This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Chemical-potential route for multicomponent fluids

Andrés Santos andres@unex.es http://www.unex.es/eweb/fisteor/andres/ Departamento de Física, Universidad de Extremadura, Badajoz, E-06071, Spain    René D. Rohrmann rohr@icate-conicet.gob.ar http://icate-conicet.gob.ar/rohrmann Instituto de Ciencias Astronómicas, de la Tierra y del Espacio (ICATE-CONICET), Avenida España 1512 Sur, 5400 San Juan, Argentina
(September 13, 2025)
Abstract

The chemical potentials of multicomponent fluids are derived in terms of the pair correlation functions for arbitrary number of components, interaction potentials, and dimensionality. The formally exact result is particularized to hard-sphere mixtures with zero or positive nonadditivity. As a simple application, the chemical potentials of three-dimensional additive hard-sphere mixtures are derived from the Percus–Yevick theory and the associated equation of state is obtained. This Percus–Yevick chemical-route equation of state is shown to be more accurate than the virial equation of state. An interpolation between the chemical-potential and compressibility routes exhibits a better performance than the well-known Boublík–Mansoori–Carnahan–Starling–Leland equation of state.

pacs:
05.70.Ce, 61.20.Gy, 61.20.Ne, 65.20.Jk

I Introduction

It is well known that in a fluid made of particles interacting via a pair-wise potential, the most relevant statistical-mechanical quantity in equilibrium is the pair correlation function, or radial distribution function (RDF), g(r)g(r) Barker and Henderson (1976); Hansen and McDonald (2006). It is defined as the average number density at a distance rr from a certain reference particle, relative to the global density. Apart from accounting for the structural correlation properties of the fluid, the RDF g(r)g(r) allows one to obtain a number of thermodynamic quantities {ψi}\{\psi_{i}\} by means of elegant formulas. Since those thermodynamic quantities are connected by differential relations, one would expect to get the same macroscopic description, i.e., the same free energy AA, regardless of the specific route g(r)ψiAg(r)\to\psi_{i}\to A followed not . However, this is not necessarily the case when an approximate RDF is used as a starting point, what results in the well-known thermodynamic inconsistency problem Barker and Henderson (1976).

To be more specific, let us assume an ss-component system made of N=α=1sNαN=\sum_{\alpha=1}^{s}N_{\alpha} particles (NαN_{\alpha} being the number of particles of species α\alpha) enclosed in a dd-dimensional volume VV. The total number density is ρ=N/V\rho=N/V and the partial number densities are ρα=Nα/V=xαρ\rho_{\alpha}=N_{\alpha}/V=x_{\alpha}\rho, xα=Nα/Nx_{\alpha}=N_{\alpha}/N being the mole fractions. The pair interaction potential, not necessarily isotropic, between two particles of species α\alpha and γ\gamma is ϕαγ(𝐫)=ϕγα(𝐫)\phi_{\alpha\gamma}(\mathbf{r})=\phi_{\gamma\alpha}(-\mathbf{r}). In terms of the pair correlation function of species α\alpha and γ\gamma, gαγ(𝐫)g_{\alpha\gamma}(\mathbf{r}), it is possible to express the pressure pp as Hansen and McDonald (2006)

Zβpρ=1βρ2dα,γxαxγd𝐫gαγ(𝐫)𝐫ϕαγ(𝐫),Z\equiv\frac{\beta p}{\rho}=1-\frac{\beta\rho}{2d}\sum_{\alpha,\gamma}x_{\alpha}x_{\gamma}\int\text{d}\mathbf{r}\,g_{\alpha\gamma}(\mathbf{r})\mathbf{r}\cdot\nabla\phi_{\alpha\gamma}(\mathbf{r}), (1)

where ZZ is the compressibility factor and β1/kBT\beta\equiv 1/k_{B}T (kBk_{B} and TT being the Boltzmann constant and the temperature, respectively). Analogously, the internal energy per particle u=U/Nu=U/N can be expressed as

βu=d2+βρ2α,γxαxγd𝐫gαγ(𝐫)ϕαγ(𝐫).\beta u=\frac{d}{2}+\frac{\beta\rho}{2}\sum_{\alpha,\gamma}x_{\alpha}x_{\gamma}\int\text{d}\mathbf{r}\,g_{\alpha\gamma}(\mathbf{r})\phi_{\alpha\gamma}(\mathbf{r}). (2)

Equations (1) and (2) are the virial (or pressure) and energy routes to thermodynamics, respectively. The free energy A=NaA=Na (where aa is the free energy per particle) can be (partially) obtained not either from Eq. (1) or from Eq. (2) by inversion of the thermodynamic relations

Z=ρ(βaρ)β,{xα},Z=\rho\left(\frac{\partial\beta a}{\partial\rho}\right)_{\beta,\{x_{\alpha}\}}, (3)
u=(βaβ)ρ,{xα}.u=\left(\frac{\partial\beta a}{\partial\beta}\right)_{\rho,\{x_{\alpha}\}}. (4)

Apart from the virial and energy routes, a popular route is the compressibility one. It reads

χT1\displaystyle\chi_{T}^{-1} =\displaystyle= (ρZρ)β,{xα}\displaystyle\left(\frac{\partial\rho Z}{\partial\rho}\right)_{\beta,\{x_{\alpha}\}} (5)
=\displaystyle= α,γxαxγ(𝖨+𝗁^)αγ1,\displaystyle\sum_{\alpha,\gamma}\sqrt{x_{\alpha}x_{\gamma}}\left(\mathsf{I}+\widehat{\mathsf{h}}\right)^{-1}_{\alpha\gamma},

where the element h^αγ\widehat{h}_{\alpha\gamma} of the matrix 𝗁^\widehat{\mathsf{h}} is proportional to the zero wavenumber limit of the Fourier transform of the total correlation function hαγ(𝐫)=gαγ(𝐫)1h_{\alpha\gamma}(\mathbf{r})=g_{\alpha\gamma}(\mathbf{r})-1, namely

h^αγ=ρxαxγd𝐫hαγ(𝐫).\widehat{h}_{\alpha\gamma}=\rho\sqrt{x_{\alpha}x_{\gamma}}\int\text{d}\mathbf{r}\,h_{\alpha\gamma}\left(\mathbf{r}\right). (6)

Combination of Eqs. (3) and (5) allows one to get the free energy from the RDF via the compressibility route.

Equations (3) and (4) are related to the derivatives of the free energy per particle aa with respect to the total number density and to the temperature, respectively, but they ignore the composition-dependence of aa. In fact, the partial derivatives of aa with respect to the partial number densities are related to the chemical potentials:

μν=(ρaρν)β,{ραν}.\mu_{\nu}=\left(\frac{\partial\rho a}{\partial\rho_{\nu}}\right)_{\beta,\{\rho_{\alpha\neq\nu}\}}. (7)

While in Eq. (3) the free energy per particle aa is seen as a function of the total number density ρ\rho and the s1s-1 independent mole fractions {x1,x2,,xs1}\{x_{1},x_{2},\ldots,x_{s-1}\}, in Eq. (7) aa is seen as a function of the ss partial densities {ρ1,ρ2,,ρs}\{\rho_{1},\rho_{2},\ldots,\rho_{s}\}. Adopting the former point of view, Eq. (7) can be rewritten as

μν=(ρaρ)β,{xα}+α=1s1(axα)β,ρ,{xγα}(δανxα).\mu_{\nu}=\left(\frac{\partial\rho a}{\partial\rho}\right)_{\beta,\{x_{\alpha}\}}+\sum_{\alpha=1}^{s-1}\left(\frac{\partial a}{\partial x_{\alpha}}\right)_{\beta,\rho,\{x_{\gamma\neq\alpha}\}}\left(\delta_{\alpha\nu}-x_{\alpha}\right). (8)

This allows us to get the useful identity

νxνμν=(ρaρ)β,{xα}.\sum_{\nu}x_{\nu}\mu_{\nu}=\left(\frac{\partial\rho a}{\partial\rho}\right)_{\beta,\{x_{\alpha}\}}. (9)

Recognizing that [(ρa)/ρ]β,{xα}=a+p/ρ\left[\partial(\rho a)/{\partial\rho}\right]_{\beta,\{x_{\alpha}\}}=a+p/\rho is the Gibbs free energy per particle, Eq. (9) is not but the fundamental equation of thermodynamics Callen (1960).

Cross partial derivatives of the free energy should be independent of the order of derivation, which yields the following Maxwell relations involving the chemical potential:

(βμνβ){ρα}=(ρuρν)β,{ραν},\left(\frac{\partial\beta\mu_{\nu}}{\partial\beta}\right)_{\{\rho_{\alpha}\}}=\left(\frac{\partial\rho u}{\partial\rho_{\nu}}\right)_{\beta,\{\rho_{\alpha\neq\nu}\}}, (10)
V(βμνV)β,{Nα}=(ρZρν)β,{ραν},V\left(\frac{\partial\beta\mu_{\nu}}{\partial V}\right)_{\beta,\{N_{\alpha}\}}=-\left(\frac{\partial\rho Z}{\partial\rho_{\nu}}\right)_{\beta,\{\rho_{\alpha\neq\nu}\}}, (11)
V2(2βμνV2)β,{Nα}=(ρχT1ρν)β,{ραν},V^{2}\left(\frac{\partial^{2}\beta\mu_{\nu}}{\partial V^{2}}\right)_{\beta,\{N_{\alpha}\}}=\left(\frac{\partial\rho\chi_{T}^{-1}}{\partial\rho_{\nu}}\right)_{\beta,\{\rho_{\alpha\neq\nu}\}}, (12)
(μνρα)β,{ργα}=(μαρν)β,{ργν}.\left(\frac{\partial\mu_{\nu}}{\partial\rho_{\alpha}}\right)_{\beta,\{\rho_{\gamma\neq\alpha}\}}=\left(\frac{\partial\mu_{\alpha}}{\partial\rho_{\nu}}\right)_{\beta,\{\rho_{\gamma\neq\nu}\}}. (13)

In Eqs. (11) and (12) the replacement ραNα/V\rho_{\alpha}\to N_{\alpha}/V must be done in order to express the chemical potential as a function of {Nα}\{N_{\alpha}\} and VV.

