This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Brylinski-Radon transformation in characteristic p>0p>0

Deepam Patel Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907, U.S.A. patel471@purdue.edu  and  K.V. Shuddhodan Institut des Hautes Études Scientifiques, Université Paris-Scalay, CNRS, Laboratoire Alexandre Grothendieck, Le Bois-Marie 35 rte de Chartres, 91440 Bures-sur-Yvette, France kvshud@ihes.fr
Abstract.

In this article, we characterize the image of the Brylinski-Radon transform in characteristic p>0p>0 via Beilinson’s theory of singular supports. We also provide an alternate proof of Brylinski’s results over {\mathbb{C}}, which also works for sheaves with finite coefficients. Along the way, we also obtain a microlocal criterion for the descent of perverse sheaves which could be of independent interest.

KVS was supported by the CARMIN project fellowship.

1. Introduction

In [3], Brylinski introduced topological (and geometric) versions of the classical Radon transforms and proved some fundamental properties for these transforms. The theory has had numerous applications including to Lefschetz theory [3, I.III], [7, Chapter IV]. More recently the Radon transform was crucially used by Beilinson [1] and Saito [10] respectively in the construction of singular support and characteristic cycle for constructible sheaves in the algebraic setting over arbitrary perfect fields. The main result of this article is to use the theory of singular supports to characterize the image of the Radon transform, generalizing the work of Brylinski to arbitrary base fields (and finite coefficents). In particular, we answer a question raised by Brylinski [3, Section 5.11].

1.1. Summary of results:

1.1.1. Singular supports of étale sheaves:

Let kk be an algebraically closed field of char. p0p\geq 0, p\ell\neq p a fixed prime, Λ=/ln\Lambda={\mathbb{Z}}/l^{n}{\mathbb{Z}}, and Dctfb(X,Λ){\rm D}^{b}_{ctf}(X,\Lambda) denote the derived category of bounded constructible étale sheaves of Λ\Lambda-modules with finite tor-dimension on XX. In the rest of the article, we denote this category simply by Dcb(X){\rm D}^{b}_{c}(X). Given KDcb(X)K\in{\rm D}^{b}_{c}(X), K(n)K(n) will denote the usual Tate twist of KK. If XX is smooth and KDcb(X)K\in{\rm D}^{b}_{c}(X), then Beilinson [1] defined the singular support SS(K)TXSS(K)\subset{\rm T}^{*}X (see 2.1 for a brief summary about singular supports). This is a closed conical subset of TX{\rm T}^{*}X, and for K0K\neq 0, SS(K)SS(K) is equidimensional of dimension equal to dim(X)\dim(X). Moreover when char(k)=0\text{char}(k)=0, SS(K)SS(K) is Lagrangian111A closed conical subset of TX{\rm T}^{*}X is said to be Lagrangian if the smooth locus of the closed subset is both isotropic and involutive with respect to the natural symplectic structure on TX{\rm T}^{*}X. [10, Proposition 2.2.7]. However this fails in positive characteristic [1, Example 1.3].

1.1.2. Main Result:

Let 𝒫(X)Dcb(X){\mathcal{P}}(X)\subset{\rm D}^{b}_{c}(X) denote the abelian category of perverse sheaves (w.r.t middle perversity). In the following, given an object KDcb(X){\rm K}\in{\rm D}^{b}_{c}(X), let ip(K)𝒫(X){{}^{p}\mathcal{H}}^{i}(K)\in{\mathcal{P}}(X) denote the ii-th perverse cohomology sheaf. If XX is smooth222In this article, varieties smooth over kk shall be assumed to be connected. over kk of dimension nn, let 𝒞(X)𝒫(X){\mathcal{C}}(X)\subset{\mathcal{P}}(X) denote the full Serre subcategory of locally constant perverse sheaves (i.e. complexes of the form [n]{\mathscr{L}}[n] where {\mathscr{L}} is a locally constant constructible sheaf on XX), and 𝒜(X){\mathcal{A}}(X) the corresponding quotient category. One can realize 𝒜(X){\mathcal{A}}(X) as the heart of the induced perverse t-structure on a localized triangulated category Dcb(X)T{\rm D}^{b}_{c}(X)_{T} obtained by localizing Dcb(X){\rm D}^{b}_{c}(X) along the multiplicative set of morphisms ff such that ker(ip(f))\text{ker}({{}^{p}\mathcal{H}}^{i}(f)) and coker(ip(f))\text{coker}({{}^{p}\mathcal{H}}^{i}(f)) are locally constant perverse sheaves for all ii. As above, let Tip(K)𝒜(X){{}^{p}\mathcal{H}}_{T}^{i}(K)\in{\mathcal{A}}(X) denote the ii-th ‘perverse cohomology’ sheaf of the image of KK in Dcb(X)T{\rm D}^{b}_{c}(X)_{T}.

We now recall the Brylinski-Radon transform. Let \mathbb{P} denote projective space of dimension n2n\geq 2 over kk, and Y:=𝐆(d)Y:={\bf G}(d) denote the denote the Grassmanian of dd-planes (where 1dn11\leq d\leq n-1) in \mathbb{P}. Consider the incidence correspondence Q×YQ\subset\mathbb{P}\times Y. The Brylinski-Radon transform is defined as follows. Consider the diagram:

Q\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p2\scriptstyle{p_{2}}p1\scriptstyle{p_{1}}\textstyle{\mathbb{P}}Y,\textstyle{Y,}

where pip_{i} are the natural projections. Given 𝒦Dcb(n){\mathcal{K}}\in{\rm D}^{b}_{c}({\mathbb{P}}^{n}), let (𝒦):=p2,p1𝒦Dcb(Y)\mathcal{R}({\mathcal{K}}):=p_{2,*}p_{1}^{\dagger}{\mathcal{K}}\in{\rm D}^{b}_{c}(Y)333Give a smooth morphism f:XSf:X\to S of relative dimension dd with geometrically connected fibers, we set f:=f[d]f^{\dagger}:=f^{*}[d]. Also, by f𝒫(S)f^{\dagger}{\mathcal{P}}(S), we mean the full subcategory 𝒫(X){\mathcal{P}}(X) consisting of perverse sheaves of the form fMf^{\dagger}M [2, Proposition 4.2.5], where MM is a perverse sheaf on SS.. Similarly, we set ˇ(𝒦):=p1,p2(𝒦)\check{{\mathcal{R}}}({\mathcal{K}}):=p_{1,*}p_{2}^{\dagger}({\mathcal{K}}).

Let CTC\subset{\rm T}^{*}{\mathbb{P}} be a closed conical subset. The Brylinski-Radon transform of CC is defined to be p2p1(C)p_{2\circ}p_{1}^{\circ}(C) (see Section 2.1 for the notation). A closed conical subset of TY{\rm T}^{*}Y is said to be in the image of the Brylinski-Radon transform if it is contained in the Brylinski-Radon transform of a closed conical subset of T{\rm T}^{*}{\mathbb{P}}.

It follows from [1, Theorem 1.4, (ii)] that perverse sheaves whose singular support is in the image of the Brylinski-Radon transform form an abelian subcategory of 𝒫(Y){\mathcal{P}}(Y) (denoted below by 𝒫(Y)Rad{\mathcal{P}}(Y)_{\text{Rad}}) which is stable under extensions. Let 𝒜(Y)Rad{\mathcal{A}}(Y)_{\text{Rad}} be the full abelian subcategory of 𝒜(Y){\mathcal{A}}(Y), consisting of objects which are images of 𝒦𝒫(Y)Rad{\mathcal{K}}\in{\mathcal{P}}(Y)_{\text{Rad}}. It is easy to see that both {\mathcal{R}} and ˇ\check{{\mathcal{R}}} naturally induce functors between Dcb()T{\rm D}^{b}_{c}({\mathbb{P}})_{T} and Dcb(Y)T{\rm D}^{b}_{c}(Y)_{T}. We are now ready to state the main result of this article.

Theorem 1.1.

With notation as above:

  1. (1)

    {\mathcal{R}} is tt-exact for the perverse tt-structures on Dcb()T{\rm D}^{b}_{c}({\mathbb{P}})_{T} and Dcb(Y)T{\rm D}^{b}_{c}(Y)_{T}.

  2. (2)

    The functor Td(nd1)pˇ(d(nd))T0p{{}^{p}\mathcal{H}}_{T}^{d(n-d-1)}\circ\check{{\mathcal{R}}}(d(n-d))\circ{{}^{p}\mathcal{H}}_{T}^{0}\circ{\mathcal{R}} is naturally equivalent to the identity functor on 𝒜(){\mathcal{A}}({\mathbb{P}}).

  3. (3)

    The functor T0p{{}^{p}\mathcal{H}}^{0}_{T}\circ{\mathcal{R}} induces an equivalence of categories between 𝒜(){\mathcal{A}}({\mathbb{P}}) and 𝒜(Y)Rad{\mathcal{A}}(Y)_{\text{Rad}}.

1.2. Comparison with previous work

  1. (1)

    If k=k={\mathbb{C}}, and one considers constructible sheaves in the classical topology with {\mathbb{C}} coefficients, then this is one of the main results of Brylinski [3, Théorème 5.5]. The problem of a characteristic pp analogue of Brylinski’s theorem was already posed as a question by Brylinski [3, 5.11]. The results of this article answer this question in the affirmative albeit, with appropriate modifications to account for wild ramification.

  2. (2)

    If char(k)=0\text{char}(k)=0, [10, Proposition 2.2.7] and [3, Lemme 5.6, (d)] imply that one can alternatively describe 𝒫(Y)Rad{\mathcal{P}}(Y)_{\text{Rad}} as those perverse sheaves who singular support is contained in p2p1Tp_{2\circ}p_{1}^{\circ}{\rm T}^{*}{\mathbb{P}}. In particular, the statement of Theorem 1.1 is consistent with the analogous statement proved by Brylinski over the complex numbers.

  3. (3)

    If d=n1d=n-1, then the aforementioned theorem gives an equivalence of categories between 𝒜(){\mathcal{A}}({\mathbb{P}}) and 𝒜(ˇ){\mathcal{A}}(\check{{\mathbb{P}}}). In this setting, Brylinski [3, Corollaire 9.15] also proves the result over an algebraic closure of a finite field as an application of the Deligne-Fourier transform in characteristic p>0p>0.

1.3. Idea of the proof

In this section we briefly describe the ideas underlying the proof of Theorem 1.1.

1.3.1. Proof of Theorem 1.1, (1):

The proof is an easy application of Artin vanishing and is along the lines of the proof in [7, Chapter IV, Corollary 2.3], where the case of n=d1n=d-1 is handled. The proof in [3, Théorème 5.5, (1)] is in comparison microlocal in nature and does not carry over when the coefficients are finite.

1.3.2. Proof of Theorem 1.1, (2):

The essential point here is to understand the pushforward of the constant sheaf along the map Q×YQ×Q\times_{Y}Q\to{\mathbb{P}}\times{\mathbb{P}}. This map is smooth outside the diagonal {\mathbb{P}}, however the fibers of the map are Grassmannians. This allows us to compute {\mathcal{R}}^{\vee}\circ{\mathcal{R}} in the localized category Dcb()T{\rm D}^{b}_{c}({\mathbb{P}})_{T} (see (14)) and deduce Theorem 1.1, (2). We do so without recourse to the decomposition theorem which is technically important for us since we allows finite coefficients. As a corollary of the proof we are able to show that 0p{{}^{p}\mathcal{H}}^{0}\circ{\mathcal{R}} is fully faithful and induces isomorphism on Ext1\text{Ext}^{1} (see Corollary 5.3).

