}(\{w\},\{w,\underline{z}\})\qquad{\rm and}\qquad\Psi_{13,24}=\Psi_{13,24}(\{w\},\{w,\underline{z}\})\

are the values at zi=wi,i=1,2,3,4z_{i}=w_{i}\,,\ i=1,2,3,4\, of the corresponding polynomials (2.15) satisfying (2.25) so that

ηη1Ψ12,34+11ηΨ13,24=Ψ14,23(=Ψ14,23({w},{w,z¯})).\frac{\eta}{\eta-1}\,\,\Psi_{12,34}+\frac{1}{1-\eta}\,\Psi_{13,24}=\Psi_{14,23}\quad(=\Psi_{14,23}(\{w\},\{w,\underline{z}\})\,)\ . (4.4)

(Obviously, exchanging the arguments in polynomials is path independent so that braiding reduces to permutation.) We will use in what follows (4.4) to find the braid group representation acting on the conformal blocks.

Of course, this alternative technique is also applicable to the special case r=0r=0\, when (4.2), (4.3) reduce, by (2.24) (and Q=94Q=\frac{9}{4}) to (2.29), (2.30).

N.B. We emphasize that, in the presence of electrons (at points {z¯}\{\underline{z}\} (4.1)), the braiding only applies to the anyons with coordinates {wi}i=14.\{w_{i}\}_{i=1}^{4}\,.

For w12eiπw12w_{12}\to e^{i\pi}w_{12}\, (or w34eiπw34w_{34}\to e^{i\pi}w_{34}) we have, by (2.27) and (4.4),

ϕ(0):=F(15,45,35;η)Ψ12,3413F(65,45,85;η)Ψ13,24(1η)15ϕ(0),\displaystyle\phi^{(0)}:=F(\frac{1}{5},\frac{4}{5},\frac{3}{5};\eta)\,\Psi_{12,34}-\frac{1}{3}\,F(\frac{6}{5},\frac{4}{5},\frac{8}{5};\eta)\,\Psi_{13,24}\quad\to\quad(1-\eta)^{\frac{1}{5}}\phi^{(0)}\ ,\qquad (4.5)
ϕ(1):=ηF(15,45,75;η)Ψ12,342F(15,15,25;η)Ψ13,24(1η)65ϕ(1)\displaystyle\phi^{(1)}:=\eta\,F(\frac{1}{5},\frac{4}{5},\frac{7}{5};\eta)\,\Psi_{12,34}-2\,F(\frac{1}{5},-\frac{1}{5},\frac{2}{5};\eta)\,\Psi_{13,24}\quad\to\quad(1-\eta)^{-\frac{6}{5}}\phi^{(1)}\qquad\quad (4.6)

where we have used a Gauss’ contiguous relation and (2.44) to derive

2F(15,35,25;η)F(15,35,75;η)=F(65,35,75;η)=(1η)25F(15,45,75;η),\displaystyle 2\,F(\frac{1}{5},\frac{3}{5},\frac{2}{5};\eta)-F(\frac{1}{5},\frac{3}{5},\frac{7}{5};\eta)=F(\frac{6}{5},\frac{3}{5},\frac{7}{5};\eta)=(1-\eta)^{-\frac{2}{5}}F(\frac{1}{5},\frac{4}{5},\frac{7}{5};\eta)\ ,
F(15,35,25;η)=(1η)25F(15,15,25;η).\displaystyle F(\frac{1}{5},\frac{3}{5},\frac{2}{5};\eta)=(1-\eta)^{-\frac{2}{5}}F(\frac{1}{5},-\frac{1}{5},\frac{2}{5};\eta)\ . (4.7)

This generalizes (2.36) to arbitrary rr\, with the same matrix R=(q400q3):R=\begin{pmatrix}q^{-4}&0\cr 0&q^{3}\end{pmatrix}\,:

biΦ({w},{z¯})=RΦ({w},{z¯}),Φ({w},{z¯}):=(Φ(0)({w},{z¯})Φ(1)({w},{z¯})),i=1,3.b_{i}\,\Phi(\{w\},\{\underline{z}\})=R\,\Phi(\{w\},\{\underline{z}\})\,,\quad\Phi(\{w\},\{\underline{z}\}):=\begin{pmatrix}\Phi^{(0)}(\{w\},\{\underline{z}\})\cr\Phi^{(1)}(\{w\},\{\underline{z}\})\end{pmatrix}\ ,\ \quad i=1,3\ . (4.8)

To find the dual basis for arbitrary r,r\,, we proceed as in the special case r=0.r=0\,. We first recast (4.2), (4.3) by using (3.6):

Φ(0)({w},{z¯})=Q[(w12w34)3η3](w23w14)45η75(1η)35×\displaystyle\Phi^{(0)}(\{w\},\{\underline{z}\})=Q\,[\,(w_{12}w_{34})^{-3}\,\eta^{3}\,]\left(w_{23}w_{14}\right)^{-\frac{4}{5}}\eta^{-\frac{7}{5}}(1-\eta)^{-\frac{3}{5}}\,\times
×{η[τ(1η)25F(15,45,35;1η)+D12F(65,35,75;1η)]Ψ12,34+\displaystyle\times\{\,\eta\,[\,\tau\,(1-\eta)^{-\frac{2}{5}}\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};1-\eta)+\frac{D_{1}}{2}\,F(\frac{6}{5},\frac{3}{5},\frac{7}{5};1-\eta)\,]\,\Psi_{12,34}+
+[D12F(15,35,75;1η)τ(1η)25F(15,15,35;1η)]Ψ13,24},\displaystyle+\,[\,\frac{D_{1}}{2}\,F(\frac{1}{5},\frac{3}{5},\frac{7}{5};1-\eta)-\tau\,(1-\eta)^{-\frac{2}{5}}\,F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};1-\eta)\,]\,\Psi_{13,24}\,\}\ ,\qquad (4.9)
Φ(1)({w},{z¯})=CQ[(w12w34)3η3](w23w14)45η75(1η)1×\displaystyle\Phi^{(1)}(\{w\},\{\underline{z}\})=C\,Q\,[\,(w_{12}w_{34})^{-3}\,\eta^{3}\,]\left(w_{23}w_{14}\right)^{-\frac{4}{5}}\eta^{-\frac{7}{5}}(1-\eta)^{-1}\,\times
×{η[τ(1η)25F(65,35,75;1η)+2D2F(15,45,35;1η)]Ψ12,34\displaystyle\times\{\,\eta\,[\,-\sqrt{\tau}\,(1-\eta)^{\frac{2}{5}}F(\frac{6}{5},\frac{3}{5},\frac{7}{5};1-\eta)+2\,D_{2}\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};1-\eta)\,]\,\Psi_{12,34}-
[ 2D2(1η)25F(15,15,35;1η)+τ(1η)25F(15,35,75;1η)]Ψ13,24}.\displaystyle-[\,2\,D_{2}\,(1-\eta)^{\frac{2}{5}}\,F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};1-\eta)+\tau\,(1-\eta)^{\frac{2}{5}}\,F(\frac{1}{5},\frac{3}{5},\frac{7}{5};1-\eta)\,]\,\Psi_{13,24}\,\}\ .\qquad\qquad (4.10)

This gives

(Φ(0)({w},{z¯})Φ(1)({w},{z¯}))=(ττττ)(Θ(0)({w},{z¯})Θ(1)({w},{z¯}))\begin{pmatrix}\Phi^{(0)}(\{w\},\{\underline{z}\})\cr\Phi^{(1)}(\{w\},\{\underline{z}\})\end{pmatrix}=\begin{pmatrix}\tau&\sqrt{\tau}\cr\sqrt{\tau}&-\tau\end{pmatrix}\ \begin{pmatrix}\Theta^{(0)}(\{w\},\{\underline{z}\})\cr\Theta^{(1)}(\{w\},\{\underline{z}\})\end{pmatrix} (4.11)

with

Θ(0)({w},{z¯})=Q[(w12w34)3η3](w23w14)45η75(1η)1×\displaystyle\Theta^{(0)}(\{w\},\{\underline{z}\})=Q\,[\,(w_{12}w_{34})^{-3}\,\eta^{3}\,]\left(w_{23}w_{14}\right)^{-\frac{4}{5}}\eta^{-\frac{7}{5}}(1-\eta)^{-1}\,\times
×[ηF(15,45,35;1η)Ψ12,34F(15,15,35;1η)Ψ13,24],\displaystyle\times\,[\,\eta\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};1-\eta)\,\Psi_{12,34}-F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};1-\eta)\,\Psi_{13,24}\,]\ , (4.12)
Θ(1)({w},{z¯})=CQ[(w12w34)3η3](w23w14)45η75(1η)35×\displaystyle\Theta^{(1)}(\{w\},\{\underline{z}\})=C\,Q\,[\,(w_{12}w_{34})^{-3}\,\eta^{3}\,]\left(w_{23}w_{14}\right)^{-\frac{4}{5}}\eta^{-\frac{7}{5}}(1-\eta)^{-\frac{3}{5}}\,\times
×[ηF(65,35,75;1η)Ψ12,34+F(15,35,75;1η)Ψ13,24].\displaystyle\times\,[\,\eta\,F(\frac{6}{5},\frac{3}{5},\frac{7}{5};1-\eta)\,\Psi_{12,34}+F(\frac{1}{5},\frac{3}{5},\frac{7}{5};1-\eta)\,\Psi_{13,24}\,]\ . (4.13)

Again, by (2.24) for r=0r=0\, (4.12) and (4.13) reproduce (3.11) and (3.12). Rewriting the dual basis as

Θ(0)({w},{z¯})=Q[(w23w14)3η32(1η)3](w23w14)45η110(1η)1×\displaystyle\Theta^{(0)}(\{w\},\{\underline{z}\})=Q\,[\,(w_{23}w_{14})^{-3}\,\eta^{-\frac{3}{2}}\,(1-\eta)^{3}\,]\left(w_{23}w_{14}\right)^{-\frac{4}{5}}\eta^{\frac{1}{10}}(1-\eta)^{-1}\,\times
×[ηF(15,45,35;1η)Ψ12,34F(15,15,35;1η)Ψ13,24],\displaystyle\times\,[\,\eta\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};1-\eta)\,\Psi_{12,34}-F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};1-\eta)\,\Psi_{13,24}\,]\ , (4.14)
Θ(1)({w},{z¯})=CQ[(w23w14)3η32(1η)3](w23w14)45η110(1η)35×\displaystyle\Theta^{(1)}(\{w\},\{\underline{z}\})=C\,Q\,[\,(w_{23}w_{14})^{-3}\,\eta^{-\frac{3}{2}}\,(1-\eta)^{3}\,]\left(w_{23}w_{14}\right)^{-\frac{4}{5}}\eta^{\frac{1}{10}}(1-\eta)^{-\frac{3}{5}}\,\times
×[ηF(65,35,75;1η)Ψ12,34+F(15,35,75;1η)Ψ13,24]\displaystyle\times\,[\,\eta\,F(\frac{6}{5},\frac{3}{5},\frac{7}{5};1-\eta)\,\Psi_{12,34}+F(\frac{1}{5},\frac{3}{5},\frac{7}{5};1-\eta)\,\Psi_{13,24}\,] (4.15)

((w23w14)3η32(1η)3(w_{23}w_{14})^{-3}\,\eta^{-\frac{3}{2}}\,(1-\eta)^{3}\, being invariant with respect to B2:w23eiπw23,B_{2}:\,w_{23}\to e^{i\pi}\,w_{23}\,, cf. (3.15)) and using (3.16) and (3.19) which imply

ξ(0):=ηF(15,45,35;1η)Ψ12,34F(15,15,35;1η)Ψ13,24η45ξ(0),\displaystyle\xi^{(0)}:=\eta\,F(\frac{1}{5},\frac{4}{5},\frac{3}{5};1-\eta)\,\Psi_{12,34}-F(\frac{1}{5},-\frac{1}{5},\frac{3}{5};1-\eta)\,\Psi_{13,24}\quad\to\quad-\,\eta^{-\frac{4}{5}}\,\xi^{(0)}\ ,\qquad\qquad (4.16)
ξ(1):=ηF(65,35,75;1η)Ψ12,34+F(15,35,75;1η)η25ξ(1),\displaystyle\xi^{(1)}:=\eta\,F(\frac{6}{5},\frac{3}{5},\frac{7}{5};1-\eta)\,\Psi_{12,34}+F(\frac{1}{5},\frac{3}{5},\frac{7}{5};1-\eta)\quad\to\quad\eta^{-\frac{2}{5}}\,\xi^{(1)}\ , (4.17)

we obtain that the counterparts of (3.17), (3.18) hold in the general case,

b2Θ({w},{z¯})=RΘ({w},{z¯}),Θ({w},{z¯}):=(Θ(0)({w},{z¯})Θ(1)({w},{z¯}))b_{2}\,\Theta(\{w\},\{\underline{z}\})=R\,\,\Theta(\{w\},\{\underline{z}\})\,,\quad\Theta(\{w\},\{\underline{z}\}):=\begin{pmatrix}\Theta^{(0)}(\{w\},\{\underline{z}\})\cr\Theta^{(1)}(\{w\},\{\underline{z}\})\end{pmatrix} (4.18)

with the same matrix RR\, as in (4.8). Hence, by (4.11)

b2Φ({w},{z¯})=BΦ({w},{z¯}),B=FRF,F=(ττττ)=F1.b_{2}\,\Phi(\{w\},\{\underline{z}\})=B\,\Phi(\{w\},\{\underline{z}\})\ ,\quad B=F\,R\,F\ ,\quad F=\begin{pmatrix}\tau&\sqrt{\tau}\cr\sqrt{\tau}&-\tau\end{pmatrix}=F^{-1}\ . (4.19)

The important conclusion that can be drawn from the computations in this section is that the presence of (rr\, triples of) electron fields doesn’t change the braiding properties of the Fibonacci anyons, i.e. the latter are rr-independent.


