This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Juan Guillermo Garrido 22institutetext: Departamento de Ingeniería Matemática, Universidad de Chile, Santiago, Chile.22email: jgarrido@dim.uchile.cl
Emilio Vilches
33institutetext: Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile. 33email: emilio.vilches@uoh.cl

Catching-up Algorithm with Approximate Projections for Moreau’s Sweeping Processes thanks:

Juan Guillermo Garrido and Emilio Vilches
(Received: date / Accepted: date)
Abstract

In this paper, we develop an enhanced version of the catching-up algorithm for sweeping processes through an appropriate concept of approximate projections. We establish some properties of this notion of approximate projection. Then, under suitable assumptions, we show the convergence of the enhanced catching-up algorithm for prox-regular, subsmooth, and merely closed sets. Finally, we discuss efficient numerical methods for obtaining approximate projections. Our results recover classical existence results in the literature and provide new insight into the numerical simulation of sweeping processes.

Keywords:
Sweeping process differential inclusions normal cone approximate projections
MSC:
34A60 49J52 34G25 49J53 93D30

1 Introduction

Given a Hilbert space \mathcal{H}, Moreau’s sweeping process is a first-order differential inclusion involving the normal cone to a family of closed moving sets (C(t))t[0,T](C(t))_{t\in[0,T]}. In its simplest form, it can be written as

{x˙(t)N(C(t);x(t)) a.e. t[0,T],x(0)=x0C(0),\left\{\begin{aligned} \dot{x}(t)&\in-N\left(C(t);x(t)\right)&\textrm{ a.e. }t\in[0,T],\\ x(0)&=x_{0}\in C(0),\end{aligned}\right. (SP)

where N(C(t);)N(C(t);\cdot) denotes an appropriate normal cone to the sets (C(t))t[0,T](C(t))_{t\in[0,T]}. Since its introduction by J.J. Moreau in MO1 ; MO2 , the sweeping process has allowed the development of various applications in contact mechanics, electrical circuits, and crowd motion, among others (see, e.g., Brogliato-M ; Acary-Bon-Bro-2011 ; Maury-Venel ). Furthermore, so far, we have a well-consolidated existence theory for moving sets in the considerable class of prox-regular sets.

The most prominent (and constructive) method for finding a solution to the sweeping process is the so-called catching-up algorithm. Developed by J.J. Moreau in MO2 for convex moving sets, it consists in taking a time discretization {tkn}k=0n\{t_{k}^{n}\}_{k=0}^{n} of the interval [0,T][0,T] and defining a piecewise linear and continuous function xn:[0,T]x_{n}\colon[0,T]\to\mathcal{H} with nodes

xk+1n:=projC(tk+1n)(xkn) for all k{0,,n1}.x_{k+1}^{n}:=\operatorname{proj}_{C(t_{k+1}^{n})}(x_{k}^{n})\textrm{ for all }k\in\{0,\ldots,n-1\}.

Moreover, under general assumptions, it could be proved that the sequence (xn)n(x_{n})_{n} converges to the unique solution of (SP) (see, e.g., MR2159846 ).

The applicability, from the numerical point of view, of the catching-up algorithm is based on the possibility of calculating an exact formula for the projection to the moving sets. However, for the majority of sets, the projection onto a closed set is impossible to obtain exactly, and only numerical approximations of it are possible. Since there are still no guarantees on the convergence of the catching-up algorithm with approximate projections, in this paper, we develop a theoretical framework for the numerical approximation of the solutions of the sweeping process using an appropriate concept of approximate projection that is consistent with the numerical methods for the computation of the projection on a closed set.

Regarding numerical approximations of sweeping processes, we are aware of the paper MR2800713 , where the author proposes an implementable numerical method for the particular case of the intersection of the complement of convex sets, which is used to study crowd motion. Our approach follows a different path and is based on numerical optimization methods to find an approximate projection in the following sense: given a closed set CC\subset\mathcal{H}, ε>0\varepsilon>0 and xx\in\mathcal{H}, we say that x¯C\bar{x}\in C is an approximate projection of CC at xx\in\mathcal{H} if

xx¯2<infyCxy2+ε.\|x-\bar{x}\|^{2}<\inf_{y\in C}\|x-y\|^{2}+\varepsilon.

We observe that the set of approximate projections is always nonempty and can be obtained through numerical methods for optimization. Hence, in this paper, we study the properties of approximate projections and propose a general numerical method for the sweeping process based on approximate projections. We prove that this algorithm converges in three general cases: (i) prox-regular moving sets (without compactness assumptions), (ii) ball-compact subsmooth moving sets, and (iii) general ball-compact fixed closed sets. Hence, our results cover a wide range of existence results for the sweeping process. It is worth emphasizing that our method generalizes the catching-up algorithm and provides important insights into the numerical simulation of sweeping processes.

The paper is organized as follows. Section 2 provides the mathematical tools needed for the presentation of the paper and also develops the theoretical properties of approximate projections. Section 3 is devoted to presenting the proposed algorithm and its main properties. Then, in Section 4, we prove the convergence of the algorithm when the moving set has uniformly prox-regular values (without compactness assumptions). Next, in Section 5, we provide the convergence of the proposed algorithm for ball-compact subsmooth moving sets. Section 6 shows the convergence for a fixed ball-compact set. Finally, in Section 7, we discuss numerical aspects for obtaining approximate projections. The paper ends with concluding remarks.

2 Preliminaries

From now on \mathcal{H} stands for a Hilbert space, whose norm, denoted by \|\cdot\|, is induced by an inner product ,\langle\cdot,\cdot\rangle. The closed (resp. open) ball centered at xx with radius r>0r>0 is denoted by 𝔹[x,r]\mathbb{B}[x,r] (resp. 𝔹(x,r)\mathbb{B}(x,r)), and the closed unit ball is denoted by 𝔹\mathbb{B}. The notation w\mathcal{H}_{w} stands for \mathcal{H} equipped with the weak topology and xnxx_{n}\rightharpoonup x denotes the weak convergence of a sequence (xn)n(x_{n})_{n} to xx. For a given set SS\subset\mathcal{H}, the support and the distance function of SS of at xx\in\mathcal{H} are defined, respectively, as

σ(x,S):=supzSx,z and dS(x):=infzSxz.\sigma(x,S):=\sup_{z\in S}\langle x,z\rangle\textrm{ and }d_{S}(x):=\inf_{z\in S}\|x-z\|.

Given ρ]0,+]\rho\in]0,+\infty] and γ<1\gamma<1 positive, the ρ\rho-enlargement and the γρ\gamma\rho-enlargement of SS are defined, respectively, as

Uρ(S)={x:dS(x)<ρ} and Uργ(S):={x:dS(x)<γρ}.U_{\rho}(S)=\{x\in\mathcal{H}:d_{S}(x)<\rho\}\textrm{ and }U_{\rho}^{\gamma}(S):=\{x\in\mathcal{H}:d_{S}(x)<\gamma\rho\}.

Given A,BA,B\subset\mathcal{H} two sets, we define the excess of AA over BB as the quantity e(A,B):=supxAdB(x)e(A,B):=\sup_{x\in A}d_{B}(x). From this, we define the Hausdorff distance between AA and BB as

dH(A,B):=max{e(A,B),e(B,A)}.d_{H}(A,B):=\max\{e(A,B),e(B,A)\}.

Further properties about Hausdorff distance can be found in (MR2378491, , Sec. 3.16).
A vector hh\in\mathcal{H} belongs to the Clarke tangent cone T(S;x)T(S;x) (see Clarke1983 ); when for every sequence (xn)n(x_{n})_{n} in SS converging to xx and every sequence of positive numbers (tn)n(t_{n})_{n} converging to 0, there exists a sequence (hn)n(h_{n})_{n} in \mathcal{H} converging to hh such that xn+tnhnSx_{n}+t_{n}h_{n}\in S for all nn\in\mathbb{N}. This cone is closed and convex, and its negative polar N(S;x)N(S;x) is the Clarke normal cone to SS at xSx\in S, that is,

N(S;x):={v:v,h0for all hT(S;x)}.N\left(S;x\right):=\left\{v\in\mathcal{H}:\left\langle v,h\right\rangle\leq 0\quad\textrm{for all }h\in T(S;x)\right\}.

As usual, N(S;x)=N(S;x)=\emptyset if xSx\notin S. Through that normal cone, the Clarke subdifferential of a function f:{+}f\colon\mathcal{H}\to\mathbb{R}\cup\{+\infty\} is defined by

f(x):={v:(v,1)N(epif,(x,f(x)))},\partial f(x):=\left\{v\in\mathcal{H}:(v,-1)\in N\left(\operatorname{epi}f,(x,f(x))\right)\right\},

where epif:={(y,r)×:f(y)r}\operatorname{epi}f:=\left\{(y,r)\in\mathcal{H}\times\mathbb{R}:f(y)\leq r\right\} is the epigraph of ff. When the function ff is finite and locally Lipschitzian around xx, the Clarke subdifferential is characterized (see Clarke1998 ) in the following simple and amenable way

f(x)={v:v,hf(x;h) for all h},\partial f(x)=\left\{v\in\mathcal{H}:\left\langle v,h\right\rangle\leq f^{\circ}(x;h)\textrm{ for all }h\in\mathcal{H}\right\},

where

f(x;h):=lim sup(t,y)(0+,x)t1[f(y+th)f(y)],f^{\circ}(x;h):=\limsup_{(t,y)\to(0^{+},x)}t^{-1}\left[f(y+th)-f(y)\right],

is the generalized directional derivative of the locally Lipschitzian function ff at xx in the direction hh\in\mathcal{H}. The function f(x;)f^{\circ}(x;\cdot) is in fact the support of f(x)\partial f(x). That characterization easily yields that the Clarke subdifferential of any locally Lipschitzian function is a set-valued map with nonempty and convex values satisfying the important property of upper semicontinuity from \mathcal{H} into w\mathcal{H}_{w}.

Let f:{+}f\colon\mathcal{H}\to\mathbb{R}\cup\{+\infty\} be an lsc (lower semicontinuous) function and xdomfx\in\operatorname{dom}f. We say that

  • (i)

    An element ζ\zeta belongs to the proximal subdifferential of ff at xx, denoted by Pf(x)\partial_{P}f(x), if there exist two nonnegative numbers σ\sigma and η\eta such that

    f(y)f(x)+ζ,yxσyx2 for all y𝔹(x;η).f(y)\geq f(x)+\left\langle\zeta,y-x\right\rangle-\sigma\|y-x\|^{2}\textrm{ for all }y\in\mathbb{B}(x;\eta).
  • (ii)

    An element ζ\zeta\in\mathcal{H} belongs to the Fréchet subdifferential of ff at xx, denoted by Ff(x)\partial_{F}f(x), if

    lim infh0f(x+h)f(x)ζ,hh0.\liminf_{h\to 0}\frac{f(x+h)-f(x)-\langle\zeta,h\rangle}{\|h\|}\geq 0.
  • (iii)

    An element ζ\zeta belongs to the limiting subdifferential of ff at xx, denoted by Lf(x)\partial_{L}f(x), if there exist sequences (ζn)(\zeta_{n}) and (xn)(x_{n}) such that ζnPf(xn)\zeta_{n}\in\partial_{P}f(x_{n}) for all nn\in\mathbb{N} and xnxx_{n}\to x, ζnζ\zeta_{n}\rightharpoonup\zeta, and f(xn)f(x)f(x_{n})\to f(x).

Through these concepts, we can define the proximal, Fréchet, and limiting normal cone of a given set SS\subset\mathcal{H} at xSx\in S, respectively, as

NP(S;x):=PIS(x),NF(C;x):=FIC(x) and NL(S;x)=LIS(x),N^{P}\left(S;x\right):=\partial_{P}I_{S}(x),\,N^{F}(C;x):=\partial_{F}I_{C}(x)\textrm{ and }N^{L}(S;x)=\partial_{L}I_{S}(x),

where ISI_{S} is the indicator function of SS\subset\mathcal{H} (recall that IS(x)=0I_{S}(x)=0 if xSx\in S and IS(x)=+I_{S}(x)=+\infty if xSx\notin S). It is well-known that

NP(S;x)𝔹=PdS(x) for all xS.N^{P}(S;x)\cap\mathbb{B}=\partial_{P}d_{S}(x)\quad\textrm{ for all }x\in S. (1)

The equality (see Clarke1998 )

N(S;x)\displaystyle N\left(S;x\right) =co¯NL(S;x)=cl(+dS(x))\displaystyle=\overline{\text{co}}^{\ast}N^{L}(S;x)=\operatorname{cl}^{*}\left(\mathbb{R}_{+}\partial d_{S}(x)\right) for xS,\displaystyle\textrm{ for }x\in S,

gives an expression of the Clarke normal cone in terms of the distance function.

Now, we recall the concept of uniformly prox-regular sets. Introduced by Federer in MR110078 and later developed by Rockafellar, Poliquin, and Thibault in MR1694378 . The prox-regularity generalizes and unifies convexity and nonconvex bodies with C2C^{2} boundary. We refer to MR2768810 ; Thibault-2023-II for a survey.

Definition 1

Let SS be a closed subset of \mathcal{H} and ρ]0,+]\rho\in]0,+\infty]. The set SS is called ρ\rho-uniformly prox-regular if for all xSx\in S and ζNP(S;x)\zeta\in N^{P}(S;x) one has

ζ,xxζ2ρxx2 for all xS.\langle\zeta,x^{\prime}-x\rangle\leq\frac{\|\zeta\|}{2\rho}\|x^{\prime}-x\|^{2}\textrm{ for all }x^{\prime}\in S.

It is important to emphasize that convex sets are ρ\rho-uniformly prox-regular for any ρ>0\rho>0. The following proposition provides a characterization of uniformly prox-regular sets (see, e.g., MR2768810 ).

Proposition 1

Let SS\subset\mathcal{H} be a closed set and ρ]0,+]\rho\in]0,+\infty]. The following assertions are equivalent:

  1. (a)

    SS is ρ\rho-uniformly prox-regular.

  2. (b)

    For any positive γ<1\gamma<1 the mapping projS\operatorname{proj}_{S} is well-defined on Uργ(S)U_{\rho}^{\gamma}(S) and Lipschitz continuous on Uργ(S)U_{\rho}^{\gamma}(S) with (1γ)1(1-\gamma)^{-1} as a Lipschitz constant, i.e.,

    projS(u1)projS(u2)(1γ)1u1u2\left\|\operatorname{proj}_{S}\left(u_{1}\right)-\operatorname{proj}_{S}\left(u_{2}\right)\right\|\leq(1-\gamma)^{-1}\left\|u_{1}-u_{2}\right\|\quad

    for all u1,u2Uργ(S)u_{1},u_{2}\in U_{\rho}^{\gamma}(S).

  3. (c)

    For any xiS,viNP(S;xi)𝔹x_{i}\in S,v_{i}\in N^{P}\left(S;x_{i}\right)\cap\mathbb{B}, with i=1,2i=1,2, one has

    v1v2,x1x21ρx1x22,\left\langle v_{1}-v_{2},x_{1}-x_{2}\right\rangle\geq-\frac{1}{\rho}\left\|x_{1}-x_{2}\right\|^{2},

    that is, the set-valued mapping NP(S;)𝔹N^{P}(S;\cdot)\cap\mathbb{B} is 1/ρ1/\rho-hypomonotone.