1.3.3. Proof of Theorem 1.1, (3):

The proof of Theorem 1.1, (3) constitutes the technical heart of the paper. The first step is to prove a microlocal criterion for the descent of perverse sheaves. More precisely we prove the following statement which generalizes a result of Laumon444We thank Ahmed Abbes for pointing out the connection of our result with Laumon’s work. [8, Proposition 5.4.1]. Let kk be a perfect field and S/kS/k a smooth variety. Let f:XSf:X\to S a proper and smooth morphism with geometrically connected and simply connected fibers.

Proposition 1.2.

Then a non-zero perverse sheaf LL on XX is of the form fMf^{\dagger}M iff SS(K)fΛSS(K)\subset f^{\circ}\Lambda, for a closed conical subset ΛTS\Lambda\subset{\rm T}^{*}S of dimension equal to dim(S)\text{dim}(S). Moreover when char(k)=0\text{char}(k)=0, it suffices to assume that SS(K)fTSSS(K)\subset f^{\circ}{\rm T}^{*}S.

Using this descent criterion and an inductive argument (see Proposition 3.7) we are able to show that simple objects in 𝒜(Y)Rad{\mathcal{A}}(Y)_{\text{Rad}} are in the image of the Radon transform. The inductive nature of our method naturally leads us to consider relative versions of Brylinski-Radon transforms and we develop the necessary background in Section 2.2. The base case (i.e. nd=1n-d=1) for the induction follows from the work of Laumon [9, Proposition 5.7]. Finally using the isomorphism on Ext1\text{Ext}^{1} (Corollary 5.3) we deduce Theorem 1.1, (3).

We would like to note that our proof of Theorem 1.1 also applies to \ell-adic étale sheaves using the notion of singular support for \ell-adic sheaves as described in [11, Section 5.5]. It also works when k=k={\mathbb{C}} and one considers algebraically constructible sheaves in the analytic topology with Kashiwara-Schapira’s [6, Chapter V] definition of singular supports.

Acknowledgements:

We would like to thank Ahmed Abbes for his interest and encouragement during the course of this project. KVS would like to thank Ofer Gabber and Ankit Rai for useful conversations. In particular, he is thankful to Ofer Gabber for presenting a counterexample to an optimistic form of Corollary 3.3, ultimately resulting in the formulation of Proposition 7. KVS would also like to thank Hiroki Kato for patiently answering his questions about sensitivity of vanishing cycles to test functions in positive characteristics.

2. Background and some preliminary observations

2.1. Recollection of singular support

Let XX be a smooth variety over a perfect base field kk. Let CTXC\subset{\rm T}^{*}X denote a closed conical subset, and h:UXh:U\rightarrow X a morphism with UU smooth. Then hh is said to be CC-transversal if for all geometric points uu of UU,

ker(dhu)Ch(u){0}=.ker(dh_{u})\cap C_{h(u)}\setminus\{0\}=\emptyset.

Note CC-transversality implies that dh|C×XUdh|_{C\times_{X}U} is finite and Beilinson defines h(C)h^{\circ}(C) to be its image in TU{\rm T}^{*}U, also a closed conical subset [1, Section 1.2]. In particular, hh^{\circ} always makes sense when hh is a smooth morphism (since such morphisms are automatically CC-transversal for any CC). This will be the only relevant case for us. Similarly, for any closed conical subset CTUC\subset{\rm T}^{*}U whose base is proper over XX, Beilinson defines h(C)h_{\circ}(C) to be the image of dh1(C)dh^{-1}(C) under the natural projection TX×XUTX{\rm T}^{*}X\times_{X}U\to{\rm T}^{*}X. This is a closed conical subset of TX{\rm T}^{*}X.

For any sheaf KDcb(X)K\in{\rm D}^{b}_{c}(X), Beilinson defines the singular support SS(K)T(X)SS(K)\subset{\rm T}^{*}(X). We recall some properties of SS(K)SS(K) which will be used in the following.

  1. (1)

    For K0K\neq 0, SS(K)SS(K) is a equidimensional closed conical subset of T(X){\rm T}^{*}(X) of dimension equal to dim(X)\dim(X) [1, Theorem 1.3 (ii)] .

  2. (2)

    Given an SS(K)SS(K)-transversal morphism h:UXh:U\rightarrow X, SS(hK)h(SS(K))SS(h^{*}K)\subset h^{\circ}(SS(K)) [1, Lemma 2.2 (i)]. Moreover, one has equality if hh is a smooth morphism [1, Theorem 1.4, (i))].

  3. (3)

    Suppose f:XYf\colon X\to Y is a proper morphism of smooth varieties, then for any sheaf KK on XXSS(fK)f0(SS(K))SS(f_{*}K)\subset f_{0}(SS(K)) [1, Lemma 2.2 (ii))].

  4. (4)

    SS(K)SS(K) is the zero section (denoted below by 0TX0_{{\rm T}^{*}X}) iff i(K)\mathcal{H}^{i}(K) are locally constant for all ii and atleast one of them is non-zero [1, Lemma 2.1 (iii)].

  5. (5)

    For any sheaf KK one has SS(K)=αSS(Kα)SS(K)=\bigcup_{\alpha}SS(K_{\alpha}), where KαK_{\alpha} runs over the various Jordan-Holder components of ip(K){{}^{p}\mathcal{H}}^{i}(K) for every ii [1, Theorem 1.4, (ii)].

We record the following standard lemma for use below.

Lemma 2.1.

Let X𝑓Y𝑔ZX\xrightarrow{f}Y\xrightarrow{g}Z be smooth proper morphisms of smooth varieties over an algebraically closed field kk.

  1. (1)

    Given a conic ΛTX\Lambda\subset{\rm T}^{*}X, (gf)(Λ)=(gf)(Λ)(g_{\circ}\circ f_{\circ})(\Lambda)=(g\circ f)_{\circ}(\Lambda).

  2. (2)

    Given a conic ΛTZ\Lambda\subset{\rm T}^{*}Z, (fg)(Λ)=(gf)(Λ)(f^{\circ}\circ g^{\circ})(\Lambda)=(g\circ f)^{\circ}(\Lambda).

  3. (3)

    Given a conic ΛTY\Lambda\subset{\rm T}^{*}Y, (ff)(Λ)=Λ(f_{\circ}\circ f^{\circ})(\Lambda)=\Lambda.

  4. (4)

    Consider a commutative square:

    X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}g\scriptstyle{g}Y\textstyle{Y\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g^{\prime}}Z\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f^{\prime}}W\textstyle{W}

    where all morphisms and varieties are smooth proper. Then, given ΛTZ\Lambda\subset{\rm T}^{*}Z, one has ((g)f)(Λ)=(fg)(Λ)((g^{\prime})^{\circ}\circ f^{\prime}_{\circ})(\Lambda)=(f_{\circ}\circ g^{\circ})(\Lambda)

Proof.

The first three parts of the lemma are immediate from the definition. Using (3) we can reduce (4) to the case when the diagram is cartesian in which case the lemma is clear. ∎

2.2. Relative Brylinski-Radon transform

In what follows, we shall fix a base scheme SS which is assumed to be smooth over an algebraically closed field kk.

Let {\mathscr{E}} be a vector bundle over SS of rank n+12n+1\geq 2. Let 0dn10\leq d\leq n-1 be an integer. We denote by 𝐆(d,){\bf G}(d,{\mathscr{E}}) the Grassmannian bundle parametrizing locally free quotients of {\mathscr{E}}^{\vee} of rank d+1d+1. In particular, given an SS-scheme π:TS\pi:T\rightarrow S, 𝐆(d,)(T){\bf G}(d,{\mathscr{E}})(T) consists of equivalence classes of quotients π\pi^{*}{\mathscr{E}}^{\vee}\rightarrow{\mathscr{F}} where {\mathscr{F}} is locally free of rank d+1d+1. We denote by πd,\pi_{d,{\mathscr{E}}} the canonical morphism from 𝐆(d,){\bf G}(d,{\mathscr{E}}) to SS. It is a proper and smooth morphism of relative dimension (d+1)(nd)(d+1)(n-d).

Remark 2.2.

Note that we may identify 𝐆(d,){\bf G}(d,{\mathscr{E}}) with 𝐆(nd1,){\bf G}(n-d-1,{\mathscr{E}}^{\vee}) by passing to duals. Below, when working over S=Spec(k)S={\rm Spec}(k) (where kk is algebraically closed), we denote by 𝐆(d,n){\bf G}(d,n)555We use the convention that 𝐆(d,n)={\bf G}(d,n)=\emptyset if dd is negative. the Grassmanian of d+1d+1-planes in V=kn+1V=k^{n+1}. We shall also sometimes identify the latter with the dd-planes in n{\mathbb{P}}^{n}.

The following decomposition theorem is well-known, and is recorded here for future use.

Lemma 2.3.

For any KDcb(S)K\in{\rm D}^{b}_{c}(S), there exists a functorial (in KK) isomorphism

(1) i=0nKR2iπd,Λ[2i](i)πd,πd,K\bigoplus_{i=0}^{n}K\otimes R^{2i}\pi_{d,{\mathscr{E}}}\Lambda[-2i](i)\simeq\pi_{d,{\mathscr{E}}*}\pi_{d,{\mathscr{E}}}^{*}K
Proof.

Using the projection formula we may assume that K=ΛK=\Lambda. In this case the result is a consequence of proper base change and [4, Théorème 1.5] owing to the cohomology of Grassmannian satisfying hard Lefschetz (even with torsion coefficients).

2.2.1. The incidence correspondence as a Grassmannian bundle:

Given a pair of integers 0d1<d2n10\leq d_{1}<d_{2}\leq n-1, we denote by Qd1,d2,𝐆(d1,)×S𝐆(d2,)Q_{d_{1},d_{2},{\mathscr{E}}}\subset{\bf G}(d_{1},{\mathscr{E}})\times_{S}{\bf G}(d_{2},{\mathscr{E}}) the incidence correspondence. More precisely, given a test scheme TT as above, recall that an element of 𝐆(d1,)×S𝐆(d2,)(T){\bf G}(d_{1},{\mathscr{E}})\times_{S}{\bf G}(d_{2},{\mathscr{E}})(T) is given by a tuple (upto equivalence) (π1,π2)(\pi^{*}{\mathscr{E}}^{\vee}\rightarrow{\mathscr{F}}_{1},\pi^{*}{\mathscr{E}}^{\vee}\rightarrow{\mathscr{F}}_{2}) where i{\mathscr{F}}_{i} is a rank di+1d_{i}+1 quotient. With this notation, Qd1,d2,(T)Q_{d_{1},d_{2},{\mathscr{E}}}(T) consists of tuples such that there is a surjection 21{\mathscr{F}}_{2}\rightarrow{\mathscr{F}}_{1} compatible with the maps πi\pi^{*}{\mathscr{E}}^{\vee}\rightarrow{\mathcal{F}}_{i}. Note that if such a surjection exists, it is unique. Moreover, this is a closed subscheme of 𝐆(d1,)×S𝐆(d2,){\bf G}(d_{1},{\mathscr{E}})\times_{S}{\bf G}(d_{2},{\mathscr{E}}).