The interesting question is, how can one obtain the chemical potential μν\mu_{\nu} (and hence the free energy) from the knowledge of the RDF? This question has been addressed in several textbooks Hill (1956); Reichl (1980) and classical papers Mandell and Reiss (1975); Reiss et al. (1959), but the most general formula (valid for any dimensionality, interaction potential, and coupling protocol) seems not to have been derived yet. The first aim of this paper is the derivation of that chemical-potential route to thermodynamics [see Eq. (36) below]. The second goal is the application of the route to a mixture of (additive) hard spheres (HS) in the context of the Percus–Yevick (PY) approximation [see Eq. (64) below]. This extends to multicomponent systems, the work recently reported in Ref. Santos (2012).

This paper is organized as follows. The formal derivation of the chemical-potential route is carried out in Sec. II. As a simple test, it is checked in Sec. III that the use of the exact pair correlation function to first order in density provides the exact second and third virial coefficients. Section IV is devoted to the specialization of the chemical-potential route to dd-dimensional HS mixtures with zero or positive nonadditivity. In the three-dimensional case, the knowledge of the contact values of the radial distribution function for additive HS mixtures in the scaled-particle theory (SPT) and PY approximations is exploited to obtain the chemical potential. It is observed that, while the SPT yields a result thermodynamically consistent with the virial route, this is not the case of the PY result. Finally, the paper ends with some concluding remarks in Sec. VI.

II The chemical-potential route

As stated before, we consider an ss-component mixture with NαN_{\alpha} (α=1,,s\alpha=1,\ldots,s) particles of species α\alpha and N=α=1sNαN=\sum_{\alpha=1}^{s}N_{\alpha} total number of particles in a volume VV. We will employ the short-hand notations 𝐍{N1,,Ns}\mathbf{N}\equiv\{N_{1},\ldots,N_{s}\}, 𝐫N{𝐫1,,𝐫N}\mathbf{r}^{N}\equiv\{\mathbf{r}_{1},\ldots,\mathbf{r}_{N}\}, and d𝐫Nd𝐫1d𝐫N\text{d}\mathbf{r}^{N}\equiv\text{d}\mathbf{r}_{1}\cdots\text{d}\mathbf{r}_{N}, 𝐫i\mathbf{r}_{i} being the spatial coordinates of particle ii. If we denote by Φ𝐍(𝐫N)\Phi_{\mathbf{N}}(\mathbf{r}^{N}) the total potential energy, the (canonical-ensemble) configurational probability density is Hill (1956); Hansen and McDonald (2006)

ρ𝐍(𝐫N)=VNQ𝐍(β,V)eβΦ𝐍(𝐫N),\rho_{\mathbf{N}}(\mathbf{r}^{N})=\frac{V^{-N}}{Q_{\mathbf{N}}(\beta,V)}e^{-\beta\Phi_{\mathbf{N}}(\mathbf{r}^{N})}, (14)

where

Q𝐍(β,V)=VNd𝐫NeβΦ𝐍(𝐫N)Q_{\mathbf{N}}(\beta,V)=V^{-N}\int\text{d}\mathbf{r}^{N}\,e^{-\beta\Phi_{\mathbf{N}}(\mathbf{r}^{N})} (15)

is the configurational integral. The average number of pairs of particles (per unit volume) of species α\alpha and γ\gamma located at 𝐫α\mathbf{r}_{\alpha} and 𝐫γ\mathbf{r}_{\gamma}, respectively, is

nαγ(𝐫α,𝐫γ)\displaystyle n_{\alpha\gamma}(\mathbf{r}_{\alpha},\mathbf{r}_{\gamma}) =\displaystyle= d𝐫Nρ𝐍(𝐫N)ijδϵi,αδϵj,γ\displaystyle\int\text{d}\mathbf{r}^{N}\,\rho_{\mathbf{N}}(\mathbf{r}^{N})\sum_{i\neq j}\delta_{\epsilon_{i},\alpha}\delta_{\epsilon_{j},\gamma} (16)
×δ(𝐫i𝐫α)δ(𝐫j𝐫γ),\displaystyle\times\delta(\mathbf{r}_{i}-\mathbf{r}_{\alpha})\delta(\mathbf{r}_{j}-\mathbf{r}_{\gamma}),

where ϵi\epsilon_{i} denotes the species particle ii belongs to. We define the pair correlation function as gαγ(𝐫α,𝐫γ)=nαγ(𝐫α,𝐫γ)/ραργg_{\alpha\gamma}(\mathbf{r}_{\alpha},\mathbf{r}_{\gamma})=n_{\alpha\gamma}(\mathbf{r}_{\alpha},\mathbf{r}_{\gamma})/\rho_{\alpha}\rho_{\gamma}. Inserting Eq. (14) into Eq. (16), one obtains

gαγ(𝐫α,𝐫γ)\displaystyle g_{\alpha\gamma}(\mathbf{r}_{\alpha},\mathbf{r}_{\gamma}) =\displaystyle= V(N2)Q𝐍(β,V)d𝐫NeβΦ𝐍(𝐫N)\displaystyle\frac{V^{-(N-2)}}{Q_{\mathbf{N}}(\beta,V)}\int\text{d}\mathbf{r}^{N}\,e^{-\beta\Phi_{\mathbf{N}}(\mathbf{r}^{N})} (17)
×δ(𝐫1𝐫α)δ(𝐫2𝐫γ),\displaystyle\times\delta(\mathbf{r}_{1}-\mathbf{r}_{\alpha})\delta(\mathbf{r}_{2}-\mathbf{r}_{\gamma}),

where, without loss of generality, particles i=1i=1 and j=2j=2 are assumed to belong to species α\alpha and γ\gamma, respectively.

Contact with thermodynamics is made through the free energy A𝐍A_{\mathbf{N}} of the system:

A𝐍(β,V)=kBTln𝒵𝐍(β,V),A_{\mathbf{N}}(\beta,V)=-k_{B}T\ln\mathcal{Z}_{\mathbf{N}}(\beta,V), (18)

where the partition function 𝒵𝐍\mathcal{Z}_{\mathbf{N}} factorizes as

𝒵𝐍(β,V)=𝒵𝐍id(β,V)Q𝐍(β,V),\mathcal{Z}_{\mathbf{N}}(\beta,V)=\mathcal{Z}_{\mathbf{N}}^{\text{id}}(\beta,V)Q_{\mathbf{N}}(\beta,V), (19)
𝒵𝐍id(β,V)=VNαNα!ΛαdNα\mathcal{Z}_{\mathbf{N}}^{\text{id}}(\beta,V)=\frac{V^{N}}{\prod_{\alpha}N_{\alpha}!\Lambda_{\alpha}^{dN_{\alpha}}} (20)

being the ideal-gas partition function. In Eq. (20), Λα=h/2πmαkBT\Lambda_{\alpha}=h/\sqrt{2\pi m_{\alpha}k_{B}T} (where hh is the Planck constant and mαm_{\alpha} is the mass of a particle of species α\alpha) is the thermal de Broglie wavelength.

Let us now focus on a given species ν\nu. The associated chemical potential is

μν=A𝐍(β,V)Nν=μνid+μνex,\mu_{\nu}=\frac{\partial A_{\mathbf{N}}(\beta,V)}{\partial N_{\nu}}=\mu_{\nu}^{\text{id}}+\mu_{\nu}^{\text{ex}}, (21)

where

βμνid=ln𝒵𝐍id(β,V)Nν=ln(ρνΛνd),\beta\mu_{\nu}^{\text{id}}=-\frac{\partial\ln\mathcal{Z}_{\mathbf{N}}^{\text{id}}(\beta,V)}{\partial N_{\nu}}=\ln\left(\rho_{\nu}\Lambda_{\nu}^{d}\right), (22)
βμνex\displaystyle\beta\mu_{\nu}^{\text{ex}} =\displaystyle= lnQ𝐍(β,V)Nν\displaystyle-\frac{\partial\ln Q_{\mathbf{N}}(\beta,V)}{\partial N_{\nu}} (23)
=\displaystyle= lnQ𝐍(β,V)Q𝐍+1(β,V).\displaystyle\ln\frac{Q_{\mathbf{N}}(\beta,V)}{Q_{\mathbf{N}+1}(\beta,V)}.

