This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: National Institute of Science Education and Research (NISER), Bhubaneswar 752050, Odisha, Indiabbinstitutetext: Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India-400085ccinstitutetext: Department of Physical Sciences,
IISER Kolkata, Mohanpur, West Bengal 741246, India
ddinstitutetext: Department of Theoretical Physics,
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
eeinstitutetext: Centre for High Energy Physics, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India

Celestial OPE in Self Dual Gravity

Shamik Banerjeea,b{}^{\,a,b}, Harshal Kulkarnic,d{}^{\,c,d}, Partha Paule{}^{\,e} banerjeeshamik.phy@gmail.com harshalkulkarni20@gmail.com pl.partha13@gmail.com
Abstract

In this paper we compute the celestial operator product expansion between two outgoing positive helicity gravitons in the self dual gravity. It has been shown that the self dual gravity is a w1+w_{1+\infty}-invariant theory whose scattering amplitudes are one loop exact with all positive helicity gravitons. Celestial w1+w_{1+\infty} symmetry is generated by an infinite tower of (conformally soft) gravitons which are holomorphic conserved currents. We find that at any given order only a finite number of w1+w_{1+\infty} descendants contribute to the OPE. This is somewhat surprising because the spectrum of conformal dimensions in celestial CFT is not bounded from below. However, this is consistent with our earlier analysis based on the representation theory of w1+w_{1+\infty}. The phenomenon of truncation suggests that in some (unknown) formulation the spectrum of conformal dimensions in the dual two dimensional theory can be bounded from below.

1 Introduction

Celestial holography is a conjectured duality between quantum gravity in 4D asymptotically flat spacetime and a quantum field theory on the 2D celestial sphere Strominger:2017zoo ; Pasterski:2016qvg ; Pasterski:2017kqt . Symmetries play an important role in this conjectured duality. The Lorentz group in 4D acts on the 2D celestial sphere as the global conformal group. So the dual theory should be a conformal field theory. Motivated by this, a new basis was introduced Pasterski:2016qvg ; Pasterski:2017kqt ; Banerjee:2018gce in which the SS-matrix elements transform like 2D conformal correlators. Besides the two dimensional global conformal symmetry, CCFT has various infinite dimensional current algebra symmetries Sachs:1962zza ; Strominger:2013jfa ; He ; Strominger:2014pwa ; Barnich:2009se ; Kapec:2016jld ; Kapec:2014opa ; He:2017fsb ; Donnay:2020guq ; Stieberger:2018onx ; Banerjee:2022wht ; Banerjee:2020zlg ; Banerjee:2021cly ; Gupta:2021cwo ; Guevara:2021abz ; Strominger:2021lvk ; Himwich:2021dau ; Ball:2021tmb ; Adamo:2021lrv ; Costello:2022wso ; Stieberger:2022zyk ; Stieberger:2023fju ; Ball:2023qim ; Melton:2022fsf ; Banerjee:2020kaa ; Costello:2022upu ; Costello:2023vyy ; Garner:2023izn ; Donnay:2021wrk ; Donnay:2022hkf .

Operator product expansion (OPE) is a central tool to study various aspects of any CFT. In the context of celestial CFT also, OPE played an important role in identifying new symmetries Guevara:2021abz ; Strominger:2021lvk ; Banerjee:2020zlg , null states Banerjee:2020zlg ; Banerjee:2021cly ; Banerjee:2019aoy ; Banerjee:2019tam ; Pano:2023slc ; Banerjee:2023zip ; Banerjee:2020vnt ; Banerjee:2023rni ; Adamo:2022wjo ; Ren:2023trv ; Hu:2021lrx ; Ebert:2020nqf ; Pasterski:2021fjn etc. It has also found applications in the Bootstrap program Atanasov:2021cje ; Ghosh:2022net . Based on the universal singular structure of the tree-level OPE between two positive helicity gravitons, it was shown in Guevara:2021abz that CCFT has an infinite tower of soft symmetries which close into w1+w_{1+\infty} algebra Strominger:2021lvk . Loop corrections to the tree level celestial OPEs have been studied in Bhardwaj:2022anh ; Krishna:2023ukw .

In a previous paper Banerjee:2023zip , we have studied the implications of the w1+w_{1+\infty} symmetry at the level of OPEs by using representation theory. By studying the subleading terms in the OPE between two positive helicity outgoing gravitons, we have shown that there should exist an infinite number of theories which are invariant under w1+w_{1+\infty} algebra.

In this paper we derive the OPE in one such theory, known as the quantum self dual gravity Ooguri:1991fp ; Chalmers:1996rq ; Bern:1998xc ; Bern:1998sv ; Krasnov:2021sf which was shown to be w1+w_{1+\infty} invariant in Penrose:1968pr ; Penrose:1976pr ; Boyer:1985pn . Here we do a collinear expansion of the known graviton scattering amplitudes in the self dual gravity theory and extract the celestial OPE from there. For simplicity, we analyse the 55-point all plus amplitude in self dual gravity and factorize it in the collinear limit through a 44 point amplitude. The results we obtain are consistent with what we proposed in Banerjee:2023zip based on the representtion theory of w1+w_{1+\infty}. The rest of the paper is organised as follows.

In section 2 we introduce notations and conventions used in this paper. Section 3 briefly describes the w1+w_{1+\infty} algebra and how the whole tower of the w1+w_{1+\infty}-currents can be generated using the two sl2(R)sl_{2}(R) sub-algebras. In section 4 we briefly discuss about the scattering amplitudes in quantum self dual gravity. Section 5 discusses how to extract the OPE between two positive helicity outgoing gravitons from the 5-point one-loop self dual amplitude. We start by simplifying the 5-point amplitude in the momentum space and then Mellin transform it to get the celestial amplitudes. We then discuss how to factorize each term order by order in the OPE limit of the celestial amplitudes. The null states of the self dual gravity appearing at various orders of the OPE and the invariance of the OPE under w1+w_{1+\infty} algebra are discussed in Appendices I and J.

For the sake of completeness of the paper, we give a brief review of the celestial amplitude in Appendix A. In Appendix B, we discuss the parametrization of the 44 and 55-point delta functions which are useful in our context of the OPE expansion. Appendices C and D discuss how to simplify the 44 and 55-point amplitudes in momentum space using momentum conserving delta functions and various identities of the spinor-helicity brackets. These simplifications are done keeping in mind the fact that we want to factorize the 55-point amplitude in terms of the 44-point amplitude in the OPE expansion. Appendix E deals with the Mellin transformation of the 55-point amplitude. In Appendix F we discuss the conditions on the graviton primary operators under the w1+w_{1+\infty} algebra which follow from the universal structure of the OPE. In Appendix G, we list the transformation properties of all the MHV null states under the action of sl2(R)V{sl_{2}(R)}_{V} and sl2(R)¯\overline{sl_{2}(R)} algebras which are required to show the w1+w_{1+\infty}-invariance of the self dual OPE. Appendix H briefly reviews the construction of a general w1+w_{1+\infty}-algebra invariant OPE and how one can obtain an infinite family of w1+w_{1+\infty}-algebra invariant theories.

2 Notations and Conventions

In this paper, we will work in the (2,2)(2,2) signature space-time, which is also known as Klein space. The null momentum pμp^{\mu} of a massless particle, satisfying the onshell condition p2=0p^{2}=0, is parametrized as,

pμ=ϵqμqμ=ω{1+zz¯,z+z¯,zz¯,1zz¯}\begin{split}p^{\mu}&=\epsilon\,q^{\mu}\\ q^{\mu}&=\omega\{1+z\bar{z},z+\bar{z},z-\bar{z},1-z\bar{z}\}\end{split} (1)

where ϵ=±1\epsilon=\pm 1 for outgoing and incoming particles respectively, (z,z¯)(z,\bar{z}) are two independent real variables and ω\omega is any positive number interpreted as the energy of the particle. In Klein space the null infinity takes the form of a Lorentzian torus (known as the celestial torus) times a null line. The Lorentz group in (2,2)(2,2) signature is given by SO(2,2)SL(2,)L×SL(2,)R2SO(2,2)\simeq\frac{SL(2,\mathbb{R})_{L}\times SL(2,\mathbb{R})_{R}}{\mathbb{Z}_{2}} and acts as the group of conformal transformations on the celestial torus:

SL(2,)L:zaz+bcz+d,z¯z¯,adbc=1,SL(2,)R:z¯a¯z¯+b¯c¯z¯+d¯,zz,a¯d¯b¯c¯=1.\begin{gathered}SL(2,\mathbb{R})_{L}:\qquad z\to\frac{az+b}{cz+d},\ \bar{z}\to\bar{z},\ ad-bc=1,\\ SL(2,\mathbb{R})_{R}:\qquad\bar{z}\to\frac{\bar{a}\bar{z}+\bar{b}}{\bar{c}\bar{z}+\bar{d}},\ z\to z,\ \bar{a}\bar{d}-\bar{b}\bar{c}=1.\end{gathered} (2)

In our conventions the spinor-helicity variables are given by,

ij=2ϵiϵjωiωjzij,[ij]=2ωiωjz¯ij\left<ij\right>=2\epsilon_{i}\epsilon_{j}\sqrt{\omega_{i}\omega_{j}}z_{ij},\ [ij]=2\sqrt{\omega_{i}\omega_{j}}\bar{z}_{ij} (3)

where zij=zizjz_{ij}=z_{i}-z_{j} and we also have 2pipj=ij[ij]2p_{i}\cdot p_{j}=-\left<ij\right>[ij].

3 Review of w1+w_{1+\infty} Algebra

We start by reviewing the w1+w_{1+\infty} algebra which follows from the universal singular terms in the OPE between two positive helicity outgoing gravitons. Let GΔ+(z,z¯)G^{+}_{\Delta}(z,\bar{z}) denote the positive helicity graviton conformal primary operator of dimension Δ\Delta at the point (z,z¯)(z,\bar{z}) on the celestial torus. The universal singular terms in the OPE are given by

GΔ1+(z1,z¯1)GΔ2+(z2,z¯2)=z¯12z12n=0B(Δ11+n,Δ21)z¯12nn!¯nGΔ1+Δ2+(z2,z¯2)\begin{gathered}G^{+}_{\Delta_{1}}(z_{1},\bar{z}_{1})G^{+}_{\Delta_{2}}(z_{2},\bar{z}_{2})=-\frac{\bar{z}_{12}}{z_{12}}\sum_{n=0}^{\infty}B\left(\Delta_{1}-1+n,\Delta_{2}-1\right)\frac{{\bar{z}_{12}}^{n}}{n!}\bar{\partial}^{n}G^{+}_{\Delta_{1}+\Delta_{2}}(z_{2},\bar{z}_{2})\end{gathered} (4)

Let us define an infinite family of positive helicity conformally soft Donnay:2018neh ; Pate:2019mfs ; Fan:2019emx ; Nandan:2019jas ; Adamo:2019ipt ; Puhm:2019zbl ; Guevara:2019ypd gravitons Guevara:2021abz as,

Hk(z,z¯)=limΔk(Δk)GΔ+(z,z¯),k=1,0,1,2,H^{k}(z,\bar{z})=\lim_{\Delta\rightarrow k}(\Delta-k)G^{+}_{\Delta}(z,\bar{z}),\ k=1,0,-1,-2,... (5)

with weights (k+22,k22)\left(\frac{k+2}{2},\frac{k-2}{2}\right). It follows from the OPE (4) that we can introduce the following truncated mode expansion

Hk(z,z¯)=m=k222k2Hmk(z)z¯m+k22H^{k}(z,\bar{z})=\sum_{m=\frac{k-2}{2}}^{\frac{2-k}{2}}\frac{H^{k}_{m}(z)}{\bar{z}^{m+\frac{k-2}{2}}} (6)

and the modes Hmk(z)H^{k}_{m}(z) are the conserved holomorphic currents. The currents Hmk(z)H^{k}_{m}(z) can be further mode expanded in the zz-variable to get,

Hmk(z)=αk+22Hα,mkzα+k+22H^{k}_{m}(z)=\sum_{\alpha\in\mathbb{Z}-\frac{k+2}{2}}\frac{H^{k}_{\alpha,m}}{z^{\alpha+\frac{k+2}{2}}} (7)

and one can show Guevara:2021abz that the modes Hα,mkH^{k}_{\alpha,m} satisfy the algebra111Here we are assuming that κ=32πGN=2\kappa=\sqrt{32\pi G_{N}}=2.

[Hα,mk,Hβ,nl]=[n(2k)m(2l)](2k2m+2l2n1)!(2k2m)!(2l2n)!(2k2+m+2l2+n1)!(2k2+m)!(2l2+n)!Hα+β,m+nk+l\begin{gathered}\left[H^{k}_{\alpha,m},H^{l}_{\beta,n}\right]\\ =-\left[n(2-k)-m(2-l)\right]\frac{\left(\frac{2-k}{2}-m+\frac{2-l}{2}-n-1\right)!}{\left(\frac{2-k}{2}-m\right)!\left(\frac{2-l}{2}-n\right)!}\frac{\left(\frac{2-k}{2}+m+\frac{2-l}{2}+n-1\right)!}{\left(\frac{2-k}{2}+m\right)!\left(\frac{2-l}{2}+n\right)!}H^{k+l}_{\alpha+\beta,m+n}\end{gathered} (8)

This is called the Holographic Symmetry Algebra (HSA). Now if we make the following redefinition (or discrete light transformation)Strominger:2021lvk

wα,mp=12(pm1)!(p+m1)!Hα,m2p+4w^{p}_{\alpha,m}=\frac{1}{2}\left(p-m-1\right)!\left(p+m-1\right)!H^{-2p+4}_{\alpha,m} (9)

then (8) turns into the w1+w_{1+\infty} algebra222This is the wedge subalgebra of w1+w_{1+\infty}.

[wα,mp,wβ,nq]=[m(q1)n(p1)]wα+β,m+np+q2\left[w^{p}_{\alpha,m},w^{q}_{\beta,n}\right]=\left[m(q-1)-n(p-1)\right]w^{p+q-2}_{\alpha+\beta,m+n} (10)

For our purpose it is more convenient to work with the HSA (8) rather than the w1+w_{1+\infty} algebra. However, we continue to refer to the HSA as the ww algebra.

Now, in Banerjee:2023zip , it was shown that the whole tower of the ww-currents can be generated using the two sl2(R)sl_{2}(R) sub-algebras. One of them is sl2(R)Vsl_{2}(R)_{V}333Here V stands for vertical. Please see Fig.1 for an explanation. generated by the operators {H12,121,H0,00,H12,121}\{H^{1}_{-\frac{1}{2},-\frac{1}{2}},\ H^{0}_{0,0},\ H^{-1}_{\frac{1}{2},\frac{1}{2}}\},

[H0,00,H12,121]=H12,121[H0,00,H12,121]=H12,121[H12,121,H12,121]=H0,00\begin{gathered}\left[H^{0}_{0,0},H^{1}_{-\frac{1}{2},-\frac{1}{2}}\right]=H^{1}_{-\frac{1}{2},-\frac{1}{2}}\\ \left[H^{0}_{0,0},H^{-1}_{\frac{1}{2},\frac{1}{2}}\right]=-H^{-1}_{\frac{1}{2},\frac{1}{2}}\\ \left[H^{1}_{-\frac{1}{2},-\frac{1}{2}},H^{-1}_{\frac{1}{2},\frac{1}{2}}\right]=-H^{0}_{0,0}\end{gathered} (11)

The other sl2(R)sl_{2}(R) sub-algebra is generated by the global (Lorentz) conformal transformations {H0,10,H0,00,H0,10}\{H^{0}_{0,1},H^{0}_{0,0},H^{0}_{0,-1}\}. We call this sl2(R)¯\overline{sl_{2}(R)} because this acts only on the z¯\bar{z} coordinate. Now the ww symmetry is generated by the infinite number of soft currents {Hpk(z)}\{H^{k}_{p}(z)\} where k=1,0,1,2,k=1,0,-1,-2,... is the dimension (Δ)(\Delta) of the soft operator and k22pk22\frac{k-2}{2}\leq p\leq-\frac{k-2}{2}. For a fixed kk, the soft currents {Hk22k(z),,Hk22k(z)}\{H^{k}_{-\frac{k-2}{2}}(z),...,H^{k}_{\frac{k-2}{2}}(z)\} transform in a spin 2k2\frac{2-k}{2} representation of the sl2(R)¯\overline{sl_{2}(R)}.

Refer to caption
Figure 1: The figure shows the soft currents. The rows and the columns are indexed by the sl2(R)¯\overline{sl_{2}(R)} weights and the dimension (Δ=k=1,0,1,2,)(\Delta=k=1,0,-1,-2,...) of the conformally soft graviton Hk(z,z¯)H^{k}(z,\bar{z}), which generates the currents sitting in a row, respectively. sl2(R)¯\overline{sl_{2}(R)} acts horizontally along a row and sl2(R)Vsl_{2}(R)_{V} acts vertically along a column. In this way they generate the whole symmetry algebra starting from the current H121(z)H^{1}_{\frac{1}{2}}(z) on the top left corner.

Now let us consider the currents {H121,H10,,H2k2k,}\{H^{1}_{\frac{1}{2}},H^{0}_{1},...,H^{k}_{\frac{2-k}{2}},...\} with the lowest sl2(R)¯\overline{sl_{2}(R)} weights. These currents transform in an irreducible highest weight representation of the sl2(R)Vsl_{2}(R)_{V}. This can be seen from the following commutation relations following from (8),

[H12,121,Hα,2k2k]=12(k2)(k3)Hα+12,2(k1)2k1[H0,00,Hα,2k2k]=(k2)Hα,2k2k[H12,121,Hα,2k2k]=Hα12,2(k+1)2k+1\begin{gathered}\left[H^{-1}_{\frac{1}{2},\frac{1}{2}},H^{k}_{\alpha,\frac{2-k}{2}}\right]=-\frac{1}{2}(k-2)(k-3)H^{k-1}_{\alpha+\frac{1}{2},\frac{2-(k-1)}{2}}\\ \left[H^{0}_{0,0},H^{k}_{\alpha,\frac{2-k}{2}}\right]=(k-2)H^{k}_{\alpha,\frac{2-k}{2}}\\ \left[H^{1}_{-\frac{1}{2},-\frac{1}{2}},H^{k}_{\alpha,\frac{2-k}{2}}\right]=-H^{k+1}_{\alpha-\frac{1}{2},\frac{2-(k+1)}{2}}\end{gathered} (12)

Therefore, starting from the current H121(z)H^{1}_{\frac{1}{2}}(z) we can generate any other ww current by the combined action of the sl2(R)¯\overline{sl_{2}(R)} and sl2(R)Vsl_{2}(R)_{V} (Fig.1).

4 Scattering Amplitudes in Quantum Self Dual Gravity

In this section, following Bern:1998xc we briefly review the all-plus helicity scattering amplitudes in quantum self dual gravity. In (2,2)(2,2) signature, self duality translates into the following condition on the Riemann tensor,

Rμνρσ=12εμναβRαβρσR_{\mu\nu\rho\sigma}=\frac{1}{2}{\varepsilon_{\mu\nu}}^{\alpha\beta}R_{\alpha\beta\rho\sigma} (13)

where εμναβ\varepsilon^{\mu\nu\alpha\beta} is the completely antisymmetric tensor with ε0123=+1\varepsilon^{0123}=+1. In order to maintain the reality condition on the fields, the self dual gravity is described in either (2,2)(2,2) or (0,4)(0,4) signature. In Lorentzian (1,3)(1,3) signature, the condition (13) acquires an extra factor of ii and contain no real solutions. At the classical level, the linearized self dual solutions consist of positive helicity plane waves.

In this paper, we are interested in the collinear behaviour of gravitons in the self dual gravity. At the tree level, we have only one non-trivial amplitude: the three point MHV¯\overline{MHV} amplitude where, only one external graviton has negative helicity and other two have positive helicity. The appearance of the negative helicity graviton in the three point MHV¯\overline{MHV} amplitude can be explained from the fact that the action contains a Lagrange multiplier which is physically interpreted as the negative helicity graviton.

At the one loop level, the only non-zero amplitudes are the ones with all plus helicity gravitons with the minimum number of gravitons being four. These amplitudes are both UV and IR finite. The only divergences of these amplitudes are collinear and soft divergences. Our interest in this theory stems from the fact that this is a non-trivial quantum theory which is known to be ww invariant.

The one loop all-plus nn-graviton stripped amplitude in self dual gravity is given by Bern:1998xc ,

An(1+,2+,,n+)=i(4π)2960(κ2)n1a<bnM,Nh(a,M,b)h(b,N,a)tr3[aMbN]\displaystyle A_{n}(1^{+},2^{+},...,n^{+})=-\frac{i}{(4\pi)^{2}960}\left(-\frac{\kappa}{2}\right)^{n}\sum_{\begin{subarray}{c}1\leq a<b\leq n\\ M,N\end{subarray}}h(a,M,b)h(b,N,a)tr^{3}[aMbN]
(14)

where aa and bb are the external legs and MM and NN are two sets such that MN=1,a1,a+1,b1,b+1,nM\bigcup N={1,...a-1,a+1,...b-1,b+1,...n} and MN=ϕM\bigcap N=\phi. The sum is over all possible (a,b)(a,b) and (M,N)(M,N), where (M,N)(M,N) and (N,M)(N,M) are not distinguished. The trace is defined as,

tr[aMbN]=a|KM|b]b|KN|a]+[a|KM|b[b|KN|atr[aMbN]=\left<a|K_{M}|b\right]\left<b|K_{N}|a\right]+\left[a|K_{M}|b\right>\left[b|K_{N}|a\right> (15)

where KM=iMkiK_{M}=\sum_{i\in M}k_{i}. The “half-soft” function hh is given by,

h(a,{1,2,,n},b)=[12]12a|K1,2|3]a|K1,3|4]a|K1,n1|n]2334n1,na1a2an1bnb+𝒫(2,3,,n)\begin{gathered}h(a,\{1,2,\cdots,n\},b)=\frac{[12]}{\left<12\right>}\frac{\left<a|K_{1,2}|3\right]\left<a|K_{1,3}|4\right]\cdots\left<a|K_{1,n-1}|n\right]}{\left<23\right>\left<34\right>\cdots\left<n-1,n\right>\left<a1\right>\left<a2\right>\cdots\left<an\right>\left<1b\right>\left<nb\right>}+\mathcal{P}(2,3,\cdots,n)\end{gathered} (16)

where K1,m=i=1mkiK_{1,m}=\sum_{i=1}^{m}k_{i} and 𝒫(2,3,,n)\mathcal{P}(2,3,\cdots,n) represents all permutations keeping the first leg fixed. Throughout this paper we will set κ=2\kappa=2.

5 Graviton-Graviton OPE from Self Dual Amplitudes

In this section, we take the 44 and 55 point all plus amplitudes and express them in the conformal primary basis by (modified) Mellin transformation. Then we take the (collinear) OPE limit (z450,z¯450)(z_{45}\to 0,\bar{z}_{45}\to 0) in the 5-point amplitude with the aim of factorizing it into some differential operators acting on the 4-point amplitude at every order in the (z45,z¯45)(z_{45},\bar{z}_{45}) expansion. Let us now closely look at the 4-point amplitude, first in momentum space and then in Mellin space.444For the sake of convenience of the reader we have moved some of the intermediate steps in the calculations to an Appendix. We have refereed to the Appendix in the main text whenever necessary.

5.1 4-Point Momentum Space Amplitude

From (14), the 4-point amplitude is given by,

A4(1+,2+,3+,4+)\displaystyle A_{4}(1^{+},2^{+},3^{+},4^{+}) =\displaystyle= i(4π)2960B4\displaystyle-\frac{i}{(4\pi)^{2}960}\ B_{4} (17)

where

B4=1a<b4M,Nh(a,M,b)h(b,N,a)tr3[aMbN]B_{4}=\sum_{\begin{subarray}{c}1\leq a<b\leq 4\\ M,N\end{subarray}}h(a,M,b)h(b,N,a)tr^{3}[aMbN] (18)

Using the explicit expressions for the trace and the “half-soft” functions, B4B_{4} can be easily evaluated and then simplified to get (see Appendix C for details),

B4=24[1323([13][23])3152252+(23)+(13)]\displaystyle B_{4}=-2^{4}\left[\frac{\left<13\right>\left<23\right>([13][23])^{3}}{\left<15\right>^{2}\left<25\right>^{2}}+\left(2\leftrightarrow 3\right)+\left(1\leftrightarrow 3\right)\right] (19)

where we have relabelled 4 as 5. In terms of (ω,z,z¯)(\omega,z,\bar{z}) variables, the above equation becomes

B4=28[ϵ1ϵ2ω1ω2ω34ω52z13z23(z¯13z¯23)3z152z252+(23)+(13)]\displaystyle B_{4}=-2^{8}\left[\epsilon_{1}\epsilon_{2}\frac{\omega_{1}\omega_{2}\omega_{3}^{4}}{\omega_{5}^{2}}\frac{z_{13}z_{23}(\bar{z}_{13}\bar{z}_{23})^{3}}{z_{15}^{2}z_{25}^{2}}+\left(2\leftrightarrow 3\right)+\left(1\leftrightarrow 3\right)\right]

This is the form of the 4-point momentum space amplitude that we use in evaluating the Mellin transform and other manipulations.

5.2 4-Point Mellin Amplitude

The modified Mellin transform of the nn-point amplitude is given by,

n({ui,zi,z¯i,hi,h¯i})=i=1n0𝑑ωiωiΔi1eii=1nϵiωiuiAn({ωi,zi,z¯i,σi})\mathcal{M}_{n}\big{(}\{u_{i},z_{i},\bar{z}_{i},h_{i},\bar{h}_{i}\}\big{)}=\prod_{i=1}^{n}\int_{0}^{\infty}d\omega_{i}\ \omega_{i}^{\Delta_{i}-1}e^{-i\sum_{i=1}^{n}\epsilon_{i}\omega_{i}u_{i}}A_{n}\big{(}\{\omega_{i},z_{i},\bar{z}_{i},\sigma_{i}\}\big{)} (20)

where uu can be thought of as a time coordinate and ϵi=±1\epsilon_{i}=\pm 1 for an outgoing (incoming) particle. Note that An({ωi,zi,z¯i,σi})A_{n}\big{(}\{\omega_{i},z_{i},\bar{z}_{i},\sigma_{i}\}\big{)} in (20) is the full momentum space amplitude including the momentum conserving delta function. Using (20) we now Mellin transform the 44-point momentum space amplitude (17). Using the parametrization of 4-point delta function given by (LABEL:4pt_delta), we get the full 4-point Mellin amplitude as

4(1Δ1+,2Δ2+,3Δ3+,5Δ5+)=i(4π)296026Γ(Δ)(i𝒟)Δδ(xx¯)k=13(ϵkσk,1)Δk1×[𝒩4+𝒩4(13)+𝒩4(23)]\begin{gathered}\mathcal{M}_{4}(1^{+}_{\Delta_{1}},2^{+}_{\Delta_{2}},3^{+}_{\Delta_{3}},5^{+}_{\Delta_{5}})=\frac{i}{(4\pi)^{2}960}2^{6}\frac{\Gamma(\Delta^{\prime})}{(i\mathcal{D})^{\Delta^{\prime}}}\delta(x-\bar{x})\prod_{k=1}^{3}\left(\epsilon_{k}\sigma_{k,1}\right)^{\Delta_{k}-1}\\ \times\left[\mathcal{N}_{4}+\mathcal{N}_{4}\left(1\leftrightarrow 3\right)+\mathcal{N}_{4}\left(2\leftrightarrow 3\right)\right]\end{gathered} (21)

where Δ=Δ1+Δ2+Δ3+Δ5\Delta^{\prime}=\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{5} and

𝒩4=σ1,1σ2,1σ3,14z13z23(z¯13z¯23)3z152z252𝒟=k=13σk,1uk5\begin{split}\mathcal{N}_{4}&=\sigma_{1,1}\,\sigma_{2,1}\,\sigma_{3,1}^{4}\frac{z_{13}z_{23}(\bar{z}_{13}\bar{z}_{23})^{3}}{z_{15}^{2}z_{25}^{2}}\\ \mathcal{D}&=\sum_{k=1}^{3}\sigma_{k,1}u_{k5}\end{split} (22)

𝒩4(13)\mathcal{N}_{4}(1\leftrightarrow 3) and 𝒩4(23)\mathcal{N}_{4}(2\leftrightarrow 3) corresponds to 𝒩4\mathcal{N}_{4} with the points (1,3) and (2,3) interchanged, respectively. The expressions for σi,j\sigma_{i,j} are given in Appendix B. Note that when we interchange the points (1,2,3)(1,2,3) in 𝒩4\mathcal{N}_{4}, only the first subscript in σi,j\sigma_{i,j} changes, second one remains unchanged.