Let 0𝒮nd,πd,𝒬d+1,00\rightarrow{\mathscr{S}}_{n-d,{\mathscr{E}}^{\vee}}\rightarrow\pi^{*}_{d,{\mathscr{E}}}{\mathscr{E}}^{\vee}\rightarrow{\mathscr{Q}}_{d+1,{\mathscr{E}}^{\vee}}\rightarrow 0 denote the universal exact sequence on 𝐆(d,){\bf G}(d,{\mathscr{E}}). Here 𝒮nd,{\mathscr{S}}_{n-d,{\mathscr{E}}^{\vee}} (resp. 𝒬d+1,{\mathscr{Q}}_{d+1,{\mathscr{E}}^{\vee}}) is the universal sub-bundle of rank ndn-d (resp. quotient of rank d+1d+1). With this notation, one can identify Qd1,d2,(T)Q_{d_{1},d_{2},{\mathscr{E}}}(T) as the rank nd2n-d_{2} quotients of πT(𝒮nd1,)\pi_{T}^{*}({\mathscr{S}}_{n-d_{1},{\mathscr{E}}^{\vee}}^{\vee}), and in particular, we may view Qd1,d2,𝐆(d1,)Q_{d_{1},d_{2},{\mathscr{E}}}\rightarrow{\bf G}(d_{1},{\mathscr{E}}) as the Grasmmannian bundle 𝐆(nd21,𝒮nd1,){\bf G}(n-d_{2}-1,{\mathscr{S}}_{n-d_{1},{\mathscr{E}}^{\vee}}^{\vee}). By the aforementioned remark, we may also view this as the Grassmannian bundle 𝐆(d2d11,𝒮nd1,){\bf G}(d_{2}-d_{1}-1,{\mathscr{S}}_{n-d_{1},{\mathscr{E}}^{\vee}}). In a similar manner, we may view the incidence correspondence as a Grassmannian bundle 𝐆(d1,𝒬d2+1,){\bf G}(d_{1},{\mathscr{Q}}_{d_{2}+1,{\mathcal{E}}^{\vee}}^{\vee}) over 𝐆(d2,){\bf G}(d_{2},{\mathscr{E}}).

We denote by pd1,d2,p_{d_{1},d_{2},{\mathscr{E}}} (resp. pd1,d2,p^{\vee}_{d_{1},d_{2},{\mathscr{E}}}, resp. πd1,d2,\pi_{d_{1},d_{2},{\mathscr{E}}}) the induced map from Qd1,d2,Q_{d_{1},d_{2},{\mathscr{E}}} to 𝐆(d1,){\bf G}(d_{1},{\mathscr{E}}) (resp. 𝐆(d2,){\bf G}(d_{2},{\mathscr{E}}), resp. SS). As noted above pd1,d2,p_{d_{1},d_{2},{\mathscr{E}}} (resp. pd1,d2,p^{\vee}_{d_{1},d_{2},{\mathscr{E}}}) is a Grassmannian bundle parametrizing locally free quotients of rank d2d1d_{2}-d_{1} (resp. of rank d1+1d_{1}+1) of a vector bundle of rank nd1n-d_{1} (resp. of rank d2+1d_{2}+1) on 𝐆(d1,){\bf G}(d_{1},{\mathscr{E}}) (resp. 𝐆(d2,){\bf G}(d_{2},{\mathscr{E}})). Thus pd1,d2,p_{d_{1},d_{2},{\mathscr{E}}} (resp. pd1,d2,p^{\vee}_{d_{1},d_{2},{\mathscr{E}}}) is proper and smooth of relative dimension (d2d1)(nd2)(d_{2}-d_{1})(n-d_{2}) (resp. (d1+1)(d2d1)(d_{1}+1)(d_{2}-d_{1})).

2.2.2. Brylinski-Radon transform

We define functors d1,d2,:Dcb(𝐆(d1,))Dcb(𝐆(d2,)){\mathcal{R}}_{d_{1},d_{2},{\mathscr{E}}}:{\rm D}^{b}_{c}({\bf G}(d_{1},{\mathscr{E}}))\rightarrow{\rm D}^{b}_{c}({\bf G}(d_{2},{\mathscr{E}})) and ˇd1,d2,:Dcb(𝐆(d2,))Dcb(𝐆(d1,))\check{{\mathcal{R}}}_{d_{1},d_{2},{\mathscr{E}}}:{\rm D}^{b}_{c}({\bf G}(d_{2},{\mathscr{E}}))\rightarrow{\rm D}^{b}_{c}({\bf G}(d_{1},{\mathscr{E}})) as follows,

(2) d1,d2,(K):=pd1,d2,pd1,d2,K{\mathcal{R}}_{d_{1},d_{2},{\mathscr{E}}}(K):=p^{\vee}_{d_{1},d_{2},{\mathscr{E}}*}p^{\dagger}_{d_{1},d_{2},{\mathscr{E}}}K

and

(3) ˇd1,d2,(L):=pd1,d2,pd1,d2,L.\check{{\mathcal{R}}}_{d_{1},d_{2},{\mathscr{E}}}(L):=p_{d_{1},d_{2},{\mathscr{E}}*}p^{\vee\dagger}_{d_{1},d_{2},{\mathscr{E}}}L.

Finally, we make explicit a condition on closed conical subsets of T𝐆(d,){\rm T}^{*}{\bf G}(d,{\mathscr{E}}) (resp. TQd1,d2,{\rm T}^{*}Q_{d_{1},d_{2},{\mathscr{E}}}) which will be important in the following666See Example 3.4 for a motivation to consider the condition (\ast)..

Definition 2.4.

We will say that a closed conical subset CT𝐆(d,)C\subset{\rm T}^{*}{\bf G}(d,{\mathscr{E}}) (resp. TQd1,d2,{\rm T}^{*}Q_{d_{1},d_{2},{\mathscr{E}}}) is regular over SS (or just regular if SS is clear from context) if the following condition is satisfied:

  1. (\ast)

    Every irreducible component Λ\Lambda of CC contained in πd,TS\pi_{d,{\mathscr{E}}}^{\circ}{\rm T}^{*}S (resp. πd1,d2,TS\pi_{d_{1},d_{2},{\mathscr{E}}}^{\circ}{\rm T}^{*}S) is of the form πd,Λ\pi_{d,{\mathscr{E}}}^{\circ}\Lambda^{\prime} (resp. πd1,d2,Λ\pi_{d_{1},d_{2},{\mathscr{E}}}^{\circ}\Lambda^{\prime}) for an irreducible closed conical subset ΛTS\Lambda^{\prime}\subset{\rm T}^{*}S.

Note that condition (\ast) above is trivially satisfied when S=Spec(k)S={\rm Spec}(k) and CC is of pure dimension of dimension equal to dim(𝐆(d,))\text{dim}({\bf G}(d,{\mathscr{E}})) (resp. dim(Qd1,d2,)\text{dim}(Q_{d_{1},d_{2},{\mathscr{E}}})).

Let CT()C\subset{\rm T}^{*}{\mathbb{P}}({\mathscr{E}}) be a closed conical subset. We denote by

(4) Rad0,d,(C):=(p0,d,)(p0,d,)(C),\text{Rad}_{0,d,{\mathscr{E}}}(C):=(p^{\vee}_{0,d,{\mathscr{E}}})_{\circ}(p_{0,d,{\mathscr{E}}})^{\circ}(C),

the Radon transform of CC with respect to R0,d,R_{0,d,{\mathscr{E}}}. This is a closed conical subset of T𝐆(d,){\rm T}^{*}{\bf G}(d,{\mathscr{E}}).

Let q0,d,q_{0,d,{\mathscr{E}}} and q0,d,q_{0,d,{\mathscr{E}}}^{\vee} denote the morphism from TQ0,d,(()×S𝐆(d,)){\rm T}^{*}_{Q_{0,d,{\mathscr{E}}}}({\mathbb{P}}({\mathscr{E}})\times_{S}{\bf G}(d,{\mathscr{E}})) to T(){\rm T}^{*}{\mathbb{P}}({\mathscr{E}}) and T𝐆(d,){\rm T}^{*}{\bf G}(d,{\mathscr{E}}) respectively. We need the following, which is the relative version of [3, Lemme 5.6], and follows from it.

Lemma 2.5.

Let q˙0,d,\dot{q}_{0,d,{\mathscr{E}}} and q˙0,d,\dot{q}_{0,d,{\mathscr{E}}}^{\vee} respectively be the induced morphisms from TQ0,d,(()×S𝐆(d,))\π0,d,TS{\rm T}^{*}_{Q_{0,d,{\mathscr{E}}}}({\mathbb{P}}({\mathscr{E}})\times_{S}{\bf G}(d,{\mathscr{E}}))\backslash\pi_{0,d,{\mathscr{E}}}^{\circ}{\rm T}^{*}S to T()\π0,TS{\rm T}^{*}{\mathbb{P}}({\mathscr{E}})\backslash\pi_{0,{\mathscr{E}}}^{\circ}{\rm T}^{*}S and T𝐆(d,)\πd,TS{\rm T}^{*}{\bf G}(d,{\mathscr{E}})\backslash\pi_{d,{\mathscr{E}}}^{\circ}{\rm T}^{*}S. Then

  1. (a)

    q˙0,d,\dot{q}_{0,d,{\mathscr{E}}} is smooth and proper of relative dimension d(nd1)d(n-d-1).

  2. (b)

    q˙0,d,\dot{q}_{0,d,{\mathscr{E}}}^{\vee} is a closed immersion.

As a consequence we have the following.

Corollary 2.6.

Let CTQ0,d,C\subset{\rm T}^{*}Q_{0,d,{\mathscr{E}}} be a closed conical subset. Suppose C=p0,d,C1=p0,d,C2C=p_{0,d,{\mathscr{E}}}^{\circ}C_{1}=p_{0,d,{\mathscr{E}}}^{\vee\circ}C_{2} for closed conical subsets C1C_{1} and C2C_{2} in T(){\rm T}^{*}{\mathbb{P}}({\mathscr{E}}) and T𝐆(d,){\rm T}^{*}{\bf G}(d,{\mathscr{E}}) respectively. Then Cπ0,d,TSC\subset\pi_{0,d,{\mathscr{E}}}^{\circ}{\rm T}^{*}S.

Remark 2.7.

Note that by Remark 2.2 the above corollary is also true for correspondences between 𝐆(d,){\bf G}(d,{\mathscr{E}}) and 𝐆(n1,){\bf G}(n-1,{\mathscr{E}}) with d<n1d<n-1.

Corollary 2.8.

Let MM be perverse sheaf on Qd,n1,Q_{d,n-1,{\mathscr{E}}} (with d<n1d<n-1) that belongs to both pd,n1𝒫(𝐆(d,))p_{d,n-1}^{\dagger}{\mathcal{P}}({\bf G}(d,{\mathscr{E}})) and pd,n1𝒫(𝐆(n1,))p_{d,n-1}^{\vee\dagger}{\mathcal{P}}({\bf G}(n-1,{\mathscr{E}})). Then SS(M)πQd,n1,TSSS(M)\subset\pi_{Q_{d,n-1,{\mathscr{E}}}}^{\circ}{\rm T}^{*}S.

Proof.

The corollary is an immediate consequence of the remark above and Section 2.1, (2). ∎

We also note the following corollary.

Corollary 2.9.

Let CT()C\subset{\rm T}^{*}{\mathbb{P}}({\mathscr{E}}) be a closed conical subset regular over SS. Then Rad0,d,(C)\text{Rad}_{0,d,{\mathscr{E}}}(C) is also regular over SS.

Proof.

Let ΛC\Lambda\subset C be an irreducible component of the form π0,Λ\pi_{0,{\mathscr{E}}}^{\circ}\Lambda^{\prime}. Then Lemma 2.1 implies that Rad0,d,(Λ)=πd,Λ\text{Rad}_{0,d,{\mathscr{E}}}(\Lambda)=\pi_{d,{\mathscr{E}}}^{\circ}\Lambda^{\prime}. On the other hand if Λ\Lambda is not contained in π0,TS\pi_{0,{\mathscr{E}}}^{\circ}{\rm T}^{*}S, then Lemma 2.5 implies that Rad0,d,(Λ)\text{Rad}_{0,d,{\mathscr{E}}}(\Lambda) is an irreducible component of Rad0,d,(C)\text{Rad}_{0,d,{\mathscr{E}}}(C) and is not contained in πd,TS\pi_{d,{\mathscr{E}}}^{\circ}{\rm T}^{*}S. ∎

3. Proof of Theorem 1: Preliminary Results

In this section, we collect some results which will be used in the following for the proof of part (3) of Theorem 1.1.

