This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Charmonium-like states with the exotic quantum number JPC=3+J^{PC}=3^{-+}

Hong-Zhou Xi1 hzxi@seu.edu.cn    Hua-Xing Chen1 hxchen@seu.edu.cn    Wei Chen2 chenwei29@mail.sysu.edu.cn    T. G. Steele3 tom.steele@usask.ca    Yong Zhang1 zyfghe@seu.edu.cn    Dan Zhou4 danzhou@hebtu.edu.cn 1School of Physics, Southeast University, Nanjing 210094, China
2School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
3Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
4Department of Physics and Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, China
Abstract

We apply the method of QCD sum rules to study the qcq¯c¯qc\bar{q}\bar{c} tetraquark states with the exotic quantum number JPC=3+J^{PC}=3^{-+}, and extract the mass of the lowest-lying state to be 4.490.41+0.45{4.49^{+0.45}_{-0.41}} GeV. To construct the relevant tetraquark currents we need to explicitly add the covariant derivative operator. Our systematic analysis of these interpolating currents indicates that: a) this state readily decays into the PP-wave [ρJ/ψ]/[ωJ/ψ][\rho J/\psi]/[\omega J/\psi] channel but not into the [ρχc2]/[ωχc2]/[J/ψf2(1270)][\rho\chi_{c2}]/[\omega\chi_{c2}]/[J/\psi f_{2}(1270)] channels, and b) it readily decays into the [DD¯2][D^{*}\bar{D}_{2}^{*}] channel but not into the PP-wave [DD¯][D^{*}\bar{D}^{*}] channel.

exotic hadron, tetraquark state, QCD sum rules

I Introduction

There have been many candidates for exotic hadrons observed in particle experiments, which can not be well explained in the traditional quark model pdg ; Liu:2019zoy ; Lebed:2016hpi ; Esposito:2016noz ; Guo:2017jvc ; Ali:2017jda ; Olsen:2017bmm ; Karliner:2017qhf ; Brambilla:2019esw ; Guo:2019twa . Many of them still have the “traditional” quantum numbers that the traditional q¯q\bar{q}q mesons and qqqqqq baryons can form. This makes them not so easy to be clearly identified as exotic hadrons. However, there exist some “exotic” quantum numbers that the traditional hadrons can not form, such as the spin-parity quantum numbers JPC=0J^{PC}=0^{--}, 0+0^{+-}, 1+1^{-+}, 2+2^{+-}, 3+3^{-+}, and 4+4^{+-}, etc. These “exotic” quantum numbers are of particular interest, because the states with such quantum numbers can not be explained as traditional hadrons. Such states are definitely exotic hadrons, whose possible interpretations are tetraquark states Chen:2008qw ; Chen:2008ne ; Jiao:2009ra ; Huang:2016rro ; LEE:2020eif ; Du:2012pn ; Fu:2018ngx ; Dong:2022otb ; Xi:2023byo ; Dong:2022cuw ; Yang:2022rck ; Ji:2022blw ; Wang:2021lkg ; Wang:2023jaw , hybrid states Meyer:2015eta ; Chetyrkin:2000tj ; Zhang:2013rya ; Huang:2014hya ; Huang:2016upt ; Ho:2018cat ; Wang:2023whb ; Su:2023jxb ; Tan:2024grd ; Chen:2022isv ; Dudek:2013yja ; Li:2021fwk ; Tang:2021zti ; Qiu:2022ktc ; Wan:2022xkx ; Wang:2022sib ; Frere:2024wsf ; Barsbay:2024vjt , and glueballs Qiao:2014vva ; Tang:2015twt ; Pimikov:2017bkk , etc. Note that these exotic structures may mix together, making it challenging to arrive at a clear differentiation.

Among the above exotic quantum numbers, the hybrid states of JPC=1+J^{PC}=1^{-+} have been extensively studied in literature, since they are predicted to be the lightest hybrid states Meyer:2015eta , and there have been some experimental evidences on their existence E852:1997gvf ; CrystalBarrel:1999reg ; E862:2006cfp . The light tetraquark states of JPC=1+J^{PC}=1^{-+} have also been studied in Refs. Chen:2008qw ; Chen:2008ne using the method of QCD sum rules, and their masses and possible decay channels were predicted there for both the isospin-0 and isospin-1 states. Later the same QCD sum rule method was applied to extensively study the light tetraquark states of JPC=0/0+/2+/4+J^{PC}=0^{--}/0^{+-}/2^{+-}/4^{+-} in Refs. Jiao:2009ra ; Huang:2016rro ; LEE:2020eif ; Du:2012pn ; Fu:2018ngx ; Dong:2022otb ; Xi:2023byo .

In this paper we shall study the exotic quantum number JPC=3+J^{PC}=3^{-+} using the method of QCD sum rules. The light qsq¯s¯qs\bar{q}\bar{s} tetraquark states (q=up/downq=up/down and s=stranges=strange) with such a quantum number have been systematically investigated in Ref. Su:2020reg , and in this paper we shall further study their corresponding charmonium-like qcq¯c¯qc\bar{q}\bar{c} tetraquark states. These states are potential exotic hadrons to be observed in the future BESIII, Belle-II, and LHCb experiments. There are just a few theoretical studies on this subject. In Ref. Zhu:2013sca the authors used the one-boson-exchange model to study the DD¯2D^{*}\bar{D}_{2}^{*} molecular state of JPC=3+J^{PC}=3^{-+}, and their results suggest its possible existence. In Ref. Dong:2021juy the authors further investigated this state by solving the Bethe-Salpeter equation. Additionally, there was a Lattice QCD study on the JPC=3+J^{PC}=3^{-+} glueball Shen:1984mxq .

This paper is organized as follows. In Sec. II, we systematically construct the qcq¯c¯qc\bar{q}\bar{c} tetraquark currents with the exotic quantum number JPC=3+J^{PC}=3^{-+}. Then we apply the QCD sum rule method to study them in Sec. III, and perform numerical analyses in Sec. IV. The obtained results are summarized and discussed in Sec. V.

II Interpolating Currents

In this section we construct the hidden-charm tetraquark currents with the exotic quantum number JPC=3+J^{PC}=3^{-+}. We have systematically constructed the hidden-strange tetraquark currents with such a quantum number in Ref. Su:2020reg , and in this paper we just need to replace the strangestrange quarks by the charmcharm quarks. Note that the exotic quantum number JPC=3+J^{PC}=3^{-+} can not be simply reached by using one quark field and one antiquark field, while it can not be reached by using two quark fields and two antiquark fields neither. Actually, we need two quark fields and two antiquark fields together with at least one derivative to reach such a quantum number.

As the first step, we work within the diquark-antidiquark configuration, where the derivative can be either inside the diquark/antidiquark field or between them (c=charmc=charm and q=up/downq=up/down):

η\displaystyle\eta =\displaystyle= [caTCΓ1Dαqb](c¯cΓ2Cq¯dT),\displaystyle\big{[}c_{a}^{T}C\Gamma_{1}{\overset{\leftrightarrow}{D}}_{\alpha}q_{b}\big{]}(\bar{c}_{c}\Gamma_{2}C\bar{q}_{d}^{T})\,, (1)
η\displaystyle\eta^{\prime} =\displaystyle= (caTCΓ1qb)[c¯cΓ2CDαq¯dT],\displaystyle(c_{a}^{T}C\Gamma_{1}q_{b})\big{[}\bar{c}_{c}\Gamma_{2}C{\overset{\leftrightarrow}{D}}_{\alpha}\bar{q}_{d}^{T}\big{]}\,, (2)
η′′\displaystyle\eta^{\prime\prime} =\displaystyle= [(caTCΓ3qb)Dα(c¯cΓ4Cq¯dT)].\displaystyle\big{[}(c_{a}^{T}C\Gamma_{3}q_{b}){\overset{\leftrightarrow}{D}}_{\alpha}(\bar{c}_{c}\Gamma_{4}C\bar{q}_{d}^{T})\big{]}\,. (3)

Here ada\cdots d are color indices, and the sum over repeated indices is taken; Γ14\Gamma_{1\cdots 4} are Dirac matrices; [XDαY]=X[DαY][DαX]Y\big{[}X{\overset{\leftrightarrow}{D}}_{\alpha}Y\big{]}=X[D_{\alpha}Y]-[D_{\alpha}X]Y with the covariant derivative Dα=α+igsAαD_{\alpha}=\partial_{\alpha}+ig_{s}A_{\alpha}. We find that only the former two can be combined to reach the exotic quantum number JPC=3+J^{PC}=3^{-+}.

There are altogether six independent diquark-antidiquark currents of JPC=3+J^{PC}=3^{-+}:

ηα1α2α31\displaystyle\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} =\displaystyle= ϵabeϵcde×𝒮{[caTCγα1Dα3qb](c¯cγα2Cq¯dT)+(caTCγα1qb)[c¯cγα2CDα3q¯dT]},\displaystyle\epsilon^{abe}\epsilon^{cde}\times\mathcal{S}\Big{\{}\big{[}c_{a}^{T}C\gamma_{\alpha_{1}}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}q_{b}\big{]}(\bar{c}_{c}\gamma_{\alpha_{2}}C\bar{q}_{d}^{T})+(c_{a}^{T}C\gamma_{\alpha_{1}}q_{b})\big{[}\bar{c}_{c}\gamma_{\alpha_{2}}C{\overset{\leftrightarrow}{D}}_{\alpha_{3}}\bar{q}_{d}^{T}\big{]}\Big{\}}\,, (4)
ηα1α2α32\displaystyle\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} =\displaystyle= (δacδbd+δadδbc)×𝒮{[caTCγα1Dα3qb](c¯cγα2Cq¯dT)+(caTCγα1qb)[c¯cγα2CDα3q¯dT]},\displaystyle(\delta^{ac}\delta^{bd}+\delta^{ad}\delta^{bc})\times\mathcal{S}\Big{\{}\big{[}c_{a}^{T}C\gamma_{\alpha_{1}}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}q_{b}\big{]}(\bar{c}_{c}\gamma_{\alpha_{2}}C\bar{q}_{d}^{T})+(c_{a}^{T}C\gamma_{\alpha_{1}}q_{b})\big{[}\bar{c}_{c}\gamma_{\alpha_{2}}C{\overset{\leftrightarrow}{D}}_{\alpha_{3}}\bar{q}_{d}^{T}\big{]}\Big{\}}\,, (5)
ηα1α2α33\displaystyle\eta^{3}_{\alpha_{1}\alpha_{2}\alpha_{3}} =\displaystyle= ϵabeϵcde×𝒮{[caTCγα1γ5Dα3qb](c¯cγα2γ5Cq¯dT)+(caTCγα1γ5qb)[c¯cγα2γ5CDα3q¯dT]},\displaystyle\epsilon^{abe}\epsilon^{cde}\times\mathcal{S}\Big{\{}\big{[}c_{a}^{T}C\gamma_{\alpha_{1}}\gamma_{5}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}q_{b}\big{]}(\bar{c}_{c}\gamma_{\alpha_{2}}\gamma_{5}C\bar{q}_{d}^{T})+(c_{a}^{T}C\gamma_{\alpha_{1}}\gamma_{5}q_{b})\big{[}\bar{c}_{c}\gamma_{\alpha_{2}}\gamma_{5}C{\overset{\leftrightarrow}{D}}_{\alpha_{3}}\bar{q}_{d}^{T}\big{]}\Big{\}}\,, (6)
ηα1α2α34\displaystyle\eta^{4}_{\alpha_{1}\alpha_{2}\alpha_{3}} =\displaystyle= (δacδbd+δadδbc)×𝒮{[caTCγα1γ5Dα3qb](c¯cγα2γ5Cq¯dT)+(caTCγα1γ5qb)[c¯cγα2γ5CDα3q¯dT]},\displaystyle(\delta^{ac}\delta^{bd}+\delta^{ad}\delta^{bc})\times\mathcal{S}\Big{\{}\big{[}c_{a}^{T}C\gamma_{\alpha_{1}}\gamma_{5}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}q_{b}\big{]}(\bar{c}_{c}\gamma_{\alpha_{2}}\gamma_{5}C\bar{q}_{d}^{T})+(c_{a}^{T}C\gamma_{\alpha_{1}}\gamma_{5}q_{b})\big{[}\bar{c}_{c}\gamma_{\alpha_{2}}\gamma_{5}C{\overset{\leftrightarrow}{D}}_{\alpha_{3}}\bar{q}_{d}^{T}\big{]}\Big{\}}\,, (7)
ηα1α2α35\displaystyle\eta^{5}_{\alpha_{1}\alpha_{2}\alpha_{3}} =\displaystyle= ϵabeϵcde×gμν𝒮{[caTCσα1μDα3qb](c¯cσα2νCq¯dT)+(caTCσα1μqb)[c¯cσα2νCDα3q¯dT]},\displaystyle\epsilon^{abe}\epsilon^{cde}\times g^{\mu\nu}\mathcal{S}\Big{\{}\big{[}c_{a}^{T}C\sigma_{\alpha_{1}\mu}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}q_{b}\big{]}(\bar{c}_{c}\sigma_{\alpha_{2}\nu}C\bar{q}_{d}^{T})+(c_{a}^{T}C\sigma_{\alpha_{1}\mu}q_{b})\big{[}\bar{c}_{c}\sigma_{\alpha_{2}\nu}C{\overset{\leftrightarrow}{D}}_{\alpha_{3}}\bar{q}_{d}^{T}\big{]}\Big{\}}\,, (8)
ηα1α2α36\displaystyle\eta^{6}_{\alpha_{1}\alpha_{2}\alpha_{3}} =\displaystyle= (δacδbd+δadδbc)×gμν𝒮{[caTCσα1μDα3qb](c¯cσα2νCq¯dT)+(caTCσα1μqb)[c¯cσα2νCDα3q¯dT]},\displaystyle(\delta^{ac}\delta^{bd}+\delta^{ad}\delta^{bc})\times g^{\mu\nu}\mathcal{S}\Big{\{}\big{[}c_{a}^{T}C\sigma_{\alpha_{1}\mu}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}q_{b}\big{]}(\bar{c}_{c}\sigma_{\alpha_{2}\nu}C\bar{q}_{d}^{T})+(c_{a}^{T}C\sigma_{\alpha_{1}\mu}q_{b})\big{[}\bar{c}_{c}\sigma_{\alpha_{2}\nu}C{\overset{\leftrightarrow}{D}}_{\alpha_{3}}\bar{q}_{d}^{T}\big{]}\Big{\}}\,, (9)