  4. (d)

    For all γ]0,1[\gamma\in]0,1[, for all x1,x2Uργ(S)x_{1},x_{2}\in U_{\rho}^{\gamma}(S), for all ξPdS(x)\xi\in\partial_{P}d_{S}(x), one has

ξ,x2x112ρ(1γ)2x1x22+dS(x2)dS(x1).\langle\xi,x_{2}-x_{1}\rangle\leq\frac{1}{2\rho(1-\gamma)^{2}}\|x_{1}-x_{2}\|^{2}+d_{S}(x_{2})-d_{S}(x_{1}).

Next, we recall the class of subsmooth sets that includes the concepts of convex and uniformly prox-regular sets (see MR2115366 and also (Thibault-2023-II, , Chapter 8) for a survey).

Definition 2

Let SS be a closed subset of \mathcal{H}. We say that SS is subsmooth at x0Sx_{0}\in S, if for every ε>0\varepsilon>0 there exists δ>0\delta>0 such that

ξ2ξ1,x2x1εx2x1,\left\langle\xi_{2}-\xi_{1},x_{2}-x_{1}\right\rangle\geq-\varepsilon\left\|x_{2}-x_{1}\right\|, (2)

whenever x1,x2𝔹[x0,δ]Sx_{1},x_{2}\in\mathbb{B}\left[x_{0},\delta\right]\cap S and ξiN(S;xi)𝔹\xi_{i}\in N\left(S;x_{i}\right)\cap\mathbb{B} for i{1,2}i\in\{1,2\}. The set SS is said subsmooth if it is subsmooth at each point of SS. We further say that SS is uniformly subsmooth, if for every ε>0\varepsilon>0 there exists δ>0\delta>0, such that (2) holds for all x1,x2Sx_{1},x_{2}\in S satisfying x1x2δ\left\|x_{1}-x_{2}\right\|\leq\delta and all ξiN(S;xi)𝔹\xi_{i}\in N\left(S;x_{i}\right)\cap\mathbb{B} for i{1,2}i\in\{1,2\}.
Let (S(t))tI(S(t))_{t\in I} be a family of closed sets of \mathcal{H} indexed by a nonemptyset II. The family is called equi-uniformly subsmooth, if for all ε>0\varepsilon>0, there exists δ>0\delta>0 such that for all tIt\in I, the inequality (2) holds for all x1,x2S(t)x_{1},x_{2}\in S(t) satisfying x1x2δ\|x_{1}-x_{2}\|\leq\delta and all ξiN(S(t);xi)𝔹\xi_{i}\in N(S(t);x_{i})\cap\mathbb{B} with i{1,2}i\in\{1,2\}.

Given an interval \mathcal{I}, a set-valued map F:F\colon\mathcal{I}\rightrightarrows\mathcal{H} is said to be measurable if for all open set UU of \mathcal{H}, the inverse image F1(U)={t:F(t)U}F^{-1}(U)=\{t\in\mathcal{I}:F(t)\cap U\neq\emptyset\} is a Lebesgue measurable set. When FF takes nonempty and closed values and \mathcal{H} is separable, this notion is equivalent to the ()\mathcal{L}\otimes\mathcal{B}(\mathcal{H})-measurability of the graph gphF:={(t,x)×:xF(t)}\operatorname{gph}F:=\{(t,x)\in\mathcal{I}\times\mathcal{H}:x\in F(t)\} (see, e.g., (MR2527754, , Theorem 6.2.20)).

Given a set-valued map F:F\colon\mathcal{H}\rightrightarrows\mathcal{H}, we say FF is upper semicontinuous from \mathcal{H} into w\mathcal{H}_{w} if for all weakly closed set CC of \mathcal{H}, the inverse image F1(C)F^{-1}(C) is a closed set of \mathcal{H}. It is known (see, e.g., see (MR2527754, , Proposition 6.1.15 (c))) that if FF is upper semicontinuous, then the map xσ(ξ,F(x))x\mapsto\sigma(\xi,F(x)) is upper semicontinuous for all ξ\xi\in\mathcal{H}. When FF takes convex and weakly compact values, these two properties are equivalent (see (MR2527754, , Proposition 6.1.17)).
A set SS\subset\mathcal{H} is said ball compact if the set Sr𝔹S\cap r\mathbb{B} is compact for all r>0r>0. The projection onto SS\subset\mathcal{H} is the (possibly empty) set

ProjS(x):={zS:dS(x)=xz}.\operatorname{Proj}_{S}(x):=\left\{z\in S:d_{S}(x)=\|x-z\|\right\}.

When the projection set is a singleton, we denote it as projS(x)\operatorname{proj}_{S}(x). For ε>0\varepsilon>0, we define the set of approximate projections:

projSε(x):={zS:xz2<dS2(x)+ε}.\operatorname{proj}_{S}^{\varepsilon}(x):=\left\{z\in S:\|x-z\|^{2}<d_{S}^{2}(x)+\varepsilon\right\}.

By definition, the above set is nonempty and open. Moreover, it satisfies similar properties as the projection map (see Proposition 2 below). The approximate projections have been considered several times in variational analysis. In particular, they were used to characterize the subdifferential of the Asplund function of a given set. Indeed, let SS\subset\mathcal{H} and consider the Asplund function of the set SS

φS(x):=12x212dS2(x)x.\varphi_{S}(x):=\frac{1}{2}\|x\|^{2}-\frac{1}{2}d_{S}^{2}(x)\quad x\in\mathcal{H}.

Then, the following formula holds (see, e.g., (MR2848527, , p. 467)):

φS(x)=ε>0co¯(projSε(x)).\partial\varphi_{S}(x)=\bigcap_{\varepsilon>0}\overline{\text{co}}(\operatorname{proj}_{S}^{\varepsilon}(x)).

We recall that for any set SS\subset\mathcal{H} and xx\in\mathcal{H}, where ProjS(x)\operatorname{Proj}_{S}(x)\neq\emptyset, the following formula holds:

xzdS(x)PdS(z) for all zProjS(x).x-z\in d_{S}(x)\partial_{P}d_{S}(z)\textrm{ for all }z\in\operatorname{Proj}_{S}(x).

The next result provides an approximate version of the above formula for any closed set SS\subset\mathcal{H}.

Lemma 1

Let SS\subset\mathcal{H} be a closed set, xx\in\mathcal{H}, and ε>0\varepsilon>0. For each zprojSε(x)z\in\operatorname{proj}_{S}^{\varepsilon}(x) there is vprojSε(x)v\in\operatorname{proj}_{S}^{\varepsilon}(x) such that zv<2ε\|z-v\|<2\sqrt{\varepsilon} and

xz(4ε+dS(x))PdS(v)+3ε𝔹.x-z\in(4\sqrt{\varepsilon}+d_{S}(x))\partial_{P}d_{S}(v)+3\sqrt{\varepsilon}\mathbb{B}.
Proof

Fix ε>0\varepsilon>0, xx\in\mathcal{H} and zprojSε(x)z\in\operatorname{proj}_{S}^{\varepsilon}(x). According to the Borwein-Preiss Variational Principle (MR902782, , Theorem 2.6) applied to yg(y):=xy2+IS(y)y\mapsto g(y):=\|x-y\|^{2}+I_{S}(y), there exists vprojSε(x)v\in\operatorname{proj}_{S}^{\varepsilon}(x) such that zv<2ε\|z-v\|<2\sqrt{\varepsilon} and 0Pg(v)+2ε𝔹0\in\partial_{P}g(v)+2\sqrt{\varepsilon}\mathbb{B}. Then, by the sum rule for the proximal subdifferential (see, e.g., (Clarke1998, , Proposition 2.11)), we obtain that

xvNP(S;v)+ε𝔹,x-v\in N^{P}(S;v)+\sqrt{\varepsilon}\mathbb{B},

which implies that xzNP(S;v)+3ε𝔹.x-z\in N^{P}(S;v)+3\sqrt{\varepsilon}\mathbb{B}. Next, since xzdS(x)+ε\|x-z\|\leq d_{S}(x)+\sqrt{\varepsilon}, we obtain that

xzNP(S;v)(4ε+dS(x))𝔹+3ε𝔹.x-z\in N^{P}(S;v)\cap(4\sqrt{\varepsilon}+d_{S}(x))\mathbb{B}+3\sqrt{\varepsilon}\mathbb{B}.

Finally, the result follows from formula (1) and the above inclusion.

The following proposition displays some properties of approximation projections for uniformly prox-regular sets.

Proposition 2

Let SS\subset\mathcal{H} be a ρ\rho-uniformly prox-regular set. Then, one has:

  1. (a)

    Let (xn)n(x_{n})_{n} be a sequence converging to xUρ(S)x\in U_{\rho}(S). Then for any (zn)n(z_{n})_{n} and any sequence of positive numbers (εn)n(\varepsilon_{n})_{n} converging to 0 with znprojSεn(xn)z_{n}\in\operatorname{proj}_{S}^{\varepsilon_{n}}(x_{n}) for all nn\in\mathbb{N}, we have that znprojS(x)z_{n}\to\operatorname{proj}_{S}(x).

  2. (b)

    Let γ]0,1[\gamma\in]0,1[ and ε]0,ε0]\varepsilon\in]0,\varepsilon_{0}] where ε0\varepsilon_{0} is such that

    γ+4ε0(1+γ+1ρ(1+4ε0))=1.\gamma+4\sqrt{\varepsilon_{0}}\left(1+\gamma+\frac{1}{\rho}(1+4\sqrt{\varepsilon_{0}})\right)=1.

    Then, for all ziprojSε(xi)z_{i}\in\operatorname{proj}_{S}^{\varepsilon}(x_{i}) with xiUργ(S)x_{i}\in U_{\rho}^{\gamma}(S) for i{1,2}i\in\{1,2\}, we have

    (1ϝ)z1z22εx1x22+Mε+x1x2,z1z2,(1-\digamma)\|z_{1}-z_{2}\|^{2}\leq\sqrt{\varepsilon}\|x_{1}-x_{2}\|^{2}+M\sqrt{\varepsilon}+\langle x_{1}-x_{2},z_{1}-z_{2}\rangle,

    where ϝ:=αρ+4ε(1+αρ+1ρ(1+ε))\digamma:=\frac{\alpha}{\rho}+4\sqrt{\varepsilon}\left(1+\frac{\alpha}{\rho}+\frac{1}{\rho}(1+\sqrt{\varepsilon})\right) with α:=max{dS(x1),dS(x2)}\alpha:=\max\{d_{S}(x_{1}),d_{S}(x_{2})\} and MM is a nonnegative constant only dependent on ε,ρ,γ\varepsilon,\rho,\gamma.

Proof

(a)(a) We observe that for all nn\in\mathbb{N}

zn\displaystyle\|z_{n}\| znxn+xndC(xn)+εn+xn.\displaystyle\leq\|z_{n}-x_{n}\|+\|x_{n}\|\leq d_{C}(x_{n})+\sqrt{\varepsilon_{n}}+\|x_{n}\|.

Hence, since εn0\varepsilon_{n}\to 0 and xnxx_{n}\to x, we obtain (yn)n(y_{n})_{n} is bounded. On the other hand, since xUρ(S)x\in U_{\rho}(S), we obtain projS(x)\operatorname{proj}_{S}(x) is well-defined and

znprojS(x)2\displaystyle\|z_{n}-\operatorname{proj}_{S}(x)\|^{2} =znxn2xnprojS(x)2\displaystyle=\|z_{n}-x_{n}\|^{2}-\|x_{n}-\operatorname{proj}_{S}(x)\|^{2}
+2xprojS(x),znprojS(x)+2znprojS(x),xnx\displaystyle+2\langle x-\operatorname{proj}_{S}(x),z_{n}-\operatorname{proj}_{S}(x)\rangle+2\langle z_{n}-\operatorname{proj}_{S}(x),x_{n}-x\rangle
dS2(xn)+εnxnprojS(x)2\displaystyle\leq d_{S}^{2}(x_{n})+\varepsilon_{n}-\|x_{n}-\operatorname{proj}_{S}(x)\|^{2}
+2xprojS(x),znprojS(x)+2znprojS(x),xnx\displaystyle+2\langle x-\operatorname{proj}_{S}(x),z_{n}-\operatorname{proj}_{S}(x)\rangle+2\langle z_{n}-\operatorname{proj}_{S}(x),x_{n}-x\rangle
εn+2xprojS(x),znprojS(x)\displaystyle\leq\varepsilon_{n}+2\langle x-\operatorname{proj}_{S}(x),z_{n}-\operatorname{proj}_{S}(x)\rangle
+2znprojS(x),xnx\displaystyle+2\langle z_{n}-\operatorname{proj}_{S}(x),x_{n}-x\rangle

where we have used znprojSεn(xn)z_{n}\in\operatorname{proj}_{S}^{\varepsilon_{n}}(x_{n}) and that dS2(xn)xnprojS(x)2d_{S}^{2}(x_{n})\leq\|x_{n}-\operatorname{proj}_{S}(x)\|^{2}. Moreover, since xprojS(x)NP(S;projS(x))x-\operatorname{proj}_{S}(x)\in N^{P}(S;\operatorname{proj}_{S}(x)) and SS is ρ\rho-uniformly prox-regular, we obtain that

2xprojS(x),znprojs(x)dS(x)ρznprojS(x)2.2\langle x-\operatorname{proj}_{S}(x),z_{n}-\operatorname{proj}_{s}(x)\rangle\leq\frac{d_{S}(x)}{\rho}\|z_{n}-\operatorname{proj}_{S}(x)\|^{2}.

Therefore, by using the above inequality and rearranging terms, we obtain that

znprojS(x)2ρρdS(x)(εn+2znprojS(x),xnx).\|z_{n}-\operatorname{proj}_{S}(x)\|^{2}\leq\frac{\rho}{\rho-d_{S}(x)}\left(\varepsilon_{n}+2\langle z_{n}-\operatorname{proj}_{S}(x),x_{n}-x\rangle\right).

Finally, since xnxx_{n}\to x and (zn)n(z_{n})_{n} is bounded, we conclude that znprojS(x)z_{n}\to\operatorname{proj}_{S}(x).
(b)(b) By virtue of Lemma 1, for i{1,2}i\in\{1,2\} there exists vi,biv_{i},b_{i}\in\mathcal{H} such that

bi𝔹,viprojSε(xi),zivi<2ε and xizi3εbi4ε+dS(xi)PdS(vi).b_{i}\in\mathbb{B},v_{i}\in\operatorname{proj}_{S}^{\varepsilon}(x_{i}),\|z_{i}-v_{i}\|<2\sqrt{\varepsilon}\textrm{ and }\frac{x_{i}-z_{i}-3\sqrt{\varepsilon}b_{i}}{4\sqrt{\varepsilon}+d_{S}(x_{i})}\in\partial_{P}d_{S}(v_{i}).