Remark 3  We recall that our primary object is the wave function (2.1). The proper braid matrices Bi(4),i=1,2,3B_{i}^{(4)}\,,\ i=1,2,3\, derived from it are obtained from (3.20) by taking into account the additional Laughlin factors. In effect, Bi(4)=q3π(4)(bi),B_{i}^{(4)}=q^{3}\,\pi^{(4)}(b_{i})\,, or explicitly

B1(4)=(q100q),B2(4)=(q3τττq3τ),B3(4)=B1(4).B_{1}^{(4)}=\begin{pmatrix}q^{-1}&0\cr 0&-q\end{pmatrix}\ ,\quad B_{2}^{(4)}=\begin{pmatrix}q^{-3}\tau&\sqrt{\tau}\cr\sqrt{\tau}&-q^{3}\tau\end{pmatrix}\ ,\quad B_{3}^{(4)}=B_{1}^{(4)}\ . (4.20)

The matrices (4.20) are the ones that are used in the paper GHM24 .

5 Braiding a higher number of Fibonacci anyons

We will now propose a method which allows to formalize the procedure of finding the braidings of general nn-point Fibonacci anyon conformal blocks. To this end, we first introduce, for n4,n\geq 4\,, the following notation for the vectors of the basis (corresponding to the admissible paths in the corresponding Bratteli diagram, see GHM24 ):

Φ0 1α2α3α4αn2 1 0=Φ0 1α2α3α4αn2 1 0({w},{z}):=\displaystyle\Phi^{0\,1\,\alpha_{2}\,\alpha_{3}\,\alpha_{4}\,\dots\,\alpha_{n-2}\,1\,0}=\Phi^{0\,1\,\alpha_{2}\,\alpha_{3}\,\alpha_{4}\,\dots\,\alpha_{n-2}\,1\,0}(\{w\},\{z\}):=\qquad\qquad (5.1)
:=0|ε(w1)Π1ε(w2)Πα2ε(w3)Πα3ε(wn2)Παn2ε(wn1)Π1ε(wn)i=13rψ1(zi)|0.\displaystyle:=\langle 0|\,\varepsilon(w_{1})\Pi_{1}\varepsilon(w_{2})\Pi_{\alpha_{2}}\varepsilon(w_{3})\Pi_{\alpha_{3}}\,\dots\,\varepsilon(w_{n-2})\Pi_{\alpha_{n-2}}\varepsilon(w_{n-1})\Pi_{1}\,\varepsilon(w_{n})\prod_{i=1}^{3r}\psi_{1}(z_{i})\,|0\rangle\ .\qquad

Here αi,i=2,,αn2\alpha_{i}\,,\ i=2,\dots,\alpha_{n-2}\, take values 00\, or 11\, depending on whether the orthogonal projector Παi\Pi_{\alpha_{i}}\, projects on the vacuum or on the ε()\varepsilon^{(^{\prime})}\, sector, respectively, cf. Remark 2 above; it is assumed that ΠαΠβ=δαβΠα\Pi_{\alpha}\Pi_{\beta}=\delta_{\alpha\beta}\,\Pi_{\alpha}\, and Π0+Π1=1.\Pi_{0}+\Pi_{1}=1\,.

Formula (5.1) as it stays is relevant only for nn\, even, and when nn\, is odd, the fusion rules (2.33), (2.34) suggest that one (or, in general, an odd number) of the ε\varepsilon\, fields should be replaced by ε.\varepsilon^{\prime}\,. We will comment on this in more details in the discussion of the n=3n=3\, case below. Note that the ψ1\psi_{1}\, fusion rules imply that (ψ1)31I(\psi_{1})^{3}\sim\mbox{\em 1\hskip-3.4ptI}\, so that the product of 3r3\,r\, fields ψ1\psi_{1}\, leaves the vacuum sector invariant; so does also the field YY\, of (integer) dimension 3.3\,. A description of the sectors indexed by 00\, and 11\, (only a part of the full structure of Z3Z_{3}\, parafermion model) which is sufficient for our purposes is that [0][0]\, contains vectors created from the vacuum by the Virasoro fields 1I  and Y,Y\,, and the sector [1],[1]\,, those created by ε\varepsilon\, and ε.\varepsilon^{\prime}\,. The fusion rules (2.34) then imply

[0]×[0]=[0],[0]×[1](=[1]×[0])=[1],[1]×[1]=[0][1].[0]\times[0]=[0]\ ,\qquad[0]\times[1]\ (\,=[1]\times[0]\,)\ =[1]\ ,\qquad[1]\times[1]=[0]\oplus[1]\ . (5.2)

So in the case of nn\, Fibonacci anyons the conformal blocks (5.1) have n+1n+1\, indices altogether, the action of each Fibonacci field (from right to left) being specified by its initial and the target sector. It follows from (5.2) that the (only) restriction of the ordered set α2,α3,α4,,αn2\alpha_{2}\,,\alpha_{3}\,,\alpha_{4}\,,\dots\,,\alpha_{n-2}\, is that it should not contain two zero labels in a row.

The first and the last pair of indices (0101\, and 10,10\,, respectively) of Φ\Phi\, in (5.1) are standard for the construction, and this fact does not leave room, when n=2n=2\, or n=3n=3\, for conformal blocks other than Φ010\Phi^{010}\, and Φ0110,\Phi^{0110}\,, respectively. (It complies, for r=0r=0\, with the uniqueness, up to normalization, of conformal invariant two- and three point functions.) In the first notrivial case n=4n=4\, the two possibilities Φ01010\Phi^{01010}\, and Φ01110\Phi^{01110}\, correspond to the conformal blocks of four Fibonacci anyons (4.2) and (4.3), respectively (or (2.29) and (2.30), in the r=0r=0\, case) and can be considered as a basis of the two dimensional representation of the braid group 4{\cal B}_{4}\, generated by the matrices RR\, and B:=FRF(F2=1I),B:=FR\,F\ \ (F^{2}=\mbox{\em 1\hskip-3.4ptI})\,, see (4.8) and (4.19). As we are going to show below, this is sufficient to find the braid group n{\cal B}_{n}\, representation on the linear span VnV_{n}\, of nn-blocks of Fibonacci anyons (5.1) for arbitrary n.n\,.

A simple observation suggests the following recursive construction. Take n4n\geq 4\, in (5.1); now if the index αn2=0,\alpha_{n-2}=0\,, then Φ0 1α2α3α4αn2\Phi^{0\,1\,\alpha_{2}\,\alpha_{3}\,\alpha_{4}\,\dots\,\alpha_{n-2}}\, could be any of the (n2)(n-2)-blocks, and if αn2=1,\alpha_{n-2}=1\,, the vectors Φ0 1α2α3α4αn2 0\Phi^{0\,1\,\alpha_{2}\,\alpha_{3}\,\alpha_{4}\,\dots\,\alpha_{n-2}\,0}\, span the space of (n1)(n-1)-blocks. The first two spaces Vd2V_{d_{2}}\, and Vd3V_{d_{3}}\, in this sequence are spanned by Φ010\Phi^{010}\, and Φ0110,\Phi^{0110}\,, respectively. Hence, for n4n\geq 4\, any vector space VdnV_{d_{n}}\, is a direct sum and the dimensions dn=dimVdn,n2d_{n}=\dim V_{d_{n}}\,,\ n\geq 2\, form a Fibonacci sequence:

Vdn=Vdn2Vdn1dn=dn2+dn1(dn:=dimVdn),d2=d3=1.V_{d_{n}}=V_{d_{n-2}}\oplus V_{d_{n-1}}\qquad\Rightarrow\qquad d_{n}=d_{n-2}+d_{n-1}\qquad(d_{n}:=\dim V_{d_{n}})\ ,\quad d_{2}=d_{3}=1\ . (5.3)

Accordingly, a basis in VdnV_{d_{n}}\, can be formed by taking first the vectors of the basis of Vdn2V_{d_{n-2}}\, (just replacing their last indices 1010\, by 10101010) and then those of Vdn1,V_{d_{n-1}}\,, replacing this time 1010\, by 110;110\,; we will also assume that the internal ordering of the bases of the subspaces is inherited. The braiding for n=2n=2\, (and r=0r=0) follows from the two point function

ε(w1)ε(w2)=w1245,w12eiπw12b1Φ010=q4Φ010(q=eiπ5).\langle\,\varepsilon(w_{1})\,\varepsilon(w_{2})\rangle=w_{12}^{-\frac{4}{5}}\ ,\quad w_{12}\to e^{i\pi}w_{12}\quad\Rightarrow\quad b_{1}\,\Phi^{010}=q^{-4}\,\Phi^{010}\qquad(q=e^{i\frac{\pi}{5}})\ . (5.4)

The next value n=3n=3\, being odd, we must replace one of the ε\varepsilon\, fields by ε.\varepsilon^{\prime}\,. Choosing this to be the last one in the three point function, we obtain

ε(w1)ε(w2)ε(w3)=Cεεεw1235(w13w23)75b1Φ0110=q3Φ0110.\langle\,\varepsilon(w_{1})\,\varepsilon(w_{2})\,\varepsilon^{\prime}(w_{3})\rangle=C_{\varepsilon^{\prime}\varepsilon\varepsilon}\,w_{12}^{\frac{3}{5}}\,(w_{13}\,w_{23})^{-\frac{7}{5}}\quad\Rightarrow\quad b_{1}\Phi^{0110}=q^{3}\,\Phi^{0110}\ . (5.5)

To compute b2,b_{2}\,, we compare (5.5) with

ε(w1)ε(w3)ε(w2)=Cεεεw1235(w13w32)75,w32=eiπw23b2Φ0110=q3Φ0110\langle\,\varepsilon(w_{1})\,\varepsilon^{\prime}(w_{3})\,\varepsilon(w_{2})\rangle=C_{\varepsilon^{\prime}\varepsilon\varepsilon}\,w_{12}^{\frac{3}{5}}\,(w_{13}\,w_{32})^{-\frac{7}{5}}\ ,\quad w_{32}=e^{i\pi}w_{23}\quad\Rightarrow\quad b_{2}\,\Phi^{0110}=q^{3}\,\Phi^{0110} (5.6)

(see Remark 1 above), using also that q10=1q^{10}=1\, and hence, q7=q3;q^{-7}=q^{3}\,; note that we exchange the (posititions of the) fields, not just their arguments. To summarize,

π(2)(b1)=q4,π(3)(b1)=q3=π(3)(b2).\pi^{(2)}(b_{1})=q^{-4}\ ,\qquad\pi^{(3)}(b_{1})=q^{3}=\pi^{(3)}(b_{2})\ . (5.7)

As the representation of the braid group 3{\cal B}_{3}\, is one dimensional, the Artin relation π(3)(b1b2b1)=π(3)(b2b1b2)\pi^{(3)}(b_{1}\,b_{2}\,b_{1})=\pi^{(3)}(b_{2}\,b_{1}\,b_{2})\, is trivially satisfied. It is a simple exercise to show that the same results are obtained starting with any other position of ε\varepsilon^{\prime}\, in the three point function or even with the correlator of three ε\varepsilon^{\prime}\, fields,

ε(w1)ε(w2)ε(w3)\displaystyle\langle\,\varepsilon^{\prime}(w_{1})\,\varepsilon(w_{2})\,\varepsilon(w_{3})\rangle =\displaystyle= Cεεεw2335(w12w13)75,\displaystyle C_{\varepsilon^{\prime}\varepsilon\varepsilon}\,w_{23}^{\frac{3}{5}}\,(w_{12}\,w_{13})^{-\frac{7}{5}}\ ,
ε(w1)ε(w2)ε(w3)\displaystyle\langle\,\varepsilon^{\prime}(w_{1})\,\varepsilon^{\prime}(w_{2})\,\varepsilon^{\prime}(w_{3})\rangle =\displaystyle= Cεεε(w12w13w23)75\displaystyle C_{\varepsilon^{\prime}\varepsilon^{\prime}\varepsilon^{\prime}}\,(w_{12}\,w_{13}\,w_{23})^{-\frac{7}{5}} (5.8)

(or, in the n=2n=2\, case, from ε(w1)ε(w2)=z12145\langle\,\varepsilon^{\prime}(w_{1})\,\varepsilon^{\prime}(w_{2})\rangle=z_{12}^{-\frac{14}{5}}).

In general, the braid group generator π(n)(bi)\pi^{(n)}(b_{i})\, acting on the ii-th triple of consecutive indices αi1αiαi+1{\alpha_{i-1}}\,{\alpha_{i}}\,{\alpha_{i+1}}\, of the vector Φαi1αiαi+1\Phi^{\,\dots\,{\alpha_{i-1}}\,{\alpha_{i}}\,{\alpha_{i+1}}\dots}\, (5.1) corresponds to the exchange of ε(wi)\varepsilon(w_{i})\, and ε(wi+1)\varepsilon(w_{i+1})\, along certain classes of paths not enclosing any of the other points. The rules (5.2) suggest that these vectors form singlets when either αi1\alpha_{i-1}\, or αi+1,\alpha_{i+1}\,, or both, are zero (then αi\alpha_{i}\, can only be equal to 11), and from (5.4), (5.5) and (5.6) one would expect that

π(n)(bi)Φ010=q4Φ010,\displaystyle\pi^{(n)}(b_{i})\,\Phi^{\dots 010\dots}=q^{-4}\,\Phi^{\dots 010\dots}\ ,
π(n)(bi)Φ011=q3Φ011,π(n)(bi)Φ110=q3Φ110.\displaystyle\pi^{(n)}(b_{i})\,\Phi^{\dots 011\dots}=q^{3}\,\Phi^{\dots 011\dots}\ ,\quad\pi^{(n)}(b_{i})\,\Phi^{\dots 110\dots}=q^{3}\,\Phi^{\dots 110\dots}\ . (5.9)

This is confirmed by the results for the four-point blocks written as Φ01010\Phi^{01010}\, and Φ01110,\Phi^{01110}\,, respectively where we have (see (3.20) for the r=0r=0\, case)

b1(Φ01010Φ01110)=R(Φ01010Φ01110),R=π(4)(b1)=(q400q3)=(π(2)(b1)00π(3)(b1))b_{1}\begin{pmatrix}\Phi^{01010}\cr\Phi^{01110}\end{pmatrix}=R\,\begin{pmatrix}\Phi^{01010}\cr\Phi^{01110}\end{pmatrix}\ ,\quad R=\pi^{(4)}(b_{1})=\begin{pmatrix}q^{-4}&0\cr 0&q^{3}\end{pmatrix}=\begin{pmatrix}\pi^{(2)}(b_{1})&0\cr 0&\pi^{(3)}(b_{1})\end{pmatrix} (5.10)

and similarly, π(4)(b3)=R.\pi^{(4)}(b_{3})=R\,. (In both cases the action of the braidings on the corresponding singlets is combined in the diagonal matrix R.R\,.) On the other hand, the b2b_{2}\, action (3.20) can be written as

b2(Φ01010Φ01110)=B(Φ01010Φ01110),B=π(4)(b2)=(B00B10B01B11)=(q4τq3τq3ττ),b_{2}\begin{pmatrix}\Phi^{01010}\cr\Phi^{01110}\end{pmatrix}=B\,\begin{pmatrix}\Phi^{01010}\cr\Phi^{01110}\end{pmatrix}\ ,\quad B=\pi^{(4)}(b_{2})=\begin{pmatrix}B^{0}_{~0}&B^{0}_{~1}\cr B^{1}_{~0}&B^{1}_{~1}\end{pmatrix}=\begin{pmatrix}q^{4}\tau&q^{-3}\sqrt{\tau}\cr q^{-3}\sqrt{\tau}&-\tau\end{pmatrix}\ , (5.11)

suggesting that for αi1=1=αi+1\alpha_{i-1}=1=\alpha_{i+1}\, the braiding π(n)(bi)\pi^{(n)}(b_{i})\, acts on doublets (since in this case αi\alpha_{i}\, can be 00\, or 11), and

π(n)(bi)(Φ101Φ111)=B(Φ101Φ111).\pi^{(n)}(b_{i})\begin{pmatrix}\Phi^{\dots 101\dots}\cr\Phi^{\dots 111\dots}\end{pmatrix}=B\,\begin{pmatrix}\Phi^{\dots 101\dots}\cr\Phi^{\dots 111\dots}\end{pmatrix}\ . (5.12)

(In (5.12) we assume that all other indices of Φ101\Phi^{\dots 101\dots}\, coincide with those of Φ111.\Phi^{\dots 111\dots}\,.)