where 𝒮\mathcal{S} denotes symmetrization and subtracting the trace terms in the set {α1α2α3}\{\alpha_{1}\alpha_{2}\alpha_{3}\}, so that the spin-3 components can be well separated. Three of them ηα1α2α31,3,5\eta^{1,3,5}_{\alpha_{1}\alpha_{2}\alpha_{3}} have the antisymmetric color structure (qc)𝟑¯C(q¯c¯)𝟑C(qc)_{\mathbf{\bar{3}}_{C}}(\bar{q}\bar{c})_{\mathbf{3}_{C}}, and the other three ηα1α2α32,4,6\eta^{2,4,6}_{\alpha_{1}\alpha_{2}\alpha_{3}} have the symmetric color structure (qc)𝟔C(q¯c¯)𝟔¯C(qc)_{\mathbf{6}_{C}}(\bar{q}\bar{c})_{\mathbf{\bar{6}}_{C}}.

Besides the diquark-antidiquark configuration, we also investigate the meson-meson configuration. There are six independent meson-meson currents of JPC=3+J^{PC}=3^{-+}:

ξα1α2α31\displaystyle\xi^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} =\displaystyle= 𝒮{(c¯aγα1ca)Dα3(q¯bγα2qb)},\displaystyle\mathcal{S}\Big{\{}(\bar{c}_{a}\gamma_{\alpha_{1}}c_{a}){\overset{\leftrightarrow}{D}}_{\alpha_{3}}(\bar{q}_{b}\gamma_{\alpha_{2}}q_{b})\Big{\}}\,, (10)
ξα1α2α32\displaystyle\xi^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} =\displaystyle= 𝒮{(c¯aγα1γ5ca)Dα3(q¯bγα2γ5qb)},\displaystyle\mathcal{S}\Big{\{}(\bar{c}_{a}\gamma_{\alpha_{1}}\gamma_{5}c_{a}){\overset{\leftrightarrow}{D}}_{\alpha_{3}}(\bar{q}_{b}\gamma_{\alpha_{2}}\gamma_{5}q_{b})\Big{\}}\,, (11)
ξα1α2α33\displaystyle\xi^{3}_{\alpha_{1}\alpha_{2}\alpha_{3}} =\displaystyle= gμν𝒮{(c¯aσα1μca)Dα3(q¯bσα2νqb)},\displaystyle g^{\mu\nu}\mathcal{S}\Big{\{}(\bar{c}_{a}\sigma_{\alpha_{1}\mu}c_{a}){\overset{\leftrightarrow}{D}}_{\alpha_{3}}(\bar{q}_{b}\sigma_{\alpha_{2}\nu}q_{b})\Big{\}}\,, (12)
ξα1α2α34\displaystyle\xi^{4}_{\alpha_{1}\alpha_{2}\alpha_{3}} =\displaystyle= 𝒮{[c¯aγα1Dα3qa](q¯bγα2cb)\displaystyle\mathcal{S}\Big{\{}\big{[}\bar{c}_{a}\gamma_{\alpha_{1}}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}q_{a}\big{]}(\bar{q}_{b}\gamma_{\alpha_{2}}c_{b})
(c¯aγα1qa)[q¯bγα2Dα3cb]},\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-(\bar{c}_{a}\gamma_{\alpha_{1}}q_{a})\big{[}\bar{q}_{b}\gamma_{\alpha_{2}}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}c_{b}\big{]}\Big{\}}\,,
ξα1α2α35\displaystyle\xi^{5}_{\alpha_{1}\alpha_{2}\alpha_{3}} =\displaystyle= 𝒮{[c¯aγα1γ5Dα3qa](q¯bγα2γ5cb)\displaystyle\mathcal{S}\Big{\{}\big{[}\bar{c}_{a}\gamma_{\alpha_{1}}\gamma_{5}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}q_{a}\big{]}(\bar{q}_{b}\gamma_{\alpha_{2}}\gamma_{5}c_{b})
(c¯aγα1γ5qa)[q¯bγα2γ5Dα3cb]},\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-(\bar{c}_{a}\gamma_{\alpha_{1}}\gamma_{5}q_{a})\big{[}\bar{q}_{b}\gamma_{\alpha_{2}}\gamma_{5}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}c_{b}\big{]}\Big{\}}\,,
ξα1α2α36\displaystyle\xi^{6}_{\alpha_{1}\alpha_{2}\alpha_{3}} =\displaystyle= gμν𝒮{[c¯aσα1μDα3qa](q¯bσα2νcb)\displaystyle g^{\mu\nu}\mathcal{S}\Big{\{}\big{[}\bar{c}_{a}\sigma_{\alpha_{1}\mu}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}q_{a}\big{]}(\bar{q}_{b}\sigma_{\alpha_{2}\nu}c_{b})
(c¯aσα1μqa)[q¯bσα2νDα3cb]}.\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-(\bar{c}_{a}\sigma_{\alpha_{1}\mu}q_{a})\big{[}\bar{q}_{b}\sigma_{\alpha_{2}\nu}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}c_{b}\big{]}\Big{\}}\,.

We can apply the Fierz rearrangement to relate the above diquark-antidiquark and meson-meson currents:

(ηα1α2α31ηα1α2α32ηα1α2α33ηα1α2α34ηα1α2α35ηα1α2α36)=\displaystyle\left(\begin{array}[]{c}\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}}\\ \eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}}\\ \eta^{3}_{\alpha_{1}\alpha_{2}\alpha_{3}}\\ \eta^{4}_{\alpha_{1}\alpha_{2}\alpha_{3}}\\ \eta^{5}_{\alpha_{1}\alpha_{2}\alpha_{3}}\\ \eta^{6}_{\alpha_{1}\alpha_{2}\alpha_{3}}\end{array}\right)= (22)
(121212121212121212121212121212121212121212121212110110110110)(ξα1α2α31ξα1α2α32ξα1α2α33ξα1α2α34ξα1α2α35ξα1α2α36).\displaystyle\left(\begin{array}[]{cccccc}-{1\over 2}&{1\over 2}&{1\over 2}&-{1\over 2}&{1\over 2}&{1\over 2}\\ -{1\over 2}&{1\over 2}&{1\over 2}&{1\over 2}&-{1\over 2}&-{1\over 2}\\ {1\over 2}&-{1\over 2}&{1\over 2}&-{1\over 2}&{1\over 2}&-{1\over 2}\\ {1\over 2}&-{1\over 2}&{1\over 2}&{1\over 2}&-{1\over 2}&{1\over 2}\\ 1&1&0&1&1&0\\ 1&1&0&-1&-1&0\end{array}\right)\left(\begin{array}[]{c}\xi^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}}\\ \xi^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}}\\ \xi^{3}_{\alpha_{1}\alpha_{2}\alpha_{3}}\\ \xi^{4}_{\alpha_{1}\alpha_{2}\alpha_{3}}\\ \xi^{5}_{\alpha_{1}\alpha_{2}\alpha_{3}}\\ \xi^{6}_{\alpha_{1}\alpha_{2}\alpha_{3}}\end{array}\right)\,. (35)

Hence, these two configurations are equivalent, and we shall apply this Fierz identity to study the decay properties at the end of this paper. However, this equivalence is just between the local diquark-antidiquark and meson-meson currents, while the tightly-bound diquark-antidiquark tetraquark states and the weakly-bound meson-meson molecular states are totally different. To clearly describe them, we need to investigate the non-local currents, which can not be done within the QCD sum rule framework yet.

III QCD sum rule Analysis

In this section we apply the QCD sum rule method to study the six diquark-antidiquark currents ηα1α2α3i\eta^{i}_{\alpha_{1}\alpha_{2}\alpha_{3}} (i=16i=1\cdots 6), and calculate their two-point correlation functions

Πα1α2α3,β1β2β3ii(q2)\displaystyle\Pi^{ii}_{\alpha_{1}\alpha_{2}\alpha_{3},\beta_{1}\beta_{2}\beta_{3}}(q^{2})
\displaystyle\equiv id4xeiqx0|𝐓[ηα1α2α3i(x)ηβ1β2β3i,(0)]|0\displaystyle i\int d^{4}xe^{iqx}\langle 0|{\bf T}[\eta^{i}_{\alpha_{1}\alpha_{2}\alpha_{3}}(x)\eta^{i,\dagger}_{\beta_{1}\beta_{2}\beta_{3}}(0)]|0\rangle
=\displaystyle= (1)J𝒮[g~α1β1g~α2β2g~α3β3]Πii(q2),\displaystyle(-1)^{J}~{}\mathcal{S}^{\prime}[\tilde{g}_{\alpha_{1}\beta_{1}}\tilde{g}_{\alpha_{2}\beta_{2}}\tilde{g}_{\alpha_{3}\beta_{3}}]~{}\Pi_{ii}(q^{2})\,,

at both the hadron and quark-gluon levels. Here g~μν=gμνqμqν/q2\tilde{g}_{\mu\nu}=g_{\mu\nu}-q_{\mu}q_{\nu}/q^{2}, and 𝒮\mathcal{S}^{\prime} denotes symmetrization and subtracting trace terms in the two sets {α1α2α3}\{\alpha_{1}\alpha_{2}\alpha_{3}\} and {β1β2β3}\{\beta_{1}\beta_{2}\beta_{3}\}.

Take the first current ηα1α2α31\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} as an example. We assume that it couples to the possibly-existing exotic state X1X_{1} through

0|ηα1α2α31|X1=f1ϵα1α2α3,\langle 0|\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}}|X_{1}\rangle=f_{1}\epsilon_{\alpha_{1}\alpha_{2}\alpha_{3}}\,, (37)

with f1f_{1} the decay constant. The symmetric and traceless polarization tensor ϵα1α2α3\epsilon_{\alpha_{1}\alpha_{2}\alpha_{3}} satisfies

spinϵα1α2α3ϵβ1β2β3=𝒮[g~α1β1g~α2β2g~α3β3].\sum_{spin}\epsilon_{\alpha_{1}\alpha_{2}\alpha_{3}}\epsilon^{*}_{\beta_{1}\beta_{2}\beta_{3}}=\mathcal{S}^{\prime}[\tilde{g}_{\alpha_{1}\beta_{1}}\tilde{g}_{\alpha_{2}\beta_{2}}\tilde{g}_{\alpha_{3}\beta_{3}}]\,. (38)

At the hadron level we apply the dispersion relation to write Eq. (III) as:

Π11(q2)=4mc2ρ11phen(s)sq2iε𝑑s,\Pi_{11}(q^{2})=\int^{\infty}_{4m_{c}^{2}}\frac{\rho^{\rm phen}_{11}(s)}{s-q^{2}-i\varepsilon}ds\,, (39)

with ρ11phen(s)\rho^{\rm phen}_{11}(s) the phenomenological spectral density. We parameterize it using one pole dominance for the state X1X_{1} and a continuum contribution

ρ11phen(s)×𝒮[]\displaystyle\rho^{\rm phen}_{11}(s)\times\mathcal{S}^{\prime}[\cdots]
\displaystyle\equiv nδ(sMn2)0|ηα1α2α31|nn|ηβ1β2β31,|0\displaystyle\sum_{n}\delta(s-M^{2}_{n})\langle 0|\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}}|n\rangle\langle n|\eta^{1,\dagger}_{\beta_{1}\beta_{2}\beta_{3}}|0\rangle
=\displaystyle= f12δ(sM12)×𝒮[]+continuum.\displaystyle f^{2}_{1}\delta(s-M^{2}_{1})\times\mathcal{S}^{\prime}[\cdots]+\rm{continuum}\,.