5.3 5-point Amplitude in Self Dual Gravity

The 5-point one loop all plus helicity stripped amplitude (without the momentum conservation delta function) is given by

A5(1+,2+,3+,4+,5+)=i(4π)2960B5\displaystyle A_{5}(1^{+},2^{+},3^{+},4^{+},5^{+})=\frac{i}{(4\pi)^{2}960}B_{5} (23)

where

B5\displaystyle B_{5} =\displaystyle= 1a<b5M,Nh(a,M,b)h(b,N,a)tr3[aMbN]\displaystyle\sum_{\begin{subarray}{c}1\leq a<b\leq 5\\ M,N\end{subarray}}h(a,M,b)h(b,N,a)tr^{3}[aMbN] (24)

The above expression consists of 30 distinct terms in total. The expression of B5B_{5} has been explicitly computed and simplified in the Appendix D. Its simplified form gives:

B5=8[[25]1334([13][34])32512152454+[24]1335([13][35])32412142545+[15]2334([23][34])31521251454\displaystyle B_{5}=-8\left[\frac{[25]\left<13\right>\left<34\right>([13][34])^{3}}{\left<25\right>\left<12\right>\left<15\right>\left<24\right>\left<54\right>}+\frac{[24]\left<13\right>\left<35\right>([13][35])^{3}}{\left<24\right>\left<12\right>\left<14\right>\left<25\right>\left<45\right>}+\frac{[15]\left<23\right>\left<34\right>([23][34])^{3}}{\left<15\right>\left<21\right>\left<25\right>\left<14\right>\left<54\right>}\right.
[14]2335([23][35])31421241545+[45]1323([13][23])34514154252+[34]2515([15][25])33413143242\displaystyle\left.\frac{[14]\left<23\right>\left<35\right>([23][35])^{3}}{\left<14\right>\left<21\right>\left<24\right>\left<15\right>\left<45\right>}+\frac{[45]\left<13\right>\left<23\right>([13][23])^{3}}{\left<45\right>\left<14\right>\left<15\right>\left<42\right>\left<52\right>}+\frac{[34]\left<25\right>\left<15\right>([15][25])^{3}}{\left<34\right>\left<13\right>\left<14\right>\left<32\right>\left<42\right>}\right.
[35]1424([14][24])33513153252+[12]3435([34][35])31241421525+[12]3545([35][45])31231321424\displaystyle\left.\frac{[35]\left<14\right>\left<24\right>([14][24])^{3}}{\left<35\right>\left<13\right>\left<15\right>\left<32\right>\left<52\right>}+\frac{[12]\left<34\right>\left<35\right>([34][35])^{3}}{\left<12\right>\left<41\right>\left<42\right>\left<15\right>\left<25\right>}+\frac{[12]\left<35\right>\left<45\right>([35][45])^{3}}{\left<12\right>\left<31\right>\left<32\right>\left<14\right>\left<24\right>}\right.
[12]3445([34][45])31231321525]+(13)+(23)\displaystyle\left.\frac{[12]\left<34\right>\left<45\right>([34][45])^{3}}{\left<12\right>\left<31\right>\left<32\right>\left<15\right>\left<25\right>}\right]+\left(1\leftrightarrow 3\right)+\left(2\leftrightarrow 3\right)
(25)

To avoid complication, we will not write down the Mellin transformation for the full 5-point amplitude. Rather, we will first expand the 5-point amplitude around z45=0,z¯45=0z_{45}=0,\ \bar{z}_{45}=0 in momentum space and then Mellin transform the individual terms in that expansion.

5.4 Expansion of the 5-Point Amplitude around z45=z¯45=0z_{45}=\bar{z}_{45}=0 in Momentum Space

By parameterizing (25) in terms of {ω,z,z¯}\{\omega,z,\bar{z}\} one may think that there are holomorphic singularities in the limit z4z5z_{4}\to z_{5} which goes like 1z45\frac{1}{z_{45}}. But this is not true. Clubbing together all the twelve singular-looking terms, and rewriting them gives contributions only at leading 𝒪(z¯45z45)\mathcal{O}(\frac{\bar{z}_{45}}{z_{45}}) and higher orders (see Appendix D for details). By parameterizing ω4=tωP,ω5=(1t)ωP\omega_{4}=t\,\omega_{P},\ \omega_{5}=(1-t)\omega_{P} we arrange all the terms in (25) in the following way:

B5=27ωPt(1t)(z¯45z45TL+T𝒪(1)+z¯45Tz¯)+Higher Order TermsB_{5}=-2^{7}\frac{\omega_{P}}{t(1-t)}\left(\frac{\bar{z}_{45}}{z_{45}}T_{L}+T_{\mathcal{O}(1)}+\bar{z}_{45}T_{\bar{z}}\right)+\textnormal{Higher Order Terms} (26)

where

TL=[ϵ1z12z25z¯123z¯253z132z352ω1ω24ω32+ϵ2z12z15z¯123z¯153z232z352ω14ω2ω32+ϵ3z13z15z¯133z¯153z232z252ω14ω3ω22]+[ϵ1ϵ2z13z23z¯133z¯233z152z252ω1ω2ω34ωP3+(13)+(23)]\begin{gathered}T_{L}=\left[\epsilon_{1}\frac{z_{12}z_{25}\bar{z}_{12}^{3}\bar{z}_{25}^{3}}{z_{13}^{2}z_{35}^{2}}\frac{\omega_{1}\omega_{2}^{4}}{\omega_{3}^{2}}+\epsilon_{2}\frac{z_{12}z_{15}\bar{z}_{12}^{3}\bar{z}_{15}^{3}}{z_{23}^{2}z_{35}^{2}}\frac{\omega_{1}^{4}\omega_{2}}{\omega_{3}^{2}}+\epsilon_{3}\frac{z_{13}z_{15}\bar{z}_{13}^{3}\bar{z}_{15}^{3}}{z_{23}^{2}z_{25}^{2}}\frac{\omega_{1}^{4}\omega_{3}}{\omega_{2}^{2}}\right]\\ +\left[\epsilon_{1}\epsilon_{2}\frac{z_{13}z_{23}\bar{z}_{13}^{3}\bar{z}_{23}^{3}}{z_{15}^{2}z_{25}^{2}}\frac{\omega_{1}\omega_{2}\omega_{3}^{4}}{\omega_{P}^{3}}+\left(1\leftrightarrow 3\right)+\left(2\leftrightarrow 3\right)\right]\end{gathered} (27)

The expressions for T𝒪(1),Tz¯T_{\mathcal{O}(1)},\ T_{\bar{z}} and the detailed calculation about how we arrived at these expressions are given in the Appendix D. The point we want to emphasize here is that, (26) is the expansion of the 5-point amplitude around z45=z¯45=0z_{45}=\bar{z}_{45}=0 in the momentum space. One should not confuse it with the OPE expansion on the celestial torus, which will be done in the following subsections. The terms TL,T𝒪(1),Tz¯T_{L},T_{\mathcal{O}(1)},\ T_{\bar{z}} contain energy factors {ω1,ω2,ω3}\{\omega_{1},\omega_{2},\omega_{3}\} which will contribute to the OPE expansion after Mellin transformation. On top of that we have 5-point momentum conserving delta functions as well as other factors in the Mellin integral, all of which will contribute in the OPE limit of the 5-point Mellin amplitude. (26) is just a neat way of organizing the 5-point momentum space amplitude, which allows us to easily extract the OPE from the 5-point celestial amplitude.

5.5 Mellin Transformation of the 5-Point Amplitude and Extracting the Graviton-Graviton OPE

Let us start with the modified Mellin transformation of B5B_{5} given by:

B~5=0i=15dωiωiΔi1eii=15ϵiωiuiB5δ(4)(i=15ϵiωiqi)\displaystyle\widetilde{B}_{5}=\int_{0}^{\infty}\prod_{i=1}^{5}d\omega_{i}\,\omega_{i}^{\Delta_{i}-1}e^{-i\sum_{i=1}^{5}\epsilon_{i}\omega_{i}u_{i}}B_{5}\delta^{(4)}\left(\sum_{i=1}^{5}\epsilon_{i}\omega_{i}q_{i}\right) (28)

In the above equation for B5B_{5}, we use the expansion (26). Then using the 5-point delta function parametrization given in the Appendix B.2, we can extract each term in the OPE factorization in the Mellin space. We now discuss the terms order by order in the OPE expansion in Mellin space.

5.5.1 Leading Order

For convenience let’s take ϵ4=ϵ5=+1\epsilon_{4}=\epsilon_{5}=+1. Then the leading order term in (28) is given by

B~5|𝒪(z¯45z45)\displaystyle\tilde{B}_{5}|_{\mathcal{O}(\frac{\bar{z}_{45}}{z_{45}})} =26z¯45z45B(Δ41,Δ51)Γ(Δ)(i𝒟)Δδ(xx¯)\displaystyle=-2^{6}\frac{\bar{z}_{45}}{z_{45}}B(\Delta_{4}-1,\Delta_{5}-1)\frac{\Gamma(\Delta)}{\left(i\mathcal{D}\right)^{\Delta}}\delta(x-\bar{x})
×k=13(ϵkσk,1)Δk1[𝒩4+𝒩4(23)+𝒩4(13)]\displaystyle\times\prod_{k=1}^{3}(\epsilon_{k}\sigma_{k,1})^{\Delta_{k}-1}\left[\mathcal{N}_{4}+\mathcal{N}_{4}\left(2\leftrightarrow 3\right)+\mathcal{N}_{4}\left(1\leftrightarrow 3\right)\right] (29)

where Δ=i=15Δi\Delta=\sum_{i=1}^{5}\Delta_{i}. This has been derived in detail in Appendix E. Finally, taking care of the pre-factors, we can write down the Mellin transformation of the complete 5-point amplitude A5A_{5} (23) at 𝒪(z¯45z45)\mathcal{O}(\frac{\bar{z}_{45}}{z_{45}}):

5|𝒪(z¯45z45)=i(4π)296026B(Δ41,Δ51)Γ(Δ)(i𝒟)Δδ(xx¯)z¯45z45k=13(ϵkσk,1)Δk1×[𝒩4+𝒩4(23)+𝒩4(13)]\begin{gathered}\mathcal{M}_{5}|_{\mathcal{O}(\frac{\bar{z}_{45}}{z_{45}})}=-\frac{i}{(4\pi)^{2}960}2^{6}B(\Delta_{4}-1,\Delta_{5}-1)\frac{\Gamma(\Delta)}{\left(i\mathcal{D}\right)^{\Delta}}\delta(x-\bar{x})\frac{\bar{z}_{45}}{z_{45}}\prod_{k=1}^{3}(\epsilon_{k}\sigma_{k,1})^{\Delta_{k}-1}\\ \times\left[\mathcal{N}_{4}+\mathcal{N}_{4}\left(2\leftrightarrow 3\right)+\mathcal{N}_{4}\left(1\leftrightarrow 3\right)\right]\end{gathered} (30)

This gives us the 5-point Mellin amplitude at leading order. In terms of the 4-point Mellin amplitude 4(1Δ1+,2Δ2+,3Δ3+,5Δ4+Δ5+)\mathcal{M}_{4}(1^{+}_{\Delta_{1}},2^{+}_{\Delta_{2}},3^{+}_{\Delta_{3}},5^{+}_{\Delta_{4}+\Delta_{5}}) given by (21), we can write (30) as follows:

5(1Δ1+,2Δ2+,3Δ3+,4Δ4+,5Δ5+)=z¯45z45B(Δ41,Δ51)4(1Δ1+,2Δ2+,3Δ3+,5Δ4+Δ5+)+\begin{gathered}\mathcal{M}_{5}(1^{+}_{\Delta_{1}},2^{+}_{\Delta_{2}},3^{+}_{\Delta_{3}},4^{+}_{\Delta_{4}},5^{+}_{\Delta_{5}})=-\frac{\bar{z}_{45}}{z_{45}}B(\Delta_{4}-1,\Delta_{5}-1)\mathcal{M}_{4}(1^{+}_{\Delta_{1}},2^{+}_{\Delta_{2}},3^{+}_{\Delta_{3}},5^{+}_{\Delta_{4}+\Delta_{5}})+\cdots\end{gathered} (31)

Thus, at the level of OPE we have

GΔ4+(z4,z¯4)GΔ5+(z5,z¯5)=z¯45z45B(Δ41,Δ51)GΔ4+Δ5+(z5,z¯5)+\boxed{G^{+}_{\Delta_{4}}(z_{4},\bar{z}_{4})G^{+}_{\Delta_{5}}(z_{5},\bar{z}_{5})=-\frac{\bar{z}_{45}}{z_{45}}B(\Delta_{4}-1,\Delta_{5}-1)G^{+}_{\Delta_{4}+\Delta_{5}}(z_{5},\bar{z}_{5})+\cdots} (32)

5.5.2 𝒪(1)\mathcal{O}(1) Terms

Now we turn our attention to the 𝒪(1)\mathcal{O}(1) terms in the five point Mellin amplitude. The complete expression for the 5-point Mellin amplitude at 𝒪(1)\mathcal{O}(1) is given by (119),

5|𝒪(1)=i(4π)296025Γ(Δ)(i𝒟)Δi=13(ϵiσi,1)Δi1k=04B(Δ4+k1,Δ51)k(1)({ϵi,zi,z¯i})δ(xx¯)\begin{gathered}\mathcal{M}_{5}\big{|}_{\mathcal{O}(1)}=-\frac{i}{(4\pi)^{2}960}2^{5}\frac{\Gamma(\Delta)}{\left(i\mathcal{D}\right)^{\Delta}}\prod_{i=1}^{3}(\epsilon_{i}\sigma_{i,1})^{\Delta_{i}-1}\sum_{k=0}^{4}B(\Delta_{4}+k-1,\Delta_{5}-1)\mathcal{F}^{(1)}_{k}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})\delta\left(x-\bar{x}\right)\end{gathered} (33)

where k(1)({ϵi,zi,z¯i})\mathcal{F}^{(1)}_{k}(\{\epsilon_{i},z_{i},\bar{z}_{i}\}) are some functions of its arguments, but their explicit expressions are not important for OPE factorizations. Now we take the leading conformal soft limit Δ41{\Delta_{4}\to 1} in the above equation to get:

limΔ41(Δ41)5|𝒪(1)=i(4π)296025Γ(i=1,i45Δi+1)(i𝒟)i=1,i45Δi+1i=13(ϵiσi,1)iλi0(1)({ϵi,zi,z¯i})δ(xx¯)\begin{gathered}\lim_{\Delta_{4}\to 1}(\Delta_{4}-1){\mathcal{M}}_{5}\big{|}_{\mathcal{O}(1)}=-\frac{i}{(4\pi)^{2}960}2^{5}\frac{\Gamma\left(\sum_{i=1,i\neq 4}^{5}\Delta_{i}+1\right)}{\left(i\mathcal{D}\right)^{\sum_{i=1,i\neq 4}^{5}\Delta_{i}+1}}\prod_{i=1}^{3}(\epsilon_{i}\sigma_{i,1})^{i\lambda_{i}}\mathcal{F}^{(1)}_{0}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})\delta(x-\bar{x})\end{gathered} (34)

Only the k=0k=0 term in the sum in (33) survives because, in the Δ41\Delta_{4}\to 1 limit, B(Δ4+k1,Δ51)B(\Delta_{4}+k-1,\Delta_{5}-1) is non-singular for all k>0k>0.

On the other hand, from the leading soft graviton theorem we know that

limΔ41(Δ41)5|𝒪(1)=32,121(5)4(1Δ1+,2Δ2+,3Δ3+,5Δ5+)\begin{gathered}\lim_{\Delta_{4}\to 1}(\Delta_{4}-1){\mathcal{M}}_{5}\big{|}_{\mathcal{O}(1)}=\mathcal{H}^{1}_{-\frac{3}{2},\frac{1}{2}}(5)\mathcal{M}_{4}(1^{+}_{\Delta_{1}},2^{+}_{\Delta_{2}},3^{+}_{\Delta_{3}},5^{+}_{\Delta_{5}})\end{gathered} (35)

To make things transparent, we have used \mathcal{H}-notations when the soft modes are acting on the Mellin amplitudes as differential operators and the number 55 in the argument of \mathcal{H} denotes that it’s a descendant of the 55-th conformal graviton primary. The consistency of the two equations (34) and (35) implies that:

i(4π)296025Γ(k=1,k45Δk+1)(i𝒟)k=1,k45Δk+1k=13(ϵkσk,1)iλk0(1)({ϵi,zi,z¯i})δ(xx¯)=32,121(5)4(1Δ1+,2Δ2+,3Δ3+,5Δ5+)\begin{gathered}-\frac{i}{(4\pi)^{2}960}2^{5}\frac{\Gamma\left(\sum_{k=1,k\neq 4}^{5}\Delta_{k}+1\right)}{\left(i\mathcal{D}\right)^{\sum_{k=1,k\neq 4}^{5}\Delta_{k}+1}}\prod_{k=1}^{3}(\epsilon_{k}\sigma_{k,1})^{i\lambda_{k}}\mathcal{F}^{(1)}_{0}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})\delta(x-\bar{x})\\ =\mathcal{H}^{1}_{-\frac{3}{2},\frac{1}{2}}(5)\mathcal{M}_{4}(1^{+}_{\Delta_{1}},2^{+}_{\Delta_{2}},3^{+}_{\Delta_{3}},5^{+}_{\Delta_{5}})\end{gathered} (36)

Now, we can replace Δ5\Delta_{5} by Δ4+Δ51\Delta_{4}+\Delta_{5}-1 in (36) and then use it in (33) to get:

5|𝒪(1)=B(Δ41,Δ51)32,121(5)4(1Δ1+,2Δ2+,3Δ3+,5Δ4+Δ51+)i(4π)296025Γ(Δ)(i𝒟)Δi=13(ϵiσi,1)Δi1k=14B(Δ4+k1,Δ51)k(1)({ϵi,zi,z¯i})δ(xx¯)\begin{gathered}\mathcal{M}_{5}\big{|}_{\mathcal{O}(1)}=B(\Delta_{4}-1,\Delta_{5}-1)\mathcal{H}^{1}_{-\frac{3}{2},\frac{1}{2}}(5)\mathcal{M}_{4}(1^{+}_{\Delta_{1}},2^{+}_{\Delta_{2}},3^{+}_{\Delta_{3}},5^{+}_{\Delta_{4}+\Delta_{5}-1})\\ -\frac{i}{(4\pi)^{2}960}2^{5}\frac{\Gamma(\Delta)}{\left(i\mathcal{D}\right)^{\Delta}}\prod_{i=1}^{3}(\epsilon_{i}\sigma_{i,1})^{\Delta_{i}-1}\sum_{k=1}^{4}B(\Delta_{4}+k-1,\Delta_{5}-1)\mathcal{F}^{(1)}_{k}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})\delta\left(x-\bar{x}\right)\end{gathered} (37)

Here we have replaced the 0(1)\mathcal{F}^{(1)}_{0} dependent term in (33) in terms of a soft graviton mode acting on the 4-point amplitude. Let us now repeat the same procedure for 1(1)\mathcal{F}^{(1)}_{1}.

By taking the subleading conformal soft limit Δ40{\Delta_{4}\to 0} in (37), we get

limΔ40Δ45|𝒪(1)=(Δ52)32,121(5)4(1Δ1+,2Δ2+,3Δ3+,5Δ51+)i(4π)296025Γ(k=1,k45Δk)(i𝒟)k=1,k45Δki=13(ϵiσi,1)Δi11(1)({ϵi,zi,z¯i})δ(xx¯)\begin{gathered}\lim_{\Delta_{4}\to 0}\Delta_{4}\mathcal{M}_{5}\big{|}_{\mathcal{O}(1)}=-(\Delta_{5}-2)\,\mathcal{H}^{1}_{-\frac{3}{2},\frac{1}{2}}(5)\mathcal{M}_{4}(1^{+}_{\Delta_{1}},2^{+}_{\Delta_{2}},3^{+}_{\Delta_{3}},5^{+}_{\Delta_{5}-1})\\ -\frac{i}{(4\pi)^{2}960}2^{5}\frac{\Gamma(\sum_{k=1,k\neq 4}^{5}\Delta_{k})}{\left(i\mathcal{D}\right)^{\sum_{k=1,k\neq 4}^{5}\Delta_{k}}}\prod_{i=1}^{3}(\epsilon_{i}\sigma_{i,1})^{\Delta_{i}-1}\mathcal{F}^{(1)}_{1}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})\delta\left(x-\bar{x}\right)\end{gathered} (38)

Now, from subleading soft graviton theorem we know that:

limΔ40Δ45|𝒪(1)=1,10(5)12,121(5)4(1Δ1+,2Δ2+,3Δ3+,5Δ51+)\begin{gathered}\lim_{\Delta_{4}\to 0}\Delta_{4}\mathcal{M}_{5}\big{|}_{\mathcal{O}(1)}=-\mathcal{H}^{0}_{-1,1}(5)\mathcal{H}^{1}_{-\frac{1}{2},-\frac{1}{2}}(5)\mathcal{M}_{4}(1^{+}_{\Delta_{1}},2^{+}_{\Delta_{2}},3^{+}_{\Delta_{3}},5^{+}_{\Delta_{5}-1})\end{gathered} (39)

Again, consistency of the two equations (38) and (39) gives us the function 1(1)\mathcal{F}^{(1)}_{1} in terms of the leading and subleading soft modes. Substituting this back in (37) results in

5|𝒪(1)=Γ(Δ4+1)Γ(Δ4)B(Δ41,Δ51)32,121(5)4(1Δ1+,2Δ2+,3Δ3+,5Δ4+Δ51+)+B(Δ4,Δ51)1,10(5)(12,121(5)4(1Δ1+,2Δ2+,3Δ3+,5Δ4+Δ51+))i(4π)296025Γ(Δ)(i𝒟)Δi=13(ϵiσi,1)Δi1k=24B(Δ4+k1,Δ51)k(1)({ϵi,zi,z¯i})δ(xx¯)\begin{gathered}\mathcal{M}_{5}\big{|}_{\mathcal{O}(1)}=\frac{\Gamma(\Delta_{4}+1)}{\Gamma(\Delta_{4})}B(\Delta_{4}-1,\Delta_{5}-1)\mathcal{H}^{1}_{-\frac{3}{2},\frac{1}{2}}(5)\mathcal{M}_{4}(1^{+}_{\Delta_{1}},2^{+}_{\Delta_{2}},3^{+}_{\Delta_{3}},5^{+}_{\Delta_{4}+\Delta_{5}-1})\\ +B(\Delta_{4},\Delta_{5}-1)\mathcal{H}^{0}_{-1,1}(5)\left(-\mathcal{H}^{1}_{-\frac{1}{2},-\frac{1}{2}}(5)\mathcal{M}_{4}(1^{+}_{\Delta_{1}},2^{+}_{\Delta_{2}},3^{+}_{\Delta_{3}},5^{+}_{\Delta_{4}+\Delta_{5}-1})\right)\\ -\frac{i}{(4\pi)^{2}960}2^{5}\frac{\Gamma(\Delta)}{\left(i\mathcal{D}\right)^{\Delta}}\prod_{i=1}^{3}(\epsilon_{i}\sigma_{i,1})^{\Delta_{i}-1}\sum_{k=2}^{4}B(\Delta_{4}+k-1,\Delta_{5}-1)\mathcal{F}^{(1)}_{k}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})\delta\left(x-\bar{x}\right)\end{gathered} (40)

We continue this process till all the k(1)\mathcal{F}^{(1)}_{k}’s have been replaced by descendant correlation functions of the soft modes. From the above equation (40), it is clear that to replace all the k(1)\mathcal{F}^{(1)}_{k}’s by the descendant correlation functions of the soft modes, we have to go till sub4leading order in the soft limits of Δ4\Delta_{4}. We only write the final result here which is given by,

5(1Δ1+,2Δ2+,3Δ3+,4Δ4+,5Δ5+)|𝒪(1)=k=041(4k)!Γ(Δ4+4)Γ(Δ4+k)B(Δ4+k1,Δ51)×k32,k+121k(5)(12,121(5))k4(1Δ1+,2Δ2+,3Δ3+,5Δ4+Δ51+)\begin{gathered}\mathcal{M}_{5}(1^{+}_{\Delta_{1}},2^{+}_{\Delta_{2}},3^{+}_{\Delta_{3}},4^{+}_{\Delta_{4}},5^{+}_{\Delta_{5}})\big{|}_{\mathcal{O}(1)}=\sum_{k=0}^{4}\frac{1}{(4-k)!}\frac{\Gamma(\Delta_{4}+4)}{\Gamma(\Delta_{4}+k)}B(\Delta_{4}+k-1,\Delta_{5}-1)\\ \times\mathcal{H}^{1-k}_{\frac{k-3}{2},\frac{k+1}{2}}(5)\left(\mathcal{H}^{1}_{-\frac{1}{2},-\frac{1}{2}}(5)\right)^{k}\mathcal{M}_{4}(1^{+}_{\Delta_{1}},2^{+}_{\Delta_{2}},3^{+}_{\Delta_{3}},5^{+}_{\Delta_{4}+\Delta_{5}-1})\end{gathered} (41)

Now that we have factorized the 𝒪(1)\mathcal{O}(1) terms in the 5-point Mellin amplitude completely in terms of soft modes acting on the 4-point amplitude, we can easily extract the 𝒪(1)\mathcal{O}(1) graviton graviton OPE from the above equation. It is given by,

GΔ4+(z4,z¯4)GΔ5+(z5,z¯5)|𝒪(1)=k=041(4k)!Γ(Δ4+4)Γ(Δ4+k)B(Δ4+k1,Δ51)×Hk32,k+121k(H12,121)kGΔ4+Δ51+(z5,z¯5)\begin{gathered}G^{+}_{\Delta_{4}}(z_{4},\bar{z}_{4})G^{+}_{\Delta_{5}}(z_{5},\bar{z}_{5})\big{|}_{\mathcal{O}(1)}=\sum_{k=0}^{4}\frac{1}{(4-k)!}\frac{\Gamma(\Delta_{4}+4)}{\Gamma(\Delta_{4}+k)}B(\Delta_{4}+k-1,\Delta_{5}-1)\\ \times H^{1-k}_{\frac{k-3}{2},\frac{k+1}{2}}\left(H^{1}_{-\frac{1}{2},-\frac{1}{2}}\right)^{k}G^{+}_{\Delta_{4}+\Delta_{5}-1}(z_{5},\bar{z}_{5})\end{gathered} (42)

We can rewrite (42) using the null states of MHV-sector. From (136), it is clear that all the soft modes Hk32,k+121kH^{1-k}_{\frac{k-3}{2},\frac{k+1}{2}} with k=1,,4k=1,\cdots,4 can be replaced by the MHV null states {Φk,k=1,,4}\{\Phi_{k},\ k=1,\cdots,4\}. Thus, (41) in terms of the 𝒪(1)\mathcal{O}(1) MHV null states (136), becomes:

GΔ4+(z4,z¯4)GΔ5+(z5,z¯5)|𝒪(1)=B(Δ41,Δ51)H32,121GΔ4+Δ51+(z5,z¯5)+k=141(4k)!Γ(Δ4+4)Γ(Δ4+k)B(Δ4+k1,Δ51)Φk(Δ4+Δ5)\begin{gathered}G^{+}_{\Delta_{4}}(z_{4},\bar{z}_{4})G^{+}_{\Delta_{5}}(z_{5},\bar{z}_{5})\big{|}_{\mathcal{O}(1)}=B(\Delta_{4}-1,\Delta_{5}-1)H^{1}_{-\frac{3}{2},\frac{1}{2}}G^{+}_{\Delta_{4}+\Delta_{5}-1}(z_{5},\bar{z}_{5})\\ +\sum_{k=1}^{4}\frac{1}{(4-k)!}\frac{\Gamma(\Delta_{4}+4)}{\Gamma(\Delta_{4}+k)}B(\Delta_{4}+k-1,\Delta_{5}-1)\Phi_{k}(\Delta_{4}+\Delta_{5})\\ \end{gathered} (43)

Thus we see that, the 𝒪(1)\mathcal{O}(1) terms in the self dual OPE between two positive helicity outgoing gravitons can completely be written in terms of the 𝒪(1)\mathcal{O}(1) MHV OPE and the 𝒪(1)\mathcal{O}(1) null states of the MHV sector.