In the next section we will provide a general argument why the same (diagonal elements of) RR\, and the 2×22\times 2\, matrix BB\, derived from the two- and three-point anyon functions and the four-point conformal blocks should appear as matrix blocks in the higher nn\, braiding matrices. We will then use the algorithm described above to obtain an explicit recursive construction of the braid group n{\cal B}_{n}\, action on nn\, Fibonacci anyons for any n.n\,.

Remark 4  Note that the linear algebra prescription for assigning a matrix to an operator in a given basis would require to take actually the transposed of the (non-diagonal) matrices. The (wrong) traditional definition finds a partial excuse in the fact that all Artin relations (like (3.21)) are invariant with respect to matrix transposition.

6 Explicit recursive construction of the n{\cal B}_{n} action for n5n\geq 5

We will begin this section by recalling that the abstract Artin braid group n{\cal B}_{n}\, generated by n1n-1\, generators bib_{i}\, satisfying

bibi+1bi=bi+1bibi+1,i=1,,n2,bibj=bjbi,|ij|2b_{i}\,b_{i+1}\,b_{i}=b_{i+1}\,b_{i}\,b_{i+1}\ ,\quad i=1,\dots,n-2\ ,\qquad b_{i}\,b_{j}=b_{j}\,b_{i}\ ,\quad|i-j|\geq 2\ (6.1)

is the proper algebraic structure to handle generalized statistics in low dimensional physics (S23 ; for a concise introduction to the subject, see e.g. TH01 ). As the configuration space of nn\, points on a two dimensional surface is not simply connected, the corresponding wave function depending on nn\, complex variables may be multivalued. The latter is a characteristic property of the quasiparticles called "anyons" by F. Wilczek in 1982.

It is obvious from (6.1) that a natural sequence of braid group inclusions

23n1n{\cal B}_{2}\subset{\cal B}_{3}\subset\dots\subset{\cal B}_{n-1}\subset{\cal B}_{n} (6.2)

exists, each of the subgroups i{\cal B}_{i}\, of n, 2in{\cal B}_{n}\,,\ 2\leq i\leq n\, in (6.2) being generated by the first i1i-1\, generators bj,j=1,,i1.b_{j}\,,\ j=1,\dots,i-1\,. The latter assumption (concerning the identification of the subgroups) is actually conventional: one can start the sequence (6.2) e.g. with bn1b_{n-1}\, (generating a 2{\cal B}_{2}\, subgroup) and proceed by including consecutive generators with smaller indices, bj,j=n1,n2,,1.b_{j}\,,\ j=n-1,n-2,\dots,1\,.

In our case the generators bib_{i}\, of the braid group correspond to the exchange of neighboring Fibonacci fields along certain (homotopy classes of) paths so that e.g. bibii+1:wii+1wi+1i:=eiπwii+1.b_{i}\equiv b_{i\,i+1}:\ w_{i\,i+1}\stackrel{{\scriptstyle\curvearrowleft}}{{\longrightarrow}}w_{i+1\,i}:=e^{i\pi}w_{i\,i+1}\,. This induces, equivalently, a linear transformation on the nn-point (in {w})\{w\})\, conformal blocks defining the "monodromy representation" of n.{\cal B}_{n}\,. We denote by π(n)(bi)\pi^{(n)}(b_{i})\, the corresponding matrix in the basis (5.1). The calculation of the braid matrices has been carried out in detail in the previous sections in the cases n4n\leq 4\, (being only non-trivial for n=4,n=4\,, of course) using the explicit form of the relevant correlators.

At first sight, extending the braiding action to cases with higher number of Fibonacci anyons n>4n>4\, could be difficult as the corresponding anyon correlators are not known explicitly. To this end, however, one can use the "locality" of the action of Artin braid group generators in the sense that they only affect the positions of two neighboring points (anyon coordinates) while the rest of the anyons play the role of spectators. This observation allows us to use the (short distance) OPE (2.34) to reduce the number of Fibonacci fields in the nn-point conformal blocks. We will sketch in what follows the main steps of this procedure for r=0r=0\, (which is not a restriction as we know that the result, what concerns braiding, doesn’t depend on rr\,), starting for concreteness with nn\, even. Applying (2.34) to the last two Fibonacci fields in (5.1) in this case, we obtain that, for wn1wnw_{n-1}\sim w_{n}\,

ε(wn2)Παn2ε(wn1)Π1ε(wn)|0=ε(wn2)Παn2ε(wn1)ε(wn)|0\displaystyle\varepsilon(w_{n-2})\,\Pi_{\alpha_{n-2}}\,\varepsilon(w_{n-1})\,\Pi_{1}\,\varepsilon(w_{n})\,|0\rangle=\varepsilon(w_{n-2})\,\Pi_{\alpha_{n-2}}\,\varepsilon(w_{n-1})\,\varepsilon(w_{n})\,|0\rangle\ \sim
ε(wn2)Παn2((wn1wn)451I+127C(wn1wn)35ε(wn))|0=\displaystyle\sim\,\varepsilon(w_{n-2})\,\Pi_{\alpha_{n-2}}\left((w_{n-1}-w_{n})^{-\frac{4}{5}}\,\mbox{\em 1\hskip-3.4ptI}+\sqrt{\frac{12}{7}\,C}\,(w_{n-1}-w_{n})^{\frac{3}{5}}\,\varepsilon^{\prime}(w_{n})\right)|0\rangle=
={(wn1wn)45ε(wn2)|0,αn2=0127C(wn1wn)35ε(wn2)Π1ε(wn)|0,αn2=1,\displaystyle=\left\{\begin{array}[]{ll}\,(w_{n-1}-w_{n})^{-\frac{4}{5}}\,\varepsilon(w_{n-2})\,|0\rangle&,\quad\alpha_{n-2}=0\\ \,\sqrt{\frac{12}{7}\,C}\,(w_{n-1}-w_{n})^{\frac{3}{5}}\,\varepsilon(w_{n-2})\,\Pi_{1}\,\varepsilon^{\prime}(w_{n})\,|0\rangle&,\quad\alpha_{n-2}=1\end{array}\right.\quad\ , (6.5)

see (2.33) and (2.39). As we know, for nn\, odd we should have an odd number of ε\varepsilon^{\prime}\, fields in the correlator. To sketch the needed modification of (6.5) we will write, for example, schematically

εεε|0ε(Y+ε)|0ε|0+εε|0\varepsilon\,\varepsilon\,\varepsilon^{\prime}\,|0\rangle\ \sim\ \varepsilon\,(Y+\varepsilon)\,|0\rangle\ \sim\ \varepsilon^{\prime}\,|0\rangle+\varepsilon\,\varepsilon\,|0\rangle\ (6.6)

see (2.34) in Remark 1.

Inserting (6.5) (resp. (6.6), for nn\, odd) into (5.1) for r=0r=0\, we express, for wn1wn,w_{n-1}\sim w_{n}\,, nn-point conformal blocks as sums of (n2)(n-2)-point and (n1)(n-1)-point ones. Accordingly, we can compute the first n3n-3\, braiding matrices π(n)(bi),i=1,2,,n3\pi^{(n)}(b_{i})\,,\ i=1,2,\dots,n-3\, (generating the subgroup n2{\cal B}_{n-2}\,) from those for π(n2)(bi)\pi^{(n-2)}(b_{i})\, and π(n1)(bi).\pi^{(n-1)}(b_{i})\,. Moreover, the description given in the paragraph after (5.3) of the construction of the VnV_{n}\, basis i.e., writing first the vector components inherited from Vn2V_{n-2}\, (those with last three indices equal to 010010\,) followed by those from Vn1V_{n-1}\, (with last three indices 110110\,) anticipates as well the block diagonal form of the matrices of these braid generators encountered in the explicit calculations, the results of which are displayed below.

The above reduction procedure becomes effective for n5.n\geq 5\,. Obviously, it cannot be used directly for the derivation of the last two braidings, π(n)(bn2)\pi^{(n)}(b_{n-2})\, and π(n)(bn1)\pi^{(n)}(b_{n-1})\, (in accord with the fact that one, or two of the terms in the recursion simply do not exist in these cases). Then it can be replaced, however, by a similar procedure involving the left vacuum and the first three Fibonacci fields in place of (6.5) or (6.6). Thus, one can recover this time the last n3n-3\, generators of n{\cal B}_{n}\, in terms of those of n2{\cal B}_{n-2}\, and n1.{\cal B}_{n-1}\,.

In particular, the matrix π(n)(bn2)\pi^{(n)}(b_{n-2})\, is expressible through π(n2)(bn4)\pi^{(n-2)}(b_{n-4})\, and π(n1)(bn3).\pi^{(n-1)}(b_{n-3})\,. One can anticipate that it wouldn’t have block diagonal structure in the basis (5.1) in which the branches of the "recursion tree" of VnV_{n}\, subspaces are determined, at every step, by the last triple of indices (corresponding to the two possible fusion channels of the last two Fibonacci anyons). In contrast, the OPE of the first two Fibonacci anyons would correspond to a different subspace decomposition depending on the first triple of indices (either 010010\, or 011011\,).

We will illustrate this in the simplest, n=5n=5\, case. To obtain a basis in Vd5V_{d_{5}}\, we present, according to our convention, the three possible conformal blocks as a vector with a single "upper" and two "lower" components

(Φ011010Φ010110Φ011110)=(Φ01101000)(0Φ010110Φ011110),\displaystyle\begin{pmatrix}\Phi^{011010}\cr\Phi^{010110}\cr\Phi^{011110}\end{pmatrix}=\begin{pmatrix}\Phi^{011010}\cr 0\cr 0\end{pmatrix}\ \oplus\ \begin{pmatrix}0\cr\Phi^{010110}\cr\Phi^{011110}\end{pmatrix}\ ,
Vd5Vd3Vd4,d5=d3+d4=1+2=3\displaystyle V_{d_{5}}\simeq V_{d_{3}}\oplus V_{d_{4}}\ ,\ d_{5}=d_{3}+d_{4}=1+2=3 (6.7)

(see (5.3)), the decomposition matching the fusion of the fourth and fifth Fibonacci anyons in the 55-point conformal blocks (5.1). For comparison, the fusion of the first two anyons corresponds to a subspace decomposition of the type

(Φ011010Φ010110Φ011110)=(0Φ0101100)(Φ0110100Φ011110),\begin{pmatrix}\Phi^{011010}\cr\Phi^{010110}\cr\Phi^{011110}\end{pmatrix}=\begin{pmatrix}0\cr\Phi^{010110}\cr 0\end{pmatrix}\ \oplus\ \begin{pmatrix}\Phi^{011010}\cr 0\cr\Phi^{011110}\end{pmatrix}\ , (6.8)

so that π(5)(b3)\pi^{(5)}(b_{3})\, decomposes into π(3)(b1)(=q3,\pi^{(3)}(b_{1})\ (=q^{3}\,, cf. (5.7)) acting on the singlet and π(4)(b2)(=B,\pi^{(4)}(b_{2})\ (=B\,, see (5.11)) acting on the doublet in (6.8), accordingly. In general, π(n)(bn2)\pi^{(n)}(b_{n-2})\, has again a direct sum structure (but is block diagonal in a basis different from the "canonical" one).

It is easy to realize that the matrices π(n)(bn1)\pi^{(n)}(b_{n-1})\, and π(n)(b1)\pi^{(n)}(b_{1})\, should be diagonal for all n;n\,; in particular, π(5)(b4)\pi^{(5)}(b_{4})\, acts again by multiplication by q3=π(3)(b2)q^{3}=\pi^{(3)}(b_{2})\, on the singlet, and by the diagonal matrix R=π(4)(b3)R=\pi^{(4)}(b_{3})\, on the doublet in (6.8).

An interesting phenomenon (providing a self-consistency check of the above OPE reduction procedure) appears for the first time in the next example n=6,n=6\,, where the braiding matrix π(6)(b3)\pi^{(6)}(b_{3})\, can be computed in two different ways. The first one feflects its "canonical" block diagonal decomposition into π(4)(b3)\pi^{(4)}(b_{3})\, and π(5)(b3)\pi^{(5)}(b_{3})\, and the other (the reduction implied by fusing the first two Fibonacci anyons instead of the last two ones), from π(4)(b1)(=R,\pi^{(4)}(b_{1})\ (=R\,, see (5.10), acting on the first and the fourth component subspace of V6V_{6}\,) and π(5)(b2),\pi^{(5)}(b_{2})\,, cf. (6.9) and (6.13) below.

