This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\AtAppendix

Character sum, reciprocity and Voronoi formula

Chung-Hang Kwan University College London ucahckw@ucl.ac.uk  and  Wing Hong Leung Rutgers University joseph.leung@rutgers.edu
Abstract.

We prove a novel four-variable character sum identity which serves as a twisted, non-archimedean counterpart to Weber’s integrals for Bessel functions. Using this identity and ideas from Venkatesh’s thesis, we present a new, spectral proof of the Voronoi formula for classical modular forms.

Key words and phrases:
Modular form, automorphic form, LL-function, functional equation, Voronoi formula, Petersson trace formula, character sum, Kloosterman sum, Gauss sum, spectral identity, Analytic Number Theory
Mathematics Subject Classification:
11F11, 11F12, 11F66, 11F72, 11L05

1. Introduction

1.1. Character sums and modular forms

Character sums of various forms have been instrumental in the development of number theory. A notable example is Kloosterman’s 1926 work on the circle method and representation of natural numbers by quadratic forms, where the following character sum, now known as the Kloosterman sum, proved fundamental:

S(m,n;c):=x(modc)e(mx+nx¯c),\displaystyle S(m,n;c):=\sideset{}{{}^{*}}{\sum}\limits_{x(\bmod\,c)}\,e\left(\frac{mx+n\,\overline{x}}{c}\right), (1.1)

where m,n,cm,n,c are integers and c1c\geq 1. His method can be applied more generally to estimate the sizes of Fourier coefficients of holomorphic modular forms, providing improvements over Hecke’s bound; see [25, Chp. 20.3] and [6, Sect. 3.4]. The relationship between the Kloosterman sum and modularity can also be understood through trace formulae after Petersson and Selberg; see [25, Chp. 14].

Another intriguing connection was revealed by Kuznetsov [27, Thm. 4 and Sect. 7.1] while developing his celebrated trace formula. He proved the remarkable identity

S(m,n;c)=d(m,n,c)S(1,mn/d2;c/d)d,\displaystyle S(m,n;c)=\sum_{d\mid(m,n,c)}S(1,mn/d^{2};c/d)d, (1.2)

by applying Hecke’s multiplication rule

λF(m)λF(n)=d(m,n)λF(mn/d2)\displaystyle\lambda_{F}(m)\lambda_{F}(n)=\sum_{d\mid(m,n)}\lambda_{F}(mn/d^{2}) (1.3)

to his formula, where λF()\lambda_{F}(\,\cdot\,) denotes the normalized Hecke eigenvalues of a cuspidal eigenform FF of level 11. Historically, (1.2) was discovered by Selberg in the 1930s, but no proof was provided. As noted in [8, p. 2318], a direct proof of (1.2) has resisted straightforward attempts.

Identities of character sums also serve as essential local inputs in the arithmetic and analytic aspects of modular forms (or more generally, automorphic forms) via trace formulae. For instance, Iwaniec [24] obtained an averaged form of Waldspurger/Kohnen–Zagier’s formula through a delicate identity relating Kloosterman sums to Salié sums, which can be considered as a non-archimedean analogue of the integral identities of Bessel functions due to Hardy and Weber (see [24, Lem. 4], [5, Thm. 1.1, Cor. 8.4, Sects. 18 and 22] and [12]). As another example, Duke–Iwaniec [14] discovered a curious identity between the Kloosterman sum and a cubic exponential sum, which plays an important role in the cubic liftings of [30, 17]. This identity is a non-archimedean version of Nicholson’s identity for the Bessel and Airy functions.

In this work, we prove a new reciprocity identity of a four-variable character sum associated with a Dirichlet character χ(modq)\chi\,(\bmod\,q). This result is the intrinsic form of an identity of Kloosterman sums (Prop. 1.5) which should be interpreted as a twisted, non-archimedean counterpart of another Weber’s integral identity (eq. (1.15)).

Theorem 1.1.

Let q,1q,\ell\geq 1, a,b,u,va,b,u,v be integers such that ab|qab|q^{\infty} and (uv,q)=1(uv,q)=1. 111 The notation cqc\mid q^{\infty} refers to cqkc\mid q^{k} for some k1k\geq 1. Let χ(modq)\chi\,(\bmod\,q) be a Dirichlet character. Define

𝒞χ(a,u,b,v):=χ(u)α(moda)bvαq(moda)e(αu¯a)χ¯(αq+bva).\displaystyle\mathcal{C}_{\chi}^{\ell}(a,u,b,v)\ :=\ \chi(u)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(\bmod\,a)\\ bv\equiv-\alpha q\,(\bmod\,a)\end{subarray}}e\left(\frac{\ell\overline{\alpha u}}{a}\right)\overline{\chi}\left(\frac{\alpha q+bv}{a}\right). (1.4)

Then we have

𝒞χ(a,u,b,v)=e(quv¯ab)𝒞χ(b,v,a,u)¯.\displaystyle\mathcal{C}_{\chi}^{\ell}(a,u,b,v)\ =\ e\left(-\frac{\ell q\overline{uv}}{ab}\right)\,\overline{\mathcal{C}_{\chi}^{\ell}(b,v,a,u)}. (1.5)

Our identity (1.5) features the switching of parameters aba\leftrightarrow b and uvu\leftrightarrow v, despite their distinct roles in (1.4). Similar to the instances discussed earlier, (1.5) has applications to modular forms, as discussed in the next section.

1.2. Global results

There has been considerable interest in deriving the analytic continuation and functional equations of LL-functions associated with modular forms directly from their Dirichlet series, avoiding the traditional reliance on integral representations as in the cases of Hecke, Rankin and Selberg. In his seminal 1977 proceedings [39, pp. 141–142], Zagier suggested an approach based on the property that the set of holomorphic Poincaré series spans the linear space of holomorphic cusp forms. This idea was later implemented in two different cases by Goldfeld [19] and Mizumoto [32]. The method has since found various arithmetic applications as explained in e.g., Goldfeld–Zhang [20], Nelson [33], and Diamantis–O’Sullivan [13].

In his thesis [35, Chp. 3], Venkatesh gave an elegant new proof of the classical converse theorem for holomorphic modular forms of level 11, which may be viewed as a limiting variant of [19, Sect. 2] (cf. [11]). Several aspects of his approach are distinctive both conceptually and technically. Venkatesh circumvented the need for the aforementioned property of the holomorphic Poincaré series with a very neat argument. In fact, his method works equally well for non-holomorphic modular forms by utilizing the Kuznetsov trace formula in place of the Petersson trace formula which he employed in the holomorphic case. Another idea from [35] is to begin with Dirichlet polynomials instead of working directly with LL-functions. Recent works of Booker–Farmer–Lee [11] and Blomer–Leung [10] have yielded more general converse theorems using this approach.

In this article, we employ Venkatesh’s ideas to provide new, spectral proofs of the functional equation for the twisted Hecke LL-function and the Voronoi formula for holomorphic cusp forms 222attributed to Wilton in [31, Sect. 3]. , in line with the philosophy of “beyond endoscopy” (see [36]). We derive these results from a spectral identity for averages of smooth Dirichlet polynomials (Thm. 1.2), where Thm. 1.1 plays a significant role. Our work also uses the circle of techniques under “spectral reciprocity” (e.g., [7, 8]), but with several important variations as we will discuss in Sect. 1.3.

Our main results are described as follows. Let q1q\geq 1 be an integer, e(z):=e2πize(z):=e^{2\pi iz}, eq(z):=e2πiz/qe_{q}(z):=e^{2\pi iz/q}, and χ(modq)\chi\,(\bmod\,q) be a primitive Dirichlet character. The Gauss sum associated with χ\chi is defined by

ϵχ:=1qα(modq)χ(α)eq(α).\displaystyle\epsilon_{\chi}:=\frac{1}{\sqrt{q}}\sum_{\alpha\ (\mathrm{mod}\ q)}\chi(\alpha)e_{q}(\alpha). (1.6)

Suppose k(1)\mathcal{B}_{k}(1) is an orthogonal basis of holomorphic cusp forms of level 11 and weight kk, for which the Fourier expansion of fk(1)f\in\mathcal{B}_{k}(1) is given by

f(z)\displaystyle f(z)\, =n=1λf(n)nk12e(nz),\displaystyle=\,\sum_{n=1}^{\infty}\,\lambda_{f}(n)n^{\frac{k-1}{2}}e(nz), (1.7)

where λf(1)=1\lambda_{f}(1)=1, z=x+iyz=x+iy with x,yx,y\in\mathbb{R} and y>0y>0. The harmonic weighting refers to

hfk(1)hαf:=(4π)k1Γ(k1)fk(1)αff2.\displaystyle\sideset{}{{}^{h}}{\sum}_{f\in\mathcal{B}_{k}(1)}\alpha_{f}\,:=\,\frac{(4\pi)^{k-1}}{\Gamma(k-1)}\sum_{f\in\mathcal{B}_{k}(1)}\,\frac{\alpha_{f}}{||f||^{2}}.

For Res1\operatorname{Re}s\gg 1, the twisted Hecke LL-function associated with ff and χ\chi is defined by the Dirichlet series

L(s,f×χ)\displaystyle L(s,f\times\chi)\, :=n=1λf(n)χ(n)ns.\displaystyle:=\,\sum_{n=1}^{\infty}\frac{\lambda_{f}(n)\chi(n)}{n^{s}}. (1.8)

Denote by Jk1()J_{k-1}(\cdot) the JJ-Bessel function, and let

γk(s):= 2(3k)/2π(2π)sΓ(s+k12)=πsΓ(s+k122)Γ(s+k+122).\displaystyle\gamma_{k}(s)\ :=\ 2^{(3-k)/2}\sqrt{\pi}\,(2\pi)^{-s}\,\Gamma\left(s+\frac{k-1}{2}\right)\ =\ \pi^{-s}\,\Gamma\left(\frac{s+\frac{k-1}{2}}{2}\right)\Gamma\left(\frac{s+\frac{k+1}{2}}{2}\right). (1.9)
Theorem 1.2.

For any 1\ell\geq 1 and gCc(0,)g\in C_{c}^{\infty}(0,\infty), we have

hfk(1)hλf()n=1λf(n)χ(n)g(n)=2πikϵχ2qhfk(1)hλf()n=1λf(n)χ¯(n)0g(y)Jk1(4πnyq)𝑑y.\displaystyle\sideset{}{{}^{h}}{\sum}_{f\in\mathcal{B}_{k}(1)}\lambda_{f}(\ell)\sum_{n=1}^{\infty}\,\lambda_{f}(n)\chi(n)g(n)=2\pi i^{k}\frac{\epsilon_{\chi}^{2}}{q}\ \ \sideset{}{{}^{h}}{\sum}_{f\in\mathcal{B}_{k}(1)}\ \lambda_{f}(\ell)\sum_{n=1}^{\infty}\,\lambda_{f}(n)\overline{\chi}(n)\int_{0}^{\infty}g(y)J_{k-1}\left(\frac{4\pi\sqrt{ny}}{q}\right)dy. (1.10)

In Sect. 7, we isolate a single cusp form from (1.10), which requires a careful discussion on the analytic continuation and polynomial growth of L(s,f×χ)L(s,f\times\chi); see Sect. 1.3.5 and App. A. Hence, we have

Corollary 1.3.

Let fk(1)f\in\mathcal{B}_{k}(1) and χ(modq)\chi\,(\bmod\,q) be a primitive Dirichlet character. Then for any ss\in\mathbb{C},

L(s,f×χ)=ikϵχ2q12sγk(1s)γk(s)L(1s,f×χ¯).\displaystyle L(s,f\times\chi)=i^{k}\epsilon_{\chi}^{2}q^{1-2s}\,\frac{\gamma_{k}(1-s)}{\gamma_{k}(s)}L(1-s,f\times\overline{\chi}). (1.11)

Our argument for Thm. 1.2 applies to additive twists with very minor adjustments.

Corollary 1.4.

Let q1q\geq 1, (a,q)=1(a,q)=1, and aa¯1(modq)a\overline{a}\equiv 1(\bmod\,q). Then for gCc(0,)g\in C_{c}^{\infty}(0,\infty), we have

n=1λf(n)eq(an)g(n)=2πikqn=1λf(n)eq(a¯n)0g(x)Jk1(4πnxq)𝑑x.\displaystyle\sum_{n=1}^{\infty}\lambda_{f}(n)e_{q}\left(an\right)g(n)=\frac{2\pi i^{k}}{q}\sum_{n=1}^{\infty}\lambda_{f}(n)e_{q}\left(-\overline{a}n\right)\int_{0}^{\infty}g(x)J_{k-1}\left(\frac{4\pi\sqrt{nx}}{q}\right)dx. (1.12)

Alternatively, one may deduce Cor. 1.4 from Cor. 1.3 using [26, Thm. 1.3]. We refer the reader to [34], [31], [4] for other recent approaches to proving the classical Voronoi formula (1.12).

Remark 1.

We are aware of an article by Herman [23]. After a thorough review, we identified major gaps and inaccuracies in his approach, which we rectified in our work [28]. In addition, our work provided generalizations and new observations. Readers are referred to [28, Sect. 1.6] and [29] for a detailed comparison between the two works.

Remark 2.

Generalizing our main results to cusp forms of level DD with nebentypus (say primitive) should not pose significant difficulty provided that (D,q)=1(D,q)=1, apart from the need of more involved notations. This can be achieved by combining the arguments for Thm. 1.2 with that for [28, Thm. 1.2].

This work and [28] are both complementary and independent in interest, as they address different types of ramifications which require entirely different treatment of the character sums. Notably, Thm. 1.1 is unique to this paper, and the bulk of our argument, spanning Sect. 3.2 to Sect. 6, is distinct from [28]; see also our comments in Sect. 1.3.3 and Sect. 1.3.4.

Remark 3.

The manipulations of the character sums, which is the focus of this paper, carry over to the non-holomorphic case. In the non-holomorphic case, it suffices to apply the Kuznetsov trace formula and adapt the argument for Prop. A.1 to account for the different weight functions.

1.3. A road map for Theorem 1.2

Although we initially represent the LL-functions in terms of their Dirichlet series, the essential components of our argument are inherently local; see Thm. 1.1, Prop. 1.5 and eq. (1.15). In Sects. 3.13.2, we apply the Petersson formula and Poisson summation to the left-hand side of (1.10), getting

g()χ()+2πikqc11c2m𝒟^χ(m,c)0g(y)Jk1(4πyc)ecq(my)𝑑y,\displaystyle g(\ell)\chi(\ell)+\frac{2\pi i^{-k}}{q}\,\sum_{c\geq 1}\,\frac{1}{c^{2}}\sum_{m\in\mathbb{Z}}\,\widehat{\mathcal{D}}_{\chi}^{\ell}(m,c)\int_{0}^{\infty}g(y)J_{k-1}\bigg{(}\frac{4\pi\sqrt{y\ell}}{c}\bigg{)}e_{cq}(-my)dy, (1.13)

where 𝒟χ(m,c):=χ(m)S(m,;c)\mathcal{D}_{\chi}^{\ell}(m,c):=\chi(m)S(m,\ell;c), and

𝒟^χ(m,c):=γ(cq)𝒟χ(γ,c)ecq(mγ)=γ(cq)χ(α)S(γ,;c)ecq(mγ).\displaystyle\widehat{\mathcal{D}}_{\chi}^{\ell}(m,c):=\sum_{\gamma\,(cq)}\,\mathcal{D}_{\chi}^{\ell}(\gamma,c)e_{cq}(m\gamma)=\sum_{\gamma\,(cq)}\chi(\alpha)S(\gamma,\ell;c)e_{cq}(m\gamma). (1.14)

1.3.1. Two dualities

The adelic viewpoint suggests that Jk1J_{k-1} serves as the archimedean counterpart of S(m,;n)S(m,\ell;n). Correspondingly, our argument hinges on two intriguing geometric dualities, one for the Fourier–Hankel transform of Jk1J_{k-1} and the other for the finite Fourier transform 𝒟^χ(,c)\widehat{\mathcal{D}}_{\chi}^{\ell}(\ \cdot\ ,c).