The hypomonotonicity of proximal normal cone (see Proposition 1 (b)) implies that

ζ1ζ2,v1v21ρv1v22,\left\langle\zeta_{1}-\zeta_{2},v_{1}-v_{2}\right\rangle\geq\frac{-1}{\rho}\|v_{1}-v_{2}\|^{2},

where ζi:=xizi3εbi4ε+α\zeta_{i}:=\frac{x_{i}-z_{i}-3\sqrt{\varepsilon}b_{i}}{4\sqrt{\varepsilon}+\alpha} for i{1,2}i\in\{1,2\} and α:=max{dS(x1),dS(x2)}\alpha:=\max\{d_{S}(x_{1}),d_{S}(x_{2})\}. On the one hand, we have

v1v2v1z1+z1z2+z2v24ε+z1z2,\|v_{1}-v_{2}\|\leq\|v_{1}-z_{1}\|+\|z_{1}-z_{2}\|+\|z_{2}-v_{2}\|\leq 4\sqrt{\varepsilon}+\|z_{1}-z_{2}\|,

and for all zz\in\mathcal{H} and i{1,2}i\in\{1,2\}

|z,vizi|εz22+vizi22εεz22+2ε.|\langle z,v_{i}-z_{i}\rangle|\leq\frac{\sqrt{\varepsilon}\|z\|^{2}}{2}+\frac{\|v_{i}-z_{i}\|^{2}}{2\sqrt{\varepsilon}}\leq\frac{\sqrt{\varepsilon}\|z\|^{2}}{2}+2\sqrt{\varepsilon}.

On the other hand,

(x1z13εb1)(x2z23εb2),v1v2\displaystyle\langle(x_{1}-z_{1}-3\sqrt{\varepsilon}b_{1})-(x_{2}-z_{2}-3\sqrt{\varepsilon}b_{2}),v_{1}-v_{2}\rangle
=\displaystyle= 3εb2b1,v1v2+(x1x2)(z1z2),v1v2\displaystyle\ 3\sqrt{\varepsilon}\langle b_{2}-b_{1},v_{1}-v_{2}\rangle+\langle(x_{1}-x_{2})-(z_{1}-z_{2}),v_{1}-v_{2}\rangle
=\displaystyle= 3εb2b1,v1v2+x1x2,v1z1+x1x2,z1z2\displaystyle\ 3\sqrt{\varepsilon}\langle b_{2}-b_{1},v_{1}-v_{2}\rangle+\langle x_{1}-x_{2},v_{1}-z_{1}\rangle+\langle x_{1}-x_{2},z_{1}-z_{2}\rangle
+x1x2,z2v2z1z2,v1z1z1z22z1z2,z2v2\displaystyle+\langle x_{1}-x_{2},z_{2}-v_{2}\rangle-\langle z_{1}-z_{2},v_{1}-z_{1}\rangle-\|z_{1}-z_{2}\|^{2}-\langle z_{1}-z_{2},z_{2}-v_{2}\rangle
\displaystyle\leq 6ε(4ε+z1z2)+εx1x22+8ε+x1x2,z1z2\displaystyle\ 6\sqrt{\varepsilon}(4\sqrt{\varepsilon}+\|z_{1}-z_{2}\|)+\sqrt{\varepsilon}\|x_{1}-x_{2}\|^{2}+8\sqrt{\varepsilon}+\langle x_{1}-x_{2},z_{1}-z_{2}\rangle
(1ε)z1z22\displaystyle-(1-\sqrt{\varepsilon})\|z_{1}-z_{2}\|^{2}
\displaystyle\leq 24ε+11ε+εx1x22+x1x2,z1z2(14ε)z1z22.\displaystyle\ 24\varepsilon+11\sqrt{\varepsilon}+\sqrt{\varepsilon}\|x_{1}-x_{2}\|^{2}+\langle x_{1}-x_{2},z_{1}-z_{2}\rangle-(1-4\sqrt{\varepsilon})\|z_{1}-z_{2}\|^{2}.

It follows that

[1αρ4ε(1+1ρ(1+4ε+α))]z1z22\displaystyle\left[1-\frac{\alpha}{\rho}-4\sqrt{\varepsilon}(1+\frac{1}{\rho}(1+4\sqrt{\varepsilon}+\alpha))\right]\|z_{1}-z_{2}\|^{2}
\displaystyle\leq εx1x22+x1x2,z1z2+4(4ε+ε)(4ερ+γ)+24ε+11ε\displaystyle\sqrt{\varepsilon}\|x_{1}-x_{2}\|^{2}+\langle x_{1}-x_{2},z_{1}-z_{2}\rangle+4(4\varepsilon+\sqrt{\varepsilon})(4\frac{\sqrt{\varepsilon}}{\rho}+\gamma)+24\varepsilon+11\sqrt{\varepsilon}

which proves the desired inequality.

The following result provides a stability result for a family of equi-uniformly subsmooth sets. We refer to see (MR3574145, , Lemma 2.7) for a similar result.

Lemma 2

Let 𝒞={Cn}n{C}\mathcal{C}=\{C_{n}\}_{n\in\mathbb{N}}\cup\{C\} be a family of nonempty, closed and equi-uniformly subsmooth sets. Assume that

limndCn(x)=0, for all xC.\lim_{n\to\infty}d_{C_{n}}(x)=0,\text{ for all }x\in C.

Then, for any sequence αnα\alpha_{n}\to\alpha\in\mathbb{R} and any sequence (yn)(y_{n}) converging to yy with ynCny_{n}\in C_{n} and yCy\in C, one has

lim supnσ(ξ,αndCn(yn))σ(ξ,αdC(y)) for all ξ.\limsup_{n\to\infty}\sigma(\xi,\alpha_{n}\partial d_{C_{n}}(y_{n}))\leq\sigma(\xi,\alpha\partial d_{C}(y))\text{ for all }\xi\in\mathcal{H}.
Proof

Fix ξ\xi\in\mathcal{H}. Since dS(x)𝔹\partial d_{S}(x)\subset\mathbb{B} for all xx\in\mathcal{H}, we observe that

β:=lim supnσ(ξ,αndCn(yn))<+.\beta:=\limsup_{n\to\infty}\sigma(\xi,\alpha_{n}\partial d_{C_{n}}(y_{n}))<+\infty.

Let us consider a subsequence (nk)k(n_{k})_{k} such that

β=limkσ(ξ,αnkdCnk(ynk)).\beta=\lim_{k\to\infty}\sigma(\xi,\alpha_{n_{k}}\partial d_{C_{n_{k}}}(y_{n_{k}})).

Given that dCnk(ynk)\partial d_{C_{n_{k}}}(y_{n_{k}}) is weakly compact for all kk\in\mathbb{N}, there is vnkdCnk(ynk)v_{n_{k}}\in\partial d_{C_{n_{k}}}(y_{n_{k}}) such that

σ(ξ,αnkdCnk(ynk))=ξ,αnkvnk for all k.\sigma(\xi,\alpha_{n_{k}}\partial d_{C_{n_{k}}}(y_{n_{k}}))=\langle\xi,\alpha_{n_{k}}v_{n_{k}}\rangle\textrm{ for all }k\in\mathbb{N}.

Moreover, the sequence (vnk)(v_{n_{k}}) is bounded. Hence, without loss of generality, we can assume that vnkv𝔹v_{n_{k}}\rightharpoonup v\in\mathbb{B}. It follows that β=ξ,αv\beta=\langle\xi,\alpha v\rangle. By equi-uniformly subsmoothness of 𝒞\mathcal{C}, for any ε>0\varepsilon>0, there is δ>0\delta>0 such that for all D𝒞D\in\mathcal{C} and x1,x2Dx_{1},x_{2}\in D with x1x2<δ\|x_{1}-x_{2}\|<\delta, one has

ζ1ζ2,x1x2εx1x2,\langle\zeta_{1}-\zeta_{2},x_{1}-x_{2}\rangle\geq-\varepsilon\|x_{1}-x_{2}\|, (3)

whenever ζiN(D;xi)𝔹\zeta_{i}\in N(D;x_{i})\cap\mathbb{B} for i{1,2}i\in\{1,2\}. Next, let yCy^{\prime}\in C such that yy<δ/2\|y-y^{\prime}\|<\delta/2. Then, since dCnk(y)d_{C_{n_{k}}}(y^{\prime}) converges to 0, there is a sequence (ynk)(y_{n_{k}}^{\prime}) converging to yy^{\prime} with ynkCnky_{n_{k}}^{\prime}\in C_{n_{k}} for all kk\in\mathbb{N}. Hence, there is k0k_{0}\in\mathbb{N} such that ynky<δ/2\|y_{n_{k}}^{\prime}-y^{\prime}\|<\delta/2 for all kk0k\geq k_{0}. On the other hand, since ynyy_{n}\to y, then there is k0k_{0}^{\prime}\in\mathbb{N} such that ynky<δ/2\|y_{n_{k}}-y\|<\delta/2 for all kk0k\geq k_{0}^{\prime}. Hence, if kmax{k0,k0}=:k^k\geq\max\{k_{0},k_{0}^{\prime}\}=:\widehat{k} we have ynkynk<δ\|y_{n_{k}}-y_{n_{k}}^{\prime}\|<\delta. Therefore, it follows from the fact that 0dCnk(ynk)0\in\partial d_{C_{n_{k}}}(y_{n_{k}}^{\prime}) and inequality (3) that

vnk,ynkynkεynkynk for all kk^.\langle v_{n_{k}},y_{n_{k}}-y_{n_{k}}^{\prime}\rangle\geq-\varepsilon\|y_{n_{k}}-y_{n_{k}}^{\prime}\|\text{ for all }k\geq\widehat{k}.

By taking kk\to\infty, we obtain that

v,yyεyy for all yC𝔹(y,δ/2),\langle v,y-y^{\prime}\rangle\geq-\varepsilon\|y-y^{\prime}\|\textrm{ for all }y^{\prime}\in C\cap\mathbb{B}(y,\delta/2),

which implies that vNF(C;y)v\in N^{F}(C;y). Then, by (MR2986672, , Lemma 4.21),

vNF(C;y)𝔹=FdC(y)dC(y).v\in N^{F}(C;y)\cap\mathbb{B}=\partial_{F}d_{C}(y)\subset\partial d_{C}(y).

Finally, we have proved that

β=ξ,αvσ(ξ,αdC(y)),\beta=\langle\xi,\alpha v\rangle\leq\sigma(\xi,\alpha\partial d_{C}(y)),

which ends the proof.

The following lemma is a convergence theorem for a set-valued map from a topological space into a Hilbert space.

Lemma 3

Let (E,τ)(E,\tau) be a topological space and 𝒢:E\mathcal{G}\colon E\rightrightarrows\mathcal{H} be a set-valued map with nonempty, closed, and convex values. Consider sequences (xn)nE(x_{n})_{n}\subset E, (yn)n(y_{n})_{n}\subset\mathcal{H} and (εn)n+(\varepsilon_{n})_{n}\subset\mathbb{R}_{+} such that

  1. (i)

    xnxx_{n}\to x (in EE), ynyy_{n}\rightharpoonup y (weakly in \mathcal{H}) and εn0\varepsilon_{n}\to 0;

  2. (ii)

    For all nn\in\mathbb{N}, ynco(𝒢(xk)+εk𝔹:kn)y_{n}\in\text{co}(\mathcal{G}(x_{k})+\varepsilon_{k}\mathbb{B}:k\geq n);

  3. (iii)

    lim supnσ(ξ,𝒢(xn))σ(ξ,𝒢(x))\displaystyle\limsup_{n\to\infty}\sigma(\xi,\mathcal{G}(x_{n}))\leq\sigma(\xi,\mathcal{G}(x)) for all ξ\xi\in\mathcal{H}.

Then, y𝒢(x)y\in\mathcal{G}(x).

Proof

Assume by contradiction that y𝒢(x)y\notin\mathcal{G}(x). By virtue of Hahn-Banach Theorem there exists ξ{0}\xi\in\mathcal{H}\setminus\{0\}, δ>0\delta>0 and α\alpha\in\mathbb{R} such that

ξ,y+δαξ,y,y𝒢(x).\langle\xi,y^{\prime}\rangle+\delta\leq\alpha\leq\langle\xi,y\rangle,\ \forall y^{\prime}\in\mathcal{G}(x).

Then, it follows that σ(ξ,𝒢(x))αδ\sigma(\xi,\mathcal{G}(x))\leq\alpha-\delta. Besides, according to (ii) we have for all nn\in\mathbb{N}, there is a finite set JnJ_{n}\subset\mathbb{N} such that for all mJnm\in J_{n}, mnm\geq n and

yn=jJnαj(yj+εjvj)y_{n}=\sum_{j\in J_{n}}\alpha_{j}(y_{j}^{\prime}+\varepsilon_{j}v_{j})

where for all jJnj\in J_{n}, αj0\alpha_{j}\geq 0, vj𝔹v_{j}\in\mathbb{B}, yj𝒢(xj)y_{j}^{\prime}\in\mathcal{G}(x_{j}) and jJnαj=1\sum_{j\in J_{n}}\alpha_{j}=1. Also, there exists NN\in\mathbb{N} such that for all nNn\geq N, εn<δ2ξ\varepsilon_{n}<\frac{\delta}{2\|\xi\|}. Thus, for nNn\geq N

ξ,yn\displaystyle\langle\xi,y_{n}\rangle =jJnαjξ,yj+εjvj\displaystyle=\sum_{j\in J_{n}}\alpha_{j}\langle\xi,y_{j}^{\prime}+\varepsilon_{j}v_{j}\rangle
jJnαjsupknσ(ξ,𝒢(xk))+jJnαjεjξ,vj\displaystyle\leq\sum_{j\in J_{n}}\alpha_{j}\sup_{k\geq n}\sigma(\xi,\mathcal{G}(x_{k}))+\sum_{j\in J_{n}}\alpha_{j}\varepsilon_{j}\langle\xi,v_{j}\rangle
supknσ(ξ,𝒢(xk))+ξjJnαjδ2ξsupknσ(ξ,𝒢(xk))+δ2.\displaystyle\leq\sup_{k\geq n}\sigma(\xi,\mathcal{G}(x_{k}))+\|\xi\|\sum_{j\in J_{n}}\alpha_{j}\frac{\delta}{2\|\xi\|}\leq\sup_{k\geq n}\sigma(\xi,\mathcal{G}(x_{k}))+\frac{\delta}{2}.

Therefore, as ynyy_{n}\rightharpoonup y, letting nn\to\infty in the last inequality we obtain that

ξ,y\displaystyle\langle\xi,y\rangle lim supnσ(ξ,𝒢(xn))+δ2σ(ξ,𝒢(x))+δ2\displaystyle\leq\limsup_{n\to\infty}\sigma(\xi,\mathcal{G}(x_{n}))+\frac{\delta}{2}\leq\sigma(\xi,\mathcal{G}(x))+\frac{\delta}{2}

Therefore, ξ,yαδ/2ξ,yδ/2\langle\xi,y\rangle\leq\alpha-\delta/2\leq\langle\xi,y\rangle-\delta/2, which is a contradiction. The proof is then complete.