The most important conclusion from the above consideration is that, going backwards (in nn\,), it is possible indeed to recover the braiding action for any nn\, from the 22-, 33- and 44-point braiding data.

To verify that the OPE reduction procedure reproduces the results following from the prescriptions described in the previous section, we will use the latter to compute the braiding matrices for n=5,6,7n=5,6,7\, and 8.8\,. As explained above, the generator bib_{i}\, of the Artin braid group n{\cal B}_{n}\, (for any i=1,,n1i=1,\dots,n-1) is represented by the matrix π(n)(bi)\pi^{(n)}(b_{i})\, obtained by applying specific rules to the ii-th consecutive triple of indices of the vectors in (5.1). There are n+1n+1\, indices altogether in nn-blocks so that the number of consecutive triples is n1,n-1\,, matching the number of generators of n.{\cal B}_{n}\,. The corresponding action on a specific triple is given by (5.9) (multiplication by a phase, q4q^{-4}\, or q3q^{3}) or, for doublets of the form (5.11), by the 2×22\times 2\, matrix

B=(B00B10B01B11)=(q4τq3τq3ττ).B=\begin{pmatrix}B^{0}_{~0}&B^{0}_{~1}\cr B^{1}_{~0}&B^{1}_{~1}\end{pmatrix}=\begin{pmatrix}q^{4}\tau&q^{-3}\sqrt{\tau}\cr q^{-3}\sqrt{\tau}&-\tau\end{pmatrix}\ .

Following the rules and conventions spelled out above, we can compute the matrices of the four generators of 5{\cal B}_{5}\, in the basis (6.7). They are given by

π(5)(b1)=(q3000q4000q3),π(5)(b2)=(q3000B00B100B01B11),\displaystyle\pi^{(5)}(b_{1})=\begin{pmatrix}q^{3}&0&0\cr 0&q^{-4}&0\cr 0&0&q^{3}\end{pmatrix}\ ,\qquad\ \,\pi^{(5)}(b_{2})=\begin{pmatrix}q^{3}&0&0\cr 0&B^{0}_{~0}&B^{0}_{~1}\cr 0&B^{1}_{~0}&B^{1}_{~1}\end{pmatrix}\ ,
π(5)(b3)=(B000B100q30B010B11),π(5)(b4)=(q4000q3000q3).\displaystyle\pi^{(5)}(b_{3})=\begin{pmatrix}B^{0}_{~0}&0&B^{0}_{~1}\cr 0&q^{3}&0\cr B^{1}_{~0}&0&B^{1}_{~1}\end{pmatrix}\ ,\qquad\pi^{(5)}(b_{4})=\begin{pmatrix}q^{-4}&0&0\cr 0&q^{3}&0\cr 0&0&q^{3}\end{pmatrix}\ . (6.9)

Almost all of the Artin relations (6.1) are easy to verify in the n=5n=5\, case (6.9). First of all, the commutators [π(5)(b1),π(5)(b3)][\pi^{(5)}(b_{1}),\pi^{(5)}(b_{3})]\, and [π(5)(b2),π(5)(b4)][\pi^{(5)}(b_{2}),\pi^{(5)}(b_{4})]\, vanish because of the matching block structure in which the counterparts of the 2×22\times 2\, non-diagonal submatrices are proportional to the unit 2×22\times 2\, matrix, and [π(5)(b1),π(5)(b4)]=0[\pi^{(5)}(b_{1}),\pi^{(5)}(b_{4})]=0\, since both matrices are diagonal. One observes further that the triple product Artin relations π(5)(b1b2b1)=π(5)(b2b1b2)\pi^{(5)}(b_{1}\,b_{2}\,b_{1})=\pi^{(5)}(b_{2}\,b_{1}\,b_{2})\, and π(5)(b3b4b3)=π(5)(b4b3b4)\pi^{(5)}(b_{3}\,b_{4}\,b_{3})=\pi^{(5)}(b_{4}\,b_{3}\,b_{4})\, follow, essentially, from the basic 2×22\times 2\, relation RBR=BRBR\,B\,R=B\,R\,B\, (3.22).

The only non-trivial relation that remains to be verified is therefore the equality of π(5)(b2b3b2)=π(5)(b3b2b3).\pi^{(5)}(b_{2}\,b_{3}\,b_{2})=\pi^{(5)}(b_{3}\,b_{2}\,b_{3})\,. From (6.9) we obtain

π(5)(b2b3b2)=(q6B00q3B10B01q3B10B11q3B10B01q3(B00)2+B10B01B11B10(q3B00+(B11)2)q3B11B01B01(q3B00+(B11)2)q3B10B01+(B11)3),\displaystyle\pi^{(5)}(b_{2}\,b_{3}\,b_{2})=\begin{pmatrix}q^{6}B^{0}_{~0}&q^{3}B^{0}_{~1}B^{1}_{~0}&q^{3}B^{0}_{~1}B^{1}_{~1}\cr q^{3}B^{0}_{~1}B^{1}_{~0}\ &\ q^{3}(B^{0}_{~0})^{2}+B^{0}_{~1}B^{1}_{~0}B^{1}_{~1}\ &\ B^{0}_{~1}(q^{3}B^{0}_{~0}+(B^{1}_{~1})^{2})\ \cr q^{3}B^{1}_{~1}B^{1}_{~0}&B^{1}_{~0}(q^{3}B^{0}_{~0}+(B^{1}_{~1})^{2})&q^{3}B^{0}_{~1}B^{1}_{~0}+(B^{1}_{~1})^{3}\end{pmatrix}\ ,
π(5)(b3b2b3)=(q3(B00)2+B10B01B11q3B10B01B10(q3B00+(B11)2)q3B10B01q6B00q3B10B11B01(q3B00+(B11)2)q3B01B11q3B10B01+(B11)3).\displaystyle\pi^{(5)}(b_{3}\,b_{2}\,b_{3})=\begin{pmatrix}q^{3}(B^{0}_{~0})^{2}+B^{0}_{~1}B^{1}_{~0}B^{1}_{~1}\ &\ q^{3}B^{0}_{~1}B^{1}_{~0}\ &\ B^{0}_{~1}(q^{3}B^{0}_{~0}+(B^{1}_{~1})^{2})\cr q^{3}B^{0}_{~1}B^{1}_{~0}&q^{6}B^{0}_{~0}&q^{3}B^{0}_{~1}B^{1}_{~1}\cr B^{1}_{~0}(q^{3}B^{0}_{~0}+(B^{1}_{~1})^{2})&q^{3}B^{1}_{~0}B^{1}_{~1}&q^{3}B^{0}_{~1}B^{1}_{~0}+(B^{1}_{~1})^{3}\end{pmatrix}\ .\qquad (6.10)

Inserting the actual values of the entries of the BB\, matrix, we get

π(5)(b2b3b2)=(τq3τττq3ττ(q4+q3τ)ττττ(q4+q3τ)ττ(q3τ2)τ),\displaystyle\pi^{(5)}(b_{2}\,b_{3}\,b_{2})=\begin{pmatrix}\tau&q^{-3}\tau&-\tau\sqrt{\tau}\ \cr q^{-3}\tau&\tau&(q^{4}+q^{-3}\tau)\tau\sqrt{\tau}\cr-\tau\sqrt{\tau}\ &\ (q^{4}+q^{-3}\tau)\tau\sqrt{\tau}&(q^{-3}-\tau^{2})\tau\end{pmatrix}\ ,
π(5)(b3b2b3)=((q+q1)τ2q3τ(q4+q3τ)ττq3ττττ(q4+q3τ)ττττ(q3τ2)τ).\displaystyle\pi^{(5)}(b_{3}\,b_{2}\,b_{3})=\begin{pmatrix}(q+q^{-1})\tau^{2}&\ q^{-3}\tau\ &\ (q^{4}+q^{-3}\tau)\tau\sqrt{\tau}\cr q^{-3}\tau&\tau&-\tau\sqrt{\tau}\cr(q^{4}+q^{-3}\tau)\tau\sqrt{\tau}\ &\ -\tau\sqrt{\tau}&(q^{-3}-\tau^{2})\tau\end{pmatrix}\ .\qquad (6.11)

It remains to use q4+q3τ=q4+q1+q5=1q^{4}+q^{-3}\tau=q^{4}+q^{-1}+q^{-5}=-1\, for τ=1q+q1=q2+q2,\tau=\frac{1}{q+q^{-1}}=q^{2}+q^{-2}\,, cf. (3).


Following the prescriptions, we arrange the five basis vectors for the n=6n=6\, Fibonacci conformal blocks in the following order:

(Φ0101010Φ0111010Φ0110110Φ0101110Φ0111110)(Vd6=Vd4Vd5,d6=d4+d5=2+3=5).\begin{pmatrix}\Phi^{0101010}\cr\Phi^{0111010}\cr\Phi^{0110110}\cr\Phi^{0101110}\cr\Phi^{0111110}\end{pmatrix}\qquad(V_{d_{6}}=V_{d_{4}}\oplus V_{d_{5}}\ ,\ d_{6}=d_{4}+d_{5}=2+3=5)\ . (6.12)

The matrices of the braid group 6{\cal B}_{6}\, generators are then given by

π(6)(b1)=(q400000q300000q300000q400000q3),π(6)(b2)=(B00B10000B01B1100000q300000B00B10000B01B11),\displaystyle\pi^{(6)}(b_{1})=\begin{pmatrix}q^{-4}&0&0&0&0\cr 0&q^{3}&0&0&0\cr 0&0&q^{3}&0&0\cr 0&0&0&q^{-4}&0\cr 0&0&0&0&q^{3}\end{pmatrix}\ ,\quad\quad\pi^{(6)}(b_{2})=\begin{pmatrix}B^{0}_{~0}&B^{0}_{~1}&0&0&0\cr B^{1}_{~0}&B^{1}_{~1}&0&0&0\cr 0&0&q^{3}&0&0\cr 0&0&0&B^{0}_{~0}&B^{0}_{~1}\cr 0&0&0&B^{1}_{~0}&B^{1}_{~1}\end{pmatrix}\ ,
π(6)(b3)=(q400000q300000B000B10000q3000B010B11),π(6)(b4)=(B0000B1000B0000B1000q300B0100B1100B0100B11),\displaystyle\pi^{(6)}(b_{3})=\begin{pmatrix}q^{-4}&0&0&0&0\cr 0&q^{3}&0&0&0\cr 0&0&B^{0}_{~0}&0&B^{0}_{~1}\cr 0&0&0&q^{3}&0\cr 0&0&B^{1}_{~0}&0&B^{1}_{~1}\end{pmatrix}\ ,\quad\pi^{(6)}(b_{4})=\begin{pmatrix}B^{0}_{~0}&0&0&B^{0}_{~1}&0\cr 0&B^{0}_{~0}&0&0&B^{0}_{~1}\cr 0&0&q^{3}&0&0\cr B^{1}_{~0}&0&0&B^{1}_{~1}&0\cr 0&B^{1}_{~0}&0&0&B^{1}_{~1}\end{pmatrix}\ ,
π(6)(b5)=(q400000q400000q300000q300000q3).\displaystyle\pi^{(6)}(b_{5})=\begin{pmatrix}q^{-4}&0&0&0&0\cr 0&q^{-4}&0&0&0\cr 0&0&q^{3}&0&0\cr 0&0&0&q^{3}&0\cr 0&0&0&0&q^{3}\end{pmatrix}\ .\qquad (6.13)

Verifying the Artin relations by hand as in the previous, n=5n=5\, case is still feasible (note again the block submatrix structure which could be helpful in some calculations) but tedious so we will skip it here. The triple Artin relations in (3.22) require the determinants of all π(n)(bi)\pi^{(n)}(b_{i})\, in a given representation to be equal. Denoting their common value by Dn,D_{n}\,, we see that D4=q1D_{4}=q^{-1}\, (cf. (3.23)) while D5=q2D_{5}=q^{2}\, and D6=q.D_{6}=q\,.

We will also display the results for the next two representations, of dimensions d7=3+5=8d_{7}=3+5=8\, and d8=5+8=13d_{8}=5+8=13\, which are not too hard to obtain even without any computer help.