At the quark-gluon level we insert the current ηα1α2α31\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} into Eq. (III), and calculate it using the method of operator product expansion (OPE), from which we extract the OPE spectral density ρ11(s)ρ11OPE(s)\rho_{11}(s)\equiv\rho_{11}^{\rm OPE}(s). Then we perform the Borel transformation at both the hadron and quark-gluon levels. After approximating the continuum using the OPE spectral density above the threshold value s0s_{0}, we obtain the QCD sum rule equation

Π11(s0,MB2)f12eM12/MB2=4mc2s0es/MB2ρ11(s)𝑑s.\Pi_{11}(s_{0},M_{B}^{2})\equiv f^{2}_{1}e^{-M_{1}^{2}/M_{B}^{2}}=\int^{s_{0}}_{4m_{c}^{2}}e^{-s/M_{B}^{2}}\rho_{11}(s)ds\,. (41)

We can use it to further calculate M1M_{1} through

M12(s0,MB)\displaystyle M_{1}^{2}(s_{0},M_{B}) =\displaystyle= (1/MB2)Π11(s0,MB2)Π11(s0,MB2)\displaystyle\frac{\frac{\partial}{\partial(-1/M_{B}^{2})}\Pi_{11}(s_{0},M_{B}^{2})}{\Pi_{11}(s_{0},M_{B}^{2})}
=\displaystyle= 4mc2s0es/MB2sρ11(s)𝑑s4mc2s0es/MB2ρ11(s)𝑑s.\displaystyle\frac{\int^{s_{0}}_{4m_{c}^{2}}e^{-s/M_{B}^{2}}s\rho_{11}(s)ds}{\int^{s_{0}}_{4m_{c}^{2}}e^{-s/M_{B}^{2}}\rho_{11}(s)ds}\,.

The OPE spectral density ρ11(s)\rho_{11}(s) extracted from the current ηα1α2α31\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} is

ρ11(s)=ρ11pert(s)+ρ11q¯q(s)+ρ11GG(s)+ρ11q¯Gq(s)+ρ11q¯q2(s)+ρ11q¯qq¯Gq(s)+ρ11q¯Gq2(s),\rho_{11}(s)=\rho^{pert}_{11}(s)+\rho^{\langle\bar{q}q\rangle}_{11}(s)+\rho^{\langle GG\rangle}_{11}(s)+\rho^{\langle\bar{q}Gq\rangle}_{11}(s)+\rho^{\langle\bar{q}q\rangle^{2}}_{11}(s)+\rho^{\langle\bar{q}q\rangle\langle\bar{q}Gq\rangle}_{11}(s)+\rho^{\langle\bar{q}Gq\rangle^{2}}_{11}(s)\,, (43)

where

ρ11pert(s)\displaystyle\rho^{pert}_{11}(s) =\displaystyle= αminαmaxdαβminβmaxdβ{(s)5×115360π6α4β4×(3α5+33α4β4α4+102α3β238α3β\displaystyle\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}-\mathcal{F}(s)^{5}\times\frac{1}{15360\pi^{6}\alpha^{4}\beta^{4}}\times(3\alpha^{5}+33\alpha^{4}\beta-4\alpha^{4}+102\alpha^{3}\beta^{2}-38\alpha^{3}\beta
+\displaystyle+ 138α2β390α2β2+87αβ482αβ3+α+21β526β4+5β)},\displaystyle 138\alpha^{2}\beta^{3}-90\alpha^{2}\beta^{2}+87\alpha\beta^{4}-82\alpha\beta^{3}+\alpha+21\beta^{5}-26\beta^{4}+5\beta)\Bigg{\}}\,,
ρ11q¯q(s)\displaystyle\rho^{\langle\bar{q}q\rangle}_{11}(s) =\displaystyle= q¯qαminαmax𝑑αβminβmax𝑑β{mc(s)3×6α324α2β+6α226αβ2+15αβ8β3+7β296π4α3β2},\displaystyle{\langle\bar{q}q\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}m_{c}\mathcal{F}(s)^{3}\times\frac{-6\alpha^{3}-24\alpha^{2}\beta+6\alpha^{2}-26\alpha\beta^{2}+15\alpha\beta-8\beta^{3}+7\beta^{2}}{96\pi^{4}\alpha^{3}\beta^{2}}\Bigg{\}}\,,
ρ11GG(s)\displaystyle\rho^{\langle GG\rangle}_{11}(s) =\displaystyle= gs2GGαminαmaxdα{βminβmaxdβ{(s)2×1221184π6α3β4×((s)×(36α5β+216α4β2127α4β\displaystyle{\langle g_{s}^{2}GG\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}\mathcal{F}(s)^{2}\times\frac{1}{221184\pi^{6}\alpha^{3}\beta^{4}}\times(\mathcal{F}(s)\times(36\alpha^{5}\beta+216\alpha^{4}\beta^{2}-127\alpha^{4}\beta
+\displaystyle+ 612α3β3570α3β2+82α3β+828α2β41170α2β3+237α2β2+504αβ51006αβ4\displaystyle 612\alpha^{3}\beta^{3}-570\alpha^{3}\beta^{2}+82\alpha^{3}\beta+828\alpha^{2}\beta^{4}-1170\alpha^{2}\beta^{3}+237\alpha^{2}\beta^{2}+504\alpha\beta^{5}-1006\alpha\beta^{4}
+\displaystyle+ 417αβ3+10αβ+108β6279β5+142β4+12β2β)+24mc2(12α760α6β+15α6\displaystyle 417\alpha\beta^{3}+10\alpha\beta+108\beta^{6}-279\beta^{5}+142\beta^{4}+12\beta^{2}-\beta)+24m_{c}^{2}(-12\alpha^{7}-60\alpha^{6}\beta+15\alpha^{6}
\displaystyle- 120α5β2+60α5β120α4β3+90α4β260α3β4+60α3β33α312α2β5+15α2β43α2β))}\displaystyle 120\alpha^{5}\beta^{2}+60\alpha^{5}\beta-120\alpha^{4}\beta^{3}+90\alpha^{4}\beta^{2}-60\alpha^{3}\beta^{4}+60\alpha^{3}\beta^{3}-3\alpha^{3}-12\alpha^{2}\beta^{5}+15\alpha^{2}\beta^{4}-3\alpha^{2}\beta))\Bigg{\}}
+\displaystyle+ (s)3×136864π6(α1)α2},\displaystyle\mathcal{H}(s)^{3}\times\frac{1}{36864\pi^{6}(\alpha-1)\alpha^{2}}\Bigg{\}}\,,
ρ11q¯Gq(s)\displaystyle\rho^{\langle\bar{q}Gq\rangle}_{11}(s) =\displaystyle= gsq¯σGqαminαmaxdα{βminβmaxdβ{mc(s)2×6α360α2β6α2216αβ2+27αβ98β3+33β21536π4α2β2}\displaystyle{\langle g_{s}\bar{q}\sigma Gq\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}m_{c}\mathcal{F}(s)^{2}\times\frac{6\alpha^{3}-60\alpha^{2}\beta-6\alpha^{2}-216\alpha\beta^{2}+27\alpha\beta-98\beta^{3}+33\beta^{2}}{1536\pi^{4}\alpha^{2}\beta^{2}}\Bigg{\}}
+\displaystyle+ mc(s)2×26α+131536π4α2},\displaystyle m_{c}\mathcal{H}(s)^{2}\times\frac{26\alpha+13}{1536\pi^{4}\alpha^{2}}\Bigg{\}}\,,
ρ11q¯q2(s)\displaystyle\rho^{\langle\bar{q}q\rangle^{2}}_{11}(s) =\displaystyle= q¯q2αminαmax𝑑α{mc2(s)×112π2α},\displaystyle{\langle\bar{q}q\rangle^{2}}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}m_{c}^{2}\mathcal{H}(s)\times\frac{1}{12\pi^{2}\alpha}\Bigg{\}}\,,
ρ11q¯qq¯Gq(s)\displaystyle\rho^{\langle\bar{q}q\rangle\langle\bar{q}Gq\rangle}_{11}(s) =\displaystyle= q¯qgsq¯σGq{αminαmax𝑑α{mc2(118α2131α1)576π2α}+01δ(smc2(1α)α)𝑑α{mc424π2α}},\displaystyle{\langle\bar{q}q\rangle\langle g_{s}\bar{q}\sigma Gq\rangle}\Bigg{\{}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\frac{m_{c}^{2}(118\alpha^{2}-131\alpha-1)}{576\pi^{2}\alpha}\Bigg{\}}+\int^{1}_{0}\delta\left(s-{m_{c}^{2}\over(1-\alpha)\alpha}\right)d\alpha\Bigg{\{}-\frac{m_{c}^{4}}{24\pi^{2}\alpha}\Bigg{\}}\Bigg{\}}\,,
ρ11q¯Gq2(s)\displaystyle\rho^{\langle\bar{q}Gq\rangle^{2}}_{11}(s) =\displaystyle= gsq¯σGq201δ(smc2(1α)α)dα{mc2(164α3354α2+187α+4)2304π2(α1)α+mc4(94α2+107α+1)2304π2(α1)α2MB2\displaystyle{\langle g_{s}\bar{q}\sigma Gq\rangle^{2}}\int^{1}_{0}\delta\left(s-{m_{c}^{2}\over(1-\alpha)\alpha}\right)d\alpha\Bigg{\{}\frac{m_{c}^{2}(164\alpha^{3}-354\alpha^{2}+187\alpha+4)}{2304\pi^{2}(\alpha-1)\alpha}+\frac{m_{c}^{4}(-94\alpha^{2}+107\alpha+1)}{2304\pi^{2}(\alpha-1)\alpha^{2}M_{B}^{2}}
+\displaystyle+ mc6192π2(α1)α2MB4}.\displaystyle\frac{m_{c}^{6}}{192\pi^{2}(\alpha-1)\alpha^{2}M_{B}^{4}}\Bigg{\}}\,.

In the above expressions, (s)=[(α+β)mc2αβs]\mathcal{F}(s)=\left[(\alpha+\beta)m_{c}^{2}-\alpha\beta s\right], (s)=[mc2α(1α)s]\mathcal{H}(s)=\left[m_{c}^{2}-\alpha(1-\alpha)s\right], αmin=114mc2/s2\alpha_{\min}=\frac{1-\sqrt{1-4m_{c}^{2}/s}}{2}, αmax=1+14mc2/s2\alpha_{\max}=\frac{1+\sqrt{1-4m_{c}^{2}/s}}{2}, βmin=αmc2αsmc2\beta_{\min}=\frac{\alpha m_{c}^{2}}{\alpha s-m_{c}^{2}}, and βmax=1α\beta_{\max}=1-\alpha. We have calculated the QCD spectral density ρ11(s)\rho_{11}(s) at the leading order of αs\alpha_{s} and up to the dimension ten (D=10D=10). In the calculations we have considered the perturbative term, the charm quark mass, the quark condensate q¯q\langle\bar{q}q\rangle, the gluon condensate gs2GG\langle g_{s}^{2}GG\rangle, the quark-gluon mixed condensate gsq¯σGq\langle g_{s}\bar{q}\sigma Gq\rangle, and their combinations. We have ignored the chirally suppressed terms with light quark masses, and we have adopted the factorization assumption of vacuum saturation for higher dimensional condensates. We find that the D=3D=3 term q¯q\langle\bar{q}q\rangle and the D=5D=5 term gsq¯σGq\langle g_{s}\bar{q}\sigma Gq\rangle are both multiplied by the charm quark mass, so they are important power corrections to the correlation functions. The QCD sum rule results extracted from the other five currents ηα1α2α326\eta^{2\cdots 6}_{\alpha_{1}\alpha_{2}\alpha_{3}} are given in Appendix A. Based on these results, we shall perform numerical analyses in the next section.