3 Catching-up algorithm with errors for sweeping processes

In this section, we propose a numerical method for the existence of solutions for the sweeping process:

{x˙(t)N(C(t);x(t))+F(t,x(t)) a.e. t[0,T],x(0)=x0C(0),\left\{\begin{aligned} \dot{x}(t)&\in-N\left(C(t);x(t)\right)+F(t,x(t))&\textrm{ a.e. }t\in[0,T],\\ x(0)&=x_{0}\in C(0),\end{aligned}\right. (4)

where C:[0,T]C\colon[0,T]\rightrightarrows\mathcal{H} is a set-valued map with closed values in a Hilbert space \mathcal{H}, N(C(t);x)N\left(C(t);x\right) stands for the Clarke normal cone to C(t)C(t) at xx, and F:[0,T]×F\colon[0,T]\times\mathcal{H}\rightrightarrows\mathcal{H} is a given set-valued map with nonempty closed and convex values. Our algorithm is based on the catching-up algorithm, except that we do not ask for an exact calculation of the projections.

The proposed algorithm is given as follows. For nn\in\mathbb{N}^{\ast}, let (tkn)k=0n(t_{k}^{n})_{k=0}^{n} be a uniform partition of [0,T][0,T] with uniform time step μn:=T/n\mu_{n}:=T/n. Let (εn)n(\varepsilon_{n})_{n} be a sequence of positive numbers such that εn/μn20\varepsilon_{n}/\mu_{n}^{2}\to 0. We consider a sequence of piecewise continuous linear approximations (xn)n(x_{n})_{n} defined as xn(0)=x0x_{n}(0)=x_{0} and for any k{0,,n1}k\in\{0,\ldots,n-1\} and t]tkn,tk+1n]t\in]t_{k}^{n},t_{k+1}^{n}]

xn(t)=xkn+ttknμn(xk+1nxkntkntk+1nf(s,xkn)𝑑s)+tkntf(s,xkn)𝑑s,x_{n}(t)=x_{k}^{n}+\frac{t-t_{k}^{n}}{\mu_{n}}\left(x_{k+1}^{n}-x_{k}^{n}-\int_{t_{k}^{n}}^{t_{k+1}^{n}}f(s,x_{k}^{n})ds\right)+\int_{t_{k}^{n}}^{t}f(s,x_{k}^{n})ds, (5)

where x0n=x0x_{0}^{n}=x_{0} and

xk+1nprojC(tk+1n)εn(xkn+tkntk+1nf(s,xkn)𝑑s)for k{0,1,,n1}.x_{k+1}^{n}\in\operatorname{proj}_{C(t_{k+1}^{n})}^{\varepsilon_{n}}\left(x_{k}^{n}+\int_{t_{k}^{n}}^{t_{k+1}^{n}}f(s,x_{k}^{n})ds\right)\ \text{for }k\in\{0,1,...,n-1\}. (6)

Here f(t,x)f(t,x) denotes any selection of F(t,x)F(t,x) such that f(,x)f(\cdot,x) is measurable for all xx\in\mathcal{H}. For simplicity, we consider f(t,x)projF(t,x)γ(0)f(t,x)\in\operatorname{proj}_{F(t,x)}^{\gamma}(0) for some γ>0\gamma>0. In Proposition 3, we prove that it is possible to obtain such measurable selection under mild assumptions.

The above algorithm is called catching-up algorithm with approximate projections because the projection is not necessarily exactly calculated. We will prove that the above algorithm converges for several families of algorithms as long as the inclusion (6) is verified.

Let us consider functions δn()\delta_{n}(\cdot) and θn()\theta_{n}(\cdot) defined as

δn(t)={tkn if t[tkn,tk+1n[tn1n if t=T, and θn(t)={tk+1n if t[tkn,tk+1n[T if t=T.\delta_{n}(t)=\begin{cases}t_{k}^{n}&\textrm{ if }t\in[t_{k}^{n},t_{k+1}^{n}[\\ t_{n-1}^{n}&\textrm{ if }t=T,\end{cases}\text{ and }\theta_{n}(t)=\begin{cases}t_{k+1}^{n}&\textrm{ if }t\in[t_{k}^{n},t_{k+1}^{n}[\\ T&\textrm{ if }t=T.\end{cases}

In what follows, we show useful properties satisfied for the above algorithm, which will help us to prove the existence of the sweeping process (4) in three cases:

  1. (i)

    The set-valued map tC(t)t\rightrightarrows C(t) takes uniformly prox-regular values.

  2. (ii)

    The set-valued map tC(t)t\rightrightarrows C(t) takes subsmooth and ball-compact values.

  3. (iii)

    C(t)CC(t)\equiv C in [0,T][0,T] and CC is ball-compact.

Throughout this section, F:[0,T]×F\colon[0,T]\times\mathcal{H}\rightrightarrows\mathcal{H} will be a set-valued map with nonempty, closed, and convex values. Moreover, we will consider the following conditions:

  1. (1F)(\mathcal{H}_{1}^{F})

    For all t[0,T]t\in[0,T], F(t,)F(t,\cdot) is upper semicontinuous from \mathcal{H} into w\mathcal{H}_{w}.

  2. (2F)(\mathcal{H}_{2}^{F})

    There exists h:+h\colon\mathcal{H}\to\mathbb{R}^{+} Lipschitz continuous (with constant Lh>0L_{h}>0) such that

    d(0,F(t,x)):=inf{w:wF(t,x)}h(x),\displaystyle d\left(0,F(t,x)\right):=\inf\{\|w\|:w\in F(t,x)\}\leq h(x),

    for all xx\in\mathcal{H} and a.e. t[0,T]t\in[0,T].

  3. (3F)(\mathcal{H}_{3}^{F})

    There is γ>0\gamma>0 such that the set-valued map (t,x)projF(t,x)γ(0)(t,x)\rightrightarrows\operatorname{proj}_{F(t,x)}^{\gamma}(0) has a selection f:[0,T]×f\colon[0,T]\times\mathcal{H}\to\mathcal{H} such that f(,x)f(\cdot,x) is measurable for all xx\in\mathcal{H}.

The following proposition provides conditions for the feasibility of hypothesis (3F)(\mathcal{H}_{3}^{F}).

Proposition 3

Let us assume that \mathcal{H} is a separable Hilbert space. Moreover we suppose F(,x)F(\cdot,x) is measurable for all xx\in\mathcal{H}, then (3F)(\mathcal{H}_{3}^{F}) holds for all γ>0\gamma>0.

Proof

Let γ>0\gamma>0 and fix xx\in\mathcal{H}. Since the set-valued map F(,x)F(\cdot,x) is measurable, the map td(0,F(t,x))t\mapsto d(0,F(t,x)) is a measurable function. Let us define the set-valued map x:tprojF(t,x)γ(0)\mathcal{F}_{x}\colon t\rightrightarrows\operatorname{proj}_{F(t,x)}^{\gamma}(0). Then,

gphx\displaystyle\operatorname{gph}\mathcal{F}_{x} ={(t,y)[0,T]×:yprojF(t,x)γ(0)}\displaystyle=\{(t,y)\in[0,T]\times\mathcal{H}:y\in\operatorname{proj}_{F(t,x)}^{\gamma}(0)\}
={(t,y)[0,T]×:y2<d(0,F(t,x))2+γ and yF(t,x)}\displaystyle=\{(t,y)\in[0,T]\times\mathcal{H}:\|y\|^{2}<d(0,F(t,x))^{2}+\gamma\text{ and }y\in F(t,x)\}
=gphF(,x){(t,y)[0,T]×:y2<d(0,F(t,x))2+γ}.\displaystyle=\operatorname{gph}F(\cdot,x)\cap\{(t,y)\in[0,T]\times\mathcal{H}:\|y\|^{2}<d(0,F(t,x))^{2}+\gamma\}.

Hence, gphx\operatorname{gph}\mathcal{F}_{x} is a measurable set. Consequently, x\mathcal{F}_{x} has a measurable selection (see (MR2527754, , Theorem 6.3.20)). Denoting by tf(t,x)t\mapsto f(t,x) such selection, we obtain the result.

Now, we establish the main properties of the proposed algorithm.

Theorem 3.1

Assume, in addition to (1F)(\mathcal{H}_{1}^{F}), (2F)(\mathcal{H}_{2}^{F}) and (3F)(\mathcal{H}_{3}^{F}), that C:[0,T]C\colon[0,T]\rightrightarrows\mathcal{H} is a set-valued map with nonempty and closed values such that

dH(C(t),C(s))LC|ts| for all t,s[0,T].d_{H}(C(t),C(s))\leq L_{C}|t-s|\text{ for all }t,s\in[0,T]. (7)

Then, the sequence of functions (xn:[0,T])n(x_{n}\colon[0,T]\to\mathcal{H})_{n\in\mathbb{N}} generated by the numerical scheme (5) and (6) satisfies the following properties:

  1. (a)(a)

    There are nonnegative constants K1,K2,K3,K4,K5K_{1},K_{2},K_{3},K_{4},K_{5} such that for all nn\in\mathbb{N} and t[0,T]t\in[0,T]:

    1. (i)

      dC(θn(t))(xn(δn(t))+δn(t)θn(t)f(s,xn(δn(t)))𝑑s)(LC+h(x(δn(t)))+γ)μn.d_{C(\theta_{n}(t))}(x_{n}(\delta_{n}(t))+\int_{\delta_{n}(t)}^{\theta_{n}(t)}f(s,x_{n}(\delta_{n}(t)))ds)\leq(L_{C}+h(x(\delta_{n}(t)))+\sqrt{\gamma})\mu_{n}.

    2. (ii)

      xn(θn(t))x0K1.\|x_{n}(\theta_{n}(t))-x_{0}\|\leq K_{1}.

    3. (iii)

      xn(t)K2.\|x_{n}(t)\|\leq K_{2}.

    4. (iv)

      xn(θn(t))xn(δn(t))K3μn+εn.\|x_{n}(\theta_{n}(t))-x_{n}(\delta_{n}(t))\|\leq K_{3}\mu_{n}+\sqrt{\varepsilon_{n}}.

    5. (v)

      xn(t)xn(θn(t))K4μn+2εn\|x_{n}(t)-x_{n}(\theta_{n}(t))\|\leq K_{4}\mu_{n}+2\sqrt{\varepsilon_{n}}.

  2. (b)(b)

    There exists K5>0K_{5}>0 such that for all t[0,T]t\in[0,T] and m,nm,n\in\mathbb{N} we have

    dC(θn(t))(xm(t))K5μm+LCμn+2εm.d_{C(\theta_{n}(t))}(x_{m}(t))\leq K_{5}\mu_{m}+L_{C}\mu_{n}+2\sqrt{\varepsilon_{m}}.
  3. (c)(c)

    There exists K6>0K_{6}>0 such that for all nn\in\mathbb{N} and almost all t[0,T]t\in[0,T], x˙n(t)K6\|\dot{x}_{n}(t)\|\leq K_{6}.

  4. (d)(d)

    For all nn\in\mathbb{N} and k{0,1,,n1}k\in\{0,1,...,n-1\}, there is vk+1nC(tk+1n)v_{k+1}^{n}\in C(t_{k+1}^{n}) such that for all t]tkn,tk+1n[t\in]t_{k}^{n},t_{k+1}^{n}[:

    x˙n(t)λn(t)μnPdC(θn(t))(vk+1n)+f(t,xn(δn(t)))+3εnμn𝔹,\dot{x}_{n}(t)\in-\frac{\lambda_{n}(t)}{\mu_{n}}\partial_{P}d_{C(\theta_{n}(t))}(v_{k+1}^{n})+f(t,x_{n}(\delta_{n}(t)))+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\mathbb{B}, (8)

    where λn(t)=4εn+(LC+h(x(δn(t)))+γ)μn\lambda_{n}(t)=4\sqrt{\varepsilon_{n}}+(L_{C}+h(x(\delta_{n}(t)))+\sqrt{\gamma})\mu_{n}.
    Moreover, vk+1nxn(θn(t))<2εn\|v_{k+1}^{n}-x_{n}(\theta_{n}(t))\|<2\sqrt{\varepsilon_{n}}.

Proof

(a)(a): Set μn:=T/n\mu_{n}:=T/n and let (εn)(\varepsilon_{n}) be a sequence of nonnegative numbers such that εn/μn20\varepsilon_{n}/\mu_{n}^{2}\to 0. We define 𝔠:=supnεnμn\mathfrak{c}:=\sup_{n\in\mathbb{N}}\frac{\sqrt{\varepsilon_{n}}}{\mu_{n}}. We denote by LhL_{h} the Lipschitz constant of hh. For all t[0,T]t\in[0,T] and nn\in\mathbb{N}, we define τn(t):=xn(δn(t))+δn(t)θn(t)f(s,xn(δn(t)))𝑑s\tau_{n}(t):=x_{n}(\delta_{n}(t))+\int_{\delta_{n}(t)}^{\theta_{n}(t)}f(s,x_{n}(\delta_{n}(t)))ds. Since f(t,xn(δn(t)))projF(t,xn(δn(t)))γ(0)f(t,x_{n}(\delta_{n}(t)))\in\operatorname{proj}_{F(t,x_{n}(\delta_{n}(t)))}^{\gamma}(0) we obtain that

dC(θn(t))(τn(t))\displaystyle d_{C(\theta_{n}(t))}(\tau_{n}(t)) dC(θn(t))(xn(δn(t)))+δn(t)θn(t)f(s,xn(δn(t)))𝑑s\displaystyle\leq d_{C(\theta_{n}(t))}(x_{n}(\delta_{n}(t)))+\left\|\int_{\delta_{n}(t)}^{\theta_{n}(t)}f(s,x_{n}(\delta_{n}(t)))ds\right\|
LCμn+δn(t)θn(t)f(s,xn(δn(t)))𝑑s\displaystyle\leq L_{C}\mu_{n}+\int_{\delta_{n}(t)}^{\theta_{n}(t)}\|f(s,x_{n}(\delta_{n}(t)))\|ds
LCμn+δn(t)θn(t)(h(xn(δn(t)))+γ)𝑑s\displaystyle\leq L_{C}\mu_{n}+\int_{\delta_{n}(t)}^{\theta_{n}(t)}(h(x_{n}(\delta_{n}(t)))+\sqrt{\gamma})ds
(LC+h(xn(δn(t)))+γ)μn,\displaystyle\leq(L_{C}+h(x_{n}(\delta_{n}(t)))+\sqrt{\gamma})\mu_{n},

which proves (i)(i). Moreover, since xn(θn(t))projC(θn(t))εn(τn(t))x_{n}(\theta_{n}(t))\in\operatorname{proj}_{C(\theta_{n}(t))}^{\varepsilon_{n}}(\tau_{n}(t)), we get that

xn(θn(t))τn(t)\displaystyle\|x_{n}(\theta_{n}(t))-\tau_{n}(t)\| dC(θn(t))(τn(t))+εn\displaystyle\leq d_{C(\theta_{n}(t))}(\tau_{n}(t))+\sqrt{\varepsilon_{n}} (9)
(LC+h(xn(δn(t)))+γ)μn+εn,\displaystyle\leq(L_{C}+h(x_{n}(\delta_{n}(t)))+\sqrt{\gamma})\mu_{n}+\sqrt{\varepsilon_{n}},

which yields

xn(θn(t))xn(δn(t))\displaystyle\|x_{n}(\theta_{n}(t))-x_{n}(\delta_{n}(t))\| (LC+2h(xn(δn(t)))+2γ)μn+εn\displaystyle\leq(L_{C}+2h(x_{n}(\delta_{n}(t)))+2\sqrt{\gamma})\mu_{n}+\sqrt{\varepsilon_{n}} (10)
(LC+2h(x0)+2γ+2Lhxn(δn(t))x0)μn\displaystyle\leq(L_{C}+2h(x_{0})+2\sqrt{\gamma}+2L_{h}\|x_{n}(\delta_{n}(t))-x_{0}\|)\mu_{n}
+εn.\displaystyle+\sqrt{\varepsilon_{n}}.

