This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Cacti and filtered distributive laws

Vladimir Dotsenko Mathematics Research Unit, University of Luxembourg, Campus Kirchberg, 6, Rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Grand Duchy of Luxembourg vladimir.dotsenko@uni.lu  and  James Griffin School of Mathematics, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom J.T.Griffin@soton.ac.uk
Abstract.

Motivated by the second author’s construction of a classifying space for the group of pure symmetric automorphisms of a free product, we introduce and study a family of topological operads, the operads of based cacti, defined for every pointed topological space (Y,)(Y,\bullet). These operads also admit linear versions, which are defined for every augmented graded cocommutative coalgebra CC. We show that the homology of the topological operad of based YY-cacti is the linear operad of based H(Y)H_{*}(Y)-cacti. In addition, we show that for every coalgebra CC the operad of based CC-cacti is Koszul. To prove the latter result, we use the criterion of Koszulness for operads due to the first author, utilising the notion of a filtered distributive law between two quadratic operads. We also present a new proof of that criterion which works over a ground field of arbitrary characteristic.

1. Introduction

One of the most famous algebraic operads of topological origin is the operad of Gerstenhaber algebras, which is the homology operad of the topological operad of little 22-disks [9, 16]. The kthk^{\text{th}} component of the operad of little 22-discs is homotopy equivalent to the configuration space of kk ordered points in 2\mathbb{R}^{2} whose fundamental group is the pure braid group on kk strands. One natural way to generalise braid groups is to consider configurations of subsets that have more interesting topology than points. The simplest example of these “higher-dimensional” versions of braid groups is given by “groups of loops”, the nthn^{\text{th}} one being the group of motions of nn unknotted unlinked circles in 3\mathbb{R}^{3} bringing each circle to its original position. Alternatively, these groups can be viewed as groups of pure symmetric automorphisms of the free group with nn generators, that is automorphisms sending each generator to an element of its conjugacy class. The integral cohomology of these groups was computed by Jensen, McCammond and Meier in [19]; that paper also contains references and historical information on this group. The description of the cohomology algebras in [19] looks very similar to that for pure braid groups [2]. Moreover, as a symmetric collection, the collection of cohomology algebras is isomorphic to ComPreLie1\operatorname{Com}\circ\operatorname{PreLie}_{1} which bears striking resemblance with the isomorphism e2ComLie1e_{2}\simeq\operatorname{Com}\circ\operatorname{Lie}_{1} for the operad of Gerstenhaber algebras. However, there is no natural operad structure on the collection of homology groups of the groups of loops.

In [18], the second author computed the cohomology of the groups of pure symmetric automorphisms in a different way, as a particular case of a much more general result: for an arbitrary nn-tuple of groups (G1,,Gn)(G_{1},\ldots,G_{n}), he computed the cohomology of the Fouxe-Rabinovitch group FR(G)\textrm{{FR}}(G) of partial conjugation automorphisms of the free product G=G1GnG=G_{1}\ast\cdots\ast G_{n}. For that, he used a construction of a classifying space of that group via a moduli space of “cactus products” of the classifying spaces Yi=BGiY_{i}=BG_{i}. In the case when G1=G2==GnG_{1}=G_{2}=\ldots=G_{n}, these spaces form a symmetric collection, but alas do not form a topological operad either. However, it turns out that they admit a slight modification that carries a structure of a topological operad; the required change is that one of the spaces YiY_{i} is chosen as the base and is required to sit at the root of each cactus. We call the modified space the space of based YY-cacti. The goal of this paper is to understand the algebra and topology of this operad.

For homology with coefficients in a field, we show that the homology operad of the operad of based YY-cacti is obtained from the homology coalgebra of YY by a formal algebraic procedure that only uses the augmentation and the coproduct; thus, it is defined for every graded cocommutative coalgebra CC, not necessarily the homology coalgebra of a topological space. Remarkably, for every coalgebra CC this defined operad is Koszul. To prove that, we use filtered distributive laws between operads, as defined by the second author in [10]. One immediate consequence of our results is that, for Y=S1Y=S^{1}, the homology operad of based YY-cacti is isomorphic, as an 𝕊\mathbb{S}-module, to PermPreLie1\operatorname{Perm}\circ\operatorname{PreLie}_{1}, which, given that the operad of associative permutative algebras Perm\operatorname{Perm} encodes commutative algebras with additional structure, may be naturally thought of as an “operad-compatible improvement” of the result of [19] mentioned above.

Our constructions are defined over a field of arbitrary characteristic, and our results on operads of based cacti hold in that generality. However, even the distributive law criterion for Koszulness, let alone its filtered generalisation, has only been available in zero characteristic, since the known proofs [10, 32] rely on the Künneth formula for symmetric collections. Using the shuffle operads technique [12, 13], we were able to obtain a characteristic-independent proof of this criterion.

The paper is organised as follows. In Section 2, we recall necessary background information that we use throughout the paper. In Section 3, we define the topological operads of based cacti and discuss its connections both with automorphism groups of free products and with other known topological operads. The homology operad for the operad of based cacti is computed in Section 4. In Section 5, we discuss filtered distributive laws between quadratic operads. Section 6 shows how to use filtered distributive laws to prove the Koszul property for the linear operads of based cacti, and also discuss its applications to the operad of post-Lie algebras and the operad of commutative tridendriform algebras.

2. Trees, coalgebras, operads

All “linear” objects in this paper (algebras, coalgebras, operads) will be enriched in a certain symmetric monoidal category (𝒞,,σ,𝕀)(\mathcal{C},\otimes,\sigma,\mathbb{I}), usually the category Vect\operatorname{Vect} of vector spaces or the category gVect\operatorname{gVect} of graded vector spaces (over some field 𝕜\mathbbold{k}; unless otherwise specified, we do not make any assumptions on its characteristic). Whenever appropriate, we assume vector spaces to be finite-dimensional, or possessing an additional \mathbb{N}-grading with finite-dimensional homogeneous components; this allows to approach tensor constructions and duals with ease, freely pass between an algebra and its dual coalgebra etc.

2.1. 𝐘\mathbf{Y}-labelled trees

A tree is an acyclic connected graph and a rooted tree is a tree with a chosen vertex, the root. A rooted tree may be directed: every edge {v,w}{\left\{v,w\right\}} may be oriented to vw\overrightarrow{vw} in such a way that the minimal path from ww to the chosen vertex contains {v,w}{\left\{v,w\right\}}. By the acyclicity of the tree this must hold for exactly one of the choices vw\overrightarrow{vw} and wv\overrightarrow{wv}. The edges may be seen to be directed ‘away from the roots’. We denote by E(T)E(T) the set of edges of a tree TT.

Suppose that TT is a tree with vertex set VV. Let 𝐘=(Yi)iV\mathbf{Y}=\left(Y_{i}\right)_{i\in V} be a VV-tuple of topological spaces. Then a 𝐘\mathbf{Y}-tree is a rooted tree with an edge labelling where the edge ij\overrightarrow{ij} is labelled by an element of YiY_{i}. For a space YY as shorthand we define a YY-tree to be a 𝐘\mathbf{Y}-tree where the VV-tuple 𝐘\mathbf{Y} is constantly YY. Then the edge labelling is a map from the edge set EE to the space YY. Meanwhile a YY-forest is a 𝐘\mathbf{Y}-tree where 𝐘\mathbf{Y} is the VV-tuple with Y0{}Y_{0}\cong{\left\{\bullet\right\}}, where 0 is the root vertex and YvYY_{v}\cong Y for any other vertex. The naming makes sense because by removing the root 0 and all adjacent vertices we are left with a disjoint union of YY-trees; the root of each tree is the unique vertex adjacent to 0 and the edge labelling is inherited.

To a rooted tree TT we define the level l(T)l(T) to be the number of non-trivial directed paths in TT. So for a corolla with root 11 and k1k-1 other vertices the level is k1k-1, for a tree with root 11 and edges i(i+1)\overrightarrow{i(i+1)} for i=1,,k1i=1,\ldots,k-1 the level is k(k1)/2k(k-1)/2. The level allows one to filter the set of 𝐘\mathbf{Y}-trees.

2.2. Coalgebras

A coalgebra is an object CC of 𝒞\mathcal{C} equipped with a comultiplication Δ:CCC\Delta\colon C\to C\otimes C and a counit ϵ:C𝕀\epsilon\colon C\to\mathbb{I} satisfying the conventional coassociativity and counit axioms. For the comultiplication, we often use Sweedler’s notation Δ(c)=c(1)c(2)\Delta(c)=\sum c_{(1)}\otimes c_{(2)}. An augmented coalgebra is a coalgebra CC equipped with a coalgebra homomorphism γ:𝕀C\gamma\colon\mathbb{I}\to C such that ϵγ=1\epsilon\gamma=1. A cocommutative coalgebra is a coalgebra satisfying σΔ=Δ\sigma\Delta=\Delta. Our main focus will be on graded augmented cocommutative coalgebras, that is augmented cocommutative coalgebras in gVect\operatorname{gVect}. The main source of such coalgebras relevant for our purposes is topology: the homology coalgebra of a pointed topological space (Y,)(Y,\bullet) is a graded augmented cocommutative coalgebra. An augmented coalgebra in Vect\operatorname{Vect} or gVect\operatorname{gVect} naturally splits into a direct sum of vector spaces C=𝕜𝟙¯C=\mathbbold{k}\operatorname{\mathbbold{1}}\oplus\overline{C}, where 𝟙=γ(1)\operatorname{\mathbbold{1}}=\gamma(1), C¯=ker(ϵ)\overline{C}=\ker(\epsilon).

2.3. Operads

For details on operads we refer the reader to the book [25], for details on Gröbner bases for operads — to the paper [13]. In this section we only recall the key notions used throughout the paper. By an operad (enriched in a symmetric monoidal category (𝒞,,σ,𝕀)(\mathcal{C},\otimes,\sigma,\mathbb{I})) we mean a monoid in one of the two monoidal categories: the category of symmetric 𝒞\mathcal{C}-collections equipped with the composition product or the category of nonsymmetric 𝒞\mathcal{C}-collections equipped with the shuffle composition product. The former kind of monoids is referred to as symmetric operads, the latter — as shuffle operads. We always assume that our collections are reduced, that is, have no elements of arity 0. A good rule of thumb is that all operads defined in this paper are symmetric operads, but for computational purposes it is useful to treat them as shuffle operads. This does not lose any information except for the symmetric group actions, since the forgetful functor OOf\mathrsfs{O}\mapsto\mathrsfs{O}^{f} is monoidal and one-to-one on objects (and therefore for tasks that can be formulated without the symmetric group actions, e.g. computing bases and dimensions of components, proving the Koszul property etc., we can choose arbitrarily whether to work with a symmetric operad or with its shuffle version). In the “geometric” setting, 𝒞\mathcal{C} will usually be the category of sets, or topological spaces, or pointed topological spaces, in the “linear” setting — the category of vector spaces (in which case symmetric collections are usually called 𝕊\mathbb{S}-modules), or the category of graded vector spaces or chain complexes (in which case symmetric collections are called differential graded 𝕊\mathbb{S}-modules). A linear symmetric operad can also be thought as of collection of spaces of operations of some type, and therefore can be defined via its category of algebras, i.e. vector spaces where these operations act, via identities between operations acting on a vector space.

In the linear setting, a very useful technical tool for dealing with (shuffle) operads is given by Gröbner bases. More precisely, similarly to associative algebras, operads can be presented via generators and relations, that is as quotients of free operads F(V)\mathrsfs{F}(\mathrsfs{V}), where V\mathrsfs{V} is the space of generators. The free shuffle operad generated by a given nonsymmetric collection admits a basis of “tree monomials” which can be defined combinatorially; a shuffle composition of tree monomials is again a tree monomial. In addition to the “arity” of elements of a free operad, there is the notion of weight, similar to grading for associative algebras: we define the weight of a tree monomial as the number of generators used in this tree monomial. Weight is well behaved under composition: when composing several tree monomials, the weight of the result is equal to the sum of their weights. For an arbitrary operad O=F(V)/(R)\mathrsfs{O}=\mathrsfs{F}(\mathrsfs{V})/(\mathrsfs{R}) whose relations R\mathrsfs{R} are weight-homogeneous, the weight descends from the free operad F(V)\mathrsfs{F}(\mathrsfs{V}) on O\mathrsfs{O}; the subcollection of O\mathrsfs{O} consisting of all elements of weight kk is denoted by O(k)\mathrsfs{O}_{(k)}.

There exist several ways to introduce a total ordering of tree monomials in such a way that the operadic compositions are compatible with that total ordering. There is also a combinatorial definition of divisibility of tree monomials that agrees with the naive operadic definition: one tree monomial occurs as a subtree in another one if and only if the latter can be obtained from the former by operadic compositions. A Gröbner basis of an ideal II of the free operad is a system SS of generators of II for which the leading monomial of every element of the ideal is divisible by one of the leading terms of elements of SS. Such a system of generators allows to perform “long division” modulo II, computing for every element its canonical representative. There exists an algorithmic way to compute a Gröbner basis starting from any given system of generators (“Buchberger’s algorithm for shuffle operads”).

A part of the operad theory which provides one of the most useful known tools to study homological and homotopical algebra for algebras over the given operad is the Koszul duality for operads [17]. Proving that a given operad is Koszul instantly provides a minimal resolution for this operad, gives a description of the homology theory and, in particular, the deformation theory for algebras over that operad etc. There are a few general methods to prove that an operad is Koszul; one of the simplest and widely applicable methods [13, 12] is to show that a given operad has a quadratic Gröbner basis (as a shuffle operad); this provides a sufficient (but not necessary) condition for Koszulness of an operad. If an operad is Koszul, it necessarily is quadratic, that is has weight-homogeneous relations of weight 22.

The operads that serve as “building blocks” for operads considered throughout the paper are mostly well known: Com\operatorname{Com} (commutative associative algebras), Lie\operatorname{Lie} (Lie algebras), As\operatorname{As} (associative algebras), Leib\operatorname{Leib} (Leibniz algebras [26]), Zinb\operatorname{Zinb} (Zinbiel algebras [27]), Perm\operatorname{Perm} ([associative] permutative algebras [8]), NAP (nonassociative permutative algebras [24], closely related to “right-commutative magma” [15]). All these operads are Koszul, and have a quadratic Gröbner basis.

2.4. Polynomial functors

As we said before, some of our constructions exist both in a “geometric” and a “linear” setting, and are related to each other via the homology functor (which assigns to a topological space YY the graded cocommutative coalgebra H(Y)H_{*}(Y)). To make additional structures transfer easily, we use basic concepts of the theory of polynomial functors. A polynomial functor is a notion that categorifies the notion of a polynomial, and more generally of a formal power series. Polynomial functors provide a useful uniform language to deal with categorical constructions that have “a polynomial flavour”, e.g. when computing sums and products in appropriate categories over specified sets indexing summands/factors in a way that keeps track of the intrinsic structure of the indexing sets.

In precise words, a diagram of sets and set maps

(2.4.1) IsEpBtJI\stackrel{{\scriptstyle s}}{{\longleftarrow}}E\stackrel{{\scriptstyle p}}{{\longrightarrow}}B\stackrel{{\scriptstyle t}}{{\longrightarrow}}J

gives rise to a polynomial functor F:Set/ISet/JF:\operatorname{Set}/I\to\operatorname{Set}/J defined by the formula

(2.4.2) Set/IsSet/EpSet/Bt!Set/J.\operatorname{Set}/I\stackrel{{\scriptstyle s^{*}}}{{\longrightarrow}}\operatorname{Set}/E\stackrel{{\scriptstyle p_{*}}}{{\longrightarrow}}\operatorname{Set}/B\stackrel{{\scriptstyle t_{!}}}{{\longrightarrow}}\operatorname{Set}/J.

Here and ! denote, respectively, the right adjoint and the left adjoint of the pullback functor . More explicitly, the functor is given by

(2.4.3) [f:XI]bBep1(b)f1(s(e)),[f:X\to I]\longmapsto\sum_{b\in B}\prod_{e\in p^{-1}(b)}f^{-1}(s(e)),

where the last set is considered to be over JJ via t!t_{!}. Here one can replace Set\operatorname{Set} by another category where all the appropriate notions make sense. For our purposes, it is enough to consider the case I=J=I=J=*, in which case the corresponding functors were referred to as polynomial functors in [31], and are called polynomial functors in one variable in more recent literature.

For a systematic introduction to polynomial functors, we refer the reader to the paper [23] and the notes [22] that reflect the state-of-art of the theory.