Now, as discussed in section H, we can define a new basis for MHV null states instead of Φk\Phi_{k}’s. This new basis is given by (138). For our convenience, let us write (138) here again,

Ωk(Δ)=n=1k1(kn)!Γ(Δ+k2)Γ(Δ+n2)Φn(Δ)\begin{gathered}\Omega_{k}(\Delta)=\sum_{n=1}^{k}\frac{1}{(k-n)!}\frac{\Gamma(\Delta+k-2)}{\Gamma(\Delta+n-2)}\Phi_{n}(\Delta)\end{gathered} (44)

This basis has nice transformation properties under the ww-algebra Banerjee:2023zip , reviewed in section G. Represented in terms of this new Ω\Omega-basis, the graviton-graviton OPE (43) takes a very simple form,

GΔ4+(z4,z¯4)GΔ5+(z5,z¯5)|𝒪(1)=B(Δ41,Δ51)H32,121GΔ4+Δ51+(z5,z¯5)+k=14B(Δ4+k1,Δ51)Ωk(Δ4+Δ5)\begin{gathered}G^{+}_{\Delta_{4}}(z_{4},\bar{z}_{4})G^{+}_{\Delta_{5}}(z_{5},\bar{z}_{5})\big{|}_{\mathcal{O}(1)}=B(\Delta_{4}-1,\Delta_{5}-1)H^{1}_{-\frac{3}{2},\frac{1}{2}}G^{+}_{\Delta_{4}+\Delta_{5}-1}(z_{5},\bar{z}_{5})\\ +\sum_{k=1}^{4}B(\Delta_{4}+k-1,\Delta_{5}-1)\Omega_{k}(\Delta_{4}+\Delta_{5})\\ \end{gathered} (45)

Thus we see that, the 𝒪(1)\mathcal{O}(1) OPE between two positive helicity outgoing gravitons in quantum self dual gravity truncates at n=4n=4 of the general ww-invariant OPE (140). We now move on to 𝒪(z¯)\mathcal{O}(\bar{z}) OPE in the next subsection.

5.5.3 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}) Term

The soft modes that appear at order z¯45\bar{z}_{45} from the ww-algebra are given by

Hk+22,k2k,k=1,0,1,H^{k}_{-\frac{k+2}{2},-\frac{k}{2}},\ k=1,0,-1,\cdots (46)

Now, like the 𝒪(1)\mathcal{O}(1) OPE we can factorize the 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}) terms from the 5-point amplitude using the soft limits and ww-modes. The crucial difference from 𝒪(1)\mathcal{O}(1) is that, now we have to go one order higher in the soft limits than 𝒪(1)\mathcal{O}(1). We start by writing the 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}) term of the 5-point Mellin amplitude given by (see (123)),

5|𝒪(z¯45)=i(4π)296025Γ(Δ)(i𝒟)Δi=13(ϵiσi,1)Δi1k=15B(Δ4+k1,Δ51)k(z¯)({ϵi,zi,z¯i})\begin{gathered}\mathcal{M}_{5}\big{|}_{\mathcal{O}(\bar{z}_{45})}=-\frac{i}{(4\pi)^{2}960}2^{5}\frac{\Gamma(\Delta)}{\left(i\mathcal{D}\right)^{\Delta}}\prod_{i=1}^{3}(\epsilon_{i}\sigma_{i,1})^{\Delta_{i}-1}\sum_{k=1}^{5}B(\Delta_{4}+k-1,\Delta_{5}-1)\mathcal{F}^{(\bar{z})}_{k}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})\end{gathered} (47)

One can easily see from (47) that, to factorize the 5-point Mellin amplitude completely, i.e, to replace all the functions k(z¯)({ϵi,zi,z¯i})\mathcal{F}^{(\bar{z})}_{k}(\{\epsilon_{i},z_{i},\bar{z}_{i}\}) by the descendant correlation functions of soft modes, we have to continue taking the soft limits in Δ4\Delta_{4} till we reach Δ44\Delta_{4}\to-4. Thus the highest soft modes that can appear in the OPE at 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}) are given by H1,24H^{-4}_{1,2}. We have discussed how to factorize the amplitude at 𝒪(1)\mathcal{O}(1) in terms of the descendant correlators of the soft modes in the previous section in detail. One has to repeat the same procedure for 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}) as well. Without going into much detail we directly write the 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}) OPE which is given by,

GΔ4+(z4,z¯4)GΔ5+(z5,z¯5)|𝒪(z¯45)=GΔ4+(z4,z¯4)GΔ5+(z5,z¯5)|MHV at𝒪(z¯45)+k=141(nk)!Γ(Δ4+n+1)Γ(Δ4+k+1)B(Δ4+k,Δ51)Ψk(Δ4+Δ5+1)\begin{gathered}G^{+}_{\Delta_{4}}(z_{4},\bar{z}_{4})G^{+}_{\Delta_{5}}(z_{5},\bar{z}_{5})\big{|}_{\mathcal{O}(\bar{z}_{45})}=G^{+}_{\Delta_{4}}(z_{4},\bar{z}_{4})G^{+}_{\Delta_{5}}(z_{5},\bar{z}_{5})\big{|}_{\text{MHV at}\ \mathcal{O}(\bar{z}_{45})}\\ +\sum_{k=1}^{4}\frac{1}{(n-k)!}\frac{\Gamma(\Delta_{4}+n+1)}{\Gamma(\Delta_{4}+k+1)}B(\Delta_{4}+k,\Delta_{5}-1)\Psi_{k}(\Delta_{4}+\Delta_{5}+1)\end{gathered} (48)

where

GΔ4+(z4,z¯4)GΔ5+(z5,z¯5)|MHV at𝒪(z¯45)=B(Δ41,Δ51)[Δ41Δ4+Δ52H1,00(H12,121)+Δ4H32,121]G+Δ4+Δ51\begin{gathered}G^{+}_{\Delta_{4}}(z_{4},\bar{z}_{4})G^{+}_{\Delta_{5}}(z_{5},\bar{z}_{5})\big{|}_{\text{MHV at}\ \mathcal{O}(\bar{z}_{45})}=B(\Delta_{4}-1,\Delta_{5}-1)\left[\frac{\Delta_{4}-1}{\Delta_{4}+\Delta_{5}-2}H^{0}_{-1,0}\left(-H^{1}_{-\frac{1}{2},-\frac{1}{2}}\right)\right.\\ \left.+\Delta_{4}\,H^{1}_{-\frac{3}{2},-\frac{1}{2}}\right]G^{+}_{\Delta_{4}+\Delta_{5}-1}\end{gathered} (49)

and Ψk(Δ4+Δ5+1)\Psi_{k}(\Delta_{4}+\Delta_{5}+1) is given by

Ψk(Δ4+Δ5+1)\displaystyle\Psi_{k}(\Delta_{4}+\Delta_{5}+1) =\displaystyle= [Hk22,k2k(H12,121)k+1(1)kk!Γ(Δ4+Δ5+k1)Γ(Δ4+Δ51)H1,00(H12,121)\displaystyle\left[H^{-k}_{\frac{k-2}{2},\frac{k}{2}}\left(-H^{1}_{-\frac{1}{2},-\frac{1}{2}}\right)^{k+1}-\frac{(-1)^{k}}{k!}\frac{\Gamma(\Delta_{4}+\Delta_{5}+k-1)}{\Gamma(\Delta_{4}+\Delta_{5}-1)}H^{0}_{-1,0}\left(-H^{1}_{-\frac{1}{2},-\frac{1}{2}}\right)\right. (50)
(1)kk(k+1)!Γ(Δ4+Δ5+k1)Γ(Δ4+Δ52)H32,121]G+Δ4+Δ51\displaystyle\left.-(-1)^{k}\frac{k}{(k+1)!}\frac{\Gamma(\Delta_{4}+\Delta_{5}+k-1)}{\Gamma(\Delta_{4}+\Delta_{5}-2)}H^{1}_{-\frac{3}{2},-\frac{1}{2}}\right]G^{+}_{\Delta_{4}+\Delta_{5}-1}

In terms of the new basis defined in (139), the above OPE can again be written in a very nice and simple form given by,

GΔ4+(z4,z¯4)GΔ5+(z5,z¯5)|𝒪(z¯45)=GΔ4+(z4,z¯4)GΔ5+(z5,z¯5)|MHV at𝒪(z¯45)+z¯45k=14B(Δ4+k,Δ51)Πk(Δ4+Δ5+1)\begin{gathered}G^{+}_{\Delta_{4}}(z_{4},\bar{z}_{4})G^{+}_{\Delta_{5}}(z_{5},\bar{z}_{5})\big{|}_{\mathcal{O}(\bar{z}_{45})}=G^{+}_{\Delta_{4}}(z_{4},\bar{z}_{4})G^{+}_{\Delta_{5}}(z_{5},\bar{z}_{5})\big{|}_{\text{MHV at}\ \mathcal{O}(\bar{z}_{45})}\\ +\bar{z}_{45}\sum_{k=1}^{4}B(\Delta_{4}+k,\Delta_{5}-1)\ \Pi_{k}(\Delta_{4}+\Delta_{5}+1)\end{gathered} (51)

Thus we see that the 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}) terms in the OPE again truncate at n=4n=4 of the general ww-invariant OPE (140).

6 Discussion

Operator product expansion plays a very important role in any quantum field theory and therefore it is important to understand the structure of OPE in the celestial CFTs. In its current formulation, celestial CFTs differ from more conventional CFTs in many ways. The primary difference is that the spectrum of the operator dimensions in celestial CFTs is not bounded from below. Taken at face value, this implies that the number of descendants that can appear at any given order of the celestial OPE can be infinite. However, this is not a very desirable feature and warrants further study.

In this paper, we have undertaken the task of computing the celestial OPE of two positive helicity outgoing gravitons in the quantum self-dual gravity. It is known that the self dual gravity enjoys ww invariance. Therefore, one should be able to express the OPE in terms of ww descendants of the graviton primary. This is what we have found. However, the most surprising fact which comes out of our study is that at any given order the OPE contains only a finite number of ww descendants. Therefore, the self dual gravity behaves like any other CFT with a spectrum of operator dimensions bounded from below.

This raises some interesting questions. For example, we know that the Holographic Symmetry Algebra (HSA) contains an infinite tower of holomorphic currents Hnk(z)H^{k}_{n}(z) with kk going from 11 to -\infty. Our calculation shows that in the self dual theory at 𝒪(1)\mathcal{O}(1) and at 𝒪(z¯)\mathcal{O}(\bar{z}) the list of ww descendants truncate at k=3k=-3 and k=4k=-4, respectively. However, this is somewhat unnatural given the fact that the currents Hn3(z)H^{-3}_{n}(z) and Hn4(z)H^{-4}_{n}(z) do not play any distinguished role in the algebra. Therefore, it is natural to wonder if there are other ww invariant theories where the truncation occurs at other values of kk. This is consistent with our earlier analysis Banerjee:2023zip based on the ww algebra representation where we found that one can write down an infinite number of consistent ww invariant OPEs where truncation happens at different values of kk. Therefore, truncation is not a reflection of ww symmetry. We leave the construction of these theories as an interesting problem for the future.

Before we end, we would like to point out that truncation means that the self dual theory in many ways behave like theories with operator dimensions bounded from below. So it is very likely that the self dual theory and the (tree-level) MHV sector of GR can be reformulated in terms of celestial primary operators with dimensions strictly bounded from below. Interesting proposals along this line has been put forward in Cotler:2023qwh ; Freidel:2022skz It will be fascinating if they can be applied to the present problem.

7 Acknowledgements

SB would like to thank the participants of the Kickoff Workshop for the Simons Collaboration on Celestial Holography for helpful comments. The work of SB is partially supported by the Swarnajayanti Fellowship (File No- SB/SJF/2021-22/14) of the Department of Science and Technology and SERB, India. The work of HK is partially supported by the KVPY fellowship of the Department of Science and Technology, Government of India. The work of PP is supported by an IOE endowed Postdoctoral position at IISc, Bengaluru, India.

Appendix A Brief Review of Celestial or Mellin Amplitudes For Massless Particles

The Celestial or Mellin amplitude for massless particles in four dimensions is defined as the Mellin transformation of the SS-matrix element, given by Pasterski:2016qvg ; Pasterski:2017kqt

n({zi,z¯i,hi,h¯i})=i=1n0𝑑ωiωiΔi1An({ωi,zi,z¯i,σi})\mathcal{M}_{n}\big{(}\{z_{i},\bar{z}_{i},h_{i},\bar{h}_{i}\}\big{)}=\prod_{i=1}^{n}\int_{0}^{\infty}d\omega_{i}\ \omega_{i}^{\Delta_{i}-1}A_{n}\big{(}\{\omega_{i},z_{i},\bar{z}_{i},\sigma_{i}\}\big{)} (52)

where σi\sigma_{i} denotes the helicity of the ii-th particle and the on-shell momenta are parametrized by (1). The scaling dimensions (hi,h¯i)(h_{i},\bar{h}_{i}) are defined as,

hi=Δi+σi2,h¯i=Δiσi2h_{i}=\frac{\Delta_{i}+\sigma_{i}}{2},\quad\bar{h}_{i}=\frac{\Delta_{i}-\sigma_{i}}{2} (53)

Under the Lorentz transformation (2), the Mellin amplitude n\mathcal{M}_{n} transforms as,

n({zi,z¯i,hi,h¯i})=i=1n1(czi+d)2hi1(c¯z¯i+d¯)2h¯in(azi+bczi+d,a¯z¯i+b¯c¯z¯i+d¯,hi,h¯i)\mathcal{M}_{n}\big{(}\{z_{i},\bar{z}_{i},h_{i},\bar{h}_{i}\}\big{)}=\prod_{i=1}^{n}\frac{1}{(cz_{i}+d)^{2h_{i}}}\frac{1}{(\bar{c}\bar{z}_{i}+\bar{d})^{2\bar{h}_{i}}}\mathcal{M}_{n}\bigg{(}\frac{az_{i}+b}{cz_{i}+d}\ ,\frac{\bar{a}\bar{z}_{i}+\bar{b}}{\bar{c}\bar{z}_{i}+\bar{d}}\ ,h_{i},\bar{h}_{i}\bigg{)} (54)

This is the familiar transformation law for the correlation function of primary operators of weight (hi,h¯i)(h_{i},\bar{h}_{i}) in a 22-D CFT under the global conformal group.

In Einstein gravity, the Mellin amplitude as defined in (52) usually diverges. This divergence can be regulated by defining a modified Mellin amplitude as Banerjee:2018gce ; Banerjee:2019prz ,

n({ui,zi,z¯i,hi,h¯i})=i=1n0𝑑ωiωiΔi1eii=1nϵiωiuiAn({ωi,zi,z¯i,σi})\mathcal{M}_{n}\big{(}\{u_{i},z_{i},\bar{z}_{i},h_{i},\bar{h}_{i}\}\big{)}=\prod_{i=1}^{n}\int_{0}^{\infty}d\omega_{i}\ \omega_{i}^{\Delta_{i}-1}e^{-i\sum_{i=1}^{n}\epsilon_{i}\omega_{i}u_{i}}A_{n}\big{(}\{\omega_{i},z_{i},\bar{z}_{i},\sigma_{i}\}\big{)} (55)

where uu can be thought of as a time coordinate and ϵi=±1\epsilon_{i}=\pm 1 for an outgoing (incoming) particle. Under (Lorentz) conformal tranansformation the modified Mellin amplitude n\mathcal{M}_{n} transforms as,

n({ui,zi,z¯i,hi,h¯i})=i=1n1(czi+d)2hi1(c¯z¯i+d¯)2h¯in(ui|czi+d|2,azi+bczi+d,a¯z¯i+b¯c¯z¯i+d¯,hi,h¯i)\mathcal{M}_{n}\big{(}\{u_{i},z_{i},\bar{z}_{i},h_{i},\bar{h}_{i}\}\big{)}=\prod_{i=1}^{n}\frac{1}{(cz_{i}+d)^{2h_{i}}}\frac{1}{(\bar{c}\bar{z}_{i}+\bar{d})^{2\bar{h}_{i}}}\mathcal{M}_{n}\bigg{(}\frac{u_{i}}{|cz_{i}+d|^{2}}\ ,\frac{az_{i}+b}{cz_{i}+d}\ ,\frac{\bar{a}\bar{z}_{i}+\bar{b}}{\bar{c}\bar{z}_{i}+\bar{d}}\ ,h_{i},\bar{h}_{i}\bigg{)} (56)

Under global space-time translation, uu+A+Bz+B¯z¯+Czz¯u\rightarrow u+A+Bz+\bar{B}\bar{z}+Cz\bar{z}, the modified Mellin amplitude is invariant, i.e,

n({ui+A+Bzi+B¯z¯i+Cziz¯i,zi,z¯i,hi,h¯i})=n({ui,zi,z¯i,hi,h¯i})\mathcal{M}_{n}\big{(}\{u_{i}+A+Bz_{i}+\bar{B}\bar{z}_{i}+Cz_{i}\bar{z}_{i},z_{i},\bar{z}_{i},h_{i},\bar{h}_{i}\}\big{)}=\mathcal{M}_{n}\big{(}\{u_{i},z_{i},\bar{z}_{i},h_{i},\bar{h}_{i}\}\big{)} (57)

Now in order to make manifest the conformal nature of the dual theory living on the celestial sphere it is useful to write the (modified) Mellin amplitude as a correlation function of conformal primary operators. So let us define a generic conformal primary operator as,

ϕh,h¯ϵ(z,z¯)=0𝑑ωωΔ1a(ϵω,z,z¯,σ)\phi^{\epsilon}_{h,\bar{h}}(z,\bar{z})=\int_{0}^{\infty}d\omega\ \omega^{\Delta-1}a(\epsilon\omega,z,\bar{z},\sigma) (58)

where ϵ=±1\epsilon=\pm 1 for an annihilation (creation) operator of a massless particle of helicity σ\sigma. Under (Lorentz) conformal transformation the conformal primary transforms like a primary operator of scaling dimension (h,h¯)(h,\bar{h})

ϕh,h¯ϵ(z,z¯)=1(cz+d)2h1(c¯z¯+d¯)2h¯ϕh,h¯ϵ(az+bcz+d,a¯z¯+b¯c¯z¯+d¯)\phi^{\prime\epsilon}_{h,\bar{h}}(z,\bar{z})=\frac{1}{(cz+d)^{2h}}\frac{1}{(\bar{c}\bar{z}+\bar{d})^{2\bar{h}}}\mathcal{\phi}^{\epsilon}_{h,\bar{h}}\bigg{(}\frac{az+b}{cz+d}\ ,\frac{\bar{a}\bar{z}+\bar{b}}{\bar{c}\bar{z}+\bar{d}}\bigg{)} (59)

Similarly in the presence of the time coordinate uu we have,

ϕh,h¯ϵ(u,z,z¯)=0𝑑ωωΔ1eiϵωua(ϵω,z,z¯,σ)\phi^{\epsilon}_{h,\bar{h}}(u,z,\bar{z})=\int_{0}^{\infty}d\omega\ \omega^{\Delta-1}e^{-i\epsilon\omega u}a(\epsilon\omega,z,\bar{z},\sigma) (60)

Under (Lorentz) conformal transformations

ϕh,h¯ϵ(u,z,z¯)=1(cz+d)2h1(c¯z¯+d¯)2h¯ϕh,h¯ϵ(u|cz+d|2,az+bcz+d,a¯z¯+b¯c¯z¯+d¯)\phi^{\prime\epsilon}_{h,\bar{h}}(u,z,\bar{z})=\frac{1}{(cz+d)^{2h}}\frac{1}{(\bar{c}\bar{z}+\bar{d})^{2\bar{h}}}\mathcal{\phi}^{\epsilon}_{h,\bar{h}}\bigg{(}\frac{u}{|cz+d|^{2}},\frac{az+b}{cz+d}\ ,\frac{\bar{a}\bar{z}+\bar{b}}{\bar{c}\bar{z}+\bar{d}}\bigg{)} (61)

In terms of (58), the Mellin amplitude can be written as the correlation function of conformal primary operators

n=i=1nϕhi,h¯iϵi(zi,z¯i)\mathcal{M}_{n}=\bigg{\langle}{\prod_{i=1}^{n}\phi^{\epsilon_{i}}_{h_{i},\bar{h}_{i}}(z_{i},\bar{z}_{i})}\bigg{\rangle} (62)

Similarly using (60), the modified Mellin amplitude can be written as,

n=i=1nϕhi,h¯iϵi(ui,zi,z¯i)\mathcal{M}_{n}=\bigg{\langle}{\prod_{i=1}^{n}\phi^{\epsilon_{i}}_{h_{i},\bar{h}_{i}}(u_{i},z_{i},\bar{z}_{i})}\bigg{\rangle} (63)

A.1 Comments on notation in the paper

Note that the conformal primaries carry an extra index ϵ\epsilon which distinguishes between an incoming and an outgoing particle. In this paper, for notational simplicity, we omit this additional index unless this plays an important role. So in most places we simply write the (modified) Mellin amplitude as,

n=i=1nϕhi,h¯i(zi,z¯i)\mathcal{M}_{n}=\bigg{\langle}{\prod_{i=1}^{n}\phi_{h_{i},\bar{h}_{i}}(z_{i},\bar{z}_{i})}\bigg{\rangle} (64)

or

n=i=1nϕhi,h¯i(ui,zi,z¯i)\mathcal{M}_{n}=\bigg{\langle}{\prod_{i=1}^{n}\phi_{h_{i},\bar{h}_{i}}(u_{i},z_{i},\bar{z}_{i})}\bigg{\rangle} (65)

Similarly in many places in the paper we denote a graviton primary of weight Δ=h+h¯\Delta=h+\bar{h} by GΔσG^{\sigma}_{\Delta} where σ=±2\sigma=\pm 2 is the helicity (= hh¯h-\bar{h}). Since we are considering pure gravity, we can further simplify the notation to GΔ±G^{\pm}_{\Delta} by omitting the 22.

Appendix B Parametrization of the Delta Functions

In this Appendix, we parametrize the 4-point and 5-point delta functions which will be convenient for our purpose of extracting the OPE.

B.1 4-Point Delta Function

In (2,2)(2,2) split signature, the parametrization of the null momentum (pip_{i}) for ii-th massless particle in terms of (ωi,zi,z¯i)\left(\omega_{i},z_{i},\bar{z}_{i}\right) is given by

pi=ωi{1+ziz¯i,zi+z¯i,(ziz¯i),1ziz¯i},pi2=0p_{i}=\omega_{i}\{1+z_{i}\bar{z}_{i},z_{i}+\bar{z}_{i},(z_{i}-\bar{z}_{i}),1-z_{i}\bar{z}_{i}\},\qquad p_{i}^{2}=0 (66)

This allows us to write down the 4-point momentum conserving delta function in the following way which is more convenient for us

δ(4)(i=1,45ϵipi)\displaystyle\delta^{(4)}\left(\sum_{i=1,\neq 4}^{5}\epsilon_{i}p_{i}\right) =\displaystyle= 14δ(i=1,45ϵiωi)δ(i=13ϵiωizi5)δ(i=13ϵiωiz¯i5)δ(i=13ϵiωizi5z¯i5)\displaystyle\frac{1}{4}\delta\left(\sum_{i=1,\neq 4}^{5}\epsilon_{i}\omega_{i}\right)\delta\left(\sum_{i=1}^{3}\epsilon_{i}\omega_{i}z_{i5}\right)\delta\left(\sum_{i=1}^{3}\epsilon_{i}\omega_{i}\bar{z}_{i5}\right)\delta\left(\sum_{i=1}^{3}\epsilon_{i}\omega_{i}z_{i5}\bar{z}_{i5}\right)
=\displaystyle= ϵ1ϵ2ϵ3ϵ514ω5δ(ω1ω1)δ(ω2ω2)δ(ω3ω3)δ(xx¯)\displaystyle\epsilon_{1}\epsilon_{2}\epsilon_{3}\epsilon_{5}\frac{1}{4\omega_{5}}\delta(\omega_{1}-\omega_{1}^{*})\delta(\omega_{2}-\omega_{2}^{*})\delta(\omega_{3}-\omega_{3}^{*})\delta(x-\bar{x})

where ϵi=±1\epsilon_{i}=\pm 1 for outgoing (incoming) particle and

ωi\displaystyle\omega_{i}^{*} =\displaystyle= ϵ5ω5ϵiσi,1\displaystyle\epsilon_{5}\,\omega_{5}\,\epsilon_{i}\,\sigma_{i,1} (68)
σ1,1\displaystyle\sigma_{1,1} =\displaystyle= z25z¯35z12z¯13\displaystyle-\frac{z_{25}\bar{z}_{35}}{z_{12}\bar{z}_{13}} (69)
σ2,1\displaystyle\sigma_{2,1} =\displaystyle= z15z¯35z12z¯23\displaystyle\frac{z_{15}\bar{z}_{35}}{z_{12}\bar{z}_{23}} (70)
σ3,1\displaystyle\sigma_{3,1} =\displaystyle= z25z¯15z23z¯13\displaystyle-\frac{z_{25}\bar{z}_{15}}{z_{23}\bar{z}_{13}} (71)
x\displaystyle x =\displaystyle= z12z35z¯13z¯25,x¯=z13z25z¯12z¯35\displaystyle z_{12}z_{35}\bar{z}_{13}\bar{z}_{25},\ \bar{x}=z_{13}z_{25}\bar{z}_{12}\bar{z}_{35} (72)

The σi,1\sigma_{i,1}’s defined above satisfy the following identities on the support of δ(xx¯)\delta(x-\bar{x})

σ1,1+σ2,1+σ3,1+1\displaystyle\sigma_{1,1}+\sigma_{2,1}+\sigma_{3,1}+1 =\displaystyle= 0\displaystyle 0 (73)
z15σ1,1+z25σ2,1+z35σ3,1\displaystyle z_{15}\sigma_{1,1}+z_{25}\sigma_{2,1}+z_{35}\sigma_{3,1} =\displaystyle= 0\displaystyle 0 (74)
z¯15σ1,1+z¯25σ2,1+z¯35σ3,1\displaystyle\bar{z}_{15}\sigma_{1,1}+\bar{z}_{25}\sigma_{2,1}+\bar{z}_{35}\sigma_{3,1} =\displaystyle= 0\displaystyle 0 (75)

This representation for the 4-point delta function and the properties of σi,1\sigma_{i,1}’s will be useful in extracting the OPE. Note that in this delta function representation, we have indexed the four particles by 1,2,3,51,2,3,5 because to extract the OPE, we take the 4 \to 5 OPE limit in the 5-point Mellin amplitude and then factorize it in terms of the 4-point Mellin amplitude now indexed by 1,2,3,51,2,3,5. This is a notation that we followed throughout the paper.