Hence, for all t[0,T]t\in[0,T]

xn(θn(t))x0\displaystyle\|x_{n}(\theta_{n}(t))-x_{0}\| (1+2Lhμn)xn(δn(t))x0\displaystyle\leq(1+2L_{h}\mu_{n})\|x_{n}(\delta_{n}(t))-x_{0}\|
+(LC+2h(x0)+2γ)μn+εn.\displaystyle+(L_{C}+2h(x_{0})+2\sqrt{\gamma})\mu_{n}+\sqrt{\varepsilon_{n}}.

The above inequality means that for all k{0,1,,n1}k\in\{0,1,...,n-1\}:

xk+1nx0\displaystyle\|x_{k+1}^{n}-x_{0}\| (1+2Lhμn)xknx0+(LC+2h(x0)+2γ)μn+εn.\displaystyle\leq(1+2L_{h}\mu_{n})\|x_{k}^{n}-x_{0}\|+(L_{C}+2h(x_{0})+2\sqrt{\gamma})\mu_{n}+\sqrt{\varepsilon_{n}}.

Then, by (Clarke1998, , p. 183), we obtain that for all k{0,,n1}k\in\{0,...,n-1\}

xk+1nx0\displaystyle\|x_{k+1}^{n}-x_{0}\| (k+1)((LC+2h(x0)+2γ)μn+εn)exp(2Lh(k+1)μn)\displaystyle\leq(k+1)((L_{C}+2h(x_{0})+2\sqrt{\gamma})\mu_{n}+\sqrt{\varepsilon_{n}})\exp(2L_{h}(k+1)\mu_{n}) (11)
T(LC+2h(x0)+γ+𝔠)exp(2LhT)=:K1.\displaystyle\leq T(L_{C}+2h(x_{0})+\sqrt{\gamma}+\mathfrak{c})\exp(2L_{h}T)=:K_{1}.

which proves (ii)(ii).
(iii)(iii): By definition of xnx_{n}, for t]tkn,tk+1n]t\in]t_{k}^{n},t_{k+1}^{n}] and k{0,1,n1}k\in\{0,1...,n-1\}, using (5)

xn(t)\displaystyle\|x_{n}(t)\| xkn+xk+1nτn(t)+tkntf(s,xkn)𝑑s\displaystyle\leq\|x_{k}^{n}\|+\|x_{k+1}^{n}-\tau_{n}(t)\|+\int_{t_{k}^{n}}^{t}\|f(s,x_{k}^{n})\|ds
K1+x0+(LC+γ+h(xkn))μn+εn+(h(xkn)+γ)μn,\displaystyle\leq K_{1}+\|x_{0}\|+(L_{C}+\sqrt{\gamma}+h(x_{k}^{n}))\mu_{n}+\sqrt{\varepsilon_{n}}+(h(x_{k}^{n})+\sqrt{\gamma})\mu_{n},

where we have used (9). Moreover, it is clear that for k{0,,n}k\in\{0,...,n\}

h(xkn)h(x0)+Lhxknx0h(x0)+LhK1.\displaystyle h(x_{k}^{n})\leq h(x_{0})+L_{h}\|x_{k}^{n}-x_{0}\|\leq h(x_{0})+L_{h}K_{1}.

Therefore, for all t[0,T]t\in[0,T]

xn(t)\displaystyle\|x_{n}(t)\| K1+x0+(LC+2(h(x0)+LhK1+γ))μn+εn\displaystyle\leq K_{1}+\|x_{0}\|+(L_{C}+2(h(x_{0})+L_{h}K_{1}+\sqrt{\gamma}))\mu_{n}+\sqrt{\varepsilon_{n}}
K1+x0+T(LC+2(h(x0)+LhK1+γ)+𝔠)=:K2,\displaystyle\leq K_{1}+\|x_{0}\|+T(L_{C}+2(h(x_{0})+L_{h}K_{1}+\sqrt{\gamma})+\mathfrak{c})=:K_{2},

which proves (iii)(iii).
(iv)(iv): From (10) and (11) it is easy to see that there exists K3>0K_{3}>0 such that for all nn\in\mathbb{N} and t[0,T]t\in[0,T]: xn(θn(t))xn(δn(t))K3μn+εn\|x_{n}(\theta_{n}(t))-x_{n}(\delta_{n}(t))\|\leq K_{3}\mu_{n}+\sqrt{\varepsilon_{n}}.
(v)(v): To conclude this part, we consider t]tkn,tk+1n]t\in]t_{k}^{n},t_{k+1}^{n}] for some k{0,1,,n1}k\in\{0,1,...,n-1\}. Then xn(θn(t))=xk+1nx_{n}(\theta_{n}(t))=x_{k+1}^{n} and also

xn(θn(t))xn(t)\displaystyle\|x_{n}(\theta_{n}(t))-x_{n}(t)\|\leq xk+1nxkn+xk+1nτn(t)+tkntf(s,xkn)𝑑s\displaystyle\|x_{k+1}^{n}-x_{k}^{n}\|+\|x_{k+1}^{n}-\tau_{n}(t)\|+\int_{t_{k}^{n}}^{t}\|f(s,x_{k}^{n})\|ds
\displaystyle\leq K3μn+εn+(LC+γ+h(x0)+LhK1)μn+εn\displaystyle K_{3}\mu_{n}+\sqrt{\varepsilon_{n}}+(L_{C}+\sqrt{\gamma}+h(x_{0})+L_{h}K_{1})\mu_{n}+\sqrt{\varepsilon_{n}}
+μn(h(xkn)+γ)\displaystyle+\mu_{n}(h(x_{k}^{n})+\sqrt{\gamma})
\displaystyle\leq (K3+LC+2(h(x0)+LhK1)+2γ=:K4)μn+2εn,\displaystyle(\underbrace{K_{3}+L_{C}+2(h(x_{0})+L_{h}K_{1})+2\sqrt{\gamma}}_{=:K_{4}})\mu_{n}+2\sqrt{\varepsilon_{n}},

and we conclude this first part.
(b)(b): Let m,nm,n\in\mathbb{N} and t[0,T]t\in[0,T], then

dC(θn(t))(xm(t))\displaystyle d_{C(\theta_{n}(t))}(x_{m}(t)) dC(θn(t))(xm(θm(t)))+xm(θm(t))xm(t)\displaystyle\leq d_{C(\theta_{n}(t))}(x_{m}(\theta_{m}(t)))+\|x_{m}(\theta_{m}(t))-x_{m}(t)\|
dH(C(θn(t)),C(θm(t)))+K4μm+2εm\displaystyle\leq d_{H}(C(\theta_{n}(t)),C(\theta_{m}(t)))+K_{4}\mu_{m}+2\sqrt{\varepsilon_{m}}
LC|θn(t)θm(t)|+K4μm+2εm\displaystyle\leq L_{C}|\theta_{n}(t)-\theta_{m}(t)|+K_{4}\mu_{m}+2\sqrt{\varepsilon_{m}}
LC(μn+μm)+K4μm+2εm\displaystyle\leq L_{C}(\mu_{n}+\mu_{m})+K_{4}\mu_{m}+2\sqrt{\varepsilon_{m}}

where we have used (v). Hence, by setting K5:=K4+LCK_{5}:=K_{4}+L_{C} we prove (b).
(c)(c): Let nn\in\mathbb{N}, k{0,1,,n1}k\in\{0,1,...,n-1\} and t]tkn,tk+1n]t\in]t_{k}^{n},t_{k+1}^{n}]. Then,

x˙n(t)\displaystyle\|\dot{x}_{n}(t)\| =1μn(xk+1nxkntkntk+1nf(s,xkn)𝑑s)+f(t,xkn)\displaystyle=\left\|\frac{1}{\mu_{n}}\left(x_{k+1}^{n}-x_{k}^{n}-\int_{t_{k}^{n}}^{t_{k+1}^{n}}f(s,x_{k}^{n})ds\right)+f(t,x_{k}^{n})\right\|
1μnxn(θn(t))τn(t)+f(t,xkn)\displaystyle\leq\frac{1}{\mu_{n}}\|x_{n}(\theta_{n}(t))-\tau_{n}(t)\|+\|f(t,x_{k}^{n})\|
1μn((LC+h(xkn)+γ)μn+εn)+h(xkn)+γ\displaystyle\leq\frac{1}{\mu_{n}}((L_{C}+h(x_{k}^{n})+\sqrt{\gamma})\mu_{n}+\sqrt{\varepsilon_{n}})+h(x_{k}^{n})+\sqrt{\gamma}
εnμn+LC+2(h(x0)+LhK1+γ)\displaystyle\leq\frac{\sqrt{\varepsilon_{n}}}{\mu_{n}}+L_{C}+2(h(x_{0})+L_{h}K_{1}+\sqrt{\gamma})
𝔠+LC+2(h(x0)+LhK1+γ)=:K6,\displaystyle\leq\mathfrak{c}+L_{C}+2(h(x_{0})+L_{h}K_{1}+\sqrt{\gamma})=:K_{6},

which proves (c)(c).
(d)(d): Fix k{0,1,,n1}k\in\{0,1,...,n-1\} and t]tkn,tk+1n[t\in]t_{k}^{n},t_{k+1}^{n}[. Then, xk+1nprojC(tk+1n)εn(τn(t))x_{k+1}^{n}\in\operatorname{proj}_{C(t_{k+1}^{n})}^{\varepsilon_{n}}(\tau_{n}(t)). Hence, by Lemma 1, there exists vk+1nC(tk+1n)v_{k+1}^{n}\in C(t_{k+1}^{n}) such that xk+1vk+1n<2εn\|x_{k+1}-v_{k+1}^{n}\|<2\sqrt{\varepsilon_{n}} and

τn(t)xk+1nαn(t)PdC(tk+1n)(vk+1n)+3εn𝔹,t]tkn,tk+1n[,\displaystyle\tau_{n}(t)-x_{k+1}^{n}\in\alpha_{n}(t)\partial_{P}d_{C(t_{k+1}^{n})}(v_{k+1}^{n})+3\sqrt{\varepsilon_{n}}\mathbb{B},\ \forall t\in]t_{k}^{n},t_{k+1}^{n}[,

where αn(t)=4εn+dC(θn(t))(τn(t))\alpha_{n}(t)=4\sqrt{\varepsilon_{n}}+d_{C(\theta_{n}(t))}(\tau_{n}(t)). By virtue of (i)(i),

αn(t)4εn+(LC+h(x(δn(t)))+γ)μn=:λn(t).\alpha_{n}(t)\leq 4\sqrt{\varepsilon_{n}}+(L_{C}+h(x(\delta_{n}(t)))+\sqrt{\gamma})\mu_{n}=:\lambda_{n}(t).

Then, for all t]tkn,tk+1n[t\in]t_{k}^{n},t_{k+1}^{n}[

μn(x˙n(t)f(t,xkn))λn(t)PdC(tk+1n)(vk+1n)+3εn𝔹,-\mu_{n}(\dot{x}_{n}(t)-f(t,x_{k}^{n}))\in\lambda_{n}(t)\partial_{P}d_{C(t_{k+1}^{n})}(v_{k+1}^{n})+3\sqrt{\varepsilon_{n}}\mathbb{B},

which implies that t]tkn,tk+1n[t\in]t_{k}^{n},t_{k+1}^{n}[

x˙n(t)λn(t)μnPdC(tk+1n)(vk+1n)+f(t,xkn)+3εnμn𝔹.\dot{x}_{n}(t)\in-\frac{\lambda_{n}(t)}{\mu_{n}}\partial_{P}d_{C(t_{k+1}^{n})}(v_{k+1}^{n})+f(t,x_{k}^{n})+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\mathbb{B}.

4 Prox-Regular Case

In this section, we will study the algorithm under the assumption of uniform prox-regularity of the moving set. The classic catching-up algorithm in this framework was studied MR2159846 , where the existence of solutions for (4) was established for a set-valued map FF taking values in a fixed compact set.

Theorem 4.1

Suppose, in addition to the assumptions of Theorem 3.1, that C(t)C(t) is ρ\rho-uniformly prox-regular for all t[0,T]t\in[0,T], and there exists a nonnegative integrable function kk such that for all t[0,T]t\in[0,T] and x,xx,x^{\prime}\in\mathcal{H}

yy,xxk(t)xx2,yF(t,x),yF(t,x).\langle y-y^{\prime},x-x^{\prime}\rangle\leq k(t)\|x-x^{\prime}\|^{2},\ \forall y\in F(t,x),\forall y^{\prime}\in F(t,x^{\prime}). (12)

Then, the sequence of functions (xn)n(x_{n})_{n} generated by the algorithm (5) and (6) converges uniformly to an absolutely continuous function xx, which is the unique solution of (4).

Proof

Consider m,nm,n\in\mathbb{N} with mnm\geq n big enough such that for all t[0,T]t\in[0,T], dC(θn(t))(xm(t))<ρd_{C(\theta_{n}(t))}(x_{m}(t))<\rho, this can be guaranteed by Theorem (b)(b). Then, for a.e. t[0,T]t\in[0,T]

ddt(12xn(t)xm(t)2)=x˙n(t)x˙m(t),xn(t)xm(t).\frac{d}{dt}\left(\frac{1}{2}\|x_{n}(t)-x_{m}(t)\|^{2}\right)=\langle\dot{x}_{n}(t)-\dot{x}_{m}(t),x_{n}(t)-x_{m}(t)\rangle.