3.1. A criterion for descent of perverse sheaves.

As before, let kk be an algebraically closed field, S/kS/k be a smooth variety and let f:XSf\colon X\to S be a smooth morphism whose fibres are connected of dimension dd. In general, it is hard to characterise the subcategory f𝒫(S)f^{\dagger}{\mathcal{P}}(S) of 𝒫(X){\mathcal{P}}(X). If, in addition to the above assumptions, ff is proper and the fibres of ff are simply connected, then we have the following descent criterion.

Proposition 3.1.
777Our proof also works when kk is only assumed to be perfect, provided ff is geometrically connected.

A (non-zero) simple perverse sheaf K𝒫(X)K\in{\mathcal{P}}(X) is in the essential image of ff^{\dagger} iff SS(K)fΛSS(K)\subseteq f^{\circ}\Lambda, for some closed conical subset ΛTS\Lambda\subset T^{*}S of dimension equal to dim(S)\text{dim}(S). Moreover, when char(k)=0\text{char}(k)=0 it suffices to assume that SS(K)fTSSS(K)\subset f^{\circ}T^{*}S.

Proof.

Since ff is smooth, the necessity results from the preservation of singular supports under pullback (see Section 2.1, (2)). Suppose now that KK is a (non-zero) simple perverse sheaf on XX such that as in SS(K)fΛSS(K)\subseteq f^{\circ}\Lambda, with Λ\Lambda as in the proposition. Since KK is simple, there exists a triple (X,U,)(X^{\prime},U,{\mathscr{L}}) consisting of an irreducible closed subset X𝑖XX^{\prime}\xhookrightarrow{i}X, a non-empty smooth (over kk) open subset U𝑗XU\xhookrightarrow{j}X^{\prime} and a non-zero irreducible local system {\mathscr{L}} on UU such that K=ij![dim(X)]K=i_{*}j_{!*}{\mathscr{L}}[\text{dim}(X^{\prime})] [2, Théorème 4.3.1, (ii)]. Note that ff^{\circ} preserves irreducible components since ff is smooth. As a consequence, by removing any extra components (if necessary), we may assume that SS(K)=f0ΛSS(K)=f^{0}\Lambda.

Claim 1: It is sufficient to prove the theorem after replacing SS by an open dense subset SjSS^{\prime}\xhookrightarrow{j^{\prime}}S, XX by XS:=X×SSX_{S^{\prime}}:=X\times_{S}S^{\prime}, and KK by K|XSK|_{X_{S^{\prime}}} provided K|XSK|_{X_{S^{\prime}}} is non-zero.
Proof: Let j′′:XSXj^{\prime\prime}:X_{S^{\prime}}\hookrightarrow X denote the resulting open immersion. First note that the resulting map f:XSSf^{\prime}:X_{S^{\prime}}\rightarrow S^{\prime} satisfies the hypotheses of the theorem, and SS(K|XS)=SS(K)|XS=(f)(Λ|S)SS(K|_{X_{S^{\prime}}})=SS(K)|_{X_{S^{\prime}}}=(f^{\prime})^{\circ}(\Lambda|_{S^{\prime}}) (Section 2.1, (2)). If MM is a simple perverse sheaf on SS^{\prime} such that (f)M=K|XS(f^{\prime})^{\dagger}M=K|_{X_{S^{\prime}}}, then fj!(M)=j!′′((f)M)=j!′′(K|XS)=Kf^{\dagger}j^{\prime}_{!*}(M)=j^{\prime\prime}_{!*}((f^{\prime})^{\dagger}M)=j^{\prime\prime}_{!*}(K|_{X_{S^{\prime}}})=K. Here the first equality follows from the fact that intermediate extensions commute with pull back along smooth morphisms [2, Lemme 4.2.6.1], and the last follows from the fact that KK is a simple perverse sheaf.

Claim 2: We may assume that the base SS^{\prime} of Λ\Lambda is smooth, X=X×SSX^{\prime}=X\times_{S}S^{\prime}, and SS(K)=f(Λ)SS(K)=f^{\circ}(\Lambda).
Proof: Let SS^{\prime} be the base of Λ\Lambda. Since the base of SS(K)SS(K) equals the support of KK [1, Lemma 2.3 (iii)] we have X=f1(S)X^{\prime}=f^{-1}(S^{\prime}). Let ZZ denote the singluar locus of SS^{\prime}. Since kk is algebraically closed, this is a strict closed subset of SS^{\prime}. In particular, SZS\setminus Z is open, and by the previous claim, we may base change everything to SZS\setminus Z.

Claim 3: Let Λ\Lambda^{\prime} be an irreducible component of fΛf^{\circ}\Lambda which is not equal to TXX{\rm T}^{*}_{X^{\prime}}X, the conormal bundle of XX^{\prime} in XX. Then the base of Λ\Lambda^{\prime} does not dominate SS^{\prime}. In particular, the union of the bases of the components of SS(K)SS(K) not equal to TXX{\rm T}^{*}_{X^{\prime}}X (denoted by X′′X^{\prime\prime} below) cannot dominate SS^{\prime} under ff.
Proof: Let ZXZ\subset X^{\prime} be the base of Λ\Lambda^{\prime}. We claim that ZZ does not dominate SS^{\prime} under ff. First note that, if ZXZ\neq X^{\prime}, then it does not dominate SS^{\prime}. We’re reduced to showing that if Z=XZ=X^{\prime}, then Λ=TXX\Lambda^{\prime}={\rm T}^{*}_{X^{\prime}}X. Since XX^{\prime} is smooth and K=ij![dim(X)]K=i_{*}j_{!*}{\mathscr{L}}[\text{dim}(X^{\prime})], SS(K)=i0SS(j![dim(X)])SS(K)=i_{0}SS(j_{!*}{\mathscr{L}}[\text{dim}(X^{\prime})]) (Combine [1, Lemma 2.5 (i)] and [1, Theorem 1.5]). Note that i0i_{0} preserves bases of irreducible components, and there exists a unique component of SS(j![dim(X)])SS(j_{!*}{\mathscr{L}}[\text{dim}(X^{\prime})]) whose base equals XX^{\prime} (namely the zero section). It follows that there is a unique component of SS(K)SS(K) whose base is XX^{\prime} (namely TXX{\rm T}^{*}_{X^{\prime}}X).

Note that X′′=f1(f(X′′))XX^{\prime\prime}=f^{-1}(f(X^{\prime\prime}))\subsetneq X. Let U=X\X′′U^{\prime}=X^{\prime}\backslash X^{\prime\prime}, then f|U:US\f(X′′)f|_{U^{\prime}}\colon U^{\prime}\to S^{\prime}\backslash f(X^{\prime\prime}) is a proper morphism with connected and simply connected fibres. Thus by [5, Exposé X, Corollaire 2.2] there exists a local system {\mathscr{M}} on S\f(X′′)S^{\prime}\backslash f(X^{\prime\prime}) such that f|U=𝒦f|_{U^{\prime}}^{*}{\mathscr{M}}={\mathscr{K}}. Thus by uniqueness K=f(iSjU!([dim(S)])K=f^{*}(i_{S^{\prime}*}j_{U^{\prime}!*}({\mathscr{M}}[\text{dim}(S)]), here iSi_{S^{\prime}} (resp. jUj_{U^{\prime}}) are the immersions from SS^{\prime} (resp. UU^{\prime}) into SS (resp. SS^{\prime}).

Now suppose char(k)=0\text{char}(k)=0, then every irreducible component (say Λ~\tilde{\Lambda}) of SS(K)SS(K) is Lagrangian [10, Proposition 2.2.7] and further the smooth locus of Λ~\tilde{\Lambda} is the conormal to the smooth locus in the intersection of Λ~\tilde{\Lambda} with the zero section of TX{\rm T}^{*}X ([1], Exercise in Section 1.3). Such a component Λ~\tilde{\Lambda} is in f0TSf^{0}{\rm T}^{*}S iff it is the inverse image of a closed conical subset of TS{\rm T}^{*}S.

Remark 3.2.

It follows from the proof of Proposition 7 that even in positive characteristic, as long as the components of the singular support are conormals (and not just Lagrangians!), the apparently weaker assumption SS(K)fTSSS(K)\subset f^{\circ}T^{*}S suffices.

While the following corollary will not be used in what follows, we record it here since it may be of independent interest.

Corollary 3.3.

Let f:XSf\colon X\to S and KK be as in Proposition 7. Then KK is lisse iff dpfK{{}^{p}\mathcal{H}}^{d}f_{*}K is lisse.

We continue using the notation from Proposition 7. We record below an example which shows that if char(k)>0\text{char}(k)>0, it is in general not sufficient to assume SS(K)f0TSSS(K)\subset f^{0}T^{*}S.

Example 3.4.

Let kk be a perfect field of characteristic p>0p>0. Let S=𝔸s1S={\mathbb{A}}^{1}_{s}, X=𝔸s1×[t:t]1X={\mathbb{A}}^{1}_{s}\times{\mathbb{P}}^{1}_{[t:t^{\prime}]}888We use subscripts to denote a choice of a coordinate system, and f:XSf\colon X\to S the projection map. Let X~:=Z(tp(xp2x)(s+xp)tp)𝔸x1×𝔸s1×[t:t]1\tilde{X}:=Z(t^{\prime p}(x^{p^{2}}-x)-(s+x^{p})t^{p})\subseteq{\mathbb{A}}^{1}_{x}\times{\mathbb{A}}^{1}_{s}\times{\mathbb{P}}^{1}_{[t:t^{\prime}]} and denote by π:X~X\pi:\tilde{X}\to X the induced map. We denote by X~t0\tilde{X}_{t\neq 0} (resp. Xt0X_{t\neq 0}) and X~t0\tilde{X}_{t^{\prime}\neq 0} (resp. Xt0X_{t^{\prime}\neq 0}) the open cover of X~\tilde{X} (resp. XX) obtained from the usual cover on [t:t]1{\mathbb{P}}^{1}_{[t:t^{\prime}]}.

Note that X~\tilde{X} is a smooth surface over kk and that π\pi is finite étale of rank p2p^{2} over Xt0X_{t^{\prime}\neq 0}. Over the line t=0t^{\prime}=0, it is a totally ramified cover of 𝔸s1{\mathbb{A}}^{1}_{s}. Thus π\pi is finite. and we denote by K=π(Λ[2])K=\pi_{*}(\Lambda[2]) and thus by Section 2.1, (3), SS(K)π(0TX~)SS(K)\subseteq\pi_{\circ}(0_{{\rm T}^{*}\tilde{X}}).

It follows from the definition of π\pi_{\circ} that π(0TX~)=0TXΛ\pi_{\circ}(0_{{\rm T}^{*}\tilde{X}})=0_{T^{*}X}\cup\Lambda. Here Λ\Lambda is fT𝔸s1|t=0f^{\circ}{\rm T}^{*}{\mathbb{A}}^{1}_{s}|_{t^{\prime}=0}. By proper base change KK is not a lisse perverse sheaf, hence SS(K)=0TXΛSS(K)=0_{{\rm T}^{*}X}\cup\Lambda. Moreover, KK is not the pullback of a perverse sheaf from 𝔸s1{\mathbb{A}}^{1}_{s}, since if that were the case then its restriction to s=0s=0 would have to be trivial by proper base change. This in turn implies that the finite étale cover X~t0Xt0\tilde{X}_{t^{\prime}\neq 0}\to X_{t^{\prime}\neq 0} is trivial restricted to s=0s=0, which is not the case by the choice of the Artin-Schrier cover.

3.2. A key proposition

In this section, we prove a key proposition which will be used in the proof of Theorem 1.1, (3). Recall we have a base scheme SS smooth over kk ( assumed to be algebraically closed) and a vector bundle {\mathscr{E}} on SS of rank n+1n+1. We continue using the notations from Section 2.2. However, for ease of exposition, we drop {\mathscr{E}} from the notation. In particular we shall denote 𝐆(0,){\bf G}(0,{\mathscr{E}}) by {\mathbb{P}}, 𝐆(d,){\bf G}(d,{\mathscr{E}}) by 𝐆(d){\bf G}(d) and 𝐆(n1,){\bf G}(n-1,{\mathscr{E}}) by 𝐆(n1){\bf G}(n-1).