IV Numerical Analyses

In this section we use the spectral densities given in Eq. (43) and Eqs.(59-63) to perform numerical analyses. We shall use the following values for various QCD sum rule parameters Yang:1993bp ; Narison:2002hk ; Gimenez:2005nt ; Jamin:2002ev ; Ioffe:2002be ; Ovchinnikov:1988gk ; Ellis:1996xc ; Narison:2011xe ; Narison:2018dcr ; pdg :

gs2GG\displaystyle\langle g_{s}^{2}GG\rangle =\displaystyle= 4π×(0.0635±0.0035) GeV4,\displaystyle 4\pi\times(0.0635\pm 0.0035)\mbox{ GeV}^{4}\,,
q¯q\displaystyle\langle\bar{q}q\rangle =\displaystyle= (0.240±0.010)3 GeV3,\displaystyle-(0.240\pm 0.010)^{3}\mbox{ GeV}^{3}\,,
gsq¯σGq\displaystyle\langle g_{s}\bar{q}\sigma Gq\rangle =\displaystyle= M02×q¯q,\displaystyle-M_{0}^{2}\times\langle\bar{q}q\rangle\,, (44)
M02\displaystyle M_{0}^{2} =\displaystyle= (0.8±0.2) GeV2,\displaystyle(0.8\pm 0.2)\mbox{ GeV}^{2}\,,
mc(mc)\displaystyle m_{c}(m_{c}) =\displaystyle= 1.2750.035+0.025 GeV.\displaystyle 1.275^{+0.025}_{-0.035}\mbox{ GeV}\,.

The gluon condensate gs2GG\langle g_{s}^{2}GG\rangle is still not well known, and the above value for this condensate is taken from Ref. Narison:2018dcr , which was updated in 2018. We note that this condensate does not contribute much to the spectral densities. Different with some other QCD sum rule calculations Su:2023jxb ; Tan:2024grd , there is a minus sign in the definition of the mixed condensate gsq¯σGq\langle g_{s}\bar{q}\sigma Gq\rangle, which is just because the definition of coupling constant gsg_{s} is different Yang:1993bp ; Hwang:1994vp , i.e., Dα=α+igsAαD_{\alpha}=\partial_{\alpha}+ig_{s}A_{\alpha} is used the present study, while Dα=αigsAαD_{\alpha}=\partial_{\alpha}-ig_{s}A_{\alpha} is used in Refs. Su:2023jxb ; Tan:2024grd .

We take the spectral density ρ11(s)\rho_{11}(s) extracted from the current ηα1α2α31\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} as an example. As shown in Eq. (III), the mass MXM_{X} and the decay constant fXf_{X} both depend on two free parameters: the threshold value s0s_{0} and the Borel mass MBM_{B}. We investigate three aspects to find their proper working regions: a) the convergence of OPE, b) the one-pole-dominance assumption, and c) the mass dependence and the decay constant dependence on these two parameters.

Refer to caption
Figure 1: CVG and PC as functions of the Borel mass MBM_{B}. These curves are extracted from the current ηα1α2α31\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} when setting s0=30.0s_{0}=30.0 GeV2.

Firstly, we investigate the convergence of OPE and require the D=10D=10 terms to be less than 5%:

CVG|Π11D=10(,MB2)Π11(,MB2)|5%.\mbox{CVG}\equiv\left|\frac{\Pi_{11}^{D=10}(\infty,M_{B}^{2})}{\Pi_{11}(\infty,M_{B}^{2})}\right|\leq 5\%\,. (45)

As shown in Fig. 1, we determine the lower bound of the Borel mass to be MB23.40M_{B}^{2}\geq 3.40 GeV2.

Secondly, we investigate the one-pole-dominance assumption and require the pole contribution (PC) to be larger than 40%:

PC|Π11(s0,MB2)Π11(,MB2)|40%.\mbox{PC}\equiv\left|\frac{\Pi_{11}(s_{0},M_{B}^{2})}{\Pi_{11}(\infty,M_{B}^{2})}\right|\geq 40\%\,. (46)

As shown in Fig. 1, we determine the upper bound of the Borel mass to be MB23.63M_{B}^{2}\leq 3.63 GeV2 when setting s0=30.0s_{0}=30.0 GeV2. Altogether we determine the Borel window to be 3.403.40 GeV2MB23.63{}^{2}\leq M_{B}^{2}\leq 3.63 GeV2 when setting s0=30.0s_{0}=30.0 GeV2. After changing s0s_{0} and redoing the same procedures, we find that there are non-vanishing Borel windows as long as s0s0min=28.4s_{0}\geq s_{0}^{\rm min}=28.4 GeV2.

Refer to caption
Refer to caption
Figure 2: Mass calculated using the current ηα1α2α31\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} with respect to the Borel mass MBM_{B} (left) and the threshold value s0s_{0} (right). In the left panel the short-dashed/solid/long-dashed curves are obtained by setting s0=27.0/30.0/33.0s_{0}=27.0/30.0/33.0 GeV2, respectively. In the right panel the short-dashed/solid/long-dashed curves are obtained by setting MB2=3.40/3.52/3.63M_{B}^{2}=3.40/3.52/3.63 GeV2, respectively.
Refer to caption
Refer to caption
Figure 3: Decay constant calculated using the current ηα1α2α31\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} with respect to the Borel mass MBM_{B} (left) and the threshold value s0s_{0} (right). In the left panel the short-dashed/solid/long-dashed curves are obtained by setting s0=27.0/30.0/33.0s_{0}=27.0/30.0/33.0 GeV2, respectively. In the right panel the short-dashed/solid/long-dashed curves are obtained by setting MB2=3.40/3.52/3.63M_{B}^{2}=3.40/3.52/3.63 GeV2, respectively.

Thirdly, we investigate the mass dependence and the decay constant dependence on s0s_{0} and MBM_{B}. We respectively show the mass M1M_{1} in Fig. 2 and the decay constant f1f_{1} in Fig. 3 as functions of these two parameters. Their dependence on MBM_{B} is weak inside the Borel window 3.403.40 GeV2MB23.63{}^{2}\leq M_{B}^{2}\leq 3.63 GeV2, and their dependence on s0s_{0} is moderate and acceptable around s030.0s_{0}\sim 30.0 GeV2. Accordingly, we choose our working regions to be 27.027.0 GeV2s033.0{}^{2}\leq s_{0}\leq 33.0 GeV2 and 3.403.40 GeV2MB23.63{}^{2}\leq M_{B}^{2}\leq 3.63 GeV2, where the mass M1M_{1} is evaluated to be

M1=4.660.46+0.49GeV.M_{1}={4.66^{+0.49}_{-0.46}}{\rm~{}GeV}\,. (47)

Its central value corresponds to s0=30.0s_{0}=30.0 GeV2 and MB2=3.52M_{B}^{2}=3.52 GeV2. Its uncertainty is due to s0s_{0}, MBM_{B}, and various QCD sum rule parameters listed in Eqs. (44).

We apply the same procedures to study the other five currents ηα1α2α326\eta^{2\cdots 6}_{\alpha_{1}\alpha_{2}\alpha_{3}}, and summarize their results in Table 1. Especially, the mass M2M_{2} extracted from the current ηα1α2α32\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} is calculated to be

M2=4.500.41+0.45GeV,M_{2}={4.50^{+0.45}_{-0.41}}{\rm~{}GeV}\,, (48)

which is slightly smaller than the mass M1M_{1} extracted from the current ηα1α2α31\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}}, while the masses extracted from the other four currents ηα1α2α336\eta^{3\cdots 6}_{\alpha_{1}\alpha_{2}\alpha_{3}} are all significantly larger.

It is interesting to investigate the mixing of ηα1α2α31\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} and ηα1α2α32\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} by calculating their off-diagonal correlation function, i.e., the “12” component of Eq. (III):

Πα1α2α3,β1β2β312(q2)\displaystyle\Pi^{12}_{\alpha_{1}\alpha_{2}\alpha_{3},\beta_{1}\beta_{2}\beta_{3}}(q^{2})
\displaystyle\equiv id4xeiqx0|𝐓[ηα1α2α31(x)ηβ1β2β32,(0)]|0\displaystyle i\int d^{4}xe^{iqx}\langle 0|{\bf T}[\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}}(x)\eta^{2,\dagger}_{\beta_{1}\beta_{2}\beta_{3}}(0)]|0\rangle
=\displaystyle= (1)J𝒮[g~α1β1g~α2β2g~α3β3]Π12(q2).\displaystyle(-1)^{J}~{}\mathcal{S}^{\prime}[\tilde{g}_{\alpha_{1}\beta_{1}}\tilde{g}_{\alpha_{2}\beta_{2}}\tilde{g}_{\alpha_{3}\beta_{3}}]~{}\Pi_{12}(q^{2})\,.

To see how large it is, we choose s0=29.0s_{0}=29.0 GeV2 and MB2=3.40M_{B}^{2}=3.40 GeV2 to obtain

(Π11Π12Π21Π22)=(70.273.883.88145.14)×105GeV10,\left(\begin{array}[]{cc}\Pi_{11}&\Pi_{12}\\ \Pi_{21}&\Pi_{22}\\ \end{array}\right)=\left(\begin{array}[]{cc}70.27&3.88\\ 3.88&145.14\\ \end{array}\right)\times 10^{-5}{\rm~{}GeV}^{10}, (50)

which indicates that ηα1α2α31\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} and ηα1α2α32\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} are weakly correlated with each other, as shown in Fig. 4.

Refer to caption
Figure 4: The normalized off-diagonal correlation functions |Π12/Π11Π22|\left|\Pi_{12}/\sqrt{\Pi_{11}\Pi_{22}}\right| (solid) and |Π12/Π11Π22|\left|\Pi^{\prime}_{12}/\sqrt{\Pi^{\prime}_{11}\Pi^{\prime}_{22}}\right| (dashed) as functions of the Borel mass MBM_{B}. These curves are obtained using the two currents ηα1α2α31,2\eta^{1,2}_{\alpha_{1}\alpha_{2}\alpha_{3}} and their mixing currents Jα1α2α31,2J^{1,2}_{\alpha_{1}\alpha_{2}\alpha_{3}} by setting s0=29.0s_{0}=29.0 GeV2.

To diagonalize the 2×22\times 2 matrix given in Eq. (50), we construct two mixing currents Jα1α2α31,2J^{1,2}_{\alpha_{1}\alpha_{2}\alpha_{3}}:

(Jα1α2α31Jα1α2α32)=𝕋(ηα1α2α31ηα1α2α32),\left(\begin{array}[]{c}J^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}}\\ J^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}}\end{array}\right)=\mathbb{T}\left(\begin{array}[]{c}\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}}\\ \eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}}\end{array}\right)\,, (51)

where 𝕋\mathbb{T} is defined as the transition matrix. We apply the method of operator product expansion to calculate the two-point correlation functions of the mixing currents Jα1α2α31,2J^{1,2}_{\alpha_{1}\alpha_{2}\alpha_{3}} (i,j=1,2i,j=1,2):

Πα1α2α3,β1β2β3,ij(q2)\displaystyle\Pi^{\prime,ij}_{\alpha_{1}\alpha_{2}\alpha_{3},\beta_{1}\beta_{2}\beta_{3}}(q^{2})
\displaystyle\equiv id4xeiqx0|𝐓[Jα1α2α3i(x)Jβ1β2β3j,(0)]|0\displaystyle i\int d^{4}xe^{iqx}\langle 0|{\bf T}[J^{i}_{\alpha_{1}\alpha_{2}\alpha_{3}}(x)J^{j,\dagger}_{\beta_{1}\beta_{2}\beta_{3}}(0)]|0\rangle
=\displaystyle= (1)J𝒮[g~α1β1g~α2β2g~α3β3]Πij(q2).\displaystyle(-1)^{J}~{}\mathcal{S}^{\prime}[\tilde{g}_{\alpha_{1}\beta_{1}}\tilde{g}_{\alpha_{2}\beta_{2}}\tilde{g}_{\alpha_{3}\beta_{3}}]~{}\Pi^{\prime}_{ij}(q^{2})\,.

After choosing

𝕋=(1.000.050.051.00),\mathbb{T}=\left(\begin{array}[]{cc}1.00&-0.05\\ 0.05&1.00\\ \end{array}\right)\,, (53)

we obtain

(Π11Π12Π21Π22)=(145.340070.07)×105GeV10,\left(\begin{array}[]{cc}\Pi^{\prime}_{11}&\Pi^{\prime}_{12}\\ \Pi^{\prime}_{21}&\Pi^{\prime}_{22}\\ \end{array}\right)=\left(\begin{array}[]{cc}145.34&0\\ 0&70.07\\ \end{array}\right)\times 10^{-5}{\rm~{}GeV}^{10}, (54)

at s0=29.0s_{0}=29.0 GeV2 and MB2=3.40M_{B}^{2}=3.40 GeV2. Consequently, the off-diagonal terms of Jα1α2α31J^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} and Jα1α2α32J^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} are negligible, indicating that these two mixing currents are non-correlated around here, as shown in Fig. 4. Implicitly, the above mixing analysis can work because the continuum is basically the same in both the ηα1α2α31\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} and ηα1α2α32\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} channels, which allows us to simplify the analysis by choosing a continuum for the off-diagonal correlation function.