In the second line of Eq. (23) we have taken into account that Nν1N_{\nu}\gg 1 and it is understood that the subscript 𝐍+1\mathbf{N}+1 means {N1,,Nν+1,,Ns}\{N_{1},\ldots,N_{\nu}+1,\ldots,N_{s}\}. Obviously, Q𝐍+1(β,V)Q_{\mathbf{N}+1}(\beta,V) is given by Eq. (15) with the replacements NN+1N\to N+1 and 𝐍𝐍+1\mathbf{N}\to\mathbf{N}+1. Moreover, without loss of generality, we will assign the label i=0i=0 to the extra particle of species ν\nu, so that d𝐫N+1=d𝐫0d𝐫N\text{d}\mathbf{r}^{N+1}=\text{d}\mathbf{r}_{0}d\mathbf{r}^{N}.

Now we assume that the potential energy is pair-wise additive, namely

Φ𝐍(𝐫N)=i=1N1j=i+1Nϕϵiϵj(𝐫i,𝐫j),\Phi_{\mathbf{N}}(\mathbf{r}^{N})=\sum_{i=1}^{N-1}\sum_{j=i+1}^{N}\phi_{\epsilon_{i}\epsilon_{j}}(\mathbf{r}_{i},\mathbf{r}_{j}), (24)
Φ𝐍+1(𝐫N+1)=j=1Nϕνϵj(𝐫0,𝐫j)+Φ𝐍(𝐫N),\Phi_{\mathbf{N}+1}(\mathbf{r}^{N+1})=\sum_{j=1}^{N}\phi_{\nu\epsilon_{j}}(\mathbf{r}_{0},\mathbf{r}_{j})+\Phi_{\mathbf{N}}(\mathbf{r}^{N}), (25)

where ϕαγ(𝐫α,𝐫γ)=ϕαγ(𝐫γ𝐫α)\phi_{\alpha\gamma}(\mathbf{r}_{\alpha},\mathbf{r}_{\gamma})=\phi_{\alpha\gamma}(\mathbf{r}_{\gamma}-\mathbf{r}_{\alpha}) is the interaction potential of two particles of species α\alpha and γ\gamma.

In order to establish a relationship between the chemical potential and the pair correlation functions, it is convenient to introduce a coupling parameter ξ\xi such that its value 0ξ10\leq\xi\leq 1 controls the strength of the interaction of particle i=0i=0 to the rest of particles. A similar charging process was employed by Onsager in a different context Onsager (1933). It is also closely related to the so-called Widom insertion method Widom (1963).

In our specific problem, the interaction potential between particles i=0i=0 and j1j\geq 1 is ϕνϵj(ξ)(𝐫0,𝐫j)\phi_{\nu\epsilon_{j}}^{(\xi)}(\mathbf{r}_{0},\mathbf{r}_{j}), with the boundary conditions

ϕνϵj(ξ)(𝐫0,𝐫j)={0,ξ=0,ϕνϵj(𝐫0,𝐫j),ξ=1.\phi_{\nu\epsilon_{j}}^{(\xi)}(\mathbf{r}_{0},\mathbf{r}_{j})=\begin{cases}0,&\xi=0,\\ \phi_{\nu\epsilon_{j}}(\mathbf{r}_{0},\mathbf{r}_{j}),&\xi=1.\end{cases} (26)

The associated total potential energy and configuration integral are

Φ𝐍+1(ξ)(𝐫N+1)=j=1Nϕνϵj(ξ)(𝐫0,𝐫j)+Φ𝐍(𝐫N),\Phi_{\mathbf{N}+1}^{(\xi)}(\mathbf{r}^{N+1})=\sum_{j=1}^{N}\phi_{\nu\epsilon_{j}}^{(\xi)}(\mathbf{r}_{0},\mathbf{r}_{j})+\Phi_{\mathbf{N}}(\mathbf{r}^{N}), (27)
Q𝐍+1(ξ)(β,V)=V(N+1)d𝐫N+1eβΦ𝐍+1(ξ)(𝐫N+1).Q_{\mathbf{N}+1}^{(\xi)}(\beta,V)=V^{-(N+1)}\int\text{d}\mathbf{r}^{N+1}\,e^{-\beta\Phi_{\mathbf{N}+1}^{(\xi)}(\mathbf{r}^{N+1})}. (28)

Note that Eqs. (27) and (28) (with 0<ξ<10<\xi<1) define a system of N+1N+1 particles and s+1s+1 species, one of the species being made by the single particle i=0i=0. Only in the limits ξ=0\xi=0 and ξ=1\xi=1 does one recover a number of species ss. Analogously to Eq. (17), the pair correlation function of particle i=0i=0 and any particle of species α\alpha is

gνα(ξ)(𝐫ν,𝐫α)\displaystyle g_{\nu\alpha}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha}) =\displaystyle= V(N1)Q𝐍+1(ξ)(β,V)d𝐫N+1eβΦ𝐍+1(ξ)(𝐫N+1)\displaystyle\frac{V^{-(N-1)}}{Q_{\mathbf{N}+1}^{(\xi)}(\beta,V)}\int\text{d}\mathbf{r}^{N+1}\,e^{-\beta\Phi_{\mathbf{N}+1}^{(\xi)}(\mathbf{r}^{N+1})} (29)
×δ(𝐫0𝐫ν)δ(𝐫1𝐫α).\displaystyle\times\delta(\mathbf{r}_{0}-\mathbf{r}_{\nu})\delta(\mathbf{r}_{1}-\mathbf{r}_{\alpha}).

Obviously,

Φ𝐍+1(ξ)(𝐫N+1)={Φ𝐍(𝐫N),ξ=0Φ𝐍+1(𝐫N+1),ξ=1,\Phi_{\mathbf{N}+1}^{(\xi)}(\mathbf{r}^{N+1})=\begin{cases}\Phi_{\mathbf{N}}(\mathbf{r}^{N}),&\xi=0\\ \Phi_{\mathbf{N}+1}(\mathbf{r}^{N+1}),&\xi=1,\end{cases} (30)
Q𝐍+1(ξ)(β,V)={Q𝐍(β,V),ξ=0Q𝐍+1(β,V),ξ=1,Q_{\mathbf{N}+1}^{(\xi)}(\beta,V)=\begin{cases}Q_{\mathbf{N}}(\beta,V),&\xi=0\\ Q_{\mathbf{N}+1}(\beta,V),&\xi=1,\end{cases} (31)
gνα(ξ)(𝐫ν,𝐫α)={1,ξ=0gνα(𝐫ν,𝐫α),ξ=1.g_{\nu\alpha}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha})=\begin{cases}1,&\xi=0\\ g_{\nu\alpha}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha}),&\xi=1.\end{cases} (32)

Assuming that the potentials ϕνα(ξ)\phi_{\nu\alpha}^{(\xi)} are differentiable with respect to ξ\xi, the second line of Eq. (23) can be rewritten as

βμνex=01dξξlnQ𝐍+1(ξ)(β,V).\beta\mu_{\nu}^{\text{ex}}=-\int_{0}^{1}\text{d}\xi\,\frac{\partial}{\partial\xi}\ln Q_{\mathbf{N}+1}^{(\xi)}(\beta,V). (33)

Now, from Eqs. (27) and (28) we obtain

ξQ𝐍+1(ξ)\displaystyle\partial_{\xi}Q_{\mathbf{N}+1}^{(\xi)} =\displaystyle= βV(N+1)d𝐫N+1eβΦ𝐍+1(ξ)(𝐫N+1)\displaystyle-\beta V^{-(N+1)}\int\text{d}\mathbf{r}^{N+1}\,e^{-\beta\Phi_{\mathbf{N}+1}^{(\xi)}(\mathbf{r}^{N+1})} (34)
×j=1Nξϕνϵj(ξ)(𝐫0,𝐫j)\displaystyle\times\sum_{j=1}^{N}\partial_{\xi}\phi_{\nu\epsilon_{j}}^{(\xi)}(\mathbf{r}_{0},\mathbf{r}_{j})
=\displaystyle= βVNαραd𝐫N+1eβΦ𝐍+1(ξ)(𝐫N+1)\displaystyle-\beta V^{-N}\sum_{\alpha}\rho_{\alpha}\int\text{d}\mathbf{r}^{N+1}\,e^{-\beta\Phi_{\mathbf{N}+1}^{(\xi)}(\mathbf{r}^{N+1})}
×ξϕνα(ξ)(𝐫0,𝐫1),\displaystyle\times\partial_{\xi}\phi_{\nu\alpha}^{(\xi)}(\mathbf{r}_{0},\mathbf{r}_{1}),

where again particle j=1j=1 is assumed (without loss of generality) to belong to species α\alpha. Making use of Eq. (29),

ξlnQ𝐍+1(ξ)\displaystyle\partial_{\xi}\ln Q_{\mathbf{N}+1}^{(\xi)} =\displaystyle= βVαραd𝐫νd𝐫αgνα(ξ)(𝐫ν,𝐫α)\displaystyle-\frac{\beta}{V}\sum_{\alpha}\rho_{\alpha}\int\text{d}\mathbf{r}_{\nu}\int\text{d}\mathbf{r}_{\alpha}\,g_{\nu\alpha}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha}) (35)
×ξϕνα(ξ)(𝐫ν,𝐫α).\displaystyle\times\partial_{\xi}\phi_{\nu\alpha}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha}).