Below, we shall makes use of the following commutative diagram in order to facilitate an inductive argument.

(5) Q0,d,n1Qd,n1Q0,d𝐆(d)Q0,n1𝐆(n1)S.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 15.37967pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\\&&&\\&&&\\&&&\crcr}}}\ignorespaces{\hbox{\kern-15.37967pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q_{0,d,n-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 91.5561pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 39.37967pt\raise-31.69037pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 0.0pt\raise-70.82999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 46.96758pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 91.5561pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q_{d,n-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 104.75801pt\raise-70.1633pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 148.96054pt\raise-30.85931pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 159.37549pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-3.0pt\raise-40.19998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 39.37967pt\raise-40.19998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q_{0,d}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 148.96054pt\raise-40.19998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 49.96758pt\raise-109.4433pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 101.75801pt\raise-40.19998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 148.96054pt\raise-40.19998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\bf G}(d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 162.37549pt\raise-109.4433pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-13.14453pt\raise-80.6633pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q_{0,n-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 84.55548pt\raise-80.6633pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 43.56479pt\raise-114.33698pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 46.96758pt\raise-80.6633pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 84.55548pt\raise-80.6633pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\bf G}(n-1)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 156.02133pt\raise-115.02603pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 159.37549pt\raise-80.6633pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-3.0pt\raise-119.27661pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 43.56479pt\raise-119.27661pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathbb{P}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 156.02133pt\raise-119.27661pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 101.75801pt\raise-119.27661pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 156.02133pt\raise-119.27661pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{S}$}}}}}}}\ignorespaces}}}}\ignorespaces.

In diagram (5), the bottom, front and right hand side faces are the correspondences described in Section 2.2. We define Q0,d,n1:=Q0,d×𝐆(d)Qd,n1Q_{0,d,n-1}:=Q_{0,d}\times_{{\bf G}(d)}Q_{d,n-1}. This induces a morphism from Q0,d,n1Q_{0,d,n-1} to ×S𝐆(n1){\mathbb{P}}\times_{S}{\bf G}(n-1), which by construction factors through Q0,n1Q_{0,n-1} (denoted in the diagram (5) by the dotted arrow). We have the following lemma which follows from the description of the incidence correspondence as a Grassmannian bundle in Section 2.2.1.

Lemma 3.5.

There exists isomorphisms (as 𝐆(n1){\bf G}(n-1)-schemes) Q0,n1(𝒬n,)Q_{0,n-1}\simeq{\mathbb{P}}({\mathscr{Q}}^{\vee}_{n,{\mathscr{E}}^{\vee}}), Qd,n1𝐆(d,𝒬n,)Q_{d,n-1}\simeq{\bf G}(d,{\mathscr{Q}}^{\vee}_{n,{\mathscr{E}}^{\vee}}) and Q0,d,n1Q0,d,𝒬n,Q_{0,d,n-1}\simeq Q_{0,d,{\mathscr{Q}}^{\vee}_{n,{\mathscr{E}}^{\vee}}} such that commutative square

(6) Q0,d,n1Qd,n1Q0,n1𝐆(n1),\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 15.37967pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-15.37967pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q_{0,d,n-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 46.3803pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.29666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 46.3803pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q_{d,n-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 59.5822pt\raise-29.62997pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-13.14453pt\raise-40.12997pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q_{0,n-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 39.37967pt\raise-40.12997pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 39.37967pt\raise-40.12997pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\bf G}(n-1)}$}}}}}}}\ignorespaces}}}}\ignorespaces,

in diagram (5) is the one induced by the correspondence Q0,d,𝒬n,(𝒬n,)×𝐆(n1)𝐆(d,𝒬n,)Q_{0,d,{\mathscr{Q}}^{\vee}_{n,{\mathscr{E}}^{\vee}}}\subset{\mathbb{P}}({\mathscr{Q}}^{\vee}_{n,{\mathscr{E}}^{\vee}})\times_{{\bf G}(n-1)}{\bf G}(d,{\mathscr{Q}}^{\vee}_{n,{\mathscr{E}}^{\vee}}).

Proof.

Note that Q0,d,n1=Qd,n1×(𝐆(d)×S𝐆(n1))(Q0,d×S𝐆(n1))Q_{0,d,n-1}=Q_{d,n-1}\times_{({\bf G}(d)\times_{S}{\bf G}(n-1))}(Q_{0,d}\times_{S}{\bf G}(n-1)). Thus in order to prove the lemma, it suffices to show that projective sub-bundle of ×S𝐆(n1){\mathbb{P}}\times_{S}{\bf G}(n-1) defined by Q0,n1Q_{0,n-1} induces the Grassmannian sub-bundle Qd,n1Q_{d,n-1} of 𝐆(d)×S𝐆(n1){\bf G}(d)\times_{S}{\bf G}(n-1). But this follows from the description in Section 2.2.1.

More precisely using the notations from the section, Q0,n1Q_{0,n-1} is the projective bundle (over 𝐆(n1){\bf G}(n-1)) defined by the sub-bundle 𝒬n,{\mathscr{Q}}^{\vee}_{n,{\mathscr{E}}^{\vee}} of πn1,\pi_{n-1,{\mathscr{E}}}^{*}{\mathscr{E}} and Qd,n1Q_{d,n-1} is the Grassmannian bundle 𝐆(d,𝒬n,){\bf G}(d,{\mathscr{Q}}^{\vee}_{n,{\mathscr{E}}^{\vee}}). ∎

In what follows we denote the vector bundle 𝒬n,{\mathscr{Q}}^{\vee}_{n,{\mathscr{E}}^{\vee}} on 𝐆(n1){\bf G}(n-1) by {\mathscr{F}}. In particular there is a Radon transform (denoted by 0,d,{\mathcal{R}}_{0,d,{\mathscr{F}}}) from Dcb(Q0,n1){\rm D}^{b}_{c}(Q_{0,n-1}) to Dcb(Qd,n1){\rm D}^{b}_{c}(Q_{d,n-1}). The following lemma is an immediate consequence of proper base change applied to the cartesian square at the top of Diagram (5).

Lemma 3.6.

For any perverse sheaf KK on {\mathbb{P}} we have 0,d,i(p0,n1K)pd,n10,di(K){\mathcal{R}}^{i}_{0,d,{\mathscr{F}}}(p_{0,n-1}^{\dagger}K)\cong p^{\dagger}_{d,n-1}{\mathcal{R}}^{i}_{0,d}(K)999Here and in the rest of this article by d1,d2,i{\mathcal{R}}^{i}_{d_{1},d_{2},{\mathscr{E}}} we mean ipd1,d2,{{}^{p}\mathcal{H}}^{i}\circ{\mathcal{R}}_{d_{1},d_{2},{\mathscr{E}}}. We use a similar convention for d1,d2,{\mathcal{R}}^{\vee}_{d_{1},d_{2},{\mathscr{E}}}. in 𝒫(Qd,n1){\mathcal{P}}(Q_{d,n-1}).

Below, for XX smooth over kk and ΛTX\Lambda\subset{\rm T}^{*}X is a conical subset, then 𝒫(X,Λ){\mathcal{P}}(X,\Lambda) is the full subcategory of the category of perverse sheaves KK such that SS(K)ΛSS(K)\subset\Lambda. Note that this is is a Serre subcategory (see Section 2.1, (5)).

Let CTC\subset{\rm T}^{*}{\mathbb{P}} be a closed conical subset equidimensional of dimension equal to dim()\text{dim}({\mathbb{P}}). For the rest of this section, we assume that closed conical subsets are regular over the base SS (see Definition 2.4).

Proposition 3.7.

With notation as above, any simple perverse sheaf LL in 𝒫(𝐆(d),Rad0,d(C)){\mathcal{P}}({\bf G}(d),\text{Rad}_{0,d}(C)) is either in πd(𝒫(S))\pi_{d}^{\dagger}({\mathcal{P}}(S)) or there exists a simple perverse sheaf KK on {\mathbb{P}} and a (decreasing) filtration F0,d0KF^{\cdot}{\mathcal{R}}^{0}_{0,d}K on 0,d0K{\mathcal{R}}^{0}_{0,d}K such that

  1. (a)

    SS(K)CSS(K)\subseteq C.

  2. (b)

    FiR0,d0K=R0,d0KF^{i}R^{0}_{0,d}K=R^{0}_{0,d}K for i0i\leq 0.

  3. (c)

    FiR0,d0K=0F^{i}R^{0}_{0,d}K=0 for i3i\geq 3.

  4. (d)

    GrFi(0,d0K)\text{Gr}^{i}_{F}({\mathcal{R}}^{0}_{0,d}K) belongs to πd𝒫(S)\pi_{d}^{\dagger}{\mathcal{P}}(S) for i=0,2i=0,2 and GrF1(0,d0K)=L\text{Gr}^{1}_{F}({\mathcal{R}}^{0}_{0,d}K)=L.

Proof.

We may assume LL does not belong to πd(𝒫(S))\pi_{d}^{\dagger}({\mathcal{P}}(S)). We prove the claim by descending induction on ndn-d (over varying choices of (S,)(S,{\mathscr{E}})). Suppose nd=1n-d=1 and hence 𝐆(d)=(){\bf G}(d)={\mathbb{P}}({\mathscr{E}}^{\vee}). Then (b)-(d) follow immediately from [9, Corollaire 5.8, (i)]. Moreover, (a) follows from the fact that KK is in fact a sub-quotient of ˇ0,n1(L)\check{{\mathcal{R}}}_{0,n-1}(L).

Now suppose the Proposition has been verified for nd=r1n-d=r\geq 1 and for all possible choices of (S,)(S,{\mathcal{E}}). We shall now prove it for nd=r+1n-d=r+1 by induction via Diagram (5). By the induction hypothesis, we may assume that the Proposition has been verified for 0,d,{\mathcal{R}}_{0,d,{\mathscr{F}}}.

It follows from [2, Corollaire 4.2.6.2] that L:=pd,n1LL_{{\mathscr{F}}}:=p_{d,n-1}^{\dagger}L is simple and by Section 2.1, (2) that SS(L)=pd,n1SS(L)SS(L_{{\mathscr{F}}})=p_{d,n-1}^{\circ}SS(L). Thus by Lemma 2.1, SS(L)SS(L_{{\mathscr{F}}}) is contained in the Radon transform of p0,n10Cp_{0,n-1}^{0}C with respect to R0,d,R_{0,d,{\mathscr{F}}}. Moreover by Corollary 2.8 it follows that LL_{{\mathscr{F}}} is not in the essential image of pd,n1𝒫(𝐆(n1))p^{\vee\dagger}_{d,n-1}{\mathcal{P}}({\bf G}(n-1)). Now by induction hypothesis there exists a simple perverse sheaf KK_{{\mathscr{F}}} on Q0,n1Q_{0,n-1} with and a filtration F0,d,0F^{\cdot}_{{\mathscr{F}}}{\mathcal{R}}^{0}_{0,d,{\mathscr{F}}} such that

  1. (a’)

    SS(K)p0,n10CSS(K_{{\mathscr{F}}})\subseteq p_{0,n-1}^{0}C.

  2. (b’)

    FiR0,d,0K=R0,d,0KF_{{\mathscr{F}}}^{i}R_{0,d,{\mathscr{F}}}^{0}K_{{\mathscr{F}}}=R_{0,d,{\mathscr{F}}}^{0}K_{{\mathscr{F}}} for i0i\leq 0.

  3. (c’)

    FiR0,d,0K=0F_{{\mathscr{F}}}^{i}R_{0,d,{\mathscr{F}}}^{0}K_{{\mathscr{F}}}=0 for i3i\geq 3.