We apply the same procedures to study Jα1α2α31,2J^{1,2}_{\alpha_{1}\alpha_{2}\alpha_{3}}, and the obtained results are summarized in Table 1. Especially, the mass extracted from the mixing current Jα1α2α32J^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} is slightly reduced from the single current ηα1α2α32\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} to be

M2=4.490.41+0.45GeV.M_{2}^{\prime}={4.49^{+0.45}_{-0.41}}{\rm~{}GeV}\,. (55)

V Summary and Discussions

Table 1: QCD sum rule results extracted from the diquark-antidiquark currents ηα1α2α316\eta^{1\cdots 6}_{\alpha_{1}\alpha_{2}\alpha_{3}} and the mixing currents Jα1α2α312J^{1\cdots 2}_{\alpha_{1}\alpha_{2}\alpha_{3}} with the exotic quantum number JPC=3+J^{PC}=3^{-+}.
 Currents   MB2[GeV2]M_{B}^{2}~{}[{\rm GeV}^{2}]  s0[GeV2]s_{0}~{}[{\rm GeV}^{2}]   Pole [%]   Mass [GeV]  fX[GeV5]f_{X}~{}[{\rm GeV}^{5}]
ηα1α2α31\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} 3.403.40-3.633.63 30.0±3.030.0\pm 3.0 4040-4848 4.660.46+0.49{4.66^{+0.49}_{-0.46}} (2.891.46+2.26)×102\left(2.89^{+2.26}_{-1.46}\right)\times 10^{-2}
ηα1α2α32\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} 3.403.40-3.603.60 29.0±3.029.0\pm 3.0 4040-4747 4.500.41+0.45{4.50^{+0.45}_{-0.41}} (3.371.69+2.47)×102\left(3.37^{+2.47}_{-1.69}\right)\times 10^{-2}
ηα1α2α33\eta^{3}_{\alpha_{1}\alpha_{2}\alpha_{3}} 3.633.63-4.004.00 35.0±3.035.0\pm 3.0 4040-4646 5.750.14+0.215.75^{+0.21}_{-0.14} (11.713.07+4.53)×102\left(11.71^{+4.53}_{-3.07}\right)\times 10^{-2}
ηα1α2α34\eta^{4}_{\alpha_{1}\alpha_{2}\alpha_{3}} 3.653.65-4.054.05 35.0±3.035.0\pm 3.0 4040-4747 5.710.14+0.215.71^{+0.21}_{-0.14} (16.074.35+6.09)×102\left(16.07^{+6.09}_{-4.35}\right)\times 10^{-2}
ηα1α2α35\eta^{5}_{\alpha_{1}\alpha_{2}\alpha_{3}} 3.573.57-3.783.78 32.0±3.032.0\pm 3.0 4040-4545 5.120.28+0.285.12^{+0.28}_{-0.28} (7.153.20+4.16)×102\left(7.15^{+4.16}_{-3.20}\right)\times 10^{-2}
ηα1α2α36\eta^{6}_{\alpha_{1}\alpha_{2}\alpha_{3}} 3.353.35-3.803.80 32.0±3.032.0\pm 3.0 4040-5353 5.080.28+0.275.08^{+0.27}_{-0.28} (10.104.46+5.68)×102\left(10.10^{+5.68}_{-4.46}\right)\times 10^{-2}
Jα1α2α31J^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} 3.403.40-3.613.61 30.0±3.030.0\pm 3.0 4040-4747 4.670.42+0.51{4.67^{+0.51}_{-0.42}} (2.871.49+2.31)×102\left(2.87^{+2.31}_{-1.49}\right)\times 10^{-2}
Jα1α2α32J^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} 3.393.39-3.593.59 29.0±3.029.0\pm 3.0 4040-4747 4.490.41+0.45{4.49^{+0.45}_{-0.41}} (3.351.67+2.43)×102\left(3.35^{+2.43}_{-1.67}\right)\times 10^{-2}

In this paper we apply the QCD sum rule method to study the charmonium-like states with the exotic quantum number JPC=3+J^{PC}=3^{-+}. Their quark contents are qcq¯c¯qc\bar{q}\bar{c} (c=charmc=charm and q=up/downq=up/down), and their corresponding interpolating currents are composed of two quark fields and two antiquark fields as well as one covariant derivative operator. There are altogether six diquark-antidiquark currents, as defined in Eqs. (4-9). To reach JPC=3+J^{PC}=3^{-+}, the derivative can only be inside the diquark or antidiquark:

η=[cDq][c¯q¯]+[cq][c¯Dq¯].\eta=\big{[}c{\overset{\leftrightarrow}{D}}q\big{]}\big{[}\bar{c}\bar{q}\big{]}+\big{[}cq\big{]}\big{[}\bar{c}{\overset{\leftrightarrow}{D}}\bar{q}\big{]}\,. (56)

We use these diquark-antidiquark currents to perform QCD sum rule analyses. The obtained results are summarized in Table 1, and the mass extracted from the current ηα1α2α32\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} is the lowest

M2=4.500.41+0.45GeV.M_{2}={4.50^{+0.45}_{-0.41}}{\rm~{}GeV}\,.

We have studied the mixing of ηα1α2α31\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}} and ηα1α2α32\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}}. The obtained results are also summarized in Table 1, and the mass extracted from the mixing current Jα1α2α32J^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} is slightly reduced from the single current ηα1α2α32\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} to be

M2=4.490.41+0.45GeV.M_{2}^{\prime}={4.49^{+0.45}_{-0.41}}{\rm~{}GeV}\,.

This value is quite close to the DD¯2D^{*}\bar{D}_{2}^{*} threshold. Note that the authors of Refs. Zhu:2013sca ; Dong:2021juy have applied the one-boson-exchange model to predict the existence of the DD¯2D^{*}\bar{D}_{2}^{*} molecular state with JPC=3+J^{PC}=3^{-+}.

In this paper we have also constructed six meson-meson currents, as defined in Eqs. (10-II). Three of them have the quark combination [c¯c][q¯q][\bar{c}c][\bar{q}q] with the derivative between the two quark-antiquark pairs,

ξ=[c¯c]D[q¯q];\xi=\big{[}\bar{c}c\big{]}{\overset{\leftrightarrow}{D}}\big{[}\bar{q}q\big{]}\,; (57)

and the other three have [c¯q][q¯c][\bar{c}q][\bar{q}c] with the derivative inside the quark-antiquark pairs,

ξ=[c¯Dq][q¯c][c¯q][q¯Dc].\xi^{\prime}=\big{[}\bar{c}{\overset{\leftrightarrow}{D}}q\big{]}\big{[}\bar{q}c\big{]}-\big{[}\bar{c}q\big{]}\big{[}\bar{q}{\overset{\leftrightarrow}{D}}c\big{]}\,. (58)

Accordingly, a special decay behavior of the qcq¯c¯qc\bar{q}\bar{c} tetraquark states with JPC=3+J^{PC}=3^{-+} is that: a) they decay into the PP-wave (c¯c)Swave(q¯q)Swave(\bar{c}c)_{S{\rm-wave}}(\bar{q}q)_{S{\rm-wave}} final states but not into the SS-wave (c¯c)Swave(q¯q)Pwave(\bar{c}c)_{S{\rm-wave}}(\bar{q}q)_{P{\rm-wave}} and (c¯c)Pwave(q¯q)Swave(\bar{c}c)_{P{\rm-wave}}(\bar{q}q)_{S{\rm-wave}} final states, and b) they decay into the SS-wave (c¯q)Swave(q¯c)Pwave(\bar{c}q)_{S{\rm-wave}}(\bar{q}c)_{P{\rm-wave}} final states but not into the PP-wave (c¯q)Swave(q¯c)Swave(\bar{c}q)_{S{\rm-wave}}(\bar{q}c)_{S{\rm-wave}} final states. Since we do not differentiate the up and down quarks in the calculations, the isospin can not be differentiated in the present study. Hence, more specifically, a) these states decay into the PP-wave [ρJ/ψ]/[ωJ/ψ][\rho J/\psi]/[\omega J/\psi] channels but not into the SS-wave [ρχc2]/[ωχc2]/[J/ψf2(1270)][\rho\chi_{c2}]/[\omega\chi_{c2}]/[J/\psi f_{2}(1270)] channels, and b) they decay into the SS-wave [DD¯2][D^{*}\bar{D}_{2}^{*}] channel but not into the PP-wave [DD¯][D^{*}\bar{D}^{*}] channel. Accordingly, we propose to investigate the PP-wave [ρJ/ψ]/[ωJ/ψ][\rho J/\psi]/[\omega J/\psi] channels in the future BESIII, Belle-II, and LHCb experiments to search for the charmonium-like states with the exotic quantum number JPC=3+J^{PC}=3^{-+}.

Acknowledgments

This project is supported by the National Natural Science Foundation of China under Grants No. 12075019 and No. 12175318, the Jiangsu Provincial Double-Innovation Program under Grant No. JSSCRC2021488, and the Fundamental Research Funds for the Central Universities. TGS is grateful for research funding from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Appendix A Spectral densities

In this appendix we list the OPE spectral densities ρ2266(s)\rho_{22\cdots 66}(s) extracted from the currents ηα1α2α326\eta^{2\cdots 6}_{\alpha_{1}\alpha_{2}\alpha_{3}}. In the following expressions, (s)=[(α+β)mc2αβs]\mathcal{F}(s)=\left[(\alpha+\beta)m_{c}^{2}-\alpha\beta s\right] and (s)=[mc2α(1α)s]\mathcal{H}(s)=\left[m_{c}^{2}-\alpha(1-\alpha)s\right]; the integration limits are αmin=114mc2/s2\alpha_{\min}=\frac{1-\sqrt{1-4m_{c}^{2}/s}}{2}, αmax=1+14mc2/s2\alpha_{\max}=\frac{1+\sqrt{1-4m_{c}^{2}/s}}{2}, βmin=αmc2αsmc2\beta_{\min}=\frac{\alpha m_{c}^{2}}{\alpha s-m_{c}^{2}}, and βmax=1α\beta_{\max}=1-\alpha. The OPE spectral density ρ22(s)\rho_{22}(s) extracted from the current ηα1α2α32\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}} is

ρ22(s)=ρ22pert(s)+ρ22q¯q(s)+ρ22GG(s)+ρ22q¯Gq(s)+ρ22q¯q2(s)+ρ22q¯qq¯Gq(s)+ρ22q¯Gq2(s),\rho_{22}(s)=\rho^{pert}_{22}(s)+\rho^{\langle\bar{q}q\rangle}_{22}(s)+\rho^{\langle GG\rangle}_{22}(s)+\rho^{\langle\bar{q}Gq\rangle}_{22}(s)+\rho^{\langle\bar{q}q\rangle^{2}}_{22}(s)+\rho^{\langle\bar{q}q\rangle\langle\bar{q}Gq\rangle}_{22}(s)+\rho^{\langle\bar{q}Gq\rangle^{2}}_{22}(s)\,, (59)