The first duality is commonly known as Weber’s second exponential integral identity (Lem. 2.4):

0e(αy)Jk1(4πβy)Jk1(4πγy)𝑑y=ie(sgn(α)k14)12παJk1(4πβγ|α|)e(β2+γ2α).\displaystyle\int_{0}^{\infty}e(\alpha y)J_{k-1}(4\pi\beta\sqrt{y})J_{k-1}(4\pi\gamma\sqrt{y})dy=ie\left(\operatorname{sgn}(\alpha)\frac{k-1}{4}\right)\cdot\frac{1}{2\pi\alpha}\,\cdot\,J_{k-1}\left(\frac{4\pi\beta\gamma}{|\alpha|}\right)\cdot e\left(-\frac{\beta^{2}+\gamma^{2}}{\alpha}\right). (1.15)

The Hankel inversion formula (Lem. 2.3) is a limiting form of (1.15). In Sect. 4.1, we will apply Hankel’s formula and Weber’s identity successively. The second duality is a twisted, non-archimedean analogue of (1.15):

Proposition 1.5.

Let ,m,c\ell,m,c\in\mathbb{Z} with m,c1m,c\geq 1 and χ(modq)\chi\,(\bmod\,q) be a primitive character. Then

𝒟^χ(m,c)=(ϵχ)2cm𝒟^χ(c,m)¯e(1mc).\displaystyle\widehat{\mathcal{D}}_{\chi}^{\ell}(m,c)\,=\,(\epsilon_{\chi})^{2}\,\cdot\,\frac{c}{m}\,\cdot\,\overline{\widehat{\mathcal{D}}_{\chi}^{\ell}(c,m)}\,\cdot\,e\left(-\frac{1}{mc}\right). (1.16)

Prop. 1.5, whose proof relies on Thm. 1.1, is non-trivial. A sketch will be provided in Section 1.3.3.

1.3.2. Multiplicative (analytic–arithmetic) cancellation

The next step is to apply Poisson summation to the cc-sum in (1.13), though an observant reader might question its applicability due to the apparent singularity at c=0c=0. However, the factor 1/c21/c^{2} of (1.13) is cancelled out upon inserting (1.16) and (1.15) (with appropriately chosen α,β,γ\alpha,\beta,\gamma)! Additionally, the factor e(1/mc)e(-1/mc) from (1.16) perfectly cancels the final exponential factor in (1.15), paving the way for the two upcoming steps.

This technical feature is also crucial in previous works on beyond endoscopy, where the Selberg trace formula was analyzed and the singularities from the archimedean orbital integrals are more subtle (see [3, Sect. 4], [21], [16, Sect. 6]). Once again, smoothing of these singularities is necessary for Poisson summation, but this requires delicate use of an approximate functional equation and the class number formula.

1.3.3. Three-fold reciprocity and local analysis

In (1.14) (cf. Sect. 3.3), we apply a first additive reciprocity:

m¯c+c¯m1mc(mod 1).\displaystyle\frac{\overline{m}}{c}\ +\ \frac{\overline{c}}{m}\ \equiv\ \frac{1}{mc}\ \ (\bmod\,1). (1.17)

In Sect. 4.2, we split the cc- and mm-sums in (1.13) appropriately. One roughly gets:

ϵχq3/2c0|qm0qm1(m,q)=11m0mc0(c,mq)=1ec0m0m(qc¯)𝒞χ(c0,c,m0,m)×(archimedean part),\displaystyle\frac{\epsilon_{\chi}}{q^{3/2}}\sum_{c_{0}|q^{\infty}}\,\sum_{m_{0}\mid q^{\infty}}\,\sum_{\begin{subarray}{c}m^{\prime}\geq 1\\ (m^{\prime},q)=1\end{subarray}}\,\frac{1}{m_{0}m^{\prime}}\sum_{\begin{subarray}{c}c^{\prime}\neq 0\\ (c^{\prime},m^{\prime}q)=1\end{subarray}}\,e_{c_{0}m_{0}m^{\prime}}(\ell q\overline{c^{\prime}}\,)\mathcal{C}_{\chi}^{\ell}(c_{0},c^{\prime},m_{0},m^{\prime})\,\times\,(\text{archimedean part}), (1.18)

where 𝒞χ()\mathcal{C}_{\chi}^{\ell}(\cdots) is the character sum defined in Thm. 1.1. See (4.2) for the precise expressions.

The character sum (1.4) exhibits twisted multiplicativity (Lem. 4.1), enabling a local analysis. Thm. 1.1 follows from the method of pp-adic stationary phase ([25, Chp. 12.3]) to be carried out in Sect. 5, along with a second use of (1.17); see (5.2). Our proof of (1.5), and hence Thm. 1.2, is non-trivial even when qq is a prime.

A third use of (1.17) allows us to combine the exponential phase of (1.5) with that of (1.18), then a second copy of ϵχ\epsilon_{\chi} arises upon opening up 𝒞χ¯()\overline{\mathcal{C}_{\chi}^{\ell}}(\cdots) by its definition (1.4) and gluing variables back together; see (6.5) of Sect. 6. Now, Prop. 1.5 follows from this. The factor (ϵχ)2(\epsilon_{\chi})^{2} from (1.16) will become the root number of (1.11).

1.3.4. Additive cancellations and back to the global aspect

There are two subtle yet crucial cancellations of terms when proving Thm. 1.2. Namely, the diagonal term and dual zeroth frequency from the first applications of Petersson formula and Poisson summation cancel perfectly with the zeroth term (on the physical side) and diagonal term from the second applications of Poisson summation and Petersson formula, respectively. The first cancellation uses the Hankel inversion formula and the fact that |ϵχ|=1|\epsilon_{\chi}|=1.

Thm. 1.2 follows from the observations above, the interchange of roles between the cc-sum and mm-sum in (1.13), as well as the backward applications of the Poisson and Petersson formulae in Sect. 6.

In Sect. 7, we deduce Cor. 1.3 from Thm. 1.2. This requires analytic inputs from App. A such that a series of contour shifts is justified. The associated subtleties will be discussed below in Sect. 1.3.5.

1.3.5. Remarks on analytic continuation

Obtaining analytic continuation to Res>1/2δ\operatorname{Re}s>1/2-\delta, for some absolute δ>0\delta>0, is crucial as a prerequisite for discussing the functional equation. However, this is non-trivial for methods based on Dirichlet series. For example, using his refined analysis of the Eichler–Selberg trace formula [3, 1], Altuğ established holomorphy for the standard LL-function of Ramanujan’s Δ\Delta-function only in Res>31/32\operatorname{Re}s>31/32; see [2, Cor. 1.2]. Other methods also fall short of reaching Res>1/2δ\operatorname{Re}s>1/2-\delta, as illustrated in [38], [18], [35, Prop. 10], [22], and [15].

In [35, Chp. 2.6], Venkatesh had the idea of embedding the holomorphic cusp forms of weight kk and level 11 into the full spectrum of L2L^{2}-automorphic forms of level 11, consisting of Maass cusp forms of weight 0, holomorphic cusp forms of all weights and the Eisenstein series. Thus, an arbitrary smooth compactly test function on (0,)(0,\infty) can be put on the geometric side of the trace formula, i.e., using the arithmetic Kuznetsov (or Petersson–Kuznetsov) trace formula (see [25, Thm. 16.5]). This simplifies the analysis, reducing it to handling a basic Fourier integral. For some spectral test functions HH, one has

hf: full spectrum of level 1hH(tf)λf()ng(n/X)λf(n)χ(n)=OA(XA)(X).\displaystyle\sideset{}{{}^{h}}{\sum}_{\begin{subarray}{c}f:\text{ full spectrum }\\ \text{of level $1$}\end{subarray}}\,H(t_{f})\lambda_{f}(\ell)\,\sum_{n}\,g(n/X)\lambda_{f}(n)\chi(n)=O_{A}(X^{-A})\hskip 25.0pt(X\to\infty). (1.19)

The goal is to deduce an entire continuation of L(s,f×χ)L(s,f\times\chi) from (1.19).

However, the space of admissible spectral test functions HH is somewhat limited and the technical challenge lies in constructing a test function in this space that “effectively” isolates a specific part of the spectrum. This problem was addressed in [35, Chp. 6.3] by an elaborate analysis of the Sears–Titchmarsh transform. In [35, p. 50], an extra technical assumption concerning the growth in spectral parameters (Laplace eigenvalues/weights) is needed (cf. [35, eq. (2.35)] and [38, Rmk. 3.17]).

In App. A, we address this technicality by applying the Petersson and Poisson formulae, resulting in a more intricate oscillatory integral. We use the stationary calculus of [9] to show that L(s,f×χ)L(s,f\times\chi) admits an analytic continuation and has polynomial growth on Res>(k6)/2\operatorname{Re}s>-(k-6)/2.

1.4. Acknowledgement

The research is supported by the EPSRC grant: EP/W009838/1.

2. Preliminaries

Let ϕCc()\phi\in C_{c}^{\infty}(\mathbb{R}) and  ψCc(0,)\psi\in C_{c}^{\infty}(0,\infty). The Fourier transform of ϕ\phi and the Mellin transform of ψ\psi are

ϕ^(y):=ϕ(x)e(xy)𝑑x(y) and ψ~(s):=0ψ(x)xs1𝑑x(s),\displaystyle\widehat{\phi}(y):=\int_{\mathbb{R}}\ \phi(x)e(-xy)dx\hskip 10.0pt(y\in\mathbb{R})\hskip 10.0pt\text{ and }\hskip 10.0pt\widetilde{\psi}(s):=\int_{0}^{\infty}\psi(x)x^{s-1}dx\hskip 10.0pt(s\in\mathbb{C}),

respectively. Their inversion formulae, which hold whenever the integrals converge absolutely, are

ϕ(x)=ϕ^(y)e(xy)dy=:ϕ^ˇ(x) and ψ(x)=(σ)ψ~(s)xsds2πi.\displaystyle\phi(x)=\int_{\mathbb{R}}\widehat{\phi}(y)e(xy)dy=:\check{\widehat{\phi}}(x)\hskip 10.0pt\text{ and }\hskip 10.0pt\psi(x)=\int_{(\sigma)}\widetilde{\psi}(s)x^{-s}\frac{ds}{2\pi i}. (2.1)

For k1k\geq 1, the JJ-Bessel functions can be defined by the series

Jk1(z):=r=0(1)rr!(r+k1)!(z2)k1+2r,\displaystyle J_{k-1}(z)\,:=\,\sum_{r=0}^{\infty}\,\frac{(-1)^{r}}{r!(r+k-1)!}\left(\frac{z}{2}\right)^{k-1+2r}, (2.2)

which converges pointwise absolutely and uniformly on compact subsets of \mathbb{C}. From [37, Sect. p. 192], they admit the following absolutely convergent Mellin–Barnes representation:

Lemma 2.1.

Let k2k\geq 2 and γk(s)\gamma_{k}(s) be defined in (1.9). Then

Jk1(4πx)=12π(σ)γk(1s)γk(s)x2(s1)ds2πi,x>0,1<σ<(k+1)/2.\displaystyle J_{k-1}(4\pi x)=\frac{1}{2\pi}\,\int_{(\sigma)}\frac{\gamma_{k}(1-s)}{\gamma_{k}(s)}x^{2(s-1)}\frac{ds}{2\pi i},\hskip 20.0ptx>0,\hskip 10.0pt1<\sigma<(k+1)/2. (2.3)

Let FCc(0,)F\in C_{c}^{\infty}(0,\infty) and k2k\geq 2. Then the Hankel transform of FF is defined by

(kF)(a)\displaystyle(\mathcal{H}_{k}F)(a) :=2π0F(x)Jk1(4πax)𝑑x(a> 0).\displaystyle:=2\pi\int_{0}^{\infty}F(x)J_{k-1}(4\pi\sqrt{ax})dx\hskip 20.0pt(a\,>\,0). (2.4)

The rapid decay of kF\mathcal{H}_{k}F can be deduced by integrating-by-parts many times in (2.4) using

Jk1(2πx)=Wk(x)e(x)+Wk¯(x)e(x)(x>0),\displaystyle J_{k-1}\left(2\pi x\right)=W_{k}(x)e(x)+\overline{W_{k}}(x)e(-x)\hskip 15.0pt(x>0), (2.5)

where WkW_{k} is a smooth function satisfying xj(jWk)(x)j,k1/xx^{j}(\partial^{j}W_{k})(x)\ll_{j,k}1/\sqrt{x} for any j0j\geq 0; see [37, p. 206].

Lemma 2.2.

For k>2k>2 and j{0,1,2,3}j\in\{0,1,2,3\} we have

(kF)(j)(a)ka(k2j1)/2 for 0<a<1.\displaystyle(\mathcal{H}_{k}F)^{(j)}(a)\ \ll_{k}\ a^{(k-2j-1)/2}\hskip 20.0pt\text{ for }\hskip 10.0pt0<a<1. (2.6)

This follows directly from the recurrence 2Jk(z)=Jk1(z)Jk+1(z)2J_{k}^{\prime}(z)=J_{k-1}(z)-J_{k+1}(z), and the estimate

Jk1(y)kyk1 for y> 0.\displaystyle J_{k-1}(y)\ \ll_{k}\ y^{k-1}\hskip 10.0pt\text{ for }\hskip 10.0pty\ >\ 0. (2.7)

From [37, Sects.14.3–4] and [37, Chp. 13.31], we have the following well-known results.

Lemma 2.3 (Hankel inversion formula).

For any FCc(0,)F\in C_{c}^{\infty}(0,\infty), we have

(kkF)(b)=F(b)(b> 0).\displaystyle(\mathcal{H}_{k}\circ\mathcal{H}_{k}F)(b)\ =\ F(b)\hskip 20.0pt(b\ >\ 0). (2.8)
Lemma 2.4.

Let k2k\geq 2, Reα>0\operatorname{Re}\alpha>0, and β,γ>0\beta,\gamma>0. Then

0e2παyJk1(4πβy)Jk1(4πγy)𝑑y\displaystyle\int_{0}^{\infty}e^{-2\pi\alpha y}J_{k-1}(4\pi\beta\sqrt{y})J_{k-1}(4\pi\gamma\sqrt{y})dy =i1k2παJk1(4πiβγα)exp(2πβ2+γ2α).\displaystyle=\frac{i^{1-k}}{2\pi\alpha}\,J_{k-1}\left(\frac{4\pi i\beta\gamma}{\alpha}\right)\exp\left(-2\pi\frac{\beta^{2}+\gamma^{2}}{\alpha}\right). (2.9)
Remark 4.

While Bessel functions with positive arguments are more common in the analytic theory of automorphic forms (e.g., (1.12) or (2.11)), it will be technically convenient to invoke those with complex arguments as intermediates in our case. Also, the integral identity (2.9) is a variant of (1.15), where the latter only converges conditionally.

Lemma 2.5.

[9, Lem. 8.1] Let hC[α,β]h\in C^{\infty}[\alpha,\beta] be a real-valued function and wCc[α,β]w\in C_{c}^{\infty}[\alpha,\beta]. Suppose there exist W,V,H,G,R>0W,V,H,G,R>0 such that for any t[α,β]t\in[\alpha,\beta], we have w(j)(t)jW/Vjw^{(j)}(t)\,\ll_{j}\,W/V^{j} for any j0j\geq 0, h(j)(t)jH/Gjh^{(j)}(t)\ll_{j}H/G^{j} for any j2j\geq 2, and |h(t)|R|h^{\prime}(t)|\,\geq\,R. Then for any A0A\geq 0, we have

w(t)e(h(t))𝑑tA(βα)W(1RV+1RG+H(RG)2)A.\displaystyle\int_{\mathbb{R}}\,w(t)e\left(h(t)\right)\ dt\ \ll_{A}\ \left(\beta-\alpha\right)W\left(\frac{1}{RV}\ +\ \frac{1}{RG}\ +\ \frac{H}{(RG)^{2}}\right)^{A}. (2.10)

From [25, Prop. 14.5 and Lem. 14.10] and [25, Chp. 4.3], we have the following:

Lemma 2.6 (Petersson trace formula).