3. The operad of cacti

3.1. The operad NAPY\textrm{{NAP}}_{Y}

Let YY be a set and let NAPY(n)\textrm{{NAP}}_{Y}(n) be the set of YY-trees with vertex set [n]={1,,n}\left[n\right]={\left\{1,\ldots,n\right\}}. When YY is a singleton set this is just the set of rooted trees which we denote RT(n)\textrm{{RT}}(n). The symmetric group 𝕊n\mathbb{S}_{n} acts on NAPY(n)\textrm{{NAP}}_{Y}(n) by permuting elements of the vertex set. For a given rooted tree the set of YY-labellings is equal to Hom(E,Y)=YE\operatorname{Hom}(E,Y)=Y^{E}. Since the number of edges of a tree on {n}{\left\{n\right\}} is always n1n-1, the set of YY-labellings is in turn isomorphic to Yn1Y^{n-1}. Hence

(3.1.1) NAPY(n)TRT(n)Yn1.\textrm{{NAP}}_{Y}(n)\cong\coprod_{T\in\textrm{{RT}}(n)}Y^{n-1}.

In this way if YY is a topological space then we may also apply a topology to NAPY(n)\textrm{{NAP}}_{Y}(n) using the product topology on Yn1Y^{n-1}.

Now let T1NAPY(n)T_{1}\in\textrm{{NAP}}_{Y}(n) and T2NAPY(m)T_{2}\in\textrm{{NAP}}_{Y}(m) and i[n]i\in\left[n\right]. We may define a composition T1iT2NAPY(n+m1)T_{1}\circ_{i}T_{2}\in\textrm{{NAP}}_{Y}(n+m-1) by first identifying the root of T2T_{2} with the vertex ii in T1T_{1}. This is a tree and may be rooted by taking the root of T1T_{1}. The edge set is equal to the union E(T1)E(T2)E(T_{1})\amalg E(T_{2}) of the edge sets of T1T_{1} and T2T_{2} and so one inherits an edge labelling by elements of YY. It has the vertex set

(3.1.2) {1,,i1}{1,,m}{i+1,,n}.{\left\{1,\ldots,i-1\right\}}\amalg{\left\{1,\ldots,m\right\}}\amalg{\left\{i+1,\ldots,n\right\}}.

We then relabel the vertices by elements of [n+m1]\left[n+m-1\right] using the isomorphism which fixes {1,,i1}{\left\{1,\ldots,i-1\right\}}, shifts the set {1,,m}{\left\{1,\ldots,m\right\}} to {i,,m+i1}{\left\{i,\ldots,m+i-1\right\}} and shifts {i+1,,n}{\left\{i+1,\ldots,n\right\}} to {m+i,,m+n1}{\left\{m+i,\ldots,m+n-1\right\}}. This gives a rooted YY-tree on the vertex set {1,,n+m1}{\left\{1,\ldots,n+m-1\right\}} and so an element T1iT2NAPY(n+m1)T_{1}\circ_{i}T_{2}\in\textrm{{NAP}}_{Y}(n+m-1).

Proposition 3.1.

Let YY be a set, then the maps

(3.1.3) i:NAPY(n)×NAPY(m)NAPY(n+m1)\circ_{i}:\textrm{{NAP}}_{Y}(n)\times\textrm{{NAP}}_{Y}(m)\rightarrow\textrm{{NAP}}_{Y}(n+m-1)

for i=1,,ni=1,\ldots,n give the collection NAPY\textrm{{NAP}}_{Y} an operad structure. The operad is generated by its binary operations:

(3.1.4) and

for y,zYy,z\in Y and these satisfy the quadratic relation

(3.1.5) 1=(1).(23).\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}\circ_{1}\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}\quad=\quad\left(\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}\circ_{1}\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}\right).(23).
Proof.

Let T1T_{1}, T2T_{2} and T3T_{3} be YY-trees in NAPY(n1)\textrm{{NAP}}_{Y}(n_{1}), NAPY(n2)\textrm{{NAP}}_{Y}(n_{2}) and NAPY(n3)\textrm{{NAP}}_{Y}(n_{3}) respectively. Let i<j[n1]i<j\in\left[n_{1}\right] and k[n2]k\in\left[n_{2}\right]; we must show that the two associativity relations hold;

(3.1.6) (T1jT2)iT3=(T1iT3)j+n31T2(T_{1}\circ_{j}T_{2})\circ_{i}T_{3}=(T_{1}\circ_{i}T_{3})\circ_{j+n_{3}-1}T_{2}

and

(3.1.7) T1i(T2kT3)=(T1iT2)k+i1T3.T_{1}\circ_{i}(T_{2}\circ_{k}T_{3})=(T_{1}\circ_{i}T_{2})\circ_{k+i-1}T_{3}.

In both cases we are gluing together trees by identifying vertices — in the first we identify the roots of T2T_{2} and T3T_{3} with the vertices jj and ii of T1T_{1} respectively — whilst in the second the root of T2T_{2} is joined to vertex ii of T1T_{1} and the root of T3T_{3} is identified with vertex kk of T2T_{2}. The only complication is that when two trees are composed their vertices are renumbered: this change is taken into account in the right hand side of each equation. In both cases the edge set of the resulting tree is the union of the edge sets of the three component trees, hence the YY-labellings on both sides of each equation are equal. It remains to make the routine check that the vertex labels in each side of each equation agree, this is no more complicated than the analogous check in the associative operad.

Now we show that the operad is generated by operations of arity 22. Let TNAPY(n)T\in\textrm{{NAP}}_{Y}(n) be any YY-tree and let ij\overrightarrow{ij} be a leaf of TT; let yy be the label of ij\overrightarrow{ij}. By applying a permutation if necessary we may assume that i=n1i=n-1 and j=nj=n. Letting TT^{\prime} be the YY-tree in NAPY(n1)\textrm{{NAP}}_{Y}(n-1) given by removing the edge (n1)n\overrightarrow{(n-1)n} and the vertex nn, we have that

(3.1.8) T=Tn1.T=T^{\prime}\circ_{n-1}\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}.

Therefore any YY-tree may be written as compositions of trees with two vertices and a permutation and so NAPY\textrm{{NAP}}_{Y} is generated in arity 22.

The relation (3.1.5) is to seen to hold by evaluating each side of the equation to find the same YY-tree

(3.1.9) 231yz.\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2}$}}}}}}}{\hbox{\kern 15.20007pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.90015pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}{\hbox{\kern-3.0pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.30011pt\raise-14.62474pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{y}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 31.30298pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-1.00764pt\raise-13.9947pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{z}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 5.0918pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 33.40015pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}}}}}\ignorespaces}.

The above theorem gives quadratic relations in the binary generators, the Corollary 6.7 will show that these suffice to present the operad.

Remark 3.1.

The operads NAPY\textrm{{NAP}}_{Y} are functorial in sets YY, in fact NAP()(n)\textrm{{NAP}}_{(-)}(n) is a polynomial functor given by the diagram

(3.1.10) TRT(n)E(T)RT(n).\ast\leftarrow\coprod_{T\in\textrm{{RT}}(n)}E(T)\rightarrow\textrm{{RT}}(n)\rightarrow\ast.

Both the operad maps and the proof above work on the level of the polynomial itself, hence for any appropriate category one may use the polynomial to give a family of operads NAP()\textrm{{NAP}}_{(-)}. For instance this means that if YY is also equipped with a topology then NAPY\textrm{{NAP}}_{Y} is a topological operad. In Section 4 we will consider the operads NAPD\textrm{{NAP}}_{D} where DD is a graded vector space.

Remark 3.2.

When YY is a single point {}{\left\{\bullet\right\}}, the operad NAPY\textrm{{NAP}}_{Y} is the usual operad NAP.

Let us finish this section with a few words on NAPY\textrm{{NAP}}_{Y}-algebras. One convenient way to think of them is via the “right regular module”, since the defining relations say that all the right multiplications

(3.1.11) R(y,b):a(a,b)R(y,b)\colon a\mapsto\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}(a,b)

commute with each other. Somewhat more precisely, let AA be an object in a symmetric monoidal category 𝒞\mathcal{C}, and let

(3.1.12) f:Y×AHom𝒞(A,A)f\colon Y\times A\to\operatorname{Hom}_{\mathcal{C}}(A,A)

be a map whose image is an abelian submonoid. Then AA is a NAPY\textrm{{NAP}}_{Y}-algebra enriched in 𝒞\mathcal{C} with the structure maps given by

(3.1.13) (a,b)=f(y,b).a.\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}(a,b)=f(y,b).a.

This way to approach NAPY\textrm{{NAP}}_{Y}-algebras gives a source of examples based on Perm\operatorname{Perm}-algebras with a family of maps as follows.

Example 3.1.

Let (A,)(A,\cdot) be a Perm\operatorname{Perm}-algebra encriched in a symmetric monoidal category 𝒞\mathcal{C}, and let gyg_{y}, yYy\in Y be a family of maps in Hom𝒞(A,A)\operatorname{Hom}_{\mathcal{C}}(A,A) (note that these maps may be arbitrary, not necessarily algebra homomorphisms). Then AA is a NAPY\textrm{{NAP}}_{Y}-algebra enriched in 𝒞\mathcal{C} with the structure maps given by

(3.1.14) (a,b)=agy(b).\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}(a,b)=a\cdot g_{y}(b).

One more observation we want to mention in this section is that the construction of the free NAP-algebra mentioned in [24] admits an immediate generalisation to the case of NAPY\textrm{{NAP}}_{Y}-algebras: the free NAPY\textrm{{NAP}}_{Y}-algebra enriched in Set\operatorname{Set} with the generating set VV admits a realisation as the set of YY-trees whose vertices carry labels from VV, with the product defined in the same way as we defined the composition in the operad:

(3.1.15) (a,b)=(1a)2b.\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}(a,b)=(\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}\circ_{1}a)\circ_{2}b.

In this composition the root of bb is joined to the root of aa by an edge labelled by yy; the new root is taken to be the root of aa.

3.2. The operad of based cacti

Let VV be a set and 𝐘\mathbf{Y} be a VV-tuple of pointed spaces. Let TT be a 𝐘\mathbf{Y}-tree with root rVr\in V and suppose that ij\overrightarrow{ij} is an edge of TT where iri\neq r. Suppose further that ij\overrightarrow{ij} is labelled by the basepoint Yi\bullet\in Y_{i}. Then we say that ij\overrightarrow{ij} is a reducible edge and that TT is reducible. Since ii is not the root there is a unique incoming edge ki\overrightarrow{ki} which is labelled by some yYky\in Y_{k}. We define TijT_{ij} to be the 𝐘\mathbf{Y}-tree given by removing the edge ij\overrightarrow{ij} and adding the edge kj\overrightarrow{kj} with the label yYky\in Y_{k}. We say that TijT_{ij} is a reduction of TT.

Definition 1.

Let VV be a finite set and 𝐘\mathbf{Y} be a VV-tuple of pointed spaces. Then the space of based 𝐘\mathbf{Y}-cacti, BCact𝐘\textrm{{BCact}}_{\mathbf{Y}} is the topological space given by quotienting out by the relation TTijT\sim T_{ij} for any TT with a reducible edge ij\overrightarrow{ij}.

Now let V0V_{0} be the set V{0}V\cup{\left\{0\right\}} and let 𝐘0\mathbf{Y}_{0} be the V0V_{0}-tuple given by adjoining Y0={}Y_{0}={\left\{\bullet\right\}} to the VV-tuple 𝐘\mathbf{Y}. Then we define the space of 𝐘\mathbf{Y}-cacti, Cact𝐘\textrm{{Cact}}_{\mathbf{Y}} to be the subspace of BCact𝐘0\textrm{{BCact}}_{\mathbf{Y}_{0}} consisting of the trees with root 0.

Remark 3.3.

For each 𝐘\mathbf{Y}-cactus TBCact𝐘T\in\textrm{{BCact}}_{\mathbf{Y}} one may define the space

(3.2.1) 𝐘(T)=vVYvyijjijE(T),\mathbf{Y}(T)=\dfrac{\coprod_{v\in V}Y_{v}}{y_{ij}\sim\bullet_{j}\mid\overrightarrow{ij}\in E(T)},

where yijYiy_{ij}\in Y_{i} is the label of the edge ij\overrightarrow{ij} and j\bullet_{j} is the basepoint of YjY_{j}. Note that this realisation is invariant across equivalences TTijT\sim T_{ij}. If each space YiY_{i} is path connected then this space is homotopy equivalent to the wedge product of the spaces YvY_{v} for vVv\in V. These spaces are called cactus products and were studied by the second author in [18]. There it was shown that the space Cact𝐘\textrm{{Cact}}_{\mathbf{Y}} of such products has interesting homotopical properties, in particular if the spaces YiY_{i} are classifying spaces for groups GiG_{i} then Cact𝐘\textrm{{Cact}}_{\mathbf{Y}} is a classifying space for the Fouxe-Rabinovitch group FR(G)\textrm{{FR}}(G) of partial conjugation automorphisms of the free product G=iVGiG=\ast_{i\in V}G_{i}. An example of a cactus product:

(3.2.2) [Uncaptioned image]

Note that if vv is the root of the tree TT then the space YvY_{v} must always be at the ‘base’ of the diagram. The appearance of the diagram explains the term ‘based 𝐘\mathbf{Y}-cactus’. We also see the reason for adjoining a point space Y0Y_{0}; this removes the base space; the space Y0Y_{0} acts as a basepoint.

Remark 3.4.

Recall that the level of a rooted tree is the number of non-trivial directed paths. When ki\overrightarrow{ki} and ij\overrightarrow{ij} are edges of a rooted tree TT, the rooted tree TT^{\prime} given by removing ij\overrightarrow{ij} and then adding kj\overrightarrow{kj} has strictly lesser level. Indeed if PP is the unique path joining vertices vv and ww in TT^{\prime}, then there is a unique path joining vv and ww in TT. But the number of paths in TT is strictly larger because there is a path joining ii and jj in TT but not in TT^{\prime}. So for any 𝐘\mathbf{Y}-tree TT one may use the reductions TTijT\sim T_{ij} repeatly until there are no reducible edges remaining. Since the level reduces each time this process must terminate. It is easy to check that it does not matter what order the reductions TTijT\sim T_{ij} are applied because if ab\overrightarrow{ab} and cd\overrightarrow{cd} are two reducible edges then (Tab)cd=(Tcd)ab(T_{ab})_{cd}=(T_{cd})_{ab}. Hence for each YY-labelled tree there is a unique equivalent tree which can not be reduced any further. Therefore BCact𝐘\textrm{{BCact}}_{\mathbf{Y}} is isomorphic to the set of irreducible 𝐘\mathbf{Y}-trees.

Definition 2.

Let (Y,)(Y,\bullet) be a pointed space. For n1n\geq 1, we define the space BCactY(n)\textrm{{BCact}}_{Y}(n) to be the space of based cacti on the nn-tuple 𝐘=(YiY)i=1,,n\mathbf{Y}=\left(Y_{i}\cong Y\right)_{i=1,\ldots,n}. The action of 𝕊n\mathbb{S}_{n} on {1,,n}{\left\{1,\ldots,n\right\}} makes this into a symmetric collection.

Theorem 3.2.

Let (Y,)(Y,\bullet) be a pointed space. The equivalence relation \sim generated by reductions TTijT\sim T_{ij} is compatible with the operad maps of NAPY\textrm{{NAP}}_{Y}. Hence the quotient collection BCactY\textrm{{BCact}}_{Y} has an operad structure inherited from NAPY\textrm{{NAP}}_{Y}. Furthermore the equivalence relation \sim is generated as an operad ideal by the single relation

(3.2.3) 321y=231yy.\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}{\hbox{\kern-5.5pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-9.82225pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62848pt\hbox{$\scriptstyle{\bullet}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-5.5pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-29.46675pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{y}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-25.1445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}}}}}\ignorespaces}\quad=\quad\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2}$}}}}}}}{\hbox{\kern 15.20007pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.90015pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}{\hbox{\kern-3.0pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-1.20671pt\raise-14.62474pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{y}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 5.0918pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.30011pt\raise-14.62474pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{y}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 31.30298pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 33.40015pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}}}}}\ignorespaces}.
Proof.

Let TNAPY(n)T\in\textrm{{NAP}}_{Y}(n) be a YY-tree with reducible edge ij\overrightarrow{ij}; let TNAPY(m)T^{\prime}\in\textrm{{NAP}}_{Y}(m) be any other YY-tree. Then for any k[n]k\in\left[n\right] and l[m]l\in\left[m\right] the products

(3.2.4) TkT and TlTT\circ_{k}T^{\prime}\quad\text{ and }\quad T^{\prime}\circ_{l}T

are both given by identifying vertices. The edge ij\overrightarrow{ij} still exists in each product although it may have been relabelled, to ij\overrightarrow{i^{\prime}j^{\prime}} say. The label in YY is still the point \bullet. Furthermore ii^{\prime} is not the root in either product so ij\overrightarrow{i^{\prime}j^{\prime}} is a reducible edge giving the reductions

(3.2.5) (TkT)(TkT)ij and (TlT)(TlT)ij.(T\circ_{k}T^{\prime})\sim(T\circ_{k}T^{\prime})_{i^{\prime}j^{\prime}}\quad\text{ and }\quad(T^{\prime}\circ_{l}T)\sim(T^{\prime}\circ_{l}T)_{i^{\prime}j^{\prime}}.