  4. (d’)

    GrFi(R0,d,0K)\text{Gr}^{i}_{F_{{\mathscr{F}}}}(R_{0,d,{\mathscr{F}}}^{0}K_{{\mathscr{F}}}) belongs to pd,n1𝒫(𝐆(n1))p_{d,n-1}^{\vee\dagger}{\mathcal{P}}({\bf G}(n-1)) for i=0,2i=0,2 and GrF1(R0,d,0K)=L\text{Gr}^{1}_{F_{{\mathscr{F}}}}(R_{0,d,{\mathscr{F}}}^{0}K_{{\mathscr{F}}})=L_{{\mathscr{F}}}.

Now using Proposition 7, (a’) above implies that KK_{{\mathscr{F}}} descends to a simple perverse sheaf KK on {\mathbb{P}} such SS(K)CSS(K)\subseteq C. Moreover by Lemma 3.6, R0,d,0KR_{0,d,{\mathscr{F}}}^{0}K_{{\mathscr{F}}} is in the essential image of pd,n1𝒫(𝐆(d))p_{d,n-1}^{\dagger}{\mathcal{P}}({\bf G}(d)). Thus by [2, Section 4.2.6] so are GrFi(R0,d,0K)\text{Gr}^{i}_{F_{{\mathscr{F}}}}(R_{0,d,{\mathscr{F}}}^{0}K_{{\mathscr{F}}}) for all ii. Thus by Corollary 2.8 and Proposition 7, GrFi(R0,d,0K)\text{Gr}^{i}_{F_{{\mathscr{F}}}}(R_{0,d,{\mathscr{F}}}^{0}K_{{\mathscr{F}}}) for i=0,2i=0,2 belongs to (πdpd,n1)𝒫(S)(\pi_{d}\circ p_{d,n-1})^{\dagger}{\mathcal{P}}(S). Hence the result.

4. Proof of Theorem 1.1, (1)

In the rest of this article we work over S=Spec(k)S={\rm Spec}(k), with {\mathscr{E}} a vector space over kk of dimension n+1n+1 (which we henceforth ignore from the notation) and use the following notation.

Notations 4.1.

We will only consider the Brylinksi-Radon transform between {\mathbb{P}} to 𝐆(d){\bf G}(d).

  1. (1)

    We will denote 𝐆(d){\bf G}(d) by YY and the incidence correspondence Q0,dQ_{0,d} by QQ. The projections from QQ to {\mathbb{P}} (resp. YY) are denoted by p1p_{1} (resp. p2p_{2}).

  2. (2)

    The morphism from {\mathbb{P}} (resp. YY) to Spec(k){\rm Spec}(k) are denoted by π\pi_{{\mathbb{P}}} (resp. πY\pi_{Y}).

  3. (3)

    The Brylinski-Radon transforms are denoted by {\mathcal{R}} and ˇ\check{{\mathcal{R}}}.

  4. (4)

    Let EE be the complement of the incidence variety Q×YQ\subset{\mathbb{P}}\times Y. Let p1p_{1}^{\circ} and p2p_{2}^{\circ} be the projections to {\mathbb{P}} and YY respectively from EE.

  5. (5)

    In what follows we will need the modified Brylinski-Radon transform defined as !K:=p2!p1K{\mathcal{R}}_{!}K:=p^{\circ}_{2!}p_{1}^{\circ\dagger}K.

  6. (6)

    For a complex KK on {\mathbb{P}}, by 𝒦{\mathscr{K}} we mean the complex πK\pi_{{\mathbb{P}}*}K on Spec(k){\rm Spec}(k). Similarly, for complexes KK on YY.

  7. (7)

    We will use i(K){\mathcal{R}}^{i}(K) (resp. !i(K){\mathcal{R}}_{!}^{i}(K), 𝒦i{\mathscr{K}}^{i}) to denote the ithi^{\mathrm{th}} perverse cohomology of (K){\mathcal{R}}(K) (resp. !(K){\mathcal{R}}_{!}(K), 𝒦{\mathscr{K}}).

4.1. Some preliminary observations

The next two lemmas are immediate consequences of the smoothness and properness of p1p_{1} and p2p_{2}, and we state them without a proof.

Lemma 4.2.

For any sheaf KDcb()K\in{\rm D}^{b}_{c}({\mathbb{P}}) and LDcb(Y)L\in{\rm D}^{b}_{c}(Y)D((K))(DK)(d(nd))D({\mathcal{R}}(K))\simeq{\mathcal{R}}(DK)(d(n-d)) and D(ˇ(L))=ˇ(DL)(d)D(\check{{\mathcal{R}}}(L))=\check{{\mathcal{R}}}(DL)(d) 101010Here DD is the Verdier duality functor..

Lemma 4.3.

The functors (ˇ[δ](d(nd)),,ˇ[δ](d))(\check{{\mathcal{R}}}[\delta](d(n-d)),{\mathcal{R}},\check{{\mathcal{R}}}[-\delta](d))111111In what follows we set δ:=d(nd1)\delta:=d(n-d-1) form an adjoint triple.

The following result is due to Brylinski [3, 5.3.1 (i), (ii)]. Again, while this is proved in loc. cit. in the complex analytic setting, the same proof goes through in our setting.

Proposition 4.4.

Let {\mathcal{R}} and ˇ\check{{\mathcal{R}}} be as before. Then {\mathcal{R}} and ˇ\check{{\mathcal{R}}} preserve the localizing set TT (see Section 1.1), and in particular one has induced functors :Dcb()TDcb(Y)T{\mathcal{R}}:{\rm D}^{b}_{c}({\mathbb{P}})_{T}\rightarrow{\rm D}^{b}_{c}(Y)_{T} and ˇ:Dcb(Y)TDcb(n)T.\check{{\mathcal{R}}}:{\rm D}^{b}_{c}(Y)_{T}\rightarrow{\rm D}^{b}_{c}({\mathbb{P}}^{n})_{T}.

4.2. An application of Artin vanishing

We now record the following easy consequence of Artin vanishing which is used in the proof of Theorem 1.1, (1).

Lemma 4.5.

Let X/kX/k be a base scheme. Let UU be the complement in Xn{\mathbb{P}}^{n}_{X} of a linear subspace121212A linear subspace of Xn{\mathbb{P}}^{n}_{X} is a closed subscheme, which Zariski locally over XX isomorphic to XdXn{\mathbb{P}}^{d}_{X}\subset{\mathbb{P}}^{n}_{X} embedded linearly. ZZ of relative dimension dd, and let π\pi be the map from UU to XX. Then π\pi_{*} maps D0p(U){}^{p}{\rm D}^{\leq 0}(U) to Dnd1p(X){}^{p}{\rm D}^{\leq n-d-1}(X).

Proof.

The proof is via a repeated application of Artin vanishing in the form of right t-exactness (for the perverse t-structure) of affine morphisms [2, Théorème 4.4.1]. After replacing XX with a suitable Zariski open we can consider a chain of linear subspaces Z0Z1Znd1Z_{0}\subsetneq Z_{1}\subsetneq\cdots Z_{n-d-1} of ZZ such that Z0=XdZ_{0}={\mathbb{P}}^{d}_{X} and dim(Zi)=d+i\text{dim}(Z_{i})=d+i. Let Ui:=Xn\ZiU_{i}:={\mathbb{P}}^{n}_{X}\backslash Z_{i} be the corresponding open subscheme. Let πi\pi_{i} be the map from UiU_{i} onto XX, and we identify π0\pi_{0} with π\pi.

We prove the lemma by descending induction on ii. For i=nd1i=n-d-1 the lemma is an immediate consequence of Artin vanishing [2, Théorème 4.1.1]. Assuming that the lemma has been verified up to some ind1i\leq n-d-1, we prove it for i1i-1. Let jj (resp. ll ) be the inclusion of UiU_{i} (resp. Zi\Zi1Z_{i}\backslash Z_{i-1}) inside Ui1U_{i-1}. Let KK be a sheaf on Ui1U_{i-1} in D0p(Ui1){}^{p}{\rm D}^{\leq 0}(U_{i-1}). By induction hypothesis π(jjK)Dnd1ip(X)\pi_{*}(j_{*}j^{*}K)\in~{}^{p}{\rm D}^{\leq n-d-1-i}(X). Thus it suffices to show π(ll!K)Dndip(X)\pi_{*}(l_{*}l^{!}K)\in~{}^{p}{\rm D}^{\leq n-d-i}(X).

By construction Zi\Zi1Z_{i}\backslash Z_{i-1} is at once affine over XX and a complete intersection of codimension ndin-d-i in Ui1U_{i-1}, and thus [2, Corollaire 4.1.10, (ii)] implies the result.

The following corollary will be used below to describe the image of the Brylinski-Radon transform.

Corollary 4.6.

With notation as above, p2!p^{\circ}_{2!} maps D0p(E){}^{p}{\rm D}^{\geq 0}(E) to D(nd1)p(Y){}^{p}{\rm D}^{\geq-(n-d-1)}(Y).

4.3. Proof of 1.1, (1) and Corollaries

In fact, we prove the following more refined version of Theorem 1.1, part (1).

Theorem 4.7.

Let KK be a sheaf on {\mathbb{P}}.

  1. (1)

    If KK is upper semi-perverse then for any i<0i<0, we have i(K)πY𝒦in+d{\mathcal{R}}^{i}(K)\simeq\pi_{Y}^{\dagger}{\mathscr{K}}^{i-n+d}.

  2. (2)

    If KK is perverse, i(K){\mathcal{R}}^{i}(K) are constant for any i0i\neq 0. Also the perverse sheaves !i(K){\mathcal{R}}^{i}_{!}(K) are constant for ind+1i\neq n-d+1.

  3. (3)

    Consequently {\mathcal{R}} is tt-exact for the perverse tt-structures on Dcb()T{\rm D}^{b}_{c}({\mathbb{P}})_{T} and Dcb(Y)T{\rm D}^{b}_{c}(Y)_{T} (see Section 1.1).

Proof.

By definition of {\mathcal{R}} (and !{\mathcal{R}}_{!}) and proper base change, we have a triangle on YY

(7) (K)[nd1]!KπY𝒦[(d+1)(nd)]+1.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 33.83269pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\crcr}}}\ignorespaces{\hbox{\kern-33.83269pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{R}}(K)[n-d-1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 57.83269pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 57.83269pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{R}}_{!}K\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 105.95769pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 105.95769pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\pi_{Y}^{*}{\mathcal{K}}[(d+1)(n-d)]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 196.98216pt\raise 5.54723pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.9639pt\hbox{$\scriptstyle{+1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 216.45439pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 216.45439pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces.

Now, by Corollary 4.6 and [2, Section 4.2.4], one has that for any KD0p()K\in~{}^{p}{\rm D}^{\geq 0}({\mathbb{P}}), !KD(nd1)p(Y){\mathcal{R}}_{!}K\in~{}^{p}{\rm D}^{\geq-(n-d-1)}(Y). Taking the long exact sequence of perverse cohomologies associated to the triangle (7) gives us (1).

If KK is perverse, then applying the first part to DKDK and using Lemma 4.2 we deduce (2). The constancy of !i(K){\mathcal{R}}_{!}^{i}(K) for ind+1i\neq n-d+1 then follows from the fact that constant sheaves form a Serre subcategory. The tt-exactness of {\mathcal{R}} is now clear.

We get the following corollaries by combining Lemma 4.3 and Theorem 4.7.

Corollary 4.8.

The functor ˇ[δ](d)\check{{\mathcal{R}}}[-\delta](d) (resp. ˇ[δ](d(nd))\check{{\mathcal{R}}}[\delta](d(n-d))) is left tt-exact (resp. right tt-exact) for the perverse tt-structures on Dcb(Y)T{\rm D}^{b}_{c}(Y)_{T} and Dcb()T{\rm D}^{b}_{c}({\mathbb{P}})_{T}.

Corollary 4.9.