Let k(1)\mathcal{B}_{k}(1) be an orthogonal basis of holomorphic cuspidal Hecke eigenforms of level 11 and weight kk. For any ,n1\ell,n\geq 1, we have 333 In this article, we use δ()\delta(\cdots) to denote the indicator function with respect to the condition ()(\cdots).

hfk(1)hλf()λf(n)=δ(n=)+ 2πikc=1S(n,;c)cJk1(4πnc).\displaystyle\sideset{}{{}^{h}}{\sum}_{f\in\mathcal{B}_{k}(1)}\ \lambda_{f}(\ell)\lambda_{f}(n)\ =\ \delta(n=\ell)\ +\ 2\pi i^{-k}\,\sum_{c=1}^{\infty}\ \frac{S(n,\ell;c)}{c}\,J_{k-1}\left(\frac{4\pi\sqrt{n\ell}}{c}\right). (2.11)
Lemma 2.7 (Poisson summation).

Let c,X>0c,X>0 and cc\in\mathbb{Z}. For VCc()V\in C_{c}^{\infty}(\mathbb{R}), and K:K:\mathbb{Z}\rightarrow\mathbb{C} be cc-periodic,

nV(n/X)K(n)=Xcm(γ(c)K(γ)ec(mγ))0V(y)e(mXyc)𝑑y.\displaystyle\sum_{n\in\mathbb{Z}}V(n/X)K(n)=\frac{X}{c}\sum_{m\in\mathbb{Z}}\,\bigg{(}\,\sum_{\gamma(c)}\ K(\gamma)\,e_{c}\left(m\gamma\right)\bigg{)}\int_{0}^{\infty}V(y)e\left(-\frac{mXy}{c}\right)dy. (2.12)

3. Setting the stage: Petersson–Poisson–Reciprocity

Sects. 36 are devoted to proving Thm. 1.2. Let gCc(0,)g\in C_{c}^{\infty}(0,\infty) be a given test function. Define

Ik(;χ):=n=1g(n)χ(n)hfk(1)hλf()λf(n).\displaystyle I_{k}(\ell;\chi)\ :=\ \sum_{n=1}^{\infty}\ g(n)\chi(n)\ \sideset{}{{}^{h}}{\sum}_{f\in\mathcal{B}_{k}(1)}\lambda_{f}(\ell)\lambda_{f}(n). (3.1)

Our analysis of this article applies to all even integers k6k\geq 6, though it is well-known by the Riemann–Roch theorem that there is no non-zero holomorphic cusp form of level 11 and weight k<12k<12.

3.1. Step 1: Petersson trace formula

Applying (2.11) to (3.1), followed by opening up the Kloosterman sums by its definition, we obtain

Ik(;χ)=g()χ()+ 2πikc=1c1x(c)ec(x¯)ng(n)χ(n)Jk1(4πnc)ec(nx).\displaystyle I_{k}(\ell;\chi)=g(\ell)\chi(\ell)\ +\ 2\pi i^{-k}\sum_{c=1}^{\infty}\ c^{-1}\ \sideset{}{{}^{*}}{\sum}_{x\,(c)}\,e_{c}\left(\ell\overline{x}\right)\sum_{n}\ g(n)\chi(n)\,J_{k-1}\left(\frac{4\pi\sqrt{n\ell}}{c}\right)\,e_{c}(nx). (3.2)

3.2. Step 2: Poisson summation

We apply Lem. 2.7 to the nn-sum of (3.2), which gives

Ik(;χ)=\displaystyle I_{k}(\ell;\chi)= g()χ()+ 2πikc=11cx(c)ec(x¯)1cqm(γ(cq)χ(γ)ec(γx)ecq(mγ))0g(y)Jk1(4πyc)e(mycq)𝑑y.\displaystyle\ g(\ell)\chi(\ell)\,+\,2\pi i^{-k}\sum_{c=1}^{\infty}\,\frac{1}{c}\,\sideset{}{{}^{*}}{\sum}_{x\,(c)}e_{c}\left(\ell\overline{x}\right)\cdot\frac{1}{cq}\,\sum_{m}\ \bigg{(}\,\sum_{\gamma\,(cq)}\chi(\gamma)e_{c}\left(\gamma x\right)e_{cq}\left(m\gamma\right)\bigg{)}\int_{0}^{\infty}g(y)J_{k-1}\bigg{(}\frac{4\pi\sqrt{y\ell}}{c}\bigg{)}e\bigg{(}-\frac{my}{cq}\bigg{)}\,dy.

The γ\gamma-sum can be decomposed via γ=α+βq\gamma=\alpha+\beta q with α(modq)\alpha\,(\bmod\,q) and β(modc)\beta\,(\bmod\,c), i.e.,

γ(cq)χ(γ)ec(γx)ecq(mγ)=\displaystyle\sum_{\gamma\,(cq)}\ \chi(\gamma)e_{c}\left(\gamma x\right)e_{cq}\left(m\gamma\right)\ = α(q)β(c)χ(α)ecq((α+βq)(qx+m))\displaystyle\ \sum_{\alpha\,(q)}\sum_{\beta\,(c)}\chi(\alpha)e_{cq}\left((\alpha+\beta q)(qx+m)\right)
=\displaystyle\ = cδ(xqm(c))α(q)χ(α)eq(α(qx+m)/c)\displaystyle\ c\,\delta(xq\equiv-m\,(c))\sum_{\alpha\,(q)}\chi(\alpha)e_{q}\left(\alpha(qx+m)/c\right)
=\displaystyle\ = cqϵχδ(xqm(c))χ¯(qx+mc),\displaystyle\ c\sqrt{q}\epsilon_{\chi}\delta(xq\equiv-m\,(c))\overline{\chi}\left(\frac{qx+m}{c}\right), (3.3)

where the last line follows from the primitivity of χ(modq)\chi\,(\bmod\,q); see [25, eq. (3.12)]. Hence, we get

Ik(;χ)=g()χ()+ 2πikϵχqc=1c1x(c)ec(x¯)\displaystyle I_{k}(\ell;\chi)=g(\ell)\chi(\ell)\,+\,2\pi i^{-k}\frac{\epsilon_{\chi}}{\sqrt{q}}\sum_{c=1}^{\infty}\,c^{-1}\ \sideset{}{{}^{*}}{\sum}_{x\,(c)}\,e_{c}\left(\ell\overline{x}\right)\, mxq(c)χ¯(qx+mc)0g(y)Jk1(4πyc)e(mycq)𝑑y.\displaystyle\sum_{m\equiv-xq\,(c)}\,\overline{\chi}\left(\frac{qx+m}{c}\right)\int_{0}^{\infty}\,g(y)J_{k-1}\bigg{(}\frac{4\pi\sqrt{y\ell}}{c}\bigg{)}e\bigg{(}-\frac{my}{cq}\bigg{)}dy. (3.4)

We split the cc-sum of (3.4) by c=c0cc=c_{0}c^{\prime}, where c0:=(c,q)c_{0}:=(c,q^{\infty}) and (c,q)=1(c^{\prime},q)=1. In particular, we have

x(c)mxq(c)ec(x¯)χ¯(qx+mc)=χ(c)ec(qc0m¯)α(c0)mαq(c0)ec0(αc¯)χ¯(αq+mc0).\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}x\,(c)\\ m\equiv-xq\,(c)\end{subarray}}\,e_{c}\left(\ell\overline{x}\right)\overline{\chi}\left(\frac{qx+m}{c}\right)\ =\ \chi(c^{\prime})e_{c^{\prime}}\left(-\ell q\overline{c_{0}m}\right)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(c_{0})\\ m\equiv-\alpha q\,(c_{0})\end{subarray}}e_{c_{0}}\left(\ell\overline{\alpha c^{\prime}}\right)\overline{\chi}\bigg{(}\frac{\alpha q+m}{c_{0}}\bigg{)}. (3.5)

Notice that the dual zeroth frequency (i.e., the term m=0m=0) of (3.4) is non-vanishing only when c0|qc_{0}|q and c=1c^{\prime}=1. In this case, the α\alpha-sum is given by

α(c0)ec0(α¯)χ¯(αqc0)=δ(c0=q)α(q)χ¯(α)eq(α¯)=qϵχχ¯().\displaystyle\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\alpha\,(c_{0})}e_{c_{0}}\left(\ell\overline{\alpha}\right)\overline{\chi}\left(\alpha\frac{q}{c_{0}}\right)\ =\ \delta(c_{0}=q)\sum_{\alpha\,(q)}\overline{\chi}(\alpha)e_{q}\left(\ell\overline{\alpha}\right)\ =\ \sqrt{q}\epsilon_{\chi}\overline{\chi}(\ell).

We extract the zeroth frequency from the rest of the frequencies, resulting in the expression:

Ik(;χ)=g()χ()\displaystyle I_{k}(\ell;\chi)\,=\,g(\ell)\chi(\ell)\ + 2πikϵχ2qχ¯()0g(y)Jk1(4πyq)𝑑y+Sk(;χ),\displaystyle+\ 2\pi i^{-k}\frac{\epsilon_{\chi}^{2}}{q}\overline{\chi}(\ell)\int_{0}^{\infty}\,g(y)J_{k-1}\bigg{(}\frac{4\pi\sqrt{y\ell}}{q}\bigg{)}\,dy\,+\,S_{k}(\ell;\chi), (3.6)

where

Sk(;χ):=\displaystyle S_{k}(\ell;\chi)\ :=\ 2πikϵχqc0|qc1(c,q)=1m0(m,c)=1χ(c)c0cec(qc0m¯)α(c0)mαq(c0)ec0(αc¯)χ¯(αq+mc0)\displaystyle\ 2\pi i^{-k}\frac{\epsilon_{\chi}}{\sqrt{q}}\sum_{c_{0}|q^{\infty}}\sum_{\begin{subarray}{c}c^{\prime}\geq 1\\ (c^{\prime},q)=1\end{subarray}}\sum_{\begin{subarray}{c}m\neq 0\\ (m,c^{\prime})=1\end{subarray}}\ \frac{\chi(c^{\prime})}{c_{0}c^{\prime}}\,e_{c^{\prime}}\left(-\ell q\overline{c_{0}m}\right)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(c_{0})\\ m\equiv-\alpha q\,(c_{0})\end{subarray}}e_{c_{0}}\left(\ell\overline{\alpha c^{\prime}}\right)\overline{\chi}\left(\frac{\alpha q+m}{c_{0}}\right)
×0g(y)Jk1(4πyc0c)e(myc0cq)dy.\displaystyle\hskip 213.39566pt\times\int_{0}^{\infty}\,g(y)\,J_{k-1}\bigg{(}\frac{4\pi\sqrt{y\ell}}{c_{0}c^{\prime}}\bigg{)}e\bigg{(}-\frac{my}{c_{0}c^{\prime}q}\bigg{)}\,dy. (3.7)

3.3. Step 3: Additive reciprocity.

Applying (1.17) to the factor ec(qc0m¯)e_{c^{\prime}}\left(-\ell q\overline{c_{0}m}\right) in (3.2), it follows that

Sk(;χ)=\displaystyle S_{k}(\ell;\chi)\ =\ 2πikϵχqc0|qc1(c,q)=1m0(m,c)=1χ(c)c0ce(qc¯c0mqc0cm)α(c0)mαq(c0)ec0(αc¯)χ¯(αq+mc0)\displaystyle\ 2\pi i^{-k}\frac{\epsilon_{\chi}}{\sqrt{q}}\sum_{c_{0}|q^{\infty}}\sum_{\begin{subarray}{c}c^{\prime}\geq 1\\ (c^{\prime},q)=1\end{subarray}}\sum_{\begin{subarray}{c}m\neq 0\\ (m,c^{\prime})=1\end{subarray}}\ \frac{\chi(c^{\prime})}{c_{0}c^{\prime}}\ e\left(\frac{\ell q\overline{c^{\prime}}}{c_{0}m}-\frac{\ell q}{c_{0}c^{\prime}m}\right)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(c_{0})\\ m\equiv-\alpha q\,(c_{0})\end{subarray}}e_{c_{0}}\left(\ell\overline{\alpha c^{\prime}}\right)\overline{\chi}\left(\frac{\alpha q+m}{c_{0}}\right)
×0g(y)Jk1(4πyc0c)e(myc0cq)dy.\displaystyle\hskip 199.16928pt\times\int_{0}^{\infty}\,g(y)J_{k-1}\bigg{(}\frac{4\pi\sqrt{y\ell}}{c_{0}c^{\prime}}\bigg{)}e\bigg{(}-\frac{my}{c_{0}c^{\prime}q}\bigg{)}\,dy. (3.8)

4. Step 4: Preparation on the c0,cc_{0},c^{\prime}-sums

To prepare for Poisson summation in the c0,cc_{0},c^{\prime}-sums and for swapping the roles of mm and c0cc_{0}c^{\prime} at a later stage, two crucial components are needed:

  • (Analytic) Transform the cc^{\prime}-sum with c1c^{\prime}\geq 1 in (3.3) to a sum over all integers, and remove the singularity at c=0c^{\prime}=0 by suitable analytic manipulations;

  • (Arithmetic) Transform the character sum in (3.3) into a suitable form that facilitates the eventual combination of c0c_{0}- and cc^{\prime}-sum.

The second point requires a fairly intricate analysis of character sums, see Sects. 4.26.1.

4.1. Step 4.1: Analytic preparation

The cc^{\prime}-sum of (3.3) can be rewritten to sum over all non-zero integers. Indeed, observe that the contribution from m<0m<0 in (3.3) is given by

2πikϵχqc0|qc1(c,q)=1m1(m,c)=1χ(c)c0ce(qc¯c0m+qc0cm)α(c0)mαq(c0)ec0(αc¯)χ¯(αq+mc0)\displaystyle\hskip 20.0pt2\pi i^{-k}\frac{\epsilon_{\chi}}{\sqrt{q}}\sum_{c_{0}|q^{\infty}}\sum_{\begin{subarray}{c}c^{\prime}\geq 1\\ (c^{\prime},q)=1\end{subarray}}\,\sum_{\begin{subarray}{c}m\geq 1\\ (m,c^{\prime})=1\end{subarray}}\ \frac{\chi(c^{\prime})}{c_{0}c^{\prime}}\,e\left(-\frac{\ell q\overline{c^{\prime}}}{c_{0}m}+\frac{\ell q}{c_{0}c^{\prime}m}\right)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(c_{0})\\ m\equiv-\alpha q\,(c_{0})\end{subarray}}e_{c_{0}}\left(-\ell\overline{\alpha c^{\prime}}\right)\overline{\chi}\left(-\frac{\alpha q+m}{c_{0}}\right)
×0g(y)Jk1(4πyc0c)e(myc0cq)dy,\displaystyle\hskip 199.16928pt\times\int_{0}^{\infty}\,g(y)\,J_{k-1}\left(\frac{4\pi\sqrt{y\ell}}{c_{0}c^{\prime}}\right)e\left(\frac{my}{c_{0}c^{\prime}q}\right)\ dy, (4.1)

upon making the changes of variables mmm\mapsto-m and αα\alpha\mapsto-\alpha. The change of variables ccc^{\prime}\mapsto-c^{\prime} and the fact that Jk1(x)=Jk1(x)J_{k-1}(-x)=-J_{k-1}(x) (follows from (2.2) and k2k\in 2\mathbb{N}) allow us to rewrite (4.1) as:

2πikϵχqc0|qc1(c,q)=1m1(m,c)=1χ(c)c0ce(qc¯c0mqc0cm)α(c0)mαq(c0)ec0(αc¯)χ¯(αq+mc0)\displaystyle 2\pi i^{-k}\frac{\epsilon_{\chi}}{\sqrt{q}}\sum_{c_{0}|q^{\infty}}\sum_{\begin{subarray}{c}c^{\prime}\leq-1\\ (c^{\prime},q)=1\end{subarray}}\sum_{\begin{subarray}{c}m\geq 1\\ (m,c^{\prime})=1\end{subarray}}\ \frac{\chi(c^{\prime})}{c_{0}c^{\prime}}\,e\left(\frac{\ell q\overline{c^{\prime}}}{c_{0}m}-\frac{\ell q}{c_{0}c^{\prime}m}\right)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(c_{0})\\ m\equiv-\alpha q\,(c_{0})\end{subarray}}e_{c_{0}}\left(\ell\overline{\alpha c^{\prime}}\right)\overline{\chi}\left(\frac{\alpha q+m}{c_{0}}\right)
×0g(y)Jk1(4πyc0c)e(myc0cq)dy.\displaystyle\hskip 176.407pt\times\int_{0}^{\infty}\,g(y)\,J_{k-1}\left(\frac{4\pi\sqrt{y\ell}}{c_{0}c^{\prime}}\right)e\left(-\frac{my}{c_{0}c^{\prime}q}\right)\ dy.