B.2 5-Point Delta Function

We now write down the representation for the delta function for 5 particles. For concreteness, we take ϵ4=ϵ5=+1\epsilon_{4}=\epsilon_{5}=+1. Since we are interested in the OPE limit 454\to 5, it is convenient to use the following parametrization

ω4=tωP,ω5=(1t)ωP\omega_{4}=t\omega_{P},\ \omega_{5}=(1-t)\omega_{P} (76)

in representing the 5-point delta function. For the case of n=5n=5 particles in four spacetime dimensions we have four constraint equations coming from the four components of the energy momentum conserving equations. We can solve these four constraint equations for three energy variables {ω1,ω2,ω3}\{\omega_{1},\omega_{2},\omega_{3}\} in terms of ω4\omega_{4} and ω5\omega_{5}. Thus, the representation of the 5-point delta function which is better suited for our purposes of performing the OPE decomposition of the Mellin amplitude in the (4, 5) channel, is given by Banerjee:2020zlg 555Please note that in Banerjee:2020zlg the OPE factorization has been done starting from the 6-point Mellin amplitude whereas in this paper it is done starting from the 5-point amplitude. Thus, in parametrizing the 5-point delta function in this paper, we have used the same methodology which was used for 6-point delta function in Banerjee:2020zlg .,

δ(4)(i=15ϵiωiqi)\displaystyle\delta^{(4)}\left(\sum_{i=1}^{5}\epsilon_{i}\omega_{i}q_{i}\right) =\displaystyle= 14ωPδ(ω1ω1)δ(ω2ω2)δ(ω3ω3)\displaystyle\frac{1}{4\omega_{P}}\delta(\omega_{1}-\omega_{1}^{*})\delta(\omega_{2}-\omega_{2}^{*})\delta(\omega_{3}-\omega_{3}^{*})
×δ(xx¯tz45(xz35x¯z25)tz¯45(xz¯25x¯z¯35)+tz45z¯45(xz35z¯25x¯z25z¯35))\displaystyle\times\delta\left(x-\bar{x}-tz_{45}\left(\frac{x}{z_{35}}-\frac{\bar{x}}{z_{25}}\right)-t\bar{z}_{45}\left(\frac{x}{\bar{z}_{25}}-\frac{\bar{x}}{\bar{z}_{35}}\right)+tz_{45}\bar{z}_{45}\left(\frac{x}{z_{35}\bar{z}_{25}}-\frac{\bar{x}}{z_{25}\bar{z}_{35}}\right)\right)

where for i={1,2,3}i=\{1,2,3\} we have

ωi\displaystyle\omega_{i}^{*} =\displaystyle= ωPω~i\displaystyle\omega_{P}\tilde{\omega}_{i}^{*}
ω~i\displaystyle\tilde{\omega}_{i}^{*} =\displaystyle= ϵi(σi,1+tz45σi,2+tz¯45σi,3+tz45z¯45σi,4)\displaystyle\epsilon_{i}\left(\sigma_{i,1}+tz_{45}\sigma_{i,2}+t\bar{z}_{45}\sigma_{i,3}+tz_{45}\bar{z}_{45}\sigma_{i,4}\right) (78)

and the σi,1,x,x¯\sigma_{i,1},\ x,\ \bar{x} are given by (69)-(72). We also have

σi,2=σi,1z5,σi,3=σi,1z¯5,σi,4=σi,1z5z¯5,i=1,2,3.\sigma_{i,2}=\frac{\partial\sigma_{i,1}}{\partial z_{5}},\ \sigma_{i,3}=\frac{\partial\sigma_{i,1}}{\partial\bar{z}_{5}},\ \sigma_{i,4}=\frac{\partial\sigma_{i,1}}{\partial z_{5}\partial\bar{z}_{5}},\qquad\forall\,i=1,2,3. (79)

Appendix C Simplification of the 4-point Amplitude

In this Appendix, we simplify the 4-point self dual one loop amplitude in momentum space which is used in section 5. We start with the equation (18) for the 4-point amplitude:

B4\displaystyle B_{4} =\displaystyle= 1a<b4M,Nh(a,M,b)h(b,N,a)tr3[aMbN]\displaystyle\sum_{\begin{subarray}{c}1\leq a<b\leq 4\\ M,N\end{subarray}}h(a,M,b)h(b,N,a)\text{\text{tr}}^{3}[aMbN]
=\displaystyle= h(1,3,2)h(2,4,1)tr3[1324]+h(1,2,3)h(3,4,1)tr3[1234]+h(1,2,4)h(4,3,1)tr3[1243]\displaystyle h(1,3,2)h(2,4,1)\text{tr}^{3}[1324]+h(1,2,3)h(3,4,1)\text{tr}^{3}[1234]+h(1,2,4)h(4,3,1)\text{tr}^{3}[1243]
+\displaystyle+ h(2,1,3)h(3,4,2)tr3[2134]+h(2,1,4)h(4,3,2)tr3[2143]+h(3,1,4)h(4,2,3)tr3[3142]\displaystyle h(2,1,3)h(3,4,2)\text{tr}^{3}[2134]+h(2,1,4)h(4,3,2)\text{tr}^{3}[2143]+h(3,1,4)h(4,2,3)\text{tr}^{3}[3142]

The trace function is given by

tr[aMbN]=a|KM|b]b|KN|a]+[a|KM|b[b|KN|a\text{tr}[aMbN]=\left<a|K_{M}|b\right]\left<b|K_{N}|a\right]+\left[a|K_{M}|b\right>\left[b|K_{N}|a\right> (80)

For M={i},N={l}M=\{i\},\ N=\{l\} we have

tr[aibl]\displaystyle\text{tr}[aibl] =\displaystyle= a|ki|b]b|kl|a]+[a|ki|b[b|kl|a\displaystyle\left<a|k_{i}|b\right]\left<b|k_{l}|a\right]+\left[a|k_{i}|b\right>\left[b|k_{l}|a\right> (81)
=\displaystyle= ai[ib]bl[la]+bi[ia]al[lb]\displaystyle\left<ai\right>[ib]\left<bl\right>[la]+\left<bi\right>[ia]\left<al\right>[lb]

From the above equation we can see that tr[aibl]=tr[ialb]\text{tr}[aibl]=\text{tr}[ialb]. Using this property of the trace function and the expression for the half soft function

h(a,i,b)=1ai2ib2h(a,i,b)=\frac{1}{\left<ai\right>^{2}\left<ib\right>^{2}} (82)

(C) can be simplified as,

B4\displaystyle B_{4} =\displaystyle= 2(h(1,3,2)h(2,4,1)tr3[1324]+h(1,2,3)h(3,4,1)tr3[1234]+h(1,2,4)h(4,3,1)tr3[1243])\displaystyle 2\left(h(1,3,2)h(2,4,1)\text{tr}^{3}[1324]+h(1,2,3)h(3,4,1)\text{tr}^{3}[1234]+h(1,2,4)h(4,3,1)\text{tr}^{3}[1243]\right)

Now, using the momentum conservation for four particles in the trace functions (81) and the explicit expressions of the half soft functions (82), (LABEL:B_42) finally gives,

B4\displaystyle B_{4} =\displaystyle= 24(1323([13][23])3142242+(13)+(23))\displaystyle-2^{4}\left(\frac{\left<13\right>\left<23\right>([13][23])^{3}}{\left<14\right>^{2}\left<24\right>^{2}}+(1\leftrightarrow 3)+(2\leftrightarrow 3)\right)

As mentioned earlier, since we will index the 4 particles as 1,2,3,51,2,3,5, relabelling 44 as 55 in the above expression gives the following form of the 4-point amplitude in momentum space,

B4\displaystyle B_{4} =\displaystyle= 24(1323([13][23])3152252+(13)+(23))\displaystyle-2^{4}\left(\frac{\left<13\right>\left<23\right>([13][23])^{3}}{\left<15\right>^{2}\left<25\right>^{2}}+(1\leftrightarrow 3)+(2\leftrightarrow 3)\right)

Appendix D Simplification of the 5-point Amplitude

Similar to what was done for the 4-point case, we will now simplify the 5-point self dual one loop amplitude in momentum space which is used in section 5.3 by considering the equation (24):

B5\displaystyle B_{5} =\displaystyle= 1a<b5M,Nh(a,M,b)h(b,N,a)tr3[aMbN]\displaystyle\sum_{\begin{subarray}{c}1\leq a<b\leq 5\\ M,N\end{subarray}}h(a,M,b)h(b,N,a)\text{tr}^{3}[aMbN] (86)
=\displaystyle= h(1,M,2)h(2,N,1)tr3[1M2N]+h(1,M,3)h(3,N,1)tr3[1M3N]+h(1,M,4)h(4,N,1)tr3[1M4N]\displaystyle h(1,M,2)h(2,N,1)\text{tr}^{3}[1M2N]+h(1,M,3)h(3,N,1)\text{tr}^{3}[1M3N]+h(1,M,4)h(4,N,1)\text{tr}^{3}[1M4N]
+\displaystyle+ h(1,M,5)h(5,N,1)tr3[1M5N]+h(2,M,3)h(3,N,2)tr3[2M3N]+h(2,M,4)h(4,N,2)tr3[2M4N]\displaystyle h(1,M,5)h(5,N,1)\text{tr}^{3}[1M5N]+h(2,M,3)h(3,N,2)\text{tr}^{3}[2M3N]+h(2,M,4)h(4,N,2)\text{tr}^{3}[2M4N]
+\displaystyle+ h(2,M,5)h(5,N,2)tr3[2M5N]+h(3,M,4)h(4,N,3)tr3[3M4N]+h(3,M,5)h(5,N,3)tr3[3M5N]\displaystyle h(2,M,5)h(5,N,2)\text{tr}^{3}[2M5N]+h(3,M,4)h(4,N,3)\text{tr}^{3}[3M4N]+h(3,M,5)h(5,N,3)\text{tr}^{3}[3M5N]
+\displaystyle+ h(4,M,5)h(5,N,4)tr3[4M5N]\displaystyle h(4,M,5)h(5,N,4)\text{tr}^{3}[4M5N]

The two sets MM and NN are such that MN=1,a1,a+1,b1,b+1,nM\bigcup N={1,...a-1,a+1,...b-1,b+1,...n} and MN=ϕM\bigcap N=\phi and the sum is over all possible a,ba,b and sets (M,N)(M,N), where (M,N)(M,N) and (N,M)(N,M) are not distinguished. For 5-point amplitudes, with M={i,j},N={l}M=\{i,j\},\ N=\{l\}, the trace function given by,

tr[aMbN]=a|KM|b]b|KN|a]+[a|KM|b[b|KN|a\text{tr}[aMbN]=\left<a|K_{M}|b\right]\left<b|K_{N}|a\right]+\left[a|K_{M}|b\right>\left[b|K_{N}|a\right> (87)

becomes

tr[a{i+j}b{l}]\displaystyle\text{tr}[a\{i+j\}b\{l\}] =\displaystyle= a|ki+kj|b]b|kl|a]+[a|ki+kj|b[b|kl|a\displaystyle\left<a|k_{i}+k_{j}|b\right]\left<b|k_{l}|a\right]+\left[a|k_{i}+k_{j}|b\right>\left[b|k_{l}|a\right> (88)
=\displaystyle= tr[aibl]+tr[ajbl]\displaystyle\text{tr}[aibl]+\text{tr}[ajbl]
=\displaystyle= (ai[ib]+aj[jb])bl[la]+(bi[ia]+bj[ja])al[lb]\displaystyle(\left<ai\right>[ib]+\left<aj\right>[jb])\left<bl\right>[la]+(\left<bi\right>[ia]+\left<bj\right>[ja])\left<al\right>[lb]

Now, using momentum conservation in the spinor notation

ai({a,b,j,k})[i({a,b,j,k})b]+aj({a,b,i,k})[j({a,b,j,k})b]\displaystyle\left<ai(\neq\{a,b,j,k\})\right>[i(\neq\{a,b,j,k\})b]+\left<aj(\neq\{a,b,i,k\})\right>[j(\neq\{a,b,j,k\})b]
+ak({a,b,i,j})[k({a,b,i,j})b]=0\displaystyle+\left<ak(\neq\{a,b,i,j\})\right>[k(\neq\{a,b,i,j\})b]=0 (89)

one can show that,

tr[a{i+j}b{l}]\displaystyle\text{tr}[a\{i+j\}b\{l\}] =\displaystyle= 2al[al]bl[bl]\displaystyle-2\left<al\right>[al]\left<bl\right>[bl]

where each label is different. Thus we see that tr[a{i+j}b{l}]\text{tr}[a\{i+j\}b\{l\}] is independent of {i,j}\{i,j\}. The half soft functions needed for the simplification of the 5-point amplitude are given by,

h(a,{i,j},b)\displaystyle h(a,\{i,j\},b) =\displaystyle= [ij]ijaiajibjb\displaystyle\frac{[ij]}{\left<ij\right>\left<ai\right>\left<aj\right>\left<ib\right>\left<jb\right>} (90)
h(a,{i},b)\displaystyle h(a,\{i\},b) =\displaystyle= 1ai2ib2\displaystyle\frac{1}{\left<ai\right>^{2}\left<ib\right>^{2}} (91)

Thus, we see that h(a,{i,j},b)=h(a,{j,i},b)h(a,\{i,j\},b)=h(a,\{j,i\},b).

Now, using the explicit form of the trace and half soft functions in terms of spinor helicity brackets, we can write (86) as,

B5=8[[25]1334([13][34])32512152454+[24]1335([13][35])32412142545+[15]2334([23][34])31521251454\displaystyle B_{5}=-8\left[\frac{[25]\left<13\right>\left<34\right>([13][34])^{3}}{\left<25\right>\left<12\right>\left<15\right>\left<24\right>\left<54\right>}+\frac{[24]\left<13\right>\left<35\right>([13][35])^{3}}{\left<24\right>\left<12\right>\left<14\right>\left<25\right>\left<45\right>}+\frac{[15]\left<23\right>\left<34\right>([23][34])^{3}}{\left<15\right>\left<21\right>\left<25\right>\left<14\right>\left<54\right>}\right.
+[14]2335([23][35])31421241545+[45]1323([13][23])34514154252+[34]2515([15][25])33413143242\displaystyle+\left.\frac{[14]\left<23\right>\left<35\right>([23][35])^{3}}{\left<14\right>\left<21\right>\left<24\right>\left<15\right>\left<45\right>}+\frac{[45]\left<13\right>\left<23\right>([13][23])^{3}}{\left<45\right>\left<14\right>\left<15\right>\left<42\right>\left<52\right>}+\frac{[34]\left<25\right>\left<15\right>([15][25])^{3}}{\left<34\right>\left<13\right>\left<14\right>\left<32\right>\left<42\right>}\right.
+[35]1424([14][24])33513153252+[12]3435([34][35])31241421525+[12]3545([35][45])31231321424\displaystyle+\left.\frac{[35]\left<14\right>\left<24\right>([14][24])^{3}}{\left<35\right>\left<13\right>\left<15\right>\left<32\right>\left<52\right>}+\frac{[12]\left<34\right>\left<35\right>([34][35])^{3}}{\left<12\right>\left<41\right>\left<42\right>\left<15\right>\left<25\right>}+\frac{[12]\left<35\right>\left<45\right>([35][45])^{3}}{\left<12\right>\left<31\right>\left<32\right>\left<14\right>\left<24\right>}\right.
+[12]3445([34][45])31231321525]+(13)+(23)\displaystyle\left.+\frac{[12]\left<34\right>\left<45\right>([34][45])^{3}}{\left<12\right>\left<31\right>\left<32\right>\left<15\right>\left<25\right>}\right]+\left(1\leftrightarrow 3\right)+\left(2\leftrightarrow 3\right)
(92)

Before simplifying this, first note that the first 4 terms (and hence a total of 12 terms) in the above expression have the apparent form that seems to go like 145\sim\frac{1}{\langle 45\rangle}. However, it cannot be true that the 5-point amplitude has a leading behaviour of 145\sim\frac{1}{\langle 45\rangle}. We will show that these terms add up to contribute to the leading order (𝒪([45]45)\mathcal{O}(\frac{[45]}{\langle 45\rangle})), 𝒪(1)\mathcal{O}(1) and higher orders as expected. Hence, to simplify further, let us first write down these 12 terms explicitly,

B5S8\displaystyle-\frac{B_{5}^{\textnormal{S}}}{8} =\displaystyle= [25]1334([13][34])32512152454+[35]1224([12][24])33513153454+[24]1335([13][35])32412142545\displaystyle\frac{[25]\left<13\right>\left<34\right>([13][34])^{3}}{\left<25\right>\left<12\right>\left<15\right>\left<24\right>\left<54\right>}+\frac{[35]\left<12\right>\left<24\right>([12][24])^{3}}{\left<35\right>\left<13\right>\left<15\right>\left<34\right>\left<54\right>}+\frac{[24]\left<13\right>\left<35\right>([13][35])^{3}}{\left<24\right>\left<12\right>\left<14\right>\left<25\right>\left<45\right>}
+\displaystyle+ [34]1225([12][25])33413143545+[15]2334([23][34])31521251454+[35]1214([12][14])33523253454\displaystyle\frac{[34]\left<12\right>\left<25\right>([12][25])^{3}}{\left<34\right>\left<13\right>\left<14\right>\left<35\right>\left<45\right>}+\frac{[15]\left<23\right>\left<34\right>([23][34])^{3}}{\left<15\right>\left<21\right>\left<25\right>\left<14\right>\left<54\right>}+\frac{[35]\left<12\right>\left<14\right>([12][14])^{3}}{\left<35\right>\left<23\right>\left<25\right>\left<34\right>\left<54\right>}
+\displaystyle+ [14]2335([23][35])31421241545+[34]1215([12][15])33423243545+[15]2324([23][24])31531351454\displaystyle\frac{[14]\left<23\right>\left<35\right>([23][35])^{3}}{\left<14\right>\left<21\right>\left<24\right>\left<15\right>\left<45\right>}+\frac{[34]\left<12\right>\left<15\right>([12][15])^{3}}{\left<34\right>\left<23\right>\left<24\right>\left<35\right>\left<45\right>}+\frac{[15]\left<23\right>\left<24\right>([23][24])^{3}}{\left<15\right>\left<31\right>\left<35\right>\left<14\right>\left<54\right>}
+\displaystyle+ [25]1314([13][14])32532352454+[14]2325([23][25])31431341545+[24]1315([13][15])32432342545\displaystyle\frac{[25]\left<13\right>\left<14\right>([13][14])^{3}}{\left<25\right>\left<32\right>\left<35\right>\left<24\right>\left<54\right>}+\frac{[14]\left<23\right>\left<25\right>([23][25])^{3}}{\left<14\right>\left<31\right>\left<34\right>\left<15\right>\left<45\right>}+\frac{[24]\left<13\right>\left<15\right>([13][15])^{3}}{\left<24\right>\left<32\right>\left<34\right>\left<25\right>\left<45\right>}

Keeping terms only upto 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}), the first term above can be rewritten as,

[25]1334([13][34])32512152454=145[25]123243[12]3[24]325121524132342+3[45]45[25]12215243[12]3[24]225121524132342+3[25]123242[12]2[15][24]325121524132342345[25]122[12][15]2[24]325151323429[45][25]1224[12]2[15][24]225132342\begin{gathered}\frac{[25]\left<13\right>\left<34\right>([13][34])^{3}}{\left<25\right>\left<12\right>\left<15\right>\left<24\right>\left<54\right>}=-\frac{1}{\left<45\right>}\frac{[25]\left<12\right>^{3}\left<24\right>^{3}[12]^{3}[24]^{3}}{\left<25\right>\left<12\right>\left<15\right>\left<24\right>\left<13\right>^{2}\left<34\right>^{2}}+3\frac{[45]}{\left<45\right>}\frac{[25]\left<12\right>^{2}\left<15\right>\left<24\right>^{3}[12]^{3}[24]^{2}}{\left<25\right>\left<12\right>\left<15\right>\left<24\right>\left<13\right>^{2}\left<34\right>^{2}}\\ +3\frac{[25]\left<12\right>^{3}\left<24\right>^{2}[12]^{2}[15][24]^{3}}{\left<25\right>\left<12\right>\left<15\right>\left<24\right>\left<13\right>^{2}\left<34\right>^{2}}-3\left<45\right>\frac{[25]\left<12\right>^{2}[12][15]^{2}[24]^{3}}{\left<25\right>\left<15\right>\left<13\right>^{2}\left<34\right>^{2}}-9\left[45\right]\frac{[25]\left<12\right>\left<24\right>[12]^{2}[15][24]^{2}}{\left<25\right>\left<13\right>^{2}\left<34\right>^{2}}\end{gathered} (94)

Now we use a little trick to explicitly show that the terms in (LABEL:sing_terms) add up to give (𝒪([45]45)\mathcal{O}(\frac{[45]}{\langle 45\rangle})), 𝒪(1)\mathcal{O}(1) and higher orders contributions. It involves appropriately combining terms in the equation. To see this, note that the first term in RHS of (94) and second term in RHS of (LABEL:sing_terms) can be combined to get,

145[25]123243[12]3[24]325121524132342+[35]1224([12][24])33513153454=1451224([12][24])3132152534235(122435[25]+133425[35])\begin{gathered}-\frac{1}{\left<45\right>}\frac{[25]\left<12\right>^{3}\left<24\right>^{3}[12]^{3}[24]^{3}}{\left<25\right>\left<12\right>\left<15\right>\left<24\right>\left<13\right>^{2}\left<34\right>^{2}}+\frac{[35]\left<12\right>\left<24\right>([12][24])^{3}}{\left<35\right>\left<13\right>\left<15\right>\left<34\right>\left<54\right>}\\ =-\frac{1}{\left<45\right>}\frac{\left<12\right>\left<24\right>([12][24])^{3}}{\left<13\right>^{2}\left<15\right>\left<25\right>\left<34\right>^{2}\left<35\right>}\left(\left<12\right>\left<24\right>\left<35\right>[25]+\left<13\right>\left<34\right>\left<25\right>[35]\right)\end{gathered} (95)

Note that although we are writing equalities everywhere, one should keep in mind that there are higher order terms as well. However, here, and throughout this paper, we will always write expressions keeping terms only upto 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}). Now, using the Shouten Identity 2435=2534+2345\left<24\right>\left<35\right>=\left<25\right>\left<34\right>+\left<23\right>\left<45\right> and momentum conservation equation, we can write the above equation as

145[25]123243[12]3[24]325121524132342+[35]1224([12][24])33513153454=1451224([12][24])3132152534235(142534[45]+122345[25])\begin{gathered}-\frac{1}{\left<45\right>}\frac{[25]\left<12\right>^{3}\left<24\right>^{3}[12]^{3}[24]^{3}}{\left<25\right>\left<12\right>\left<15\right>\left<24\right>\left<13\right>^{2}\left<34\right>^{2}}+\frac{[35]\left<12\right>\left<24\right>([12][24])^{3}}{\left<35\right>\left<13\right>\left<15\right>\left<34\right>\left<54\right>}\\ =-\frac{1}{\left<45\right>}\frac{\left<12\right>\left<24\right>([12][24])^{3}}{\left<13\right>^{2}\left<15\right>\left<25\right>\left<34\right>^{2}\left<35\right>}\left(-\left<14\right>\left<25\right>\left<34\right>[45]+\left<12\right>\left<23\right>\left<45\right>[25]\right)\end{gathered} (96)

Hence the first two terms in (LABEL:sing_terms) give

[25]1334([13][34])32512152454+[35]1224([12][24])33513153454=3[45]45[25]12242[12]3[24]225132342+3[25]12224[12]2[15][24]32515132342+[45]45121424[12]3[24]31321534351222324[25][12]3[24]3132152534235345[25]122[12][15]2[24]325151323429[45][25]1224[12]2[15][24]225132342\begin{gathered}\frac{[25]\left<13\right>\left<34\right>([13][34])^{3}}{\left<25\right>\left<12\right>\left<15\right>\left<24\right>\left<54\right>}+\frac{[35]\left<12\right>\left<24\right>([12][24])^{3}}{\left<35\right>\left<13\right>\left<15\right>\left<34\right>\left<54\right>}=3\frac{[45]}{\left<45\right>}\frac{[25]\left<12\right>\left<24\right>^{2}[12]^{3}[24]^{2}}{\left<25\right>\left<13\right>^{2}\left<34\right>^{2}}\\ +3\frac{[25]\left<12\right>^{2}\left<24\right>[12]^{2}[15][24]^{3}}{\left<25\right>\left<15\right>\left<13\right>^{2}\left<34\right>^{2}}+\frac{[45]}{\left<45\right>}\frac{\left<12\right>\left<14\right>\left<24\right>[12]^{3}[24]^{3}}{\left<13\right>^{2}\left<15\right>\left<34\right>\left<35\right>}-\frac{\left<12\right>^{2}\left<23\right>\left<24\right>[25][12]^{3}[24]^{3}}{\left<13\right>^{2}\left<15\right>\left<25\right>\left<34\right>^{2}\left<35\right>}\\ -3\left<45\right>\frac{[25]\left<12\right>^{2}[12][15]^{2}[24]^{3}}{\left<25\right>\left<15\right>\left<13\right>^{2}\left<34\right>^{2}}-9\left[45\right]\frac{[25]\left<12\right>\left<24\right>[12]^{2}[15][24]^{2}}{\left<25\right>\left<13\right>^{2}\left<34\right>^{2}}\end{gathered} (97)

Using momentum conservation again in the 4th term in the RHS of the above equation, we finally get

[25]1334([13][34])32512152454+[35]1224([12][24])33513153454=3[45]45[25]12242[12]3[24]225132342+[45]45121424[12]3[24]3132153435+2[25]12224[12]2[15][24]31322515342[25]12224[12]2[14][24]313215253435345[25]122[12][15]2[24]325151323429[45][25]1224[12]2[15][24]225132342\begin{gathered}\frac{[25]\left<13\right>\left<34\right>([13][34])^{3}}{\left<25\right>\left<12\right>\left<15\right>\left<24\right>\left<54\right>}+\frac{[35]\left<12\right>\left<24\right>([12][24])^{3}}{\left<35\right>\left<13\right>\left<15\right>\left<34\right>\left<54\right>}=3\frac{[45]}{\left<45\right>}\frac{[25]\left<12\right>\left<24\right>^{2}[12]^{3}[24]^{2}}{\left<25\right>\left<13\right>^{2}\left<34\right>^{2}}\\ +\frac{[45]}{\left<45\right>}\frac{\left<12\right>\left<14\right>\left<24\right>[12]^{3}[24]^{3}}{\left<13\right>^{2}\left<15\right>\left<34\right>\left<35\right>}+2\frac{[25]\left<12\right>^{2}\left<24\right>[12]^{2}[15][24]^{3}}{\left<13\right>^{2}\left<25\right>\left<15\right>\left<34\right>^{2}}-\frac{[25]\left<12\right>^{2}\left<24\right>[12]^{2}[14][24]^{3}}{\left<13\right>^{2}\left<15\right>\left<25\right>\left<34\right>\left<35\right>}\\ -3\left<45\right>\frac{[25]\left<12\right>^{2}[12][15]^{2}[24]^{3}}{\left<25\right>\left<15\right>\left<13\right>^{2}\left<34\right>^{2}}-9\left[45\right]\frac{[25]\left<12\right>\left<24\right>[12]^{2}[15][24]^{2}}{\left<25\right>\left<13\right>^{2}\left<34\right>^{2}}\end{gathered} (98)

Similarly, the 3rd and 4th terms in RHS of (LABEL:sing_terms) give

[24]1335([13][35])32412142545+[34]1225([12][25])33413143545=3[45]45[24]12252[12]3[25]224132352+[45]45121525[12]3[25]3132143435+2[24]12225[12]2[14][25]32414132352[24]12225[12]2[15][25]313214243435+345[24]122[12][14]2[25]32414132352+9[45][24]1225[12]2[14][25]224132352\begin{gathered}\frac{[24]\left<13\right>\left<35\right>([13][35])^{3}}{\left<24\right>\left<12\right>\left<14\right>\left<25\right>\left<45\right>}+\frac{[34]\left<12\right>\left<25\right>([12][25])^{3}}{\left<34\right>\left<13\right>\left<14\right>\left<35\right>\left<45\right>}=3\frac{[45]}{\left<45\right>}\frac{[24]\left<12\right>\left<25\right>^{2}[12]^{3}[25]^{2}}{\left<24\right>\left<13\right>^{2}\left<35\right>^{2}}\\ +\frac{[45]}{\left<45\right>}\frac{\left<12\right>\left<15\right>\left<25\right>[12]^{3}[25]^{3}}{\left<13\right>^{2}\left<14\right>\left<34\right>\left<35\right>}+2\frac{[24]\left<12\right>^{2}\left<25\right>[12]^{2}[14][25]^{3}}{\left<24\right>\left<14\right>\left<13\right>^{2}\left<35\right>^{2}}-\frac{[24]\left<12\right>^{2}\left<25\right>[12]^{2}[15][25]^{3}}{\left<13\right>^{2}\left<14\right>\left<24\right>\left<34\right>\left<35\right>}\\ +3\left<45\right>\frac{[24]\left<12\right>^{2}[12][14]^{2}[25]^{3}}{\left<24\right>\left<14\right>\left<13\right>^{2}\left<35\right>^{2}}+9\left[45\right]\frac{[24]\left<12\right>\left<25\right>[12]^{2}[14][25]^{2}}{\left<24\right>\left<13\right>^{2}\left<35\right>^{2}}\end{gathered} (99)

As is clear from the above equations, we can combine the 12 terms of (LABEL:sing_terms) in groups of two as shown above to see that the leading order contribution coming from (LABEL:sing_terms) is indeed 𝒪(z¯45z45)\mathcal{O}(\frac{\bar{z}_{45}}{z_{45}}) instead of the apparent 𝒪(1z45)\mathcal{O}(\frac{1}{z_{45}}).