(ˇδ(d(nd)),0,ˇδ(d))(\check{{\mathcal{R}}}^{\delta}(d(n-d)),{\mathcal{R}}^{0},\check{{\mathcal{R}}}^{-\delta}(d))131313We denote TipR{{}^{p}\mathcal{H}}^{i}_{T}\circ R by i{\mathcal{R}}^{i} and a similar notation for ˇi\check{{\mathcal{R}}}^{i}. form an adjoint triple between 𝒜(){\mathcal{A}}({\mathbb{P}}) and 𝒜(Y){\mathcal{A}}(Y). Moreover ˇδ(d)\check{{\mathcal{R}}}^{-\delta}(d) (resp. ˇδ(d(nd))\check{{\mathcal{R}}}^{\delta}(d(n-d))) is left t-exact (resp. right t-exact).

5. Proof of Theorem 1.1, (2) and (3)

In this section, we prove Theorem 1.1, (2) and (3).

5.1. Proof of Theorem 1.1, (2) and corollaries

Consider the following diagram of schemes, where the central square is cartesian by definition:

(8) Q×YQp~2p~2Qp1p2Qp2p1Y.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.40279pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 34.35556pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 68.30833pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q\times_{Y}Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 50.11456pt\raise-11.85905pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.96667pt\hbox{$\scriptstyle{\tilde{p}_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 44.30833pt\raise-33.28479pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 109.2375pt\raise-11.86246pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.96667pt\hbox{$\scriptstyle{\tilde{p}_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 128.61494pt\raise-33.29158pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 132.56772pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 169.92328pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-3.0pt\raise-38.77774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.40279pt\raise-38.77774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 7.91405pt\raise-51.78711pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{p_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 6.40279pt\raise-70.10545pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 60.28252pt\raise-52.26994pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{p_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 79.44775pt\raise-71.19272pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 83.46164pt\raise-38.77774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 128.61494pt\raise-38.77774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 101.1165pt\raise-52.26651pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{p_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 93.47554pt\raise-71.18585pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 153.48494pt\raise-51.79024pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{p_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 166.5205pt\raise-70.11171pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 169.92328pt\raise-38.77774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-6.40279pt\raise-76.58327pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}}$}}}}}}}{\hbox{\kern 34.35556pt\raise-76.58327pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 79.44775pt\raise-76.58327pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Y}$}}}}}}}{\hbox{\kern 132.56772pt\raise-76.58327pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 166.5205pt\raise-76.58327pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}}$}}}}}}}\ignorespaces}}}}\ignorespaces.

Let π:Q×YQ×\pi:Q\times_{Y}Q\to{\mathbb{P}}\times{\mathbb{P}} denote the morphism induced by p1p_{1} on each factor. Let s1:×s_{1}:{\mathbb{P}}\times{\mathbb{P}}\rightarrow{\mathbb{P}} (resp. s2:×s_{2}:{\mathbb{P}}\times{\mathbb{P}}\rightarrow{\mathbb{P}}) be the projection onto the first (resp. second) factor. An application of proper base change along the central cartesian square in diagram (8) and the projection formula gives a natural (in 𝒦{\mathcal{K}}) isomorphism:

(9) ˇ(K)=s2(s1KΛπΛ[δ+]).\check{{\mathcal{R}}}\circ{\mathcal{R}}(K)=s_{2*}\left(s_{1}^{*}K\otimes_{\Lambda}\pi_{*}\Lambda[\delta_{+}]\right).

Let Δ:×\Delta:{\mathbb{P}}\hookrightarrow{\mathbb{P}}\times{\mathbb{P}} denote the diagonal embedding, let UU be the complement of the diagonal embedding, and let j:U×j\colon U\hookrightarrow{\mathbb{P}}\times{\mathbb{P}} be the corresponding open immersion. One has the resulting diagram with cartesian squares:

QiQp1Q×YQπWjWπUΔ×Uj.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.95277pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-6.95277pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.16588pt\raise 6.38055pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.23611pt\hbox{$\scriptstyle{i_{Q}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 30.95277pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-19.11108pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{p_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-28.38887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.95277pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q\times_{Y}Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 49.10608pt\raise-19.11108pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\pi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 49.10608pt\raise-28.38887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 91.25938pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 72.45107pt\raise 5.99167pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.625pt\hbox{$\scriptstyle{j_{W}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 67.2594pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 99.67606pt\raise-19.11108pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.82361pt\hbox{$\scriptstyle{\pi_{U}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 99.67606pt\raise-28.38887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-6.40279pt\raise-38.22218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathbb{P}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.99052pt\raise-32.83052pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{\Delta}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 35.4116pt\raise-38.22218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 35.4116pt\raise-38.22218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathbb{P}}\times{\mathbb{P}}}$}}}}}}}{\hbox{\kern 92.71704pt\raise-38.22218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 73.11714pt\raise-32.23329pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62779pt\hbox{$\scriptstyle{j}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 62.80055pt\raise-38.22218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces.

We note that πU\pi_{U} is a Grassmann bundle with fibers 𝐆(d2,n2){\bf G}(d-2,n-2). Consider the natural closed immersion Q×YQQ×Q\times_{Y}Q\rightarrow Q\times{\mathbb{P}}, which on closed points maps (x,y,L)(x,y,L) to (x,L,y)(x,L,y). Here x,yx,y are closed points of {\mathbb{P}} and LL\subset{\mathbb{P}} is a dd-plane containing them. The above commutative diagram factors as:

QiQIdQ×YQWjUQQ×π~Vπ~UΔ×Uj,\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.95277pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-6.95277pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.16588pt\raise 6.38055pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.23611pt\hbox{$\scriptstyle{i_{Q}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 30.95277pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-19.38887pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{Id}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-28.94443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.95277pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q\times_{Y}Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 49.10608pt\raise-28.94443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 91.25938pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 73.03413pt\raise 5.99167pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.625pt\hbox{$\scriptstyle{j_{U}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 67.2594pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 99.67606pt\raise-28.94443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-6.95277pt\raise-38.77774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 33.75053pt\raise-38.77774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-67.16661pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 33.75053pt\raise-38.77774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Q\times{\mathbb{P}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 49.10608pt\raise-57.88882pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.61111pt\hbox{$\scriptstyle{\tilde{\pi}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 49.10608pt\raise-67.16661pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 92.64828pt\raise-38.77774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{V\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 64.46162pt\raise-38.77774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 99.67606pt\raise-57.88882pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.92778pt\hbox{$\scriptstyle{\tilde{\pi}_{U}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 99.67606pt\raise-67.16661pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-6.40279pt\raise-76.99992pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathbb{P}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.99052pt\raise-71.60826pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{\Delta}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 35.4116pt\raise-76.99992pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 35.4116pt\raise-76.99992pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathbb{P}}\times{\mathbb{P}}}$}}}}}}}{\hbox{\kern 92.71704pt\raise-76.99992pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 73.11714pt\raise-71.01103pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62779pt\hbox{$\scriptstyle{j}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 62.80055pt\raise-76.99992pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces,

where all the squares are Cartesian.

Note that π~\tilde{\pi} is a Grassmannian bundle with fibers 𝐆(d1,n1){\bf G}(d-1,n-1) and is identity along the second projection. Let Z:=VW=Q×Q×YQZ:=V\setminus W=Q\times{\mathbb{P}}\setminus Q\times_{Y}Q, and πZ:ZU\pi_{Z}:Z\rightarrow U denote the resulting morphism. We have an exact triangle on UU

(10) πZ!Λπ~UΛπUΛ+1.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 12.21179pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\crcr}}}\ignorespaces{\hbox{\kern-12.21179pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\pi_{Z!}\Lambda\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 36.21179pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 36.21179pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\tilde{\pi}_{U*}\Lambda\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 85.94589pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 85.94589pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\pi_{U*}\Lambda\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 111.38277pt\raise 5.54723pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.9639pt\hbox{$\scriptstyle{+1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 135.8247pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 135.8247pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces.

Since πU\pi_{U} is a Grassmannian bundle, Lemma 2.3 implies that πUΛ\pi_{U*}\Lambda is formal151515A sheaf is said to be formal if it is isomorphic to a shifted direct sum of its cohomology sheaves and its cohomology sheaves are locally constant. Since UU is simply connected [5, Exposé X, Corollaire 3.3], they are in fact constant. Let d2,n2:=iMd2,n2i¯[i]{\mathscr{M}}_{d-2,n-2}:=\oplus_{i}\underline{M^{i}_{d-2,n-2}}[-i]161616For any Λ\Lambda-module MM, by M¯\underline{M} we mean the constant local system on ×{\mathbb{P}}\times{\mathbb{P}} with values in MM., here Md2,n2i:=H0(U,RiπUΛ)M_{d-2,n-2}^{i}:=H^{0}(U,R^{i}\pi_{U*}\Lambda). The restriction of d2,n2{\mathscr{M}}_{d-2,n-2} to UU is isomorphic to πUΛ\pi_{U*}\Lambda171717The choice of d2,n2{\mathscr{M}}_{d-2,n-2} is not unique in as much as the choice of the decomposition in Lemma 2.3, but this non-uniqueness does not play a role in what follows.. We also denote by d1,n1:=π~Λ{\mathscr{M}}_{d-1,n-1}:=\tilde{\pi}_{*}\Lambda. We have exact triangles,

(11) j!πZ!Λπ~ΛπΛ+1,\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 15.33482pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\crcr}}}\ignorespaces{\hbox{\kern-15.33482pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{j_{!}\pi_{Z!}\Lambda\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 39.33482pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 39.33482pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\tilde{\pi}_{*}\Lambda\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 84.63484pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 84.63484pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\pi_{*}\Lambda\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 106.74614pt\raise 5.54723pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.9639pt\hbox{$\scriptstyle{+1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 130.07954pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 130.07954pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces,
(12) d1,n1j!Λ\textstyle{{\mathscr{M}}_{d-1,n-1}\otimes j_{!}\Lambda\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d1,n1\textstyle{{\mathscr{M}}_{d-1,n-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d1,n1ΔΛ\textstyle{{\mathscr{M}}_{d-1,n-1}\otimes\Delta_{*}\Lambda\ignorespaces\ignorespaces\ignorespaces\ignorespaces}+1\scriptstyle{+1}

and

(13) d2,n2j!Λ\textstyle{{\mathscr{M}}_{d-2,n-2}\otimes j_{!}\Lambda\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d2,n2\textstyle{{\mathscr{M}}_{d-2,n-2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d2,n2ΔΛ\textstyle{{\mathscr{M}}_{d-2,n-2}\otimes\Delta_{*}\Lambda\ignorespaces\ignorespaces\ignorespaces\ignorespaces}+1\scriptstyle{+1}

in Dcb(×){\rm D}^{b}_{c}({\mathbb{P}}\times{\mathbb{P}}). Now note that for any sheaf KK on {\mathbb{P}} and any constant sheaf (i.e. the cohomology sheaves are constant) LL on ×{\mathbb{P}}\times{\mathbb{P}}, the sheaf s2(s1KL)s_{2*}(s_{1}^{*}K\otimes L) is also constant. Thus combining triangles (10)-(13) and Equation (9) we get a functorial (in KK) exact triangle in the localized category Dcb()T{\rm D}^{b}_{c}({\mathbb{P}})_{T},

(14) ˇ(K)KΔd1,n1[δ+]ϕKΔd2,n2[δ+]+1.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 20.17363pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\crcr}}}\ignorespaces{\hbox{\kern-20.17363pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\check{{\mathcal{R}}}\circ{\mathcal{R}}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 44.17363pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 44.17363pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K\otimes\Delta^{*}{\mathscr{M}}_{d-1,n-1}[\delta_{+}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 130.33922pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\phi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 147.42464pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 147.42464pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K\otimes\Delta^{*}{\mathscr{M}}_{d-2,n-2}[\delta_{+}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 231.20341pt\raise 5.54723pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.9639pt\hbox{$\scriptstyle{+1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 250.67564pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 250.67564pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces.
Claim 5.1.
  1. (a)

    For any perverse sheaf KK on {\mathbb{P}}, there exists a natural isomorphism ˇi((K))ˇi(0(K))\check{{\mathcal{R}}}^{i}({\mathcal{R}}(K))\simeq\check{{\mathcal{R}}}^{i}({\mathcal{R}}^{0}(K)) in 𝒜(){\mathcal{A}}({\mathbb{P}}) (and hence in Dcb(,Λ)TD^{b}_{c}({\mathbb{P}},\Lambda)_{T}).