The reductions are also closed under the symmetric actions: for σ𝕊n\sigma\in\mathbb{S}_{n} the edge (iσ)(jσ)\overrightarrow{(i\sigma)(j\sigma)} is reducible in TσT\sigma. This shows the first part and in particular that BCactY\textrm{{BCact}}_{Y} is an operad.

We will now show that all reductions TTijT\sim T_{ij} are obtainable from the reduction (3.2.3) of

(3.2.6) 321y.\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}{\hbox{\kern-5.5pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-9.82225pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62848pt\hbox{$\scriptstyle{\bullet}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-5.5pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-29.46675pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{y}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-25.1445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}}}}}\ignorespaces}.

We must show that any reducible YY-tree TT, with reducible edge ij\overrightarrow{ij} say, is contained in the ideal in NAPY\textrm{{NAP}}_{Y} generated by (3.2.6). Let ki\overrightarrow{ki} be the unique edge incoming to ii. By applying a permutation we may assume that k=1k=1, i=2i=2 and j=3j=3. The essential idea of the proof is that since (3.2.6) is a subtree, the tree TT may be written as a composition of (3.2.6) and other YY-trees. Removing the edges 12\overrightarrow{12} and 23\overrightarrow{23} from TT leaves three connected components; T1T_{1} contains 11, T2T_{2} contains 22 and T3T_{3} contains 33. In effect we have partitioned the edge set of TT into {12,23}\{\overrightarrow{12},\overrightarrow{23}\}, E(T1)E(T_{1}), E(T2)E(T_{2}) and E(T3)E(T_{3}). Then we may express TT as

(3.2.7) T=(((T11(1y23))3T3)2T2).σ,T=\Bigl{(}\Bigl{(}\Bigl{(}T_{1}\circ_{1}(\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 5.14665pt\raise 5.1875pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{y}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 15.10004pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 15.10004pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 25.85144pt\raise 4.62848pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62848pt\hbox{$\scriptstyle{\bullet}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 35.70007pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 35.70007pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}}}}}\ignorespaces)\Bigr{)}\circ_{3}T_{3}\Bigr{)}\circ_{2}T_{2}\Bigr{)}.\sigma,

where σ\sigma is a permutation relabelling the vertices. ∎

Remark 3.5.

The Corollary 6.7 to Theorem 6.6 states that NAPY\textrm{{NAP}}_{Y} is binary quadratic. Along with the Theorem above this shows that BCactY\textrm{{BCact}}_{Y} is also binary quadratic.

In the spirit of how we approached NAPY\textrm{{NAP}}_{Y}-algebras, a BCactY\textrm{{BCact}}_{Y}-algebra enriched in a symmetric monoidal category 𝒞\mathcal{C} is a NAPY\textrm{{NAP}}_{Y}-algebra enriched in 𝒞\mathcal{C} where the operation is associative, and

(3.2.8) f(y,(a,b))=f(y,a)f(y,b).f(y,\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}(a,b))=f(y,a)\circ f(y,b).

3.3. The fundamental groupoid of BCactY\textrm{{BCact}}_{Y}

Let YY be a topological space and let PP be a subset of YY. We define the fundamental groupoid π1(Y,P)\pi_{1}(Y,P) to be the groupoid with objects the points pPp\in P and morphisms the homotopy classes of paths in YY which start and end in elements of PP. The composition is by concatenation of paths and the units are supplied by the constant paths. So if (Y,)(Y,\bullet) is a pointed space then π1(Y,{})\pi_{1}(Y,{\left\{\bullet\right\}}) is the fundamental group of YY. Let (Y,)(Y,\bullet) be a pointed space and let PYP\in Y be a set of points which contains \bullet and such that each path connected component of YY contains a single point of PP. This may be seen as a section of the map

(3.3.1) (Y,)(π0(Y),π0()).(Y,\bullet)\rightarrow(\pi_{0}(Y),\pi_{0}(\bullet)).

Then by the functoriality of BCact()\textrm{{BCact}}_{(-)} there is a pair of operad maps

(3.3.2) BCactY\textstyle{\textrm{{BCact}}_{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}BCactP,\textstyle{\textrm{{BCact}}_{P},\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

which serves to pick out a single element in each path connected component of BCactY\textrm{{BCact}}_{Y}. The fundamental groupoid functor preserves products and colimits and so π1(BCactY;BCactP)\pi_{1}(\textrm{{BCact}}_{Y};\textrm{{BCact}}_{P}) is an operad in the category of groupoids.

From now on we will restrict YY to be a path connected space, so P={}P={\left\{\bullet\right\}}. In this case BCactPPerm\textrm{{BCact}}_{P}\cong\operatorname{Perm}, the operad for permutative algebras — each of the nn elements is given by a corolla. So we see that BCactY(n)\textrm{{BCact}}_{Y}(n) is made up of nn components and the action of 𝕊n\mathbb{S}_{n} gives isomorphisms between them. Denote by BCactY(n)r\textrm{{BCact}}_{Y}(n)_{r} the component consisting of trees with root rr.

Proposition 3.3.

The fundamental group of BCactY(n)1\textrm{{BCact}}_{Y}(n)_{1} is presented by generators αijg\alpha^{g}_{ij} for i=1,,ni=1,\ldots,n, j=2,,nj=2,\ldots,n with iji\neq j and gπ1(Y,)g\in\pi_{1}(Y,\bullet), along with relations

(3.3.3) αijgαijh=αijgh,\alpha_{ij}^{g}\alpha_{ij}^{h}=\alpha_{ij}^{gh},
(3.3.4) [αijg,αikh]=e\left[\alpha^{g}_{ij},\alpha^{h}_{ik}\right]=e

for distinct ii, jj, kk;

(3.3.5) [αijg,αklh]=e\left[\alpha^{g}_{ij},\alpha^{h}_{kl}\right]=e

for distinct ii, jj, kk, ll; and

(3.3.6) [αijgαikg,αjkh]=e\left[\alpha^{g}_{ij}\alpha^{g}_{ik},\alpha^{h}_{jk}\right]=e

for distinct ii, jj, kk.

Proof.

We defined the cactus operads BCactY\textrm{{BCact}}_{Y} by adding certain relations TTijT\sim T_{ij} for trees TT with a reducible edge ij\overrightarrow{ij}. The relations come in families: for a fixed tree TT with a fixed edge ij\overrightarrow{ij} where ii is not the root, a YY-tree is reducible if ij\overrightarrow{ij} is labelled by the point Y\bullet\in Y and the remaining n2n-2 edges are labelled by any element in YY, so there is a family of relations parametrised by {}×Yn2{\left\{\bullet\right\}}\times Y^{n-2}. Each element in this family encodes a reduction TTijT\sim T_{ij}: there is one map from Yn2Y^{n-2} corresponding to TT and another map from Yn2Y^{n-2} corresponding to TijT_{ij}. For the second map the diagonal y(y,y)y\mapsto(y,y) is used to define the new labelling. So for each such tree TT with edge ij\overrightarrow{ij} there are a pair of maps

(3.3.7) Yn2\textstyle{Y^{n-2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NAPY(n).\textstyle{\textrm{{NAP}}_{Y}(n).}

In identifying the two images of each point we are taking the coequaliser of this diagram. But we have such an identification for each tree TT with an edge ij\overrightarrow{ij} where ii is not the root. So we have a diagram with a copy of Yn2Y^{n-2} for each such pair (T,ij)(T,\overrightarrow{ij}) and two arrows from each copy to a single copy of NAPY(n)\textrm{{NAP}}_{Y}(n). The colimit of this diagram is the space given by making all identifications TTijT\sim T_{ij} – that is, the colimit is BCactY(n)\textrm{{BCact}}_{Y}(n).

We will use GG to denote the group π1(Y,P)\pi_{1}(Y,P). The fundamental groupoid functor π1\pi_{1} respects colimits and products, so in particular respects polynomial functors meaning that π1(NAPY,NAPP)NAPG\pi_{1}(\textrm{{NAP}}_{Y},\textrm{{NAP}}_{P})\cong\textrm{{NAP}}_{G}. Furthermore

(3.3.8) BCactG(n):=π1(BCactY(n),BCactP(n))\textrm{{BCact}}_{G}(n):=\pi_{1}(\textrm{{BCact}}_{Y}(n),\textrm{{BCact}}_{P}(n))

is given by the colimit of the diagram which consists of a single copy of NAPG(n)\textrm{{NAP}}_{G}(n) and a copy of Gn2G^{n-2} for each pair (T,ij)(T,\overrightarrow{ij}). It now remains to compute this colimit.

Restricting ourselves to trees with root 11, we have that BCactY(n)1\textrm{{BCact}}_{Y}(n)_{1} is the colimit of the diagram where NAPY(n)\textrm{{NAP}}_{Y}(n) is replaced by NAPY(n)1\textrm{{NAP}}_{Y}(n)_{1} and we only include pairs (T,ij)(T,\overrightarrow{ij}) where the root of TT is 1. Since BCact(n)1\textrm{{BCact}}_{\bullet}(n)_{1} is a single point, BCactY(n)1\textrm{{BCact}}_{Y}(n)_{1} is connected and BCactG(n)1\textrm{{BCact}}_{G}(n)_{1} has a single object and so may be viewed as a group.

We will now examine the effect of coequalisers on morphisms. A generic morphism of NAPG(n)1\textrm{{NAP}}_{G}(n)_{1} consists of a rooted tree TRT(n)1T\in\textrm{{RT}}(n)_{1} with edge labels geGg_{e}\in G for each eE(T)e\in E(T). But since such elements belong to a component of NAPG(n)\textrm{{NAP}}_{G}(n) isomorphic to Gn1G^{n-1} they can be rewritten as the product of n1n-1 elements, one for each edge. The element corresponding to eE(T)e\in E(T) is given by labelling edge ee by geg_{e} and every other edge of TT by the identity. We will denote such an element by g(T,ij)g_{(T,\overrightarrow{ij})}, which is the tree TT with edge ij\overrightarrow{ij} labelled by gGg\in G.

The coequalisers encode reductions just as before. Let g(T,vw)NAPG(n)1g_{(T,\overrightarrow{vw})}\in\textrm{{NAP}}_{G}(n)_{1} be a generator where gGg\in G, TRT(n)1T\in\textrm{{RT}}(n)_{1} and vwE(T)\overrightarrow{vw}\in E(T) is any edge. Let ij\overrightarrow{ij} be another edge, this time we ask that ii is not the root 11; this will be the edge we will reduce over. As before let ki\overrightarrow{ki} be the unique incoming edge to ii and let TijT_{ij} be the tree given by cutting ij\overrightarrow{ij} and adding kj\overrightarrow{kj}. The element g(T,vw)g_{(T,\overrightarrow{vw})} may be reduced when the label of ij\overrightarrow{ij} is the identity, that is if vwij\overrightarrow{vw}\neq\overrightarrow{ij}: in the case that vw=ki\overrightarrow{vw}=\overrightarrow{ki} the reduced tree has edges ki\overrightarrow{ki} and kj\overrightarrow{kj} labelled by gg and the remaining edges labelled by the identity. In all other cases the single edge ki\overrightarrow{ki} is labelled by gg with the remaining edges labelled by the identity. So if vw=ki\overrightarrow{vw}=\overrightarrow{ki} we have g(T,ki)=g(Tij,ki).g(Tij,kj)g_{(T,\overrightarrow{ki})}=g_{(T_{ij},\overrightarrow{ki})}.g_{(T_{ij},\overrightarrow{kj})} and otherwise g(T,ki)=g(Tij,ki)g_{(T,\overrightarrow{ki})}=g_{(T_{ij},\overrightarrow{ki})}. Remember that ij\overrightarrow{ij} must be a reducible edge.

The reductions above allow (using the fact that reduction reduces the level) any element in BCactG(n)\textrm{{BCact}}_{G}(n) to be written as a product of elements g(T,ij)g_{(T,\overrightarrow{ij})} where TT is a tree with no identity labelled reducible edges. The possibilities are that TT is a corolla and so i=1i=1, or that TT is the tree with n2n-2 edges emanating from the root 11 and the only other edge being ij\overrightarrow{ij}. So for each pair (i,j)(i,j) where i,j[n]i,j\in\left[n\right], iji\neq j and j1j\neq 1, there is a unique tree TT such that the pair (T,ij)(T,\overrightarrow{ij}) is irreducible. Therefore we may denote the element g(T,ij)g_{(T,\overrightarrow{ij})} by αijg\alpha^{g}_{ij} and these elements generate the group BCactG(n)1\textrm{{BCact}}_{G}(n)_{1}.

Let TRT(n)T\in\textrm{{RT}}(n), ij\overrightarrow{ij} be any edge and gGg\in G, we may write the element g(T,ij)g_{(T,\overrightarrow{ij})} as a monomial in the generators above as follows. Let AijA_{ij} be the set of vertices vv which may be joined by a directed path from ii to vv starting in the edge ij\overrightarrow{ij}. Then g(T,ij)g_{(T,\overrightarrow{ij})} reduces to the product

(3.3.9) vAijαivg.\prod_{v\in A_{ij}}\alpha^{g}_{iv}.

It remains to find the relations between the generators. Some of the relations are contributed by the components of NAPG(n)1\textrm{{NAP}}_{G}(n)_{1} corresponding to the irreducible pairs (T,ij)(T,\overrightarrow{ij}). The relations αijg.αijh=αijgh\alpha^{g}_{ij}.\alpha^{h}_{ij}=\alpha^{gh}_{ij} come from their respective components, these account for (3.3.3). Then there are the relations [α1ig,α1jh][\alpha^{g}_{1i},\alpha^{h}_{1j}] for iji\neq j, which exist in the component of NAPG(n)1\textrm{{NAP}}_{G}(n)_{1} corresponding to the corolla, these account for some of the relations in (3.3.4), specifically the relations for i=1i=1. Denote by T(ij)T(ij) the tree with edges 1k\overrightarrow{1k} for kjk\neq j and edge ij\overrightarrow{ij}, then this contributes the relations

(3.3.10) [αijg,h(T(ij),1k)]=e.\left[\alpha^{g}_{ij},h_{(T(ij),\overrightarrow{1k})}\right]=e.

But the second element is reducible: in the case kik\neq i it reduces to α1kh\alpha^{h}_{1k}, whilst in the case k=ik=i it reduces to α1ih.α1jh\alpha^{h}_{1i}.\alpha^{h}_{1j}.

However these are not all of the relations, additional commutation relations come from other trees TT. Let T(ij,ik)T(ij,ik) be the tree with the edges ij\overrightarrow{ij} and ik\overrightarrow{ik} and edges 1l\overrightarrow{1l} for lj,kl\neq j,k. This tree encodes commutator brackets

(3.3.11) [g(T(ij,ik),ij),h(T(ij,ik),ik)]=e,\left[g_{(T(ij,ik),\overrightarrow{ij})},h_{(T(ij,ik),\overrightarrow{ik})}\right]=e,

the elements reduce to αijg\alpha^{g}_{ij} and αikh\alpha^{h}_{ik} respectively. Similarly for distinct i,j,k,l1i,j,k,l\neq 1 let T(ij,kl)T({ij},{kl}) be the tree with edges ij\overrightarrow{ij} and kl\overrightarrow{kl} and edges 1m\overrightarrow{1m} for mj,lm\neq j,l; as above this encodes a commutator relation:

(3.3.12) [g(T(ij,kl),ij),h(T(ij,kl),kl)]=[αijg,αklh]=e.\left[g_{(T(ij,kl),\overrightarrow{ij})},h_{(T(ij,kl),\overrightarrow{kl})}\right]=\left[\alpha^{g}_{ij},\alpha^{h}_{kl}\right]=e.

Finally let T(ij,jk)T(ij,jk) be the tree with edges ij\overrightarrow{ij} and jk\overrightarrow{jk} and edges 1l\overrightarrow{1l} for lj,kl\neq j,k. This tree gives the commutator relations

(3.3.13) [g(T(ij,jk),ij),h(T(ij,jk),jk)]=e.\left[g_{(T(ij,jk),\overrightarrow{ij})},h_{(T(ij,jk),\overrightarrow{jk})}\right]=e.

The second element reduces to αjkh\alpha^{h}_{jk} and the first to the product αijg.αikg\alpha^{g}_{ij}.\alpha^{g}_{ik}. This accounts for all of the relations in the statement of the proposition.