Now, we rewrite the first 4 terms in (LABEL:sing_terms) in terms of {ωi,zi,z¯i}\{\omega_{i},z_{i},\bar{z}_{i}\}, and then expand around z45=z¯45=0z_{45}=\bar{z}_{45}=0. As mentioned earlier, we only keep terms upto 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}) to get

[25]1334([13][34])32512152454+[35]1224([12][24])33513153454+[24]1335([13][35])32412142545+[34]1225([12][25])33413143545=24ϵ1ω1ω24ω32ω4ω5(ω4+ω5)3z¯45z45z12z25z¯123z¯253z132z35224ϵ1ω1ω24ω32ω4ω5[(ω4+ω5)35ω4ω5(ω4+ω5)]z122z¯122z¯15z¯254z132z15z352+24ϵ1z¯45z12z¯123z¯253z132z15z353ω1ω24ω32ω4ω5[z15z35ω4(ω42+6ω4ω53ω52)+z25z35(ω43+ω53)+z15z25(ω43+6ω42ω5+ω53)]+24ϵ1z¯45z122z¯122z¯253z132z15z352ω1ω24ω32ω4ω5[z¯25ω4(ω422ω52)+z¯15(3ω436ω42ω52ω4ω52+ω53)]+\begin{gathered}\frac{[25]\left<13\right>\left<34\right>([13][34])^{3}}{\left<25\right>\left<12\right>\left<15\right>\left<24\right>\left<54\right>}+\frac{[35]\left<12\right>\left<24\right>([12][24])^{3}}{\left<35\right>\left<13\right>\left<15\right>\left<34\right>\left<54\right>}+\frac{[24]\left<13\right>\left<35\right>([13][35])^{3}}{\left<24\right>\left<12\right>\left<14\right>\left<25\right>\left<45\right>}+\frac{[34]\left<12\right>\left<25\right>([12][25])^{3}}{\left<34\right>\left<13\right>\left<14\right>\left<35\right>\left<45\right>}\\ =2^{4}\epsilon_{1}\frac{\omega_{1}\omega_{2}^{4}}{\omega_{3}^{2}\omega_{4}\omega_{5}}\left(\omega_{4}+\omega_{5}\right)^{3}\frac{\bar{z}_{45}}{z_{45}}\frac{z_{12}z_{25}\bar{z}_{12}^{3}\bar{z}_{25}^{3}}{z_{13}^{2}z_{35}^{2}}\\ -2^{4}\epsilon_{1}\frac{\omega_{1}\omega_{2}^{4}}{\omega_{3}^{2}\omega_{4}\omega_{5}}\left[\left(\omega_{4}+\omega_{5}\right)^{3}-5\omega_{4}\omega_{5}\left(\omega_{4}+\omega_{5}\right)\right]\frac{z_{12}^{2}\bar{z}_{12}^{2}\bar{z}_{15}\bar{z}_{25}^{4}}{z_{13}^{2}z_{15}z_{35}^{2}}\\ +2^{4}\epsilon_{1}\bar{z}_{45}\frac{z_{12}\bar{z}_{12}^{3}\bar{z}_{25}^{3}}{z_{13}^{2}z_{15}z_{35}^{3}}\frac{\omega_{1}\omega_{2}^{4}}{\omega_{3}^{2}\omega_{4}\omega_{5}}\left[-z_{15}z_{35}\,\omega_{4}\left(\omega_{4}^{2}+6\omega_{4}\omega_{5}-3\omega_{5}^{2}\right)+z_{25}z_{35}\left(-\omega_{4}^{3}+\omega_{5}^{3}\right)\right.\\ \left.+z_{15}z_{25}\left(\omega_{4}^{3}+6\omega_{4}^{2}\omega_{5}+\omega_{5}^{3}\right)\right]+2^{4}\epsilon_{1}\bar{z}_{45}\frac{z_{12}^{2}\bar{z}_{12}^{2}\bar{z}_{25}^{3}}{z_{13}^{2}z_{15}z_{35}^{2}}\frac{\omega_{1}\omega_{2}^{4}}{\omega_{3}^{2}\omega_{4}\omega_{5}}\left[\bar{z}_{25}\,\omega_{4}\left(\omega_{4}^{2}-2\omega_{5}^{2}\right)\right.\\ \left.+\bar{z}_{15}\left(3\omega_{4}^{3}-6\omega_{4}^{2}\omega_{5}-2\omega_{4}\omega_{5}^{2}+\omega_{5}^{3}\right)\right]+\cdots\end{gathered} (100)

The contribution from the other 8 terms in (LABEL:sing_terms) is simply obtained by taking different permutations of 1,2 and 3 in the above expression. Setting ω4=tωP,ω5=(1t)ωP\omega_{4}=t\omega_{P},\ \omega_{5}=(1-t)\omega_{P} and collecting all the singular terms we finally get

B5S=27ωPt(1t)(z¯45z45TLS+T𝒪(1)S+z¯45Tz¯S)B_{5}^{\textnormal{S}}=-2^{7}\frac{\omega_{P}}{t(1-t)}\left(\frac{\bar{z}_{45}}{z_{45}}T^{\textnormal{S}}_{L}+T^{\textnormal{S}}_{\mathcal{O}(1)}+\bar{z}_{45}T^{\textnormal{S}}_{\bar{z}}\right) (101)

where

TLS=[ϵ1z12z25z¯123z¯253z132z352ω1ω24ω32+ϵ2z12z15z¯123z¯153z232z352ω14ω2ω32+ϵ3z13z15z¯133z¯153z232z252ω14ω3ω22]\begin{gathered}T^{\textnormal{S}}_{L}=\left[\epsilon_{1}\frac{z_{12}z_{25}\bar{z}_{12}^{3}\bar{z}_{25}^{3}}{z_{13}^{2}z_{35}^{2}}\frac{\omega_{1}\omega_{2}^{4}}{\omega_{3}^{2}}+\epsilon_{2}\frac{z_{12}z_{15}\bar{z}_{12}^{3}\bar{z}_{15}^{3}}{z_{23}^{2}z_{35}^{2}}\frac{\omega_{1}^{4}\omega_{2}}{\omega_{3}^{2}}+\epsilon_{3}\frac{z_{13}z_{15}\bar{z}_{13}^{3}\bar{z}_{15}^{3}}{z_{23}^{2}z_{25}^{2}}\frac{\omega_{1}^{4}\omega_{3}}{\omega_{2}^{2}}\right]\end{gathered} (102)
T𝒪(1)S=[ϵ1z122z¯122z¯15z¯254z132z15z352ω1ω24ω32+ϵ2z122z¯122z¯25z¯154z232z25z352ω14ω2ω32+ϵ3z132z¯132z¯35z¯154z232z35z252ω14ω3ω22][15t(1t)]\begin{gathered}T^{\textnormal{S}}_{\mathcal{O}(1)}=-\left[\epsilon_{1}\frac{z_{12}^{2}\bar{z}_{12}^{2}\bar{z}_{15}\bar{z}_{25}^{4}}{z_{13}^{2}z_{15}z_{35}^{2}}\frac{\omega_{1}\omega_{2}^{4}}{\omega_{3}^{2}}+\epsilon_{2}\frac{z_{12}^{2}\bar{z}_{12}^{2}\bar{z}_{25}\bar{z}_{15}^{4}}{z_{23}^{2}z_{25}z_{35}^{2}}\frac{\omega_{1}^{4}\omega_{2}}{\omega_{3}^{2}}+\epsilon_{3}\frac{z_{13}^{2}\bar{z}_{13}^{2}\bar{z}_{35}\bar{z}_{15}^{4}}{z_{23}^{2}z_{35}z_{25}^{2}}\frac{\omega_{1}^{4}\omega_{3}}{\omega_{2}^{2}}\right][1-5t(1-t)]\end{gathered} (103)

and

Tz¯S=ϵ1z12z¯123z¯253z132z15z353ω1ω24ω32[z15z35t(t2+6t(1t)3(1t)2)+z25z35(t3+(1t)3)+z15z25(t3+6t2(1t)+(1t)3)]+ϵ1z122z¯122z¯253z132z15z352ω1ω24ω32[z¯25t(t22(1t)2)+z¯15(3t36t2(1t)2t(1t)2+(1t)3)]+ϵ2z12z¯123z¯153z232z25z353ω14ω2ω32[z25z35t(t2+6t(1t)3(1t)2)+z15z35(t3+(1t)3)+z25z15(t3+6t2(1t)+(1t)3)]+ϵ2z122z¯122z¯153z232z25z352ω14ω2ω32[z¯15t(t22(1t)2)+z¯25(3t36t2(1t)2t(1t)2+(1t)3)]+ϵ3z13z¯133z¯153z232z35z253ω14ω3ω22[z35z25t(t2+6t(1t)3(1t)2)+z15z25(t3+(1t)3)+z35z15(t3+6t2(1t)+(1t)3)]+ϵ3z132z¯132z¯153z232z35z252ω14ω3ω22[z¯15t(t22(1t)2)+z¯35(3t36t2(1t)2t(1t)2+(1t)3)]\begin{gathered}T^{\textnormal{S}}_{\bar{z}}=\epsilon_{1}\frac{z_{12}\bar{z}_{12}^{3}\bar{z}_{25}^{3}}{z_{13}^{2}z_{15}z_{35}^{3}}\frac{\omega_{1}\omega_{2}^{4}}{\omega_{3}^{2}}\left[-z_{15}z_{35}\,t\left(t^{2}+6t(1-t)-3(1-t)^{2}\right)+z_{25}z_{35}\left(-t^{3}+(1-t)^{3}\right)\right.\\ \left.+z_{15}z_{25}\left(t^{3}+6t^{2}(1-t)+(1-t)^{3}\right)\right]+\epsilon_{1}\frac{z_{12}^{2}\bar{z}_{12}^{2}\bar{z}_{25}^{3}}{z_{13}^{2}z_{15}z_{35}^{2}}\frac{\omega_{1}\omega_{2}^{4}}{\omega_{3}^{2}}\left[\bar{z}_{25}\,t\left(t^{2}-2(1-t)^{2}\right)\right.\\ \left.+\bar{z}_{15}\left(3t^{3}-6t^{2}(1-t)-2t(1-t)^{2}+(1-t)^{3}\right)\right]\\ +\epsilon_{2}\frac{z_{12}\bar{z}_{12}^{3}\bar{z}_{15}^{3}}{z_{23}^{2}z_{25}z_{35}^{3}}\frac{\omega_{1}^{4}\omega_{2}}{\omega_{3}^{2}}\left[-z_{25}z_{35}\,t\left(t^{2}+6t(1-t)-3(1-t)^{2}\right)+z_{15}z_{35}\left(-t^{3}+(1-t)^{3}\right)\right.\\ \left.+z_{25}z_{15}\left(t^{3}+6t^{2}(1-t)+(1-t)^{3}\right)\right]+\epsilon_{2}\frac{z_{12}^{2}\bar{z}_{12}^{2}\bar{z}_{15}^{3}}{z_{23}^{2}z_{25}z_{35}^{2}}\frac{\omega_{1}^{4}\omega_{2}}{\omega_{3}^{2}}\left[\bar{z}_{15}\,t\left(t^{2}-2(1-t)^{2}\right)\right.\\ \left.+\bar{z}_{25}\left(3t^{3}-6t^{2}(1-t)-2t(1-t)^{2}+(1-t)^{3}\right)\right]\\ +\epsilon_{3}\frac{z_{13}\bar{z}_{13}^{3}\bar{z}_{15}^{3}}{z_{23}^{2}z_{35}z_{25}^{3}}\frac{\omega_{1}^{4}\omega_{3}}{\omega_{2}^{2}}\left[-z_{35}z_{25}\,t\left(t^{2}+6t(1-t)-3(1-t)^{2}\right)+z_{15}z_{25}\left(-t^{3}+(1-t)^{3}\right)\right.\\ \left.+z_{35}z_{15}\left(t^{3}+6t^{2}(1-t)+(1-t)^{3}\right)\right]+\epsilon_{3}\frac{z_{13}^{2}\bar{z}_{13}^{2}\bar{z}_{15}^{3}}{z_{23}^{2}z_{35}z_{25}^{2}}\frac{\omega_{1}^{4}\omega_{3}}{\omega_{2}^{2}}\left[\bar{z}_{15}\,t\left(t^{2}-2(1-t)^{2}\right)\right.\\ \left.+\bar{z}_{35}\left(3t^{3}-6t^{2}(1-t)-2t(1-t)^{2}+(1-t)^{3}\right)\right]\end{gathered} (104)

Taking into account the other 18 terms (although note that at 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}), only 12 of these contribute and the 9th and 10th term in (92) and the (131\leftrightarrow 3) and (232\leftrightarrow 3) permutation of those do not contribute at this order) in (92) we finally get B5B_{5} as

B5=27ωPt(1t)(z¯45z45TL+T𝒪(1)+z¯45Tz¯)+B_{5}=-2^{7}\frac{\omega_{P}}{t(1-t)}\left(\frac{\bar{z}_{45}}{z_{45}}T_{L}+T_{\mathcal{O}(1)}+\bar{z}_{45}T_{\bar{z}}\right)+\cdots (105)

where we have neglected the higher order terms in the expansion of the RHS of (92) around z45=z¯45=0z_{45}=\bar{z}_{45}=0 in (ω,z,z¯)\left(\omega,z,\bar{z}\right) space and

TL=TLS+[ϵ1ϵ2ω1ω2ω34ωP3z13z23(z¯13z¯23)3z152z252+(13)+(23)]T𝒪(1)=T𝒪(1)S+[ϵ1ϵ2ϵ3ω1ω2ωP2ω3z¯35(z¯15z¯25)3z35z13z23{(1t)5+t5}+ϵ1ϵ2ωPω34ω1ω2z¯12z352z¯356z12z152z252t2(1t)2+(13)+(23)]Tz¯=Tz¯S+[ϵ1ϵ2ω1ω2ω34ωP3z13z23(z¯13z¯23)3z152z252(1z15+1z25)+(13)+(23)][ϵ1ϵ2ϵ3ω1ω2ωP2ω3(z¯15z¯25)3z13z23z35(1t)5+3ϵ1ϵ2ϵ3ω1ω2ωP2ω3z¯35(z¯15z¯25)2(z¯15+z¯25)z13z23z35t5+ϵ1ϵ2ω34ωPω1ω2z¯12z352z¯355z12z152z252t2(1t)2+(13)+(23)]\begin{split}T_{L}&=T_{L}^{\textnormal{S}}+\left[\epsilon_{1}\epsilon_{2}\frac{\omega_{1}\omega_{2}\omega_{3}^{4}}{\omega_{P}^{3}}\frac{z_{13}z_{23}\left(\bar{z}_{13}\bar{z}_{23}\right)^{3}}{z_{15}^{2}z_{25}^{2}}+(1\leftrightarrow 3)+(2\leftrightarrow 3)\right]\\ T_{\mathcal{O}(1)}&=T^{\textnormal{S}}_{\mathcal{O}(1)}+\left[\epsilon_{1}\epsilon_{2}\epsilon_{3}\frac{\omega_{1}\omega_{2}\omega_{P}^{2}}{\omega_{3}}\frac{\bar{z}_{35}(\bar{z}_{15}\bar{z}_{25})^{3}}{z_{35}z_{13}z_{23}}\{(1-t)^{5}+t^{5}\}+\epsilon_{1}\epsilon_{2}\frac{\omega_{P}\omega_{3}^{4}}{\omega_{1}\omega_{2}}\frac{\bar{z}_{12}z_{35}^{2}\bar{z}_{35}^{6}}{z_{12}z_{15}^{2}z_{25}^{2}}t^{2}(1-t)^{2}\right.\\ &\left.\hskip 170.71652pt+(1\leftrightarrow 3)+(2\leftrightarrow 3)\right]\\ T_{\bar{z}}&=T^{\textnormal{S}}_{\bar{z}}+\left[\epsilon_{1}\epsilon_{2}\frac{\omega_{1}\omega_{2}\omega_{3}^{4}}{\omega_{P}^{3}}\frac{z_{13}z_{23}\left(\bar{z}_{13}\bar{z}_{23}\right)^{3}}{z_{15}^{2}z_{25}^{2}}\left(\frac{1}{z_{15}}+\frac{1}{z_{25}}\right)+(1\leftrightarrow 3)+(2\leftrightarrow 3)\right]\\ &-\left[\epsilon_{1}\epsilon_{2}\epsilon_{3}\frac{\omega_{1}\omega_{2}\omega_{P}^{2}}{\omega_{3}}\frac{(\bar{z}_{15}\bar{z}_{25})^{3}}{z_{13}z_{23}z_{35}}(1-t)^{5}+3\epsilon_{1}\epsilon_{2}\epsilon_{3}\frac{\omega_{1}\omega_{2}\omega_{P}^{2}}{\omega_{3}}\frac{\bar{z}_{35}(\bar{z}_{15}\bar{z}_{25})^{2}(\bar{z}_{15}+\bar{z}_{25})}{z_{13}z_{23}z_{35}}t^{5}\right.\\ &\left.\hskip 113.81102pt+\ \epsilon_{1}\epsilon_{2}\frac{\omega_{3}^{4}\omega_{P}}{\omega_{1}\omega_{2}}\frac{\bar{z}_{12}z_{35}^{2}\bar{z}_{35}^{5}}{z_{12}z_{15}^{2}z_{25}^{2}}t^{2}(1-t)^{2}+(1\leftrightarrow 3)+(2\leftrightarrow 3)\right]\end{split} (106)

We will now Mellin transform (105) and take the OPE limit 454\to 5. We want to emphasize here that after Mellin transformation, the higher order terms in the OPE expansion of the Mellin amplitude may receive contribution from the lower order terms. This is because of the fact that, after Mellin transformation the Mellin amplitude will depend on ω~i\tilde{\omega}^{*}_{i}’s as well as the delta function involving cross ratios coming from 5-point momentum conserving delta function as parametrized in (LABEL:5pt_delta_fn). In the next subsection we analyse this in detail and calculate the order by order terms in the OPE expansion 454\to 5 of the 5-point Mellin amplitude.

Appendix E Mellin Transformation of the 5-Point Amplitude

For the discussion of this Appendix, the prefactor i(4π)2960\frac{i}{(4\pi)^{2}960} in (23) is not important. Thus we only Mellin transform B5B_{5} and keep terms only upto 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}). Substituting (105) in (28) we get:

B~5=270i=15dωiωiΔi1eii=14ϵiωiui5ωPt(1t)(z¯45z45TL(ω1,ω2,ω3,ωP)+T𝒪(1)(ω1,ω2,ω3,ωP)\displaystyle\widetilde{B}_{5}=-2^{7}\int_{0}^{\infty}\prod_{i=1}^{5}d\omega_{i}\,\omega_{i}^{\Delta_{i}-1}e^{-i\sum_{i=1}^{4}\epsilon_{i}\omega_{i}u_{i5}}\frac{\omega_{P}}{t(1-t)}\left(\frac{\bar{z}_{45}}{z_{45}}T_{L}(\omega_{1},\omega_{2},\omega_{3},\omega_{P})+T_{\mathcal{O}(1)}(\omega_{1},\omega_{2},\omega_{3},\omega_{P})\right.
+z¯45Tz¯(ω1,ω2,ω3,ωP))δ(4)(i=15ϵiωiqi)\displaystyle\left.+\bar{z}_{45}T_{\bar{z}}(\omega_{1},\omega_{2},\omega_{3},\omega_{P})\right)\delta^{(4)}\left(\sum_{i=1}^{5}\epsilon_{i}\omega_{i}q_{i}\right)\ \ \ \ (107)

where TL,T𝒪(1)T_{L},\ T_{\mathcal{O}(1)} and Tz¯\ T_{\bar{z}} are given by (106) and we have kept their {ω}\{\omega\} dependence explicit for our convenience. Also we have used momentum conservation in the exponential. Now using the parametrization (LABEL:5pt_delta_fn), we can perform the (ω1,ω2,ω3)(\omega_{1},\omega_{2},\omega_{3}) integrals to obtain:

B~5=2501𝑑ttΔ42(1t)Δ520𝑑ωPωPΔ4+Δ51i=13(ωi)Δi1eii=13ϵiωiui5iωPtu45×(z¯45z45TL(ω1,ω2,ω3,ωP)+T𝒪(1)(ω1,ω2,ω3,ωP)+z¯45Tz¯(ω1,ω2,ω3,ωP))×δ(xx¯tz45(xz35x¯z25)tz¯45(xz¯25x¯z¯35)+tz45z¯45(xz35z¯25x¯z25z¯35))\begin{gathered}\widetilde{B}_{5}=-2^{5}\int_{0}^{1}dt\,t^{\Delta_{4}-2}(1-t)^{\Delta_{5}-2}\int_{0}^{\infty}d\omega_{P}\,\omega_{P}^{\Delta_{4}+\Delta_{5}-1}\prod_{i=1}^{3}(\omega^{*}_{i})^{\Delta_{i}-1}e^{-i\sum_{i=1}^{3}\epsilon_{i}\omega^{*}_{i}u_{i5}-i\omega_{P}t\,u_{45}}\\ \times\left(\frac{\bar{z}_{45}}{z_{45}}T_{L}(\omega^{*}_{1},\omega^{*}_{2},\omega^{*}_{3},\omega_{P})+T_{\mathcal{O}(1)}(\omega^{*}_{1},\omega^{*}_{2},\omega^{*}_{3},\omega_{P})+\bar{z}_{45}T_{\bar{z}}(\omega^{*}_{1},\omega^{*}_{2},\omega^{*}_{3},\omega_{P})\right)\\ \times\delta\left(x-\bar{x}-tz_{45}\left(\frac{x}{z_{35}}-\frac{\bar{x}}{z_{25}}\right)-t\bar{z}_{45}\left(\frac{x}{\bar{z}_{25}}-\frac{\bar{x}}{\bar{z}_{35}}\right)+tz_{45}\bar{z}_{45}\left(\frac{x}{z_{35}\bar{z}_{25}}-\frac{\bar{x}}{z_{25}\bar{z}_{35}}\right)\right)\end{gathered} (108)

Now from (78) and the explicit expressions of TL,T𝒪(1)T_{L},\ T_{\mathcal{O}(1)} and Tz¯T_{\bar{z}} given by (106) one can see that

TL(ω1,ω2,ω3,ωP)=ωP3𝒯L(ω~1,ω~2,ω~3)T𝒪(1)(ω1,ω2,ω3,ωP)=ωP3𝒯𝒪(1)(ω~1,ω~2,ω~3)Tz¯(ω1,ω2,ω3,ωP)=ωP3𝒯z¯(ω~1,ω~2,ω~3)\begin{split}T_{L}(\omega^{*}_{1},\omega^{*}_{2},\omega^{*}_{3},\omega_{P})&=\omega_{P}^{3}\,\mathcal{T}_{L}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})\\ T_{\mathcal{O}(1)}(\omega^{*}_{1},\omega^{*}_{2},\omega^{*}_{3},\omega_{P})&=\omega_{P}^{3}\,\mathcal{T}_{\mathcal{O}(1)}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})\\ T_{\bar{z}}(\omega^{*}_{1},\omega^{*}_{2},\omega^{*}_{3},\omega_{P})&=\omega_{P}^{3}\,\mathcal{T}_{\bar{z}}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})\end{split} (109)

where

𝒯L(ω~1,ω~2,ω~3)=𝒯LS(ω~1,ω~2,ω~3)+[ϵ1ϵ2ω~1ω~2(ω~3)4z13z23(z¯13z¯23)3z152z252+(13)+(23)]𝒯𝒪(1)(ω~1,ω~2,ω~3)=𝒯𝒪(1)S(ω~1,ω~2,ω~3)+[ϵ1ϵ2ϵ3ω~1ω~2ω~3z¯35(z¯15z¯25)3z35z13z23{(1t)5+t5}+ϵ1ϵ2(ω~3)4ω~1ω~2z¯12z352z¯356z12z152z252t2(1t)2+(13)+(23)]𝒯z¯(ω~1,ω~2,ω~3)=𝒯z¯S(ω~1,ω~2,ω~3)+[ϵ1ϵ2ω~1ω~2(ω~3)4z13z23(z¯13z¯23)3z152z252(1z15+1z25)+(13)+(23)][ϵ1ϵ2ϵ3ω~1ω~2ω~3(z¯15z¯25)3z13z23z35(1t)5+3ϵ1ϵ2ϵ3ω~1ω~2ω~3z¯35(z¯15z¯25)2(z¯15+z¯25)z13z23z35t5+ϵ1ϵ2(ω~3)4ω~1ω~2z¯12z352z¯355z12z152z252t2(1t)2+(13)+(23)]\begin{split}\mathcal{T}_{L}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})&=\mathcal{T}_{L}^{\textnormal{S}}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})+\left[\epsilon_{1}\epsilon_{2}\,\tilde{\omega}^{*}_{1}\tilde{\omega}^{*}_{2}(\tilde{\omega}^{*}_{3})^{4}\frac{z_{13}z_{23}\left(\bar{z}_{13}\bar{z}_{23}\right)^{3}}{z_{15}^{2}z_{25}^{2}}+(1\leftrightarrow 3)+(2\leftrightarrow 3)\right]\\ \mathcal{T}_{\mathcal{O}(1)}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})&=\mathcal{T}^{\textnormal{S}}_{\mathcal{O}(1)}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})+\left[\epsilon_{1}\epsilon_{2}\epsilon_{3}\frac{\tilde{\omega}^{*}_{1}\tilde{\omega}^{*}_{2}}{\tilde{\omega}^{*}_{3}}\frac{\bar{z}_{35}(\bar{z}_{15}\bar{z}_{25})^{3}}{z_{35}z_{13}z_{23}}\{(1-t)^{5}+t^{5}\}\right.\\ &\left.\hskip 85.35826pt+\epsilon_{1}\epsilon_{2}\frac{(\tilde{\omega}^{*}_{3})^{4}}{\tilde{\omega}^{*}_{1}\tilde{\omega}^{*}_{2}}\frac{\bar{z}_{12}z_{35}^{2}\bar{z}_{35}^{6}}{z_{12}z_{15}^{2}z_{25}^{2}}t^{2}(1-t)^{2}+(1\leftrightarrow 3)+(2\leftrightarrow 3)\right]\\ \mathcal{T}_{\bar{z}}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})&=\mathcal{T}^{\textnormal{S}}_{\bar{z}}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})+\left[\epsilon_{1}\epsilon_{2}\,\tilde{\omega}^{*}_{1}\tilde{\omega}^{*}_{2}(\tilde{\omega}^{*}_{3})^{4}\frac{z_{13}z_{23}\left(\bar{z}_{13}\bar{z}_{23}\right)^{3}}{z_{15}^{2}z_{25}^{2}}\left(\frac{1}{z_{15}}+\frac{1}{z_{25}}\right)+(1\leftrightarrow 3)+(2\leftrightarrow 3)\right]\\ &-\left[\epsilon_{1}\epsilon_{2}\epsilon_{3}\frac{\tilde{\omega}^{*}_{1}\tilde{\omega}^{*}_{2}}{\tilde{\omega}^{*}_{3}}\frac{(\bar{z}_{15}\bar{z}_{25})^{3}}{z_{13}z_{23}z_{35}}(1-t)^{5}+3\epsilon_{1}\epsilon_{2}\epsilon_{3}\frac{\tilde{\omega}^{*}_{1}\tilde{\omega}^{*}_{2}}{\tilde{\omega}^{*}_{3}}\frac{\bar{z}_{35}(\bar{z}_{15}\bar{z}_{25})^{2}(\bar{z}_{15}+\bar{z}_{25})}{z_{13}z_{23}z_{35}}t^{5}\right.\\ &\left.\hskip 113.81102pt+\ \epsilon_{1}\epsilon_{2}\frac{(\tilde{\omega}^{*}_{3})^{4}}{\tilde{\omega}^{*}_{1}\tilde{\omega}^{*}_{2}}\frac{\bar{z}_{12}z_{35}^{2}\bar{z}_{35}^{5}}{z_{12}z_{15}^{2}z_{25}^{2}}t^{2}(1-t)^{2}+(1\leftrightarrow 3)+(2\leftrightarrow 3)\right]\end{split} (110)

and 𝒯LS(ω~1,ω~2,ω~3),𝒯𝒪(1)S(ω~1,ω~2,ω~3)\mathcal{T}_{L}^{\textnormal{S}}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3}),\mathcal{T}^{\textnormal{S}}_{\mathcal{O}(1)}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3}) and 𝒯z¯S(ω~1,ω~2,ω~3)\mathcal{T}^{\textnormal{S}}_{\bar{z}}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3}) are given by (102), (103) and (104) respectively with {ω1,ω2,ω3}\{\omega_{1},\omega_{2},\omega_{3}\} replaced by {ω~1,ω~2,ω~3}\{\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3}\}. Now we can perform the ωP\omega_{P} integral in (108) and obtain:

B~5=25Γ(Δ)01𝑑ttΔ42(1t)Δ52i=13(ω~i)Δi1[i(i=13ϵiω~iui5+tu45)]Δ×(z¯45z45𝒯L(ω~1,ω~2,ω~3)+𝒯𝒪(1)(ω~1,ω~2,ω~3)+z¯45𝒯z¯(ω~1,ω~2,ω~3))×δ(xx¯tz45(xz35x¯z25)tz¯45(xz¯25x¯z¯35)+tz45z¯45(xz35z¯25x¯z25z¯35))\begin{gathered}\widetilde{B}_{5}=-2^{5}\Gamma(\Delta)\int_{0}^{1}dt\,t^{\Delta_{4}-2}(1-t)^{\Delta_{5}-2}\frac{\prod_{i=1}^{3}(\tilde{\omega}^{*}_{i})^{\Delta_{i}-1}}{\left[i\left(\sum_{i=1}^{3}\epsilon_{i}\tilde{\omega}^{*}_{i}u_{i5}+t\,u_{45}\right)\right]^{\Delta}}\\ \times\left(\frac{\bar{z}_{45}}{z_{45}}\mathcal{T}_{L}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})+\mathcal{T}_{\mathcal{O}(1)}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})+\bar{z}_{45}\mathcal{T}_{\bar{z}}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})\right)\\ \times\delta\left(x-\bar{x}-tz_{45}\left(\frac{x}{z_{35}}-\frac{\bar{x}}{z_{25}}\right)-t\bar{z}_{45}\left(\frac{x}{\bar{z}_{25}}-\frac{\bar{x}}{\bar{z}_{35}}\right)+tz_{45}\bar{z}_{45}\left(\frac{x}{z_{35}\bar{z}_{25}}-\frac{\bar{x}}{z_{25}\bar{z}_{35}}\right)\right)\end{gathered} (111)

where Δ=i=15Δi\Delta=\sum_{i=1}^{5}\Delta_{i}. We now expand the above equation around z45=z¯45=u45=0z_{45}=\bar{z}_{45}=u_{45}=0.