where

ρ22pert(s)\displaystyle\rho^{pert}_{22}(s) =\displaystyle= αminαmaxdαβminβmaxdβ{(s)5×17680π6α4β4×(3α5+33α4β4α4+102α3β238α3β\displaystyle\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}-\mathcal{F}(s)^{5}\times\frac{1}{7680\pi^{6}\alpha^{4}\beta^{4}}\times(3\alpha^{5}+33\alpha^{4}\beta-4\alpha^{4}+102\alpha^{3}\beta^{2}-38\alpha^{3}\beta
+\displaystyle+ 138α2β390α2β2+87αβ482αβ3+α+21β526β4+5β)},\displaystyle 138\alpha^{2}\beta^{3}-90\alpha^{2}\beta^{2}+87\alpha\beta^{4}-82\alpha\beta^{3}+\alpha+21\beta^{5}-26\beta^{4}+5\beta)\Bigg{\}}\,,
ρ22q¯q(s)\displaystyle\rho^{\langle\bar{q}q\rangle}_{22}(s) =\displaystyle= q¯qαminαmax𝑑αβminβmax𝑑β{mc(s)3×6α324α2β+6α226αβ2+15αβ8β3+7β248π4α3β2},\displaystyle{\langle\bar{q}q\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}m_{c}\mathcal{F}(s)^{3}\times\frac{-6\alpha^{3}-24\alpha^{2}\beta+6\alpha^{2}-26\alpha\beta^{2}+15\alpha\beta-8\beta^{3}+7\beta^{2}}{48\pi^{4}\alpha^{3}\beta^{2}}\Bigg{\}}\,,
ρ22GG(s)\displaystyle\rho^{\langle GG\rangle}_{22}(s) =\displaystyle= gs2GGαminαmaxdα{βminβmaxdβ{(s)2×1221184π6α4β4×((s)×(36α6β+288α5β237α5β\displaystyle{\langle g_{s}^{2}GG\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}\mathcal{F}(s)^{2}\times\frac{1}{221184\pi^{6}\alpha^{4}\beta^{4}}\times(-\mathcal{F}(s)\times(36\alpha^{6}\beta+288\alpha^{5}\beta^{2}-37\alpha^{5}\beta
+\displaystyle+ 684α4β3342α4β228α4β+756α3β4918α3β3+57α3β2+180α3β+432α2β5802α2β4\displaystyle 684\alpha^{4}\beta^{3}-342\alpha^{4}\beta^{2}-28\alpha^{4}\beta+756\alpha^{3}\beta^{4}-918\alpha^{3}\beta^{3}+57\alpha^{3}\beta^{2}+180\alpha^{3}\beta+432\alpha^{2}\beta^{5}-802\alpha^{2}\beta^{4}
+\displaystyle+ 261α2β3+360α2β2236α2β+108αβ6189αβ5+104αβ4+180αβ3270αβ2+85αβ)\displaystyle 261\alpha^{2}\beta^{3}+360\alpha^{2}\beta^{2}-236\alpha^{2}\beta+108\alpha\beta^{6}-189\alpha\beta^{5}+104\alpha\beta^{4}+180\alpha\beta^{3}-270\alpha\beta^{2}+85\alpha\beta)
+\displaystyle+ 24mc2(6α854α7β+8α7150α6β2+60α6βα6186α5β3+126α5β23α5β+3α5\displaystyle 24m_{c}^{2}(-6\alpha^{8}-54\alpha^{7}\beta+8\alpha^{7}-150\alpha^{6}\beta^{2}+60\alpha^{6}\beta-\alpha^{6}-186\alpha^{5}\beta^{3}+126\alpha^{5}\beta^{2}-3\alpha^{5}\beta+3\alpha^{5}
\displaystyle- 120α4β4+104α4β33α4β2+6α4β5α478α3β5+46α3β4α3β3+3α3β29α3β+α3\displaystyle 120\alpha^{4}\beta^{4}+104\alpha^{4}\beta^{3}-3\alpha^{4}\beta^{2}+6\alpha^{4}\beta-5\alpha^{4}-78\alpha^{3}\beta^{5}+46\alpha^{3}\beta^{4}-\alpha^{3}\beta^{3}+3\alpha^{3}\beta^{2}-9\alpha^{3}\beta+\alpha^{3}
\displaystyle- 90α2β6+54α2β566αβ7+60αβ618β8+22β74β4))}+(s)3×536864π6(α1)α2},\displaystyle 90\alpha^{2}\beta^{6}+54\alpha^{2}\beta^{5}-66\alpha\beta^{7}+60\alpha\beta^{6}-18\beta^{8}+22\beta^{7}-4\beta^{4}))\Bigg{\}}+\mathcal{H}(s)^{3}\times\frac{5}{36864\pi^{6}(\alpha-1)\alpha^{2}}\Bigg{\}}\,,
ρ22q¯Gq(s)\displaystyle\rho^{\langle\bar{q}Gq\rangle}_{22}(s) =\displaystyle= gsq¯σGqαminαmaxdα{βminβmaxdβ{mc(s)2×30α384α2β30α2432αβ2+27αβ202β3+57β21536π4α2β2}\displaystyle{\langle g_{s}\bar{q}\sigma Gq\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}m_{c}\mathcal{F}(s)^{2}\times\frac{30\alpha^{3}-84\alpha^{2}\beta-30\alpha^{2}-432\alpha\beta^{2}+27\alpha\beta-202\beta^{3}+57\beta^{2}}{1536\pi^{4}\alpha^{2}\beta^{2}}\Bigg{\}}
+\displaystyle+ mc(s)2×58α+291536π4α2},\displaystyle m_{c}\mathcal{H}(s)^{2}\times\frac{58\alpha+29}{1536\pi^{4}\alpha^{2}}\Bigg{\}}\,,
ρ22q¯q2(s)\displaystyle\rho^{\langle\bar{q}q\rangle^{2}}_{22}(s) =\displaystyle= q¯q2αminαmax𝑑α{mc2(s)×16π2α},\displaystyle{\langle\bar{q}q\rangle^{2}}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}m_{c}^{2}\mathcal{H}(s)\times\frac{1}{6\pi^{2}\alpha}\Bigg{\}}\,,
ρ22q¯qq¯Gq(s)\displaystyle\rho^{\langle\bar{q}q\rangle\langle\bar{q}Gq\rangle}_{22}(s) =\displaystyle= q¯qgsq¯σGq{αminαmax𝑑α{mc2(230α2259α5)576π2α}+01δ(smc2(1α)α)𝑑α{mc412π2α}},\displaystyle{\langle\bar{q}q\rangle\langle g_{s}\bar{q}\sigma Gq\rangle}\Bigg{\{}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\frac{m_{c}^{2}(230\alpha^{2}-259\alpha-5)}{576\pi^{2}\alpha}\Bigg{\}}+\int^{1}_{0}\delta\left(s-{m_{c}^{2}\over(1-\alpha)\alpha}\right)d\alpha\Bigg{\{}-\frac{m_{c}^{4}}{12\pi^{2}\alpha}\Bigg{\}}\Bigg{\}}\,,
ρ22q¯Gq2(s)\displaystyle\rho^{\langle\bar{q}Gq\rangle^{2}}_{22}(s) =\displaystyle= gsq¯σGq201δ(smc2(1α)α)dα{mc2(316α3690α2+359α+20)2304π2(α1)α+mc4(182α2+211α+5)2304π2(α1)α2MB2\displaystyle{\langle g_{s}\bar{q}\sigma Gq\rangle^{2}}\int^{1}_{0}\delta\left(s-{m_{c}^{2}\over(1-\alpha)\alpha}\right)d\alpha\Bigg{\{}\frac{m_{c}^{2}(316\alpha^{3}-690\alpha^{2}+359\alpha+20)}{2304\pi^{2}(\alpha-1)\alpha}+\frac{m_{c}^{4}(-182\alpha^{2}+211\alpha+5)}{2304\pi^{2}(\alpha-1)\alpha^{2}M_{B}^{2}}
+\displaystyle+ mc696π2(α1)α2MB4}.\displaystyle\frac{m_{c}^{6}}{96\pi^{2}(\alpha-1)\alpha^{2}M_{B}^{4}}\Bigg{\}}\,.

The OPE spectral density ρ33(s)\rho_{33}(s) extracted from the current ηα1α2α33\eta^{3}_{\alpha_{1}\alpha_{2}\alpha_{3}} is

ρ33(s)=ρ33pert(s)+ρ33q¯q(s)+ρ33GG(s)+ρ33q¯Gq(s)+ρ33q¯q2(s)+ρ33q¯qq¯Gq(s)+ρ33q¯Gq2(s),\rho_{33}(s)=\rho^{pert}_{33}(s)+\rho^{\langle\bar{q}q\rangle}_{33}(s)+\rho^{\langle GG\rangle}_{33}(s)+\rho^{\langle\bar{q}Gq\rangle}_{33}(s)+\rho^{\langle\bar{q}q\rangle^{2}}_{33}(s)+\rho^{\langle\bar{q}q\rangle\langle\bar{q}Gq\rangle}_{33}(s)+\rho^{\langle\bar{q}Gq\rangle^{2}}_{33}(s)\,, (60)

where

ρ33pert(s)\displaystyle\rho^{pert}_{33}(s) =\displaystyle= αminαmaxdαβminβmaxdβ{(s)5×115360π6α4β4×(3α5+33α4β4α4+102α3β238α3β\displaystyle\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}-\mathcal{F}(s)^{5}\times\frac{1}{15360\pi^{6}\alpha^{4}\beta^{4}}\times(3\alpha^{5}+33\alpha^{4}\beta-4\alpha^{4}+102\alpha^{3}\beta^{2}-38\alpha^{3}\beta
+\displaystyle+ 138α2β390α2β2+87αβ482αβ3+α+21β526β4+5β)},\displaystyle 138\alpha^{2}\beta^{3}-90\alpha^{2}\beta^{2}+87\alpha\beta^{4}-82\alpha\beta^{3}+\alpha+21\beta^{5}-26\beta^{4}+5\beta)\Bigg{\}}\,,
ρ33q¯q(s)\displaystyle\rho^{\langle\bar{q}q\rangle}_{33}(s) =\displaystyle= q¯qαminαmax𝑑αβminβmax𝑑β{mc(s)3×6α324α2β+6α226αβ2+15αβ8β3+7β296π4α3β2},\displaystyle{\langle\bar{q}q\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}-m_{c}\mathcal{F}(s)^{3}\times\frac{-6\alpha^{3}-24\alpha^{2}\beta+6\alpha^{2}-26\alpha\beta^{2}+15\alpha\beta-8\beta^{3}+7\beta^{2}}{96\pi^{4}\alpha^{3}\beta^{2}}\Bigg{\}}\,,
ρ33GG(s)\displaystyle\rho^{\langle GG\rangle}_{33}(s) =\displaystyle= gs2GGαminαmaxdα{βminβmaxdβ{(s)2×1221184π6α4β4×((s)×(36α6β+288α5β2127α5β\displaystyle{\langle g_{s}^{2}GG\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}\mathcal{F}(s)^{2}\times\frac{1}{221184\pi^{6}\alpha^{4}\beta^{4}}\times(\mathcal{F}(s)\times(36\alpha^{6}\beta+288\alpha^{5}\beta^{2}-127\alpha^{5}\beta
+\displaystyle+ 684α4β3738α4β2+82α4β+756α3β41170α3β3+333α3β2+432α2β5838α2β4+321α2β3\displaystyle 684\alpha^{4}\beta^{3}-738\alpha^{4}\beta^{2}+82\alpha^{4}\beta+756\alpha^{3}\beta^{4}-1170\alpha^{3}\beta^{3}+333\alpha^{3}\beta^{2}+432\alpha^{2}\beta^{5}-838\alpha^{2}\beta^{4}+321\alpha^{2}\beta^{3}
+\displaystyle+ 10α2β+108αβ6279αβ5+142αβ4+12αβ2αβ)+24mc2(3α827α7β+4α775α6β2\displaystyle 10\alpha^{2}\beta+108\alpha\beta^{6}-279\alpha\beta^{5}+142\alpha\beta^{4}+12\alpha\beta^{2}-\alpha\beta)+24m_{c}^{2}(-3\alpha^{8}-27\alpha^{7}\beta+4\alpha^{7}-75\alpha^{6}\beta^{2}
+\displaystyle+ 30α6β93α5β3+63α5β260α4β4+52α4β3α439α3β5+23α3β43α3β45α2β6+27α2β5\displaystyle 30\alpha^{6}\beta-93\alpha^{5}\beta^{3}+63\alpha^{5}\beta^{2}-60\alpha^{4}\beta^{4}+52\alpha^{4}\beta^{3}-\alpha^{4}-39\alpha^{3}\beta^{5}+23\alpha^{3}\beta^{4}-3\alpha^{3}\beta-45\alpha^{2}\beta^{6}+27\alpha^{2}\beta^{5}
\displaystyle- 33αβ7+30αβ69β8+11β72β4))}+(s)3×136864π6(α1)α2},\displaystyle 33\alpha\beta^{7}+30\alpha\beta^{6}-9\beta^{8}+11\beta^{7}-2\beta^{4}))\Bigg{\}}+\mathcal{H}(s)^{3}\times\frac{1}{36864\pi^{6}(\alpha-1)\alpha^{2}}\Bigg{\}}\,,
ρ33q¯Gq(s)\displaystyle\rho^{\langle\bar{q}Gq\rangle}_{33}(s) =\displaystyle= gsq¯σGqαminαmaxdα{βminβmaxdβ{mc(s)2×6α360α2β6α2216αβ2+27αβ98β3+33β21536π4α2β2}\displaystyle{\langle g_{s}\bar{q}\sigma Gq\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}-m_{c}\mathcal{F}(s)^{2}\times\frac{6\alpha^{3}-60\alpha^{2}\beta-6\alpha^{2}-216\alpha\beta^{2}+27\alpha\beta-98\beta^{3}+33\beta^{2}}{1536\pi^{4}\alpha^{2}\beta^{2}}\Bigg{\}}
\displaystyle- mc(s)2×26α+131536π4α2},\displaystyle m_{c}\mathcal{H}(s)^{2}\times\frac{26\alpha+13}{1536\pi^{4}\alpha^{2}}\Bigg{\}}\,,
ρ33q¯q2(s)\displaystyle\rho^{\langle\bar{q}q\rangle^{2}}_{33}(s) =\displaystyle= q¯q2αminαmax𝑑α{mc2(s)×112π2α},\displaystyle{\langle\bar{q}q\rangle^{2}}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}m_{c}^{2}\mathcal{H}(s)\times\frac{1}{12\pi^{2}\alpha}\Bigg{\}}\,,
ρ33q¯qq¯Gq(s)\displaystyle\rho^{\langle\bar{q}q\rangle\langle\bar{q}Gq\rangle}_{33}(s) =\displaystyle= q¯qgsq¯σGq{αminαmax𝑑α{mc2(118α2131α1)576π2α}+01δ(smc2(1α)α)𝑑α{mc424π2α}},\displaystyle{\langle\bar{q}q\rangle\langle g_{s}\bar{q}\sigma Gq\rangle}\Bigg{\{}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\frac{m_{c}^{2}(118\alpha^{2}-131\alpha-1)}{576\pi^{2}\alpha}\Bigg{\}}+\int^{1}_{0}\delta\left(s-{m_{c}^{2}\over(1-\alpha)\alpha}\right)d\alpha\Bigg{\{}-\frac{m_{c}^{4}}{24\pi^{2}\alpha}\Bigg{\}}\Bigg{\}}\,,
ρ33q¯Gq2(s)\displaystyle\rho^{\langle\bar{q}Gq\rangle^{2}}_{33}(s) =\displaystyle= gsq¯σGq201δ(smc2(1α)α)dα{mc2(164α3354α2+187α+4)2304π2(α1)α+mc4(94α2+107α+1)2304π2(α1)α2MB2\displaystyle{\langle g_{s}\bar{q}\sigma Gq\rangle^{2}}\int^{1}_{0}\delta\left(s-{m_{c}^{2}\over(1-\alpha)\alpha}\right)d\alpha\Bigg{\{}\frac{m_{c}^{2}(164\alpha^{3}-354\alpha^{2}+187\alpha+4)}{2304\pi^{2}(\alpha-1)\alpha}+\frac{m_{c}^{4}(-94\alpha^{2}+107\alpha+1)}{2304\pi^{2}(\alpha-1)\alpha^{2}M_{B}^{2}}
+\displaystyle+ mc6192π2(α1)α2MB4}.\displaystyle\frac{m_{c}^{6}}{192\pi^{2}(\alpha-1)\alpha^{2}M_{B}^{4}}\Bigg{\}}\,.