To show that the stated relations are sufficient to present the group we need to show that the commutator relations

(3.3.14) [g(T,ij),h(T,kl)]=e\left[g_{(T,\overrightarrow{ij})},h_{(T,\overrightarrow{kl})}\right]=e

hold for each tree TT and each pair of edges ij,kl\overrightarrow{ij},\overrightarrow{kl}. Let AijA_{ij} and AklA_{kl} be the sets of vertices which index the respective decompositions of the form (3.3.9). If AijA_{ij} and AklA_{kl} are disjoint then commutator relations of the form (3.3.4) and (3.3.5) show that all the constituent irreducible elements commute with one another. In the case that AijA_{ij} and AklA_{kl} do intersect there must be either a directed path from ii to kk or from kk to ii. Assuming the former we find that AijA_{ij} contains AklA_{kl}. We now show that each αkvh\alpha^{h}_{kv} for vAklv\in A_{kl} commutes with g(T,ij)g_{(T,\overrightarrow{ij})}. Since both kk and vv are in AijA_{ij} the element αikg.αivg\alpha^{g}_{ik}.\alpha^{g}_{iv} is a term in g(T,ij)g_{(T,\overrightarrow{ij})}, the relation (3.3.6) means that αkvh\alpha^{h}_{kv} commutes with this term. The remaining terms are of the form αiwg\alpha^{g}_{iw} for wk,vw\neq k,v which also commutes with αkvh\alpha^{h}_{kv}. Therefore αkvh\alpha^{h}_{kv} commutes with the element g(T,ij)g_{(T,\overrightarrow{ij})}; and therefore h(T,kl)h_{(T,\overrightarrow{kl})} commutes with it as well.

Therefore the relations (3.3.3)-(3.3.6) suffice to present BCactG(n)1\textrm{{BCact}}_{G}(n)_{1}. ∎

We have already seen that π1(BCactY,BCactP)\pi_{1}(\textrm{{BCact}}_{Y},\textrm{{BCact}}_{P}) is an operad, to give the composition maps we need only describe the compositions on the generating morphisms. In fact since we have gih=(gie).(eih)g\circ_{i}h=(g\circ_{i}e).(e\circ_{i}h) we need only describe the compositions of generators with identity maps.

Proposition 3.4.

Let (Y,)(Y,\bullet) be a path connected pointed space and let GG be its fundamental group. The operad structure on π1(BCactY,BCactP)\pi_{1}(\textrm{{BCact}}_{Y},\textrm{{BCact}}_{P}) is given on generating morphisms as follows: let αijgBCactG(n)r\alpha^{g}_{ij}\in\textrm{{BCact}}_{G}(n)_{r} and eBCactG(m)se\in\textrm{{BCact}}_{G}(m)_{s} be the identity morphism. For a[m]a\in\left[m\right] define i=i+a1i^{\prime}=i+a-1 and j=j+a1j^{\prime}=j+a-1, then we have

(3.3.15) eaαijg=αijg.e\circ_{a}\alpha^{g}_{ij}=\alpha^{g}_{i^{\prime}j^{\prime}}.

For b[n]b\in\left[n\right] define i′′i^{\prime\prime} to be ii if i<bi<b, to be i+m1i+m-1 if i>bi>b and i+s1i+s-1 if i=bi=b; define j′′j^{\prime\prime} similarly. For each l[m]l\in\left[m\right] define l′′l^{\prime\prime} to be l+b1l+b-1. Then we have

(3.3.16) αijgbe={l=1mαi′′l′′g if b=j, and αi′′j′′g otherwise. \alpha^{g}_{ij}\circ_{b}e=\begin{cases}\prod_{l=1}^{m}\alpha^{g}_{i^{\prime\prime}l^{\prime\prime}}&\text{ if $b=j$, and }\\ \alpha^{g}_{i^{\prime\prime}j^{\prime\prime}}&\text{ otherwise. }\end{cases}
Proof.

Let T(ij)rT(ij)_{r} be the tree with root rr, the edge ij\overrightarrow{ij} and (n2)(n-2) edges rk\overrightarrow{rk} (if i=ri=r then this is a corolla). Then αijg\alpha^{g}_{ij} is represented by the tree T(ij)rT(ij)_{r} with ij\overrightarrow{ij} labelled by gGg\in G. Let CsC_{s} be the corolla with root ss and m1m-1 edges sk\overrightarrow{sk}. When all of the edges are labelled by the identity eGe\in G then this represents the identity ee of BCactG(m)s\textrm{{BCact}}_{G}(m)_{s}.

To compute eaαijge\circ_{a}\alpha^{g}_{ij} we compose trees to get CsaT(ij)rC_{s}\circ_{a}T(ij)_{r} and then reduce using Equation (3.3.9). The unique labelled edge ij\overrightarrow{ij} of T(ij)rT(ij)_{r} is a leaf and hence it is also a leaf of CsaT(ij)rC_{s}\circ_{a}T(ij)_{r}, although now the edge is ij\overrightarrow{i^{\prime}j^{\prime}}. Since it is a leaf it reduces to αijg\alpha^{g}_{i^{\prime}j^{\prime}} as required.

To compute αgbe\alpha^{g}\circ_{b}e is a little more complicated as it depends on the value of bb. If bjb\neq j then the leaf ij\overrightarrow{ij} is still a leaf of T(ij)rbCsT(ij)_{r}\circ_{b}C_{s} and so the same argument applies to give the reduction to αi′′j′′g\alpha^{g}_{i^{\prime\prime}j^{\prime\prime}}. However if b=jb=j then the tree consists of the edge i′′j′′\overrightarrow{i^{\prime\prime}j^{\prime\prime}}, another n2n-2 edges emanating from the root and m1m-1 edges j′′l′′\overrightarrow{j^{\prime\prime}l^{\prime\prime}}. The only labelled edge is i′′j′′\overrightarrow{i^{\prime\prime}j^{\prime\prime}} and the set AijA_{ij} of vertices ‘above ii’ consists of the vertex j′′=s′′j^{\prime\prime}=s^{\prime\prime} and the vertices l′′l^{\prime\prime} for each edge jlCs\overrightarrow{jl}\in C_{s}. An application of Equation (3.3.9) serves to finish the proof. ∎

Remark 3.6.

The groups BCactG(n)r\textrm{{BCact}}_{G}(n)_{r} act faithfully on the free product GnG^{\ast n}. We will write this free product as G1GnG_{1}\ast\ldots\ast G_{n} where each group is isomorphic to GG in order to distinguish between different factors. The element αijg\alpha_{ij}^{g} acts on the factors as follows

(3.3.17) αijg(h)={hgi1 if hGj and where gi=g in Gi andh if hGk for kj.\alpha_{ij}^{g}(h)=\begin{cases}h^{g_{i}^{-1}}&\text{ if $h\in G_{j}$ and where $g_{i}=g$ in $G_{i}$ and}\\ h&\text{ if $h\in G_{k}$ for $k\neq j$.}\end{cases}

In [18] the closely related spaces of unbased cacti Cact𝐘\textrm{{Cact}}_{\mathbf{Y}} were studied and it was shown that when YiY_{i} is a classifying space for GiG_{i} then Cact𝐘\textrm{{Cact}}_{\mathbf{Y}} is itself a classifying space for a certain group of automorphisms. As a consequence of Theorems 4.3 and 6.9 we see that

(3.3.18) H(BCactY)PermNAPH¯(Y),H_{\ast}(\textrm{{BCact}}_{Y})\cong\operatorname{Perm}\circ\textrm{{NAP}}_{\overline{H}(Y)},

whereas in [18] it is shown that

(3.3.19) H(CactY)ComNAPH¯(Y).H_{\ast}(\textrm{{Cact}}_{Y})\cong\operatorname{Com}\circ\textrm{{NAP}}_{\overline{H}(Y)}.

This last isomorphism could also be shown using the methods of reduction used in this paper, although CactY\textrm{{Cact}}_{Y} is not an operad.

3.4. Relationships with other topological operads

The pure braid group on nn strands, PnP_{n} is known to be a subgroup of the group PΣnπ1(CactY(n))P\Sigma_{n}\cong\pi_{1}(\textrm{{Cact}}_{Y}(n)) of partial conjugations of the free group on nn letters. This inclusion may be realised by a construction involving cacti. In [20] various (quasi-)operads of cacti are discussed; these are different to the operad BCactS1\textrm{{BCact}}_{S^{1}} in that the cacti are planar and unbased. We will take PlCact to be the spineless and normalised varieties of cacti from [20]. This quasi-operad is quasi-isomorphic to the little discs operad and so in particular the fundamental group π1(PlCact(n))\pi_{1}(\text{Pl}\textrm{{Cact}}(n)) is the pure braid group PnP_{n}. There is an 𝕊n\mathbb{S}_{n}-equivariant map

(3.4.1) PlCact(n)CactS1(n)\text{Pl}\textrm{{Cact}}(n)\rightarrow\textrm{{Cact}}_{S^{1}}(n)

defined by the map which forgets the planar structure of a planar cactus leaving a cactus product of circles as defined in (3.2.1); on fundamental groups this gives the inclusion PnPΣnP_{n}\rightarrow P\Sigma_{n}. The operad compositions of BCactS1\textrm{{BCact}}_{S^{1}} and PlCact are not closely related, this may be seen by examining the homology operads which are BCactH(S1)\textrm{{BCact}}_{H_{*}(S^{1})} as defined in the next section and the Gerstenhaber operad e2e_{2}.

However both families of cacti are related by a third operad which ‘contains’ both. Let LR(n)\textrm{{LR}}(n) be the space of smooth, disjoint embeddings of nn copies of the filled in torus, or ring R=S1×D2R=S^{1}\times D^{2} into itself — this is naturally an operad. The little discs operad consists of disjoint embeddings of copies of a disc D2D^{2} into itself and can be mapped into the little rings operad LR by applying idS1×()\text{id}_{S^{1}}\times(-) to the embeddings. The image of the little discs operad involves little rings which wind around the large ring once. Meanwhile the operad BCactS1\textrm{{BCact}}_{S^{1}} is related to the connected components of embeddings in which one little ring, the root winds around the large ring once; the remaining rings do not wind around the large ring and all of the rings are unknotted and unlinked. The fundamental groups of these connected components contain π1(BCactS1)BCact\pi_{1}(\textrm{{BCact}}_{S^{1}})\cong\textrm{{BCact}}_{\mathbb{Z}} as a suboperad. There are additional elements not in the suboperad given by little rings circling through the large ring along with smooth endomorphisms of RR.

4. The homology operads

So far we have described operads NAPY\textrm{{NAP}}_{Y} and BCactY\textrm{{BCact}}_{Y} in the “geometric” setting. Both families also have versions existing in the “linear” setting, so for any graded vector space DD there exists an operad NAPD\textrm{{NAP}}_{D}, whereas in the case of the based cacti there is a subtlety, we require a graded augmented cocommutative coalgebra CC to define BCactC\textrm{{BCact}}_{C}. The “geometric” and “linear” versions are closely related via the homology functor which sends a topological space to its homology groups with coefficients in the base field 𝕜\mathbbold{k}. In this section, we shall describe these operads via constructions with decorated rooted trees, and later in section 6, we shall descibe them via generators and relations, and show that it in fact each of them has a quadratic Gröbner basis of relations.

4.1. The linear operad NAPD\textrm{{NAP}}_{D}

Let DD be a graded vector space (over some field 𝕜\mathbbold{k}). Recall that in (3.1.1) we described NAPY(n)\textrm{{NAP}}_{Y}(n) as disjoint union of direct products of copies of YY. Then in Remark 3.1 we gave a polynomial diagram (3.1.10) realising NAPY(n)\textrm{{NAP}}_{Y}(n) as a polynomial functor in YY. Let DD be a graded vector space and define NAPD\textrm{{NAP}}_{D} via the same polynomial diagram in the category of graded vector spaces:

(4.1.1) NAPD(n)=TRT(n)D(n1).\textrm{{NAP}}_{D}(n)=\bigoplus_{T\in\textrm{{RT}}(n)}D^{\otimes(n-1)}.

Equivalently NAPD(n)\textrm{{NAP}}_{D}(n) is the vector space spanned by rooted trees with vertex set [n]\left[n\right] and edge labels in DD, subject to linearity in each edge label.

The set based description of the NAPY\textrm{{NAP}}_{Y} operad works on the level of polynomial functors and so suffices to show that NAPD\textrm{{NAP}}_{D} is an operad. However great care must be taken to keep track of the signs induced by the symmetry σ\sigma from the symmetric monoidal category (gVect,,σ,𝕜)(\operatorname{gVect},\otimes,\sigma,\mathbbold{k}) of graded vector spaces. In order to do this we must assign for each term Dn1D^{\otimes n-1} in the sum (4.1.1) a reference ordering of the factors. This requires assigning to each tree TRT(n)T\in\textrm{{RT}}(n) a total ordering on the set of edges E(T)E(T). Let TT be such a tree and let ii be its root. Since each vertex has a unique incoming edge except for the root which has none, the set of edges E(T)E(T) is in bijection with the set of non-root vectices [n]i\left[n\right]-i. We take the ordering of E(T)E(T) from the natural ordering of [n]i\left[n\right]-i. So for instance the pair

(4.1.2) (2314,xyz)represents the Y-tree231zy4x.\left(\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2}$}}}}}}}{\hbox{\kern 15.20007pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.90015pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}{\hbox{\kern-3.0pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 31.30298pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 5.0918pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 33.40015pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-3.0pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{4\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 18.20007pt\raise-25.1445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 33.40015pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}}}}}\ignorespaces},x\otimes y\otimes z\right)\quad\text{represents the $Y$-tree}\quad\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2}$}}}}}}}{\hbox{\kern 15.20007pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.90015pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}{\hbox{\kern-3.0pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.30011pt\raise-13.9947pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{z}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 31.30298pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-1.20671pt\raise-14.62474pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{y}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 5.0918pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 33.40015pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-3.0pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{4\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 7.66534pt\raise-29.46675pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{x}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 18.20007pt\raise-25.1445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 33.40015pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}}}}}\ignorespaces}.

The order of x,yx,y and zz in the tensor product is determined by the order of the edges.

The first step in giving the operad structure is to describe the action of the symmetric group 𝕊n\mathbb{S}_{n} on NAPD(n)\textrm{{NAP}}_{D}(n). For instance applying the permutation (24)(24) to the YY-tree considered in (4.1.2) we get

(4.1.3) (24).(2314,xyz)==(3412,(23)xyz)=(1)|y||z|341yz2x.(24).\left(\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2}$}}}}}}}{\hbox{\kern 15.20007pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.90015pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}{\hbox{\kern-3.0pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 31.30298pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 5.0918pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 33.40015pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-3.0pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{4\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 18.20007pt\raise-25.1445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 33.40015pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}}}}}\ignorespaces},x\otimes y\otimes z\right)=\\ =\left(\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}{\hbox{\kern 15.20007pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.90015pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{4}$}}}}}}}{\hbox{\kern-3.0pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 31.30298pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 5.0918pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 33.40015pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-3.0pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 18.20007pt\raise-25.1445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 33.40015pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}}}}}\ignorespaces},(23)x\otimes y\otimes z\right)=(-1)^{|y||z|}\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}{\hbox{\kern 15.20007pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.90015pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{4}$}}}}}}}{\hbox{\kern-3.0pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.30011pt\raise-14.62474pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{y}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 31.30298pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-1.00764pt\raise-13.9947pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{z}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 5.0918pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 33.40015pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-3.0pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 7.66534pt\raise-29.46675pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{x}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 18.20007pt\raise-25.1445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 33.40015pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}}}}}\ignorespaces}.

The signs involved in the composition TiTT\circ_{i}T^{\prime} for TNAPD(n)T\in\textrm{{NAP}}_{D}(n) and TNAPD(m)T^{\prime}\in\textrm{{NAP}}_{D}(m) are more easily accounted for. This is because the edges within the righthand tree TT^{\prime} are not reordered within TiTT\circ_{i}T^{\prime} and so the sign depends on the total degree |T||T^{\prime}| and not on the individual edges. The edges of TT^{\prime} are ‘moved past’ the edges jkE(T)\overrightarrow{jk}\in E(T) for which k>ik>i. Hence if yjky_{jk} is the labelling of jk\overrightarrow{jk} the sign change is given by

(4.1.4) (1)|T|(jkE(T)k>i|yjk|).(-1)^{\displaystyle|T^{\prime}|\Bigl{(}\sum_{\overrightarrow{jk}\in E(T)\mid k>i}|y_{jk}|\Bigr{)}}.
Proposition 4.1.

The homology operad H(NAPY)H_{\ast}(\textrm{{NAP}}_{Y}) with coefficients in the base field kk is isomorphic to the linear operad NAPH(Y)\textrm{{NAP}}_{H_{\ast}(Y)}.

Proof.

With field coefficients the homology functor HH_{\ast} from topological spaces to graded vector spaces respects products and coproducts and so is compatible with polynomial functors. The explicit expression of this is

(4.1.5) H(NAPY(n))H(TRT(n)YE(T))TRT(n)H(Y)E(T).H_{\ast}\left(\textrm{{NAP}}_{Y}(n)\right)\cong H_{\ast}\Bigl{(}\coprod_{T\in\textrm{{RT}}(n)}Y^{E(T)}\Bigr{)}\cong\bigoplus_{T\in\textrm{{RT}}(n)}H_{\ast}(Y)^{\otimes E(T)}.