  2. (b)

    For any perverse sheaf KK on {\mathbb{P}}, there exists functorial (in KK) isomorphisms in 𝒫(){\mathcal{P}}({\mathbb{P}}) (and hence in 𝒜(){\mathcal{A}}({\mathbb{P}}))

    ip(KΔd1,n1[δ+])KΔHi+δ+(d1,n1){{}^{p}\mathcal{H}}^{i}(K\otimes\Delta^{*}{\mathscr{M}}_{d-1,n-1}[\delta_{+}])\simeq K\otimes\Delta^{*}H^{i+\delta_{+}}({\mathscr{M}}_{d-1,n-1})

    and

    ip(KΔd2,n2[δ+])KΔHi+δ+(d2,n2).{{}^{p}\mathcal{H}}^{i}(K\otimes\Delta^{*}{\mathscr{M}}_{d-2,n-2}[\delta_{+}])\simeq K\otimes\Delta^{*}H^{i+\delta_{+}}({\mathscr{M}}_{d-2,n-2}).
  3. (c)

    For i=δ1,δi=\delta-1,\delta, the perverse sheaves ip(KΔd2,n2[δ+]){{}^{p}\mathcal{H}}^{i}(K\otimes\Delta^{*}{\mathscr{M}}_{d-2,n-2}[\delta_{+}]) vanish. Also δ1p(KΔd1,n1[δ+]){{}^{p}\mathcal{H}}^{\delta-1}(K\otimes\Delta^{*}{\mathscr{M}}_{d-1,n-1}[\delta_{+}]) vanishes. Moreover when nd>1n-d>1, δ2p(KΔd2,n2[δ+]){{}^{p}\mathcal{H}}^{\delta-2}(K\otimes\Delta^{*}{\mathscr{M}}_{d-2,n-2}[\delta_{+}]) is also zero.

  4. (d)

    For any perverse sheaf KK on {\mathbb{P}}, there exists a natural (in KK) isomorphism in 𝒫(){\mathcal{P}}({\mathbb{P}}) (and hence in 𝒜(){\mathcal{A}}({\mathbb{P}})), δp(KΔd1,n1[δ+])K(d(nd)){{}^{p}\mathcal{H}}^{\delta}(K\otimes\Delta^{*}{\mathscr{M}}_{d-1,n-1}[\delta_{+}])\simeq K(-d(n-d)).

Proof.

Claim (a) is an immediate consequence of Theorem 4.7. Claims (b) follows from the formality of d1,n1{\mathscr{M}}_{d-1,n-1} and d2,n2{\mathscr{M}}_{d-2,n-2} and the fact that their cohomology sheaves are local systems.

For claim (c), using (b) it suffices to prove that ΔHi+δ+(d2,n2)\Delta^{*}H^{i+\delta_{+}}({\mathscr{M}}_{d-2,n-2}) vanishes for δ2iδ\delta-2\leq i\leq\delta, and that ΔHδ++δ1(d1,n1)=0\Delta^{*}H^{\delta_{+}+\delta-1}({\mathscr{M}}_{d-1,n-1})=0. In either case note that the cohomology sheaves of d2,n2{\mathscr{M}}_{d-2,n-2} and d1,n1{\mathscr{M}}_{d-1,n-1} are constant local systems and hence by their definitions it suffices to show that Ri+δ+πUΛR^{i+\delta_{+}}\pi_{U*}\Lambda for δ2iδ\delta-2\leq i\leq\delta and Rδ++δ1π~ΛR^{\delta_{+}+\delta-1}\tilde{\pi}_{*}\Lambda vanish. But these follow immediately from the fact that πU\pi_{U} is a 𝐆(d2,n2){\bf G}(d-2,n-2) bundle181818We require nd>1n-d>1, to ensure that dim(𝐆(d2,n2))<d(nd)1\text{dim}({\bf G}(d-2,n-2))<d(n-d)-1. and that π~\tilde{\pi} is a 𝐆(d1,n1){\bf G}(d-1,n-1) bundle.

For claim (d) arguing as above we conclude that δp(KΔd1,n1[δ+])KΔR2d(nd)π~ΛK(d(nd)){{}^{p}\mathcal{H}}^{\delta}(K\otimes\Delta^{*}{\mathscr{M}}_{d-1,n-1}[\delta_{+}])\simeq K\otimes\Delta^{*}R^{2d(n-d)}\tilde{\pi}_{*}\Lambda\simeq K(-d(n-d)).

Combining claims (a)-(d) above shows that there exists a natural isomorphism

ˇδ(d(nd))0(K)K\check{{\mathcal{R}}}^{\delta}(d(n-d))\circ{\mathcal{R}}^{0}(K)\simeq K

in 𝒜(){\mathcal{A}}({\mathbb{P}}), and therefore complete the Proof of Theorem 1.1 (2). It is also easy to see this map is the co-unit of the adjunction in Corollary 4.9. Finally, combining Lemma 4.2 and Corollary 4.9 we obtain the following.

Corollary 5.2.

The unit of the adjunction Kˇδ(d)0(K)K\to\check{{\mathcal{R}}}^{-\delta}(d)\circ{\mathcal{R}}^{0}(K) is an isomorphism in 𝒜(){\mathcal{A}}({\mathbb{P}}).

We also have the following corollary of the method of the proof.

Corollary 5.3.

We have Ext𝒜()i(K1,K2)Ext𝒜(Y)i(0(K1),0(K2)){\rm Ext}^{i}_{{\mathcal{A}}({\mathbb{P}})}(K_{1},K_{2})\simeq{\rm Ext}^{i}_{{\mathcal{A}}(Y)}({\mathcal{R}}^{0}(K_{1}),{\mathcal{R}}^{0}(K_{2})) for i=0,1i=0,1.

Proof.

The isomorphism for i=0i=0 is an immediate consequence of Theorem 1.1, (2) and the adjunction between ˇδ(d)\check{{\mathcal{R}}}^{\delta}(d) and 0{\mathcal{R}}^{0} (Corollary 4.9). We may now assume that nd>1n-d>1, else the result follows from the fact that 0{\mathcal{R}}^{0} induces an equivalence between 𝒜(){\mathcal{A}}({\mathbb{P}}) and 𝒜(ˇ){\mathcal{A}}(\check{{\mathbb{P}}}) from from Theorem 1.1, (1) and (2).

The triangle (14) and Claim 5.1, (b) and (c) above imply that for K𝒜()K\in{\mathcal{A}}({\mathbb{P}}),

T1p(ˇ[δ]K(d(nd)))0.{{}^{p}\mathcal{H}}^{-1}_{T}(\check{{\mathcal{R}}}[\delta]\circ{\mathcal{R}}K(d(n-d)))\simeq 0.

Since ˇ[δ](d(nd))\check{{\mathcal{R}}}[\delta](d(n-d)) is right tt-exact and {\mathcal{R}} is exact, this implies that

(15) pTτ1ˇ[δ]K(d(nd))ˇδ(d(nd))0(K),^{p}_{T}\tau_{\geq-1}\check{{\mathcal{R}}}[\delta]\circ{\mathcal{R}}K(d(n-d))\simeq\check{{\mathcal{R}}}^{\delta}(d(n-d))\circ{\mathcal{R}}^{0}(K),

which by Theorem 1.1, (2) is isomorphic to KK under the co-unit of adjunction.

We also have

(16) Ext𝒜(Y)1(0(K1),0(K2))HomDcb()T(ˇ[δ]K1(d),K2[1]){\rm Ext}^{1}_{{\mathcal{A}}(Y)}({\mathcal{R}}^{0}(K_{1}),{\mathcal{R}}^{0}(K_{2}))\simeq\text{Hom}_{{\rm D}^{b}_{c}({\mathbb{P}})_{T}}(\check{{\mathcal{R}}}[\delta]\circ{\mathcal{R}}K_{1}(d),K_{2}[1])

and

HomDcb()T(ˇ[δ]K1(d),K2[1])HomDcb()T(Tpτ1ˇ[δ]K1(d(nd)),K2[1]).\text{Hom}_{{\rm D}^{b}_{c}({\mathbb{P}})_{T}}(\check{{\mathcal{R}}}[\delta]\circ{\mathcal{R}}K_{1}(d),K_{2}[1])\simeq{\rm Hom}_{{\rm D}^{b}_{c}({\mathbb{P}})_{T}}(^{p}_{T}\tau_{\geq-1}\check{{\mathcal{R}}}[\delta]\circ{\mathcal{R}}K_{1}(d(n-d)),K_{2}[1]).

The first equality being adjunction and the second since K1K_{1} and K2K_{2} are perverse, ˇ[δ](d(nd))\check{{\mathcal{R}}}[\delta](d(n-d)) is right tt-exact and {\mathcal{R}} is exact. Combining this with (15) gives the necessary equality.

5.2. Proof of Theorem 1.1, (3)

Proof.

Thanks to 1.1, (2) and Corollary 5.3, it suffices to show that the simple objects in 𝒜(Y)Rad{\mathcal{A}}(Y)_{\text{Rad}} are in the image of 0{\mathcal{R}}^{0}. This follows from Proposition 3.7. ∎

Example 3.4 naturally leads to the following question which we have been unable to answer:

Question 5.4.

Does there exist a perverse sheaf on YY with singular support inside p2p1Tp_{2\circ}p_{1}^{\circ}{\rm T}^{*}{\mathbb{P}} whose image is not in 𝒜(Y)Rad{\mathcal{A}}(Y)_{\text{Rad}}, and hence the perverse sheaf is not in the image of the Radon transform?

Note that the answer to the above question is negative in characteristic 0 (see Section 1.2, (2)) or when d=n1d=n-1.

References

  • [1] A. Beilinson. Constructible sheaves are holonomic. Selecta Math. (N.S.), 22(4):1797–1819, 2016.
  • [2] A. Beilinson, J. Bernstein, P. Deligne, and O. Gabber. Faisceaux pervers. Société mathématique de France, 100, 2018.
  • [3] Jean-Luc Brylinski. Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques. Number 140-141, pages 3–134, 251. 1986. Géométrie et analyse microlocales.
  • [4] P. Deligne. Théorème de lefschetz et critère de dégénérescence de suites spectrales. Publications Mathématiques de l’IHÉS, 35:107–126, 1968.
  • [5] Alexandre Grothendieck. Revêtements étales et groupe fondamental. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1971. Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1)., Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud.
  • [6] Masaki Kashiwara and Pierre Schapira. Sheaves on manifolds, volume 292 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel.
  • [7] Reinhardt Kiehl and Rainer Weissauer. Weil conjectures, perverse sheaves and ll’adic Fourier transform, volume 42 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2001.
  • [8] G. Laumon. Correspondance de langlands géométrique pour les corps de fonctions. Duke Math. J., 54(2):309–359, 1987.
  • [9] G. Laumon. Transformation de fourier homogène. Bulletin de la Société Mathématique de France, 131(4):527–551, 2003.
  • [10] T. Saito. Characteristic cycles and the conductor of direct image. JAMS, 34(21):369–410, April 2021.
  • [11] N. Umezaki, E. Yang, and Y Zhao. Characteristic class and the ϵ\epsilon-factor of an étale sheaf. Transactions of the American Mathematical Society, 373(10):6887–6927, 2020.