Hence, the expression (3.3) becomes:

Sk(;χ)=\displaystyle S_{k}(\ell;\chi)\ =\ 2πikϵχqc0|qc0(c,q)=1m1(m,c)=1χ(c)c0ce(qc¯c0mqc0cm)α(c0)mαq(c0)ec0(αc¯)χ¯(αq+mc0)\displaystyle\ 2\pi i^{-k}\frac{\epsilon_{\chi}}{\sqrt{q}}\sum_{c_{0}|q^{\infty}}\sum_{\begin{subarray}{c}c^{\prime}\neq 0\\ (c^{\prime},q)=1\end{subarray}}\sum_{\begin{subarray}{c}m\geq 1\\ (m,c^{\prime})=1\end{subarray}}\ \frac{\chi(c^{\prime})}{c_{0}c^{\prime}}\,e\left(\frac{\ell q\overline{c^{\prime}}}{c_{0}m}-\frac{\ell q}{c_{0}c^{\prime}m}\right)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(c_{0})\\ m\equiv-\alpha q\,(c_{0})\end{subarray}}e_{c_{0}}\left(\ell\overline{\alpha c^{\prime}}\right)\overline{\chi}\left(\frac{\alpha q+m}{c_{0}}\right)
×0g(y)Jk1(4πyc0c)e(myc0cq)dy.\displaystyle\hskip 156.49014pt\times\int_{0}^{\infty}\,g(y)\,J_{k-1}\left(\frac{4\pi\sqrt{y\ell}}{c_{0}c^{\prime}}\right)e\left(-\frac{my}{c_{0}c^{\prime}q}\right)\ dy. (4.2)

The last integral converges absolutely since gCc(0,)g\in C_{c}^{\infty}(0,\infty). By the dominated convergence theorem,

0g(y)Jk1(4πyc0c)e(myc0cq)𝑑y=limϵ0+0g(y)Jk1(4πyc0c)exp(2π(ϵ+imc0cq)y)𝑑y.\displaystyle\int_{0}^{\infty}g(y)J_{k-1}\left(\frac{4\pi\sqrt{y\ell}}{c_{0}c^{\prime}}\right)e\left(-\frac{my}{c_{0}c^{\prime}q}\right)dy=\lim_{\epsilon\to 0+}\int_{0}^{\infty}g(y)J_{k-1}\left(\frac{4\pi\sqrt{y\ell}}{c_{0}c^{\prime}}\right)\exp\left(-2\pi\left(\epsilon+\frac{im}{c_{0}c^{\prime}q}\right)y\right)dy.

The Hankel inversion formula (Lem. 2.3) with the change of variables xx/q2x\to x/q^{2} give

0g(y)\displaystyle\hskip 5.0pt\int_{0}^{\infty}g(y) Jk1(4πyc0c)e(myc0cq)dy\displaystyle J_{k-1}\left(\frac{4\pi\sqrt{y\ell}}{c_{0}c^{\prime}}\right)e\left(-\frac{my}{c_{0}c^{\prime}q}\right)dy
=2πq2limϵ0+0(kg)(x/q2)0Jk1(4πxyq)Jk1(4πyc0c)exp(2π(ϵ+imc0cq)y)𝑑y𝑑x,\displaystyle=\frac{2\pi}{q^{2}}\lim_{\epsilon\to 0+}\int_{0}^{\infty}(\mathcal{H}_{k}g)\left(x/q^{2}\right)\int_{0}^{\infty}J_{k-1}\left(\frac{4\pi\sqrt{xy}}{q}\right)J_{k-1}\left(\frac{4\pi\sqrt{y\ell}}{c_{0}c^{\prime}}\right)\exp\left(-2\pi\left(\epsilon+\frac{im}{c_{0}c^{\prime}q}\right)y\right)dydx, (4.3)

where the interchange of the order of integration is permitted by absolute convergence and the decay of the Hankel transform kg\mathcal{H}_{k}g of gg. Now, we are in a position to apply Lem.2.4. In other words,

0g(y)\displaystyle\hskip 10.0pt\int_{0}^{\infty}g(y) Jk1(4πyc0c)e(myc0cq)dy\displaystyle J_{k-1}\left(\frac{4\pi\sqrt{y\ell}}{c_{0}c^{\prime}}\right)e\left(-\frac{my}{c_{0}c^{\prime}q}\right)dy
=2πq2limϵ0+0(kg)(x/q2)i1k2π(ϵ+imc0cq)Jk1(4πixc0cqϵ+im)exp(2πx/q2+/c2ϵ+imc0cq)𝑑x.\displaystyle=\frac{2\pi}{q^{2}}\lim_{\epsilon\to 0+}\int_{0}^{\infty}(\mathcal{H}_{k}g)\left(x/q^{2}\right)\frac{i^{1-k}}{2\pi\left(\epsilon+\frac{im}{c_{0}c^{\prime}q}\right)}J_{k-1}\left(\frac{4\pi i\sqrt{\ell x}}{c_{0}c^{\prime}q\epsilon+im}\right)\exp\left(-2\pi\,\frac{x/q^{2}+\ell/c^{2}}{\epsilon+\frac{im}{c_{0}c^{\prime}q}}\right)dx. (4.4)

By the decay of kg\mathcal{H}_{k}g and dominated convergence again, it follows from continuity that

0g(y)Jk1(4πyc0c)e(myc0cq)𝑑y=ikqc0cme(qc0cm)0(kg)(x/q2)Jk1(4πxm)e(c0cxqm)𝑑x.\displaystyle\hskip 5.0pt\int_{0}^{\infty}g(y)J_{k-1}\left(\frac{4\pi\sqrt{y\ell}}{c_{0}c^{\prime}}\right)e\left(-\frac{my}{c_{0}c^{\prime}q}\right)dy\,=\,\frac{i^{-k}}{q}\frac{c_{0}c^{\prime}}{m}\,e\left(\frac{\ell q}{c_{0}c^{\prime}m}\right)\int_{0}^{\infty}(\mathcal{H}_{k}g)\left(x/q^{2}\right)J_{k-1}\left(\frac{4\pi\sqrt{\ell x}}{m}\right)e\left(\frac{c_{0}c^{\prime}x}{qm}\right)dx. (4.5)

Substitute the last expression back into (4.1) and observe the cancellations in (1). a pair of exponential phases, and (2). a pair of factors c0cc_{0}c^{\prime}. Thus, we obtain

Sk(;χ)=2πqϵχqc0|qc0(c,q)=1m1(m,c)=11mχ(c)\displaystyle S_{k}(\ell;\chi)\,=\,\frac{2\pi}{q}\frac{\epsilon_{\chi}}{\sqrt{q}}\sum_{c_{0}|q^{\infty}}\sum_{\begin{subarray}{c}c^{\prime}\neq 0\\ (c^{\prime},q)=1\end{subarray}}\ \sum_{\begin{subarray}{c}m\geq 1\\ (m,c^{\prime})=1\end{subarray}}\,\frac{1}{m}\chi(c^{\prime}) ec0m(qc¯)α(c0)mαq(c0)ec0(αc¯)χ¯(αq+mc0)\displaystyle\,e_{c_{0}m}\left(\ell q\overline{c^{\prime}}\right)\,\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(c_{0})\\ m\equiv-\alpha q\,(c_{0})\end{subarray}}e_{c_{0}}\left(\ell\overline{\alpha c^{\prime}}\right)\overline{\chi}\left(\frac{\alpha q+m}{c_{0}}\right)
×0(kg)(x/q2)Jk1(4πxm)e(c0cxqm)dx.\displaystyle\times\,\int_{0}^{\infty}\ (\mathcal{H}_{k}g)\left(x/q^{2}\right)J_{k-1}\left(\frac{4\pi\sqrt{\ell x}}{m}\right)e\left(\frac{c_{0}c^{\prime}x}{qm}\right)\,dx. (4.6)

We must show that the order of summation can be interchanged for Sect. 6.2. This requires k6k\geq 6 and follows from trivially bounding the sums (the α\alpha-sum by c0c_{0}) and integration by parts thrice in (4.1), cf. [28]. Indeed, by Lem. 2.2 and (2.5), observe that

(c0cm)30(kg)(x/q2)Jk1(4πxm)e(c0cxqm)𝑑x,q,k1mk1.\displaystyle\left(\frac{c_{0}c^{\prime}}{m}\right)^{3}\int_{0}^{\infty}\,(\mathcal{H}_{k}g)\left(x/q^{2}\right)J_{k-1}\left(\frac{4\pi\sqrt{\ell x}}{m}\right)e\left(\frac{c_{0}c^{\prime}x}{qm}\right)\,dx\,\ll_{\ell,q,k}\,\frac{1}{m^{k-1}}. (4.7)

4.2. Step 4.2:  Arithmetic preparation

We now analyze the arithmetic component of (4.1), i.e.,

χ(c)ec0m(qc¯)α(c0)mαq(c0)ec0(αc¯)χ¯(αq+mc0).\displaystyle\chi(c^{\prime})e_{c_{0}m}\left(\ell q\overline{c^{\prime}}\right)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(c_{0})\\ m\equiv-\alpha q\,(c_{0})\end{subarray}}e_{c_{0}}\left(\ell\overline{\alpha c^{\prime}}\right)\overline{\chi}\left(\frac{\alpha q+m}{c_{0}}\right). (4.8)

For technical convenience, we consider a more general character sum define as follows. Let a,b,h,r,u,va,b,h,r,u,v be integers such that ab|rab|r^{\infty} and (uv,r)=1(uv,r)=1. Let ψ\psi be a primitive character mod rr. Define

𝒞ψh(a,u,b,v):=ψ(u)α(a)bvαr(a)ea(hαu¯)ψ¯(αr+bva).\displaystyle\mathcal{C}_{\psi}^{h}(a,u,b,v):=\psi(u)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(a)\\ bv\equiv-\alpha r\,(a)\end{subarray}}e_{a}\left(h\overline{\alpha u}\right)\overline{\psi}\left(\frac{\alpha r+bv}{a}\right). (4.9)

We decouple the mm-sum of (4.1) by m=m0mm=m_{0}m^{\prime} (as before), where m0:=(m,q)m_{0}:=(m,q^{\infty}) and (m,q)=1(m^{\prime},q)=1. Then (4.8) is equal to ec0m0m(qc¯)𝒞χ(c0,c,m0,m),e_{c_{0}m_{0}m^{\prime}}(\ell q\overline{c^{\prime}})\mathcal{C}_{\chi}^{\ell}(c_{0},c^{\prime},m_{0},m^{\prime}), and

Sk(;χ)=\displaystyle S_{k}(\ell;\chi)\ =\ 2πqϵχqc0|qm0qm1(m,q)=11m0mc0(c,mq)=1ec0m0m(qc¯)𝒞χ(c0,c,m0,m)\displaystyle\frac{2\pi}{q}\frac{\epsilon_{\chi}}{\sqrt{q}}\,\sum_{c_{0}|q^{\infty}}\,\sum_{m_{0}\mid q^{\infty}}\,\sum_{\begin{subarray}{c}m^{\prime}\geq 1\\ (m^{\prime},q)=1\end{subarray}}\,\frac{1}{m_{0}m^{\prime}}\sum_{\begin{subarray}{c}c^{\prime}\neq 0\\ (c^{\prime},m^{\prime}q)=1\end{subarray}}\ e_{c_{0}m_{0}m^{\prime}}\left(\ell q\overline{c^{\prime}}\right)\mathcal{C}_{\chi}^{\ell}(c_{0},c^{\prime},m_{0},m^{\prime})
×0(kg)(x/q2)Jk1(4πxm0m)e(c0cxqm0m)dx.\displaystyle\hskip 113.81102pt\times\,\int_{0}^{\infty}\ (\mathcal{H}_{k}g)\left(x/q^{2}\right)J_{k-1}\left(\frac{4\pi\sqrt{\ell x}}{m_{0}m^{\prime}}\right)e\left(\frac{c_{0}c^{\prime}x}{qm_{0}m^{\prime}}\right)\ dx. (4.10)

We have the following twisted multiplicativity for the character sum (4.9).

Lemma 4.1.

Let a1,a2,b1,b2,h,r1,r2,u,va_{1},a_{2},b_{1},b_{2},h,r_{1},r_{2},u,v be integers such that a1b1|r1a_{1}b_{1}|r_{1}^{\infty}, a2b2|r2a_{2}b_{2}|r_{2}^{\infty}, and (r1,r2)=(uv,r1r2)=1(r_{1},r_{2})=(uv,r_{1}r_{2})=1. Let ψ1\psi_{1} and ψ2\psi_{2} be primitive characters mod r1r_{1} and r2r_{2} respectively. Then

𝒞ψ1ψ2h(a1a2,u,b1b2,v)=\displaystyle\mathcal{C}_{\psi_{1}\psi_{2}}^{h}(a_{1}a_{2},u,b_{1}b_{2},v)= ψ1(b22)ψ2(b12)¯𝒞ψ1hr2(a1,a2b2u,b1,v)𝒞ψ2hr1(a2,a1b1u,b2,v)\displaystyle\ \overline{\psi_{1}(b_{2}^{2})\psi_{2}(b_{1}^{2})}\mathcal{C}_{\psi_{1}}^{hr_{2}}(a_{1},a_{2}b_{2}u,b_{1},v)\mathcal{C}_{\psi_{2}}^{hr_{1}}(a_{2},a_{1}b_{1}u,b_{2},v)
=\displaystyle= ψ1(a22)ψ2(a12)¯𝒞ψ1hr2(a1,u,b1,a2b2v)𝒞ψ2hr1(a2,u,b2,a1b1v).\displaystyle\ \overline{\psi_{1}(a_{2}^{2})\psi_{2}(a_{1}^{2})}\mathcal{C}_{\psi_{1}}^{hr_{2}}(a_{1},u,b_{1},a_{2}b_{2}v)\mathcal{C}_{\psi_{2}}^{hr_{1}}(a_{2},u,b_{2},a_{1}b_{1}v).
Proof.

By the Chinese remainder theorem, we have

𝒞ψ1ψ2h(a1a2,u,b1b2,v)=\displaystyle\mathcal{C}_{\psi_{1}\psi_{2}}^{h}(a_{1}a_{2},u,b_{1}b_{2},v)= ψ1(a2u)α1(moda1)b1b2vα1r1r2(a1)ea1(hα1a2u¯)ψ1¯(α1r1r2+b1b2va1)\displaystyle\psi_{1}(a_{2}u)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha_{1}\ (\mathrm{mod}\ a_{1})\\ b_{1}b_{2}v\equiv-\alpha_{1}r_{1}r_{2}\,(a_{1})\end{subarray}}e_{a_{1}}(h\overline{\alpha_{1}a_{2}u})\overline{\psi_{1}}\left(\frac{\alpha_{1}r_{1}r_{2}+b_{1}b_{2}v}{a_{1}}\right)
×ψ2(a1u)α2(moda2)b1b2vα2r1r2(a2)ea2(hα2a1u¯)ψ2¯(α2r1r2+b1b2va2).\displaystyle\times\psi_{2}(a_{1}u)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha_{2}\ (\mathrm{mod}\ a_{2})\\ b_{1}b_{2}v\equiv-\alpha_{2}r_{1}r_{2}\,(a_{2})\end{subarray}}e_{a_{2}}(h\overline{\alpha_{2}a_{1}u})\overline{\psi_{2}}\left(\frac{\alpha_{2}r_{1}r_{2}+b_{1}b_{2}v}{a_{2}}\right).