The OPE spectral density ρ44(s)\rho_{44}(s) extracted from the current ηα1α2α34\eta^{4}_{\alpha_{1}\alpha_{2}\alpha_{3}} is

ρ44(s)=ρ44pert(s)+ρ44q¯q(s)+ρ44GG(s)+ρ44q¯Gq(s)+ρ44q¯q2(s)+ρ44q¯qq¯Gq(s)+ρ44q¯Gq2(s),\rho_{44}(s)=\rho^{pert}_{44}(s)+\rho^{\langle\bar{q}q\rangle}_{44}(s)+\rho^{\langle GG\rangle}_{44}(s)+\rho^{\langle\bar{q}Gq\rangle}_{44}(s)+\rho^{\langle\bar{q}q\rangle^{2}}_{44}(s)+\rho^{\langle\bar{q}q\rangle\langle\bar{q}Gq\rangle}_{44}(s)+\rho^{\langle\bar{q}Gq\rangle^{2}}_{44}(s)\,, (61)

where

ρ44pert(s)\displaystyle\rho^{pert}_{44}(s) =\displaystyle= αminαmaxdαβminβmaxdβ{(s)5×17680π6α4β4×(3α5+33α4β4α4+102α3β238α3β\displaystyle\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}-\mathcal{F}(s)^{5}\times\frac{1}{7680\pi^{6}\alpha^{4}\beta^{4}}\times(3\alpha^{5}+33\alpha^{4}\beta-4\alpha^{4}+102\alpha^{3}\beta^{2}-38\alpha^{3}\beta
+\displaystyle+ 138α2β390α2β2+87αβ482αβ3+α+21β526β4+5β)},\displaystyle 138\alpha^{2}\beta^{3}-90\alpha^{2}\beta^{2}+87\alpha\beta^{4}-82\alpha\beta^{3}+\alpha+21\beta^{5}-26\beta^{4}+5\beta)\Bigg{\}}\,,
ρ44q¯q(s)\displaystyle\rho^{\langle\bar{q}q\rangle}_{44}(s) =\displaystyle= q¯qαminαmax𝑑αβminβmax𝑑β{mc(s)3×6α324α2β+6α226αβ2+15αβ8β3+7β248π4α3β2},\displaystyle{\langle\bar{q}q\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}-m_{c}\mathcal{F}(s)^{3}\times\frac{-6\alpha^{3}-24\alpha^{2}\beta+6\alpha^{2}-26\alpha\beta^{2}+15\alpha\beta-8\beta^{3}+7\beta^{2}}{48\pi^{4}\alpha^{3}\beta^{2}}\Bigg{\}}\,,
ρ44GG(s)\displaystyle\rho^{\langle GG\rangle}_{44}(s) =\displaystyle= gs2GGαminαmaxdα{βminβmaxdβ{(s)2×1221184π6α4β4×((s)×(36α6β288α5β2+37α5β\displaystyle{\langle g_{s}^{2}GG\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}\mathcal{F}(s)^{2}\times\frac{1}{221184\pi^{6}\alpha^{4}\beta^{4}}\times(\mathcal{F}(s)\times(-36\alpha^{6}\beta-288\alpha^{5}\beta^{2}+37\alpha^{5}\beta
\displaystyle- 684α4β3+342α4β222α4β756α3β4+918α3β3207α3β2432α2β5+802α2β4411α2β3\displaystyle 684\alpha^{4}\beta^{3}+342\alpha^{4}\beta^{2}-22\alpha^{4}\beta-756\alpha^{3}\beta^{4}+918\alpha^{3}\beta^{3}-207\alpha^{3}\beta^{2}-432\alpha^{2}\beta^{5}+802\alpha^{2}\beta^{4}-411\alpha^{2}\beta^{3}
+\displaystyle+ 26α2β108αβ6+189αβ5154αβ4+60αβ25αβ)+24mc2(6α854α7β+8α7150α6β2\displaystyle 26\alpha^{2}\beta-108\alpha\beta^{6}+189\alpha\beta^{5}-154\alpha\beta^{4}+60\alpha\beta^{2}-5\alpha\beta)+24m_{c}^{2}(-6\alpha^{8}-54\alpha^{7}\beta+8\alpha^{7}-150\alpha^{6}\beta^{2}
+\displaystyle+ 60α6β186α5β3+126α5β2120α4β4+104α4β32α478α3β5+46α3β46α3β90α2β6\displaystyle 60\alpha^{6}\beta-186\alpha^{5}\beta^{3}+126\alpha^{5}\beta^{2}-120\alpha^{4}\beta^{4}+104\alpha^{4}\beta^{3}-2\alpha^{4}-78\alpha^{3}\beta^{5}+46\alpha^{3}\beta^{4}-6\alpha^{3}\beta-90\alpha^{2}\beta^{6}
+\displaystyle+ 54α2β566αβ7+60αβ618β8+22β74β4))}+(s)3×536864π6(α1)α2},\displaystyle 54\alpha^{2}\beta^{5}-66\alpha\beta^{7}+60\alpha\beta^{6}-18\beta^{8}+22\beta^{7}-4\beta^{4}))\Bigg{\}}+\mathcal{H}(s)^{3}\times\frac{5}{36864\pi^{6}(\alpha-1)\alpha^{2}}\Bigg{\}}\,,
ρ44q¯Gq(s)\displaystyle\rho^{\langle\bar{q}Gq\rangle}_{44}(s) =\displaystyle= gsq¯σGqαminαmaxdα{βminβmaxdβ{mc(s)2×30α3+84α2β+30α2+432αβ227αβ+202β357β21536π4α2β2}\displaystyle{\langle g_{s}\bar{q}\sigma Gq\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}m_{c}\mathcal{F}(s)^{2}\times\frac{-30\alpha^{3}+84\alpha^{2}\beta+30\alpha^{2}+432\alpha\beta^{2}-27\alpha\beta+202\beta^{3}-57\beta^{2}}{1536\pi^{4}\alpha^{2}\beta^{2}}\Bigg{\}}
+\displaystyle+ mc(s)2×58α291536π4α2},\displaystyle m_{c}\mathcal{H}(s)^{2}\times\frac{-58\alpha-29}{1536\pi^{4}\alpha^{2}}\Bigg{\}}\,,
ρ44q¯q2(s)\displaystyle\rho^{\langle\bar{q}q\rangle^{2}}_{44}(s) =\displaystyle= q¯q2αminαmax𝑑α{mc2(s)×16π2α},\displaystyle{\langle\bar{q}q\rangle^{2}}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}m_{c}^{2}\mathcal{H}(s)\times\frac{1}{6\pi^{2}\alpha}\Bigg{\}}\,,
ρ44q¯qq¯Gq(s)\displaystyle\rho^{\langle\bar{q}q\rangle\langle\bar{q}Gq\rangle}_{44}(s) =\displaystyle= q¯qgsq¯σGq{αminαmax𝑑α{mc2(230α2259α5)576π2α}+01δ(smc2(1α)α)𝑑α{mc412π2α}},\displaystyle{\langle\bar{q}q\rangle\langle g_{s}\bar{q}\sigma Gq\rangle}\Bigg{\{}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\frac{m_{c}^{2}(230\alpha^{2}-259\alpha-5)}{576\pi^{2}\alpha}\Bigg{\}}+\int^{1}_{0}\delta\left(s-{m_{c}^{2}\over(1-\alpha)\alpha}\right)d\alpha\Bigg{\{}-\frac{m_{c}^{4}}{12\pi^{2}\alpha}\Bigg{\}}\Bigg{\}}\,,
ρ44q¯Gq2(s)\displaystyle\rho^{\langle\bar{q}Gq\rangle^{2}}_{44}(s) =\displaystyle= gsq¯σGq201δ(smc2(1α)α)dα{mc2(316α3690α2+359α+20)2304π2(α1)α+mc4(182α2+211α+5)2304π2(α1)α2MB2\displaystyle{\langle g_{s}\bar{q}\sigma Gq\rangle^{2}}\int^{1}_{0}\delta\left(s-{m_{c}^{2}\over(1-\alpha)\alpha}\right)d\alpha\Bigg{\{}\frac{m_{c}^{2}(316\alpha^{3}-690\alpha^{2}+359\alpha+20)}{2304\pi^{2}(\alpha-1)\alpha}+\frac{m_{c}^{4}(-182\alpha^{2}+211\alpha+5)}{2304\pi^{2}(\alpha-1)\alpha^{2}M_{B}^{2}}
+\displaystyle+ mc696π2(α1)α2MB4}.\displaystyle\frac{m_{c}^{6}}{96\pi^{2}(\alpha-1)\alpha^{2}M_{B}^{4}}\Bigg{\}}\,.

The OPE spectral density ρ55(s)\rho_{55}(s) extracted from the current ηα1α2α35\eta^{5}_{\alpha_{1}\alpha_{2}\alpha_{3}} is