Combination of Eqs. (33) and (35) yields the desired result

μνex=αρα01dξd𝐫gνα(ξ)(𝐫)ϕνα(ξ)(𝐫)ξ,\mu_{\nu}^{\text{ex}}=\sum_{\alpha}\rho_{\alpha}\int_{0}^{1}\text{d}\xi\int\text{d}\mathbf{r}\,g_{\nu\alpha}^{(\xi)}(\mathbf{r})\frac{\partial\phi_{\nu\alpha}^{(\xi)}(\mathbf{r})}{\partial\xi}, (36)

where we have taken into account the translational invariance property ϕνα(ξ)(𝐫ν,𝐫α)=ϕνα(ξ)(𝐫α𝐫ν)\phi_{\nu\alpha}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha})=\phi_{\nu\alpha}^{(\xi)}(\mathbf{r}_{\alpha}-\mathbf{r}_{\nu}). In terms of the cavity function yνα(ξ)(𝐫)=gνα(ξ)(𝐫)eβϕνα(ξ)(𝐫)y_{\nu\alpha}^{(\xi)}(\mathbf{r})=g_{\nu\alpha}^{(\xi)}(\mathbf{r})e^{\beta\phi_{\nu\alpha}^{(\xi)}(\mathbf{r})}, Eq. (36) becomes

βμνex=αρα01dξd𝐫yνα(ξ)(𝐫)eβϕνα(ξ)(𝐫)ξ.\beta\mu_{\nu}^{\text{ex}}=-\sum_{\alpha}\rho_{\alpha}\int_{0}^{1}\text{d}\xi\int\text{d}\mathbf{r}\,y_{\nu\alpha}^{(\xi)}(\mathbf{r})\frac{\partial e^{-\beta\phi_{\nu\alpha}^{(\xi)}(\mathbf{r})}}{\partial\xi}. (37)

Equation (36) or, equivalently, Eq. (37) constitutes the chemical-potential route to thermodynamics. It expresses the chemical potential of species ν\nu in an ss-component mixture (the “solvent”) in terms of the pair correlations of an (s+1)(s+1)-component mixture where the extra component consists of a single particle (the “solute”) whose interaction with the rest of the particles is controlled by a coupling parameter ξ\xi, which switches from ξ=0\xi=0 (the solute does not feel the presence of the solvent particles) to ξ=1\xi=1 (the solute is indistinguishable from a solvent particle of species ν\nu). The result is independent of the number of species ss, the dimensionality of the system dd, the pair interaction functions ϕαγ(𝐫)\phi_{\alpha\gamma}(\mathbf{r}) (which can be isotropic or not), and the protocol ϕνα(ξ)(𝐫)\phi_{\nu\alpha}^{(\xi)}(\mathbf{r}) followed to go from ϕνα(0)(𝐫)=0\phi_{\nu\alpha}^{(0)}(\mathbf{r})=0 to ϕνα(1)(𝐫)=ϕνα(𝐫)\phi_{\nu\alpha}^{(1)}(\mathbf{r})=\phi_{\nu\alpha}(\mathbf{r}). If the exact gνα(ξ)(𝐫)g_{\nu\alpha}^{(\xi)}(\mathbf{r}) is employed, one gets the exact chemical potential μν\mu_{\nu} (and, hence, the exact free energy AA) regardless of the protocol. This is illustrated in Sec. III at the level of the third virial coefficient. On the other hand, if an approximate function gνα(ξ)(𝐫)g_{\nu\alpha}^{(\xi)}(\mathbf{r}) is used instead, not only the resulting approximate free energy will be different from the one derived from any of the other routes (e.g., virial, energy, and compressibility), but it will, in general, depend on the choice of the protocol. Thus, the chemical-potential route adds an extra source of thermodynamic inconsistency.

III Low-density regime

The aim of this section is to exploit Eq. (37) when the pair correlation function is truncated to first order in density. First, let us rewrite Eq. (37) as

βμνex\displaystyle\beta\mu_{\nu}^{\text{ex}} =\displaystyle= V101dξαραd𝐫νd𝐫αyνα(ξ)(𝐫ν,𝐫α)\displaystyle-V^{-1}\int_{0}^{1}\text{d}\xi\,\sum_{\alpha}\rho_{\alpha}\int\text{d}\mathbf{r}_{\nu}\int\text{d}\mathbf{r}_{\alpha}\,y_{\nu\alpha}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha}) (38)
×ξfνα(ξ)(𝐫ν,𝐫α),\displaystyle\times\partial_{\xi}f_{\nu\alpha}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha}),

where fνα(ξ)(𝐫ν,𝐫α)eβϕνα(ξ)(𝐫ν,𝐫α)1f_{\nu\alpha}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha})\equiv e^{-\beta\phi_{\nu\alpha}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha})}-1 is the Mayer function Hansen and McDonald (2006); Hill (1956).

To first order in density,

yνα(ξ)(𝐫ν,𝐫α)\displaystyle y_{\nu\alpha}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha}) =\displaystyle= 1+γργd𝐫γfνγ(ξ)(𝐫ν,𝐫γ)fγα(𝐫γ,𝐫α)\displaystyle 1+\sum_{\gamma}\rho_{\gamma}\int\text{d}\mathbf{r}_{\gamma}\,f_{\nu\gamma}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\gamma})f_{\gamma\alpha}(\mathbf{r}_{\gamma},\mathbf{r}_{\alpha}) (39)
+𝒪(ρ2),\displaystyle+\mathcal{O}(\rho^{2}),

where fγα(𝐫γ,𝐫α)eβϕγα(𝐫γ,𝐫α)1f_{\gamma\alpha}(\mathbf{r}_{\gamma},\mathbf{r}_{\alpha})\equiv e^{-\beta\phi_{\gamma\alpha}(\mathbf{r}_{\gamma},\mathbf{r}_{\alpha})}-1. Insertion into Eq. (38) yields

βμνex\displaystyle\beta\mu_{\nu}^{\text{ex}} =\displaystyle= V1αραd𝐫νd𝐫αfνα(𝐫ν,𝐫α)\displaystyle-V^{-1}\sum_{\alpha}\rho_{\alpha}\int\text{d}\mathbf{r}_{\nu}\int\text{d}\mathbf{r}_{\alpha}\,f_{\nu\alpha}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha}) (40)
V101dξIν(ξ)+𝒪(ρ3),\displaystyle-V^{-1}\int_{0}^{1}\text{d}\xi\,I_{\nu}^{(\xi)}+\mathcal{O}(\rho^{3}),

where we have called

Iν(ξ)\displaystyle I_{\nu}^{(\xi)} \displaystyle\equiv α,γραργd𝐫νd𝐫αd𝐫γfνγ(ξ)(𝐫ν,𝐫γ)fγα(𝐫γ,𝐫α)\displaystyle\sum_{\alpha,\gamma}\rho_{\alpha}\rho_{\gamma}\int\text{d}\mathbf{r}_{\nu}\int\text{d}\mathbf{r}_{\alpha}\int\text{d}\mathbf{r}_{\gamma}\,f_{\nu\gamma}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\gamma})f_{\gamma\alpha}(\mathbf{r}_{\gamma},\mathbf{r}_{\alpha}) (41)
×ξfνα(ξ)(𝐫ν,𝐫α).\displaystyle\times\partial_{\xi}f_{\nu\alpha}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha}).

Exchanging αγ\alpha\leftrightarrow\gamma and 𝐫α𝐫γ\mathbf{r}_{\alpha}\leftrightarrow\mathbf{r}_{\gamma} in the summation and the integral, Iν(ξ)I_{\nu}^{(\xi)} can be rewritten as

Iν(ξ)\displaystyle I_{\nu}^{(\xi)} =\displaystyle= 12α,γραργd𝐫νd𝐫αd𝐫γfγα(𝐫γ,𝐫α)\displaystyle\frac{1}{2}\sum_{\alpha,\gamma}\rho_{\alpha}\rho_{\gamma}\int\text{d}\mathbf{r}_{\nu}\int\text{d}\mathbf{r}_{\alpha}\int\text{d}\mathbf{r}_{\gamma}\,f_{\gamma\alpha}(\mathbf{r}_{\gamma},\mathbf{r}_{\alpha}) (42)
×ξ[fνα(ξ)(𝐫ν,𝐫α)fνγ(ξ)(𝐫ν,𝐫γ)].\displaystyle\times\partial_{\xi}\left[f_{\nu\alpha}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\alpha})f_{\nu\gamma}^{(\xi)}(\mathbf{r}_{\nu},\mathbf{r}_{\gamma})\right].

Therefore, Eq. (40) becomes

βμνex=αρανα12α,γραργ𝒢ναγ+𝒪(ρ3),\beta\mu_{\nu}^{\text{ex}}=-\sum_{\alpha}\rho_{\alpha}\mathcal{F}_{\nu\alpha}-\frac{1}{2}\sum_{\alpha,\gamma}\rho_{\alpha}\rho_{\gamma}\mathcal{G}_{\nu\alpha\gamma}+\mathcal{O}(\rho^{3}), (43)

where

ναd𝐫fνα(𝐫),\mathcal{F}_{\nu\alpha}\equiv\int\text{d}\mathbf{r}\,f_{\nu\alpha}(\mathbf{r}), (44)
𝒢ναγ\displaystyle\mathcal{G}_{\nu\alpha\gamma} \displaystyle\equiv d𝐫d𝐫fγα(𝐫𝐫)fνα(𝐫)fνγ(𝐫),\displaystyle\int\text{d}\mathbf{r}\int\text{d}\mathbf{r}^{\prime}\,f_{\gamma\alpha}(\mathbf{r}-\mathbf{r}^{\prime})f_{\nu\alpha}(\mathbf{r})f_{\nu\gamma}(\mathbf{r}^{\prime}), (45)

and the translational invariance property has been applied again. Note that both να\mathcal{F}_{\nu\alpha} and 𝒢ναγ\mathcal{G}_{\nu\alpha\gamma} are invariant under any permutation of indices. This guarantees that Eq. (13) is verified.