Applying the change of variables α1α1b2r2¯\alpha_{1}\mapsto\alpha_{1}b_{2}\overline{r_{2}} and α2α2b1r1¯\alpha_{2}\mapsto\alpha_{2}b_{1}\overline{r_{1}} yields the first equality. To get the second equality, apply the change of variables α1α1a2r2¯\alpha_{1}\mapsto\alpha_{1}\overline{a_{2}r_{2}} and α2α2a1r1¯\alpha_{2}\mapsto\alpha_{2}\overline{a_{1}r_{1}} instead. ∎

Remark 5.

This lemma explains why the factor eabv(qu¯)e_{abv}\left(\ell q\overline{u}\right) is purposefully left out when defining 𝒞ψ()\mathcal{C}_{\psi}^{\ell}(\cdots). Otherwise, no multiplicative relation would hold as the factor is not multiplicative in aa, bb.

5. Local analysis of character sums: proof of Theorem 1.1

Restatement of Theorem 1.1.

Let a,b,h,r,u,va,b,h,r,u,v be integers such that ab|rab|r^{\infty} and (uv,r)=1(uv,r)=1. Let ψ\psi be a character mod rr. Then we have

𝒞ψh(a,u,b,v)=eab(hruv¯)𝒞ψh(b,v,a,u)¯.\displaystyle\mathcal{C}_{\psi}^{h}(a,u,b,v)\ =\ e_{ab}\left(-hr\overline{uv}\right)\overline{\mathcal{C}_{\psi}^{h}(b,v,a,u)}.
Proof.

We first consider the case when r=pkr=p^{k}, where pp is a prime and k1k\geq 1. Since ab|r=pab|r^{\infty}=p^{\infty}, we may write a=psa=p^{s} and b=ptb=p^{t} for some s,t0s,t\geq 0. In this, we have

𝒞ψh(ps,u,pt,v)=ψ(u)α(ps)ptvαpk(ps)eps(hαu¯)ψ¯(αpk+ptvps),\displaystyle\mathcal{C}_{\psi}^{h}(p^{s},u,p^{t},v)\ =\ \psi(u)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(p^{s})\\ p^{t}v\equiv-\alpha p^{k}\,(p^{s})\end{subarray}}e_{p^{s}}\left(h\overline{\alpha u}\right)\overline{\psi}\left(\frac{\alpha p^{k}+p^{t}v}{p^{s}}\right),
eps+t(hpkuv¯)𝒞ψh(pt,v,ps,u)¯=\displaystyle e_{p^{s+t}}\left(-hp^{k}\overline{uv}\right)\overline{\mathcal{C}_{\psi}^{h}(p^{t},v,p^{s},u)}\ = ψ¯(v)eps+t(hpkuv¯)α(pt)psuαpk(pt)ept(hαv¯)ψ(αpk+psupt).\displaystyle\ \overline{\psi}(v)e_{p^{s+t}}\left(-hp^{k}\overline{uv}\right)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(p^{t})\\ p^{s}u\equiv-\alpha p^{k}\,(p^{t})\end{subarray}}e_{p^{t}}\left(-h\overline{\alpha v}\right)\psi\left(\frac{\alpha p^{k}+p^{s}u}{p^{t}}\right).

Claim: Unless one of the following holds: (1) s=tks=t\leq k, (2) t=k<st=k<s, or (3) s=k<ts=k<t, we have

𝒞ψh(ps,u,pt,v)=0=𝒞ψh(pt,v,ps,u)¯.\displaystyle\mathcal{C}_{\psi}^{h}(p^{s},u,p^{t},v)=0=\overline{\mathcal{C}_{\psi}^{h}(p^{t},v,p^{s},u)}.

Indeed, the congruence condition for 𝒞ψh(ps,u,pt,v)\mathcal{C}_{\psi}^{h}(p^{s},u,p^{t},v) implies that it is equal to 0 unless one of the following holds: stks\leq t\leq k, (2) or (3). If s<tks<t\leq k, then

ψ¯(αpk+ptvps)=ψ¯(αpks+ptsv)= 0,\displaystyle\overline{\psi}\left(\frac{\alpha p^{k}+p^{t}v}{p^{s}}\right)\ =\ \overline{\psi}\left(\alpha p^{k-s}+p^{t-s}v\right)\ =\ 0,

and hence 𝒞ψh(ps,u,pt,v)=0\mathcal{C}_{\psi}^{h}(p^{s},u,p^{t},v)=0 unless (1) or (2) or (3) holds. Similarly, the congruence condition implies that 𝒞ψh(pt,v,ps,u)¯=0\overline{\mathcal{C}_{\psi}^{h}(p^{t},v,p^{s},u)}=0 unless tskt\leq s\leq k or (2) or (3), and the presence of ψ(αpk+psupt)\psi\left(\frac{\alpha p^{k}+p^{s}u}{p^{t}}\right) implies that it is also 0 if t<skt<s\leq k. This proves our claim.

We apply a change of variable ααv\alpha\mapsto\alpha v to obtain

𝒞ψh(ps,u,pt,v)=ψ(uv¯)α(ps)ptαpk(ps)eps(hαuv¯)ψ¯(αpk+ptps).\displaystyle\mathcal{C}_{\psi}^{h}(p^{s},u,p^{t},v)\ =\ \psi(u\overline{v})\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(p^{s})\\ p^{t}\equiv-\alpha p^{k}\,(p^{s})\end{subarray}}e_{p^{s}}\left(h\overline{\alpha uv}\right)\overline{\psi}\left(\frac{\alpha p^{k}+p^{t}}{p^{s}}\right).

Case 1: s=tks=t\leq k. In this case, we have

𝒞ψh(ps,u,ps,v)=\displaystyle\mathcal{C}_{\psi}^{h}(p^{s},u,p^{s},v)= ψ(uv¯)α(ps)eps(hαuv¯)ψ¯(αpks+1)\displaystyle\ \psi(u\overline{v})\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(p^{s})\end{subarray}}e_{p^{s}}\left(h\overline{\alpha uv}\right)\overline{\psi}\left(\alpha p^{k-s}+1\right)
=\displaystyle= ψ(uv¯)ep2s(hpkuv¯)α(ps)eps(huv¯(α¯+pks))ψ¯(αpks+1).\displaystyle\ \psi(u\overline{v})e_{p^{2s}}\left(-hp^{k}\overline{uv}\right)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(p^{s})\end{subarray}}e_{p^{s}}\left(h\overline{uv}(\overline{\alpha}+p^{k-s})\right)\overline{\psi}\left(\alpha p^{k-s}+1\right).

Notice that since pαp\nmid\alpha, we have pks||(αpks+1¯1)p^{k-s}||(\overline{\alpha p^{k-s}+1}-1). Hence, the change of variables β=(αpks+1¯1)/pks\beta=(\overline{\alpha p^{k-s}+1}-1)/p^{k-s} is admissible. When k=sk=s, the quantity α+1¯\overline{\alpha+1} is well-defined due to the presence of ψ\psi. With the above change of variables (modps)(\bmod\,p^{s}), it follows that

αpks+1¯βpks+1(modps),\displaystyle\overline{\alpha p^{k-s}+1}\ \equiv\ \beta p^{k-s}+1\,\ (\mathrm{mod}\ p^{s}),
α¯(βpks+1¯1)/pks¯(1βpks1)βpks+1¯/pks¯β¯(βpks+1)pksβ¯(modps).\displaystyle\overline{\alpha}\equiv\overline{(\overline{\beta p^{k-s}+1}-1)/p^{k-s}}\equiv\overline{(1-\beta p^{k-s}-1)\overline{\beta p^{k-s}+1}/p^{k-s}}\equiv-\overline{\beta}(\beta p^{k-s}+1)\equiv-p^{k-s}-\overline{\beta}\,\ (\mathrm{mod}\ p^{s}).

Hence,

𝒞ψh(ps,u,ps,v)=ψ(uv¯)ep2s(hpkuv¯)β(ps)eps(hβuv¯)ψ(βpks+1).\displaystyle\mathcal{C}_{\psi}^{h}(p^{s},u,p^{s},v)=\psi(u\overline{v})e_{p^{2s}}\left(-hp^{k}\overline{uv}\right)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\beta\,(p^{s})\end{subarray}}e_{p^{s}}\left(-h\overline{\beta uv}\right)\psi\left(\beta p^{k-s}+1\right).

With another change of variables β=γu¯\beta=\gamma\overline{u}, we get

𝒞ψh(ps,u,ps,v)=ep2s(hpkuv¯)𝒞ψh(ps,v,ps,u)¯.\displaystyle\mathcal{C}_{\psi}^{h}(p^{s},u,p^{s},v)\ =\ e_{p^{2s}}\left(-hp^{k}\overline{uv}\right)\overline{\mathcal{C}_{\psi}^{h}(p^{s},v,p^{s},u)}.

Case 2: t=k<st=k<s. In this case, we have

𝒞ψh(ps,u,pt,v)=ψ(uv¯)α(ps)α1(pst)eps(hαuv¯)ψ¯(α+1pst).\displaystyle\mathcal{C}_{\psi}^{h}(p^{s},u,p^{t},v)\ =\ \psi(u\overline{v})\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(p^{s})\\ \alpha\equiv-1\,(p^{s-t})\end{subarray}}e_{p^{s}}\left(h\overline{\alpha uv}\right)\overline{\psi}\left(\frac{\alpha+1}{p^{s-t}}\right).

Apply the change of variables pstβ=α+1p^{s-t}\beta=\alpha+1 and observe the fact that s>ts>t, we have

𝒞ψh(ps,u,pt,v)=ψ(uv¯)β(pt)eps(huv(pstβ1)¯)ψ¯(β).\displaystyle\mathcal{C}_{\psi}^{h}(p^{s},u,p^{t},v)\ =\ \psi(u\overline{v})\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\beta\,(p^{t})\end{subarray}}e_{p^{s}}\left(h\overline{uv(p^{s-t}\beta-1)}\right)\overline{\psi}\left(\beta\right).

Another change of variables β=γ+pst¯\beta=\overline{\gamma+p^{s-t}}, which is admissible as s>ts>t, yields

𝒞ψh(ps,u,pt,v)=ψ(v¯)γ(pt)eps(huv(pstγ+pst¯1)¯)ψ(γu+pstu).\displaystyle\mathcal{C}_{\psi}^{h}(p^{s},u,p^{t},v)\ =\ \psi(\overline{v})\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\gamma\,(p^{t})\end{subarray}}e_{p^{s}}\left(h\overline{uv(p^{s-t}\overline{\gamma+p^{s-t}}-1)}\right)\psi\left(\gamma u+p^{s-t}u\right).

Using

pstγ+pst¯1pstγ¯1+pstγ¯¯ 1(1+pstγ¯1)1+pstγ¯¯ 11+pstγ¯¯(modps),\displaystyle p^{s-t}\,\overline{\gamma+p^{s-t}}-1\equiv p^{s-t}\overline{\gamma}\overline{1+p^{s-t}\overline{\gamma}}\ -\ 1\equiv(1+p^{s-t}\overline{\gamma}-1)\overline{1+p^{s-t}\overline{\gamma}}\ -\ 1\equiv-\overline{{1+p^{s-t}\overline{\gamma}}}\,\ (\mathrm{mod}\ p^{s}),

we arrive at

𝒞ψh(ps,u,pt,v)=ψ(v¯)γ(pt)eps(huv¯(1+pstγ¯))ψ(γu+pstu).\displaystyle\mathcal{C}_{\psi}^{h}(p^{s},u,p^{t},v)\ =\ \psi(\overline{v})\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\gamma\,(p^{t})\end{subarray}}e_{p^{s}}\left(-h\overline{uv}(1+p^{s-t}\overline{\gamma})\right)\psi\left(\gamma u+p^{s-t}u\right).

A final change of variables γγu¯\gamma\mapsto\gamma\overline{u} implies

𝒞ψh(ps,u,pt,v)=eps(huv¯)𝒞ψh(pt,v,ps,u)¯.\displaystyle\mathcal{C}_{\psi}^{h}(p^{s},u,p^{t},v)\ =\ e_{p^{s}}\left(-h\overline{uv}\right)\overline{\mathcal{C}_{\psi}^{h}(p^{t},v,p^{s},u)}.

Case 3: s=k<ts=k<t. In this final case, we make use of Case 2 to deduce the answer. For s=k<ts=k<t, we have

𝒞ψh(pt,v,ps,u)=ept(huv¯)𝒞ψh(ps,u,pt,v)¯,\displaystyle\mathcal{C}_{\psi}^{h}(p^{t},v,p^{s},u)=e_{p^{t}}\left(-h\overline{uv}\right)\overline{\mathcal{C}_{\psi}^{h}(p^{s},u,p^{t},v)},

and this yields

𝒞ψh(ps,u,pt,v)=ept(huv¯)𝒞ψh(pt,v,ps,u)¯.\displaystyle\mathcal{C}_{\psi}^{h}(p^{s},u,p^{t},v)=e_{p^{t}}\left(-h\overline{uv}\right)\overline{\mathcal{C}_{\psi}^{h}(p^{t},v,p^{s},u)}.

Combining all three cases together, we have proved that for r=pkr=p^{k} for some prime pp and k1k\geq 1,

𝒞ψh(a,u,b,v)=eab(hruv¯)𝒞ψh(b,v,a,u)¯\displaystyle\mathcal{C}_{\psi}^{h}(a,u,b,v)\ =\ e_{ab}\left(-hr\overline{uv}\right)\overline{\mathcal{C}_{\psi}^{h}(b,v,a,u)} (5.1)

for any a,b,u,va,b,u,v with ab|rab|r^{\infty}, (uv,r)=1(uv,r)=1 and any character mod rr. Finally, applying the first and second equality of Lem. 4.1 to the left-hand and right-hand side of (5.1) respectively, with the observation:

e(hruv¯a1a2b1b2)=e(hra2b2uv¯a1b1hra1b1uv¯a2b2),\displaystyle e\left(-\frac{hr\overline{uv}}{a_{1}a_{2}b_{1}b_{2}}\right)\ =\ e\left(-\frac{hr\overline{a_{2}b_{2}uv}}{a_{1}b_{1}}-\frac{hr\overline{a_{1}b_{1}uv}}{a_{2}b_{2}}\right), (5.2)

we see that both sides satisfy the same multiplicative relations. This yields the result for general rr. ∎

6. Backward maneuver: Finishing the Proof of Theorem 1.2

6.1. Step 5: Reciprocity and recombining sums

From Thm. 1.1 and additive reciprocity, observe that

ec0m0m(qc¯)𝒞χ(c0,c,m0,m)=\displaystyle e_{c_{0}m_{0}m^{\prime}}\left(\ell q\overline{c^{\prime}}\right)\mathcal{C}_{\chi}^{\ell}(c_{0},c^{\prime},m_{0},m^{\prime})= e(qc¯c0m0mqcm¯c0m0)𝒞χ(m0,m,c0,c)¯\displaystyle\ e\left(\frac{\ell q\overline{c^{\prime}}}{c_{0}m_{0}m^{\prime}}-\frac{\ell q\overline{c^{\prime}m^{\prime}}}{c_{0}m_{0}}\right)\overline{\mathcal{C}_{\chi}^{\ell}(m_{0},m^{\prime},c_{0},c^{\prime})}
=\displaystyle\ = em(qc0cm0¯)𝒞χ(m0,m,c0,c)¯.\displaystyle\ e_{m^{\prime}}\left(\ell q\overline{c_{0}c^{\prime}m_{0}}\right)\overline{\mathcal{C}_{\chi}^{\ell}(m_{0},m^{\prime},c_{0},c^{\prime})}. (6.1)

Inserting this back into (4.2) and open up 𝒞χ¯()\overline{\mathcal{C}_{\chi}^{\ell}}(\cdots) by its definition, we obtain

Sk(;χ)=\displaystyle S_{k}(\ell;\chi)\ =\ 2πqϵχqc0,m0|qm1(m,q)=1c0(c,mq)=1χ¯(m)m0mem(qc0cm0¯)α(m0)c0cαq(m0)em0(αm¯)χ(αq+c0cm0)\displaystyle\ \frac{2\pi}{q}\frac{\epsilon_{\chi}}{\sqrt{q}}\,\sum_{c_{0},m_{0}|q^{\infty}}\sum_{\begin{subarray}{c}m^{\prime}\geq 1\\ (m^{\prime},q)=1\end{subarray}}\sum_{\begin{subarray}{c}c^{\prime}\neq 0\\ (c^{\prime},m^{\prime}q)=1\end{subarray}}\ \frac{\overline{\chi}(m^{\prime})}{m_{0}m^{\prime}}e_{m^{\prime}}\left(\ell q\overline{c_{0}c^{\prime}m_{0}}\right)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(m_{0})\\ c_{0}c^{\prime}\equiv-\alpha q\,(m_{0})\end{subarray}}e_{m_{0}}\left(-\ell\overline{\alpha m^{\prime}}\right)\chi\left(\frac{\alpha q+c_{0}c^{\prime}}{m_{0}}\right)
×0(kg)(x/q2)Jk1(4πxm0m)e(c0cxqm0m)dx.\displaystyle\hskip 113.81102pt\times\,\int_{0}^{\infty}\ (\mathcal{H}_{k}g)\left(x/q^{2}\right)J_{k-1}\left(\frac{4\pi\sqrt{\ell x}}{m_{0}m^{\prime}}\right)e\left(\frac{c_{0}c^{\prime}x}{qm_{0}m^{\prime}}\right)\ dx.