4.2. The linear operads of based cacti

Let CC be an augmented cocommutative coalgebra and write its splitting as 𝕜𝟙¯\mathbbold{k}\operatorname{\mathbbold{1}}\oplus\overline{C}. The operad BCactC\textrm{{BCact}}_{C} will be a quotient of the operad NAPC\textrm{{NAP}}_{C}, this is a parallel of the set-based versions. Let TNAPCT\in\textrm{{NAP}}_{C} be a CC-labelled rooted tree and suppose that it has an edge ij\overrightarrow{ij} with the label 𝟙\operatorname{\mathbbold{1}} and suppose further that ii is not the root of TT, as before we will call the edge ij\overrightarrow{ij} reducible. Let kk be the unique vertex such that ki\overrightarrow{ki} is an edge and let cc be the label of ki\overrightarrow{ki}. We define TT^{\prime} to be the unlabelled rooted tree created by removing the edge ij\overrightarrow{ij} and replacing it by kj\overrightarrow{kj} and denote by T(a,b)T^{\prime}(a,b) the edge labelled rooted tree based on TT^{\prime} where the edge labels are inherited from those of TT except for ki\overrightarrow{ki} which is labelled by aa and kj\overrightarrow{kj} which is labelled by bb. Finally we define TijT_{ij} to be the sum

(4.2.1) (1)|c(2)|gT(c(1),c(2)),\sum(-1)^{|c_{(2)}|g}\,T^{\prime}(c_{(1)},c_{(2)}),

where gg is the sum of degrees

(4.2.2) xyi<y<j|axy|\sum_{\overrightarrow{xy}\mid i<y<j}|a_{xy}|

and axya_{xy} is the label of the edge xy\overrightarrow{xy}. The sign is given by the moving of the label c(2)c_{(2)} from being adjacent to c(1)c_{(1)} as in Δ(c)=c(1)c(2)\Delta(c)=\sum c_{(1)}\otimes c_{(2)} to being in the relevant position to label the edge kj\overrightarrow{kj}. As before TijT_{ij} is called the reduction of TT at the reducible edge ij\overrightarrow{ij} and just as before each CC-tree reduces to a unique irreducible CC-tree.

Definition 3.

The graded vector space of linear based CC-cacti, BCactC\textrm{{BCact}}_{C} is defined by factoring out from NAPC\textrm{{NAP}}_{C} the relations

(4.2.3) TTij=0T-T_{ij}=0

for trees TT with an edge ij\overrightarrow{ij} labelled by 𝟙\operatorname{\mathbbold{1}} where ii is not the root.

The graded vector space of irreducible CC-trees and hence BCactC\textrm{{BCact}}_{C} is given by

(4.2.4) BCactC(n)TRT(n)(r(T)jE(T)C)(ijE(T),ir(T)C¯),\textrm{{BCact}}_{C}(n)\cong\bigoplus_{T\in\textrm{{RT}}(n)}\Bigl{(}\bigotimes_{\overrightarrow{r(T)j}\in E(T)}C\Bigr{)}\otimes\Bigl{(}\bigotimes_{{\overrightarrow{ij}\in E(T),}\\ {i\neq r(T)}}\overline{C}\Bigr{)},

where r(T)r(T) is the root of TT. Using the splitting C=𝕜𝟙¯C=\mathbbold{k}\operatorname{\mathbbold{1}}\oplus\overline{C} we may rewrite this as a polynomial expression in C¯\overline{C}. There is a convenient way of indexing this polynomial; rather than using irreducible CC-trees, where an outgoing edge rj\overrightarrow{rj} from the root rr could be labelled by 𝟙\operatorname{\mathbbold{1}}, we cut the edges rj\overrightarrow{rj} labelled by 𝟙\operatorname{\mathbbold{1}} to leave a labelled forest, each component tree has a root, the corresponding jj and there is a chosen component tree, the tree containing rr. Let PF\textrm{{PF}}_{\ast} be the set of planted forests with a chosen tree. Then we may rewrite (4.2.4) as

(4.2.5) BCactC(n)FPF(n)C¯E(F).\textrm{{BCact}}_{C}(n)\cong\bigoplus_{F\in\textrm{{PF}}_{\ast}(n)}\overline{C}^{\otimes E(F)}.
Remark 4.1.

Although this is a polynomial functor in C¯\overline{C} with a similar diagram to (3.1.10), the operad maps are not maps of polynomials, indeed the diagonal map of CC is used. A similar polynomial description of BCactY\textrm{{BCact}}_{Y} holds when YY is a set, however this involves ‘splitting’ the chosen point of YY and so this only works for a pointed topological space when the point is disconnected.

Proposition 4.2.

The linear subspace of NAPC\textrm{{NAP}}_{C} generated by relations of the form TTij=0T-T_{ij}=0 is an operadic ideal and so BCactC\textrm{{BCact}}_{C} is an operad as a quotient of NAPC\textrm{{NAP}}_{C}. Furthermore the ideal is generated in arity 3 by

(4.2.6) 32𝟙1c231c(1)c(2)=0.\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}{\hbox{\kern-5.5pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-9.82225pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{\operatorname{\mathbbold{1}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-5.5pt\raise-39.289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-29.46675pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{c}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-25.1445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}}}}}\ignorespaces}\quad-\quad\sum\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 9.79326pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2}$}}}}}}}{\hbox{\kern 15.20007pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.90015pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}{\hbox{\kern-3.0pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-9.79326pt\raise-15.19308pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.2125pt\hbox{$\scriptstyle{c_{(1)}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 5.0918pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.30011pt\raise-15.19308pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.2125pt\hbox{$\scriptstyle{c_{(2)}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 31.30298pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 33.40015pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}}}}}\ignorespaces}\quad=\quad 0.
Proof.

This is the linear analogue of Theorem 3.2 and the same method applies. ∎

In the linear setting, the formula (3.1.13) (and its particular case (3.1.14)), as well as (3.1.15) work without any changes (except for signs that one should carefully trace), while the formula (3.2.8) should be adapted into

(4.2.7) f(c,(a,b))=f(c(1),a)f(c(2),b).f(c,\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}(a,b))=\sum f(c_{(1)},a)\circ f(c_{(2)},b).
Theorem 4.3.

Let YY be a topological space then the homology operad of BCactY\textrm{{BCact}}_{Y} is isomorphic to the linear operad BCactH(Y)\textrm{{BCact}}_{H_{\ast}(Y)}.

Proof.

The homology functor respects products and coproducts and hence polynomial functors, this is how we see that H(NAPY)NAPH(Y)H_{\ast}\left(\textrm{{NAP}}_{Y}\right)\cong\textrm{{NAP}}_{H_{\ast}(Y)}. However the cactus operad BCactY\textrm{{BCact}}_{Y} is not given by a polynomial functor. In the proof of Proposition 3.3 we showed that BCactY(n)\textrm{{BCact}}_{Y}(n) was the colimit of a diagram containing a single copy of NAPY(n)\textrm{{NAP}}_{Y}(n) and a copy of Yn2Y^{n-2} for each pair (T,ij)(T,\overrightarrow{ij}) where TRT(n)T\in\textrm{{RT}}(n) and ijE(T)\overrightarrow{ij}\in E(T) where ii is not the root. For each copy of Yn2Y^{n-2} there were two maps, one corresponding to TT and one to its reduction TijT_{ij}. The act of taking the colimit makes identifications TTijT\sim T_{ij}.

Precisely the same discussion applies to the linear operad BCactC(n)\textrm{{BCact}}_{C}(n); realising it as the colimit of the same diagram but with Cn2C^{\otimes n-2} replacing Yn2Y^{n-2} and NAPC(n)\textrm{{NAP}}_{C}(n) replacing NAPY(n)\textrm{{NAP}}_{Y}(n).

Unfortunately the homology functor HH_{\ast} preserves coproducts and products, but not general colimits. Therefore we can not just apply the homology functor to the colimit diagram for BCactY(n)\textrm{{BCact}}_{Y}(n). The chain functor CC_{\ast} which takes values in the symmetric monoidal category of differentially graded vector spaces does however preserve colimits. Therefore C(BCactY(n))C_{\ast}(\textrm{{BCact}}_{Y}(n)) is the colimit of the diagram consisting of C(NAPY(n))C_{\ast}(\textrm{{NAP}}_{Y}(n)) and copies of C(Yn2)C_{\ast}(Y^{n-2}). However CC_{\ast} does not preserve products which is inconvenient because C(Y)C_{\ast}(Y) can not be assumed to be a coalgebra, although we still have the diagonal maps C(Y)C(Y×Y)C_{\ast}(Y)\rightarrow C_{\ast}(Y\times Y) which allow reductions to be made. Since YY is pointed there is a natural splitting C(Y)𝕜𝟙¯(𝕐)C_{\ast}(Y)\cong\mathbbold{k}\operatorname{\mathbbold{1}}\oplus\overline{C}_{\ast}(Y) and furthermore the inclusions YaYbY^{a}\rightarrow Y^{b} induce splittings C(Yb)C(Ya)D¯C_{\ast}(Y^{b})\cong C_{\ast}(Y^{a})\oplus\overline{D}. The most general splitting is given by taking the kernel of the map

(4.2.8) C(Yb)i=1,,bC(Yb1),C_{\ast}(Y^{b})\rightarrow\bigoplus_{i=1,\ldots,b}C_{\ast}(Y^{b-1}),

where the iith map forgets the iith coordinate, call this kernel C(Yb)¯\overline{C_{\ast}(Y^{b})}. Then C(Yb)C_{\ast}(Y^{b}) undergoes the splitting:

(4.2.9) C(Yb)A[b]C(Y|A|)¯.C_{\ast}(Y^{b})\cong\bigoplus_{A\subseteq\left[b\right]}\overline{C_{\ast}(Y^{|A|})}.

This splitting allows one to compute the colimit of the diagram computing the space C(BCactY(n))C_{\ast}(\textrm{{BCact}}_{Y}(n)) in the same manner as the computation of BCactC(n)\textrm{{BCact}}_{C}(n) in (4.2.5), using reductions TTijT\sim T_{ij} as before. Therefore

(4.2.10) C(BCactY(n))FPF(n)C(Y|E(F)|)¯.C_{\ast}\left(\textrm{{BCact}}_{Y}(n)\right)\cong\bigoplus_{F\in\textrm{{PF}}_{\ast}(n)}\overline{C_{\ast}\left(Y^{\otimes|E(F)|}\right)}.

The homology functor does not necessarily preserve colimits but it does preserve products and hence

(4.2.11) H(C(Yb)¯)H¯(Y)b.H_{\ast}\left(\overline{C_{\ast}\left(Y^{b}\right)}\right)\cong\overline{H}_{\ast}(Y)^{\otimes b}.

Therefore

(4.2.12) H(BCactY(n))FPF(n)H¯(Y)|E(F)|.H_{\ast}\left(\textrm{{BCact}}_{Y}(n)\right)\cong\bigoplus_{F\in\textrm{{PF}}_{\ast}(n)}\overline{H}_{\ast}(Y)^{\otimes|E(F)|}.

Which is isomorphic to BCactH(Y)(n)\textrm{{BCact}}_{H_{\ast}(Y)}(n). That this is an isomorphism of operads is immediate because both cacti operads are defined as quotients of NAP operads. ∎

Remark 4.2.

Since when C=H(Y)C=H_{*}(Y), the operad BCactC\textrm{{BCact}}_{C} is the homology operad of a topological operad, it should not be surprising at all that for every coalgebra CC the operad BCactC\textrm{{BCact}}_{C} is a Hopf operad [16, 30], which essentially means that algebras over it form a tensor category. Its diagonal map coincides with the diagonal of the coalgebra CC on the space of generators:

(4.2.13) Δ()=.\Delta(\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces})=\sum\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}\otimes\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate}}}}\ignorespaces}.

Let us conclude this section with an example of a “smallest nontrivial algebra” over a linear operad of based cacti.

Example 4.1.

Let YY be the (pointed) two-element set {𝟎,1}\{\mathbf{0},1\}, so that C=H(Y)C=H_{*}(Y) is the split two-dimensional coalgebra 𝕜𝕜\mathbbold{k}\oplus\mathbbold{k}, the product 0\cdot_{0} defines a Perm\operatorname{Perm}-algebra, and the product 1\cdot_{1} defines an NAP-algebra. In every one-dimensional BCactC\textrm{{BCact}}_{C}-algebra, the Perm\operatorname{Perm}-product is commutative, and the NAP-product is associative, so they are very degenerate, and the first nontrivial example should be at least two-dimensional. One can easily check that a two-dimensional noncommutative Perm\operatorname{Perm}-algebra is necessarily isomorphic to the algebra A={a,b}A={\left\{a,b\right\}} with multiplication table

(4.2.14) a0a=a,\displaystyle a\cdot_{0}a=a,
(4.2.15) a0b=b0b=0,\displaystyle a\cdot_{0}b=b\cdot_{0}b=0,
(4.2.16) b0a=b.\displaystyle b\cdot_{0}a=b.

Furthermore, to define a BCactC\textrm{{BCact}}_{C}-algebra structure on AA, one should choose a 2×22\times 2-matrix pp with p2=pp^{2}=p, and put

(4.2.17) a1a=p11a+p12b,\displaystyle a\cdot_{1}a=p_{11}a+p_{12}b,
(4.2.18) b1a=p21a+p22b,\displaystyle b\cdot_{1}a=p_{21}a+p_{22}b,
(4.2.19) a1b=b1b=0.\displaystyle a\cdot_{1}b=b\cdot_{1}b=0.

One particular example will be obtained if we put p=(0001)p=\begin{pmatrix}0&0\\ 0&1\end{pmatrix}, so that the NAP-product in this algebra is given by

(4.2.20) a1a=a1b=b1b=0,\displaystyle a\cdot_{1}a=a\cdot_{1}b=b\cdot_{1}b=0,
(4.2.21) b1a=b.\displaystyle b\cdot_{1}a=b.

This product is “nontrivial” enough: it has a noncommutative Perm\operatorname{Perm}-product, a nonassociative NAP-product, and moreover it does not fit into the series of algebras defined in Example 3.1 (since we have a1a=0a\cdot_{1}a=0 but b1a=b0b\cdot_{1}a=b\neq 0).

5. Filtered distributive laws

5.1. Filtered distributive laws between quadratic operads

Assume that A=F(V)/(R)\mathrsfs{A}=\mathrsfs{F}(\mathrsfs{V})/(\mathrsfs{R}) and B=F(W)/(S)\mathrsfs{B}=\mathrsfs{F}(\mathrsfs{W})/(\mathrsfs{S}) are two quadratic operads. For two subspaces U1\mathrsfs{U}_{1} and U2\mathrsfs{U}_{2} of the same operad O\mathrsfs{O}, let us denote by U1U2\mathrsfs{U}_{1}\bullet\mathrsfs{U}_{2} the subspace of O\mathrsfs{O} spanned by all elements ϕiψ\phi\circ_{i}\psi with ϕU1\phi\in\mathrsfs{U}_{1}, ψU2\psi\in\mathrsfs{U}_{2}. For two 𝕊\mathbb{S}-module mappings

(5.1.1) s:R(2)WVVWWWs\colon\mathrsfs{R}_{(2)}\rightarrow\mathrsfs{W}\bullet\mathrsfs{V}\oplus\mathrsfs{V}\bullet\mathrsfs{W}\oplus\mathrsfs{W}\bullet\mathrsfs{W}

and

(5.1.2) d:WVVWWW,d\colon\mathrsfs{W}\bullet\mathrsfs{V}\rightarrow\mathrsfs{V}\bullet\mathrsfs{W}\oplus\mathrsfs{W}\bullet\mathrsfs{W},

one can define a quadratic operad E\mathrsfs{E} with generators U=VW\mathrsfs{U}=\mathrsfs{V}\oplus\mathrsfs{W} and relations T=QDS\mathrsfs{T}=\mathrsfs{Q}\oplus\mathrsfs{D}\oplus\mathrsfs{S}, where

(5.1.3) Q={xs(x)xR(2)},D={xd(x)xWV}.\mathrsfs{Q}=\{x-s(x)\mid x\in\mathrsfs{R}_{(2)}\},\quad\mathrsfs{D}=\{x-d(x)\mid x\in\mathrsfs{W}\bullet\mathrsfs{V}\}.

Informally, we join generators of A\mathrsfs{A} and B\mathrsfs{B} together, keep the relations of B\mathrsfs{B}, deform relations of A\mathrsfs{A}, adding to them “lower terms” of degree at most 11 in generators of A\mathrsfs{A}, and impose a rewriting rule transforming WV\mathrsfs{W}\bullet\mathrsfs{V} into a combination of terms from VW\mathrsfs{V}\bullet\mathrsfs{W} and “lower terms” of degree 0 in generators of A\mathrsfs{A}. Note that using the rewriting rule xd(x)x\mapsto d(x), one can replace ss by

(5.1.4) s:R(2)VWWW,s^{\prime}\colon\mathrsfs{R}_{(2)}\rightarrow\mathrsfs{V}\bullet\mathrsfs{W}\oplus\mathrsfs{W}\bullet\mathrsfs{W},

and from now on we shall denote by ss that modified mapping.