Equations (43)–(45) show that, as expected, the specific protocol does not play any role in the final result. From Eq. (7) we finally get

βρaex=12α,γραργαγ16α,γ,νραργρν𝒢αγν+𝒪(ρ4).\beta\rho a^{\text{ex}}=-\frac{1}{2}\sum_{\alpha,\gamma}\rho_{\alpha}\rho_{\gamma}\mathcal{F}_{\alpha\gamma}-\frac{1}{6}\sum_{\alpha,\gamma,\nu}\rho_{\alpha}\rho_{\gamma}\rho_{\nu}\mathcal{G}_{\alpha\gamma\nu}+\mathcal{O}(\rho^{4}). (46)

Making use of Eq. (3) it is straightforward to get

Z=1+B2ρ+B3ρ2+𝒪(ρ3),Z=1+B_{2}\rho+B_{3}\rho^{2}+\mathcal{O}(\rho^{3}), (47)

where the second and third virial coefficients are

B2=12α,γxαxγαγ,B_{2}=-\frac{1}{2}\sum_{\alpha,\gamma}x_{\alpha}x_{\gamma}\mathcal{F}_{\alpha\gamma}, (48)
B3=13α,γ,νxαxγxν𝒢αγν.B_{3}=-\frac{1}{3}\sum_{\alpha,\gamma,\nu}x_{\alpha}x_{\gamma}x_{\nu}\mathcal{G}_{\alpha\gamma\nu}. (49)

As expected, these are the exact expressions Hansen and McDonald (2006).

IV Hard-sphere mixtures

Let us now particularize the chemical-potential route (37) to HS mixtures. In that case,

eβϕαγ(𝐫)=Θ(rσαγ),e^{-\beta\phi_{\alpha\gamma}(\mathbf{r})}=\Theta(r-\sigma_{\alpha\gamma}), (50)

where r=|𝐫|r=|\mathbf{r}|, Θ(x)\Theta(x) is Heaviside’s step function, and σαγ\sigma_{\alpha\gamma} is the range of the infinitely repulsive interaction between particles of species α\alpha and γ\gamma.

We now need to introduce the extra particle i=0i=0 (the solute) coupled to the remaining NN particles through a coupling parameter 0ξ10\leq\xi\leq 1 via the set of interaction potentials ϕνα(ξ)(𝐫)\phi_{\nu\alpha}^{(\xi)}(\mathbf{r}). According to Eq. (26), exp[βϕνα(0)(𝐫)]=1\exp[-\beta\phi_{\nu\alpha}^{(0)}(\mathbf{r})]=1 and exp[βϕνα(1)(𝐫)]=Θ(rσνα)\exp[-\beta\phi_{\nu\alpha}^{(1)}(\mathbf{r})]=\Theta(r-\sigma_{\nu\alpha}), but otherwise a certain freedom to fix the protocol ϕνα(ξ)(𝐫)\phi_{\nu\alpha}^{(\xi)}(\mathbf{r}) exists. The most natural choice is a HS form, i.e.,

eβϕνα(ξ)(𝐫)=Θ(rσνα(ξ)),e^{-\beta\phi_{\nu\alpha}^{(\xi)}(\mathbf{r})}=\Theta(r-\sigma_{\nu\alpha}^{(\xi)}), (51)

with σνα(0)=0\sigma_{\nu\alpha}^{(0)}=0 and σνα(1)=σνα\sigma_{\nu\alpha}^{(1)}=\sigma_{\nu\alpha}. Therefore,

eβϕνα(ξ)(𝐫)ξ=δ(rσνα(ξ))σνα(ξ)ξ,\frac{\partial e^{-\beta\phi_{\nu\alpha}^{(\xi)}(\mathbf{r})}}{\partial\xi}=-\delta(r-\sigma_{\nu\alpha}^{(\xi)})\frac{\partial\sigma_{\nu\alpha}^{(\xi)}}{\partial\xi}, (52)

so that Eq. (37) becomes

βμνex=d2dvdαρα0σναdσ0ασ0αd1y0α(σ0α),\beta\mu_{\nu}^{\text{ex}}=d2^{d}v_{d}\sum_{\alpha}\rho_{\alpha}\int_{0}^{\sigma_{\nu\alpha}}\text{d}\sigma_{0\alpha}\,\sigma_{0\alpha}^{d-1}y_{0\alpha}(\sigma_{0\alpha}), (53)

where we have taken into account that the integral of d𝐫\text{d}\mathbf{r} over all orientations is d2dvdrd1drd2^{d}v_{d}r^{d-1}\text{d}r, vd=(π/4)d/2/Γ(1+d/2)v_{d}=(\pi/4)^{d/2}/\Gamma(1+d/2) being the volume of a dd-dimensional sphere of unit diameter. Note that in Eq. (53) the integration variable has changed from ξ\xi to σνα(ξ)\sigma_{\nu\alpha}^{(\xi)} and we have simplified the notation as σνα(ξ)σ0α\sigma_{\nu\alpha}^{(\xi)}\to\sigma_{0\alpha} and yνα(ξ)y0αy_{\nu\alpha}^{(\xi)}\to y_{0\alpha}. This change avoids the need to specify the ξ\xi-dependence of σνα(ξ)\sigma_{\nu\alpha}^{(\xi)}.

Equation (53) applies to any choice of the set {σαγ}\{\sigma_{\alpha\gamma}\}. Henceforth we will assume the condition σαγ12(σα+σγ)\sigma_{\alpha\gamma}\geq\frac{1}{2}(\sigma_{\alpha}+\sigma_{\gamma}), where σα\sigma_{\alpha} and σγ\sigma_{\gamma} are the diameters of particles of species α\alpha and γ\gamma, respectively. This implies that the HS mixture is either additive or has a positive nonadditivity. In such a case, Eq. (53) can be further simplified. To that end, it is convenient to decompose βμνex\beta\mu_{\nu}^{\text{ex}} into two pieces,

βμνex=βμνex,I+βμνex,II,\beta\mu_{\nu}^{\text{ex}}=\beta\mu_{\nu}^{\text{ex},\text{I}}+\beta\mu_{\nu}^{\text{ex},\text{II}}, (54)

where

βμνex,I=d2dvdαρα012σαdσ0ασ0αd1y0α(σ0α),\beta\mu_{\nu}^{\text{ex},\text{I}}=d2^{d}v_{d}\sum_{\alpha}\rho_{\alpha}\int_{0}^{\frac{1}{2}\sigma_{\alpha}}\text{d}\sigma_{0\alpha}\,\sigma_{0\alpha}^{d-1}y_{0\alpha}(\sigma_{0\alpha}), (55)
βμνex,II=d2dvdαρα12σασναdσ0ασ0αd1y0α(σ0α).\beta\mu_{\nu}^{\text{ex},\text{II}}=d2^{d}v_{d}\sum_{\alpha}\rho_{\alpha}\int_{\frac{1}{2}\sigma_{\alpha}}^{\sigma_{\nu\alpha}}\text{d}\sigma_{0\alpha}\,\sigma_{0\alpha}^{d-1}y_{0\alpha}(\sigma_{0\alpha}). (56)

In the first contribution, the condition σ0α12σα\sigma_{0\alpha}\leq\frac{1}{2}\sigma_{\alpha} implies that the solute can lie “inside” a particle of species α\alpha. This makes the contribution βμνex,I\beta\mu_{\nu}^{\text{ex},\text{I}} very easy to evaluate. First, by reversing the steps leading from Eq. (23) to Eq. (53), one can write

βμνex,I=lnQ𝐍(β,V)Q𝐍+1(ξ0)(β,V),\beta\mu_{\nu}^{\text{ex},\text{I}}=\ln\frac{Q_{\mathbf{N}}(\beta,V)}{Q_{\mathbf{N}+1}^{(\xi_{0})}(\beta,V)}, (57)

where ξ0\xi_{0} denotes the common value of the coupling parameter ξ\xi at which σνα(ξ)=σ0α\sigma_{\nu\alpha}^{(\xi)}=\sigma_{0\alpha} takes the value 12σα\frac{1}{2}\sigma_{\alpha} for all α\alpha. According to Eqs. (27), (28), and (51),

Q𝐍+1(ξ0)(β,V)\displaystyle Q_{\mathbf{N}+1}^{(\xi_{0})}(\beta,V) =\displaystyle= V(N+1)d𝐫NeβΦ𝐍(𝐫N)\displaystyle V^{-(N+1)}\int\text{d}\mathbf{r}^{N}\,e^{-\beta\Phi_{\mathbf{N}}(\mathbf{r}^{N})} (58)
×d𝐫0j=1NΘ(|𝐫0𝐫j|12σϵj).\displaystyle\times\int\text{d}\mathbf{r}_{0}\,\prod_{j=1}^{N}\Theta\left(|\mathbf{r}_{0}-\mathbf{r}_{j}|-\frac{1}{2}\sigma_{\epsilon_{j}}\right).