ρ55(s)=ρ55pert(s)+ρ55q¯q(s)+ρ55GG(s)+ρ55q¯Gq(s)+ρ55q¯q2(s)+ρ55q¯qq¯Gq(s)+ρ55q¯Gq2(s),\rho_{55}(s)=\rho^{pert}_{55}(s)+\rho^{\langle\bar{q}q\rangle}_{55}(s)+\rho^{\langle GG\rangle}_{55}(s)+\rho^{\langle\bar{q}Gq\rangle}_{55}(s)+\rho^{\langle\bar{q}q\rangle^{2}}_{55}(s)+\rho^{\langle\bar{q}q\rangle\langle\bar{q}Gq\rangle}_{55}(s)+\rho^{\langle\bar{q}Gq\rangle^{2}}_{55}(s)\,, (62)

where

ρ55pert(s)\displaystyle\rho^{pert}_{55}(s) =\displaystyle= αminαmaxdαβminβmaxdβ{(s)5×17680π6α4β4×(3α5+33α4β4α4+102α3β238α3β\displaystyle\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}-\mathcal{F}(s)^{5}\times\frac{1}{7680\pi^{6}\alpha^{4}\beta^{4}}\times(3\alpha^{5}+33\alpha^{4}\beta-4\alpha^{4}+102\alpha^{3}\beta^{2}-38\alpha^{3}\beta
+\displaystyle+ 138α2β390α2β2+87αβ482αβ3+α+21β526β4+5β)},\displaystyle 138\alpha^{2}\beta^{3}-90\alpha^{2}\beta^{2}+87\alpha\beta^{4}-82\alpha\beta^{3}+\alpha+21\beta^{5}-26\beta^{4}+5\beta)\Bigg{\}}\,,
ρ55q¯q(s)\displaystyle\rho^{\langle\bar{q}q\rangle}_{55}(s) =\displaystyle= 0,\displaystyle 0\,,
ρ55GG(s)\displaystyle\rho^{\langle GG\rangle}_{55}(s) =\displaystyle= gs2GGαminαmaxdα{βminβmaxdβ{(s)2×1110592π6α4β4×((s)×(21α6β+195α5β2+10α5β\displaystyle{\langle g_{s}^{2}GG\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}-\mathcal{F}(s)^{2}\times\frac{1}{110592\pi^{6}\alpha^{4}\beta^{4}}\times(\mathcal{F}(s)\times(21\alpha^{6}\beta+195\alpha^{5}\beta^{2}+10\alpha^{5}\beta
+\displaystyle+ 606α4β326α4β220α4β+786α3β4282α3β342α3β2+429α2β5290α2β4+30α2β313α2β\displaystyle 606\alpha^{4}\beta^{3}-26\alpha^{4}\beta^{2}-20\alpha^{4}\beta+786\alpha^{3}\beta^{4}-282\alpha^{3}\beta^{3}-42\alpha^{3}\beta^{2}+429\alpha^{2}\beta^{5}-290\alpha^{2}\beta^{4}+30\alpha^{2}\beta^{3}-13\alpha^{2}\beta
+\displaystyle+ 75αβ644αβ5+4αβ419αβ2+2αβ)+24mc2(3α8+27α7β4α7+75α6β230α6β+93α5β3\displaystyle 75\alpha\beta^{6}-44\alpha\beta^{5}+4\alpha\beta^{4}-19\alpha\beta^{2}+2\alpha\beta)+24m_{c}^{2}(3\alpha^{8}+27\alpha^{7}\beta-4\alpha^{7}+75\alpha^{6}\beta^{2}-30\alpha^{6}\beta+93\alpha^{5}\beta^{3}
\displaystyle- 63α5β2+60α4β452α4β3+α4+39α3β523α3β4+3α3β+45α2β627α2β5+33αβ730αβ6\displaystyle 63\alpha^{5}\beta^{2}+60\alpha^{4}\beta^{4}-52\alpha^{4}\beta^{3}+\alpha^{4}+39\alpha^{3}\beta^{5}-23\alpha^{3}\beta^{4}+3\alpha^{3}\beta+45\alpha^{2}\beta^{6}-27\alpha^{2}\beta^{5}+33\alpha\beta^{7}-30\alpha\beta^{6}
+\displaystyle+ 9β811β7+2β4))}+(s)3×118432π6(α1)α2},\displaystyle 9\beta^{8}-11\beta^{7}+2\beta^{4}))\Bigg{\}}+\mathcal{H}(s)^{3}\times\frac{1}{18432\pi^{6}(\alpha-1)\alpha^{2}}\Bigg{\}}\,,
ρ55q¯Gq(s)\displaystyle\rho^{\langle\bar{q}Gq\rangle}_{55}(s) =\displaystyle= 0,\displaystyle 0\,,
ρ55q¯q2(s)\displaystyle\rho^{\langle\bar{q}q\rangle^{2}}_{55}(s) =\displaystyle= q¯q2αminαmax𝑑α{mc2(s)×16π2α},\displaystyle{\langle\bar{q}q\rangle^{2}}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}m_{c}^{2}\mathcal{H}(s)\times\frac{1}{6\pi^{2}\alpha}\Bigg{\}}\,,
ρ55q¯qq¯Gq(s)\displaystyle\rho^{\langle\bar{q}q\rangle\langle\bar{q}Gq\rangle}_{55}(s) =\displaystyle= q¯qgsq¯σGq{αminαmax𝑑α{mc2(28α232α1)72π2α}+01δ(smc2(1α)α)𝑑α{mc412π2α}},\displaystyle{\langle\bar{q}q\rangle\langle g_{s}\bar{q}\sigma Gq\rangle}\Bigg{\{}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\frac{m_{c}^{2}(28\alpha^{2}-32\alpha-1)}{72\pi^{2}\alpha}\Bigg{\}}+\int^{1}_{0}\delta\left(s-{m_{c}^{2}\over(1-\alpha)\alpha}\right)d\alpha\Bigg{\{}-\frac{m_{c}^{4}}{12\pi^{2}\alpha}\Bigg{\}}\Bigg{\}}\,,
ρ55q¯Gq2(s)\displaystyle\rho^{\langle\bar{q}Gq\rangle^{2}}_{55}(s) =\displaystyle= gsq¯σGq201δ(smc2(1α)α)dα{mc2(38α384α2+43α+4)288π2(α1)α+mc4(22α2+26α+1)288π2(α1)α2MB2\displaystyle{\langle g_{s}\bar{q}\sigma Gq\rangle^{2}}\int^{1}_{0}\delta\left(s-{m_{c}^{2}\over(1-\alpha)\alpha}\right)d\alpha\Bigg{\{}\frac{m_{c}^{2}(38\alpha^{3}-84\alpha^{2}+43\alpha+4)}{288\pi^{2}(\alpha-1)\alpha}+\frac{m_{c}^{4}(-22\alpha^{2}+26\alpha+1)}{288\pi^{2}(\alpha-1)\alpha^{2}M_{B}^{2}}
+\displaystyle+ mc696π2(α1)α2MB4}.\displaystyle\frac{m_{c}^{6}}{96\pi^{2}(\alpha-1)\alpha^{2}M_{B}^{4}}\Bigg{\}}\,.

The OPE spectral density ρ66(s)\rho_{66}(s) extracted from the current ηα1α2α36\eta^{6}_{\alpha_{1}\alpha_{2}\alpha_{3}} is

ρ66(s)=ρ66pert(s)+ρ66q¯q(s)+ρ66GG(s)+ρ66q¯Gq(s)+ρ66q¯q2(s)+ρ66q¯qq¯Gq(s)+ρ66q¯Gq2(s),\rho_{66}(s)=\rho^{pert}_{66}(s)+\rho^{\langle\bar{q}q\rangle}_{66}(s)+\rho^{\langle GG\rangle}_{66}(s)+\rho^{\langle\bar{q}Gq\rangle}_{66}(s)+\rho^{\langle\bar{q}q\rangle^{2}}_{66}(s)+\rho^{\langle\bar{q}q\rangle\langle\bar{q}Gq\rangle}_{66}(s)+\rho^{\langle\bar{q}Gq\rangle^{2}}_{66}(s)\,, (63)

where

ρ66pert(s)\displaystyle\rho^{pert}_{66}(s) =\displaystyle= αminαmaxdαβminβmaxdβ{(s)5×13840π6α4β4×(3α5+33α4β4α4+102α3β238α3β\displaystyle\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}-\mathcal{F}(s)^{5}\times\frac{1}{3840\pi^{6}\alpha^{4}\beta^{4}}\times(3\alpha^{5}+33\alpha^{4}\beta-4\alpha^{4}+102\alpha^{3}\beta^{2}-38\alpha^{3}\beta
+\displaystyle+ 138α2β390α2β2+87αβ482αβ3+α+21β526β4+5β)},\displaystyle 138\alpha^{2}\beta^{3}-90\alpha^{2}\beta^{2}+87\alpha\beta^{4}-82\alpha\beta^{3}+\alpha+21\beta^{5}-26\beta^{4}+5\beta)\Bigg{\}}\,,
ρ66q¯q(s)\displaystyle\rho^{\langle\bar{q}q\rangle}_{66}(s) =\displaystyle= 0,\displaystyle 0\,,
ρ66GG(s)\displaystyle\rho^{\langle GG\rangle}_{66}(s) =\displaystyle= gs2GGαminαmaxdα{βminβmaxdβ{(s)2×1110592π6α4β4×((s)×(111α6β753α5β2+242α5β\displaystyle{\langle g_{s}^{2}GG\rangle}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\int^{\beta_{max}}_{\beta_{min}}d\beta\Bigg{\{}-\mathcal{F}(s)^{2}\times\frac{1}{110592\pi^{6}\alpha^{4}\beta^{4}}\times(\mathcal{F}(s)\times(-111\alpha^{6}\beta-753\alpha^{5}\beta^{2}+242\alpha^{5}\beta
\displaystyle- 1074α4β3+1166α4β2100α4β606α3β4+894α3β3210α3β2447α2β5+326α2β4+150α2β3\displaystyle 1074\alpha^{4}\beta^{3}+1166\alpha^{4}\beta^{2}-100\alpha^{4}\beta-606\alpha^{3}\beta^{4}+894\alpha^{3}\beta^{3}-210\alpha^{3}\beta^{2}-447\alpha^{2}\beta^{5}+326\alpha^{2}\beta^{4}+150\alpha^{2}\beta^{3}
\displaystyle- 41α2β273αβ6+356αβ5+20αβ495αβ2+10αβ)+48mc2(3α8+27α7β4α7+75α6β230α6β\displaystyle 41\alpha^{2}\beta-273\alpha\beta^{6}+356\alpha\beta^{5}+20\alpha\beta^{4}-95\alpha\beta^{2}+10\alpha\beta)+48m_{c}^{2}(3\alpha^{8}+27\alpha^{7}\beta-4\alpha^{7}+75\alpha^{6}\beta^{2}-30\alpha^{6}\beta
+\displaystyle+ 93α5β363α5β2+60α4β452α4β3+α4+39α3β523α3β4+3α3β+45α2β627α2β5+33αβ7\displaystyle 93\alpha^{5}\beta^{3}-63\alpha^{5}\beta^{2}+60\alpha^{4}\beta^{4}-52\alpha^{4}\beta^{3}+\alpha^{4}+39\alpha^{3}\beta^{5}-23\alpha^{3}\beta^{4}+3\alpha^{3}\beta+45\alpha^{2}\beta^{6}-27\alpha^{2}\beta^{5}+33\alpha\beta^{7}
\displaystyle- 30αβ6+9β811β7+2β4))}+(s)3×518432π6(α1)α2},\displaystyle 30\alpha\beta^{6}+9\beta^{8}-11\beta^{7}+2\beta^{4}))\Bigg{\}}+\mathcal{H}(s)^{3}\times\frac{5}{18432\pi^{6}(\alpha-1)\alpha^{2}}\Bigg{\}}\,,
ρ66q¯Gq(s)\displaystyle\rho^{\langle\bar{q}Gq\rangle}_{66}(s) =\displaystyle= 0,\displaystyle 0\,,
ρ66q¯q2(s)\displaystyle\rho^{\langle\bar{q}q\rangle^{2}}_{66}(s) =\displaystyle= q¯q2αminαmax𝑑α{mc2(s)×13π2α},\displaystyle{\langle\bar{q}q\rangle^{2}}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}m_{c}^{2}\mathcal{H}(s)\times\frac{1}{3\pi^{2}\alpha}\Bigg{\}}\,,
ρ66q¯qq¯Gq(s)\displaystyle\rho^{\langle\bar{q}q\rangle\langle\bar{q}Gq\rangle}_{66}(s) =\displaystyle= q¯qgsq¯σGq{αminαmax𝑑α{mc2(62α267α+1)72π2α}+01δ(smc2(1α)α)𝑑α{mc46π2α}},\displaystyle{\langle\bar{q}q\rangle\langle g_{s}\bar{q}\sigma Gq\rangle}\Bigg{\{}\int^{\alpha_{max}}_{\alpha_{min}}d\alpha\Bigg{\{}\frac{m_{c}^{2}(62\alpha^{2}-67\alpha+1)}{72\pi^{2}\alpha}\Bigg{\}}+\int^{1}_{0}\delta\left(s-{m_{c}^{2}\over(1-\alpha)\alpha}\right)d\alpha\Bigg{\{}-\frac{m_{c}^{4}}{6\pi^{2}\alpha}\Bigg{\}}\Bigg{\}}\,,
ρ66q¯Gq2(s)\displaystyle\rho^{\langle\bar{q}Gq\rangle^{2}}_{66}(s) =\displaystyle= gsq¯σGq201δ(smc2(1α)α)dα{mc2(88α3186α2+101α4)288π2(α1)α+mc4(50α2+55α1)288π2(α1)α2MB2\displaystyle{\langle g_{s}\bar{q}\sigma Gq\rangle^{2}}\int^{1}_{0}\delta\left(s-{m_{c}^{2}\over(1-\alpha)\alpha}\right)d\alpha\Bigg{\{}\frac{m_{c}^{2}(88\alpha^{3}-186\alpha^{2}+101\alpha-4)}{288\pi^{2}(\alpha-1)\alpha}+\frac{m_{c}^{4}(-50\alpha^{2}+55\alpha-1)}{288\pi^{2}(\alpha-1)\alpha^{2}M_{B}^{2}}
+\displaystyle+ mc648π2(α1)α2MB4}.\displaystyle\frac{m_{c}^{6}}{48\pi^{2}(\alpha-1)\alpha^{2}M_{B}^{4}}\Bigg{\}}\,.

References