Let t[0,T]t\in[0,T] where the above equality holds. Let k,j{0,1,,n1}k,j\in\{0,1,...,n-1\} such that t]tkn,tk+1n]t\in]t_{k}^{n},t_{k+1}^{n}] and t]tjm,tj+1m]t\in]t_{j}^{m},t_{j+1}^{m}]. On the one hand, we have that

x˙n(t)x˙m(t),xn(t)xm(t)=\displaystyle\langle\dot{x}_{n}(t)-\dot{x}_{m}(t),x_{n}(t)-x_{m}(t)\rangle= x˙n(t)x˙m(t),xn(t)xk+1n\displaystyle\ \langle\dot{x}_{n}(t)-\dot{x}_{m}(t),x_{n}(t)-x_{k+1}^{n}\rangle (13)
+x˙n(t)x˙m(t),xk+1nvk+1n\displaystyle+\langle\dot{x}_{n}(t)-\dot{x}_{m}(t),x_{k+1}^{n}-v_{k+1}^{n}\rangle
+x˙n(t)x˙m(t),vk+1nvj+1m\displaystyle+\langle\dot{x}_{n}(t)-\dot{x}_{m}(t),v_{k+1}^{n}-v_{j+1}^{m}\rangle
+x˙n(t)x˙m(t),vj+1mxj+1m\displaystyle+\langle\dot{x}_{n}(t)-\dot{x}_{m}(t),v_{j+1}^{m}-x_{j+1}^{m}\rangle
+x˙n(t)x˙m(t),xj+1mxm(t)\displaystyle+\langle\dot{x}_{n}(t)-\dot{x}_{m}(t),x_{j+1}^{m}-x_{m}(t)\rangle
\displaystyle\leq 2K6(K4(μn+μm)+4(εn+εm))\displaystyle\ 2K_{6}(K_{4}(\mu_{n}+\mu_{m})+4(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}}))
+x˙n(t)x˙m(t),vk+1nvj+1m\displaystyle+\langle\dot{x}_{n}(t)-\dot{x}_{m}(t),v_{k+1}^{n}-v_{j+1}^{m}\rangle

where vk+1nC(tk+1n)v_{k+1}^{n}\in C(t_{k+1}^{n}) and vj+1mC(tj+1m)v_{j+1}^{m}\in C(t_{j+1}^{m}) are the given in Theorem (d)(d). We can see that

max{dC(tk+1n)(vj+1m),dC(tj+1m)(vk+1n)}\displaystyle\max\{d_{C(t_{k+1}^{n})}(v_{j+1}^{m}),d_{C(t_{j+1}^{m})}(v_{k+1}^{n})\} dH(C(tj+1m),C(tk+1n))\displaystyle\leq d_{H}(C(t_{j+1}^{m}),C(t_{k+1}^{n}))
LC|tj+1mtk+1n|LC(μn+μm).\displaystyle\leq L_{C}|t_{j+1}^{m}-t_{k+1}^{n}|\leq L_{C}(\mu_{n}+\mu_{m}).

From now, m,nm,n\in\mathbb{N} are big enough such that LC(μn+μm)<ρ2L_{C}(\mu_{n}+\mu_{m})<\frac{\rho}{2}. Moreover, as hh is LhL_{h}-Lipschitz, we have that for all pp\in\mathbb{N}, i{0,1,,p}i\in\{0,1,...,p\} and t[0,T]t\in[0,T]

f(t,xip)h(xip)+γh(x0)+LhK1+γ=:α.\|f(t,x_{i}^{p})\|\leq h(x_{i}^{p})+\sqrt{\gamma}\leq h(x_{0})+L_{h}K_{1}+\sqrt{\gamma}=:\alpha.

From the other hand, using (8) and Proposition 1 we have that

1ϝmax{ζnx˙n(t),vj+1mvk+1n,ζmx˙m(t),vk+1nvj+1m}\displaystyle\frac{1}{\digamma}\max\{\left\langle\zeta_{n}-\dot{x}_{n}(t),v_{j+1}^{m}-v_{k+1}^{n}\right\rangle,\left\langle\zeta_{m}-\dot{x}_{m}(t),v_{k+1}^{n}-v_{j+1}^{m}\right\rangle\}
\displaystyle\leq 2ρvk+1nvj+1m2+LC(μn+μm)\displaystyle\frac{2}{\rho}\|v_{k+1}^{n}-v_{j+1}^{m}\|^{2}+L_{C}(\mu_{n}+\mu_{m})

where ξn,ξm𝔹\xi_{n},\xi_{m}\in\mathbb{B}, ϝ:=sup{λ(t)μ:t[0,T],}\digamma:=\sup\{\frac{\lambda_{\ell}(t)}{\mu_{\ell}}:t\in[0,T],\ell\in\mathbb{N}\} and ζi:=f(t,xi(δi(t)))+3εiμiξi\zeta_{i}:=f(t,x_{i}(\delta_{i}(t)))+\frac{3\sqrt{\varepsilon_{i}}}{\mu_{i}}\xi_{i} for i{n,m}i\in\{n,m\}. Therefore, we have that

x˙n(t)x˙m(t),vk+1nvj+1m\displaystyle\langle\dot{x}_{n}(t)-\dot{x}_{m}(t),v_{k+1}^{n}-v_{j+1}^{m}\rangle
=x˙n(t)ζn,vk+1nvj+1m+ζnζm,vk+1nvj+1m\displaystyle\hskip 59.75078pt=\langle\dot{x}_{n}(t)-\zeta_{n},v_{k+1}^{n}-v_{j+1}^{m}\rangle+\langle\zeta_{n}-\zeta_{m},v_{k+1}^{n}-v_{j+1}^{m}\rangle
+ζmx˙m(t),vk+1nvj+1m\displaystyle\hskip 59.75078pt+\langle\zeta_{m}-\dot{x}_{m}(t),v_{k+1}^{n}-v_{j+1}^{m}\rangle
2ϝ(2ρvk+1nvj+1m2+LC(μn+μm))+ζnζm,vk+1nvj+1m\displaystyle\hskip 59.75078pt\leq 2\digamma(\frac{2}{\rho}\|v_{k+1}^{n}-v_{j+1}^{m}\|^{2}+L_{C}(\mu_{n}+\mu_{m}))+\langle\zeta_{n}-\zeta_{m},v_{k+1}^{n}-v_{j+1}^{m}\rangle
4ϝρ(xn(t)xm(t)+3(εn+εm)+K4(μn+μm))2\displaystyle\hskip 59.75078pt\leq\frac{4\digamma}{\rho}(\|x_{n}(t)-x_{m}(t)\|+3(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}})+K_{4}(\mu_{n}+\mu_{m}))^{2}
+2ϝLC(μn+μm)+ζnζm,vk+1nvj+1m.\displaystyle\hskip 59.75078pt+2\digamma L_{C}(\mu_{n}+\mu_{m})+\langle\zeta_{n}-\zeta_{m},v_{k+1}^{n}-v_{j+1}^{m}\rangle.

Moreover, using Theorem 3.1 and property (12),

ζnζm,vk+1nvj+1m\displaystyle\langle\zeta_{n}-\zeta_{m},v_{k+1}^{n}-v_{j+1}^{m}\rangle
=f(t,xn(δn(t)))f(t,xm(δm(t))),xn(δn(t))xm(δm(t))\displaystyle\hskip 59.75078pt=\langle f(t,x_{n}(\delta_{n}(t)))-f(t,x_{m}(\delta_{m}(t))),x_{n}(\delta_{n}(t))-x_{m}(\delta_{m}(t))\rangle
+f(t,xn(δn(t)))f(t,xm(δm(t))),vk+1nxk+1n\displaystyle\hskip 59.75078pt+\langle f(t,x_{n}(\delta_{n}(t)))-f(t,x_{m}(\delta_{m}(t))),v_{k+1}^{n}-x_{k+1}^{n}\rangle
+f(t,xn(δn(t)))f(t,xm(δm(t))),xk+1nxkn\displaystyle\hskip 59.75078pt+\langle f(t,x_{n}(\delta_{n}(t)))-f(t,x_{m}(\delta_{m}(t))),x_{k+1}^{n}-x_{k}^{n}\rangle
+f(t,xn(δn(t)))f(t,xm(δm(t))),xjmxj+1m\displaystyle\hskip 59.75078pt+\langle f(t,x_{n}(\delta_{n}(t)))-f(t,x_{m}(\delta_{m}(t))),x_{j}^{m}-x_{j+1}^{m}\rangle
+f(t,xn(δn(t)))f(t,xm(δm(t))),xj+1mvj+1m\displaystyle\hskip 59.75078pt+\langle f(t,x_{n}(\delta_{n}(t)))-f(t,x_{m}(\delta_{m}(t))),x_{j+1}^{m}-v_{j+1}^{m}\rangle
+3εnμnξn,vk+1nvj+1m+3εmμmξm,vj+1mvk+1n\displaystyle\hskip 59.75078pt+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\langle\xi_{n},v_{k+1}^{n}-v_{j+1}^{m}\rangle+\frac{3\sqrt{\varepsilon_{m}}}{\mu_{m}}\langle\xi_{m},v_{j+1}^{m}-v_{k+1}^{n}\rangle
k(t)xn(δn(t))xm(δm(t))2\displaystyle\hskip 59.75078pt\leq\ k(t)\|x_{n}(\delta_{n}(t))-x_{m}(\delta_{m}(t))\|^{2}
+2α(3(εn+εm)+K3(μn+μm))\displaystyle\hskip 59.75078pt+2\alpha(3(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}})+K_{3}(\mu_{n}+\mu_{m}))
+3εnμnvk+1nvj+1m+3εmμmvj+1mvk+1n\displaystyle\hskip 59.75078pt+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\|v_{k+1}^{n}-v_{j+1}^{m}\|+\frac{3\sqrt{\varepsilon_{m}}}{\mu_{m}}\|v_{j+1}^{m}-v_{k+1}^{n}\|
k(t)(xn(t)xm(t)+3(εn+εm)+(K3+K4)(μn+μm))2\displaystyle\hskip 59.75078pt\leq k(t)(\|x_{n}(t)-x_{m}(t)\|+3(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}})+(K_{3}+K_{4})(\mu_{n}+\mu_{m}))^{2}
+2α(3(εn+εm)+K3(μn+μm))\displaystyle\hskip 59.75078pt+2\alpha(3(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}})+K_{3}(\mu_{n}+\mu_{m}))
+6(εnμn+εmμm)(εn+εm+K2).\displaystyle\hskip 59.75078pt+6\left(\frac{\sqrt{\varepsilon_{n}}}{\mu_{n}}+\frac{\sqrt{\varepsilon_{m}}}{\mu_{m}}\right)(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}}+K_{2}).

These two inequalities and (13) yield

ddtxn(t)xm(t)2\displaystyle\frac{d}{dt}\|x_{n}(t)-x_{m}(t)\|^{2}
4(4ϝρ+k(t))xn(t)xm(t)2+4α(3(εn+εm)+K3(μn+μm))\displaystyle\hskip 28.45274pt\leq\ 4\left(\frac{4\digamma}{\rho}+k(t)\right)\|x_{n}(t)-x_{m}(t)\|^{2}+4\alpha(3(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}})+K_{3}(\mu_{n}+\mu_{m}))
+4ϝLC(μn+μm)+12(εnμn+εmμm)(εn+εm+K2)\displaystyle\hskip 28.45274pt+4\digamma L_{C}(\mu_{n}+\mu_{m})+12\left(\frac{\sqrt{\varepsilon_{n}}}{\mu_{n}}+\frac{\sqrt{\varepsilon_{m}}}{\mu_{m}}\right)(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}}+K_{2})
+16ϝρ(3(εn+εm)+K4(μn+μm))2\displaystyle\hskip 28.45274pt+\frac{16\digamma}{\rho}(3(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}})+K_{4}(\mu_{n}+\mu_{m}))^{2}
+4k(t)(3(εn+εm)+(K3+K4)(μn+μm))2.\displaystyle\hskip 28.45274pt+4k(t)(3(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}})+(K_{3}+K_{4})(\mu_{n}+\mu_{m}))^{2}.

Hence, using Gronwall’s inequality, we have for all t[0,T]t\in[0,T] and n,mn,m big enough:

xn(t)xm(t)2Am,nexp(16ϝρT+40Tk(s)𝑑s),\|x_{n}(t)-x_{m}(t)\|^{2}\leq A_{m,n}\exp\left(\frac{16\digamma}{\rho}T+4\int_{0}^{T}k(s)ds\right), (14)

where,

Am,n\displaystyle A_{m,n} = 4αT(3(εn+εm)+K3(μn+μm))\displaystyle=\ 4\alpha T(3(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}})+K_{3}(\mu_{n}+\mu_{m}))
+4TϝLC(μn+μm)+12T(εnμn+εmμm)(εn+εm+K2)\displaystyle+4T\digamma L_{C}(\mu_{n}+\mu_{m})+12T\left(\frac{\sqrt{\varepsilon_{n}}}{\mu_{n}}+\frac{\sqrt{\varepsilon_{m}}}{\mu_{m}}\right)(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}}+K_{2})
+16Tϝρ(3(εn+εm)+K4(μn+μm))2\displaystyle+\frac{16T\digamma}{\rho}(3(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}})+K_{4}(\mu_{n}+\mu_{m}))^{2}
+4k1(3(εn+εm)+(K3+K4)(μn+μm))2.\displaystyle+4\|k\|_{1}(3(\sqrt{\varepsilon_{n}}+\sqrt{\varepsilon_{m}})+(K_{3}+K_{4})(\mu_{n}+\mu_{m}))^{2}.

Since Am,nA_{m,n} goes to 0 when m,nm,n\to\infty, it shows that (xn)n(x_{n})_{n\in\mathbb{N}} is a Cauchy sequence in the space of continuous functions with the uniform convergence. Therefore, it converges uniformly to some continuous function x:[0,T]x\colon[0,T]\to\mathcal{H}. It remains to check that xx is absolutely continuous, and it is the unique solution of (4). First of all, by Theorem (c)(c) and (MR3626639, , Lemma 2.2), xx is absolutely continuous and there is a subsequence of (x˙n)(\dot{x}_{n}) which converges weakly in L1([0,T];)L^{1}([0,T];\mathcal{H}) to x˙\dot{x}. So, without relabeling, we have x˙nx˙\dot{x}_{n}\rightharpoonup\dot{x} in L1([0,T];)L^{1}([0,T];\mathcal{H}). On the other hand, using Theorem (d)(d) and defining vn(t):=vk+1nv_{n}(t):=v_{k+1}^{n} for t]tkn,tk+1n]t\in]t_{k}^{n},t_{k+1}^{n}] we have

x˙n(t)\displaystyle\dot{x}_{n}(t) λn(t)μnPdC(θn(t))(vn(t))+f(t,xn(δn(t)))+3εnμn𝔹\displaystyle\in-\frac{\lambda_{n}(t)}{\mu_{n}}\partial_{P}d_{C(\theta_{n}(t))}(v_{n}(t))+f(t,x_{n}(\delta_{n}(t)))+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\mathbb{B}
κ1dC(θn(t))(vn(t))+κ2𝔹F(t,xn(δn(t)))+3εnμn𝔹.\displaystyle\in-\kappa_{1}\partial d_{C(\theta_{n}(t))}(v_{n}(t))+\kappa_{2}\mathbb{B}\cap F(t,x_{n}(\delta_{n}(t)))+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\mathbb{B}.

where, by Theorem 3.1, κ1\kappa_{1} and κ2\kappa_{2} are nonnegative numbers which do not depend of nn\in\mathbb{N} and t[0,T]t\in[0,T]. We also have vnxv_{n}\to x, θnId[0,T]\theta_{n}\to\text{Id}_{[0,T]} and δnId[0,T]\delta_{n}\to\text{Id}_{[0,T]} uniformly. Theorem (b)(b) ensures that x(t)C(t)x(t)\in C(t) for all t[0,T]t\in[0,T]. By Mazur’s Lemma, there is a sequence (yj)(y_{j}) such that for all nn, ynco(x˙k:kn)y_{n}\in\text{co}(\dot{x}_{k}:k\geq n) and (yn)(y_{n}) converges strongly to x˙\dot{x} in L1([0,T];)L^{1}([0,T];\mathcal{H}). That is to say

yn(t)co(κ1dC(θk(t))(vk(t))+κ2𝔹F(t,xk(δk(t)))+3εkμk𝔹:kn).y_{n}(t)\in\text{co}\left(-\kappa_{1}\partial d_{C(\theta_{k}(t))}(v_{k}(t))+\kappa_{2}\mathbb{B}\cap F(t,x_{k}(\delta_{k}(t)))+\frac{3\sqrt{\varepsilon_{k}}}{\mu_{k}}\mathbb{B}:k\geq n\right).