Next, thanks to the condition σαγ12(σα+σγ)\sigma_{\alpha\gamma}\geq\frac{1}{2}(\sigma_{\alpha}+\sigma_{\gamma}), we note that in Eq. (58) the spatial regions excluded to particle i=0i=0 by the remaining particles j=1,,Nj=1,\ldots,N do not overlap, so that

d𝐫0j=1NΘ(|𝐫0𝐫j|12σϵj)=V(1η),\int\text{d}\mathbf{r}_{0}\,\prod_{j=1}^{N}\Theta\left(|\mathbf{r}_{0}-\mathbf{r}_{j}|-\frac{1}{2}\sigma_{\epsilon_{j}}\right)=V(1-\eta), (59)

where η=vdαρασαd\eta=v_{d}\sum_{\alpha}\rho_{\alpha}\sigma_{\alpha}^{d} is the total packing fraction of the solvent system. Thus, Eq. (58) reduces to Q𝐍+1(ξ0)(β,V)=Q𝐍(β,V)(1η)Q_{\mathbf{N}+1}^{(\xi_{0})}(\beta,V)=Q_{\mathbf{N}}(\beta,V)(1-\eta) and therefore βμνex,I=ln(1η)\beta\mu_{\nu}^{\text{ex},\text{I}}=-\ln(1-\eta).

Taking all of this into account, we finally get

βμνex=ln(1η)+d2dvdαρα12σασναdσ0ασ0αd1y0α(σ0α).\beta\mu_{\nu}^{\text{ex}}=-\ln(1-\eta)+d2^{d}v_{d}\sum_{\alpha}\rho_{\alpha}\int_{\frac{1}{2}\sigma_{\alpha}}^{\sigma_{\nu\alpha}}\text{d}\sigma_{0\alpha}\,\sigma_{0\alpha}^{d-1}y_{0\alpha}(\sigma_{0\alpha}). (60)

V Application to hard-sphere mixtures in the PY and SPT approximations

In this section, we apply Eq. (60) to the derivation of the chemical potential of a three-dimensional additive HS fluid mixture, i.e., σαγ=12(σα+σγ)\sigma_{\alpha\gamma}=\frac{1}{2}(\sigma_{\alpha}+\sigma_{\gamma}), as resulting from the PY and SPT approximations. Given an ss-component mixture, the corresponding contact values are

yαγ(σαγ)\displaystyle y_{\alpha\gamma}(\sigma_{\alpha\gamma}) =\displaystyle= 11η+32η(1η)2σασγM2σαγM3\displaystyle\frac{1}{1-\eta}+\frac{3}{2}\frac{\eta}{(1-\eta)^{2}}\frac{\sigma_{\alpha}\sigma_{\gamma}{M}_{2}}{\sigma_{\alpha\gamma}{M}_{3}} (61)
+qη2(1η)3(σασγM2σαγM3)2,\displaystyle+q\frac{\eta^{2}}{(1-\eta)^{3}}\left(\frac{\sigma_{\alpha}\sigma_{\gamma}{M}_{2}}{\sigma_{\alpha\gamma}{M}_{3}}\right)^{2},

where

Mnα=1sxασαn,M_{n}\equiv\sum_{\alpha=1}^{s}x_{\alpha}\sigma_{\alpha}^{n}, (62)

and the parameter qq takes the values q=0q=0 and q=34q=\frac{3}{4} for the PY Lebowitz (1964) and SPT Reiss et al. (1959); Helfand et al. (1961); Lebowitz et al. (1965); Mandell and Reiss (1975); Rosenfeld (1988); Heying and Corti (2004) theories, respectively. The more accurate Boublík–Grundke–Henderson–Lee–Levesque (BGHLL) Boublík (1970); Grundke and Henderson (1972); Lee and Levesque (1973) expression corresponds to the intermediate value q=12q=\frac{1}{2}.

Now, in order to apply Eq. (60), we assume that a solute particle i=0i=0 is introduced in such a way that it interacts with a particle of species α\alpha through a HS potential of range σ0α\sigma_{0\alpha}, the contact value of the corresponding cavity function being y0α(σ0α)y_{0\alpha}(\sigma_{0\alpha}). In principle, we are free to choose σ0α\sigma_{0\alpha} within the interval 12σασ0ασνα\frac{1}{2}\sigma_{\alpha}\leq\sigma_{0\alpha}\leq\sigma_{\nu\alpha}. On the other hand, if we want to make use of the approximation (61), we need to make the solute particle interact additively with the rest of the particles in the system. This is achieved by assuming that the solute particle is a sphere of diameter σ0\sigma_{0} within the range 0σ0σν0\leq\sigma_{0}\leq\sigma_{\nu} and σ0α=12(σ0+σα)\sigma_{0\alpha}=\frac{1}{2}(\sigma_{0}+\sigma_{\alpha}). In that case, Eq. (60) becomes

βμνex=ln(1η)+12ηM3αxα0σνdσ0σ0α2y0α(σ0α),\beta\mu_{\nu}^{\text{ex}}=-\ln(1-\eta)+\frac{12\eta}{M_{3}}\sum_{\alpha}x_{\alpha}\int_{0}^{\sigma_{\nu}}\text{d}\sigma_{0}\,\sigma_{0\alpha}^{2}y_{0\alpha}(\sigma_{0\alpha}), (63)

where y0α(σ0α)y_{0\alpha}(\sigma_{0\alpha}) is simply given by Eq. (61) with σγσ0\sigma_{\gamma}\to\sigma_{0}. After simple algebra, Eq. (63) yields

βμνex\displaystyle\beta\mu_{\nu}^{\text{ex}} =\displaystyle= ln(1η)+3η1ηM2M3{σν+[M1M2+3η2(1η)\displaystyle-\ln(1-\eta)+\frac{3\eta}{1-\eta}\frac{M_{2}}{M_{3}}\left\{\sigma_{\nu}+\left[\frac{M_{1}}{M_{2}}+\frac{3\eta}{2(1-\eta)}\right.\right. (64)
×M2M3]σν2+[13M2+η1ηM1M3+4qη23(1η)2\displaystyle\left.\times\frac{M_{2}}{M_{3}}\right]\sigma_{\nu}^{2}+\left[\frac{1}{3M_{2}}+\frac{\eta}{1-\eta}\frac{M_{1}}{M_{3}}+\frac{4q\eta^{2}}{3(1-\eta)^{2}}\right.
×M22M32]σν3}.\displaystyle\left.\left.\times\frac{M_{2}^{2}}{M_{3}^{2}}\right]\sigma_{\nu}^{3}\right\}.

Equation (64) shows that βμνex\beta\mu_{\nu}^{\text{ex}} is an explicit function of σν\sigma_{\nu} and depends on the diameters of all the species and on the partial densities through η\eta, M1M_{1}, M2M_{2}, and M3M_{3}, or equivalently, through ζnαρασαn=ρMn\zeta_{n}\equiv\sum_{\alpha}\rho_{\alpha}\sigma_{\alpha}^{n}=\rho M_{n} with n=0n=033. In terms of the latter quantities, Eq. (64) becomes

βμνex\displaystyle\beta\mu_{\nu}^{\text{ex}} =\displaystyle= ln(1η)+π2ζ21ησν+[π2ζ11η\displaystyle-\ln(1-\eta)+\frac{\pi}{2}\frac{\zeta_{2}}{1-\eta}\sigma_{\nu}+\left[\frac{\pi}{2}\frac{\zeta_{1}}{1-\eta}\right. (65)
+π28ζ22(1η)2]σν2+[π6ζ01η+π212ζ1ζ2(1η)2\displaystyle\left.+\frac{\pi^{2}}{8}\frac{\zeta_{2}^{2}}{(1-\eta)^{2}}\right]\sigma_{\nu}^{2}+\left[\frac{\pi}{6}\frac{\zeta_{0}}{1-\eta}+\frac{\pi^{2}}{12}\frac{\zeta_{1}\zeta_{2}}{(1-\eta)^{2}}\right.
+qπ354ζ23(1η)3]σν3,\displaystyle\left.+q\frac{\pi^{3}}{54}\frac{\zeta_{2}^{3}}{(1-\eta)^{3}}\right]\sigma_{\nu}^{3},

where one must take into account that η=π6ζ3\eta=\frac{\pi}{6}\zeta_{3}. The next step would be to derive the excess free energy per particle, aexa^{\text{ex}}, from application of Eq. (7). Nevertheless, it turns out that the free energy associated with Eqs. (64) or (65) is not well defined in the multicomponent case unless q=34q=\frac{3}{4}. This is because from Eq. (65) we get