E.1 Evaluating the Leading Order Contribution

It is clear from (111) that the leading order term goes as z¯45z45\sim\frac{\bar{z}_{45}}{z_{45}} and the contribution to the leading order can come only from the term containing 𝒯L(ω~1,ω~2,ω~3)\mathcal{T}_{L}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3}). At leading order we have ω~i=ϵiσi,1\tilde{\omega}^{*}_{i}=\epsilon_{i}\sigma_{i,1}. Thus, the leading order term of B~5\widetilde{B}_{5} is given by:

B~5|𝒪(z¯45z45)=25z¯45z45Γ(Δ)(i𝒟)Δi=13(ϵiσi,1)Δi101𝑑ttΔ42(1t)Δ52𝒯L(ϵ1σ1,1,ϵ2σ2,1,ϵ3σ3,1)δ(xx¯)\begin{gathered}\widetilde{B}_{5}|_{\mathcal{O}(\frac{\bar{z}_{45}}{z_{45}})}=-2^{5}\frac{\bar{z}_{45}}{z_{45}}\frac{\Gamma(\Delta)}{\left(i\mathcal{D}\right)^{\Delta}}\prod_{i=1}^{3}(\epsilon_{i}\sigma_{i,1})^{\Delta_{i}-1}\int_{0}^{1}dt\,t^{\Delta_{4}-2}(1-t)^{\Delta_{5}-2}\mathcal{T}_{L}(\epsilon_{1}\sigma_{1,1},\epsilon_{2}\sigma_{2,1},\epsilon_{3}\sigma_{3,1})\delta\left(x-\bar{x}\right)\end{gathered} (112)

where 𝒟=(i=13σi,1ui5)\mathcal{D}=\left(\sum_{i=1}^{3}\sigma_{i,1}u_{i5}\right). From (102) and the first equation of (106) we have

𝒯L(ϵ1σ1,1,ϵ2σ2,1,ϵ3σ3,1)=[z12z25z¯123z¯253z132z352σ1,1σ2,14σ3,12+z12z15z¯123z¯153z232z352σ1,14σ2,1σ3,12+z13z15z¯133z¯153z232z252σ1,14σ3,1σ2,12]+[σ1,1σ2,1σ3,14z13z23(z¯13z¯23)3z152z252+(13)+(23)]\begin{gathered}\mathcal{T}_{L}(\epsilon_{1}\sigma_{1,1},\epsilon_{2}\sigma_{2,1},\epsilon_{3}\sigma_{3,1})=\left[\frac{z_{12}z_{25}\bar{z}_{12}^{3}\bar{z}_{25}^{3}}{z_{13}^{2}z_{35}^{2}}\frac{\sigma_{1,1}\sigma_{2,1}^{4}}{\sigma_{3,1}^{2}}+\frac{z_{12}z_{15}\bar{z}_{12}^{3}\bar{z}_{15}^{3}}{z_{23}^{2}z_{35}^{2}}\frac{\sigma_{1,1}^{4}\sigma_{2,1}}{\sigma_{3,1}^{2}}+\frac{z_{13}z_{15}\bar{z}_{13}^{3}\bar{z}_{15}^{3}}{z_{23}^{2}z_{25}^{2}}\frac{\sigma_{1,1}^{4}\sigma_{3,1}}{\sigma_{2,1}^{2}}\right]\\ +\left[\sigma_{1,1}\sigma_{2,1}\sigma_{3,1}^{4}\frac{z_{13}z_{23}\left(\bar{z}_{13}\bar{z}_{23}\right)^{3}}{z_{15}^{2}z_{25}^{2}}+(1\leftrightarrow 3)+(2\leftrightarrow 3)\right]\end{gathered} (113)

Now, using (69)-(72), one can show that

z12z25z¯123z¯253z132z352σ1,1σ2,14σ3,12=z12z13(z¯12z¯13)3z252z352σ1,14σ2,1σ3,1z12z15z¯123z¯153z232z352σ1,14σ2,1σ3,12=z12z23(z¯12z¯23)3z152z352σ1,1σ2,14σ3,1z13z15z¯133z¯153z232z252σ1,14σ3,1σ2,12=z13z23(z¯13z¯23)3z152z252σ1,1σ2,1σ3,14\begin{split}\frac{z_{12}z_{25}\bar{z}_{12}^{3}\bar{z}_{25}^{3}}{z_{13}^{2}z_{35}^{2}}\frac{\sigma_{1,1}\sigma_{2,1}^{4}}{\sigma_{3,1}^{2}}&=\frac{z_{12}z_{13}(\bar{z}_{12}\bar{z}_{13})^{3}}{z_{25}^{2}z_{35}^{2}}\sigma_{1,1}^{4}\sigma_{2,1}\sigma_{3,1}\\ \frac{z_{12}z_{15}\bar{z}_{12}^{3}\bar{z}_{15}^{3}}{z_{23}^{2}z_{35}^{2}}\frac{\sigma_{1,1}^{4}\sigma_{2,1}}{\sigma_{3,1}^{2}}&=\frac{z_{12}z_{23}(\bar{z}_{12}\bar{z}_{23})^{3}}{z_{15}^{2}z_{35}^{2}}\sigma_{1,1}\sigma_{2,1}^{4}\sigma_{3,1}\\ \frac{z_{13}z_{15}\bar{z}_{13}^{3}\bar{z}_{15}^{3}}{z_{23}^{2}z_{25}^{2}}\frac{\sigma_{1,1}^{4}\sigma_{3,1}}{\sigma_{2,1}^{2}}&=\frac{z_{13}z_{23}(\bar{z}_{13}\bar{z}_{23})^{3}}{z_{15}^{2}z_{25}^{2}}\sigma_{1,1}\sigma_{2,1}\sigma_{3,1}^{4}\end{split} (114)

Using the above relations, we can simplify (113) to get

𝒯L(ϵ1σ1,1,ϵ2σ2,1,ϵ3σ3,1)\displaystyle\mathcal{T}_{L}(\epsilon_{1}\sigma_{1,1},\epsilon_{2}\sigma_{2,1},\epsilon_{3}\sigma_{3,1}) =2[σ1,1σ2,1σ3,14z13z23(z¯13z¯23)3z152z252+(13)+(23)]\displaystyle=2\left[\sigma_{1,1}\sigma_{2,1}\sigma_{3,1}^{4}\frac{z_{13}z_{23}\left(\bar{z}_{13}\bar{z}_{23}\right)^{3}}{z_{15}^{2}z_{25}^{2}}+(1\leftrightarrow 3)+(2\leftrightarrow 3)\right]
=2[𝒩4+𝒩4(13)+𝒩4(23)]\displaystyle=2\left[\mathcal{N}_{4}+\mathcal{N}_{4}(1\leftrightarrow 3)+\mathcal{N}_{4}(2\leftrightarrow 3)\right] (115)

where the second equality follows from (22). Since this is independent of tt, we can easily carry out the tt-integral in (112) to get

B~5|𝒪(z¯45z45)\displaystyle\tilde{B}_{5}|_{\mathcal{O}(\frac{\bar{z}_{45}}{z_{45}})} =26z¯45z45B(Δ41,Δ51)Γ(Δ)(i𝒟)Δδ(xx¯)\displaystyle=-2^{6}\frac{\bar{z}_{45}}{z_{45}}B(\Delta_{4}-1,\Delta_{5}-1)\frac{\Gamma(\Delta)}{\left(i\mathcal{D}\right)^{\Delta}}\delta(x-\bar{x})
×i=13(ϵiσi,1)Δi1[𝒩4+𝒩4(13)+𝒩4(23)]\displaystyle\times\prod_{i=1}^{3}(\epsilon_{i}\sigma_{i,1})^{\Delta_{i}-1}\left[\mathcal{N}_{4}+\mathcal{N}_{4}\left(1\leftrightarrow 3\right)+\mathcal{N}_{4}\left(2\leftrightarrow 3\right)\right] (116)

This precisely gives the equation (29).

E.2 Evaluating the 𝒪(1)\mathcal{O}(1) Contribution

From (111), we can see that the 𝒪(1)\mathcal{O}(1) contribution to the 5-point amplitude essentially comes only from the term containing 𝒯𝒪(1)(ω~1,ω~2,ω~3)\mathcal{T}_{\mathcal{O}(1)}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3}) when ω~i\tilde{\omega}^{*}_{i}’s take their leading order value given by ϵiσi,1\epsilon_{i}\sigma_{i,1}. Let us write the Mellin integral at order 1:

B~5|𝒪(1)=25Γ(Δ)(i𝒟)Δi=13(ϵiσi,1)Δi101𝑑ttΔ42(1t)Δ52𝒯𝒪(1)(ϵ1σ1,1,ϵ2σ2,1,ϵ3σ3,1)δ(xx¯)\begin{gathered}\widetilde{B}_{5}\big{|}_{\mathcal{O}(1)}=-2^{5}\frac{\Gamma(\Delta)}{\left(i\mathcal{D}\right)^{\Delta}}\prod_{i=1}^{3}(\epsilon_{i}\sigma_{i,1})^{\Delta_{i}-1}\int_{0}^{1}dt\,t^{\Delta_{4}-2}(1-t)^{\Delta_{5}-2}\mathcal{T}_{\mathcal{O}(1)}(\epsilon_{1}\sigma_{1,1},\epsilon_{2}\sigma_{2,1},\epsilon_{3}\sigma_{3,1})\delta\left(x-\bar{x}\right)\end{gathered} (117)

We will not attempt to take the explicit expressions of 𝒯𝒪(1)(ϵ1σ1,1,ϵ2σ2,1,ϵ3σ3,1)\mathcal{T}_{\mathcal{O}(1)}(\epsilon_{1}\sigma_{1,1},\epsilon_{2}\sigma_{2,1},\epsilon_{3}\sigma_{3,1}) and Mellin integrate it. Rather we will take a different approach which is more helpful for our purpose of the OPE factorization. Firstly, from the second equation of (106) we observe that 𝒯𝒪(1)(ϵ1σ1,1,ϵ2σ2,1,ϵ3σ3,1)\mathcal{T}_{\mathcal{O}(1)}(\epsilon_{1}\sigma_{1,1},\epsilon_{2}\sigma_{2,1},\epsilon_{3}\sigma_{3,1}) is a polynomial in tt with the highest power being 44. We use this fact and write 𝒯𝒪(1)(ϵ1σ1,1,ϵ2σ2,1,ϵ3σ3,1)\mathcal{T}_{\mathcal{O}(1)}(\epsilon_{1}\sigma_{1,1},\epsilon_{2}\sigma_{2,1},\epsilon_{3}\sigma_{3,1}) as

𝒯𝒪(1)(ϵ1σ1,1,ϵ2σ2,1,ϵ3σ3,1)=k=04tkk(1)({ϵi,zi,z¯i})\mathcal{T}_{\mathcal{O}(1)}(\epsilon_{1}\sigma_{1,1},\epsilon_{2}\sigma_{2,1},\epsilon_{3}\sigma_{3,1})=\sum_{k=0}^{4}t^{k}\mathcal{F}^{(1)}_{k}(\{\epsilon_{i},z_{i},\bar{z}_{i}\}) (118)

The explicit expressions for the functions k(1)({ϵi,zi,z¯i})\mathcal{F}^{(1)}_{k}(\{\epsilon_{i},z_{i},\bar{z}_{i}\}) can be read out from the second equation of (106). However, they are not relevant for our discussions and hence we will not write them explicitly. Using (118), we can easily evaluate the integral (117) to get,

B~5|𝒪(1)=25Γ(Δ)(i𝒟)Δi=13(ϵiσi,1)Δi1k=04B(Δ4+k1,Δ51)k(1)({ϵi,zi,z¯i})δ(xx¯)\begin{gathered}\widetilde{B}_{5}\big{|}_{\mathcal{O}(1)}=-2^{5}\frac{\Gamma(\Delta)}{\left(i\mathcal{D}\right)^{\Delta}}\prod_{i=1}^{3}(\epsilon_{i}\sigma_{i,1})^{\Delta_{i}-1}\sum_{k=0}^{4}B(\Delta_{4}+k-1,\Delta_{5}-1)\mathcal{F}^{(1)}_{k}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})\delta\left(x-\bar{x}\right)\end{gathered} (119)

This is the expression we have used in section (5.5.2).

E.3 Evaluating the Order 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}) Contribution

We apply the same strategy as the previous section here. However, we have to be careful now as there will be contributions at 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}) from the lower order terms. Like 𝒪(1)\mathcal{O}(1) terms, here also we are only concerned about the tt-dependence. Before proceeding further let us first write down the expansion of different components in (111) around z45=z¯45=u45=0z_{45}=\bar{z}_{45}=u_{45}=0. Keeping terms only upto 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}) we have

ω~i=ϵi(σi,1+tz45σi,2+tz¯45σi,3)𝒯L(ω~1,ω~2,ω~3)=𝒯L(ϵ1σ1,1,ϵ2σ2,1,ϵ3σ3,1)+z45𝒯L(z)({ϵi,zi,z¯i})+z¯45𝒯L(z¯)({ϵi,zi,z¯i})𝒯𝒪(1)(ω~1,ω~2,ω~3)=𝒯𝒪(1)(ϵ1σ1,1,ϵσ2,1,ϵ3σ3,1)+z45𝒯𝒪(1)(z)({ϵi,zi,z¯i})+z¯45𝒯𝒪(1)(z¯)({ϵi,zi,z¯i})𝒯z¯(ω~1,ω~2,ω~3)=𝒯z¯(ϵ1σ1,1,ϵ2σ2,1,ϵ3σ3,1)+z45𝒯z¯(z)({ϵi,zi,z¯i})+z¯45𝒯z¯(z¯)({ϵi,zi,z¯i})\begin{split}\tilde{\omega}_{i}^{*}&=\epsilon_{i}\left(\sigma_{i,1}+tz_{45}\sigma_{i,2}+t\bar{z}_{45}\sigma_{i,3}\right)\\ \mathcal{T}_{L}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})&=\mathcal{T}_{L}(\epsilon_{1}\sigma_{1,1},\epsilon_{2}\sigma_{2,1},\epsilon_{3}\sigma_{3,1})+z_{45}\mathcal{T}_{L}^{(z)}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})+\bar{z}_{45}\mathcal{T}_{L}^{(\bar{z})}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})\\ \mathcal{T}_{\mathcal{O}(1)}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})&=\mathcal{T}_{\mathcal{O}(1)}(\epsilon_{1}\sigma_{1,1},\epsilon\sigma_{2,1},\epsilon_{3}\sigma_{3,1})+z_{45}\mathcal{T}_{\mathcal{O}(1)}^{(z)}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})+\bar{z}_{45}\mathcal{T}_{\mathcal{O}(1)}^{(\bar{z})}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})\\ \mathcal{T}_{\bar{z}}(\tilde{\omega}^{*}_{1},\tilde{\omega}^{*}_{2},\tilde{\omega}^{*}_{3})&=\mathcal{T}_{\bar{z}}(\epsilon_{1}\sigma_{1,1},\epsilon_{2}\sigma_{2,1},\epsilon_{3}\sigma_{3,1})+z_{45}\mathcal{T}_{\bar{z}}^{(z)}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})+\bar{z}_{45}\mathcal{T}_{\bar{z}}^{(\bar{z})}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})\end{split} (120)

The explicit expressions for different 𝒯\mathcal{T}’s are not required for our discussions. For notational convenience, we will not write the arguments of different 𝒯\mathcal{T}’s and replace 𝒯L,𝒪(1),z¯(ϵ1σ1,1,ϵ2σ2,1,ϵ3σ3,1)\mathcal{T}_{L,\mathcal{O}(1),\bar{z}}(\epsilon_{1}\sigma_{1,1},\epsilon_{2}\sigma_{2,1},\epsilon_{3}\sigma_{3,1}) by 𝒯L,𝒪(1),z¯(0)\mathcal{T}^{(0)}_{L,\mathcal{O}(1),\bar{z}}. Let us first write down all possible contributions to B~5\widetilde{B}_{5} at 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}). From (111) we have,

B~5|𝒪(z¯45)=25Γ(Δ)(i𝒟)Δi=13(ϵiσi,1)Δi101dttΔ42(1t)Δ52[(𝒯L(z)+𝒯𝒪(1)(z¯)+𝒯z¯(0))δ(xx¯)t{(xz35x¯z25)𝒯L(0)+𝒯𝒪(1)(0)(xz¯25x¯z¯35)}δ(xx¯)+t{(Δ11)σ1,2σ1,1+(Δ21)σ2,2σ2,1+(Δ31)σ3,2σ3,1Δi=13σi,2ui5𝒟}𝒯L(0)δ(xx¯)+t{(Δ11)σ1,3σ1,1+(Δ21)σ2,3σ2,1+(Δ31)σ3,3σ3,1Δi=13σi,3ui5𝒟}𝒯𝒪(1)(0)δ(xx¯)]\begin{gathered}\widetilde{B}_{5}\big{|}_{\mathcal{O}(\bar{z}_{45})}=-2^{5}\frac{\Gamma(\Delta)}{\left(i\mathcal{D}\right)^{\Delta}}\prod_{i=1}^{3}(\epsilon_{i}\sigma_{i,1})^{\Delta_{i}-1}\int_{0}^{1}dt\,t^{\Delta_{4}-2}(1-t)^{\Delta_{5}-2}\left[\left(\mathcal{T}^{(z)}_{L}+\mathcal{T}^{(\bar{z})}_{\mathcal{O}(1)}+\mathcal{T}^{(0)}_{\bar{z}}\right)\delta\left(x-\bar{x}\right)\right.\\ \left.-t\left\{\left(\frac{x}{z_{35}}-\frac{\bar{x}}{z_{25}}\right)\mathcal{T}^{(0)}_{L}+\mathcal{T}^{(0)}_{\mathcal{O}(1)}\left(\frac{x}{\bar{z}_{25}}-\frac{\bar{x}}{\bar{z}_{35}}\right)\right\}\delta^{\prime}\left(x-\bar{x}\right)\right.\\ \left.+t\left\{(\Delta_{1}-1)\frac{\sigma_{1,2}}{\sigma_{1,1}}+(\Delta_{2}-1)\frac{\sigma_{2,2}}{\sigma_{2,1}}+(\Delta_{3}-1)\frac{\sigma_{3,2}}{\sigma_{3,1}}-\Delta\frac{\sum_{i=1}^{3}\sigma_{i,2}u_{i5}}{\mathcal{D}}\right\}\mathcal{T}^{(0)}_{L}\delta\left(x-\bar{x}\right)\right.\\ \left.+t\left\{(\Delta_{1}-1)\frac{\sigma_{1,3}}{\sigma_{1,1}}+(\Delta_{2}-1)\frac{\sigma_{2,3}}{\sigma_{2,1}}+(\Delta_{3}-1)\frac{\sigma_{3,3}}{\sigma_{3,1}}-\Delta\frac{\sum_{i=1}^{3}\sigma_{i,3}u_{i5}}{\mathcal{D}}\right\}\mathcal{T}^{(0)}_{\mathcal{O}(1)}\delta\left(x-\bar{x}\right)\right]\end{gathered} (121)

Now, by expanding the 𝒯\mathcal{T}’s in (106) around z45=z¯45=0z_{45}=\bar{z}_{45}=0 and keeping terms only upto 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}), one can check that all the terms at different orders in the expansion are polynomial of tt. The highest degree of polynomial is 55 and appears in 𝒯z¯(0)\mathcal{T}^{(0)}_{\bar{z}} only. All the other 𝒯\mathcal{T}’s have less power of tt. Thus we conclude that the terms in the parenthesis [][\cdots] in (121) can be written as a polynomial of tt in the following way

[(𝒯L(z)+𝒯𝒪(1)z¯+𝒯z¯(0))δ(xx¯)t{(xz35x¯z25)𝒯L(0)+𝒯𝒪(1)(0)(xz¯25x¯z¯35)}δ(xx¯)+t{(Δ11)σ1,2σ1,1+(Δ21)σ2,2σ2,1+(Δ31)σ3,2σ3,1Δi=13σi,2ui5𝒟}𝒯L(0)δ(xx¯)+t{(Δ11)σ1,3σ1,1+(Δ21)σ2,3σ2,1+(Δ31)σ3,3σ3,1Δi=13σi,3ui5𝒟}𝒯𝒪(1)(0)δ(xx¯)]=k=15tkk(z¯)({ϵi,zi,z¯i})\begin{gathered}\left[\left(\mathcal{T}^{(z)}_{L}+\mathcal{T}^{\bar{z}}_{\mathcal{O}(1)}+\mathcal{T}^{(0)}_{\bar{z}}\right)\delta\left(x-\bar{x}\right)-t\left\{\left(\frac{x}{z_{35}}-\frac{\bar{x}}{z_{25}}\right)\mathcal{T}^{(0)}_{L}+\mathcal{T}^{(0)}_{\mathcal{O}(1)}\left(\frac{x}{\bar{z}_{25}}-\frac{\bar{x}}{\bar{z}_{35}}\right)\right\}\delta^{\prime}\left(x-\bar{x}\right)\right.\\ \left.+t\left\{(\Delta_{1}-1)\frac{\sigma_{1,2}}{\sigma_{1,1}}+(\Delta_{2}-1)\frac{\sigma_{2,2}}{\sigma_{2,1}}+(\Delta_{3}-1)\frac{\sigma_{3,2}}{\sigma_{3,1}}-\Delta\frac{\sum_{i=1}^{3}\sigma_{i,2}u_{i5}}{\mathcal{D}}\right\}\mathcal{T}^{(0)}_{L}\delta\left(x-\bar{x}\right)\right.\\ \left.+t\left\{(\Delta_{1}-1)\frac{\sigma_{1,3}}{\sigma_{1,1}}+(\Delta_{2}-1)\frac{\sigma_{2,3}}{\sigma_{2,1}}+(\Delta_{3}-1)\frac{\sigma_{3,3}}{\sigma_{3,1}}-\Delta\frac{\sum_{i=1}^{3}\sigma_{i,3}u_{i5}}{\mathcal{D}}\right\}\mathcal{T}^{(0)}_{\mathcal{O}(1)}\delta\left(x-\bar{x}\right)\right]\\ =\sum_{k=1}^{5}t^{k}\mathcal{F}^{(\bar{z})}_{k}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})\end{gathered} (122)

where once again the explicit expressions of k(z¯)({ϵi,zi,z¯i})\mathcal{F}^{(\bar{z})}_{k}(\{\epsilon_{i},z_{i},\bar{z}_{i}\}) are not relevant for our discussions. Substituting (122) in (121) and performing the tt-integral, we finally get:

B~5|𝒪(z¯45)=25Γ(Δ)(i𝒟)Δi=13(ϵiσi,1)Δi1k=15B(Δ4+k1,Δ51)k(z¯)({ϵi,zi,z¯i})\begin{gathered}\widetilde{B}_{5}\big{|}_{\mathcal{O}(\bar{z}_{45})}=-2^{5}\frac{\Gamma(\Delta)}{\left(i\mathcal{D}\right)^{\Delta}}\prod_{i=1}^{3}(\epsilon_{i}\sigma_{i,1})^{\Delta_{i}-1}\sum_{k=1}^{5}B(\Delta_{4}+k-1,\Delta_{5}-1)\mathcal{F}^{(\bar{z})}_{k}(\{\epsilon_{i},z_{i},\bar{z}_{i}\})\end{gathered} (123)

This is the form for the 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}) 5-point amplitude which we use in the main text of this paper.