Hence, there exists (ynj)(y_{n_{j}}) which converges to x˙\dot{x} almost everywhere in [0,T][0,T]. Then, by virtue of Lemma 2, (1F)(\mathcal{H}_{1}^{F}) and Lemma 3, we obtain that

x˙(t)κ1dC(t)(x(t))+κ2𝔹F(t,x(t)) for a.e. t[0,T].\dot{x}(t)\in-\kappa_{1}\partial d_{C(t)}(x(t))+\kappa_{2}\mathbb{B}\cap F(t,x(t))\textrm{ for a.e. }t\in[0,T].

Finally, since dC(t)(x(t))N(C(t);x(t))\partial d_{C(t)}(x(t))\subset N(C(t);x(t)) for all t[0,T]t\in[0,T], we have xx is the solution of (4).

Remark 1

The property required for FF in (12) is a classical monotonicity assumption in the theory of existence of solutions for differential inclusions (see, e.g., (MR1189795, , Theorem 10.5)).

Remark 2 (Rate of convergence)

In the precedent proof, we have established the following estimation:

xn(t)xm(t)2Am,nexp(16ϝρT+40Tk(s)𝑑s)\|x_{n}(t)-x_{m}(t)\|^{2}\leq A_{m,n}\exp\left(\frac{16\digamma}{\rho}T+4\int_{0}^{T}k(s)ds\right)

for m,nm,n such that μn+μm<ρ2LC\mu_{n}+\mu_{m}<\frac{\rho}{2L_{C}}. Hence, by letting mm\to\infty, we obtain that

xn(t)x(t)2Anexp(16ϝρT+40Tk(s)𝑑s) for all n>2LCTρ,\|x_{n}(t)-x(t)\|^{2}\leq A_{n}\exp\left(\frac{16\digamma}{\rho}T+4\int_{0}^{T}k(s)ds\right)\textrm{ for all }n>\frac{2L_{C}T}{\rho},

where

An:=limmAm,nD(εn+μn+εnμn),A_{n}:=\lim_{m\to\infty}A_{m,n}\leq D(\sqrt{\varepsilon_{n}}+\mu_{n}+\frac{\sqrt{\varepsilon_{n}}}{\mu_{n}}),

where DD is a nonnegative constant. Hence, the above estimation provides a rate of convergence for our scheme.

5 Subsmooth case

In this section, we study the sweeping process (4) in a more general setting than the uniformly prox-regular case. We now assume (C(t))t[0,T](C(t))_{t\in[0,T]} is a equi-uniformly subsmooth family. The classical catching-up algorithm was studied in MR3574145 under this framework. In this case, we make the assumption about the ball compactness of the moving sets. We will see that our algorithm allows us to prove the existence of a solution, but we only ensure that a subsequence converges to this solution, which is expected due to the lack of uniqueness of solutions in this case.

Theorem 5.1

Suppose, in addition to assumptions of theorem 3.1, that the family (C(t))t[0,T](C(t))_{t\in[0,T]} is equi-uniformly subsmooth and the set C(t)C(t) are ball-compact for all t[0,T]t\in[0,T]. Then, the sequence of continuous functions (xn)n(x_{n})_{n} generated by algorithm (5) and (6) converges uniformly (up to a subsequence) to an absolutely continuous function xx, which is a solution of (4).

Proof

From Theorem (d)(d) we have for all nn\in\mathbb{N} and k{0,,n1}k\in\{0,\ldots,n-1\}, there is vk+1nC(tk+1n)v_{k+1}^{n}\in C(t_{k+1}^{n}) such that vk+1nxk+1n<2εn\|v_{k+1}^{n}-x_{k+1}^{n}\|<2\sqrt{\varepsilon_{n}} and for all t]tkn,tk+1n]t\in]t_{k}^{n},t_{k+1}^{n}]:

x˙n(t)λn(t)μnPdC(θn(t))(vk+1n)+f(t,xn(δn(t)))+3εnμn𝔹.\dot{x}_{n}(t)\in-\frac{\lambda_{n}(t)}{\mu_{n}}\partial_{P}d_{C(\theta_{n}(t))}(v_{k+1}^{n})+f(t,x_{n}(\delta_{n}(t)))+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\mathbb{B}.

where λn(t)=4εn+(LC+h(x(δn(t)))+γ)μn\lambda_{n}(t)=4\sqrt{\varepsilon_{n}}+(L_{C}+h(x(\delta_{n}(t)))+\sqrt{\gamma})\mu_{n}. As hh is LhL_{h}-Lipschitz it follows that

λn(t)(4𝔠+LC+h(x0)+γ+LhK1)μn.\lambda_{n}(t)\leq(4\mathfrak{c}+L_{C}+h(x_{0})+\sqrt{\gamma}+L_{h}K_{1})\mu_{n}.

Defining vn(t):=vk+1nv_{n}(t):=v_{k+1}^{n} on ]tkn,tk+1n]]t_{k}^{n},t_{k+1}^{n}], then for all nn\in\mathbb{N} and almost all t[0,T]t\in[0,T]

x˙n(t)\displaystyle\dot{x}_{n}(t) MPdC(θn(t))(vn(t))+f(t,xn(δn(t)))+3εnμn𝔹\displaystyle\in-M\partial_{P}d_{C(\theta_{n}(t))}(v_{n}(t))+f(t,x_{n}(\delta_{n}(t)))+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\mathbb{B} (15)
MdC(θn(t))(vn(t))+M𝔹F(t,xn(δn(t)))+3εnμn𝔹.\displaystyle\in-M\partial d_{C(\theta_{n}(t))}(v_{n}(t))+M\mathbb{B}\cap F(t,x_{n}(\delta_{n}(t)))+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\mathbb{B}.

where M:=4𝔠+LC+h(x0)+LhK1+γM:=4\mathfrak{c}+L_{C}+h(x_{0})+L_{h}K_{1}+\sqrt{\gamma}. Moreover, by Theorem (b)(b), we have

dC(t)(xn(t))dC(θn(t))(xn(t))+LCμn(K5+2LC)μn+2εn.\displaystyle d_{C(t)}(x_{n}(t))\leq d_{C(\theta_{n}(t))}(x_{n}(t))+L_{C}\mu_{n}\leq(K_{5}+2L_{C})\mu_{n}+2\sqrt{\varepsilon_{n}}. (16)

for all t[0,T]t\in[0,T].
Next, fix t[0,T]t\in[0,T] and define K(t):={xn(t):n}K(t):=\{x_{n}(t):n\in\mathbb{N}\}. We claim that K(t)K(t) is relatively compact. Indeed, let xm(t)K(t)x_{m}(t)\in K(t) and take ym(t)ProjC(t)(xm(t))y_{m}(t)\in\operatorname{Proj}_{C(t)}(x_{m}(t)) (the projection exists due to the ball compactness of C(t)C(t) and the boundedness of K(t)K(t)). Moreover, according to (16) and Theorem (a)(a),

yn(t)\displaystyle\|y_{n}(t)\| dC(t)(xn(t))+xn(t)(K5+2LC)μn+2εn+K2.\displaystyle\leq d_{C(t)}(x_{n}(t))+\|x_{n}(t)\|\leq(K_{5}+2L_{C})\mu_{n}+2\sqrt{\varepsilon_{n}}+K_{2}.

This entails that yn(t)C(t)R𝔹y_{n}(t)\in C(t)\cap R\,\mathbb{B} for all nn\in\mathbb{N} for some R>0R>0. Thus, by the ball compactness of C(t)C(t), there exists a subsequence (ymk(t))mk(y_{m_{k}}(t))_{m_{k}} of (ym(t))m(y_{m}(t))_{m} converging to some y(t)y(t) as k+k\to+\infty. Then,

xmk(t)y(t)\displaystyle\|x_{m_{k}}(t)-y(t)\| dC(t)(xmk(t))+ymk(t)y(t)\displaystyle\leq d_{C(t)}(x_{m_{k}}(t))+\|y_{m_{k}}(t)-y(t)\|
(K5+2LC)μmk+2εmk+ymk(t)y(t),\displaystyle\leq(K_{5}+2L_{C})\mu_{m_{k}}+2\sqrt{\varepsilon_{m_{k}}}+\|y_{m_{k}}(t)-y(t)\|,

which implies that K(t)K(t) is relatively compact. Moreover, it is not difficult to see by Theorem (c)(c) that K:=(xn)K:=(x_{n}) is equicontinuous. Therefore, by virtue of Theorem (c)(c), Arzela-Ascoli’s and Dunford-Pettis’s Theorems, we obtain the existence of a Lipschitz function xx and a subsequence (xj)j(x_{j})_{j} of (xn)n(x_{n})_{n} such that

  1. (i)

    (xj)(x_{j}) converges uniformly to xx on [0,T][0,T].

  2. (ii)

    x˙jx˙\dot{x}_{j}\rightharpoonup\dot{x} in L1([0,T];)L^{1}\left([0,T];\mathcal{H}\right).

  3. (iii)

    xj(θj(t))x(t)x_{j}(\theta_{j}(t))\to x(t) for all t[0,T]t\in[0,T].

  4. (iv)

    xj(δj(t))x(t)x_{j}(\delta_{j}(t))\to x(t) for all t[0,T]t\in[0,T].

  5. (v)

    vj(t)x(t)v_{j}(t)\to x(t) for all t[0,T]t\in[0,T].

From (16) it is clear that x(t)C(t)x(t)\in C(t) for all t[0,T]t\in[0,T]. By Mazur’s Lemma, there is a sequence (yj)(y_{j}) such that for all jj, yjco(x˙k:kj)y_{j}\in\text{co}(\dot{x}_{k}:k\geq j) and (yj)(y_{j}) converges strongly to x˙\dot{x} in L1([0,T];)L^{1}([0,T];\mathcal{H}). That is to say

yj(t)co(MdC(θn(t))(vn(t))+M𝔹F(t,xn(δn(t)))+3εnμn𝔹:nj).y_{j}(t)\in\text{co}\left(-M\partial d_{C(\theta_{n}(t))}(v_{n}(t))+M\mathbb{B}\cap F(t,x_{n}(\delta_{n}(t)))+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\mathbb{B}:n\geq j\right).

On the other hand, there exists (ynj)(y_{n_{j}}) which converges to x˙\dot{x} almost everywhere in [0,T][0,T]. Then, using Lemma 2, Lemma 3 and (1F)(\mathcal{H}_{1}^{F}), we have

x˙(t)MdC(t)(x(t))+M𝔹F(t,x(t))a.e.\dot{x}(t)\in-M\partial d_{C(t)}(x(t))+M\mathbb{B}\cap F(t,x(t))\ \text{a.e.}

Finally, since dC(t)(x(t))N(C(t);x(t))\partial d_{C(t)}(x(t))\subset N(C(t);x(t)) for all t[0,T]t\in[0,T], it follows that xx is the solution of (4).

6 Fixed set

In this section, we consider a closed and nonempty set CC\subset\mathcal{H}, and we look for a solution of the particular case of (4) given by

{x˙(t)N(C;x(t))+F(t,x(t)) a.e. t[0,T],x(0)=x0C,\left\{\begin{aligned} \dot{x}(t)&\in-N\left(C;x(t)\right)+F(t,x(t))&\textrm{ a.e. }t\in[0,T],\\ x(0)&=x_{0}\in C,\end{aligned}\right. (17)

where F:[0,T]×F\colon[0,T]\times\mathcal{H}\rightrightarrows\mathcal{H} is a set-valued map defined as above. The existence of a solution using classical catching up was done in MR3956966 . Now we use similar ideas to get the existence of a solution using our proposed algorithm. We emphasize that in this case, no regularity of the set CC is required.

Theorem 6.1

Let CC\subset\mathcal{H} be a ball-compact set and F:[0,T]×F\colon[0,T]\times\mathcal{H}\rightrightarrows\mathcal{H} be a set-valued map satisfying (1F)(\mathcal{H}_{1}^{F}), (2F)(\mathcal{H}_{2}^{F}) and (3F)(\mathcal{H}_{3}^{F}). Then, for any x0Sx_{0}\in S, the sequence of functions (xn)n(x_{n})_{n} generated by the algorithm (6) converges uniformly (up to a subsequence) to a Lipschitz solution xx of the sweeping process (17) such that

x˙(t)\displaystyle\|\dot{x}(t)\| 2(h(x(t))+γ)\displaystyle\leq 2(h(x(t))+\sqrt{\gamma}) a.e. t[0,T].\displaystyle\textrm{ a.e. }t\in[0,T].
Proof

We are going to use the properties of Theorem 3.1, where now we have LC=0L_{C}=0. First of all, from Theorem (d)(d) we have for all nn\in\mathbb{N} and k{0,1,,n1}k\in\{0,1,\ldots,n-1\}, there is vk+1nCv_{k+1}^{n}\in C such that vk+1nxk+1n<2εn\|v_{k+1}^{n}-x_{k+1}^{n}\|<2\sqrt{\varepsilon_{n}} and for all t]tkn,tk+1n]t\in]t_{k}^{n},t_{k+1}^{n}]:

x˙n(t)λn(t)μnPdC(vk+1n)+f(t,xn(δn(t)))+3εnμn𝔹.\dot{x}_{n}(t)\in-\frac{\lambda_{n}(t)}{\mu_{n}}\partial_{P}d_{C}(v_{k+1}^{n})+f(t,x_{n}(\delta_{n}(t)))+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\mathbb{B}.

where λn(t)=4εn+(h(x(δn(t)))+γ)μn\lambda_{n}(t)=4\sqrt{\varepsilon_{n}}+(h(x(\delta_{n}(t)))+\sqrt{\gamma})\mu_{n}. Defining vn(t):=vk+1nv_{n}(t):=v_{k+1}^{n} on ]tkn,tk+1n]]t_{k}^{n},t_{k+1}^{n}], we get that for all nn\in\mathbb{N} and a.e. t[0,T]t\in[0,T]

x˙n(t)\displaystyle\dot{x}_{n}(t) λn(t)μnPdC(vn(t))+f(t,xn(δn(t)))+3εnμn𝔹\displaystyle\in-\frac{\lambda_{n}(t)}{\mu_{n}}\partial_{P}d_{C}(v_{n}(t))+f(t,x_{n}(\delta_{n}(t)))+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\mathbb{B}
λn(t)μndC(vn(t))+(h(t,xn(δn(t)))+γ)𝔹F(t,xn(δn(t)))+3εnμn𝔹.\displaystyle\in-\frac{\lambda_{n}(t)}{\mu_{n}}\partial d_{C}(v_{n}(t))+(h(t,x_{n}(\delta_{n}(t)))+\sqrt{\gamma})\mathbb{B}\cap F(t,x_{n}(\delta_{n}(t)))+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\mathbb{B}.