Basis vectors and braid matrices for n=7n=7

Basis of Vd7V_{d_{7}}:

(Φ01101010Φ01011010Φ01111010Φ01010110Φ01110110Φ01101110Φ01011110Φ01111110)(Vd7=Vd5Vd6,d7=d5+d6=3+5=8)\begin{pmatrix}\Phi^{01101010}\cr\Phi^{01011010}\cr\Phi^{01111010}\cr\Phi^{01010110}\cr\Phi^{01110110}\cr\Phi^{01101110}\cr\Phi^{01011110}\cr\Phi^{01111110}\end{pmatrix}\qquad(V_{d_{7}}=V_{d_{5}}\oplus V_{d_{6}}\ ,\ d_{7}=d_{5}+d_{6}=3+5=8) (6.14)

7{\cal B}_{7}\, generators π(7)(bi),i=1,,6,D7=q3\pi^{(7)}(b_{i})\,,\ i=1,\dots,6\,,\quad D_{7}=q^{3}:

π(7)(b1)=(q300000000q400000000q300000000q400000000q300000000q300000000q400000000q3),\displaystyle\pi^{(7)}(b_{1})=\begin{pmatrix}q^{3}&0&0&0&0&0&0&0\cr 0&q^{-4}&0&0&0&0&0&0\cr 0&0&q^{3}&0&0&0&0&0\cr 0&0&0&q^{-4}&0&0&0&0\cr 0&0&0&0&q^{3}&0&0&0\cr 0&0&0&0&0&q^{3}&0&0\cr 0&0&0&0&0&0&q^{-4}&0\cr 0&0&0&0&0&0&0&q^{3}\end{pmatrix}\ ,
π(7)(b2)=(q300000000B00B10000000B01B1100000000B00B10000000B01B1100000000q300000000B00B10000000B01B11),\displaystyle\pi^{(7)}(b_{2})=\begin{pmatrix}q^{3}&0&0&0&0&0&0&0\cr 0&B^{0}_{~0}&B^{0}_{~1}&0&0&0&0&0\cr 0&B^{1}_{~0}&B^{1}_{~1}&0&0&0&0&0\cr 0&0&0&B^{0}_{~0}&B^{0}_{~1}&0&0&0\cr 0&0&0&B^{1}_{~0}&B^{1}_{~1}&0&0&0\cr 0&0&0&0&0&q^{3}&0&0\cr 0&0&0&0&0&0&B^{0}_{~0}&B^{0}_{~1}\cr 0&0&0&0&0&0&B^{1}_{~0}&B^{1}_{~1}\end{pmatrix}\ ,
π(7)(b3)=(B000B10000000q3000000B010B1100000000q400000000q300000000B000B10000000q3000000B010B11),\displaystyle\pi^{(7)}(b_{3})=\begin{pmatrix}B^{0}_{~0}&0&B^{0}_{~1}&0&0&0&0&0\cr 0&q^{3}&0&0&0&0&0&0\cr B^{1}_{~0}&0&B^{1}_{~1}&0&0&0&0&0\cr 0&0&0&q^{-4}&0&0&0&0\cr 0&0&0&0&q^{3}&0&0&0\cr 0&0&0&0&0&B^{0}_{~0}&0&B^{0}_{~1}\cr 0&0&0&0&0&0&q^{3}&0\cr 0&0&0&0&0&B^{1}_{~0}&0&B^{1}_{~1}\end{pmatrix}\ ,
π(7)(b4)=(q400000000q300000000q300000000B0000B1000000B0000B1000000q300000B0100B1100000B0100B11),\displaystyle\pi^{(7)}(b_{4})=\begin{pmatrix}q^{-4}&0&0&0&0&0&0&0\cr 0&q^{3}&0&0&0&0&0&0\cr 0&0&q^{3}&0&0&0&0&0\cr 0&0&0&B^{0}_{~0}&0&0&B^{0}_{~1}&0\cr 0&0&0&0&B^{0}_{~0}&0&0&B^{0}_{~1}\cr 0&0&0&0&0&q^{3}&0&0\cr 0&0&0&B^{1}_{~0}&0&0&B^{1}_{~1}&0\cr 0&0&0&0&B^{1}_{~0}&0&0&B^{1}_{~1}\end{pmatrix}\ ,
π(7)(b5)=(B000000B10000B000000B10000B000000B10000q300000000q3000B010000B11000B010000B11000B010000B11),\displaystyle\pi^{(7)}(b_{5})=\begin{pmatrix}B^{0}_{~0}&0&0&0&0&B^{0}_{~1}&0&0\cr 0&B^{0}_{~0}&0&0&0&0&B^{0}_{~1}&0\cr 0&0&B^{0}_{~0}&0&0&0&0&B^{0}_{~1}\cr 0&0&0&q^{3}&0&0&0&0\cr 0&0&0&0&q^{3}&0&0&0\cr B^{1}_{~0}&0&0&0&0&B^{1}_{~1}&0&0\cr 0&B^{1}_{~0}&0&0&0&0&B^{1}_{~1}&0\cr 0&0&B^{1}_{~0}&0&0&0&0&B^{1}_{~1}\end{pmatrix}\ ,
π(7)(b6)=(q400000000q400000000q400000000q300000000q300000000q300000000q300000000q3),\displaystyle\pi^{(7)}(b_{6})=\begin{pmatrix}q^{-4}&0&0&0&0&0&0&0\cr 0&q^{-4}&0&0&0&0&0&0\cr 0&0&q^{-4}&0&0&0&0&0\cr 0&0&0&q^{3}&0&0&0&0\cr 0&0&0&0&q^{3}&0&0&0\cr 0&0&0&0&0&q^{3}&0&0\cr 0&0&0&0&0&0&q^{3}&0\cr 0&0&0&0&0&0&0&q^{3}\end{pmatrix}\ , (6.15)

Basis vectors and braid matrices for n=8n=8

Basis of Vd8V_{d_{8}}\,:

(Φ010101010Φ011101010Φ011011010Φ010111010Φ011111010Φ011010110Φ010110110Φ011110110Φ010101110Φ011101110Φ011011110Φ010111110Φ011111110)(Vd8=Vd6Vd7,d8=d6+d7=5+8=13)\begin{pmatrix}\Phi^{010101010}\cr\Phi^{011101010}\cr\Phi^{011011010}\cr\Phi^{010111010}\cr\Phi^{011111010}\cr\Phi^{011010110}\cr\Phi^{010110110}\cr\Phi^{011110110}\cr\Phi^{010101110}\cr\Phi^{011101110}\cr\Phi^{011011110}\cr\Phi^{010111110}\cr\Phi^{011111110}\end{pmatrix}\qquad(V_{d_{8}}=V_{d_{6}}\oplus V_{d_{7}}\ ,\ d_{8}=d_{6}+d_{7}=5+8=13) (6.16)

8{\cal B}_{8}\, generators π(8)(bi),i=1,,7,D8=q1\pi^{(8)}(b_{i})\,,\ i=1,\dots,7\,,\quad D_{8}=-q^{-1}:

π(8)(b1)=(q40000000000000q30000000000000q30000000000000q40000000000000q30000000000000q30000000000000q40000000000000q30000000000000q40000000000000q30000000000000q30000000000000q40000000000000q3),\displaystyle\pi^{(8)}(b_{1})=\setcounter{MaxMatrixCols}{13}\begin{pmatrix}q^{-4}&0&0&0&0&0&0&0&0&0&0&0&0\cr 0&q^{3}&0&0&0&0&0&0&0&0&0&0&0\cr 0&0&q^{3}&0&0&0&0&0&0&0&0&0&0\cr 0&0&0&q^{-4}&0&0&0&0&0&0&0&0&0\cr 0&0&0&0&q^{3}&0&0&0&0&0&0&0&0\cr 0&0&0&0&0&q^{3}&0&0&0&0&0&0&0\cr 0&0&0&0&0&0&q^{-4}&0&0&0&0&0&0\cr 0&0&0&0&0&0&0&q^{3}&0&0&0&0&0\cr 0&0&0&0&0&0&0&0&q^{-4}&0&0&0&0\cr 0&0&0&0&0&0&0&0&0&q^{3}&0&0&0\cr 0&0&0&0&0&0&0&0&0&0&q^{3}&0&0\cr 0&0&0&0&0&0&0&0&0&0&0&q^{-4}&0\cr 0&0&0&0&0&0&0&0&0&0&0&0&q^{3}\end{pmatrix}\ ,
π(8)(b2)=(B00B1000000000000B01B110000000000000q30000000000000B00B1000000000000B01B110000000000000q30000000000000B00B1000000000000B01B110000000000000B00B1000000000000B01B110000000000000q30000000000000B00B1000000000000B01B11),\displaystyle\pi^{(8)}(b_{2})=\setcounter{MaxMatrixCols}{13}\begin{pmatrix}B^{0}_{~0}&B^{0}_{~1}&0&0&0&0&0&0&0&0&0&0&0\cr B^{1}_{~0}&B^{1}_{~1}&0&0&0&0&0&0&0&0&0&0&0\cr 0&0&q^{3}&0&0&0&0&0&0&0&0&0&0\cr 0&0&0&B^{0}_{~0}&B^{0}_{~1}&0&0&0&0&0&0&0&0\cr 0&0&0&B^{1}_{~0}&B^{1}_{~1}&0&0&0&0&0&0&0&0\cr 0&0&0&0&0&q^{3}&0&0&0&0&0&0&0\cr 0&0&0&0&0&0&B^{0}_{~0}&B^{0}_{~1}&0&0&0&0&0\cr 0&0&0&0&0&0&B^{1}_{~0}&B^{1}_{~1}&0&0&0&0&0\cr 0&0&0&0&0&0&0&0&B^{0}_{~0}&B^{0}_{~1}&0&0&0\cr 0&0&0&0&0&0&0&0&B^{1}_{~0}&B^{1}_{~1}&0&0&0\cr 0&0&0&0&0&0&0&0&0&0&q^{3}&0&0\cr 0&0&0&0&0&0&0&0&0&0&0&B^{0}_{~0}&B^{0}_{~1}\cr 0&0&0&0&0&0&0&0&0&0&0&B^{1}_{~0}&B^{1}_{~1}\end{pmatrix}\ ,
π(8)(b3)=(q40000000000000q30000000000000B000B1000000000000q300000000000B010B110000000000000B000B1000000000000q300000000000B010B110000000000000q40000000000000q30000000000000B000B1000000000000q300000000000B010B11),\displaystyle\pi^{(8)}(b_{3})=\setcounter{MaxMatrixCols}{13}\begin{pmatrix}q^{-4}&0&0&0&0&0&0&0&0&0&0&0&0\cr 0&q^{3}&0&0&0&0&0&0&0&0&0&0&0\cr 0&0&B^{0}_{~0}&0&B^{0}_{~1}&0&0&0&0&0&0&0&0\cr 0&0&0&q^{3}&0&0&0&0&0&0&0&0&0\cr 0&0&B^{1}_{~0}&0&B^{1}_{~1}&0&0&0&0&0&0&0&0\cr 0&0&0&0&0&B^{0}_{~0}&0&B^{0}_{~1}&0&0&0&0&0\cr 0&0&0&0&0&0&q^{3}&0&0&0&0&0&0\cr 0&0&0&0&0&B^{1}_{~0}&0&B^{1}_{~1}&0&0&0&0&0\cr 0&0&0&0&0&0&0&0&q^{-4}&0&0&0&0\cr 0&0&0&0&0&0&0&0&0&q^{3}&0&0&0\cr 0&0&0&0&0&0&0&0&0&0&B^{0}_{~0}&0&B^{0}_{~1}\cr 0&0&0&0&0&0&0&0&0&0&0&q^{3}&0\cr 0&0&0&0&0&0&0&0&0&0&B^{1}_{~0}&0&B^{1}_{~1}\end{pmatrix}\ ,
π(8)(b4)=(B0000B100000000000B0000B100000000000q30000000000B0100B110000000000B0100B110000000000000q40000000000000q30000000000000q30000000000000B0000B100000000000B0000B100000000000q30000000000B0100B110000000000B0100B11),\displaystyle\pi^{(8)}(b_{4})=\setcounter{MaxMatrixCols}{13}\begin{pmatrix}B^{0}_{~0}&0&0&B^{0}_{~1}&0&0&0&0&0&0&0&0&0\cr 0&B^{0}_{~0}&0&0&B^{0}_{~1}&0&0&0&0&0&0&0&0\cr 0&0&q^{3}&0&0&0&0&0&0&0&0&0&0\cr B^{1}_{~0}&0&0&B^{1}_{~1}&0&0&0&0&0&0&0&0&0\cr 0&B^{1}_{~0}&0&0&B^{1}_{~1}&0&0&0&0&0&0&0&0\cr 0&0&0&0&0&q^{-4}&0&0&0&0&0&0&0\cr 0&0&0&0&0&0&q^{3}&0&0&0&0&0&0\cr 0&0&0&0&0&0&0&q^{3}&0&0&0&0&0\cr 0&0&0&0&0&0&0&0&B^{0}_{~0}&0&0&B^{0}_{~1}&0\cr 0&0&0&0&0&0&0&0&0&B^{0}_{~0}&0&0&B^{0}_{~1}\cr 0&0&0&0&0&0&0&0&0&0&q^{3}&0&0\cr 0&0&0&0&0&0&0&0&B^{1}_{~0}&0&0&B^{1}_{~1}&0\cr 0&0&0&0&0&0&0&0&0&B^{1}_{~0}&0&0&B^{1}_{~1}\end{pmatrix}\ ,
π(8)(b5)=(q40000000000000q40000000000000q30000000000000q30000000000000q30000000000000B000000B1000000000B000000B1000000000B000000B1000000000q30000000000000q300000000B010000B1100000000B010000B1100000000B010000B11),\displaystyle\pi^{(8)}(b_{5})=\setcounter{MaxMatrixCols}{13}\begin{pmatrix}q^{-4}&0&0&0&0&0&0&0&0&0&0&0&0\cr 0&q^{-4}&0&0&0&0&0&0&0&0&0&0&0\cr 0&0&q^{3}&0&0&0&0&0&0&0&0&0&0\cr 0&0&0&q^{3}&0&0&0&0&0&0&0&0&0\cr 0&0&0&0&q^{3}&0&0&0&0&0&0&0&0\cr 0&0&0&0&0&B^{0}_{~0}&0&0&0&0&B^{0}_{~1}&0&0\cr 0&0&0&0&0&0&B^{0}_{~0}&0&0&0&0&B^{0}_{~1}&0\cr 0&0&0&0&0&0&0&B^{0}_{~0}&0&0&0&0&B^{0}_{~1}\cr 0&0&0&0&0&0&0&0&q^{3}&0&0&0&0\cr 0&0&0&0&0&0&0&0&0&q^{3}&0&0&0\cr 0&0&0&0&0&B^{1}_{~0}&0&0&0&0&B^{1}_{~1}&0&0\cr 0&0&0&0&0&0&B^{1}_{~0}&0&0&0&0&B^{1}_{~1}&0\cr 0&0&0&0&0&0&0&B^{1}_{~0}&0&0&0&0&B^{1}_{~1}\end{pmatrix}\ ,
π(8)(b6)=(B000000000B1000000B000000000B1000000B000000000B1000000B000000000B1000000B000000000B1000000q30000000000000q30000000000000q300000B010000000B1100000B010000000B1100000B010000000B1100000B010000000B1100000B010000000B11),\displaystyle\pi^{(8)}(b_{6})=\setcounter{MaxMatrixCols}{13}\begin{pmatrix}B^{0}_{~0}&0&0&0&0&0&0&0&B^{0}_{~1}&0&0&0&0\cr 0&B^{0}_{~0}&0&0&0&0&0&0&0&B^{0}_{~1}&0&0&0\cr 0&0&B^{0}_{~0}&0&0&0&0&0&0&0&B^{0}_{~1}&0&0\cr 0&0&0&B^{0}_{~0}&0&0&0&0&0&0&0&B^{0}_{~1}&0\cr 0&0&0&0&B^{0}_{~0}&0&0&0&0&0&0&0&B^{0}_{~1}\cr 0&0&0&0&0&q^{3}&0&0&0&0&0&0&0\cr 0&0&0&0&0&0&q^{3}&0&0&0&0&0&0\cr 0&0&0&0&0&0&0&q^{3}&0&0&0&0&0\cr B^{1}_{~0}&0&0&0&0&0&0&0&B^{1}_{~1}&0&0&0&0\cr 0&B^{1}_{~0}&0&0&0&0&0&0&0&B^{1}_{~1}&0&0&0\cr 0&0&B^{1}_{~0}&0&0&0&0&0&0&0&B^{1}_{~1}&0&0\cr 0&0&0&B^{1}_{~0}&0&0&0&0&0&0&0&B^{1}_{~1}&0\cr 0&0&0&0&B^{1}_{~0}&0&0&0&0&0&0&0&B^{1}_{~1}\end{pmatrix}\ ,
π(8)(b7)=(q40000000000000q40000000000000q40000000000000q40000000000000q40000000000000q30000000000000q30000000000000q30000000000000q30000000000000q30000000000000q30000000000000q30000000000000q3).\displaystyle\pi^{(8)}(b_{7})=\setcounter{MaxMatrixCols}{13}\begin{pmatrix}q^{-4}&0&0&0&0&0&0&0&0&0&0&0&0\cr 0&q^{-4}&0&0&0&0&0&0&0&0&0&0&0\cr 0&0&q^{-4}&0&0&0&0&0&0&0&0&0&0\cr 0&0&0&q^{-4}&0&0&0&0&0&0&0&0&0\cr 0&0&0&0&q^{-4}&0&0&0&0&0&0&0&0\cr 0&0&0&0&0&q^{3}&0&0&0&0&0&0&0\cr 0&0&0&0&0&0&q^{3}&0&0&0&0&0&0\cr 0&0&0&0&0&0&0&q^{3}&0&0&0&0&0\cr 0&0&0&0&0&0&0&0&q^{3}&0&0&0&0\cr 0&0&0&0&0&0&0&0&0&q^{3}&0&0&0\cr 0&0&0&0&0&0&0&0&0&0&q^{3}&0&0\cr 0&0&0&0&0&0&0&0&0&0&0&q^{3}&0\cr 0&0&0&0&0&0&0&0&0&0&0&0&q^{3}\end{pmatrix}\ . (6.17)