(βμνρα){ργα}\displaystyle\left(\frac{\partial\beta\mu_{\nu}}{\partial\rho_{\alpha}}\right)_{\{\rho_{\gamma\neq\alpha}\}} \displaystyle- (βμαρν){ργν}=π324ζ23(1η)3σα2σν2\displaystyle\left(\frac{\partial\beta\mu_{\alpha}}{\partial\rho_{\nu}}\right)_{\{\rho_{\gamma\neq\nu}\}}=\frac{\pi^{3}}{24}\frac{\zeta_{2}^{3}}{(1-\eta)^{3}}\sigma_{\alpha}^{2}\sigma_{\nu}^{2} (66)
×(σασν)(14q3),\displaystyle\times\left(\sigma_{\alpha}-\sigma_{\nu}\right)\left(1-\frac{4q}{3}\right),

whereas Eq. (7) implies the (Maxwell) symmetry relation (13). Therefore, except in the one-component case (σα=σν\sigma_{\alpha}=\sigma_{\nu}), μν/ραμα/ρν{\partial\mu_{\nu}}/{\partial\rho_{\alpha}}\neq{\partial\mu_{\alpha}}/{\partial\rho_{\nu}} unless q=34q=\frac{3}{4}. Therefore, the PY prescription (61) (with q=0q=0), when inserted into the chemical-potential route (60), gives an expression for the chemical potential of the mixture that is not strictly consistent with a well-defined free energy. On the other hand, this difficulty can be circumvented by using Eq. (9) instead of Eq. (7) to obtain [(βρaex)/ρ]{xα}\left[\partial(\beta\rho a^{\text{ex}})/{\partial\rho}\right]_{\{x_{\alpha}\}}. Integration over density (with the integration constant fixed by the condition limρ0aex=0\lim_{\rho\to 0}a^{\text{ex}}=0) then yields

βaex\displaystyle\beta a^{\text{ex}} =\displaystyle= ln(1η)+3η1ηM1M2M3+3η22(1η)2M23M32\displaystyle-\ln(1-\eta)+\frac{3\eta}{1-\eta}\frac{M_{1}M_{2}}{M_{3}}+\frac{3\eta^{2}}{2(1-\eta)^{2}}\frac{M_{2}^{3}}{M_{3}^{2}}
+(14q3)3M232M32[69η+2η2(1η)2+6ln(1η)η].\displaystyle+\left(1-\frac{4q}{3}\right)\frac{3M_{2}^{3}}{2M_{3}^{2}}\left[\frac{6-9\eta+2\eta^{2}}{(1-\eta)^{2}}+6\frac{\ln(1-\eta)}{\eta}\right].

If now the chemical potential is obtained from Eq. (LABEL:5.6) via Eq. (7), the result differs from Eq. (64) unless q=34q=\frac{3}{4}, namely

(βρaexρν)β,{ραν}\displaystyle\left(\frac{\partial\beta\rho a^{\text{ex}}}{\partial\rho_{\nu}}\right)_{\beta,\{\rho_{\alpha\neq\nu}\}} =\displaystyle= βμνex+(14q3)9M222M32\displaystyle\beta\mu_{\nu}^{\text{ex}}+\left(1-\frac{4q}{3}\right)\frac{9M_{2}^{2}}{2M_{3}^{2}} (68)
×[69η+2η2(1η)2+6ln(1η)η]\displaystyle\times\left[\frac{6-9\eta+2\eta^{2}}{(1-\eta)^{2}}+6\frac{\ln(1-\eta)}{\eta}\right]
×(σν2M2M3σν3).\displaystyle\times\left(\sigma_{\nu}^{2}-\frac{M_{2}}{M_{3}}\sigma_{\nu}^{3}\right).

Of course, although (ρaex/ρν)β,{ραν}μνex\left({\partial\rho a^{\text{ex}}}/{\partial\rho_{\nu}}\right)_{\beta,\{\rho_{\alpha\neq\nu}\}}\neq\mu_{\nu}^{\text{ex}}, one has νxν(ρaex/ρν)β,{ραν}=νxνμνex\sum_{\nu}x_{\nu}\left({\partial\rho a^{\text{ex}}}/{\partial\rho_{\nu}}\right)_{\beta,\{\rho_{\alpha\neq\nu}\}}=\sum_{\nu}x_{\nu}\mu_{\nu}^{\text{ex}}, so that Eq. (LABEL:5.6) is recovered from both alternative expressions for the chemical potential via Eq. (9). Obviously, the right-hand side of Eq. (68) satisfies the symmetry condition 2ρaex/ραρν=2ρaex/ρνρα\partial^{2}\rho a^{\text{ex}}/\partial\rho_{\alpha}\partial\rho_{\nu}=\partial^{2}\rho a^{\text{ex}}/\partial\rho_{\nu}\partial\rho_{\alpha}.

The equation of state corresponding to the free energy (LABEL:5.6) is obtained from Eq. (3) as

Zμ\displaystyle Z_{\mu} =\displaystyle= 11η+3η(1η)2M1M2M3+3η2(1η)3M23M32\displaystyle\frac{1}{1-\eta}+\frac{3\eta}{(1-\eta)^{2}}\frac{M_{1}M_{2}}{M_{3}}+\frac{3\eta^{2}}{(1-\eta)^{3}}\frac{M_{2}^{3}}{M_{3}^{2}}
(14q3)3M232M32[615η+11η2(1η)3+6ln(1η)η],\displaystyle-\left(1-\frac{4q}{3}\right)\frac{3M_{2}^{3}}{2M_{3}^{2}}\left[\frac{6-15\eta+11\eta^{2}}{(1-\eta)^{3}}+6\frac{\ln(1-\eta)}{\eta}\right],

where we have taken into account that the ideal-gas contribution is limρ0Z=1\lim_{\rho\to 0}Z=1. In Eq. (LABEL:5.7) the subscript μ\mu has been introduced to emphasize that this equation of state has been derived from the chemical-potential route.

Let us contrast Eq. (LABEL:5.7) with the equation of state obtained from the virial route, Eq. (1). In the case of a (three-dimensional) HS fluid, Eq. (1) becomes

Z=1+4ηM3α,γxαxγσαγ3yαγ(σαγ).Z=1+\frac{4\eta}{M_{3}}\sum_{\alpha,\gamma}x_{\alpha}x_{\gamma}\sigma_{\alpha\gamma}^{3}y_{\alpha\gamma}(\sigma_{\alpha\gamma}). (70)

Insertion of Eq. (61) gives

Zv\displaystyle Z_{v} =\displaystyle= 11η+3η(1η)2M1M2M3+3η2(1η)3M23M32\displaystyle\frac{1}{1-\eta}+\frac{3\eta}{(1-\eta)^{2}}\frac{M_{1}M_{2}}{M_{3}}+\frac{3\eta^{2}}{(1-\eta)^{3}}\frac{M_{2}^{3}}{M_{3}^{2}} (71)
×[1(14q3)η],\displaystyle\times\left[1-\left(1-\frac{4q}{3}\right)\eta\right],

where the subscript vv refers to the use of the virial route. Comparison between Eqs. (LABEL:5.7) and (71) shows that the chemical-potential and virial routes coincide in the SPT (q=34q=\frac{3}{4}) but not in the PY (q=0q=0) or BGHLL (q=12q=\frac{1}{2}) approaches. Interestingly enough, the SPT equation of state coincides with that derived from the PY solution Lebowitz (1964) via the compressibility route (5).

To summarize, the three PY equations of state as obtained from the chemical-potential, virial, and compressibility routes are

ZPY-μ=Zμ(q=0),Z_{\text{PY-}\mu}=Z_{\mu}(q=0), (72)
ZPY-v=Zv(q=0),Z_{\text{PY-}v}=Z_{v}(q=0), (73)
ZPY-c=Zv(q=34),Z_{\text{PY-}c}=Z_{v}\left(q=\frac{3}{4}\right), (74)

respectively.

The celebrated Boublík–Mansoori–Carnahan–Starling–Leland (BMCSL) equation Boublík (1970); Mansoori et al. (1971) is obtained as an interpolation between the PY-v\text{PY-}v and the PY-c\text{PY-}c equations of state with respective weights 13\frac{1}{3} and 23\frac{2}{3}, i.e.,

ZBMCSL\displaystyle Z_{\text{BMCSL}} =\displaystyle= 13ZPY-v+23ZPY-c\displaystyle\frac{1}{3}Z_{\text{PY-}v}+\frac{2}{3}Z_{\text{PY-}c} (75)
=\displaystyle= Zv(q=12).\displaystyle Z_{v}\left(q=\frac{1}{2}\right).

Having a third PY equation of state, Eq. (72), it seems natural to construct an alternative interpolation formula as

ZPY-μc=αZPY-μ+(1α)ZPY-c.Z_{\text{PY-}\mu c}=\alpha Z_{\text{PY-}\mu}+(1-\alpha)Z_{\text{PY-}c}. (76)

In the one-component case Santos (2012), values of the interpolation parameter α0.4\alpha\approx 0.4 were seen to provide a better equation of state than the standard Carnahan–Starling equation Carnahan and Starling (1969). In particular, the values α=25\alpha=\frac{2}{5} and α=718\alpha=\frac{7}{18} were explicitly considered.

In order to assess the performance of Eqs. (72)–(76) against computer simulations for binary mixtures, we have chosen the highest packing fraction (η=0.49\eta=0.49) and the two largest size disparities (σ2/σ1=0.6\sigma_{2}/\sigma_{1}=0.6 and σ2/σ1=0.3\sigma_{2}/\sigma_{1}=0.3) considered in Ref. Barošová et al. (1996). The simulation and theoretical results are displayed in Fig. 1.