Upon recombining the c0c_{0}-sum and cc^{\prime}-sum via c=c0cc=c_{0}c^{\prime}, it follows that

Sk(;χ)=\displaystyle S_{k}(\ell;\chi)\ =\ 2πqϵχqm0|qm1(m,q)=1c0(c,m)=1χ¯(m)m0mem(qcm0¯)α(m0)cαq(m0)em0(αm¯)χ(αq+cm0)\displaystyle\ \frac{2\pi}{q}\frac{\epsilon_{\chi}}{\sqrt{q}}\,\sum_{m_{0}|q^{\infty}}\sum_{\begin{subarray}{c}m^{\prime}\geq 1\\ (m^{\prime},q)=1\end{subarray}}\sum_{\begin{subarray}{c}c\neq 0\\ (c,m^{\prime})=1\end{subarray}}\ \frac{\overline{\chi}(m^{\prime})}{m_{0}m^{\prime}}e_{m^{\prime}}\left(\ell q\overline{cm_{0}}\right)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(m_{0})\\ c\equiv-\alpha q\,(m_{0})\end{subarray}}e_{m_{0}}\left(-\ell\overline{\alpha m^{\prime}}\right)\chi\left(\frac{\alpha q+c}{m_{0}}\right)
×0(kg)(x/q2)Jk1(4πxm0m)e(cxqm0m)dx.\displaystyle\hskip 113.81102pt\times\,\int_{0}^{\infty}\ (\mathcal{H}_{k}g)\left(x/q^{2}\right)J_{k-1}\left(\frac{4\pi\sqrt{\ell x}}{m_{0}m^{\prime}}\right)e\left(\frac{cx}{qm_{0}m^{\prime}}\right)\ dx. (6.2)

This completes the arithmetic preparation as described in Sect. 4.

6.2. Step 6: Second Poisson

With the preparations carried out above, we rewrite the cc-sum of (6.1) as

c0(c,m)=1𝒟χ(c;m0,m)0(kg)(x/q2)Jk1(4πxm0m)e(cxm0mq)𝑑x=T1T2,\displaystyle\sum_{\begin{subarray}{c}c\neq 0\\ (c,m^{\prime})=1\end{subarray}}\mathcal{D}_{\chi}(c;m_{0},m^{\prime})\int_{0}^{\infty}\ (\mathcal{H}_{k}g)\left(x/q^{2}\right)J_{k-1}\left(\frac{4\pi\sqrt{\ell x}}{m_{0}m^{\prime}}\right)e\left(\frac{cx}{m_{0}m^{\prime}q}\right)\ dx\ =\ T_{1}\ -\ T_{2}, (6.3)

where

T1\displaystyle T_{1}\, :=c𝒟χ(c;m0,m)0(kg)(x/q2)Jk1(4πxm0m)e(cxm0mq)𝑑x,\displaystyle:=\,\sum_{\begin{subarray}{c}c\in\mathbb{Z}\end{subarray}}\mathcal{D}_{\chi}(c;m_{0},m^{\prime})\,\int_{0}^{\infty}\ (\mathcal{H}_{k}g)\left(x/q^{2}\right)J_{k-1}\left(\frac{4\pi\sqrt{\ell x}}{m_{0}m^{\prime}}\right)e\left(\frac{cx}{m_{0}m^{\prime}q}\right)dx,
T2\displaystyle T_{2}\, :=δ(m=1)𝒟χ(0;m0,1)0(kg)(x/q2)Jk1(4πxm0)𝑑x,\displaystyle:=\,\delta(m^{\prime}=1)\mathcal{D}_{\chi}(0;m_{0},1)\,\int_{0}^{\infty}\ (\mathcal{H}_{k}g)\left(x/q^{2}\right)J_{k-1}\left(\frac{4\pi\sqrt{\ell x}}{m_{0}}\right)dx,
𝒟χ(c;m0,m)\displaystyle\mathcal{D}_{\chi}(c;m_{0},m^{\prime})\, :=δ((c,m)=1)χ¯(m)em(qcm0¯)α(m0)cαq(m0)em0(αm¯)χ(αq+cm0).\displaystyle:=\,\delta((c,m^{\prime})=1)\overline{\chi}(m^{\prime})e_{m^{\prime}}\left(\ell q\overline{cm_{0}}\right)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(m_{0})\\ c\equiv-\alpha q\,(m_{0})\end{subarray}}e_{m_{0}}\left(-\ell\overline{\alpha m^{\prime}}\right)\chi\left(\frac{\alpha q+c}{m_{0}}\right).

The treatment of T2T_{2} is simpler. Observe that

𝒟χ(0;m0,1)=α(m0)0αq(m0)em0(α¯)χ(αqm0)=δ(m0=q)α(q)χ¯(α)e(αq)=δ(m0=q)qϵχ¯χ().\displaystyle\mathcal{D}_{\chi}(0;m_{0},1)=\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}\alpha\,(m_{0})\\ 0\equiv\alpha q\,(m_{0})\end{subarray}}e_{m_{0}}\left(-\ell\overline{\alpha}\right)\chi\left(\frac{\alpha q}{m_{0}}\right)=\ \delta(m_{0}=q)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\alpha\,(q)}\,\,\overline{\chi}(\alpha)e\left(-\frac{\ell\alpha}{q}\right)=\delta(m_{0}=q)\sqrt{q}\,\overline{\epsilon_{\chi}}\chi(\ell).

A change of variables xq2xx\to q^{2}x and the Hankel inversion formula (Lem. 2.3) imply that

T2=δ(m0=q,m=1)ϵχ¯χ()q5/2g()2π.\displaystyle T_{2}\,=\,\delta(m_{0}=q,m^{\prime}=1)\,\overline{\epsilon_{\chi}}\chi(\ell)\,\frac{q^{5/2}g(\ell)}{2\pi}. (6.4)

For T1T_{1}, the character sum 𝒟χ\mathcal{D}_{\chi} can be expressed in terms of Kloosterman sums via (3.5) and (3.2):

𝒟χ(c;m0,m)\displaystyle\mathcal{D}_{\chi}(c;m_{0},m^{\prime}) =x(m)cxq(m)em(x¯)χ(qx+cm)=ϵχmqγ(mq)χ¯(γ)x(m)em(γxx¯)emq(cγ)\displaystyle=\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{\begin{subarray}{c}x\,(m)\\ c\equiv-xq\,(m)\end{subarray}}e_{m}(-\ell\overline{x})\chi\left(\frac{qx+c}{m}\right)=\frac{\epsilon_{\chi}}{m\sqrt{q}}\sum_{\gamma\,(mq)}\overline{\chi}(\gamma)\mathop{\sum\nolimits^{\mathrlap{\ast}}}_{x\,(m)}e_{m}(-\gamma x-\ell\overline{x})e_{mq}(-c\gamma)
=ϵχmqγ(mq)χ¯(γ)S(γ,;m)emq(cγ).\displaystyle=\frac{\epsilon_{\chi}}{m\sqrt{q}}\sum_{\gamma\,(mq)}\overline{\chi}(\gamma)S(\gamma,\ell;m)e_{mq}(-c\gamma). (6.5)

Note: m=m0mm=m_{0}m^{\prime}. Plugging (6.5) into T1T_{1} and making a change of variables xmqxx\to mqx, we arrive at

T1=ϵχqcγ(mq)χ¯(γ)S(γ,;m)emq(cγ)0(kg)(mx/q)Jk1(4πqxm)e(cx)𝑑x.\displaystyle T_{1}=\epsilon_{\chi}\sqrt{q}\sum_{\begin{subarray}{c}c\in\mathbb{Z}\end{subarray}}\sum_{\gamma\,(mq)}\overline{\chi}(\gamma)S(\gamma,\ell;m)e_{mq}(-c\gamma)\int_{0}^{\infty}\,(\mathcal{H}_{k}g)\left(mx/q\right)J_{k-1}\bigg{(}4\pi\sqrt{\frac{\ell qx}{m}}\ \bigg{)}e(cx)dx.

We now readily observe the role reversal of the cc-sum and mm-sum as discussed in Sect. 1.3.1!

The bounds for the Hankel transform and Bessel functions recorded in Sect. 2 allow us to apply the dominated convergence theorem and obtain

T1=ϵχqγ(mq)χ¯(γ)S(γ,;m)limϵ0+cemq(cγ)(kg)(mx/q)Jk1(4πqxm)hϵ(x)e(cx)𝑑x,\displaystyle T_{1}=\epsilon_{\chi}\sqrt{q}\sum_{\gamma\,(mq)}\overline{\chi}(\gamma)S(\gamma,\ell;m)\lim_{\epsilon\to 0+}\,\sum_{\begin{subarray}{c}c\in\mathbb{Z}\end{subarray}}e_{mq}(-c\gamma)\int_{\mathbb{R}}\,(\mathcal{H}_{k}g)\left(mx/q\right)J_{k-1}\bigg{(}4\pi\sqrt{\frac{\ell qx}{m}}\ \bigg{)}h_{\epsilon}(x)e(cx)\ dx,

where hϵh_{\epsilon} is a smooth function on \mathbb{R} such that hϵ1h_{\epsilon}\equiv 1 on [ϵ,)[\epsilon,\infty), hϵ0h_{\epsilon}\equiv 0 on (,0](-\infty,0], and 0hϵ10\leq h_{\epsilon}\leq 1 on (0,ϵ)(0,\epsilon). Inside the limit, we apply Poisson summation (modmq)(\bmod\,mq) to the cc-sum. By dominated convergence again,

T1= 2πϵχqc=1χ¯(c)S(c,;m)Jk1(4πcm)0g(y)Jk1(4πcyq)𝑑y\displaystyle T_{1}\ =\ 2\pi\,\epsilon_{\chi}\sqrt{q}\sum_{c=1}^{\infty}\overline{\chi}(c)S(c,\ell;m)J_{k-1}\bigg{(}\frac{4\pi\sqrt{\ell c}}{m}\bigg{)}\int_{0}^{\infty}g(y)J_{k-1}\left(\frac{4\pi\sqrt{cy}}{q}\right)dy (6.6)

upon taking the limit ϵ0+\epsilon\to 0+. Inserting (6.4)–(6.6) into (6.1)–(6.3), we readily observe that

Sk(;χ)=\displaystyle S_{k}(\ell;\chi)\,=\, 4π2ϵχ2qm=11mc=1χ¯(c)S(c,;m)Jk1(4πcm)0g(y)Jk1(4πcyq)𝑑yg()χ()\displaystyle\ 4\pi^{2}\frac{\epsilon_{\chi}^{2}}{q}\sum_{m=1}^{\infty}\frac{1}{m}\sum_{c=1}^{\infty}\overline{\chi}(c)S(c,\ell;m)J_{k-1}\bigg{(}\frac{4\pi\sqrt{\ell c}}{m}\bigg{)}\int_{0}^{\infty}g(y)J_{k-1}\left(\frac{4\pi\sqrt{cy}}{q}\right)dy\,-\,g(\ell)\chi(\ell) (6.7)

by combining the m0m_{0}-sum and mm^{\prime}-sum.

6.3. Step 7: Petersson in reverse

Inserting (6.7) back into (3.6) yields

Ik(;χ)=\displaystyle I_{k}(\ell;\chi)\,=  2πikϵχ2qχ¯()0g(y)Jk1(4πyq)𝑑y\displaystyle\,2\pi i^{-k}\frac{\epsilon_{\chi}^{2}}{q}\overline{\chi}(\ell)\int_{0}^{\infty}g(y)J_{k-1}\bigg{(}\frac{4\pi\sqrt{y\ell}}{q}\bigg{)}\,dy
+ 4π2ϵχ2qm=11mc=1χ¯(c)S(c,;m)Jk1(4πcm)0g(y)Jk1(4πcyq)𝑑y.\displaystyle\ +\ 4\pi^{2}\frac{\epsilon_{\chi}^{2}}{q}\sum_{m=1}^{\infty}\frac{1}{m}\sum_{c=1}^{\infty}\overline{\chi}(c)S(c,\ell;m)J_{k-1}\bigg{(}\frac{4\pi\sqrt{\ell c}}{m}\bigg{)}\int_{0}^{\infty}g(y)J_{k-1}\left(\frac{4\pi\sqrt{cy}}{q}\right)dy. (6.8)

Applying the Petersson formula (2.11) in reverse to the mm-sum, Thm. 1.2 follows.

Remark 6.

Readers should note that the diagonal term g()χ()g(\ell)\chi(\ell) of (3.2) from the initial application of the Petersson trace formula conveniently cancelled with the dual zeroth frequency from the Poisson summation. Only after this does the crucial “role-reversal” of sums takes place.

7. Proof of Corollary 1.3

In App. A, we show that the LL-series (1.8) can be analytically continued to Res>(k6)/2\operatorname{Re}s>-(k-6)/2, and

𝒜(s,χ):=hfk(1)hλf()L(s,f×χ)\displaystyle\mathcal{A}_{\ell}(s,\chi)\ :=\ \sideset{}{{}^{h}}{\sum}_{f\in\mathcal{B}_{k}(1)}\ \lambda_{f}(\ell)L(s,f\times\chi) (7.1)

has polynomial growth on the vertical strip 0<Res<10<\operatorname{Re}s<1 and as |Ims||\operatorname{Im}s|\to\infty. Granting this (i.e., Prop. A.1), we prove Cor. 1.3 as follows. Pick any gCc(0,)g\in C_{c}^{\infty}(0,\infty). Then its Mellin transform 𝒢(s)\mathcal{G}(s) is entire and it follows from repeated integration by parts that for any A>0A>0,

|𝒢(s)|A,Res(1+|Ims|)A.\displaystyle|\mathcal{G}(s)|\ \ll_{A,\,\operatorname{Re}s}\ (1+|\operatorname{Im}s|)^{-A}. (7.2)

Let σ(0,1)\sigma\in(0,1), 1\ell\geq 1 and k6k\geq 6. In (3.1), apply (2.1) and rearrange sums and integrals, we have

Ik(;χ)\displaystyle I_{k}(\ell;\chi)\ =(3/2)𝒢(s)hfk(1)hλf()L(s,f×χ)ds2πi.\displaystyle=\ \,\int_{(3/2)}\,\mathcal{G}(s)\ \sideset{}{{}^{h}}{\sum}_{f\in\mathcal{B}_{k}(1)}\,\lambda_{f}(\ell)L(s,f\times\chi)\,\frac{ds}{2\pi i}.

By Prop. A.1 and (7.2), we may shift the line of integration above to Res=σ\operatorname{Re}s=\sigma.