Assume that the natural projection of 𝕊\mathbb{S}-modules π:EA\pi\colon\mathrsfs{E}\twoheadrightarrow\mathrsfs{A} splits (for example, it is always true in characteristic zero, or in arbitrary characteristic whenever the relations of A\mathrsfs{A} remain undeformed, including the case of usual distributive laws). Then the composite of natural mappings

(5.1.5) F(V)F(W)F(VW)F(VW)/(T)\mathrsfs{F}(\mathrsfs{V})\circ\mathrsfs{F}(\mathrsfs{W})\hookrightarrow\mathrsfs{F}(\mathrsfs{V}\oplus\mathrsfs{W})\twoheadrightarrow\mathrsfs{F}(\mathrsfs{V}\oplus\mathrsfs{W})/(\mathrsfs{T})

gives rise to a surjection of 𝕊\mathbb{S}-modules

(5.1.6) ξ:ABE.\xi\colon\mathrsfs{A}\circ\mathrsfs{B}\twoheadrightarrow\mathrsfs{E}.
Definition 4.

We say that the mappings ss and dd above define a filtered distributive law between the operads A\mathrsfs{A} and B\mathrsfs{B} if π:EA\pi\colon\mathrsfs{E}\twoheadrightarrow\mathrsfs{A} splits, and the restriction of ξ\xi to weight 33 elements

(5.1.7) ξ3:(AB)(3)E(3)\xi_{3}\colon(\mathrsfs{A}\circ\mathrsfs{B})_{(3)}\to\mathrsfs{E}_{(3)}

is an isomorphism.

The following result (generalising the distributive law criterion for operads that was first stated in [29]) was proved in [10] using the set operad filtration method of [21] and in [32] using a filtration on the Koszul complex; however, both proofs rely on the Künneth formula for symmetric collections and thus are not available in positive characteristic because in that case the group algebras 𝕜𝕊𝕟\mathbbold{k}\mathbb{S}_{n} are not semisimple.

Theorem 5.1.

Assume that the operads A\mathrsfs{A} and B\mathrsfs{B} are Koszul, and that the mappings ss and dd define a filtered distributive law between them. Then the operad E\mathrsfs{E} is Koszul, and the 𝕊\mathbb{S}-modules AB\mathrsfs{A}\circ\mathrsfs{B} and E\mathrsfs{E} are isomorphic.

Proof.

Let us first note that either of the characteristic zero proofs mentioned above (set operad filtration; filtration on the Koszul complex) works in the category of shuffle operads for arbitrary characteristic, since Künneth formula over a field is always available. Also, a symmetric operad O\mathrsfs{O} is Koszul if and only if it is Koszul as a shuffle operad, which proves the first statement of the theorem. To prove the second statement, we observe that in the category of nonsymmetric collections we have an isomorphism EfAfshBf(AB)f\mathrsfs{E}^{f}\simeq\mathrsfs{A}^{f}\circ_{sh}\mathrsfs{B}^{f}\simeq(\mathrsfs{A}\circ\mathrsfs{B})^{f}, and in the symmetric category we have a surjection ABE\mathrsfs{A}\circ\mathrsfs{B}\twoheadrightarrow\mathrsfs{E}. Since the forgetful functor from the category of symmetric collections to the category of nonsymmetric collections is one-to-one on objects, that surjection has to be an isomorphism. ∎

Example 5.1.

The following filtered distributive law was discussed by the first author in [10] as related to Gelfand–Varchenko algebras of locally constant functions on the complement to a hyperplane arrangement; unlike all other results of this paper, it is only available in characteristic zero. It is well known (and was probably first observed by Livernet and Loday) that the associative operad admits an alternative description as an operad generated by a symmetric binary operation \cdot\star\cdot and a skew-symmetric binary operation [,][\cdot,\cdot] that satisfy the relations

(5.1.8) [a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0,\displaystyle[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0,
(5.1.9) [ab,c]=a[b,c]+[a,c]b,\displaystyle[a\star b,c]=a\star[b,c]+[a,c]\star b,
(5.1.10) (ab)ca(bc)=[b,[a,c]].\displaystyle(a\star b)\star c-a\star(b\star c)=[b,[a,c]].

If we put V=span()\mathrsfs{V}=\operatorname{span}(\cdot\star\cdot), W=span([,])\mathrsfs{W}=\operatorname{span}([\cdot,\cdot]), and consider the operads A=Com\mathrsfs{A}=\operatorname{Com} and B=Lie\mathrsfs{B}=\operatorname{Lie},

(5.1.11) s((ab)ca(bc))=[b,[a,c]],\displaystyle s((a\star b)\star c-a\star(b\star c))=[b,[a,c]],
(5.1.12) d([ab,c])=a[b,c]+[a,c]b\displaystyle d([a\star b,c])=a\star[b,c]+[a,c]\star b

then there are no additional relations in weight 33, and in characteristic zero the projection AsCom\operatorname{As}\twoheadrightarrow\operatorname{Com} splits, therefore the associative operad is built from Com\operatorname{Com} and Lie\operatorname{Lie} via a filtered distributive law. Thus we obtain a yet another proof of the Koszulness of the associative operad, and also recover that as an 𝕊\mathbb{S}-module it is isomorphic to ComLie\operatorname{Com}\circ\operatorname{Lie}.

5.2. Filtered distributive laws and Koszul duality

An easy linear algebra exercise shows that if E\mathrsfs{E} is obtained from A\mathrsfs{A} and B\mathrsfs{B} via the mappings ss and dd as above, then the Koszul dual operad E!\mathrsfs{E}^{!} is similarly obtained from B!\mathrsfs{B}^{!} and A!\mathrsfs{A}^{!}. The following result shows that the notion of a filtered distributive law agrees very well with the Koszul duality theory for operads (which our previous example — being Koszul self-dual — did not quite manifest).

Theorem 5.2.

Assume that the operad E\mathrsfs{E} is obtained from the binary quadratic operads A\mathrsfs{A} and B\mathrsfs{B} via a filtered distributive law. Then its Koszul dual E!\mathrsfs{E}^{!} is obtained from B!\mathrsfs{B}^{!} and A!\mathrsfs{A}^{!} by a filtered distributive law as well whenever the projection E!B!\mathrsfs{E}^{!}\twoheadrightarrow\mathrsfs{B}^{!} splits.

Proof.

If both operads A\mathrsfs{A} and B\mathrsfs{B} are Koszul, then E\mathrsfs{E} is Koszul, and this gives us enough information to complete the proof, see [10] for details. Let us give a proof in the case of arbitrary A\mathrsfs{A} and B\mathrsfs{B} to show a yet another application of methods developed in [12].

Let us define an ordering on tree monomials in the free shuffle operad generated by VfWf\mathrsfs{V}^{f}\oplus\mathrsfs{W}^{f} in the following way. For two tree monomials, we first compute the number of generators from Vf\mathrsfs{V}^{f} used in each of them; if for one of them that number is greater than for the other, we say that monomial is greater than the other. Otherwise, we compare tree monomials using the lexicographic ordering on paths [13, 14]. This way we can be sure that the leading monomials of Rf\mathrsfs{R}^{f}, tree monomials spanning WfVf\mathrsfs{W}^{f}\bullet\mathrsfs{V}^{f}, and the leading monomials of Sf\mathrsfs{S}^{f} are the leading monomials of the defining relations of E\mathrsfs{E}.

Since the 𝕊\mathbb{S}-module E\mathrsfs{E} is a quotient of AB\mathrsfs{A}\circ\mathrsfs{B}, so the distributive law condition ensures that the set of weight 33 leading monomials of the reduced Gröbner basis of Ef\mathrsfs{E}^{f} is the union of the set of weight 33 leading monomials of the reduced Gröbner basis of Af\mathrsfs{A}^{f} and the set of weight 33 leading monomials of the reduced Gröbner basis of Bf\mathrsfs{B}^{f}: the presence of “mixed” leading monomials would make E(3)\mathrsfs{E}_{(3)} smaller than its natural upper bound (AB)(3)(\mathrsfs{A}\circ\mathrsfs{B})_{(3)}. In other words, all S-polynomials [13] of weight 33 of Ef\mathrsfs{E}^{f} are either S-polynomials of Af\mathrsfs{A}^{f} or S-polynomials of Bf\mathrsfs{B}^{f}.

The above description of leading monomials of the reduced Gröbner basis means that we have the full information on the part of the free resolution of Ef\mathrsfs{E}^{f} consisting of elements of weight at most 33, and a simple description of the homology classes of the bar complex of Ef\mathrsfs{E}^{f} up to weight 33. From [12], we know that generators of a free resolution of Ef\mathrsfs{E}^{f} can be constructed in terms of “overlaps” of leading monomials of the reduced Gröbner basis of Ef\mathrsfs{E}^{f}. Such generators of weight 22 are precisely the leading monomials of the defining relations, whereas the generators of weight 33 are either overlaps of pairs of leading monomials of defining relations or leading monomials of weight 33 elements of the reduced Gröbner basis. The differential induced on the space of the generators of that free resolution can be computed as follows. If an overlap of two leading monomials of defining relations produces, according to Buchberger’s algorithm [13], a nontrivial S-polynomial, the differential maps the generator corresponding to that overlap to the generator corresponding to the leading term of the respective S-polynomial. Otherwise, the differential maps the corresponding generator to zero. Together with the information on S-polynomials of Ef\mathrsfs{E}^{f} that we have, this means that up to weight 33 the homology of the bar complex of Ef\mathrsfs{E}^{f} is isomorphic to the shuffle composition of the corresponding homology for Bf\mathrsfs{B}^{f} and Af\mathrsfs{A}^{f}. Since the Koszul dual operads are dual to the diagonal parts of the bar homology, our statement follows in the shuffle category. In the symmetric category, we observe that because of the splitting of E!B!\mathrsfs{E}^{!}\twoheadrightarrow\mathrsfs{B}^{!}, there is a surjection B!A!E!\mathrsfs{B}^{!}\circ\mathrsfs{A}^{!}\twoheadrightarrow\mathrsfs{E}^{!}, and its bijectivity in weight 33 in the shuffle category implies bijectivity in the symmetric category as well. ∎

5.3. Operadic Künneth formula

We conclude this section with a general observation which appears to be useful for transferring statements of the characteristic zero operad theory in positive characteristic. If one examines the proof of Theorem 5.1 carefully, it becomes obvious that it works because of the following statement, a particular case of the operadic Künneth formula [25], which is valid over any ground field 𝕜\mathbbold{k}.

Theorem 5.3.

Let M\mathrsfs{M} and N\mathrsfs{N} be two reduced differential graded 𝕊\mathbb{S}-modules. Then

(5.3.1) H(MN)H(M)H(N).H_{*}(\mathrsfs{M}\circ\mathrsfs{N})\simeq H_{*}(\mathrsfs{M})\circ H_{*}(\mathrsfs{N}).
Proof.

Let us note that there is a natural map

(5.3.2) κ:H(M)H(N)H(MN).\kappa\colon H_{*}(\mathrsfs{M})\circ H_{*}(\mathrsfs{N})\to H_{*}(\mathrsfs{M}\circ\mathrsfs{N}).

Our strategy is to apply the forgetful functor, and prove that

(5.3.3) κf:(H(M)H(N))f(H(MN))f\kappa^{f}\colon(H_{*}(\mathrsfs{M})\circ H_{*}(\mathrsfs{N}))^{f}\to(H_{*}(\mathrsfs{M}\circ\mathrsfs{N}))^{f}

is an isomorphism in the shuffle category. Since the forgetful functor is one-to-one on objects, this would mean that κ\kappa is an isomorphism. In the shuffle category, since the forgetful functor is monoidal (that is the only part of the proof where it is crucial that our collections are reduced), we have

(5.3.4) (H(M)H(N))f(H(M))fsh(H(N))fH(Mf)shH(Nf),(H_{*}(\mathrsfs{M})\circ H_{*}(\mathrsfs{N}))^{f}\simeq(H_{*}(\mathrsfs{M}))^{f}\circ_{sh}(H_{*}(\mathrsfs{N}))^{f}\simeq H_{*}(\mathrsfs{M}^{f})\circ_{sh}H_{*}(\mathrsfs{N}^{f}),

and

(5.3.5) H(MN)fH((MN)f)H(MfshNf).H_{*}(\mathrsfs{M}\circ\mathrsfs{N})^{f}\simeq H_{*}((\mathrsfs{M}\circ\mathrsfs{N})^{f})\simeq H_{*}(\mathrsfs{M}^{f}\circ_{sh}\mathrsfs{N}^{f}).

Finally, since the shuffle composition is polynomial in the components of Mf\mathrsfs{M}^{f} and Nf\mathrsfs{N}^{f}, we have

(5.3.6) H(MfshNf)H(Mf)shH(Nf),H_{*}(\mathrsfs{M}^{f}\circ_{sh}\mathrsfs{N}^{f})\simeq H_{*}(\mathrsfs{M}^{f})\circ_{sh}H_{*}(\mathrsfs{N}^{f}),

and the theorem follows. ∎

6. Koszulness of cacti and other operads

In this section, we prove that the operads NAPD\textrm{{NAP}}_{D} and BCactC\textrm{{BCact}}_{C} are Koszul, and also show how one can use filtered distributive laws to recover known results, and obtain new results on the structure of various known operads.

6.1. The operad PostLie\operatorname{PostLie}

The operad PostLie\operatorname{PostLie} was defined and studied in [7, 33], and recently appeared in various contexts, see [3, 4, 5, 6]. It is generated by a skew-symmetric operation [,][\cdot,\cdot] and an operation \cdot\circ\cdot without any symmetries that satisfy the relations

(6.1.1) [a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0,\displaystyle[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0,
(6.1.2) (ab)ca(bc)(ac)b+a(cb)=a[b,c],\displaystyle(a\circ b)\circ c-a\circ(b\circ c)-(a\circ c)\circ b+a\circ(c\circ b)=a\circ[b,c],
(6.1.3) [a,b]c=[ac,b]+[a,bc].\displaystyle[a,b]\circ c=[a\circ c,b]+[a,b\circ c].

The Koszul dual PostLie!=ComTrias\operatorname{PostLie}^{!}=\operatorname{ComTrias} by commutative trialgebras is generated by a symmetric operation \cdot\bullet\cdot and an operation \cdot\star\cdot without any symmetries that satisfy the relations

(6.1.4) (ab)c=a(bc)=a(cb),\displaystyle(a\star b)\star c=a\star(b\star c)=a\star(c\star b),
(6.1.5) (ab)c=a(bc),\displaystyle(a\bullet b)\bullet c=a\bullet(b\bullet c),
(6.1.6) a(bc)=a(bc),\displaystyle a\star(b\star c)=a\star(b\bullet c),
(6.1.7) a(bc)=(ab)c.\displaystyle a\bullet(b\star c)=(a\bullet b)\star c.
Theorem 6.1.

The operad PostLie\operatorname{PostLie} is Koszul, and as an 𝕊\mathbb{S}-module is isomorphic to LieMag\operatorname{Lie}\circ\operatorname{Mag}.

Proof.

By an immediate computation, we see that the operad PostLie\operatorname{PostLie} is built from the operads A=Lie\mathrsfs{A}=\operatorname{Lie} and B=Mag\mathrsfs{B}=\operatorname{Mag} via a filtered distributive law. Indeed, we may put V=span([,])\mathrsfs{V}=\operatorname{span}([\cdot,\cdot]), W=span()\mathrsfs{W}=\operatorname{span}(\cdot\circ\cdot), and

(6.1.8) s([a,[b,c]]+[b,[c,a]]+[c,[a,b]])=0,\displaystyle s([a,[b,c]]+[b,[c,a]]+[c,[a,b]])=0,
(6.1.9) d([a,b]c)=[ac,b]+[a,bc],\displaystyle d([a,b]\circ c)=[a\circ c,b]+[a,b\circ c],
(6.1.10) d(a[b,c])=(ab)ca(bc)(ac)b+a(cb)\displaystyle d(a\circ[b,c])=(a\circ b)\circ c-a\circ(b\circ c)-(a\circ c)\circ b+a\circ(c\circ b)

(the weight 33 condition can be easily checked by hand, and since s=0s=0, the projection is split automatically). This proves both statements of our theorem. ∎

The Koszulness of PostLie\operatorname{PostLie} and PostLie!=ComTrias\operatorname{PostLie}^{!}=\operatorname{ComTrias} was established in [7] using partition posets. Note that our approach applies to ComTrias\operatorname{ComTrias} as well, since the splitting of the projection ComTriasMag!=Nil\operatorname{ComTrias}\twoheadrightarrow\operatorname{Mag}^{!}=\mathop{\mathrm{Nil}} only requires the splitting on the level of generators, which we already have. The 𝕊\mathbb{S}-module isomorphism PostLieLieMag\operatorname{PostLie}\simeq\operatorname{Lie}\circ\operatorname{Mag} was first observed in [33]111The proof in the published version of that paper is incomplete (one has to check that the extension of \cdot\circ\cdot to the free algebra Lie(Mag(V))\operatorname{Lie}(\operatorname{Mag}(V)) is consistent with the Jacobi identity).. This isomorphism, together with the following corollary, allows to complete the PostLie algebras description in [34].