7 The braid group n{\cal B}_{n}\, generators for general nn

The explicit form of the Artin braid group n{\cal B}_{n}\, generators for small nn\, displayed in the previous section and the recursive construction of the corresponding monodromy representations suggest the following structure for general n.n\,.

The construction of the representation spaces (5.3) and of their bases implies that the (irreducible) dnd_{n}-dimensional representation π(n)\pi^{(n)}\, of n{\cal B}_{n}\, on the space VdnV_{d_{n}}\, reduces, when restricted to the subgroup n2{\cal B}_{n-2}\, (cf. (6.2)), to the direct sum

π(n)(n2)\displaystyle\pi^{(n)}({\cal B}_{n-2}) =\displaystyle= π(n2)(n2)π(n1)(n2),n4,\displaystyle\pi^{(n-2)}({\cal B}_{n-2})\oplus\pi^{(n-1)}({\cal B}_{n-2})\ ,\quad n\geq 4\ ,
π(n)(bi)\displaystyle\pi^{(n)}(b_{i}) =\displaystyle= π(n2)(bi)π(n1)(bi),i=1,,n3.\displaystyle\pi^{(n-2)}(b_{i})\oplus\,\pi^{(n-1)}(b_{i})\ ,\quad i=1,\dots,n-3\ .

The latter formula is exemplified for b1b_{1} in the rudimental case (5.10), for b1b_{1} and b2b_{2} in (6.9), for b1,b2b_{1},b_{2} and b3b_{3} in (6.13), etc. Applying it for π(n1)(bi)\pi^{(n-1)}(b_{i})\, (excluding bn3b_{n-3}\,) we obtain

π(n)(bi)=(π(n2)(bi)𝟎𝟎𝟎π(n3)(bi)𝟎𝟎𝟎π(n2)(bi)),i=1,,n4.\pi^{(n)}(b_{i})=\begin{pmatrix}\pi^{(n-2)}(b_{i})&{\mathbf{0}}&{\mathbf{0}}\cr{\mathbf{0}}&\pi^{(n-3)}(b_{i})&{\mathbf{0}}\cr{\mathbf{0}}&{\mathbf{0}}&\pi^{(n-2)}(b_{i})\end{pmatrix}\ ,\quad i=1,\dots,n-4\ . (7.2)

As for the matrices of the last two Artin generators, π(n)(bn2)\pi^{(n)}(b_{n-2})\, and π(n)(bn1)\pi^{(n)}(b_{n-1})\, for n5,n\geq 5\,, the obtained explicit results suggest the following block structure:

π(n)(bn2)\displaystyle\pi^{(n)}(b_{n-2}) =\displaystyle= (B001Idn2𝟎B101Idn2𝟎q31Idn3𝟎B011Idn2𝟎B111Idn2),\displaystyle\begin{pmatrix}B^{0}_{~0}\,\mbox{\em 1\hskip-3.4ptI}_{d_{n-2}}&{\mathbf{0}}&B^{0}_{~1}\,\mbox{\em 1\hskip-3.4ptI}_{d_{n-2}}\cr{\mathbf{0}}&q^{3}\,\mbox{\em 1\hskip-3.4ptI}_{d_{n-3}}&{\mathbf{0}}\cr B^{1}_{~0}\,\mbox{\em 1\hskip-3.4ptI}_{d_{n-2}}&{\mathbf{0}}&B^{1}_{~1}\,\mbox{\em 1\hskip-3.4ptI}_{d_{n-2}}\end{pmatrix}\ ,
π(n)(bn1)\displaystyle\pi^{(n)}(b_{n-1}) =\displaystyle= (q41Idn2𝟎𝟎q31Idn1)(q41Idn2𝟎𝟎𝟎q31Idn3𝟎𝟎𝟎q31Idn2).\displaystyle\begin{pmatrix}q^{-4}\,\mbox{\em 1\hskip-3.4ptI}_{d_{n-2}}&{\mathbf{0}}\cr{\mathbf{0}}&q^{3}\,\mbox{\em 1\hskip-3.4ptI}_{d_{n-1}}\cr\end{pmatrix}\equiv\begin{pmatrix}q^{-4}\,\mbox{\em 1\hskip-3.4ptI}_{d_{n-2}}&{\mathbf{0}}&{\mathbf{0}}\cr{\mathbf{0}}&q^{3}\,\mbox{\em 1\hskip-3.4ptI}_{d_{n-3}}&{\mathbf{0}}\cr{\mathbf{0}}&{\mathbf{0}}&q^{3}\,\mbox{\em 1\hskip-3.4ptI}_{d_{n-2}}\end{pmatrix}\ .

As we have already mentioned, the triple Artin relations in (3.22) imply that the determinants of all π(n)(bi)\pi^{(n)}(b_{i})\, in a given representation are equal. Denoting their common value by Dn,D_{n}\,, we obtain from (LABEL:oplus) and (LABEL:Bn-last2) that

Dn=Dn2.Dn1,Dn=q4dn2+3dn1=q3(2dn2+dn1)=q3(2dndn1)D_{n}=D_{n-2}\,.\,D_{n-1}\ ,\quad D_{n}=q^{-4\,d_{n-2}+3\,d_{n-1}}=q^{3\,(2\,d_{n-2}+d_{n-1})}=q^{3\,(2\,d_{n}-d_{n-1})} (7.4)

where we have used that q4=q6q^{-4}=q^{6}\, and dn2+dn1=dn.d_{n-2}+d_{n-1}=d_{n}\,. Using the recursion with D2=q4,D3=q3D_{2}=q^{-4}\,,\ D_{3}=q^{3}\, or alternatively, the (shifted) Fibonacci number sequence

d2\displaystyle d_{2} =\displaystyle= 1,d3=1,d4=2,d5=3,d6=5,d7=8,d8=13,d9=21,\displaystyle 1\,,\ d_{3}=1\,,\ d_{4}=2\,,\ d_{5}=3\,,\ d_{6}=5\,,\ d_{7}=8\,,\ d_{8}=13\,,\ d_{9}=21\,,
d10\displaystyle d_{10} =\displaystyle= 34,d11=55,d12=89,d13=144,d14=233,d15=377,\displaystyle 34\,,\ \,d_{11}=55\,,\ \,d_{12}=89\,,\ \,d_{13}=144\,,\ \,d_{14}=233\,,\ \,d_{15}=377\,,
d16\displaystyle d_{16} =\displaystyle= 610,d17=987,d18=1597,d19=2584,d20=4181,\displaystyle 610\,,\ \,d_{17}=987\,,\ \,d_{18}=1597\,,\,\ d_{19}=2584\,,\,\ d_{20}=4181\,,\ \dots (7.5)

we obtain

D2\displaystyle D_{2} =\displaystyle= q4,D3=q3,D4=q1,D5=q2,D6=q,D7=q3,\displaystyle q^{-4}\,,\ D_{3}=q^{3}\,,\ D_{4}=q^{-1}\,,\ D_{5}=q^{2}\,,\ D_{6}=q\,,\ D_{7}=q^{3}\,,
D8\displaystyle D_{8} =\displaystyle= q4,D9=q3,D10=q,D11=q2,D12=q1,D13=q3,\displaystyle q^{4}\,,\ D_{9}=q^{-3}\,,\ D_{10}=q\,,\ D_{11}=q^{-2}\,,\ D_{12}=q^{-1}\,,\ D_{13}=q^{-3}\,,
D14\displaystyle D_{14} =\displaystyle= q4,D15=q3,(Dn=Dn+61=Dn+12).\displaystyle q^{-4}\,,\,\ D_{15}=q^{3}\,,\ \dots\qquad\quad(\,D_{n}=D^{-1}_{n+6}=D_{n+12}\,)\ . (7.6)

8 Computational vectors and qubits

We are now fully prepared for the final step – to define the 𝒩{\cal N}\, qubit spaces and the "computational vectors" forming their bases.

To this end, we will start with the general expression for the nn-point Fibonacci anyon conformal blocks (5.1) (for nn\, even), with the following two simplifications. First, as the presence of the 3r3\,r\, electrons does not affect the braiding properties, we will just set r=0.r=0\,. We will also get rid at this stage of the redundant first and last pairs of indices (0101\, and 10,10\,, respectively) in (5.1).

It is obvious from (5.11) that, by a slight modification the prescription given in BHZS05 , a basis in the single qubit (𝒩=1{\cal N}=1\,) space is given by the two 44-point Fibonacci conformal blocks (4=2 . 1+24=2\,.\,1+2\,). To convey the idea suitable for generalization to higher 𝒩{\cal N}\, we will introduce below both a graphical notation (in terms of Bratteli path diagrams, see Figure 1),

Refer to caption
Figure 1: 𝒩=1, 4{\cal N}=1\,,\ 4\, anyons, dimVd4=2\dim\,V_{d_{4}}=2\,

and an equivalent shorthand notation,

(Φ01010Φ01110)=(ε|(ε0ε)|εε|(ε1ε)|ε)=:(|0|1),\begin{pmatrix}\Phi^{{{\color[rgb]{0,0.5859375,0.015625}01}}0{{\color[rgb]{0,0.5859375,0.015625}10}}}\cr\Phi^{{{\color[rgb]{0,0.5859375,0.015625}01}}1{{\color[rgb]{0,0.5859375,0.015625}10}}}\end{pmatrix}=\begin{pmatrix}{\color[rgb]{0,0.5859375,0.015625}\langle\varepsilon|}\,(\varepsilon\,_{0}\,\varepsilon)\,{\color[rgb]{0,0.5859375,0.015625}|\varepsilon\rangle}\cr{\color[rgb]{0,0.5859375,0.015625}\langle\varepsilon|}\,(\varepsilon\,_{1}\,\varepsilon)\,{\color[rgb]{0,0.5859375,0.015625}|\varepsilon\rangle}\end{pmatrix}=:\begin{pmatrix}|0\,\rangle\cr|1\,\rangle\end{pmatrix}\ , (8.1)

where (εαε),α=0,1(\varepsilon\,_{\alpha}\,\varepsilon)\,,\ \alpha=0,1\, stays, in general, for Π1ε(wi+1)Παε(wi+2)Π1\Pi_{1}\,\varepsilon(w_{i+1})\,\Pi_{\alpha}\,\varepsilon(w_{i+2})\,\Pi_{1}\, and

ε|=0|ε(w1)Π1,|ε=Π1ε(w2𝒩+2)|0.\langle\varepsilon|=\langle 0|\,\varepsilon(w_{1})\,\Pi_{1}\ ,\qquad|\varepsilon\rangle=\Pi_{1}\,\varepsilon(w_{2\,{\cal N}+2})\,|0\rangle\ .

We will call in what follows the configurations in red depicted in Figure 1 "(triangular) pails" and "double ropes", respectively. The first and the last ε\varepsilon\, fields in green are actually inert in the sense that, intertwining between the (left, resp. the right) vacuum sector and the non-trivial one, they perform a single channel map in both cases.