Next, it follows from (2.3) and (2.1) that

0g(y)Jk1(4πcyq)𝑑y=12π(3/2)𝒢(s)γk(1s)γk(s)(cq2)s1ds2πi.\displaystyle\int_{0}^{\infty}\,g(y)J_{k-1}\left(\frac{4\pi\sqrt{cy}}{q}\right)dy\,=\,\frac{1}{2\pi}\int_{(3/2)}\mathcal{G}(s)\frac{\gamma_{k}(1-s)}{\gamma_{k}(s)}\left(\frac{c}{q^{2}}\right)^{s-1}\frac{ds}{2\pi i}. (7.3)

Using (7.2), (A.3) and the holomorphy of 𝒢(s)\mathcal{G}(s), we may shift the line of integration to Res=1/2\operatorname{Re}s=-1/2 in (7.3). Inserting the resultant into the right-hand side of (1.10), we deduce that

Ik(;χ)=ikϵχ2n=1λf(n)χ¯(n)hfk(1)hλf()(1/2)𝒢(s)γk(1s)γk(s)(nq2)s1ds2πi.\displaystyle I_{k}(\ell;\chi)\,=\,i^{k}\epsilon_{\chi}^{2}\,\sum_{n=1}^{\infty}\lambda_{f}(n)\overline{\chi}(n)\,\sideset{}{{}^{h}}{\sum}_{f\in\mathcal{B}_{k}(1)}\ \lambda_{f}(\ell)\int_{(-1/2)}\ \mathcal{G}(s)\,\frac{\gamma_{k}(1-s)}{\gamma_{k}(s)}\left(\frac{n}{q^{2}}\right)^{s-1}\frac{ds}{2\pi i}.

Upon exchanging the order of sums and integrals, we find that the cc-sum converges absolutely and is precisely the Dirichlet series L(1s,f×χ¯)L(1-s,f\times\overline{\chi}). In other words,

Ik(;χ)=ikϵχ2(1/2)𝒢(s)q12sγk(1s)γk(s)hfk(1)hλf()L(1s,f×χ¯)ds2πi.\displaystyle I_{k}(\ell;\chi)=\ i^{k}\epsilon_{\chi}^{2}\int_{(-1/2)}\ \mathcal{G}(s)q^{1-2s}\frac{\gamma_{k}(1-s)}{\gamma_{k}(s)}\sideset{}{{}^{h}}{\sum}_{f\in\mathcal{B}_{k}(1)}\ \lambda_{f}(\ell)L(1-s,f\times\overline{\chi})\,\frac{ds}{2\pi i}. (7.4)

By Prop. A.1, (7.2) and (A.3), we may shift the line of integration for (7.4) back to Res=σ\operatorname{Re}s=\sigma. As a result, we have

(σ)𝒢(s){hfk(1)hλf()(L(s,f×χ)ikϵχ2q12sγk(1s)γk(s)L(1s,f×χ¯))}ds2πi= 0.\displaystyle\int_{(\sigma)}\,\mathcal{G}(s)\left\{\ \ \sideset{}{{}^{h}}{\sum}_{f\in\mathcal{B}_{k}(1)}\ \lambda_{f}(\ell)\left(L(s,f\times\chi)\,-\,i^{k}\epsilon_{\chi}^{2}q^{1-2s}\,\frac{\gamma_{k}(1-s)}{\gamma_{k}(s)}\,L(1-s,f\times\overline{\chi})\right)\right\}\,\frac{ds}{2\pi i}\,=\,0. (7.5)

Let k(1):={f1,,fd}\mathcal{B}_{k}(1):=\left\{f_{1},\ldots,f_{d}\right\}. 444 Here, we use the finite dimensionality of the linear space of holomorphic cusp forms of a given weight and level. The vectors (λfi(1),λfi(2),)\left(\lambda_{f_{i}}(1),\,\lambda_{f_{i}}(2),\,\ldots\,\right) for i=1,,di=1,\ldots,d are linearly independent over \mathbb{C}, and thus, there exists 1<<d\ell_{1}<\cdots<\ell_{d} such that the submatrix A:=(λfi(j))1i,jdA:=\left(\lambda_{f_{i}}(\ell_{j})\right)_{\begin{subarray}{c}1\leq i,j\leq d\end{subarray}} is invertible. By Prop. A.1, the function s𝒜j(s,χ)s\mapsto\mathcal{A}_{\ell_{j}}(s,\chi) admits a holomorphic continuation (say Gj(s,χ)G_{\ell_{j}}(s,\chi)) to the region Res>(k6)/2\operatorname{Re}s>-(k-6)/2 for j=1,,dj=1,\ldots,d:

(L(s,f1×χ)f12,,L(s,fd×χ)fd2)=(4π)k1Γ(k1)(G1(s,χ),,Gd(s,χ))A1.\displaystyle\left(\frac{L(s,f_{1}\times\chi)}{||f_{1}||^{2}},\ \ldots,\ \frac{L(s,f_{d}\times\chi)}{||f_{d}||^{2}}\right)\ =\ \frac{(4\pi)^{k-1}}{\Gamma(k-1)}\left(G_{\ell_{1}}(s,\chi),\,\ldots,\,G_{\ell_{d}}(s,\chi)\right)A^{-1}. (7.6)

Hence, each of L(s,fi×χ)L(s,f_{i}\times\chi) admits a holomorphic continuation to the same region.

Since (1.10) holds for any σ(0,1)\sigma\in(0,1) and any gCc(0,)g\in C^{\infty}_{c}(0,\infty), we have, on the vertical strip 0<Res<10<\operatorname{Re}s<1,

(L(s,fi×χ)fi2ikϵχ2q12sγk(1s)γk(s)L(1s,fi×χ¯)fi2)1idA=(0,,0).\displaystyle\left(\frac{L(s,f_{i}\times\chi)}{||f_{i}||^{2}}-i^{k}\epsilon_{\chi}^{2}q^{1-2s}\frac{\gamma_{k}(1-s)}{\gamma_{k}(s)}\,\frac{L\left(1-s,f_{i}\times\overline{\chi}\right)}{||f_{i}||^{2}}\right)_{1\leq i\leq d}\,\cdot\,A\ =\ (0,\ldots,0).

Since AA is invertible, the functional equation (1.11) for f=fif=f_{i} on 0<Res<10<\operatorname{Re}s<1 follows immediately.

From the holomorphic continuation of L(s,fi×χ)L(s,f_{i}\times\chi) to Res>(k6)/2\operatorname{Re}s>-(k-6)/2 and the functional equation just proved, L(s,fi×χ)L(s,f_{i}\times\chi) also extends holomorphically to Res<k/22\operatorname{Re}s<k/2-2 . As a result, L(s,fi×χ)L(s,f_{i}\times\chi) admits an entire continuation and now the functional equation holds for all ss\in\mathbb{C}. This completes the proof.

Appendix A Analytic continuation and polynomial growth

The proof of Prop. A.1 below is similar to that in [28], but requires several adjustments to accommodate our current setting. For completeness and convenience of the reader, we supply a short argument as follows.

Proposition A.1.

Let 1\ell\geq 1 and k6k\geq 6 be integers. Then the function 𝒜(s,χ)\mathcal{A}_{\ell}(s,\chi) defined in (7.1) admits a holomorphic continuation to the half-plane  Res>(k6)/2\operatorname{Re}s>-(k-6)/2 and satisfies the estimate

𝒜(s,χ)(1+|t|)k3\displaystyle\mathcal{A}_{\ell}(s,\chi)\ \ll\ (1+|t|)^{k-3} (A.1)

for any s=σ+its=\sigma+it with  σ>(k6)/2\sigma>-(k-6)/2 and tt\in\mathbb{R}. The implicit constant depends only on k,,q,σk,\ell,q,\sigma.

Proof.

Take gCc[1,2]g\in C_{c}^{\infty}[1,2] such that 1=ug(x/2u)1=\sum_{u\in\mathbb{Z}}\ g(x/2^{u}) for any x>0x>0. Inserting this into (1.8) for Res1\operatorname{Re}s\gg 1, observe that (7.1) can be written as

𝒜(s,χ)=u=1s(2u;,χ)2us, where s(X;,χ):=hfk(1)hλf()nλf(n)χ(n)Gs(n/X),\displaystyle\mathcal{A}_{\ell}(s,\chi)=\sum_{u=-1}^{\infty}\frac{\mathcal{I}_{s}(2^{u};\ell,\chi)}{2^{us}},\hskip 10.0pt\text{ where }\hskip 10.0pt\mathcal{I}_{s}(X;\ell,\chi):=\sideset{}{{}^{h}}{\sum}_{f\in\mathcal{B}_{k}(1)}\ \lambda_{f}(\ell)\sum_{n}\ \lambda_{f}(n)\chi(n)G_{s}(n/X), (A.2)

and Gs(y):=ysg(y)G_{s}(y):=y^{-s}g(y). For X>2q2X>2q^{2}\ell, we have Gs(/X)=0G_{s}(\ell/X)=0, and from (3.6)–(3.2), it follows that

1Xs(X;,χ)|0Gs(y)Jk1(4πyXq)𝑑y|+c1m0|0Gs(y)Jk1(4πyXc)e(myXcq)𝑑y|.\displaystyle\frac{1}{X}\,\mathcal{I}_{s}(X;\ell,\chi)\ll\bigg{|}\int_{0}^{\infty}\,G_{s}(y)J_{k-1}\bigg{(}\frac{4\pi\sqrt{yX\ell}}{q}\bigg{)}dy\bigg{|}+\sum_{c\geq 1}\sum_{\begin{subarray}{c}m\neq 0\end{subarray}}\ \bigg{|}\int_{0}^{\infty}G_{s}(y)J_{k-1}\bigg{(}\frac{4\pi\sqrt{yX\ell}}{c}\bigg{)}e\bigg{(}-\frac{myX}{cq}\bigg{)}dy\bigg{|}.

Bounding the second summand on the right-hand side is harder, and this will be our focus.

We split the cc-sum above into two parts, according to the conditions c>X/20c>\sqrt{\ell X}/20 and cX/20c\leq\sqrt{\ell X}/20. These two parts are denoted by s,>(2)(X;,χ)\mathcal{I}^{(2)}_{s,>}(X;\ell,\chi) and s,(2)(X;,χ)\mathcal{I}^{(2)}_{s,\leq}(X;\ell,\chi) respectively.

By Lem. 2.1, we have

Gs(y)Jk1(4πyXc)e(myXcq)𝑑y=12π(a)γk(1v)γk(v)(Xc)2(v1)Gs(y)yv1e(myXcq)𝑑ydv2πi,\displaystyle\int_{\mathbb{R}}G_{s}(y)J_{k-1}\bigg{(}\frac{4\pi\sqrt{yX\ell}}{c}\bigg{)}e\bigg{(}-\frac{myX}{cq}\bigg{)}dy=\frac{1}{2\pi}\int_{(a)}\frac{\gamma_{k}(1-v)}{\gamma_{k}(v)}\bigg{(}\frac{\sqrt{X\ell}}{c}\bigg{)}^{2(v-1)}\int_{\mathbb{R}}G_{s}(y)y^{v-1}e\bigg{(}-\frac{myX}{cq}\bigg{)}dy\frac{dv}{2\pi i},

where 1<a<(k+1)/21<a<(k+1)/2. Then integrating by parts r2r\geq 2 times, it follows that the above expression is

(Xc)2(a1)(|m|Xcq)r(a)|γk(1v)γk(v)||drdyr[Gs(y)yv1]|𝑑y|dv|.\displaystyle\ \ll\ \left(\frac{\sqrt{\ell X}}{c}\right)^{2(a-1)}\bigg{(}\frac{|m|X}{cq}\bigg{)}^{-r}\,\int_{(a)}\ \left|\frac{\gamma_{k}(1-v)}{\gamma_{k}(v)}\right|\,\int_{\mathbb{R}}\ \left|\frac{d^{r}}{dy^{r}}\left[G_{s}(y)y^{v-1}\right]\right|\,dy\ |dv|.

Let v=a+iτv=a+i\tau and s=σ+its=\sigma+it with σ,t,τ\sigma,t,\tau\in\mathbb{R}. Then Stirling’s formula gives

|γk(1v)γk(v)|k,a(1+|τ|)12a.\displaystyle\left|\frac{\gamma_{k}(1-v)}{\gamma_{k}(v)}\right|\ \asymp_{k,a}\ (1+|\tau|)^{1-2a}. (A.3)

For any r2r\geq 2 and y[1,2]y\in[1,2], we have

maxy|Gs(r)(y)|\displaystyle\max_{y\in\mathbb{R}}\,\left|G_{s}^{(r)}(y)\right|\ rmaxi+j=ri,j0|g(i)(y)||s(s+1)(s+j1)|yσjr,σ(1+|t|)r,\displaystyle\ll_{r}\ \max_{\begin{subarray}{c}i+j=r\\ i,j\geq 0\end{subarray}}\ |g^{(i)}(y)|\,\cdot\,|s(s+1)\cdots(s+j-1)|y^{-\sigma-j}\ \ll_{r,\sigma}\ \left(1+|t|\right)^{r},
|drdyr[Gs(y)yv1]|\displaystyle\left|\frac{d^{r}}{dy^{r}}[G_{s}(y)y^{v-1}]\right| rmaxi+j=ri,j0|Gs(i)(y)||(v1)(vj)yvj1|a,r,σ((1+|t|)(1+|τ|))r.\displaystyle\ \ll_{r}\ \max_{\begin{subarray}{c}i+j=r\\ i,j\geq 0\end{subarray}}\ |G_{s}^{(i)}(y)|\cdot|(v-1)\cdots(v-j)y^{v-j-1}|\ \ll_{a,r,\sigma}\ \left(\left(1+|t|\right)\left(1+|\tau|\right)\right)^{r}. (A.4)

Hence, if 1<a<(k+1)/21<a<(k+1)/2 and rr\in\mathbb{Z} such that 2r<2a32\leq r<2a-3, then

|Gs(y)Jk1(4πyXc)e(myXcq)𝑑y|(1+|t|)rXar1|m|rc2a2r,\displaystyle\bigg{|}\int_{\mathbb{R}}\,G_{s}(y)J_{k-1}\bigg{(}\frac{4\pi\sqrt{yX\ell}}{c}\bigg{)}e\bigg{(}-\frac{myX}{cq}\bigg{)}\,dy\bigg{|}\ \ll\ \left(1+|t|\right)^{r}\frac{X^{a-r-1}}{|m|^{r}c^{2a-2-r}}, (A.5)
s,>(2)(X;,χ),q,k,σ,r,a(1+|t|)rXar1(X)2a3r=(1+|t|)rX(1r)/2.\displaystyle\mathcal{I}^{(2)}_{s,>}(X;\ell,\chi)\ \ll_{\ell,q,k,\sigma,r,a}\ \left(1+|t|\right)^{r}\frac{X^{a-r-1}}{(\sqrt{X})^{2a-3-r}}\ =\ (1+|t|)^{r}X^{(1-r)/2}. (A.6)

Next, we estimate s,(2)(X;,χ)\mathcal{I}^{(2)}_{s,\leq}(X;\ell,\chi) with X>2q2X>2q^{2}\ell. By (2.5), it suffices to estimate the oscillatory integral:

Gs(y)Wk(2yXc)e(2qyXmXycq)𝑑y.\displaystyle\int_{\mathbb{R}}\,G_{s}(y)W_{k}\bigg{(}\frac{2\sqrt{y\ell X}}{c}\bigg{)}e\bigg{(}\frac{2q\sqrt{y\ell X}-mXy}{cq}\bigg{)}dy.

To this end, we make use of Lem. 2.5 with the functions

ws(y):=Gs(y)Wk(2yXc) and h(y):=2qyXmXycq.\displaystyle w_{s}(y)\,:=\,G_{s}(y)W_{k}\bigg{(}\frac{2\sqrt{y\ell X}}{c}\bigg{)}\hskip 20.0pt\text{ and }\hskip 20.0pth(y)\,:=\,\frac{2q\sqrt{y\ell X}-mXy}{cq}.