Corollary 6.2.

The suboperad of PostLie\operatorname{PostLie} generated by \cdot\circ\cdot is isomorphic to Mag\operatorname{Mag}.

Note that the dual version of this corollary is not true: even though on the level of 𝕊\mathbb{S}-modules we have ComTriasNilCom\operatorname{ComTrias}\simeq\mathop{\mathrm{Nil}}\circ\operatorname{Com}, it is easy to check the suboperad of the operad ComTrias\operatorname{ComTrias} generated by the operation \cdot\star\cdot is isomorphic to Perm\operatorname{Perm}.

6.2. The operad of commutative tridendriform algebras

The operad of commutative tridendriform algebras was studied by Loday [28]. Let us write down the relations of this operad, and of its Koszul dual. The operad CTD\operatorname{CTD} is generated by a symmetric operation \cdot\star\cdot and an operation \cdot\prec\cdot without any symmetries that satisfy the relations

(6.2.1) (ab)c=a(bc+cb+bc),\displaystyle(a\prec b)\prec c=a\prec(b\prec c+c\prec b+b\star c),
(6.2.2) (ab)c=a(bc)=(ac)b,\displaystyle(a\star b)\prec c=a\star(b\prec c)=(a\prec c)\star b,
(6.2.3) (ab)c=a(bc).\displaystyle(a\star b)\star c=a\star(b\star c).

The operad CTD!\operatorname{CTD}^{!} is generated by a skew-symmetric operation [,][\cdot,\cdot] and an operation \cdot\bullet\cdot without any symmetries that satisfy the relations

(6.2.4) [a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0,\displaystyle[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0,
(6.2.5) a[b,c]=a(bc),\displaystyle a\bullet[b,c]=a\bullet(b\bullet c),
(6.2.6) [a,b]c=[ac,b]+[a,bc],\displaystyle[a,b]\bullet c=[a\bullet c,b]+[a,b\bullet c],
(6.2.7) (ab)c=a(bc)+(ac)b.\displaystyle(a\bullet b)\bullet c=a\bullet(b\bullet c)+(a\bullet c)\bullet b.
Theorem 6.3.
  • The operad CTD\operatorname{CTD} is Koszul, and as an 𝕊\mathbb{S}-module is isomorphic to ZinbCom\operatorname{Zinb}\circ\operatorname{Com}.

  • The operad CTD!\operatorname{CTD}^{!} is Koszul, and as an 𝕊\mathbb{S}-module is isomorphic to LieLeib\operatorname{Lie}\circ\operatorname{Leib}.

Proof.

By an immediate computation, we notice that the operad CTD\operatorname{CTD} is built from the operad Zinb\operatorname{Zinb} and Com\operatorname{Com} via a filtered distributive law. Indeed, we may put V=span()\mathrsfs{V}=\operatorname{span}(\cdot\prec\cdot), W=span()\mathrsfs{W}=\operatorname{span}(\cdot\star\cdot), and

(6.2.8) s((ab)ca(bc+cb))=a(bc),\displaystyle s((a\prec b)\prec c-a\prec(b\prec c+c\prec b))=a\prec(b\star c),
(6.2.9) d(a(bc))=(ab)c,\displaystyle d(a\star(b\prec c))=(a\star b)\prec c,
(6.2.10) d((ac)b)=(ab)c.\displaystyle d((a\prec c)\star b)=(a\star b)\prec c.

(the weight 33 condition can be easily checked by hand; the projection CTDZinb\operatorname{CTD}\twoheadrightarrow\operatorname{Zinb} splits because Zinb(n)\operatorname{Zinb}(n) is a free 𝕊n\mathbb{S}_{n}-module). Therefore Theorems 5.1 and 5.2 prove all the statements of our theorem (for the latter, we observe that the projection CTD!LieCTD^{!}\twoheadrightarrow\operatorname{Lie} splits because for CTD!\operatorname{CTD}^{!} we have s=0s=0). ∎

The 𝕊\mathbb{S}-module isomorphism in the first part was proved in [28] as a consequence of the existence of a good triple of operads (As,CTD,Com)(\operatorname{As},\operatorname{CTD},\operatorname{Com}) and the isomorphism of 𝕊\mathbb{S}-modules AsZinb\operatorname{As}\simeq\operatorname{Zinb}. Our results recover that isomorphism, prove a similar isomorphism for CTD!\operatorname{CTD}^{!}, and also describe the sub-operads of CTD\operatorname{CTD} and CTD!\operatorname{CTD}^{!} generated by either one of the operations. This provides the following bits of information that have been missing in [34].

Proposition 6.4.
  • The generating series of the operad of dual commutative tridendriform algebras is equal to

    (6.2.11) fCTD!(t)=log(12t1t).f^{\operatorname{CTD}^{!}}(t)=-\log\left(\frac{1-2t}{1-t}\right).
  • The suboperad of CTD!\operatorname{CTD}^{!} generated by the operation \cdot\bullet\cdot is isomorphic to Leib\operatorname{Leib}.

Note that though the underlying 𝕊\mathbb{S}-module of the operad Zinb=Leib!\operatorname{Zinb}=\operatorname{Leib}^{!} is used in the definition of the operad CTD\operatorname{CTD}, the dual statement to the second part of this proposition is not true: in the operad CTD\operatorname{CTD}, the suboperad generated by \cdot\prec\cdot is not isomorphic to Zinb\operatorname{Zinb} because of the “lower term” a(bc)a\prec(b\star c) added to the Zinbiel relation.

6.3. The linear NAPD\textrm{{NAP}}_{D} operad

Proposition 6.5.

Let DD be a graded vector space. The operad NAPD\textrm{{NAP}}_{D} is generated by binary operations D𝕜𝕊𝟚D\otimes\mathbbold{k}\mathbb{S}_{2}; these operations satisfy the relations

(6.3.1) d1d′′.(23)=(1)|d||d′′|d′′1d(for homogeneous d,d′′D).d^{\prime}\circ_{1}d^{\prime\prime}.(23)=(-1)^{|d^{\prime}||d^{\prime\prime}|}d^{\prime\prime}\circ_{1}d^{\prime}\quad(\text{for homogeneous }d^{\prime},d^{\prime\prime}\in D).\\
Proof.

The “geometric” version of this proposition is proved as part of Proposition 3.1. That the linear version is generated by binary operations may be proved by precisely the same method. As before the relations just express the symmetric group action on trees:

(6.3.2) (23).321dd′′=(1)|d||d′′|231dd′′.(23).\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}{\hbox{\kern 15.20007pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.90015pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2}$}}}}}}}{\hbox{\kern-3.0pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-3.76772pt\raise-15.28233pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.8978pt\hbox{$\scriptstyle{d^{\prime}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 5.0918pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.30011pt\raise-15.28233pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.8978pt\hbox{$\scriptstyle{d^{\prime\prime}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 31.30298pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 33.40015pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}}}}}\ignorespaces}=(-1)^{|d^{\prime}||d^{\prime\prime}|}\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2}$}}}}}}}{\hbox{\kern 15.20007pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.90015pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3}$}}}}}}}{\hbox{\kern-3.0pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 12.70007pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-3.76772pt\raise-15.28233pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.8978pt\hbox{$\scriptstyle{d^{\prime}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 5.0918pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.30011pt\raise-15.28233pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.8978pt\hbox{$\scriptstyle{d^{\prime\prime}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 31.30298pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 33.40015pt\raise-19.6445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}}}}}\ignorespaces}.

Theorem 6.6.

The operad NAPD\textrm{{NAP}}_{D} is Koszul.

Proof.

Note that according to Proposition 6.5, the operad NAPD\textrm{{NAP}}_{D} is a quotient of the operad ND\mathrsfs{N}_{D} generated by binary operations D𝕜𝕊𝟚D\otimes\mathbbold{k}\mathbb{S}_{2} subject only to relations (6.3.1). Let us show that the operad ND\mathrsfs{N}_{D} is Koszul, and is isomorphic to NAPD\textrm{{NAP}}_{D}.

First of all, one can easily check that the Koszul dual ND!\mathrsfs{N}_{D}^{!} of the operad ND\mathrsfs{N}_{D} has generators D𝕜𝕊𝟚D^{*}\otimes\mathbbold{k}\mathbb{S}_{2} subject to relations

(6.3.3) e1e′′=(1)|e||e′′|e′′1e.(23)(for homogeneous e,e′′D),\displaystyle e^{\prime}\circ_{1}e^{\prime\prime}=(-1)^{|e^{\prime}||e^{\prime\prime}|}e^{\prime\prime}\circ_{1}e^{\prime}.(23)\quad(\text{for homogeneous }e^{\prime},e^{\prime\prime}\in D^{*}),
(6.3.4) e2e′′=0.\displaystyle e^{\prime}\circ_{2}e^{\prime\prime}=0.

This immediately implies that if we choose a basis e1,,ene_{1},\ldots,e_{n} of DD^{*}, then for a basis of NAPD!(1)\textrm{{NAP}}_{D}^{!}(1) we can take the set of all “left combs”

(6.3.5) (ei11ei211ein1).(1,k,k1,,2),(e_{i_{1}}\circ_{1}e_{i_{2}}\circ_{1}\cdots\circ_{1}e_{i_{n-1}}).(1,k,k-1,\ldots,2),

because our relations mean that the tree monomials can only “grow” to the left, and that we can reorder all elements except for the leftmost one arbitrarily. There are (dimD)n1n(\dim D)^{n-1}\cdot n such monomials. At the same time, if we explicitly write the relations of ND\mathrsfs{N}_{D} as a shuffle operad, we see that its relations are

(6.3.6) d1d′′.(23)=(1)|d||d′′|d′′1d,\displaystyle d^{\prime}\circ_{1}d^{\prime\prime}.(23)=(-1)^{|d^{\prime}||d^{\prime\prime}|}d^{\prime\prime}\circ_{1}d^{\prime},
(6.3.7) d1d′′~.(23)=(1)|d||d′′|d′′~2d~,\displaystyle d^{\prime}\circ_{1}\tilde{d^{\prime\prime}}.(23)=(-1)^{|d^{\prime}||d^{\prime\prime}|}\tilde{d^{\prime\prime}}\circ_{2}\tilde{d^{\prime}},
(6.3.8) d1d′′~=(1)|d||d′′|d′′~j2d.\displaystyle d^{\prime}\circ_{1}\tilde{d^{\prime\prime}}=(-1)^{|d^{\prime}||d^{\prime\prime}|}\tilde{d^{\prime\prime}}_{j}\circ_{2}d^{\prime}.

Here we use the notation d~\tilde{d} to abbreviate the “opposite operation” dσD𝕜𝕊𝟚d\otimes\sigma\in D\otimes\mathbbold{k}\mathbb{S}_{2}.

Let us pick a basis d1,,dnd_{1},\ldots,d_{n} of DD, and define an ordering of tree monomials in the free shuffle operad with binary generators D𝕜𝕊𝟚D\otimes\mathbbold{k}\mathbb{S}_{2} which is very similar to the path-lexicographic ordering [13]. For two tree monomials, we first compare lexicographically their sequences of leaves, read left-to-right, and then compare the path sequences of those monomials, assuming

(6.3.9) d1<<dn<d1.(12)<<dn.(12).d_{1}<\ldots<d_{n}<d_{1}.(12)<\ldots<d_{n}.(12).

The leading monomials of the relations of ND\mathrsfs{N}_{D} are, respectively, di1dj.(23)d_{i}\circ_{1}d_{j}.(23), di1d~j.(23)d_{i}\circ_{1}\tilde{d}_{j}.(23), and di1d~jd_{i}\circ_{1}\tilde{d}_{j}. The trees built from these monomials as building blocks give an upper bound on the dimensions of components of the Koszul dual operad which is sharp precisely when our operads have quadratic Gröbner bases [11]. It is easy to see that there are exactly (dimD)n1n(\dim D)^{n-1}\cdot n tree monomials built from these, so both the operads ND\mathrsfs{N}_{D} and ND!\mathrsfs{N}_{D}^{!} are Koszul. Power series inversion equation for Koszul operads [17] implies that

(6.3.10) fND!(fND(t))=t.f_{\mathrsfs{N}_{D}^{!}}(-f_{\mathrsfs{N}_{D}}(-t))=t.

Since it is clear that

(6.3.11) fND!(t)=n1(dimD)n1n!tn,f_{\mathrsfs{N}^{!}_{D}}(t)=\sum_{n\geq 1}\frac{(\dim D)^{n-1}}{n!}t^{n},

after denoting g(s):=fND(dimDs)dimDg(s):=\frac{f_{\mathrsfs{N}_{D}}(\dim D\cdot s)}{\dim D}, we see that g(s)g(-s) is the inverse of sexp(s)-s\exp(-s) under composition, and hence g(s)g(s) is the generating function enumerating rooted trees. Recalling that NAPD\textrm{{NAP}}_{D} as an 𝕊\mathbb{S}-module is described as DD-decorated rooted trees, we conclude that components of ND\mathrsfs{N}_{D} and NAPD\textrm{{NAP}}_{D} have same dimensions, and therefore these operads are isomorphic, the former being a quotient of the latter. ∎

This proof concluded by showing that NAPD\textrm{{NAP}}_{D} is presented by quadratic relations. By considering the linearization of the operad NAPF\textrm{{NAP}}_{F} when FF is a finite set we see that NAPF\textrm{{NAP}}_{F} is also presented by quadratic relations. Now suppose that YY is infinite. Any finite set of YY-trees involves a finite number of labels FF and hence any relation in NAPY\textrm{{NAP}}_{Y} is contained within NAPF\textrm{{NAP}}_{F} which is in turn presented by quadratic relations. Therefore we have the following.

Corollary 6.7.

Let YY be a topological space. Then the operad NAPY\textrm{{NAP}}_{Y} is generated by binary operations and is presented by its quadratic relations.

Remark 6.1.

The proof of Theorem 6.6 used arguments involving the Koszul dual and its Hilbert series to show that the quadratic relations suffices to present NAPY\textrm{{NAP}}_{Y}. A more direct proof is possible using a certain “geometric” map from (NAPY(2))\mathcal{F}(\textrm{{NAP}}_{Y}(2)) to NAPY\textrm{{NAP}}_{Y}. We will denote elements of NAPY(2)\textrm{{NAP}}_{Y}(2) by

(6.3.12) [Uncaptioned image] and [Uncaptioned image]

for d,dYd,d^{\prime}\in Y. In each generator there is a thin line labelled with an element of YY, a thick line running from root to the end of a leaf and a small portion of thick line at the end of the other leaf. Then the NAPY\textrm{{NAP}}_{Y}-relation (3.1.5) states that

(6.3.13) d1d=[Uncaptioned image]=[Uncaptioned image]=d1d.(23).d^{\prime}\circ_{1}d\quad=\quad\vbox{\hbox{\includegraphics[height=56.9055pt]{NAPrel1}}}\quad=\quad\vbox{\hbox{\includegraphics[height=56.9055pt]{NAPrel2}}}\quad=\quad d\circ_{1}d^{\prime}.(23).

The thin lines may be seen to “move freely” along the thick lines. A couple of facts are apparent about any arity nn tree monomial in these generators:

  1. (1)

    The thick lines never branch and each thick line can be followed up the tree to a unique leaf, in this way the thick lines are in bijection with the leaves.

  2. (2)

    Every thin line joins two thick lines and is labelled by an element of YY.

So by contracting each thick line to a point and using these as vertices we are left with a tree with vertex set [n]\left[n\right]. The thin lines become the edges and are already labelled by elements of YY. This tree is rooted by following the thick line starting at the bottom of the tree monomial to its leaf. Hence we have an explicit map from (NAPY(2))\mathcal{F}(\textrm{{NAP}}_{Y}(2)) to NAPY\textrm{{NAP}}_{Y}. An example:

(6.3.14)  [Uncaptioned image]4125c3adb\vbox{\hbox{ \includegraphics[height=99.58464pt]{treemonomial} }}\quad\mapsto\qquad\vbox{ \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 32.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 64.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{4}$}}}}}}}{\hbox{\kern-5.5pt\raise-36.44443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1}$}}}}}}}{\hbox{\kern 29.5pt\raise-36.44443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{2}$}}}}}}}{\hbox{\kern 64.5pt\raise-36.44443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{5\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 70.0pt\raise-18.22221pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{c}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 70.0pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-72.88885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 29.5pt\raise-72.88885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{3\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 7.16235pt\raise-58.98874pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{a}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 5.27441pt\raise-41.94443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 35.0pt\raise-54.66664pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{d}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 35.0pt\raise-41.94443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 52.5pt\raise-59.87445pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{b}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 64.72021pt\raise-41.94443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 67.0pt\raise-72.88885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}}}}}\ignorespaces}

The fact that the quadratic presentation forms a Gröbner basis means that the operad it presents may be described by certain admissible tree monomials. By comparing this basis with the YY-trees via the map just described we may see that NAPY\textrm{{NAP}}_{Y} is presented by the quadratic basis. A reader interested in combinatorics should compare our construction with one of the well known “Catalan bijections” which takes a planar rooted binary tree with nn leaves and contracts all left-going edges, thus obtaining a planar rooted tree with nn vertices.