Appendix F ww-Algebra Primaries

Let’s start with the universal term in the OPE between two positive helicity hard gravitons given by,

GΔ1+(z,z¯)GΔ+(0,0)=1zn=0B(Δ11+n,Δ1)z¯n+1n!¯nGΔ+Δ1+(0,0)G^{+}_{\Delta_{1}}(z,\bar{z})G^{+}_{\Delta}(0,0)=-\frac{1}{z}\sum_{n=0}^{\infty}B(\Delta_{1}-1+n,\Delta-1)\frac{\bar{z}^{n+1}}{n!}\bar{\partial}^{n}G^{+}_{\Delta+\Delta_{1}}(0,0) (124)

We now take the conformal soft limit, first by setting Δ1=k+ε\Delta_{1}=k+\varepsilon and then taking ε0\varepsilon\to 0 to get,

limε0εGk+ε+(z,z¯)GΔ+(0,0)=1zn=0[limε0εB(k1+n+ε,Δ1)]z¯n+1n!¯nGΔ+k+(0,0)Hk(z,z¯)GΔ+(0,0)=1zn=0[limε0εB(k1+n+ε,Δ1)]z¯n+1n!¯nGΔ+k+(0,0)\begin{gathered}\lim_{\varepsilon\to 0}\varepsilon G^{+}_{k+\varepsilon}(z,\bar{z})G^{+}_{\Delta}(0,0)=-\frac{1}{z}\sum_{n=0}^{\infty}\left[\lim_{\varepsilon\to 0}\varepsilon B(k-1+n+\varepsilon,\Delta-1)\right]\frac{\bar{z}^{n+1}}{n!}\bar{\partial}^{n}G^{+}_{\Delta+k}(0,0)\\ \Rightarrow H^{k}(z,\bar{z})G^{+}_{\Delta}(0,0)=-\frac{1}{z}\sum_{n=0}^{\infty}\left[\lim_{\varepsilon\to 0}\varepsilon B(k-1+n+\varepsilon,\Delta-1)\right]\frac{\bar{z}^{n+1}}{n!}\bar{\partial}^{n}G^{+}_{\Delta+k}(0,0)\\ \end{gathered} (125)

Next, we mode expand the soft graviton operator Hk(z,z¯)H^{k}(z,\bar{z}) on the LHS of the above equation according to (6) and get,

m=k222k2Hmk(z)z¯m+k22GΔ+(0,0)=1zn=0[limε0εB(k1+n+ε,Δ1)]z¯n+1n!¯nGΔ+k+(0,0)\begin{gathered}\sum_{m=\frac{k-2}{2}}^{\frac{2-k}{2}}\frac{H^{k}_{m}(z)}{\bar{z}^{m+\frac{k-2}{2}}}G^{+}_{\Delta}(0,0)=-\frac{1}{z}\sum_{n=0}^{\infty}\left[\lim_{\varepsilon\to 0}\varepsilon B(k-1+n+\varepsilon,\Delta-1)\right]\frac{\bar{z}^{n+1}}{n!}\bar{\partial}^{n}G^{+}_{\Delta+k}(0,0)\end{gathered} (126)

By comparing the terms at order z¯n+1\bar{z}^{n+1} on both the sides of the above equation for 0n1k0\leq n\leq 1-k, we get,

H2k2n1k(z)GΔ+(0,0)=1z[limε0εB(k1+n+ε,Δ1)]1n!¯nGΔ+k+(0,0)\begin{gathered}H^{k}_{\frac{2-k}{2}-n-1}(z)G^{+}_{\Delta}(0,0)=-\frac{1}{z}\left[\lim_{\varepsilon\to 0}\varepsilon B(k-1+n+\varepsilon,\Delta-1)\right]\frac{1}{n!}\bar{\partial}^{n}G^{+}_{\Delta+k}(0,0)\end{gathered} (127)

Now we use the holomorphic mode expansion (7) of the currents H2k2n1k(z)H^{k}_{\frac{2-k}{2}-n-1}(z) in the above equation and obtain,

αzαk+22Hα,2k2n1kGΔ+(0,0)=1z[limε0εB(k1+n+ε,Δ1)]1n!¯nGΔ+k+(0,0)\begin{gathered}\sum_{\alpha}z^{-\alpha-\frac{k+2}{2}}H^{k}_{\alpha,\frac{2-k}{2}-n-1}G^{+}_{\Delta}(0,0)=-\frac{1}{z}\left[\lim_{\varepsilon\to 0}\varepsilon B(k-1+n+\varepsilon,\Delta-1)\right]\frac{1}{n!}\bar{\partial}^{n}G^{+}_{\Delta+k}(0,0)\end{gathered} (128)

We can see from the above equation, that there is only a simple pole at z=0z=0 on the RHS. Thus, the holomorphic singularity structure of the above equation (128) tells us that the following conditions should hold,

Hk+22+m,2k2n1kGΔ+(0,0)=[limε0εB(k1+n+ε,Δ1)]1n!¯nGΔ+k+(0,0)\begin{gathered}H^{k}_{-\frac{k+2}{2}+m,\frac{2-k}{2}-n-1}G^{+}_{\Delta}(0,0)=-\left[\lim_{\varepsilon\to 0}\varepsilon B(k-1+n+\varepsilon,\Delta-1)\right]\frac{1}{n!}\bar{\partial}^{n}G^{+}_{\Delta+k}(0,0)\end{gathered} (129)

for m=1m=1 and

Hk+22+m,2k2n1kGΔ+(0,0)=0\begin{gathered}H^{k}_{-\frac{k+2}{2}+m,\frac{2-k}{2}-n-1}G^{+}_{\Delta}(0,0)=0\end{gathered} (130)

for m>1m>1 and 0n1k0\leq n\leq 1-k with k=1,0,1,k=1,0,-1,\cdots.
Moreover, from (126), one can see that there is no term on the RHS that goes like z¯0\bar{z}^{0}. Thus on the LHS, the coefficients of the z¯0\bar{z}^{0} term should also vanish which gives the following condition,

H2k2k(z)GΔ+(0,0)=0\begin{gathered}H^{k}_{\frac{2-k}{2}}(z)G^{+}_{\Delta}(0,0)=0\end{gathered} (131)

This equation implies

Hk+22+m,2k2kGΔ+(0,0)=0,m1H^{k}_{-\frac{k+2}{2}+m,\frac{2-k}{2}}G^{+}_{\Delta}(0,0)=0,\ m\geq 1 (132)

Appendix G Transformation of the MHV Null States under sl2(R)V{sl_{2}(R)}_{V} and sl2(R)¯\overline{sl_{2}(R)} Algebras

In this section of the Appendix, we list the transformation properties of all the MHV null states appearing at different orders of the OPE between two positive helicity outgoing gravitons under sl2(R)V{sl_{2}(R)}_{V} and sl2(R)¯\overline{sl_{2}(R)} algebras. Let us first write down their explicit expressions in terms of the descendants of the ww-algebra. We first write down the actions of the H12,121H^{-1}_{\frac{1}{2},\frac{1}{2}} on the null states Φk(Δ)\Phi_{k}(\Delta) given by (136) and Ψk(Δ)\Psi_{k}(\Delta) given by (137). They are given by

H12,121Φk(Δ)=12(k+1)(k+2)Φk+1(Δ1)12(Δ+k3)(Δ+k4)Φk(Δ1)+(1)kk!Γ(Δ+k2)Γ(Δ2)Φ1(Δ1)H12,121Ψk(Δ)=12(k+2)(k1)Ψk+1(Δ1)12(Δ+k3)(Δ+k4)Ψk(Δ1)(1)kk!Γ(Δ+k2)Γ(Δ2)Ψ1(Δ1)H12,121Ωk(Δ)=12(k+1)(k+2)Ωk(Δ1)12(Δ4)(Δ5)Ωk(Δ1)12(k+1)(k+2)Ωk+1(Δ1)H12,121Πk(Δ)=12k(k+1)Πk(Δ1)12(Δ4)(Δ5)Πk(Δ1)12(k1)(k+2)Πk+1(Δ1)\begin{split}H^{-1}_{\frac{1}{2},\frac{1}{2}}\Phi_{k}(\Delta)&=-\frac{1}{2}(k+1)(k+2)\Phi_{k+1}(\Delta-1)-\frac{1}{2}(\Delta+k-3)(\Delta+k-4)\Phi_{k}(\Delta-1)\\ &+\frac{(-1)^{k}}{k!}\frac{\Gamma(\Delta+k-2)}{\Gamma(\Delta-2)}\Phi_{1}(\Delta-1)\\ H^{-1}_{\frac{1}{2},\frac{1}{2}}\Psi_{k}(\Delta)&=-\frac{1}{2}(k+2)(k-1)\Psi_{k+1}(\Delta-1)-\frac{1}{2}(\Delta+k-3)(\Delta+k-4)\Psi_{k}(\Delta-1)\\ &-\frac{(-1)^{k}}{k!}\frac{\Gamma(\Delta+k-2)}{\Gamma(\Delta-2)}\Psi_{1}(\Delta-1)\\ H^{-1}_{\frac{1}{2},\frac{1}{2}}\Omega_{k}(\Delta)&=\frac{1}{2}(k+1)(k+2)\Omega_{k}(\Delta-1)-\frac{1}{2}(\Delta-4)(\Delta-5)\Omega_{k}(\Delta-1)\\ &-\frac{1}{2}(k+1)(k+2)\Omega_{k+1}(\Delta-1)\\ H^{-1}_{\frac{1}{2},\frac{1}{2}}\Pi_{k}(\Delta)&=\frac{1}{2}k(k+1)\Pi_{k}(\Delta-1)-\frac{1}{2}(\Delta-4)(\Delta-5)\Pi_{k}(\Delta-1)\\ &-\frac{1}{2}(k-1)(k+2)\Pi_{k+1}(\Delta-1)\end{split} (133)

The actions of H12,121H^{1}_{-\frac{1}{2},-\frac{1}{2}} on the MHV null states are given by,

H12,121Φk(Δ)=Φk(Δ+1)Φk1(Δ+1)H12,121Ψk(Δ)=Ψk(Δ+1)Ψk1(Δ+1)H12,121Ωk(Δ)=Ωk(Δ+1)H12,121Πk(Δ)=Πk+1(Δ+1)\begin{split}H^{1}_{-\frac{1}{2},-\frac{1}{2}}\Phi_{k}(\Delta)&=-\Phi_{k}(\Delta+1)-\Phi_{k-1}(\Delta+1)\\ H^{1}_{-\frac{1}{2},-\frac{1}{2}}\Psi_{k}(\Delta)&=-\Psi_{k}(\Delta+1)-\Psi_{k-1}(\Delta+1)\\ H^{1}_{-\frac{1}{2},-\frac{1}{2}}\Omega_{k}(\Delta)&=-\Omega_{k}(\Delta+1)\\ H^{1}_{-\frac{1}{2},-\frac{1}{2}}\Pi_{k}(\Delta)&=-\Pi_{k+1}(\Delta+1)\end{split} (134)

The actions of H0,10H^{0}_{0,1} on the MHV null states are given by,

H0,10Φk(Δ)=0H0,10Ψk(Δ)=(k+2)Φk+1(Δ1)2(1)kk!Γ(Δ+k2)Γ(Δ2)Φ1(Δ1)H0,10Ωk(Δ)=0H0,10Πk(Δ)=(Δ+k3)Ωk(Δ1)+(k+2)Ωk+1(Δ1)\begin{split}H^{0}_{0,1}\Phi_{k}(\Delta)&=0\\ H^{0}_{0,1}\Psi_{k}(\Delta)&=(k+2)\Phi_{k+1}(\Delta-1)-2\frac{(-1)^{k}}{k!}\frac{\Gamma(\Delta+k-2)}{\Gamma(\Delta-2)}\Phi_{1}(\Delta-1)\\ H^{0}_{0,1}\Omega_{k}(\Delta)&=0\\ H^{0}_{0,1}\Pi_{k}(\Delta)&=-(\Delta+k-3)\Omega_{k}(\Delta-1)+(k+2)\Omega_{k+1}(\Delta-1)\end{split} (135)

In deriving the above transformation properties, we have used the algebra (8) and the action of different operators on the primaries given in Appendix F.

Appendix H Review of General Structure of ww-Invariant OPE

It was shown in Banerjee:2023zip , that the OPE between two positive helicity outgoing graviton primaries of any ww-invariant theory can always be written in terms of the MHV OPE’s and its null states. The MHV null states that can appear at 𝒪(z0z¯0)\mathcal{O}({z^{0}\bar{z}^{0}}) and 𝒪(z0z¯)\mathcal{O}({z^{0}\bar{z}}) are given by Banerjee:2020zlg ; Banerjee:2021cly

Φk(Δ)=[Hk32,k+121k(H12,121)k(1)kk!Γ(Δ+k2)Γ(Δ2)H32,121]GΔ1+\Phi_{k}(\Delta)=\left[H^{1-k}_{\frac{k-3}{2},\frac{k+1}{2}}\left(-H^{1}_{-\frac{1}{2},-\frac{1}{2}}\right)^{k}-\frac{(-1)^{k}}{k!}\frac{\Gamma(\Delta+k-2)}{\Gamma(\Delta-2)}H^{1}_{-\frac{3}{2},\frac{1}{2}}\right]G^{+}_{\Delta-1} (136)

and

Ψk(Δ)=[Hk22,k2k(H12,121)k+1(1)kk!Γ(Δ+k2)Γ(Δ2)H1,00(H12,121)(1)kk(k+1)!Γ(Δ+k2)Γ(Δ3)H32,121]G+Δ2\begin{gathered}\Psi_{k}(\Delta)=\bigg{[}H^{-k}_{\frac{k-2}{2},\frac{k}{2}}\left(-H^{1}_{-\frac{1}{2},-\frac{1}{2}}\right)^{k+1}-\frac{(-1)^{k}}{k!}\frac{\Gamma(\Delta+k-2)}{\Gamma(\Delta-2)}H^{0}_{-1,0}\left(-H^{1}_{-\frac{1}{2},-\frac{1}{2}}\right)\\ -\frac{(-1)^{k}k}{(k+1)!}\frac{\Gamma(\Delta+k-2)}{\Gamma(\Delta-3)}H^{1}_{-\frac{3}{2},-\frac{1}{2}}\bigg{]}G^{+}_{\Delta-2}\end{gathered} (137)

respectively, where k=1,2,3,,k=1,2,3,\cdots,\infty. However, it is more convenient to work with the new basis defined by

Ωk(Δ)=n=1k1(kn)!Γ(Δ+k2)Γ(Δ+n2)Φn(Δ)\begin{gathered}\Omega_{k}(\Delta)=\sum_{n=1}^{k}\frac{1}{(k-n)!}\frac{\Gamma(\Delta+k-2)}{\Gamma(\Delta+n-2)}\Phi_{n}(\Delta)\end{gathered} (138)

for the 𝒪(z0z¯0)\mathcal{O}({z^{0}\bar{z}^{0}}) null states and similarly for the 𝒪(z0z¯)\mathcal{O}({z^{0}\bar{z}}) null states the new basis is defined by,

Πk(Δ)=n=1k1(kn)!Γ(Δ+k2)Γ(Δ+n2)Ψn(Δ)\Pi_{k}(\Delta)=\sum_{n=1}^{k}\frac{1}{(k-n)!}\frac{\Gamma(\Delta+k-2)}{\Gamma(\Delta+n-2)}\Psi_{n}(\Delta) (139)

There is another set of null states, which are of the Knizhnik-Zamolodchikov type and decoupling of these null states give rise to differential equations for the scattering amplitudes Banerjee:2020zlg ; Banerjee:2020vnt ; Banerjee:2023rni ; Hu:2021lrx ; Fan:2022vbz ; Fan:2022kpp ; Hu:2022bpa . We will discuss about these null states in the context of self dual gravity in section I.2. Then, using these new basis (138) and (139) the OPE between two positive helicity outgoing graviton primaries with dimensions Δ1\Delta_{1} and Δ2\Delta_{2} of any ww-invariant theory can always be written as,

GΔ1+(z,z¯)GΔ2+(0,0)=z¯zB(Δ11,Δ21)GΔ1+Δ2+(0,0)+GΔ1+(z,z¯)GΔ2+(0,0)|MHV at𝒪(z0z¯0)+p=1nB(Δ11+p,Δ21)Ωp(Δ1+Δ2)+GΔ1+(z,z¯)GΔ2+(0,0)|MHV at𝒪(z0z¯1)+z¯p=1nB(Δ1+p,Δ21)Πp(Δ1+Δ2+1)+\begin{gathered}G^{+}_{\Delta_{1}}(z,\bar{z})G^{+}_{\Delta_{2}}(0,0)=-\frac{\bar{z}}{z}B\left(\Delta_{1}-1,\Delta_{2}-1\right)G^{+}_{\Delta_{1}+\Delta_{2}}(0,0)\\ +G^{+}_{\Delta_{1}}(z,\bar{z})G^{+}_{\Delta_{2}}(0,0)\big{|}_{\text{MHV at}\ \mathcal{O}(z^{0}\bar{z}^{0})}+\sum_{p=1}^{n}B(\Delta_{1}-1+p,\Delta_{2}-1)\ \Omega_{p}(\Delta_{1}+\Delta_{2})\\ +G^{+}_{\Delta_{1}}(z,\bar{z})G^{+}_{\Delta_{2}}(0,0)\big{|}_{\text{MHV at}\ \mathcal{O}(z^{0}\bar{z}^{1})}+\bar{z}\sum_{p=1}^{n}B(\Delta_{1}+p,\Delta_{2}-1)\ \Pi_{p}(\Delta_{1}+\Delta_{2}+1)+\cdots\end{gathered} (140)

where GΔ1+(z,z¯)GΔ2+(0,0)|MHV at𝒪(z0z¯0)G^{+}_{\Delta_{1}}(z,\bar{z})G^{+}_{\Delta_{2}}(0,0)\big{|}_{\text{MHV at}\ \mathcal{O}(z^{0}\bar{z}^{0})} and GΔ1+(z,z¯)GΔ2+(0,0)|MHV at𝒪(z0z¯1)G^{+}_{\Delta_{1}}(z,\bar{z})G^{+}_{\Delta_{2}}(0,0)\big{|}_{\text{MHV at}\ \mathcal{O}(z^{0}\bar{z}^{1})} are the MHV OPEs at 𝒪(z0z¯0)\mathcal{O}({z^{0}\bar{z}^{0}}) and 𝒪(z0z¯)\mathcal{O}({z^{0}\bar{z}}) respectively. It has been shown in Pate:2019lpp that the leading term in z¯\bar{z} is uniquely determined by the sl2(R)Vsl_{2}(R)_{V} invariance. Once the leading term is known, the subleading terms in z¯\bar{z} of 𝒪(z¯qz)\mathcal{O}\left(\frac{\bar{z}^{q}}{z}\right), q2q\geq 2 are determined by the sl2(R)¯\overline{sl_{2}(R)} invariance.

It was shown in Banerjee:2023zip , that both the MHV null states Ωk(Δ)\Omega_{k}(\Delta) and Πk(Δ)\Pi_{k}(\Delta) form representations of sl2(R)Vsl_{2}(R)_{V}. However, these representations are reducible because for any integer n0n\geq 0, the subspaces spanned by {Ωn+1(Δ),Ωn+2(Δ),}\{\Omega_{n+1}(\Delta),\Omega_{n+2}(\Delta),\cdots\} and {Πn+1(Δ),Πn+2(Δ),}\{\Pi_{n+1}(\Delta),\Pi_{n+2}(\Delta),\cdots\} form a representation of sl2(R)Vsl_{2}(R)_{V}. Hence we can get smaller representations spanned by the states {Ω1(Δ),Ω2(Δ),,Ωn(Δ)}\{\Omega_{1}(\Delta),\Omega_{2}(\Delta),\cdots,\Omega_{n}(\Delta)\} and {Π1(Δ),Π2(Δ),,Πn(Δ)}\{\Pi_{1}(\Delta),\Pi_{2}(\Delta),\cdots,\Pi_{n}(\Delta)\} if we set

Ωk+1(Δ)=0,kn0,Πk+1(Δ)=0,kn0.\begin{gathered}\Omega_{k+1}(\Delta)=0,\qquad k\geq n\geq 0,\\ \Pi_{k+1}(\Delta)=0,\qquad k\geq n\geq 0.\end{gathered} (141)

Using the algebra (8), one can also check that the null states Ωk(Δ)\Omega_{k}(\Delta) and Πk(Δ)\Pi_{k}(\Delta) are primaries under sl2(R)¯\overline{sl_{2}(R)}. Thus the conditions (141) are invariant under sl2(R)¯\overline{sl_{2}(R)}, hence under whole ww-algebra.

We have showed in section 3 that, the whole tower of ww-currents can be generated using two sub-algebras given by sl2(R)¯\overline{sl_{2}(R)} and sl2(R)Vsl_{2}(R)_{V}. Moreover, the conditions (141) are also invariant under sl2(R)¯\overline{sl_{2}(R)} and sl2(R)Vsl_{2}(R)_{V}, and hence under the full ww-algebra. Now, using these facts and the algebra (8), it is not hard to show the OPE (140) is invariant under ww-algebra. The important point we want to emphasize about the OPE (140) is that the integer nn can take any arbitrary value without breaking the ww-invariance. Hence, there exists a discrete infinite family of ww-invariant OPEs. From (140) it is already clear that n=0n=0 gives the MHVMHV-sector. In this paper, we have shown that n=4n=4 gives the OPE of the quantum self-dual gravity theory which is known to be ww-invariant.

Now, the last thing we want to discuss in this section is that, the null states {Ω1(Δ),Ω2(Δ),,Ωn(Δ)}\{\Omega_{1}(\Delta),\\ \Omega_{2}(\Delta),\cdots,\Omega_{n}(\Delta)\} are not completely independent. For a given nn, there is another set of n2\lceil{\frac{n}{2}}\rceil666n2=Smallest integer\lceil{\frac{n}{2}}\rceil=\text{Smallest integer} n2\geq\frac{n}{2}. nontrivial777There are of course the nn states {Ω1(Δ),,Ωn(Δ)}\{\Omega_{1}(\Delta),...,\Omega_{n}(\Delta)\} which transform in a representation of sl2(R)Vsl_{2}(R)_{V} but, we cannot set them to zero because that will lead us again to the MHV sector. states {χn1(Δ),,χnn/2(Δ)}\{\chi^{1}_{n}(\Delta),...,\chi_{n}^{\lceil{n/2}\rceil}(\Delta)\} defined as

χn1(Δ)=p=1nΩp(Δ)χni(Δ)=p=inq=i2i2(pq)Ωp(Δ),i=2,3,,n2\begin{gathered}\chi^{1}_{n}(\Delta)=\sum_{p=1}^{n}\Omega_{p}(\Delta)\\ \chi^{i}_{n}(\Delta)=\sum_{p=i}^{n}\prod_{q=i}^{2i-2}(p-q)\Omega_{p}(\Delta),\ i=2,3,...,\lceil{\frac{n}{2}}\rceil\end{gathered} (142)

which transform in a representation of the sl2(R)Vsl_{2}(R)_{V} as a consequence of (141). We can also set these states to zero

χni(Δ)=0\chi^{i}_{n}(\Delta)=0 (143)

without violating the sl2(R)Vsl_{2}(R)_{V} or sl2(R)¯\overline{sl_{2}(R)} symmetry.

Appendix I Null States in Self Dual Gravity

In this Appendix, we will derive the null states of the self dual gravity appearing at different orders of the OPE. We will first start with the OPE between two positive helicity outgoing gravitons in the self dual gravity derived in section 5.5. It is given by,

GΔ4+(z4,z¯4)GΔ5+(z5,z¯5)=z¯45z45B(Δ41,Δ51)GΔ4+Δ5+(z5,z¯5)+B(Δ41,Δ51)H32,121GΔ4+Δ51+(z5,z¯5)+k=14B(Δ4+k1,Δ51)Ωk(Δ4+Δ5)+z¯45[B(Δ41,Δ51)GΔ4+(z4,z¯4)GΔ5+(z5,z¯5)|MHV at𝒪(z¯45)+k=14B(Δ4+k,Δ51)Πk(Δ4+Δ5+1)]+\begin{gathered}G^{+}_{\Delta_{4}}(z_{4},\bar{z}_{4})G^{+}_{\Delta_{5}}(z_{5},\bar{z}_{5})=-\frac{\bar{z}_{45}}{z_{45}}B\left(\Delta_{4}-1,\Delta_{5}-1\right)G^{+}_{\Delta_{4}+\Delta_{5}}(z_{5},\bar{z}_{5})\\ +B\left(\Delta_{4}-1,\Delta_{5}-1\right)\,H^{1}_{-\frac{3}{2},\frac{1}{2}}G^{+}_{\Delta_{4}+\Delta_{5}-1}(z_{5},\bar{z}_{5})+\sum_{k=1}^{4}B(\Delta_{4}+k-1,\Delta_{5}-1)\Omega_{k}(\Delta_{4}+\Delta_{5})\\ +\bar{z}_{45}\left[B(\Delta_{4}-1,\Delta_{5}-1)\,G^{+}_{\Delta_{4}}(z_{4},\bar{z}_{4})G^{+}_{\Delta_{5}}(z_{5},\bar{z}_{5})\big{|}_{\text{MHV at}\ \mathcal{O}(\bar{z}_{45})}\right.\\ \left.+\sum_{k=1}^{4}B(\Delta_{4}+k,\Delta_{5}-1)\ \Pi_{k}(\Delta_{4}+\Delta_{5}+1)\right]+\cdots\end{gathered} (144)

where GΔ4+(z4,z¯4)GΔ5+(z5,z¯5)|MHV at𝒪(z¯45)G^{+}_{\Delta_{4}}(z_{4},\bar{z}_{4})G^{+}_{\Delta_{5}}(z_{5},\bar{z}_{5})\big{|}_{\text{MHV at}\ \mathcal{O}(\bar{z}_{45})} is given by (49). We now derive the null states appearing at 𝒪(1)\mathcal{O}(1) and 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}).

I.1 Null States at 𝒪(1)\mathcal{O}(1)

We can see from (144) that at 𝒪(1)\mathcal{O}(1) the OPE truncates at k=4k=4. Now we take the conformal soft limit Δ44\Delta_{4}\to-4 in (144). In this limit, the soft descendant that appear at 𝒪(1)\mathcal{O}(1) on the LHS of (144) is given by H1,34GΔ5+(z5,z¯5)H^{-4}_{1,3}G^{+}_{\Delta_{5}}(z_{5},\bar{z}_{5}). After taking the same conformal soft limits on the RHS and comparing the results we get

Ω5(Δ)=j=151(5j)!Γ(Δ+3)Γ(Δ+j2)Φj(Δ)=0\Omega_{5}(\Delta)=\sum_{j=1}^{5}\frac{1}{(5-j)!}\frac{\Gamma(\Delta+3)}{\Gamma(\Delta+j-2)}\Phi_{j}(\Delta)=0 (145)

where Φj(Δ)\Phi_{j}(\Delta) are given by (136). Thus, we see that Ω5(Δ)\Omega_{5}(\Delta) is a null state of the self dual gravity. Now we will show the consistency of (145) under ww-algebra. Under sl2(R)V{sl_{2}(R)}_{V}, Ω5(Δ)\Omega_{5}(\Delta) transforms as (133),(134),

H12,121Ω5(Δ)=Ω5(Δ+1)H12,121Ω5(Δ)=21Ω5(Δ1)12(Δ4)(Δ5)Ω5(Δ1)21Ω6(Δ1)\begin{split}H^{1}_{-\frac{1}{2},-\frac{1}{2}}\Omega_{5}(\Delta)&=-\Omega_{5}(\Delta+1)\\ H^{-1}_{\frac{1}{2},\frac{1}{2}}\Omega_{5}(\Delta)&=21\,\Omega_{5}(\Delta-1)-\frac{1}{2}(\Delta-4)(\Delta-5)\Omega_{5}(\Delta-1)-21\,\Omega_{6}(\Delta-1)\end{split} (146)

and H0,00=2L¯0H^{0}_{0,0}=2\bar{L}_{0} is diagonal on these states. However, Ω6(Δ1)\Omega_{6}(\Delta-1) is also a null state of the theory and thus (145) is invariant under sl2(R)V{sl_{2}(R)}_{V}. One can also check that

H0,10Ω5(Δ)=0H^{0}_{0,1}\Omega_{5}(\Delta)=0 (147)

Thus we see that (145) is also invariant under sl2(R)¯\overline{sl_{2}(R)}. Hence we conclude that (145) is invariant under ww-algebra.

There is another set of null states (142) at 𝒪(1)\mathcal{O}(1) which can be found using the commutativity property of the OPE together with the conformal soft limits. In case of self dual gravity, they are explicitly given by,

χ41(Δ)=p=14Ωp(Δ)χ42(Δ)=p=34(p2)Ωp(Δ),\begin{gathered}\chi^{1}_{4}(\Delta)=\sum_{p=1}^{4}\Omega_{p}(\Delta)\\ \chi^{2}_{4}(\Delta)=\sum_{p=3}^{4}(p-2)\Omega_{p}(\Delta),\end{gathered} (148)

These null states also transform under the representation of sl2(R)V{sl_{2}(R)}_{V} and sl2(R)¯\overline{sl_{2}(R)} algebra and as a consequence one can set them to 0 without violating the ww-symmetry. The null states (148) play an important role in showing the invariance of the Knizhnik-Zamolodchikov type null state under ww-algebra which will be discussed in the next subsection.

I.2 Null States at 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}): Knizhnik-Zamolodchikov Type Null State

KZ type null state occur at 𝒪(z0z¯1)\mathcal{O}(z^{0}\bar{z}^{1}) of the OPE. The easiest way to derive it is to use the commutativity property of the OPE and conformal soft limits together. So we start with the commutativity property of the OPE given by,

GΔ1+(z1,z¯1)GΔ2+(z2,z¯2)=GΔ2+(z2,z¯2)GΔ1+(z1,z¯1)G^{+}_{\Delta_{1}}(z_{1},\bar{z}_{1})G^{+}_{\Delta_{2}}(z_{2},\bar{z}_{2})=G^{+}_{\Delta_{2}}(z_{2},\bar{z}_{2})G^{+}_{\Delta_{1}}(z_{1},\bar{z}_{1}) (149)

Now we use the OPE (144) in (149), and take the leading conformal soft limits Δ11\Delta_{1}\to 1. Then by comparing the terms at 𝒪(z¯45)\mathcal{O}(\bar{z}_{45}) we get the following KZ type equation,

Ξ4(Δ)=ξ(Δ)+k=14Πk(Δ+1)=0\Xi_{4}(\Delta)=\xi(\Delta)+\sum_{k=1}^{4}\Pi_{k}(\Delta+1)=0 (150)

where ξ(Δ)\xi(\Delta) is the KZ type null state in the MHV sector given by Banerjee:2020zlg

ξ(Δ)=L1GΔ++H0,10H32,121GΔ1++H1,00GΔ++(Δ1)H32,121GΔ1+\xi(\Delta)=\boxed{L_{-1}}G^{+}_{\Delta}+H^{0}_{0,-1}H^{1}_{-\frac{3}{2},\frac{1}{2}}G^{+}_{\Delta-1}+H^{0}_{-1,0}G^{+}_{\Delta}+(\Delta-1)\,H^{1}_{-\frac{3}{2},-\frac{1}{2}}G^{+}_{\Delta-1} (151)

We have used that χ41(Δ)\chi^{1}_{4}(\Delta) is a null state in this theory to arrive at the form (150). One can check that (150) is consistent under the actions of sl2(R)¯\overline{sl_{2}(R)} and sl2(R)Vsl_{2}(R)_{V} generators. For example,

H0,10Ξ4(Δ)=6Ω5(Δ)(Δ3)χ41(Δ)H^{0}_{0,1}\Xi_{4}(\Delta)=6\,\Omega_{5}(\Delta)-(\Delta-3)\chi^{1}_{4}(\Delta) (152)

We have already shown that Ω5(Δ)\Omega_{5}(\Delta) and χ41(Δ)\chi^{1}_{4}(\Delta) are both null states in this theory, so we get,

H0,10Ξ4(Δ)=0H^{0}_{0,1}\Xi_{4}(\Delta)=0 (153)

Therefore Ξ4(Δ)\Xi_{4}(\Delta) is an sl2(R)¯\overline{sl_{2}(R)} primary.