Suppose y[1,2]y\in[1,2] and r2r\geq 2. We observe the following bounds:

h(y)=qy1/2XmXcq,|h(y)||m|Xcq(11|m|q2X)|m|Xcq,|h(r)(y)|rXc20,\displaystyle h^{\prime}(y)=\frac{qy^{-1/2}\sqrt{\ell X}-mX}{cq},\hskip 10.0pt|h^{\prime}(y)|\gg\frac{|m|X}{cq}\bigg{(}1-\frac{1}{|m|}\sqrt{\frac{q^{2}\ell}{X}}\bigg{)}\gg\frac{|m|X}{cq},\hskip 10.0pt|h^{(r)}(y)|\asymp_{r}\frac{\sqrt{\ell X}}{c}\geq 20,
|ws(r)(y)|\displaystyle\left|w_{s}^{(r)}(y)\right|\ r,σmaxi+j=r|Gs(i)(y)|maxm1+2m2++jmj=jm1,,mj0|Wk(m1++mj)|(2yXc)i=1j|yi(2yXc)|mi\displaystyle\ll_{r,\sigma}\,\max_{i+j=r}\,\big{|}G_{s}^{(i)}(y)\big{|}\max_{\begin{subarray}{c}m_{1}+2m_{2}+\cdots+j\cdot m_{j}=j\\ m_{1},\ldots,m_{j}\geq 0\end{subarray}}\,\big{|}W_{k}^{(m_{1}+\cdots+m_{j})}\big{|}\bigg{(}\frac{2\sqrt{y\ell X}}{c}\bigg{)}\,\cdot\,\prod_{i=1}^{j}\bigg{|}\partial_{y}^{i}\bigg{(}\frac{2\sqrt{y\ell X}}{c}\bigg{)}\bigg{|}^{m_{i}}
r,k(1+|t|)r(2Xc)1/2,\displaystyle\ll_{r,k}\,(1+|t|)^{r}\bigg{(}\frac{2\sqrt{\ell X}}{c}\bigg{)}^{-1/2}, (A.7)

where Leibniz’s rule and Faà di Bruno’s formula were used. Apply Lem. 2.5 with the parameters:

W=(2Xc)1/2,V=(1+|t|)1,H=Xc,G= 1,R=|m|Xcq,\displaystyle W\ =\ \bigg{(}\frac{2\sqrt{\ell X}}{c}\bigg{)}^{-1/2},\hskip 10.0ptV\ =\ \left(1+|t|\right)^{-1},\hskip 10.0ptH\ =\ \frac{\sqrt{\ell X}}{c},\hskip 10.0ptG\ =\ 1,\hskip 10.0ptR\ =\ \frac{|m|X}{cq}, (A.8)

we conclude that:

|ws(y)e(h(y))𝑑y|\displaystyle\bigg{|}\int_{\mathbb{R}}\,w_{s}(y)e\left(h(y)\right)\,dy\bigg{|}\ (2Xc)1/2(1+|t|)A(cq|m|X+Xc(cq|m|X)2)A\displaystyle\ll\ \,\bigg{(}\frac{2\sqrt{\ell X}}{c}\bigg{)}^{-1/2}\left(1+|t|\right)^{A}\bigg{(}\,\frac{cq}{|m|X}\ +\ \frac{\sqrt{\ell X}}{c}\bigg{(}\frac{cq}{|m|X}\bigg{)}^{2}\,\bigg{)}^{A}
(Xc)1/2(cq(1+|t|)|m|X)A(1+1|m|q2X)AcX1/4(c(1+|t|)|m|X)A\displaystyle\ll\ \,\bigg{(}\frac{\sqrt{\ell X}}{c}\bigg{)}^{-1/2}\left(\frac{cq\left(1+|t|\right)}{|m|X}\right)^{A}\bigg{(}1\ +\ \frac{1}{|m|}\sqrt{\frac{q^{2}\ell}{X}}\bigg{)}^{A}\ \ll\ \frac{\sqrt{c}}{X^{1/4}}\left(\frac{c\left(1+|t|\right)}{|m|X}\right)^{A} (A.9)

for c>0c>0, m0m\neq 0, X>2q2X>2q^{2}\ell, where the implicit constants depend on k,,q,A,σk,\ell,q,A,\sigma. When A>1A>1, we have

s,(2)(X;,χ)X1/4((1+|t|)X)AcXcA+1/2X((1+|t|)X)A.\displaystyle\mathcal{I}^{(2)}_{s,\leq}(X;\ell,\chi)\ \ll\ X^{-1/4}\,\bigg{(}\frac{\left(1+|t|\right)}{X}\bigg{)}^{A}\ \sum_{c\ll\sqrt{X}}\ c^{A+1/2}\ \ll\ \sqrt{X}\,\bigg{(}\frac{\left(1+|t|\right)}{\sqrt{X}}\bigg{)}^{A}. (A.10)

As a result, we obtain the estimate:

1Xs(X;,χ)(1+|t|)rX(1r)/2+X((1+|t|)X)A,\displaystyle\frac{1}{X}\,\mathcal{I}_{s}(X;\ell,\chi)\ \ll\ (1+|t|)^{r}X^{(1-r)/2}\ +\ \sqrt{X}\,\bigg{(}\frac{\left(1+|t|\right)}{\sqrt{X}}\bigg{)}^{A},

provided that 1<a<(k+1)/21<a<(k+1)/2, rr\in\mathbb{Z} with 2r<2a32\leq r<2a-3, X>2q2X>2q^{2}\ell, and A>1A>1. By taking r=k3r=k-3, a=(k+1)/2ϵa=(k+1)/2-\epsilon, A=k3A=k-3 with k6k\geq 6, we have

s(X;,χ)k,,q,σ(1+|t|)k3X(k6)/2.\displaystyle\mathcal{I}_{s}(X;\ell,\chi)\ \ll_{k,\ell,q,\sigma}\ \left(1+|t|\right)^{k-3}X^{-(k-6)/2}. (A.11)

On the strip σ1σσ2\sigma_{1}\leq\sigma\leq\sigma_{2}, the same estimates hold with the implicit constants depend only on k,,q,σ1,σ2k,\ell,q,\sigma_{1},\sigma_{2}.

We now turn to 𝒜(s,χ)\mathcal{A}_{\ell}(s,\chi). For Res1\operatorname{Re}s\gg 1, we have

𝒜(s,χ)=(2u>2u1+2u2u1)s(2u;,χ)2us\displaystyle\mathcal{A}_{\ell}(s,\chi)=\bigg{(}\,\sum_{\begin{subarray}{c}2^{u}>2\ell\\ u\geq-1\end{subarray}}\,+\,\sum_{\begin{subarray}{c}2^{u}\leq 2\ell\\ u\geq-1\end{subarray}}\,\bigg{)}\ \frac{\mathcal{I}_{s}(2^{u};\ell,\chi)}{2^{us}} (A.12)

Apply (A.11) to the first sum of (A.12), we have, for σ>(k6)/2\sigma>-(k-6)/2 and tt\in\mathbb{R},

2u>2u1|s(2u;,χ)2us|(1+|t|)k3u0(2u)k622uσk,,q,σ(1+|t|)k3.\displaystyle\sum_{\begin{subarray}{c}2^{u}>2\ell\\ u\geq-1\end{subarray}}\ \bigg{|}\frac{\mathcal{I}_{s}(2^{u};\ell,\chi)}{2^{us}}\bigg{|}\ \ll\ \left(1+|t|\right)^{k-3}\sum_{\begin{subarray}{c}u\geq 0\end{subarray}}\frac{(2^{u})^{-\frac{k-6}{2}}}{2^{u\sigma}}\ \ll_{k,\ell,q,\sigma}\ \left(1+|t|\right)^{k-3}. (A.13)

Next, it follows from Cauchy–Schwarz’s inequality and bounding the geometric side of (2.11) that

2u2u1|s(2u;,χ)2us|n4hfk(1)h|λf()λf(n)|nσn4hfk(1)h(|λf()|2+|λf(n)|2)k,,q1.\displaystyle\sum_{\begin{subarray}{c}2^{u}\leq 2\ell\\ u\geq-1\end{subarray}}\ \bigg{|}\frac{\mathcal{I}_{s}(2^{u};\ell,\chi)}{2^{us}}\bigg{|}\ll\sum_{n\leq 4\ell}\ \ \sideset{}{{}^{h}}{\sum}_{f\in\mathcal{B}_{k}(1)}\ \ \left|\lambda_{f}(\ell)\lambda_{f}(n)\right|n^{-\sigma}\ll\sum_{n\leq 4\ell}\ \ \sideset{}{{}^{h}}{\sum}_{f\in\mathcal{B}_{k}(1)}\ \left(|\lambda_{f}(\ell)|^{2}+|\lambda_{f}(n)|^{2}\right)\ll_{k,\ell,q}1. (A.14)

From (A.13) and (A.14), the series on the right side of (A.12) converge absolutely pointwisely and uniformly on every compact subset of the region Res>(k6)/2\operatorname{Re}s>-(k-6)/2. Thus, 𝒜(s,χ)\mathcal{A}_{\ell}(s,\chi) admits an analytic continuation and (A.1) holds in the same region. ∎

References

  • [1] S. Altuğ “Beyond endoscopy via the trace formula, II: Asymptotic expansions of Fourier transforms and bounds towards the Ramanujan conjecture” In Amer. J. Math. 139.4, 2017, pp. 863–913
  • [2] S. Altuğ “Beyond endoscopy via the trace formula—III The standard representation” In J. Inst. Math. Jussieu 19.4, 2020, pp. 1349–1387
  • [3] Salim Ali Altuğ “Beyond endoscopy via the trace formula: 1. Poisson summation and isolation of special representations” In Compos. Math. 151.10, 2015, pp. 1791–1820
  • [4] Edgar Assing and Andrew Corbett “Voronoï summation via switching cusps” In Monatsh. Math. 194.4, 2021, pp. 657–685
  • [5] Ehud Moshe Baruch and Zhengyu Mao “Bessel identities in the Waldspurger correspondence over the real numbers” In Israel J. Math. 145, 2005, pp. 1–81
  • [6] Valentin Blomer and Farrell Brumley “The role of the Ramanujan conjecture in analytic number theory” In Bull. Amer. Math. Soc. (N.S.) 50.2, 2013, pp. 267–320
  • [7] Valentin Blomer and Rizwanur Khan “Twisted moments of LL-functions and spectral reciprocity” In Duke Math. J. 168.6, 2019, pp. 1109–1177
  • [8] Valentin Blomer and Rizwanur Khan “Uniform subconvexity and symmetry breaking reciprocity” In J. Funct. Anal. 276.7, 2019, pp. 2315–2358
  • [9] Valentin Blomer, Rizwanur Khan and Matthew Young “Distribution of mass of holomorphic cusp forms” In Duke Math. J. 162.14, 2013, pp. 2609–2644
  • [10] Valentin Blomer and Wing Hong Leung “A GL(3) converse theorem via a "beyond endoscopy” approach”, 2024 arXiv:2401.04037 [math.NT]
  • [11] Andrew R. Booker, Michael Farmer and Min Lee “An extension of Venkatesh’s converse theorem to the Selberg class” In Forum Math. Sigma 11, 2023, pp. Paper No. e26\bibrangessep10
  • [12] Jingsong Chai and Zhi Qi “Bessel identities in the Waldspurger correspondence over the complex numbers” In Israel J. Math. 235.1, 2020, pp. 439–463
  • [13] Nikolaos Diamantis and Cormac O’Sullivan “Kernels of LL-functions of cusp forms” In Math. Ann. 346.4, 2010, pp. 897–929
  • [14] W. Duke and H. Iwaniec “A relation between cubic exponential and Kloosterman sums” In A tribute to Emil Grosswald: number theory and related analysis 143, Contemp. Math. Amer. Math. Soc., Providence, RI, 1993, pp. 255–258
  • [15] W. Duke and H. Iwaniec “Convolution LL-series” In Compos. Math. 91.2, 1994, pp. 145–158
  • [16] Melissa Emory, Malors Espinosa-Lara, Debanjana Kundu and Tian An Wong “Beyond Endoscopy via Poisson Summation for GL(2,K)”, 2024 arXiv:2404.10139 [math.NT]
  • [17] Solomon Friedberg and Omer Offen “On the Cubic Shimura lift to PGL(3)PGL(3): The Fundamental Lemma”, 2022 arXiv:2202.01247 [math.NT]
  • [18] Satadal Ganguly and Ramdin Mawia “Rankin-Selberg LL-functions and “beyond endoscopy”” In Math. Z. 296.1-2, 2020, pp. 175–184 DOI: 10.1007/s00209-019-02431-5
  • [19] Dorian Goldfeld “Analytic and arithmetic theory of Poincaré series” Luminy Conference on Arithmetic In Astérisque, 1979, pp. 95–107
  • [20] Dorian Goldfeld and Shouwu Zhang “The holomorphic kernel of the Rankin-Selberg convolution” In Surveys in differential geometry 7, Surv. Differ. Geom. Int. Press, Somerville, MA, 2000, pp. 195–219
  • [21] Oscar E. González et al. “On smoothing singularities of elliptic orbital integrals on GL(n)GL(n) and beyond endoscopy” In J. Number Theory 183, 2018, pp. 407–427
  • [22] P. Herman “Beyond endoscopy for the Rankin-Selberg LL-function” In J. Number Theory 131.9, 2011, pp. 1691–1722
  • [23] P. Herman “The functional equation and beyond endoscopy” In Pacific J. Math. (Rogawski Memorial Volume) 260.2, 2012, pp. 497–513
  • [24] H. Iwaniec “On Waldspurger’s theorem” In Acta Arith. 49.2, 1987, pp. 205–212
  • [25] Henryk Iwaniec and Emmanuel Kowalski “Analytic number theory” 53, American Mathematical Society Colloquium Publications American Mathematical Society, Providence, RI, 2004
  • [26] Eren Kıral and Fan Zhou “The Voronoi formula and double Dirichlet series” In Algebra & Number Theory 10.10 Mathematical Sciences Publishers, 2016, pp. 2267–2286
  • [27] N.. Kuznecov “The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums” In Mat. Sb. (N.S.) 111(153).3, 1980, pp. 334–383
  • [28] Chung-Hang Kwan and Wing Hong Leung “Trace formula and functional equation”, 2024 arXiv:2410.16921 [math.NT]
  • [29] Chung-Hang Kwan and Wing Hong Leung “Discussions of Herman’s “The functional equation and Beyond Endoscopy”” URL: https://drive.google.com/file/d/1SymUkyOuMHhQ1CMVAgkQEKHLCTvsd9gi/view?usp=sharing
  • [30] Zhengyu Mao and Stephen Rallis “On a cubic lifting” In Israel J. Math. 113, 1999, pp. 95–124
  • [31] Stephen D. Miller and Wilfried Schmid “Summation formulas, from Poisson and Voronoi to the present” In Noncommutative harmonic analysis, Progr. Math. 220 Birkhäuser, 2004, pp. 419–440
  • [32] Shin-ichiro Mizumoto “On the second LL-functions attached to Hilbert modular forms” In Math. Ann. 269.2, 1984, pp. 191–216
  • [33] Paul D. Nelson “Stable averages of central values of Rankin-Selberg LL-functions: some new variants” In J. Number Theory 133.8, 2013, pp. 2588–2615
  • [34] Nicolas Templier “Voronoĭ summation for GL(2)\rm GL(2) In Representation theory, automorphic forms & complex geometry Int. Press, Somerville, MA, [2019] ©2019, pp. 163–196
  • [35] Akshay Venkatesh “Limiting forms of the trace formula” Thesis (Ph.D.)–Princeton University ProQuest LLC, Ann Arbor, MI, 2002, pp. 168
  • [36] Akshay Venkatesh ““Beyond endoscopy” and special forms on GL(2)” In J. Reine Angew. Math. 577, 2004, pp. 23–80
  • [37] G.. Watson “A treatise on the theory of Bessel functions” Reprint of the second (1944) edition, Cambridge Mathematical Library Cambridge University Press, Cambridge, 1995
  • [38] Paul-James White “The base change LL-function for modular forms and Beyond Endoscopy” In J. Number Theory 140, 2014, pp. 13–37
  • [39] D. Zagier “Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields” In Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) 627, Lecture Notes in Math. Springer, Berlin-New York, 1977, pp. 105–169