Remark 5  The correspondence between the qubit space construction in terms of Fibonacci 44-point conformal blocks and its 33-quasiparticle (of qq-spin 11) counterpart in BHZS05 goes as follows. The two "computational states" depicted in Fig. 11\, of BHZS05 are actually realized directly by the configurations of the first three anyons in our Figure 1 above. In the quantum group picture, the fusion rules (5.2) are equivalent to the tensor product decomposition of quantum spins 00\, and 11\, at q5=1,q^{5}=-1\,, the qq-spin II\, representations being characterized by their quantum dimensions

[I],I=0,1[2I+1]q:=q2I+1q(2I+1)qq1.[I]\ ,\ \ I=0,1\qquad\rightarrow\qquad[2I+1]_{q}:=\frac{q^{2I+1}-q^{-(2I+1)}}{q-q^{-1}}\ . (8.2)

For q=eiπ5,q=e^{i\frac{\pi}{5}}\,, the relevant qq-numbers appearing in the qq-analog of the Clebsch-Gordan decomposition are

[1]q=1,[3]q=q2+1+q2=τ+1=τ1,[5]q=0[1]_{q}=1\ ,\qquad[3]_{q}=q^{2}+1+q^{-2}=\tau+1=\tau^{-1}\ ,\qquad[5]_{q}=0 (8.3)

(cf. (3)). The "truncation" (the lack of qq-spin 2,2\,, in this case) in the nontrivial fusion relation [1]×[1]=[0][1][1]\times[1]=[0]\oplus[1]\, in (5.2) is reflected in an identity arising from the expansion

[3]q.[3]q=[1]q+[3]q+[5]qτ2=1+τ1+0.[3]_{q}\,.\,[3]_{q}=[1]_{q}+[3]_{q}+[5]_{q}\qquad\Rightarrow\qquad\tau^{-2}=1+\tau^{-1}+0\ . (8.4)

In the 44-point conformal block realization of the qubit space, the braiding of any two neighboring pairs of Fibonacci anyons provides a representation of 4{\cal B}_{4}\, generated by (5.10) and (5.11)

π4(b1)|α=Rβα|β=π4(b3)|α,Rβα=q3(2α)δβα,\displaystyle\pi^{4}(b_{1})\,|\alpha\rangle=R^{\alpha}_{~\beta}\,|\beta\rangle=\pi^{4}(b_{3})\,|\alpha\rangle\ ,\qquad R^{\alpha}_{~\beta}=q^{3(2-\alpha)}\,\delta^{\alpha}_{\beta}\ ,
π4(b2)|α=Bβα|β,α,β=0,1\displaystyle\pi^{4}(b_{2})\,|\alpha\rangle=B^{\alpha}_{~\beta}\,|\beta\rangle\ ,\qquad\alpha,\beta=0,1 (8.5)

(summation over β\beta\, is assumed). Due to the presence in (8.5) of the non-diagonal 2×22\times 2\, matrix B=(Bβα),B=(B^{\alpha}_{~\beta})\,, (5.11) provides the simplest non-Abelian braid group representation needed for (topological) quantum computation.

It should be noted that the three anyon "non-computational (NC)" state of BHZS05 does not appear in this realization which is quite welcome, since "non-computational" actually means "redundant". In a sense, the counterpart of the NC state is a 33-point function on which the braiding acts simply as multiplication by q3,q^{3}\,, cf. (5.7).

The generalization to 𝒩{\cal N}\, qubits looks now straightforward. We will define the 𝒩{\cal N}\, qubit computational states as

|α1α2α𝒩:=ε|(εα1ε)(εα2ε)(εα𝒩ε)|ε=\displaystyle|\,\alpha_{1}\,\alpha_{2}\,\dots\,\alpha_{\cal N}\,\rangle:={\color[rgb]{0,0.5859375,0.015625}\langle\varepsilon|}\,(\varepsilon\,_{\alpha_{1}}\,\varepsilon)\,(\varepsilon\,_{\alpha_{2}}\,\varepsilon)\,\dots\,(\varepsilon\,_{\alpha_{\cal N}}\,\varepsilon)\,{\color[rgb]{0,0.5859375,0.015625}|\varepsilon\rangle}=
=Φ0 1α1 1α2 1 1α𝒩 1 0=ε|ε(w2)Πα1ε(w3)Π1Π1ε(w2𝒩)Πα𝒩ε(w2𝒩+1)|ε\displaystyle=\Phi^{{\color[rgb]{0,0.5859375,0.015625}0\,1}\,\alpha_{1}\,1\,\alpha_{2}\,1\,\dots\,1\,\alpha_{{\cal N}}\,{\color[rgb]{0,0.5859375,0.015625}1\,0}}={\color[rgb]{0,0.5859375,0.015625}\langle\varepsilon|}\,\varepsilon(w_{2})\,\Pi_{\alpha_{1}}\,\varepsilon(w_{3})\,\Pi_{1}\,\dots\,\Pi_{1}\,\varepsilon(w_{2\,{\cal N}})\,\Pi_{\alpha_{\cal N}}\,\varepsilon(w_{2\,{\cal N}+1})\,{\color[rgb]{0,0.5859375,0.015625}|\varepsilon\rangle}\qquad (8.6)

(the rule is that every second projector in (8.6) is Π1\Pi_{1}\,), for i=1,,𝒩i=1,\dots,{\cal N}\, and αi=0,1.\alpha_{i}=0,1\,. Graphically, the Bratteli diagrams of even total length corresponding to computational states only contain configurations of triangular pails, for αi=0\alpha_{i}=0\, and double ropes, for αi=1.\alpha_{i}=1\,. The rest of the conformal blocks, i.e. those containing also ropes of odd number of segments555The total number of such segments has to be even, of course. correspond to NC states.

We proceed with the 𝒩=2{\cal N}=2\, and 𝒩=3{\cal N}=3\, examples, cf. Figures 2 and 3.

Refer to caption
Figure 2: 𝒩=2, 6{\cal N}=2\,,\ 6\, anyons, dimVd6=5, 2\dim\,V_{d_{6}}=5\,,\ 2-qubit computational vectors in red, NC in blue
Refer to caption
Figure 3: 𝒩=3, 8{\cal N}=3\,,\ 8\, anyons, dimVd8=13, 3\dim\,V_{d_{8}}=13\,,\ 3-qubit computational vectors in red, NC ones in blue

Obviously, when 𝒩{\cal N}\, is increased by 11\, the number of computational states is doubled, starting with 22\, for 𝒩=1,{\cal N}=1\,, so it is equal to 2𝒩2^{\cal N}\, as it should. The number of the rest (NC) vectors is, accordingly, d2(𝒩+1)2𝒩,d_{2({\cal N}+1)}-2^{\cal N}\,, i.e. 0,1,5,0\,,1\,,5\,,\dots\, for 𝒩=1,2,3,,{\cal N}=1\,,2\,,3\,,\dots\,, see (7.5). As d2𝒩>2𝒩d_{2\,{\cal N}}>2^{\cal N}\, for 𝒩5,{\cal N}\geq 5\,, the number of NC states exceeds that of the computational ones already for 1010\, anyons.

To justify the validity of the realization described above as a genuine 𝒩{\cal N}\, qubit space for 2𝒩+22\,{\cal N}+2\, anyons (𝒩2{\cal N}\geq 2), we will show that no leakage occurs, i.e. there is no mixing of the braid group action on computational and NC states. To this end, we must specify a subgroup of 2𝒩+2{\cal B}_{2\,{\cal N}+2}\, which preserves the arrangement of the 𝒩{\cal N}\, qubits and in the same time, still provides the needed quantum computational tools (including the Solovay-Kitaev algorithm, see e.g. HZBS07 for details). Such a subgroup is the one generated by b1,b2i,i=1,2,,𝒩b_{1}\,,\,b_{2i}\,,\ i=1,2,\dots,{\cal N}\, and b2𝒩+1,b_{2\,{\cal N}+1}\,, i.e. the first, the last and all even generators of 2𝒩+2,{\cal B}_{2\,{\cal N}+2}\,, having the direct product structure

sub(𝒩)=3×(2)×(𝒩2)×33×2××2×32𝒩+2,𝒩2.{\cal B}^{({\cal N})}_{sub}={\cal B}_{3}\times({\cal B}_{2})^{\times({\cal N}-2)}\times{\cal B}_{3}\equiv{\cal B}_{3}\times{\cal B}_{2}\times\dots\times{\cal B}_{2}\times{\cal B}_{3}\subset{\cal B}_{2\,{\cal N}+2}\ ,\qquad{\cal N}\geq 2\ . (8.7)

Note that the even generators commute with each other as a consequence of the Artin relations (6.1). The action of the group (8.7) on the Fibonacci conformal block space Vd2𝒩+2V_{d_{2\,{\cal N}+2}}\, will be displayed below. This is not a problem as it reduces, essentially, to writing down (only) part of the matrices derived in the previous sections; the actually important thing will be to reveal the structure of the corresponding representation and get convinced, if this is the case, that it is fully reducible (i.e., decomposable), being a direct sum of the computational and NC spaces.

We will start, for completeness, with the 𝒩=1{\cal N}=1\, case (44\, anyons) where no NC states are present and no restriction is needed, writing once more the full 4{\cal B}_{4}\, action displayed in (8.5) in the form

b1|α=Rβα|β,b2|α=Bβα|β,b3|α=Rβα|β.b_{1}\,|\alpha\rangle=R^{\alpha}_{~\beta}\,|\beta\rangle\ ,\qquad b_{2}\,|\alpha\rangle=B^{\alpha}_{~\beta}\,|\beta\rangle\ ,\qquad b_{3}\,|\alpha\rangle=R^{\alpha}_{~\beta}\,|\beta\rangle\ .\quad (8.8)

For 𝒩=2{\cal N}=2\, (66\, anyons) we obtain from (6.13) and Fig. 2

b1|α1α2\displaystyle b_{1}\,|\alpha_{1}\,\alpha_{2}\rangle =\displaystyle= Rβ1α1δβ2α2|β1β2,b2|α1α2=Bβ1α1δβ2α2|β1β2,\displaystyle R^{\alpha_{1}}_{~{\beta}_{1}}\delta^{\alpha_{2}}_{\beta_{2}}\,|\beta_{1}\,\beta_{2}\rangle\ ,\qquad b_{2}\,|\alpha_{1}\,\alpha_{2}\rangle=B^{\alpha_{1}}_{~{\beta}_{1}}\delta^{\alpha_{2}}_{\beta_{2}}\,|\beta_{1}\,\beta_{2}\rangle\ ,
b4|α1α2\displaystyle b_{4}\,|\alpha_{1}\,\alpha_{2}\rangle =\displaystyle= δβ1α1Bβ2α2|β1β2,b5|α1α2=δβ1α1Rβ2α2|β1β2,\displaystyle\delta^{\alpha_{1}}_{\beta_{1}}\,B^{\alpha_{2}}_{~{\beta}_{2}}\,|\beta_{1}\,\beta_{2}\rangle\ ,\qquad b_{5}\,|\alpha_{1}\,\alpha_{2}\rangle=\delta^{\alpha_{1}}_{\beta_{1}}\,R^{\alpha_{2}}_{~{\beta}_{2}}\,|\beta_{1}\,\beta_{2}\rangle\ ,
bi|NC\displaystyle b_{i}\,|NC\rangle =\displaystyle= q3|NC,i=1,2,4,5.\displaystyle q^{3}\,|NC\rangle\ ,\quad i=1,2,4,5\ . (8.9)

We will write down once more the diagonal action of b1b_{1}\, and b5b_{5}\, in the form

b1|0 0\displaystyle b_{1}\,|0\,0\rangle =\displaystyle= q4|0 0,b1|1 0=q3|1 0,b1|0 1=q4|0 1,b1|11=q3|11,\displaystyle q^{-4}\,|0\,0\rangle\ ,\quad b_{1}\,|1\,0\rangle=q^{3}\,|1\,0\rangle\ ,\quad\ \,b_{1}\,|0\,1\rangle=q^{-4}\,|0\,1\rangle\ ,\quad b_{1}\,|11\rangle=q^{3}\,|11\rangle\ ,
b5|0 0\displaystyle b_{5}\,|0\,0\rangle =\displaystyle= q4|0 0,b5|1 0=q4|1 0,b5|0 1=q3|0 1,b5|11=q3|11.\displaystyle q^{-4}\,|0\,0\rangle\ ,\quad b_{5}\,|1\,0\rangle=q^{-4}\,|1\,0\rangle\ ,\quad b_{5}\,|0\,1\rangle=q^{3}\,|0\,1\rangle\ ,\quad\ \,b_{5}\,|11\rangle=q^{3}\,|11\rangle\ .\qquad\qquad (8.10)

The result displayed in (8.9) is very encouraging. It shows that the representation of the group sub(2)=3×3{\cal B}_{sub}^{(2)}={\cal B}_{3}\times{\cal B}_{3}\, on the 55\, dimensional space Vd6V_{d_{6}}\, (6.12) is indeed fully reducible so that the 4=224=2^{2}\, computational vectors split from the NC one, forming a direct sum Vd6=V22VNC.V_{d_{6}}=V_{2^{2}}\oplus V_{NC}\,. Further, the 22\, qubit space V22V_{2^{2}}\, itself has the form of a tensor product of two single qubit spaces on which the sub(2){\cal B}_{sub}^{(2)}\, representation is, accordingly, the tensor square of the two single qubit 3{\cal B}_{3}\, representations, i.e.

V22=V2V2,sub(2)V22=3V23V2,sub(2)VNC=q3VNC,V_{2^{2}}=V_{2}\otimes V_{2}\ ,\qquad{\cal B}^{(2)}_{sub}\,V_{2^{2}}={\cal B}_{3}\,V_{2}\otimes{\cal B}_{3}\,V_{2}\ ,\qquad{\cal B}^{(2)}_{sub}\,V_{NC}=q^{3}\,V_{NC}\ , (8.11)

the first 3{\cal B}_{3}\, group in (8.11) being generated by b1b_{1}\, and b2b_{2}\, and the second, by b4b_{4}\, and b5.b_{5}\,.

Remark 6  The computational vectors in (8.10) appear in the order inherited from the ordering of all vectors introduces recursively in Section 5 (see the paragraph after (5.3). It does not coincide with the commonly used lexicographical order (that would be |00,|01,|10,|11|00\rangle\,,\ |01\rangle\,,\ |10\rangle\,,\ |11\rangle)666The chosen ordering is actually ”colexicographical”.. In any case, writing down the restrictions of the braid matrices on the 𝒩{\cal N} qubit space for 𝒩=2{\cal N}=2\, in the form (8.9) shows that they are given by the tensor products

b1=R1I,b2=B1I,b4=1IB,b5=1IRb_{1}=R\otimes\mbox{\em 1\hskip-3.4ptI}\ ,\qquad b_{2}=B\otimes\mbox{\em 1\hskip-3.4ptI}\ ,\qquad b_{4}=\mbox{\em 1\hskip-3.4ptI}\otimes B\ ,\qquad b_{5}=\mbox{\em 1\hskip-3.4ptI}\otimes R (8.12)

expressed in matrix form as Kronecker product, (AB)β1β2α1α2:=Aβ1α1Bβ2α2.(A\otimes B)^{\alpha_{1}\alpha_{2}}_{~\beta_{1}\beta_{2}}:=A^{\alpha_{1}}_{~\beta_{1}}\,B^{\alpha_{2}}_{~\beta_{2}}\,.