Similarly, we have

H12,121Ξ4(Δ)=12(Δ2)(Δ3)Ξ4(Δ1)9Π5(Δ)H12,121χ41(Δ)H0,10((Δ1)χ41(Δ1)+χ42(Δ1))\begin{gathered}H^{-1}_{\frac{1}{2},\frac{1}{2}}\Xi_{4}(\Delta)=-\frac{1}{2}(\Delta-2)(\Delta-3)\Xi_{4}(\Delta-1)\\ -9\,\Pi_{5}(\Delta)-H^{-1}_{\frac{1}{2},-\frac{1}{2}}\chi^{1}_{4}(\Delta)-H^{0}_{0,-1}\left((\Delta-1)\chi^{1}_{4}(\Delta-1)+\chi^{2}_{4}(\Delta-1)\right)\\ \end{gathered} (154)

However, since Π5(Δ),χ41(Δ)\Pi_{5}(\Delta),\chi^{1}_{4}(\Delta) and χ42(Δ)\chi^{2}_{4}(\Delta) are null states in the theory, we get

H12,121Ξ4(Δ)=12(Δ2)(Δ3)Ξ4(Δ1)H^{-1}_{\frac{1}{2},\frac{1}{2}}\Xi_{4}(\Delta)=-\frac{1}{2}(\Delta-2)(\Delta-3)\Xi_{4}(\Delta-1) (155)

Therefore, Ξ4(Δ)\Xi_{4}(\Delta) transforms under a representation of the sl2(R)Vsl_{2}(R)_{V} and we can consistently set it to zero without violating the sl2(R)Vsl_{2}(R)_{V} symmetry. Hence, we conclude that (150) is indeed ww invariant. Decoupling of null states gives rise to differential equations which the graviton scattering amplitudes in this theory have to satisfy.

Appendix J Invariance of the Self-Dual OPE Under ww-Algebra

In Banerjee:2023zip , it was shown that the OPE (140) is invariant under ww-algebra for any arbitrary truncation in nn, which has been reviewed in Appendix H. We have shown in section 5.5 that self dual OPE truncates at n=4n=4 of the general OPE (140). Thus, we can say that the invariance of the self dual OPE under ww-algebra is guaranteed. However, for the sake of completeness of this paper and for the better readability, we will repeat the same analysis here with focusing on the self dual OPE. As discussed in section 3, the whole ww-algebra can be derived by the combined action of sl2(R)V{sl_{2}(R)}_{V} and sl2(R)¯\overline{sl_{2}(R)}. Thus it is enough to show the invariance of the OPE under these two sub-algebras.

J.1 ww-Invariance at 𝒪(1)\mathcal{O}(1)

Let us start with the 𝒪(1)\mathcal{O}(1) OPE. We write it here again for the readers convenience,

GΔ1+(z,z¯)GΔ2+(0,0)|𝒪(1)=B(Δ11,Δ21)H32,121GΔ1+Δ21+(0,0)+k=14B(Δ1+k1,Δ21)Ωk(Δ1+Δ2)\begin{gathered}G^{+}_{\Delta_{1}}(z,\bar{z})G^{+}_{\Delta_{2}}(0,0)\big{|}_{\mathcal{O}(1)}=B(\Delta_{1}-1,\Delta_{2}-1)H^{1}_{-\frac{3}{2},\frac{1}{2}}G^{+}_{\Delta_{1}+\Delta_{2}-1}(0,0)\\ +\sum_{k=1}^{4}B(\Delta_{1}+k-1,\Delta_{2}-1)\Omega_{k}(\Delta_{1}+\Delta_{2})\\ \end{gathered} (156)

We now show that it is invariant under the two subalgebras sl2(R)V{sl_{2}(R)}_{V} and sl2(R)¯\overline{sl_{2}(R)}.

J.1.1 sl2(R)V{sl_{2}(R)}_{V} Invariance

To show the invariance of the OPE, we need the action of the sl2(R)Vsl_{2}(R)_{V} on the MHV null states Ωk(Δ)\Omega_{k}(\Delta) that can appear at 𝒪(1)\mathcal{O}(1). These actions were computed in Banerjee:2023zip and reviewed in Appendix G. We also need the commutator algebra (8) along with the action of these generators on the graviton primaries given by (see Appendix F),

H12,121GΔ+(z,z¯)=GΔ+1+(z,z¯)H12,121GΔ+(z,z¯)=12[(Δ2)(Δ3)+4(Δ2)z¯z¯+3z¯2z¯2]GΔ1+(z,z¯)\begin{split}H^{1}_{-\frac{1}{2},-\frac{1}{2}}G^{+}_{\Delta}(z,\bar{z})&=-G^{+}_{\Delta+1}(z,\bar{z})\\ H^{-1}_{\frac{1}{2},\frac{1}{2}}G^{+}_{\Delta}(z,\bar{z})&=-\frac{1}{2}\left[(\Delta-2)(\Delta-3)+4(\Delta-2)\bar{z}\partial_{\bar{z}}+3\bar{z}^{2}\partial_{\bar{z}}^{2}\right]G^{+}_{\Delta-1}(z,\bar{z})\end{split} (157)

Using Appendix G, (8) and (157), it is not difficult to show that the 𝒪(1)\mathcal{O}(1) OPE (156) is invariant under H12,121H^{1}_{-\frac{1}{2},-\frac{1}{2}} whereas the action of H12,121H^{-1}_{\frac{1}{2},\frac{1}{2}} on both the sides of the OPE (156)\eqref{fm_OPEO2} gives

H12,121(R.H.SL.H.S)of(156)=12B(Δ1+3,Δ21)Ω5(Δ1+Δ21)H^{-1}_{\frac{1}{2},\frac{1}{2}}\left(\textnormal{R.H.S}\ -\ \textnormal{L.H.S}\right)\ \textnormal{of}\ \eqref{fm_OPEO2}=-12B(\Delta_{1}+3,\Delta_{2}-1)\,\Omega_{5}(\Delta_{1}+\Delta_{2}-1) (158)

However, we have already shown in Appendix I.1, that Ω5(Δ)\Omega_{5}(\Delta) is a null state of the self dual gravity appearing at 𝒪(1)\mathcal{O}(1) of the OPE and as a consequence we can set it to 0. Hence, we conclude that the 𝒪(1)\mathcal{O}(1) self dual OPE (156) is invariant under the sl2(R)V{sl_{2}(R)}_{V} algebra.

J.1.2 sl2(R)¯\overline{sl_{2}(R)} Invariance

It was shown in Banerjee:2020zlg , that the OPE in the MHV-sector is invariant under the action of H0,10H^{0}_{0,1} 888H0,10L¯1H^{0}_{0,1}\sim\bar{L}_{1}. Also from (135), we can see that the null states Ωk(Δ)\Omega_{k}(\Delta) are annihilated by H0,10H^{0}_{0,1}. Therefore, we can say that 𝒪(1)\mathcal{O}(1) self dual OPE (156) is invariant under the sl2(R)¯\overline{sl_{2}(R)} algebra.

J.2 ww-Invariance at 𝒪(z¯)\mathcal{O}(\bar{z})

We now move on to showing the ww-invariance of the self dual OPE at 𝒪(z¯)\mathcal{O}(\bar{z}). Let us first write down the 𝒪(z¯)\mathcal{O}(\bar{z}) OPE (51) again,

GΔ1+(z,z¯)GΔ2+(0,0)|𝒪(z¯)=B(Δ11,Δ21)GΔ1+(z,z¯)GΔ2+(0,0)|MHV at𝒪(z¯45)+k=14B(Δ1+k,Δ21)Πk(Δ1+Δ2+1)\begin{gathered}G^{+}_{\Delta_{1}}(z,\bar{z})G^{+}_{\Delta_{2}}(0,0)\big{|}_{\mathcal{O}(\bar{z})}=B(\Delta_{1}-1,\Delta_{2}-1)\,G^{+}_{\Delta_{1}}(z,\bar{z})G^{+}_{\Delta_{2}}(0,0)\big{|}_{\text{MHV at}\ \mathcal{O}(\bar{z}_{45})}\\ +\sum_{k=1}^{4}B(\Delta_{1}+k,\Delta_{2}-1)\ \Pi_{k}(\Delta_{1}+\Delta_{2}+1)\end{gathered} (159)

From the previous subsection, it is clear that the ww-invariance of the OPE at 𝒪(z¯)\mathcal{O}(\bar{z}) is guaranteed to follow if we can show that it is invariant under the two subalgebras sl2(R)V{sl_{2}(R)}_{V} and sl2(R)¯\overline{sl_{2}(R)}. Among the generators of these two subalgebras, we only show the invariance of the OPE (159) under the actions of H12,121H^{-1}_{\frac{1}{2},\frac{1}{2}} and H0,10H^{0}_{0,1}. This is mainly because the invariance of the OPE (159) under the rest of the generators are fairly easy to show. By applying H12,121H^{-1}_{\frac{1}{2},\frac{1}{2}} on both sides of the OPE (159) we get,

H12,121(R.H.SL.H.S)of(159)=9B(Δ1+4,Δ21)Π5(Δ1+Δ2)H^{-1}_{\frac{1}{2},\frac{1}{2}}\left(\textnormal{R.H.S}\ -\ \textnormal{L.H.S}\right)\ \textnormal{of}\ \eqref{ozi}=-9B(\Delta_{1}+4,\Delta_{2}-1)\,\Pi_{5}(\Delta_{1}+\Delta_{2}) (160)

and for H0,10H^{0}_{0,1} we have

H0,1(0)(R.H.SL.H.S)of(159)=6B(Δ4+4,Δ51)Ω5(Δ1+Δ2)H^{(0)}_{0,1}\left(\textnormal{R.H.S}\ -\ \textnormal{L.H.S}\right)\ \textnormal{of}\ \eqref{ozi}=6B(\Delta_{4}+4,\Delta_{5}-1)\,\Omega_{5}(\Delta_{1}+\Delta_{2}) (161)

However, from Appendix I, we know that both Π5(Δ)\Pi_{5}(\Delta) and Ω5(Δ)\Omega_{5}(\Delta) are the null states of the self dual gravity appearing at 𝒪(z¯)\mathcal{O}(\bar{z}) and 𝒪(1)\mathcal{O}(1) respectively. Thus, we conclude that the 𝒪(z¯)\mathcal{O}(\bar{z}) OPE in self dual gravity is also invariant under sl2(R)V{sl_{2}(R)}_{V} and sl2(R)¯\overline{sl_{2}(R)}, and hence under the whole ww-algebra.

References

  • (1) A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” [arXiv:1703.05448 [hep-th]].
  • (2) S. Pasterski, S. H. Shao and A. Strominger, “Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere,” Phys. Rev. D 96, no. 6, 065026 (2017) doi:10.1103/PhysRevD.96.065026 [arXiv:1701.00049 [hep-th]].
  • (3) S. Pasterski and S. H. Shao, “Conformal basis for flat space amplitudes,” Phys. Rev. D 96, no. 6, 065022 (2017) doi:10.1103/PhysRevD.96.065022 [arXiv:1705.01027 [hep-th]].
  • (4) S. Banerjee, “Null Infinity and Unitary Representation of The Poincare Group,” JHEP 1901, 205 (2019) doi:10.1007/JHEP01(2019)205 [arXiv:1801.10171 [hep-th]].
  • (5) S. Banerjee, S. Ghosh, P. Pandey and A. P. Saha, “Modified celestial amplitude in Einstein gravity,” JHEP 03 (2020), 125 doi:10.1007/JHEP03(2020)125 [arXiv:1909.03075 [hep-th]].
  • (6) H. Ooguri and C. Vafa, “Geometry of N=2 strings,” Nucl. Phys. B 361 (1991), 469-518 doi:10.1016/0550-3213(91)90270-8
  • (7) G. Chalmers and W. Siegel, “The Selfdual sector of QCD amplitudes,” Phys. Rev. D 54 (1996), 7628-7633 doi:10.1103/PhysRevD.54.7628 [arXiv:hep-th/9606061 [hep-th]].
  • (8) Z. Bern, L. J. Dixon, M. Perelstein and J. S. Rozowsky, “One loop n point helicity amplitudes in (selfdual) gravity,” Phys. Lett. B 444 (1998), 273-283 doi:10.1016/S0370-2693(98)01397-5 [arXiv:hep-th/9809160 [hep-th]].
  • (9) Z. Bern, L. J. Dixon, M. Perelstein and J. S. Rozowsky, “Multileg one loop gravity amplitudes from gauge theory,” Nucl. Phys. B 546 (1999), 423-479 doi:10.1016/S0550-3213(99)00029-2 [arXiv:hep-th/9811140 [hep-th]].
  • (10) K. Krasnov, “Self-Dual Gravity,” Class. Quant. Grav. 34 (2017) 095001 [1610.01457].
  • (11) R. Penrose, “Twistor quantization and curved space-time,” Int. J. Theor. Phys. 1 (1968) 61.
  • (12) R. Penrose, “Nonlinear Gravitons and Curved Twistor Theory,” Gen. Rel. Grav. 7 (1976) 31.
  • (13) C. P. Boyer and J. F. Plebanski, “An infinite hierarchy of conservation laws and nonlinear superposition principles for selfdual Einstein spaces,” J. Math. Phys. 26 (1985) 229.
  • (14) R. Sachs, “Asymptotic symmetries in gravitational theory,” Phys. Rev.  128, 2851 (1962). doi:10.1103/PhysRev.128.2851 H. Bondi, M. G. J. van der Burg and A. W. K. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A 269, 21 (1962). doi:10.1098/rspa.1962.0161 R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,” Proc. Roy. Soc. Lond. A 270, 103 (1962). doi:10.1098/rspa.1962.0206
  • (15) A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 1407, 152 (2014) doi:10.1007/JHEP07(2014)152 [arXiv:1312.2229 [hep-th]].
  • (16) T. He, V. Lysov, P. Mitra and A. Strominger, “BMS supertranslations and Weinberg’s soft graviton theorem,” JHEP 1505, 151 (2015) doi:10.1007/JHEP05(2015)151 [arXiv:1401.7026 [hep-th]].
  • (17) A. Strominger and A. Zhiboedov, “Gravitational Memory, BMS Supertranslations and Soft Theorems,” JHEP 1601, 086 (2016) doi:10.1007/JHEP01(2016)086 [arXiv:1411.5745 [hep-th]].
  • (18) G. Barnich and C. Troessaert, “Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited,” Phys. Rev. Lett.  105, 111103 (2010) doi:10.1103/PhysRevLett.105.111103 [arXiv:0909.2617 [gr-qc]]. G. Barnich and C. Troessaert, “Supertranslations call for superrotations,” PoS CNCFG 2010, 010 (2010) [Ann. U. Craiova Phys.  21, S11 (2011)] [arXiv:1102.4632 [gr-qc]].
  • (19) D. Kapec, P. Mitra, A. M. Raclariu and A. Strominger, “2D Stress Tensor for 4D Gravity,” Phys. Rev. Lett.  119, no. 12, 121601 (2017) doi:10.1103/PhysRevLett.119.121601 [arXiv:1609.00282 [hep-th]].
  • (20) D. Kapec, V. Lysov, S. Pasterski and A. Strominger, “Semiclassical Virasoro symmetry of the quantum gravity 𝒮\mathcal{S}-matrix,” JHEP 1408, 058 (2014) doi:10.1007/JHEP08(2014)058 [arXiv:1406.3312 [hep-th]].
  • (21) T. He, D. Kapec, A. M. Raclariu and A. Strominger, “Loop-Corrected Virasoro Symmetry of 4D Quantum Gravity,” JHEP 1708, 050 (2017) doi:10.1007/JHEP08(2017)050 [arXiv:1701.00496 [hep-th]].
  • (22) S. Banerjee and S. Pasterski, “Revisiting the shadow stress tensor in celestial CFT,” JHEP 04 (2023), 118 doi:10.1007/JHEP04(2023)118 [arXiv:2212.00257 [hep-th]].
  • (23) L. Donnay and R. Ruzziconi, “BMS flux algebra in celestial holography,” JHEP 11, 040 (2021) doi:10.1007/JHEP11(2021)040 [arXiv:2108.11969 [hep-th]].
  • (24) L. Donnay, K. Nguyen and R. Ruzziconi, “Loop-corrected subleading soft theorem and the celestial stress tensor,” JHEP 09, 063 (2022) doi:10.1007/JHEP09(2022)063 [arXiv:2205.11477 [hep-th]].
  • (25) L. Donnay, S. Pasterski and A. Puhm, “Asymptotic Symmetries and Celestial CFT,” JHEP 09 (2020), 176 doi:10.1007/JHEP09(2020)176 [arXiv:2005.08990 [hep-th]].
  • (26) S. Stieberger and T. R. Taylor, “Symmetries of Celestial Amplitudes,” Phys. Lett. B 793, 141 (2019) doi:10.1016/j.physletb.2019.03.063 [arXiv:1812.01080 [hep-th]].
  • (27) S. Banerjee, S. Ghosh and R. Gonzo, “BMS symmetry of celestial OPE,” JHEP 04, 130 (2020) doi:10.1007/JHEP04(2020)130 [arXiv:2002.00975 [hep-th]].
  • (28) S. Banerjee, S. Ghosh and P. Paul, “MHV graviton scattering amplitudes and current algebra on the celestial sphere,” JHEP 02 (2021), 176 doi:10.1007/JHEP02(2021)176 [arXiv:2008.04330 [hep-th]].
  • (29) S. Banerjee, S. Ghosh and S. S. Samal, “Subsubleading soft graviton symmetry and MHV graviton scattering amplitudes,” JHEP 08 (2021), 067 doi:10.1007/JHEP08(2021)067 [arXiv:2104.02546 [hep-th]].
  • (30) N. Gupta, P. Paul and N. V. Suryanarayana, “ sl2^\widehat{sl_{2}} Symmetry of 1,3{\mathbb{R}}^{1,3} Gravity,” Phys. Rev. D 108 (2023) no.8, 086029 doi:10.1103/PhysRevD.108.086029 [arXiv:2109.06857 [hep-th]].
  • (31) A. Guevara, E. Himwich, M. Pate and A. Strominger, “Holographic symmetry algebras for gauge theory and gravity,” JHEP 11 (2021), 152 doi:10.1007/JHEP11(2021)152 [arXiv:2103.03961 [hep-th]].
  • (32) A. Strominger, “w(1+infinity) and the Celestial Sphere,” [arXiv:2105.14346 [hep-th]]. A. Strominger, “w1+w_{1+\infty} Algebra and the Celestial Sphere: Infinite Towers of Soft Graviton, Photon, and Gluon Symmetries,” Phys. Rev. Lett. 127, no.22, 221601 (2021) doi:10.1103/PhysRevLett.127.221601
  • (33) E. Himwich, M. Pate and K. Singh, “Celestial operator product expansions and w1+∞ symmetry for all spins,” JHEP 01, 080 (2022) doi:10.1007/JHEP01(2022)080 [arXiv:2108.07763 [hep-th]].
  • (34) W. Melton, S. A. Narayanan and A. Strominger, “Deforming soft algebras for gauge theory,” JHEP 03, 233 (2023) doi:10.1007/JHEP03(2023)233 [arXiv:2212.08643 [hep-th]].
  • (35) A. Ball, S. A. Narayanan, J. Salzer and A. Strominger, “Perturbatively exact w1+∞ asymptotic symmetry of quantum self-dual gravity,” JHEP 01, 114 (2022) doi:10.1007/JHEP01(2022)114 [arXiv:2111.10392 [hep-th]].
  • (36) T. Adamo, L. Mason and A. Sharma, “Celestial w1+w_{1+\infty} Symmetries from Twistor Space,” SIGMA 18, 016 (2022) doi:10.3842/SIGMA.2022.016 [arXiv:2110.06066 [hep-th]].
  • (37) K. Costello and N. M. Paquette, “Celestial holography meets twisted holography: 4d amplitudes from chiral correlators,” JHEP 10, 193 (2022) doi:10.1007/JHEP10(2022)193 [arXiv:2201.02595 [hep-th]].
  • (38) K. Costello and N. M. Paquette, “Associativity of One-Loop Corrections to the Celestial Operator Product Expansion,” Phys. Rev. Lett. 129, no.23, 231604 (2022) doi:10.1103/PhysRevLett.129.231604 [arXiv:2204.05301 [hep-th]].
  • (39) K. J. Costello, “Bootstrapping two-loop QCD amplitudes,” [arXiv:2302.00770 [hep-th]].
  • (40) N. Garner and N. M. Paquette, “Twistorial monopoles & chiral algebras,” JHEP 08, 088 (2023) doi:10.1007/JHEP08(2023)088 [arXiv:2305.00049 [hep-th]].
  • (41) S. Stieberger, T. R. Taylor and B. Zhu, “Celestial Liouville theory for Yang-Mills amplitudes,” Phys. Lett. B 836, 137588 (2023) doi:10.1016/j.physletb.2022.137588 [arXiv:2209.02724 [hep-th]].
  • (42) S. Stieberger, T. R. Taylor and B. Zhu, “Yang-Mills as a Liouville theory,” Phys. Lett. B 846, 138229 (2023) doi:10.1016/j.physletb.2023.138229 [arXiv:2308.09741 [hep-th]].
  • (43) A. Ball, M. Spradlin, A. Yelleshpur Srikant and A. Volovich, “Supersymmetry and the Celestial Jacobi Identity,” [arXiv:2311.01364 [hep-th]].
  • (44) S. Banerjee, P. Pandey and P. Paul, “Conformal properties of soft operators: Use of null states,” Phys. Rev. D 101, no.10, 106014 (2020) doi:10.1103/PhysRevD.101.106014 [arXiv:1902.02309 [hep-th]].
  • (45) S. Banerjee and P. Pandey, “Conformal properties of soft-operators. Part II. Use of null-states,” JHEP 02, 067 (2020) doi:10.1007/JHEP02(2020)067 [arXiv:1906.01650 [hep-th]].
  • (46) S. Pasterski, A. Puhm and E. Trevisani, “Celestial diamonds: conformal multiplets in celestial CFT,” JHEP 11, 072 (2021) doi:10.1007/JHEP11(2021)072 [arXiv:2105.03516 [hep-th]].
  • (47) Y. Pano, A. Puhm and E. Trevisani, “Symmetries in Celestial CFTd,” JHEP 07, 076 (2023) doi:10.1007/JHEP07(2023)076 [arXiv:2302.10222 [hep-th]].
  • (48) S. Banerjee, H. Kulkarni and P. Paul, “An infinite family of w1+∞ invariant theories on the celestial sphere,” JHEP 05 (2023), 063 doi:10.1007/JHEP05(2023)063 [arXiv:2301.13225 [hep-th]].
  • (49) S. Banerjee and S. Ghosh, “MHV gluon scattering amplitudes from celestial current algebras,” JHEP 10 (2021), 111 doi:10.1007/JHEP10(2021)111 [arXiv:2011.00017 [hep-th]].
  • (50) S. Ebert, A. Sharma and D. Wang, “Descendants in celestial CFT and emergent multi-collinear factorization,” JHEP 03, 030 (2021) doi:10.1007/JHEP03(2021)030 [arXiv:2009.07881 [hep-th]].
  • (51) S. Banerjee, R. Mandal, A. Manu and P. Paul, “MHV gluon scattering in the massive scalar background and celestial OPE,” JHEP 10 (2023), 007 doi:10.1007/JHEP10(2023)007 [arXiv:2302.10245 [hep-th]].
  • (52) T. Adamo, W. Bu, E. Casali and A. Sharma, “All-order celestial OPE in the MHV sector,” JHEP 03, 252 (2023) doi:10.1007/JHEP03(2023)252 [arXiv:2211.17124 [hep-th]]
  • (53) L. Ren, A. Schreiber, A. Sharma and D. Wang, “All-order celestial OPE from on-shell recursion,” JHEP 10, 080 (2023) doi:10.1007/JHEP10(2023)080 [arXiv:2305.11851 [hep-th]].
  • (54) Y. Hu, L. Ren, A. Y. Srikant and A. Volovich, “Celestial dual superconformal symmetry, MHV amplitudes and differential equations,” JHEP 12, 171 (2021) doi:10.1007/JHEP12(2021)171 [arXiv:2106.16111 [hep-th]].
  • (55) W. Fan, A. Fotopoulos, S. Stieberger, T. R. Taylor and B. Zhu, “Elements of celestial conformal field theory,” JHEP 08, 213 (2022) doi:10.1007/JHEP08(2022)213 [arXiv:2202.08288 [hep-th]].
  • (56) W. Fan, A. Fotopoulos, S. Stieberger, T. R. Taylor and B. Zhu, “Celestial Yang-Mills amplitudes and D = 4 conformal blocks,” JHEP 09, 182 (2022) doi:10.1007/JHEP09(2022)182 [arXiv:2206.08979 [hep-th]].
  • (57) R. Bhardwaj, L. Lippstreu, L. Ren, M. Spradlin, A. Yelleshpur Srikant and A. Volovich, “Loop-level gluon OPEs in celestial holography,” JHEP 11, 171 (2022) doi:10.1007/JHEP11(2022)171 [arXiv:2208.14416 [hep-th]].
  • (58) H. Krishna, “Celestial gluon and graviton OPE at loop level,” [arXiv:2310.16687 [hep-th]].
  • (59) Y. Hu and S. Pasterski, “Celestial recursion,” JHEP 01 (2023), 151 doi:10.1007/JHEP01(2023)151 [arXiv:2208.11635 [hep-th]].
  • (60) M. Pate, A. M. Raclariu, A. Strominger and E. Y. Yuan, “Celestial operator products of gluons and gravitons,” Rev. Math. Phys. 33 (2021) no.09, 2140003 doi:10.1142/S0129055X21400031 [arXiv:1910.07424 [hep-th]].
  • (61) A. Atanasov, W. Melton, A. M. Raclariu and A. Strominger, “Conformal block expansion in celestial CFT,” Phys. Rev. D 104 (2021) no.12, 126033 doi:10.1103/PhysRevD.104.126033 [arXiv:2104.13432 [hep-th]].
  • (62) S. Ghosh, P. Raman and A. Sinha, “Celestial insights into the S-matrix bootstrap,” JHEP 08, 216 (2022) doi:10.1007/JHEP08(2022)216 [arXiv:2204.07617 [hep-th]]
  • (63) L. Donnay, A. Puhm and A. Strominger, “Conformally Soft Photons and Gravitons,” JHEP 1901, 184 (2019) doi:10.1007/JHEP01(2019)184 [arXiv:1810.05219 [hep-th]].
  • (64) M. Pate, A. M. Raclariu and A. Strominger, “Conformally Soft Theorem in Gauge Theory,” Phys. Rev. D 100 (2019) no.8, 085017 doi:10.1103/PhysRevD.100.085017 [arXiv:1904.10831 [hep-th]].
  • (65) W. Fan, A. Fotopoulos and T. R. Taylor, “Soft Limits of Yang-Mills Amplitudes and Conformal Correlators,” JHEP 1905, 121 (2019) doi:10.1007/JHEP05(2019)121 [arXiv:1903.01676 [hep-th]].
  • (66) D. Nandan, A. Schreiber, A. Volovich and M. Zlotnikov, “Celestial Amplitudes: Conformal Partial Waves and Soft Limits,” JHEP 10 (2019), 018 doi:10.1007/JHEP10(2019)018 [arXiv:1904.10940 [hep-th]].
  • (67) T. Adamo, L. Mason and A. Sharma, “Celestial amplitudes and conformal soft theorems,” Class. Quant. Grav. 36 (2019) no.20, 205018 doi:10.1088/1361-6382/ab42ce [arXiv:1905.09224 [hep-th]].
  • (68) A. Puhm, “Conformally Soft Theorem in Gravity,” JHEP 09 (2020), 130 doi:10.1007/JHEP09(2020)130 [arXiv:1905.09799 [hep-th]].
  • (69) A. Guevara, “Notes on Conformal Soft Theorems and Recursion Relations in Gravity,” arXiv:1906.07810 [hep-th].
  • (70) J. Cotler, N. Miller and A. Strominger, “An integer basis for celestial amplitudes,” JHEP 08, 192 (2023) doi:10.1007/JHEP08(2023)192 [arXiv:2302.04905 [hep-th]].
  • (71) L. Freidel, D. Pranzetti and A. M. Raclariu, “A discrete basis for celestial holography,” [arXiv:2212.12469 [hep-th]].