Refer to caption
Figure 1: (Color online). Plot of the compressibility factor ZZ as a function of the mole fraction x1x_{1} for a binary mixture with a packing fraction η=0.49\eta=0.49 and a size ratio σ2/σ1=0.6\sigma_{2}/\sigma_{1}=0.6 (top panel) or σ2/σ1=0.3\sigma_{2}/\sigma_{1}=0.3 (bottom panel). The symbols are computer simulation values Barošová et al. (1996), while the lines stand for (from top to bottom) Eqs. (74), (76) with α=0.37\alpha=0.37, (75), (72), and (73), respectively.

It is observed that, as expected, ZPY-vZ_{\text{PY-}v} underestimates the simulation values, while ZPY-cZ_{\text{PY-}c} overestimates them. The chemical-potential route ZPY-μZ_{\text{PY-}\mu} lies below the simulation data, but it exhibits a better behavior than the virial route ZPY-vZ_{\text{PY-}v}. The weighted average between ZPY-vZ_{\text{PY-}v} and ZPY-cZ_{\text{PY-}c} made in the construction of the BMCSL equation of state (75) does a very good job. A slightly better agreement is obtained from the weighted average between ZPY-μZ_{\text{PY-}\mu} and ZPY-cZ_{\text{PY-}c} [cf. Eq. (76)] with α=25\alpha=\frac{2}{5} or α=718\alpha=\frac{7}{18} (not shown) but a value α=0.37\alpha=0.37 provides especially accurate results.

VI Conclusions

In this paper we have revisited the problem on the derivation of the chemical potential of a fluid system at equilibrium from the knowledge of the pair correlation functions. The result, Eqs. (36) or (37), applies to a mixture with any number of components and generic interaction potentials ϕαγ(𝐫)\phi_{\alpha\gamma}(\mathbf{r}) between particles of species α\alpha and γ\gamma. The obtention of the chemical potential of species ν\nu relies on the formal introduction of an extra particle (the solute) coupled to the rest of the particles of the system (the solvent) via a series of interaction potentials ϕνα(ξ)(𝐫)\phi_{\nu\alpha}^{(\xi)}(\mathbf{r}), which depend on a certain charging parameter ξ\xi in such a way that at ξ=0\xi=0 the solute ignores the presence of the solvent particle, while at ξ=1\xi=1 the solute becomes indistinguishable from a solvent particle of species ν\nu [see Eq. (26)]. The choice of the protocol leading from ϕνα(ξ)(𝐫)=0\phi_{\nu\alpha}^{(\xi)}(\mathbf{r})=0 at ξ=0\xi=0 to ϕνα(ξ)(𝐫)=ϕνα(𝐫)\phi_{\nu\alpha}^{(\xi)}(\mathbf{r})=\phi_{\nu\alpha}(\mathbf{r}) at ξ=1\xi=1 remains arbitrary.

In contrast to the other three conventional routes to thermodynamics [see Eqs. (1), (2), and (5)], which only need the pair correlation functions of the solvent system, the chemical-potential route requires the solute-solvent pair correlation functions for every value of the coupling parameter ξ\xi. This implies that, even in the one-component case, this fourth route makes use of the pair correlation function of a binary mixture, albeit one of the species (the solute) is present with a vanishing concentration. This inherent multicomponent character of the chemical-potential route can in principle hamper its practical implementation.

As is well known, thermodynamic quantities obtained from a common approximate pair correlation function via independent routes are not necessarily consistent. In particular, the thermodynamic relations (10)–(12) can be violated when the left-hand sides are evaluated from Eq. (36) and the right-hand sides are evaluated from Eqs. (2), (1), and (5), respectively. Moreover, the chemical-potential route introduces extra sources of possible thermodynamic inconsistencies. First, in the case of a mixture, the symmetry condition (13) may not be fulfilled. This is a consequence of the fact that, in contrast to the energy, virial, and compressibility routes, where global quantities are obtained, the chemical-potential route provides a quantity for each separate component of the mixture. On the other hand, Eq. (13) is trivially satisfied by one-component systems. A second source of inconsistency is much subtler. As said before, the chemical-potential route implies to load a new particle into the system by means of a coupling parameter ξ\xi and it is not guaranteed that the final result will be independent of the protocol followed in the loading process, as it should be. From that point of view, given an approximate theory, this route is expected to provide a whole class of results, rather than a unique one, even for one-component systems. This protocol-related thermodynamic inconsistency is indeed observed in the PY solution of Baxter’s sticky-hard-sphere model Baxter (1968), as will be extensively analyzed in a forthcoming paper Rohrmann and Santos .

The general scheme has been particularized to the prototype HS fluid mixture. In this case, since the interaction potential ϕαγ(r)\phi_{\alpha\gamma}(r) depends on a single parameter σαγ\sigma_{\alpha\gamma}, it is possible to eliminate the coupling parameter ξ\xi in favor of the solute-solvent interaction range σ0α\sigma_{0\alpha}, thus avoiding the protocol problem alluded to above. The result, given by Eq. (53), is valid for any HS mixture, both additive and nonadditive. Further progress can be made if σαγ12(σα+σγ)\sigma_{\alpha\gamma}\geq\frac{1}{2}(\sigma_{\alpha}+\sigma_{\gamma}), i.e., if the HS mixture is either additive or has a positive nonadditivity. In such a case, the evaluation of the contribution to the chemical potential when 0σ0α12σα0\leq\sigma_{0\alpha}\leq\frac{1}{2}\sigma_{\alpha} amounts to the trivial computation of the volume accessible to a point particle in a sea of non-overlapping solvent spheres.

As a practical implementation of the chemical-potential route, we have considered the SPT and PY approximations for three-dimensional additive HS mixtures. The SPT result is consistent with the symmetry condition (13), while the PY result is not. This represents a neat example showing that the internal consistency condition (13) is not guaranteed by an approximate RDF. Moreover, the SPT chemical potential is consistent with the SPT virial equation of state (which coincides with the PY compressibility equation of state), but the PY chemical potential yields an equation of state that differs from the PY virial equation. In fact, the former turns out to be more accurate than the latter, as comparison with computer simulations reveals. Interestingly, an interpolation between the PY compressibility and chemical-potential routes provides slightly better results than the conventional interpolation between the PY compressibility and virial routes giving rise to the BMCSL equation of state.

Acknowledgements.
A.S. acknowledges support from the Spanish government through Grant No. FIS2010-16587 and the Junta de Extremadura (Spain) through Grant No. GR10158, partially financed by Fondo Europeo de Desarrollo Regional (FEDER) funds. The work of R.D.R. has been supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) through Grant No. PIP 112-200801-01474.

References

  • Barker and Henderson (1976) J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976).
  • Hansen and McDonald (2006) J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, London, 2006).
  • (3) Notice that, since AA is obtained from Ψi\Psi_{i} by integration over a certain thermodynamic variable, an unknown function remains in AA under the form of an integration constant. If the integration is carried out over density, the unknown function can be determined from the ideal-gas free energy.
  • Callen (1960) H. B. Callen, Thermodynamics (John Wiley & Sons, New York, 1960).
  • Hill (1956) T. L. Hill, Statistical Mechanics (McGraw-Hill, New York, 1956).
  • Reichl (1980) L. E. Reichl, A Modern Course in Statistical Physics (University of Texas Press, Austin, 1980), 1st ed.
  • Reiss et al. (1959) H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys. 31, 369 (1959).
  • Mandell and Reiss (1975) M. Mandell and H. Reiss, J. Stat. Phys. 13, 113 (1975).
  • Santos (2012) A. Santos, Phys. Rev. Lett. 109, 120601 (2012).
  • Onsager (1933) L. Onsager, Chem. Rev. 13, 73 (1933).
  • Widom (1963) B. Widom, J. Chem. Phys. 39, 2808 (1963).
  • Lebowitz (1964) J. L. Lebowitz, Phys. Rev. 133, A895 (1964).
  • Helfand et al. (1961) E. Helfand, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys. 34, 1037 (1961).
  • Lebowitz et al. (1965) J. L. Lebowitz, E. Helfand, and E. Praestgaard, J. Chem. Phys. 43, 774 (1965).
  • Rosenfeld (1988) Y. Rosenfeld, J. Chem. Phys. 89, 4272 (1988).
  • Heying and Corti (2004) M. Heying and D. S. Corti, Fluid Phase Equil. 220, 85 (2004).
  • Boublík (1970) T. Boublík, J. Chem. Phys. 53, 471 (1970).
  • Grundke and Henderson (1972) E. W. Grundke and D. Henderson, Mol. Phys. 24, 269 (1972).
  • Lee and Levesque (1973) L. L. Lee and D. Levesque, Mol. Phys. 26, 1351 (1973).
  • Mansoori et al. (1971) G. A. Mansoori, N. F. Carnahan, K. E. Starling, and J. T. W. Leland, J. Chem. Phys. 54, 1523 (1971).
  • Carnahan and Starling (1969) N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).
  • Barošová et al. (1996) M. Barošová, A. Malijevský, S. Labík, and W. R. Smith, Mol. Phys. 87, 423 (1996).
  • Baxter (1968) R. J. Baxter, J. Chem. Phys. 49, 2770 (1968).
  • (24) R. D. Rohrmann and A. Santos, Sticky hard-sphere fluids in the chemical potential route, unpublished.