6.4. The linear operads of based cacti

Proposition 6.8.

Let (C,Δ,ϵ,γ)(C,\Delta,\epsilon,\gamma) be a graded augmented cocommutative coalgebra. The operad BCactC\textrm{{BCact}}_{C} is generated by binary operations C𝕜𝕊𝟚C\otimes\mathbbold{k}\mathbb{S}_{2}; these operations satisfy the relations

(6.4.1) c1c′′.(23)=(1)|c||c′′|c′′1c(for homogeneous c,c′′C),\displaystyle c^{\prime}\circ_{1}c^{\prime\prime}.(23)=(-1)^{|c^{\prime}||c^{\prime\prime}|}c^{\prime\prime}\circ_{1}c^{\prime}\quad(\text{for homogeneous }c^{\prime},c^{\prime\prime}\in C),
(6.4.2) c2𝟙=c(1)1c(2)(for cC)\displaystyle c\circ_{2}\operatorname{\mathbbold{1}}=\sum c_{(1)}\circ_{1}c_{(2)}\quad(\text{for }c\in C)

which suffice to present the operad.

Proof.

According to Proposition 4.2, the operad BCactC\textrm{{BCact}}_{C} is isomorphic to the quotient of NAPC\textrm{{NAP}}_{C} by the operadic ideal generated by relations (6.4.2). Also, from the proof of Theorem 6.6, we know that the relations (6.4.1) are the defining relations of NAPC\textrm{{NAP}}_{C}, which completes the proof. ∎

Remark 6.2.

For the sake of completeness, let us describe the relations of the Koszul dual operad BCactC!\textrm{{BCact}}_{C}^{!}. Its space of generators is C𝕜𝕊𝟚C^{*}\otimes\mathbbold{k}\mathbb{S}_{2}; note that CC^{*} is a graded commutative algebra which splits as 𝕜𝟙¯\mathbbold{k}\operatorname{\mathbbold{1}}\oplus\overline{C^{*}}. The relations are

(6.4.3) c2c¯=0for homogeneous cC,c¯C¯,c\circ_{2}\overline{c}=0\quad\text{for homogeneous }c\in C^{*},\overline{c}\in\overline{C^{*}},
(6.4.4) c1c′′(cc′′)2𝟙==(1)|c||c′′|(c′′1c(c′′c)2𝟙).(23)for homogeneous c,c′′C.c^{\prime}\circ_{1}c^{\prime\prime}-(c^{\prime}c^{\prime\prime})\circ_{2}\operatorname{\mathbbold{1}}=\\ =(-1)^{|c^{\prime}||c^{\prime\prime}|}(c^{\prime\prime}\circ_{1}c^{\prime}-(c^{\prime\prime}c^{\prime})\circ_{2}\operatorname{\mathbbold{1}}).(23)\quad\text{for homogeneous }c^{\prime},c^{\prime\prime}\in C^{*}.

Note that for c=c=𝟙c=c^{\prime}=\operatorname{\mathbbold{1}} the relation (6.4.4) is precisely the pre-Lie relation. This is not at all surprising, since by combining Theorem 5.2 with Theorem 6.9 below we expect that the 𝕊\mathbb{S}-modules

(6.4.5) BCactC! and NAPC¯!(Perm)!NAPC¯!PreLie\textrm{{BCact}}_{C}^{!}\text{ and }\textrm{{NAP}}_{\overline{C}}^{!}\circ(\operatorname{Perm})^{!}\simeq\textrm{{NAP}}_{\overline{C}}^{!}\circ\operatorname{PreLie}

are isomorphic, and that PreLie\operatorname{PreLie} is a suboperad of BCactC!\textrm{{BCact}}_{C}^{!}.

Theorem 6.9.

For a graded augmented cocommutative coalgebra CC, the operad BCactC\textrm{{BCact}}_{C} is Koszul, and as 𝕊\mathbb{S}-modules,

(6.4.6) BCactCPermNAPC¯.\textrm{{BCact}}_{C}\simeq\operatorname{Perm}\circ\textrm{{NAP}}_{\overline{C}}.
Proof.

Let us show that BCactC\textrm{{BCact}}_{C} is obtained from Perm\operatorname{Perm} and NAPC¯\textrm{{NAP}}_{\overline{C}} via a filtered distributive law.

Using the splitting of CC along the augmentation, we can refine the formulae (6.4.1) and (6.4.2) as follows:

(6.4.7) 𝟙1𝟙.(23)=𝟙1𝟙,\displaystyle\operatorname{\mathbbold{1}}\circ_{1}\operatorname{\mathbbold{1}}.(23)=\operatorname{\mathbbold{1}}\circ_{1}\operatorname{\mathbbold{1}},
(6.4.8) c1𝟙=𝟙1c.(23)(for cC¯),\displaystyle c\circ_{1}\operatorname{\mathbbold{1}}=\operatorname{\mathbbold{1}}\circ_{1}c.(23)\quad(\text{for }c\in\overline{C}),
(6.4.9) c1c′′.(23)=(1)|c||c′′|c′′1c(for homogeneous c,c′′C¯),\displaystyle c^{\prime}\circ_{1}c^{\prime\prime}.(23)=(-1)^{|c^{\prime}||c^{\prime\prime}|}c^{\prime\prime}\circ_{1}c^{\prime}\quad(\text{for homogeneous }c^{\prime},c^{\prime\prime}\in\overline{C}),
(6.4.10) 𝟙2𝟙=𝟙1𝟙,\displaystyle\operatorname{\mathbbold{1}}\circ_{2}\operatorname{\mathbbold{1}}=\operatorname{\mathbbold{1}}\circ_{1}\operatorname{\mathbbold{1}},
(6.4.11) c2𝟙=c(1)1c(2)(for cC¯).\displaystyle c\circ_{2}\operatorname{\mathbbold{1}}=\sum c_{(1)}\circ_{1}c_{(2)}\quad(\text{for }c\in\overline{C}).

The formulae (6.4.7), (6.4.8), and (6.4.9) represent the formula (6.4.1) after splitting, and the formulae (6.4.10) and (6.4.11) represent the formula (6.4.2) after splitting. It is clear that the formulae (6.4.7) and (6.4.10) describe the operad Perm\operatorname{Perm}, while the formula (6.4.9) describes precisely the operad NAPC¯\textrm{{NAP}}_{\overline{C}}. It remains to show that the formulae (6.4.8) and (6.4.11) define a filtered distributive law between these two operads. To be precise, we first need to check that the formula (6.4.11) stands a chance of defining a distributive law, since a priori its right hand side is a mixture of all possible tree monomials. However, we first note that the compatibility of the counit with the coproduct ensures that if cC¯c\in\overline{C} then

(6.4.12) Δ(c)C¯𝕜𝟙+𝕜𝟙¯+¯¯,\Delta(c)\in\overline{C}\otimes\mathbbold{k}\operatorname{\mathbbold{1}}+\mathbbold{k}\operatorname{\mathbbold{1}}\otimes\overline{C}+\overline{C}\otimes\overline{C},

so the tree monomial 𝟙1𝟙\operatorname{\mathbbold{1}}\circ_{1}\operatorname{\mathbbold{1}} is missing on the right hand side of (6.4.11). Also, the tree monomials of the form c1𝟙c^{\prime}\circ_{1}\operatorname{\mathbbold{1}} (with cC¯c^{\prime}\in\overline{C}) appearing on the right hand side should be rewritten using the formula (6.4.8), but this minor detail will not affect any of our computations.

To check that the formulae (6.4.8) and (6.4.11) define a filtered distributive law between Perm\operatorname{Perm} and NAPC¯\textrm{{NAP}}_{\overline{C}}, one need to perform carefully all ambiguous rewritings bringing the generator 𝟙\operatorname{\mathbbold{1}} towards the root of a tree monomial, checking that they do not give additional new relations. We shall omit the details, indicating briefly that the rewriting of

(6.4.13) c2(𝟙1𝟙.(23))=c2(𝟙1𝟙)c\circ_{2}(\operatorname{\mathbbold{1}}\circ_{1}\operatorname{\mathbbold{1}}.(23))=c\circ_{2}(\operatorname{\mathbbold{1}}\circ_{1}\operatorname{\mathbbold{1}})

does not result in a new relation because the coproduct of CC is cocommutative, while the rewriting of

(6.4.14) c2(𝟙1𝟙)=c2(𝟙2𝟙)c\circ_{2}(\operatorname{\mathbbold{1}}\circ_{1}\operatorname{\mathbbold{1}})=c\circ_{2}(\operatorname{\mathbbold{1}}\circ_{2}\operatorname{\mathbbold{1}})

does not result in a new relation because the coproduct of CC is coassociative, and finally the rewriting of

(6.4.15) c1(c′′2𝟙)=(1)|c||c′′|(c′′2𝟙)1c,c^{\prime}\circ_{1}(c^{\prime\prime}\circ_{2}\operatorname{\mathbbold{1}})=(-1)^{|c^{\prime}||c^{\prime\prime}|}(c^{\prime\prime}\circ_{2}\operatorname{\mathbbold{1}})\circ_{1}c^{\prime},

as well as

(6.4.16) (c1𝟙)3𝟙=(c2𝟙)1𝟙(c\circ_{1}\operatorname{\mathbbold{1}})\circ_{3}\operatorname{\mathbbold{1}}=(c\circ_{2}\operatorname{\mathbbold{1}})\circ_{1}\operatorname{\mathbbold{1}}

does not result in new relations because of the NAP-type relations (6.4.1). This, together with the observation that the projection BCactCPerm\textrm{{BCact}}_{C}\twoheadrightarrow\operatorname{Perm} always splits because the relations of Perm\operatorname{Perm} remain undeformed (s=0s=0), completes the proof of our theorem. ∎

Remark 6.3.

Let YY be the (pointed) two-element set {𝟎,1}\{\mathbf{0},1\}, so that C=H(Y)C=H_{*}(Y) is the split two-dimensional coalgebra 𝕜𝕜\mathbbold{k}\oplus\mathbbold{k}, as in the example 4.1 below. Theorem 6.9 shows that we have an 𝕊\mathbb{S}-module isomorphism

(6.4.17) BCactCPermNAPPermPreLieNAP!PreLieBCactC!,\textrm{{BCact}}_{C}\simeq\operatorname{Perm}\circ\textrm{{NAP}}\simeq\operatorname{Perm}\circ\operatorname{PreLie}\simeq\textrm{{NAP}}^{!}\circ\operatorname{PreLie}\simeq\textrm{{BCact}}_{C}^{!},

but the operads BCactC\textrm{{BCact}}_{C} and BCactC!\textrm{{BCact}}_{C}^{!} are substantially different. Of course, there is also a trivial operad structure on the 𝕊\mathbb{S}-module PermPreLie\operatorname{Perm}\circ\operatorname{PreLie} for which the insertion of any Perm\operatorname{Perm}-operation into any PreLie\operatorname{PreLie}-operation is equal to zero; this operad is Koszul and self-dual. It is an open question whether there exist nontrivial self-dual Koszul operad structures on PermPreLie\operatorname{Perm}\circ\operatorname{PreLie} via a distributive law or a filtered distributive law between Perm\operatorname{Perm} and PreLie\operatorname{PreLie}; such operads would be natural candidates to encode “pre-Poisson algebras” (much different from the ones in [1]) and “pre-associative algebras”.

References

  • [1] Marcelo Aguiar, Pre-Poisson algebras, Lett. Math. Phys. 54 (2000), no. 4, 263–277.
  • [2] Vladimir I. Arnold, The cohomology ring of dyed braids, Mat. Zametki 5 (1969), 227–231.
  • [3] Chengming Bai, Li Guo and Xiang Ni, Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras, Comm. Math. Phys. 297 (2010), no. 2, 553–596.
  • [4] Chengming Bai, Olivia Bellier, Li Guo and Xiang Ni, Splitting of operations, Manin products and Rota-Baxter operators, Preprint arXiv:1106.6080.
  • [5] Dietrich Burde, Karel Dekimpe and Kim Vercammen, Affine actions on Lie groups and post-Lie algebra structures, Preprint arXiv:1109.0251.
  • [6] Dietrich Burde and Karel Dekimpe, Post-Lie algebra structures and generalized derivations of semisimple Lie algebras, Preprint arXiv:1108.5950.
  • [7] Frédéric Chapoton and Bruno Vallette, Pointed and multi-pointed partitions of type A and B, J. Alg. Comb. 23 (2006), no. 4, 295–316.
  • [8] Frédéric Chapoton, Un endofoncteur de la catégorie des opérades, in:“Dialgebras and related operads”, Lecture Notes in Math. 1763, Springer, 2001, 105–110.
  • [9] Frederick R. Cohen, Thomas J. Lada and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics 533, Springer, Berlin. 1976.
  • [10] Vladimir Dotsenko, An operadic approach to deformation quantisation of compatible Poisson brackets, I, J. Gen. Lie Theory App., 1 (2007), no. 2, 107–115.
  • [11] by same author, Freeness theorems for operads via Gröbner bases, Séminaires et Congrès 26 (2011), 61–76.
  • [12] Vladimir Dotsenko and Anton Khoroshkin, Free resolutions via Gröbner bases, Preprint arXiv:0912.4895.
  • [13] by same author, Gröbner bases for operads, Duke Math. J. 153 (2010), no. 2, 363–396.
  • [14] Vladimir Dotsenko and Mikael Vejdemo Johansson, Implementing Gröbner bases for operads, Séminaires et Congrès 26 (2011), 77–98.
  • [15] Askar Dzhumadil’daev, Clas Löfwall, Trees, free right-symmetric algebras, free Novikov algebras and identities, Homology Homotopy Appl. 4 (2002), 165–190.
  • [16] Ezra Getzler and John D.S. Jones, Operads, homotopy algebra, and iterated integrals for double loop spaces, Preprint arXiv:hep-th/9403055.
  • [17] Victor Ginzburg and Mikhail Kapranov, Koszul duality for operads Duke Math. J., 76 (1994), no. 1, 203–272.
  • [18] James Griffin, Diagonal complexes and the integral homology of the automorphism group of a free product, Preprint arXiv:1011.6038.
  • [19] Craig Jensen, Jon McCammond and John Meier, The integral cohomology of the group of loops, Geom. Topol. 10 (2006), 759–784.
  • [20] Ralph M. Kaufmann, On several varieties of cacti and their relations, Alg. & Geom. Topol. 5 (2005), 237–300
  • [21] Anton Khoroshkin, Koszul operads and distributive lattices, Preprint ITEP-TH-24/06.
  • [22] Joachim Kock, Notes on polynomial functors, Manuscript available at the author’s webpage http://mat.uab.es/˜kock/cat/notes-on-polynomial-functors.html.
  • [23] Joachim Kock, André Joyal, Michael Batanin and Jean-François Mascari, Polynomial functors and opetopes, Advances in Mathematics, 224 (2010), 2690–2737.
  • [24] Muriel Livernet, A rigidity theorem for pre-Lie algebras, J. Pure Appl. Alg., 207 (2006), 1–18.
  • [25] Jean–Louis Loday and Bruno Vallette, Algebraic operads, Book in preparation.
  • [26] Jean-Louis Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (1993), no. 3-4, 269–293.
  • [27] by same author, Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand. 77 (1995), no. 2, 189–196.
  • [28] by same author, On the algebra of quasi-shuffles, manuscripta math., 123 (2007), no. 1, 79–93.
  • [29] Martin Markl, Distributive laws and Koszulness, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 2, 307–323.
  • [30] Ieke Moerdijk, On the Connes-Kreimer construction of Hopf algebras, in: “ Homotopy methods in algebraic topology (Boulder, CO, 1999)”, Contemp. Math., 271, Amer. Math. Soc., Providence, RI, 2001, 311–321.
  • [31] Ieke Moerdijk and Erik Palmgren, Wellfounded trees in categories, Annals of Pure and Applied Logic, 104 (2000), issues 1-3, 189–218.
  • [32] Bruno Vallette, A Koszul duality for props, Trans. Amer. Math. Soc. 359 (2007), 4865–4993.
  • [33] Bruno Vallette, Homology of generalised partition posets, J. Pure Appl. Alg., 208 (2007), 699–725.
  • [34] Guillaume William Zinbiel, Encyclopedia of types of algebras 2010, Preprint arXiv:1101.0267.