Having the experience with the first non-trivial 22 qubit case we can return to the general recursive formulae (7.2) and (LABEL:Bn-last2) implying

π(2𝒩+2)(bi)\displaystyle\pi^{(2\,{\cal N}+2)}(b_{i}) =\displaystyle= (π(2𝒩)(bi)𝟎𝟎𝟎π(2𝒩1)(bi)𝟎𝟎𝟎π(2𝒩)(bi)),\displaystyle\begin{pmatrix}\pi^{(2\,{\cal N})}(b_{i})&{\mathbf{0}}&{\mathbf{0}}\cr{\mathbf{0}}&\pi^{(2\,{\cal N}-1)}(b_{i})&{\mathbf{0}}\cr{\mathbf{0}}&{\mathbf{0}}&\pi^{(2\,{\cal N})}(b_{i})\end{pmatrix}\ ,
fori\displaystyle{\rm for}\quad i =\displaystyle= 1andi=2j,j=1, 2,𝒩1,\displaystyle 1\quad{\rm and}\quad i=2j\ ,\quad j=1\,,\,2\,\,\dots\,,\,{\cal N}-1\ ,
π(2𝒩+2)(b2𝒩)\displaystyle\pi^{(2\,{\cal N}+2)}(b_{2\,{\cal N}}) =\displaystyle= (B001Id2𝒩𝟎B101Id2𝒩𝟎q31Id2𝒩1𝟎B011Id2𝒩𝟎B111Id2𝒩),\displaystyle\begin{pmatrix}B^{0}_{~0}\,\mbox{\em 1\hskip-3.4ptI}_{d_{2\,{\cal N}}}&{\mathbf{0}}&B^{0}_{~1}\,\mbox{\em 1\hskip-3.4ptI}_{d_{2\,{\cal N}}}\cr{\mathbf{0}}&q^{3}\,\mbox{\em 1\hskip-3.4ptI}_{d_{2\,{\cal N}-1}}&{\mathbf{0}}\cr B^{1}_{~0}\,\mbox{\em 1\hskip-3.4ptI}_{d_{2\,{\cal N}}}&{\mathbf{0}}&B^{1}_{~1}\,\mbox{\em 1\hskip-3.4ptI}_{d_{2\,{\cal N}}}\end{pmatrix}\ , (8.13)
π(2𝒩+2)(b2𝒩+1)\displaystyle\pi^{(2\,{\cal N}+2)}(b_{2\,{\cal N}+1}) =\displaystyle= (q41Id2𝒩𝟎𝟎𝟎q31Id2𝒩1𝟎𝟎𝟎q31Id2𝒩)\displaystyle\begin{pmatrix}q^{-4}\,\mbox{\em 1\hskip-3.4ptI}_{d_{2\,{\cal N}}}&{\mathbf{0}}&{\mathbf{0}}\cr{\mathbf{0}}&q^{3}\,\mbox{\em 1\hskip-3.4ptI}_{d_{2\,{\cal N}-1}}&{\mathbf{0}}\cr{\mathbf{0}}&{\mathbf{0}}&q^{3}\,\mbox{\em 1\hskip-3.4ptI}_{d_{2\,{\cal N}}}\end{pmatrix}\

to find the origin of the NC vectors that "speckle" the list of computational ones. NC states are related to the appearance of the central square block of size d2𝒩1,d_{2\,{\cal N}-1}\,, for the first time for 𝒩=2{\cal N}=2\, (d3=1d_{3}=1), and proliferate in the subsequent representations with the increase of 𝒩.{\cal N}\,.

We recall that, by definition, the 𝒩{\cal N}\, qubit subspace V2𝒩V_{2^{\cal N}}\, is the 𝒩{\cal N}-th tensor power of the single qubit one:

V2𝒩:=V2𝒩V2V2(𝒩times),|α1α2α𝒩|α1|α2|α𝒩.V_{2^{\cal N}}:=V_{2}^{\otimes{\cal N}}\equiv V_{2}\otimes\dots\otimes V_{2}\quad({\cal N}\ {\rm times})\ ,\qquad|\alpha_{1}\,\alpha_{2}\,\dots\,\alpha_{\cal N}\,\rangle\equiv|\alpha_{1}\,\rangle\otimes|\alpha_{2}\,\,\rangle\dots\,|\alpha_{\cal N}\,\rangle\ . (8.14)

Physically, this means that the individual qubits are independent.

In the Fibonacci conformal block realization (for even number 2𝒩+22\,{\cal N}+2\, of anyons placed on a one-dimensional boundary, and inert end ones) the separate qubit spaces are realized by braiding the second and the third, the fourth and the fifth etc., till  2𝒩\,2\,{\cal N}\, and 2𝒩+1.2\,{\cal N}+1\,. The representation of the group (8.7) on the full d2𝒩+2d_{2\,{\cal N}+2}\, dimensional space of conformal blocks is fully reducible, leaving invariant both the 𝒩{\cal N}\, qubit subspace (8.14) formed by the computational vectors defined above (those whose Bratteli diagrams only contain "triangular pails" and "double ropes") and its linear complement VNCV_{NC}\, spanned by the remaining, non-computational vectors. The latter assertion is the gist of the "no leaking" theorem.

A general proof of the above statement can be carried out by induction, stepping essentially on the block matrix form of π(2𝒩+2)(b2𝒩)\pi^{(2\,{\cal N}+2)}(b_{2\,{\cal N}})\, (8.13).

Remark 7  The backward iteration of the block structure displayed in (8.13) suggests that the shifted Fibonacci numbers (7.5) satisfy the identity

d2𝒩+2\displaystyle d_{2\,{\cal N}+2} =\displaystyle= 2𝒩1d4+k=0𝒩22𝒩2kd2k+32𝒩1d4+k=0𝒩22kd2(𝒩k)1=\displaystyle 2^{{\cal N}-1}\,d_{4}+\sum_{k=0}^{{\cal N}-2}2^{{\cal N}-2-k}\,d_{2k+3}\equiv 2^{{\cal N}-1}\,d_{4}+\sum_{k=0}^{{\cal N}-2}2^{k}\,d_{2({\cal N}-k)-1}= (8.15)
=\displaystyle= 2𝒩+2𝒩2d3+2𝒩3d5++2d2𝒩3+d2𝒩1.\displaystyle 2^{\cal N}+2^{{\cal N}-2}\,d_{3}+2^{{\cal N}-3}\,d_{5}+\dots+2\,d_{2\,{\cal N}-3}+d_{2\,{\cal N}-1}\ .

Its proof is elementary; we have

dn+1\displaystyle d_{n+1} =\displaystyle= dn+dn1,n3,d2=1=d3\displaystyle d_{n}+d_{n-1}\ ,\quad n\geq 3\ ,\qquad d_{2}=1=d_{3}\qquad\Rightarrow
d2𝒩+2\displaystyle d_{2\,{\cal N}+2} =\displaystyle= d2𝒩+d2𝒩+1=2d2𝒩+d2𝒩1,𝒩1,d1=0,\displaystyle d_{2\,{\cal N}}+d_{2\,{\cal N}+1}=2\,d_{2\,{\cal N}}+d_{2\,{\cal N}-1}\ ,\quad{\cal N}\geq 1\ ,\qquad d_{1}=0\ , (8.16)

etc.

Instead of dwelling on the general 𝒩{\cal N}\, case we would invite the interested reader to verify the following results for 𝒩=3{\cal N}=3\, (88\, anyons) using (6.17) and Fig. 3 (there are 55\, NC vectors, of 1313\, altogether in this configuration, on rows with numbers 3,6,7,83,6,7,8\, and 1111\, in Fig. 3):

Vd8\displaystyle V_{d_{8}} =\displaystyle= V23VNC(3),V23=V2V2V2,dimVd8=13,dimVNC(3)=5,\displaystyle V_{2^{3}}\oplus V^{(3)}_{NC}\ ,\qquad V_{2^{3}}=V_{2}\otimes V_{2}\otimes V_{2}\ ,\qquad\dim\,V_{d_{8}}=13\ ,\qquad\dim\,V^{(3)}_{NC}=5\ ,
sub(3)\displaystyle{\cal B}^{(3)}_{sub} =\displaystyle= 3×2×3,b1=R1I1I,b2=B1I1I,\displaystyle{\cal B}_{3}\times{\cal B}_{2}\times{\cal B}_{3}\ ,\qquad b_{1}=R\otimes\mbox{\em 1\hskip-3.4ptI}\otimes\mbox{\em 1\hskip-3.4ptI}\ ,\qquad b_{2}=B\otimes\mbox{\em 1\hskip-3.4ptI}\otimes\mbox{\em 1\hskip-3.4ptI}\ ,
b4\displaystyle b_{4} =\displaystyle= 1IB1I,b6=1I1IB,b7=1I1IR.\displaystyle\mbox{\em 1\hskip-3.4ptI}\otimes B\otimes\mbox{\em 1\hskip-3.4ptI}\ ,\qquad b_{6}=\mbox{\em 1\hskip-3.4ptI}\otimes\mbox{\em 1\hskip-3.4ptI}\otimes B\ ,\qquad b_{7}=\mbox{\em 1\hskip-3.4ptI}\otimes\mbox{\em 1\hskip-3.4ptI}\otimes R\ . (8.17)

Although not being of central interest, we will also display the action of sub(3){\cal B}^{(3)}_{sub}\, on the NC sector. It is also fully reducible, the space VNC(3)V^{(3)}_{NC}\, being decomposed into a 22\, dimensional invariant subspace spanned by |NC1|NC_{1}\rangle\, and |NC5,|NC_{5}\rangle\,, and a 33\, dimensional one, spanned by |NC2,|NC3|NC_{2}\rangle\,,\ |NC_{3}\rangle\, and |NC4,|NC_{4}\rangle\,, respectively, so that

b1\displaystyle b_{1} =\displaystyle= q31I2(q3𝟎𝟎R),b2=q31I2(q3𝟎𝟎B),b4=q31I2(q4𝟎𝟎q31I2),\displaystyle q^{3}\mbox{\em 1\hskip-3.4ptI}_{2}\oplus\begin{pmatrix}q^{3}&{\mathbf{0}}\cr{\mathbf{0}}&R\end{pmatrix}\ ,\qquad b_{2}=q^{3}\mbox{\em 1\hskip-3.4ptI}_{2}\oplus\begin{pmatrix}q^{3}&{\mathbf{0}}\cr{\mathbf{0}}&B\end{pmatrix}\ ,\qquad b_{4}=q^{3}\mbox{\em 1\hskip-3.4ptI}_{2}\oplus\begin{pmatrix}q^{-4}&{\mathbf{0}}\cr{\mathbf{0}}&q^{3}\mbox{\em 1\hskip-3.4ptI}_{2}\end{pmatrix}\ ,
b6\displaystyle b_{6} =\displaystyle= Bq31I3,b7=Rq31I3.\displaystyle B\oplus q^{3}\mbox{\em 1\hskip-3.4ptI}_{3}\ ,\qquad b_{7}=R\oplus q^{3}\mbox{\em 1\hskip-3.4ptI}_{3}\ . (8.18)
Acknowledgements.
This work has been done under the project BG05M2OP001-1.002-0006 "Quantum Communication, Intelligent Security Systems and Risk Management" (QUASAR) financed by the Bulgarian Operational Programme "Science and Education for Smart Growth" (SESG) co-funded by the ERDF. Both LH and LSG thank the Bulgarian Science Fund for partial support under Contract No. DN 18/3 (2017). LSG has been also supported as a Research Fellow by the Alexander von Humboldt Foundation.

References

  • (1) Steven H. Simon, Topological Quantum, Oxford University Press, Oxford UK (2023).
  • (2) L.S. Georgiev, L. Hadjiivanov, G. Matein, Diagonal coset approach to topological quantum computation with Fibonacci anyons, arxiv:2404.01779.
  • (3) I.T. Todorov, L.K. Hadjiivanov, Monodromy representations of the braid group, Phys. At. Nuclei 64:12 (2001) 2059-2068.
  • (4) E. Ardonne, K. Schoutens, Wavefunctions for topological quantum registers, Ann. Phys. 322 (2007) 201-235.
  • (5) John Preskill, Lecture Notes Ph219: Quantum Computation, Part III. Topological quantum computation, California Institute of Technology (2004).
  • (6) N. Bonesteel, L. Hormozi, G. Zikos, S. Simon, Braid topologies for quantum computation, Phys. Rev. Lett. 95 (2005) 140503.
  • (7) L. Hormozi, G. Zikos, N.E. Bonesteel, S.H. Simon, Topological quantum compiling, Phys. Rev. B 75 (2007) 165310.
  • (8) X. Gu, B. Haghighat, Y. Liu, Ising-like and Fibonacci anyons from KZ-equations, JHEP 09 (2022) 015.
  • (9) J.K. Slingerland, F.A. Bais, Quantum groups and non-Abelian braiding in quantum Hall systems, Nucl. Phys. B 612:3 (2001) 229-290.
  • (10) M.H. Freedman, A. Kitaev, M. Larsen, Z. Wang, Topological Quantum Computation, Bull. Am. Math. Soc. 40:1 (2002) 31-38.
  • (11) M.H. Freedman, M. Larsen, Z. Wang, A modular functor which is universal for Quantum Computation, Comm. Math. Phys. 227:3 (2002) 605-622.
  • (12) A.B. Zamolodchikov, V.A. Fateev, Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in ZnZ_{n}-symmetric statistical systems, Sov. Phys. JETP 62:2 (1985) 215-225.
  • (13) C. Nayak, F. Wilczek, 2n2n-quasihole states realize 2n12^{n-1}-dimensional spinor braiding statistics in paired quantum Hall states, Nucl. Phys. B 479:3 (1996) 529-553.
  • (14) A. Cappelli, L.S. Georgiev, I.T. Todorov, Parafermion Hall states from coset projections of Abelian conformal theories, Nucl. Phys. B 599:3 (2001) 499-530.
  • (15) H. Bateman, A. Erdelyi, Higher Transcendential Functions, vol. 1, McGraw-Hill, NY (1953).
  • (16) M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, Xth Printing, with corrections (1972).
  • (17) Vl.S. Dotsenko, Critical behavior and associated conformal algebra of the Z3Z_{3}\, Potts model, Nucl. Phys. B 235:1 [FS11] (1984) 54-74.
  • (18) P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Springer Verlag, NY 1997.