Moreover, by Theorem (b)(b), we have

dC(xn(t))K5μn+2εn for all t[0,T].d_{C}(x_{n}(t))\leq K_{5}\mu_{n}+2\sqrt{\varepsilon_{n}}\textrm{ for all }t\in[0,T].

Next, fix t[0,T]t\in[0,T] and define K(t):={xn(t):n}K(t):=\{x_{n}(t):n\in\mathbb{N}\}. We claim that K(t)K(t) is relatively compact. Indeed, let xm(t)K(t)x_{m}(t)\in K(t) and take ym(t)ProjC(xm(t))y_{m}(t)\in\operatorname{Proj}_{C}(x_{m}(t)) (the projection exists due to the ball compactness of CC and the boundedness of K(t)K(t)). Moreover, according to the above inequality and Theorem (a)(a),

yn(t)dC(xn(t))+xn(t)K5μn+2εn+K2,\|y_{n}(t)\|\leq d_{C}(x_{n}(t))+\|x_{n}(t)\|\leq K_{5}\mu_{n}+2\sqrt{\varepsilon_{n}}+K_{2},

which entails that yn(t)CR𝔹y_{n}(t)\in C\cap R\,\mathbb{B} for all nn\in\mathbb{N} for some R>0R>0. Thus, by the ball-compactness of CC, there exists a subsequence (ymk(t))mk(y_{m_{k}}(t))_{m_{k}} of (ym(t))m(y_{m}(t))_{m} converging to some y(t)y(t) as k+k\to+\infty. Then,

xmk(t)y(t)\displaystyle\|x_{m_{k}}(t)-y(t)\| dC(xmk(t))+ymk(t)y(t)\displaystyle\leq d_{C}(x_{m_{k}}(t))+\|y_{m_{k}}(t)-y(t)\|
K5μmk+2εmk+ymk(t)y(t),\displaystyle\leq K_{5}\mu_{m_{k}}+2\sqrt{\varepsilon_{m_{k}}}+\|y_{m_{k}}(t)-y(t)\|,

which implies that K(t)K(t) is relatively compact. Moreover, it is not difficult to see by Theorem (c)(c) that the set K:=(xn)K:=(x_{n}) is equicontinuous. Therefore, by virtue of Theorem (c)(c), Arzela-Ascoli’s and Dunford-Pettis’s Theorems, we obtain the existence of a Lipschitz function xx and a subsequence (xj)j(x_{j})_{j} of (xn)n(x_{n})_{n} such that

  1. (i)

    (xj)(x_{j}) converges uniformly to xx on [0,T][0,T].

  2. (ii)

    x˙jx˙\dot{x}_{j}\rightharpoonup\dot{x} in L1([0,T];)L^{1}\left([0,T];\mathcal{H}\right).

  3. (iii)

    xj(θj(t))x(t)x_{j}(\theta_{j}(t))\to x(t) for all t[0,T]t\in[0,T].

  4. (iv)

    xj(δj(t))x(t)x_{j}(\delta_{j}(t))\to x(t) for all t[0,T]t\in[0,T].

  5. (v)

    vj(t)x(t)v_{j}(t)\to x(t) for all t[0,T]t\in[0,T].

  6. (vi)

    x(t)Cx(t)\in C for all t[0,T]t\in[0,T].

By Mazur’s Lemma, there is a sequence (yj)(y_{j}) such that for all jj, yjco(x˙k:kj)y_{j}\in\text{co}(\dot{x}_{k}:k\geq j) and (yj)(y_{j}) converges strongly to x˙\dot{x} in L1([0,T];)L^{1}([0,T];\mathcal{H}). i.e.,

yj(t)co(αndC(vn(t))+βn𝔹F(t,xn(δn(t)))+3εnμn𝔹:nj),y_{j}(t)\in\text{co}\left(-\alpha_{n}\partial d_{C}(v_{n}(t))+\beta_{n}\mathbb{B}\cap F(t,x_{n}(\delta_{n}(t)))+\frac{3\sqrt{\varepsilon_{n}}}{\mu_{n}}\mathbb{B}:n\geq j\right),

where αn:=4εnμn+h(t,xn(δn(t)))+γ\alpha_{n}:=\frac{4\sqrt{\varepsilon_{n}}}{\mu_{n}}+h(t,x_{n}(\delta_{n}(t)))+\sqrt{\gamma} and βn:=4εnμn+h(t,xn(δn(t)))\beta_{n}:=\frac{4\sqrt{\varepsilon_{n}}}{\mu_{n}}+h(t,x_{n}(\delta_{n}(t))). On the other hand, there exists (ynj)(y_{n_{j}}) which converges to x˙\dot{x} almost everywhere in [0,T][0,T]. Then, using Lemma 2, Lemma 3 and (1F)(\mathcal{H}_{1}^{F}), we have

x˙(t)(h(x(t))+γ)dC(x(t))+(h(x(t))+γ)𝔹F(t,x(t)) for a.e. t[0,T].\dot{x}(t)\in-(h(x(t))+\sqrt{\gamma})\partial d_{C}(x(t))+(h(x(t))+\sqrt{\gamma})\mathbb{B}\cap F(t,x(t))\text{ for a.e. }t\in[0,T].

Finally, since dC(x(t))N(C;x(t))\partial d_{C}(x(t))\subset N(C;x(t)) for all t[0,T]t\in[0,T], we obtain that xx is the solution of (17).

7 Numerical methods for approximate projections

As stated before, in most cases, finding an explicit formula for the projection onto a closed set is not possible. Therefore, one must resort to numerical algorithms to obtain approximate projections. There are several papers discussing this issue for different notions of approximate projections (see, e.g., pmlr-v139-usmanova21a ). These algorithms are called projection oracles and provide an approximate solution z¯\bar{z}\in\mathcal{H} to the following optimization problem:

minzCxz2,\min_{z\in C}\|x-z\|^{2}, (PxP_{x})

where CC is a given closed set and xx\in\mathcal{H}. Whether the approximate solution z¯\bar{z} belongs to the set CC or not depends on the notion of approximate projection. In our case, to implement our algorithm, we need that z¯C\bar{z}\in C. In this line, a well-known projection oracle fulfilling this property can be obtained via the celebrated Frank-Wolfe algorithm (see, e.g., frank1956algorithm ; pmlr-v28-jaggi13 ), where a linear sub-problem of (PxP_{x}) is solved in each iteration. For several types of convex sets, this method has been successfully developed (see pmlr-v28-jaggi13 ; MR4275646 ; MR4314104 ). Besides, in ding2018frank , it was shown that an approximate solution of the linear sub-problem is enough to obtain a projection oracle.

Another important approach to obtaining approximate projections is the use of the Frank-Wolfe algorithm with separation oracles (see dadush2022simple ). Roughly speaking, a separation oracle determines whether a given point belongs to a set and, in the negative case, provides a hyperplane separating the point from the set (see MR0936633 for more details). For particular sets, it is easy to get an explicit separation oracle (see (MR0936633, , p. 49)). An important example is the case of a sublevel set: let g:g\colon\mathcal{H}\to\mathbb{R} be a continuous convex function and λ\lambda\in\mathbb{R}. Then [gλ]:={x:g(x)λ}[g\leq\lambda]:=\{x\in\mathcal{H}:g(x)\leq\lambda\} has a separation oracle described as follows: to verify that any point belongs to [gλ][g\leq\lambda] is straightforward. When a point xx\in\mathcal{H} does not belong to [gλ][g\leq\lambda], we can consider any xg(x)x^{\ast}\in\partial g(x). Then, for all y[gλ]y\in[g\leq\lambda],

x,xg(x)g(y)+x,y>x,y,\langle x^{\ast},x\rangle\geq g(x)-g(y)+\langle x^{\ast},y\rangle>\langle x^{\ast},y\rangle,

where we have used that g(x)>λg(y)g(x)>\lambda\geq g(y). Hence, the above inequality shows the existence of the desired hyperplane, which provides a separation oracle for [gλ][g\leq\lambda]. Therefore, if CC is the sublevel set of some convex function, we can use the algorithm proposed in dadush2022simple to get an approximate solution z¯projSε(x)\bar{z}\in\operatorname{proj}_{S}^{\varepsilon}(x). Moreover, the sublevel set enables us to consider the case

C(t,x):=i=1m{x:gi(t,x)0}={x:g(t,x):=maxi=1,,mgi(t,x)0},C(t,x):=\bigcap_{i=1}^{m}\{x\in\mathcal{H}:g_{i}(t,x)\leq 0\}=\{x\in\mathcal{H}:g(t,x):=\max_{i=1,...,m}g_{i}(t,x)\leq 0\},

where for all t[0,T]t\in[0,T], gi(t,):g_{i}(t,\cdot)\colon\mathcal{H}\to\mathbb{R}, i=1,,mi=1,\ldots,m are convex functions. We refer to (MR4027814, , Proposition 5.1) for the proper assumptions on these functions to ensure the Lipschitz property of the map tC(t)t\rightrightarrows C(t) holds (7).

8 Concluding remarks

In this paper, we have developed an enhanced version of the catching-up algorithm for sweeping processes through an appropriate concept of approximate projections. We provide the proposed algorithm’s convergence for three frameworks: prox-regular, subsmooth, and merely closed sets. Some insights into numerical procedures to obtain approximate projections were given mainly in the convex case. Finally, the convergence of our algorithm for other notions of approximate solutions will be explored in forthcoming works.

References

  • (1) Acary, V., Bonnefon, O., Brogliato, B.: Nonsmooth modeling and simulation for switched circuits. Springer (2011)
  • (2) Adly, S., Haddad, T.: Well-posedness of nonconvex degenerate sweeping process via unconstrained evolution problems. Nonlinear Anal. Hybrid Syst. 36, 100,832, 13 (2020)
  • (3) Aliprantis, C.D., Border, K.C.: Infinite dimensional analysis, 3rd edn. Springer, Berlin (2006)
  • (4) Aussel, D., Daniilidis, A., Thibault, L.: Subsmooth sets: functional characterizations and related concepts. Trans. Amer. Math. Soc. 357(4), 1275–1301 (2005)
  • (5) Bomze, I.M., Rinaldi, F., Zeffiro, D.: Frank-Wolfe and friends: a journey into projection-free first-order optimization methods. 4OR 19(3), 313–345 (2021)
  • (6) Borwein, J.M., Preiss, D.: A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Amer. Math. Soc. 303(2), 517–527 (1987)
  • (7) Bounkhel, M., Thibault, L.: Nonconvex sweeping process and prox-regularity in Hilbert space. J. Nonlinear Convex Anal. 6(2), 359–374 (2005)
  • (8) Brogliato, B.: Nonsmooth mechanics, 3rd edn. Commun. Numer. Methods Eng. Springer (2016)
  • (9) Clarke, F.: Optimization and nonsmooth analysis. Wiley Intersciences, New York (1983)
  • (10) Clarke, F., Ledyaev, Y., Stern, R., Wolenski, P.: Nonsmooth analysis and control theory, Grad. Texts in Math., vol. 178. Springer-Verlag, New York (1998)
  • (11) Colombo, G., Thibault, L.: Prox-regular sets and applications. In: Handbook of nonconvex analysis and applications, pp. 99–182. Int. Press, Somerville, MA (2010)
  • (12) Combettes, C.W., Pokutta, S.: Complexity of linear minimization and projection on some sets. Oper. Res. Lett. 49(4), 565–571 (2021)
  • (13) Dadush, D., Hojny, C., Huiberts, S., Weltge, S.: A simple method for convex optimization in the oracle model. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 154–167. Springer (2022)
  • (14) Deimling, K.: Multivalued differential equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 1. Walter de Gruyter & Co., Berlin (1992)
  • (15) Ding, L., Udell, M.: Frank-wolfe style algorithms for large scale optimization. Large-Scale and Distributed Optimization pp. 215–245 (2018)
  • (16) Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418–491 (1959)
  • (17) Frank, M., Wolfe, P., et al.: An algorithm for quadratic programming. Naval research logistics quarterly 3(1-2), 95–110 (1956)
  • (18) Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, Algorithms and Combinatorics: Study and Research Texts, vol. 2. Springer-Verlag, Berlin (1988)
  • (19) Haddad, T., Noel, J., Thibault, L.: Perturbed sweeping process with a subsmooth set depending on the state. Linear Nonlinear Anal. 2(1), 155–174 (2016)
  • (20) Hiriart-Urruty, J.B., López, M.A., Volle, M.: The ε\varepsilon-strategy in variational analysis: illustration with the closed convexification of a function. Rev. Mat. Iberoam. 27(2), 449–474 (2011)
  • (21) Jaggi, M.: Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In: S. Dasgupta, D. McAllester (eds.) Proceedings of the 30th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 28(1), pp. 427–435. PMLR, Atlanta, Georgia, USA (2013)
  • (22) Jourani, A., Vilches, E.: Moreau-Yosida regularization of state-dependent sweeping processes with nonregular sets. J. Optim. Theory Appl. 173(1), 91–116 (2017)
  • (23) Maury, B., Venel, J.: Un modéle de mouvement de foule. ESAIM Proc. 18, 143–152 (2007)
  • (24) Moreau, J.J.: Rafle par un convexe variable I, expo. 15. Sém, Anal. Conv. Mont. pp. 1–43 (1971)
  • (25) Moreau, J.J.: Rafle par un convexe variable II, expo. 3. Sém, Anal. Conv. Mont. pp. 1–36 (1972)
  • (26) Papageorgiou, N.S., Kyritsi-Yiallourou, S.T.: Handbook of applied analysis, Adv. Mech. Math., vol. 19. Springer, New York (2009)
  • (27) Penot, J.P.: Calculus without derivatives, Grad. Texts in Math, vol. 266. Springer, New York (2013)
  • (28) Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Amer. Math. Soc. 352(11), 5231–5249 (2000)
  • (29) Thibault, L.: Unilateral Variational Analysis in Banach Spaces. World Scientific Publishing Co. Pte. Ltd. (2023). Part II: Special Classes of Functions and Sets
  • (30) Usmanova, I., Kamgarpour, M., Krause, A., Levy, K.: Fast projection onto convex smooth constraints. In: M. Meila, T. Zhang (eds.) Proceedings of the 38th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 139, pp. 10,476–10,486. PMLR (2021)
  • (31) Venel, J.: A numerical scheme for a class of sweeping processes. Numer. Math. 118(2), 367–400 (2011)
  • (32) Vilches, E.: Existence and Lyapunov pairs for the perturbed sweeping process governed by a fixed set. Set-Valued Var. Anal. 27(2), 569–583 (2019)