This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Chiral Altermagnon in MnTe

Daniel Jost daniel.jost@stanford.edu Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA    Resham B. Regmi Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA Stravropoulos Center for Complex Quantum Matter, University of Notre Dame, Notre Dame, IN 46556, USA    Samuel Sahel-Schackis Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA Department of Physics, Stanford University, Stanford, CA, 94305, USA    Monika Scheufele Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany Technical University of Munich, TUM School of Natural Sciences, Physics Department, Garching, Germany    Marcel Neuhaus Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA    Rachel Nickel European Synchrotron Radiation Facility, BP 220, F-38043, Grenoble Cedex, France    Flora Yakhou European Synchrotron Radiation Facility, BP 220, F-38043, Grenoble Cedex, France    Kurt Kummer European Synchrotron Radiation Facility, BP 220, F-38043, Grenoble Cedex, France    Nicholas Brookes European Synchrotron Radiation Facility, BP 220, F-38043, Grenoble Cedex, France    Lingjia Shen Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA    Georgi L. Dakovski Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA    Nirmal J. Ghimire Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA Stravropoulos Center for Complex Quantum Matter, University of Notre Dame, Notre Dame, IN 46556, USA    Stephan Geprägs Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany    Matthias F. Kling Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA Department of Applied Physics, Stanford University. Stanford, California 94305, USA
Abstract

Altermagnetism has surfaced as a novel magnetic phase, bridging the properties of ferro- and anti-ferromagnetism. The momentum-dependent spin-splitting observed in these materials reflects their unique symmetry characteristics which also establish the conditions for chiral magnons to emerge. Here we provide the first direct experimental evidence for a chiral magnon in the altermagnetic candidate MnTe, revealed by circular-dichroism resonant inelastic X-ray scattering (CD-RIXS). This mode which we term chiral altermagnon exhibits a distinct momentum dependence consistent with the proposed altermagnetic gg-wave symmetry of MnTe. Our results reveal a new class of magnetic excitations, demonstrating how altermagnetic order shapes spin dynamics and paves the way for advances in spintronic and quantum technologies.

I Introduction

Chiral magnons - collective modes which exhibit a definite handedness - are an emerging frontier, offering exciting opportunities to enable spintronic devices and spin-based information processing Šmejkal et al. (2018); Tokura et al. (2019); Dieterle et al. (2019); Yu et al. (2019); Wang et al. (2020); Yang (2020); Yang et al. (2021). Traditionally, such excitations have been associated with magnets exhibiting either net magnetization or complex spin textures Fert et al. (2017); Zhou et al. (2024). However, recent theoretical advances suggest that chiral magnons Nambu et al. (2020); Cheong and Xu (2022) may also arise in so called altermagnets Šmejkal et al. (2020, 2022a, 2022b) which have a net-zero magnetization.

Refer to caption
Figure 1: Crystalline structure, altermagnetic spin polarization as well as collective magnetic excitations probed by resonant inelastic X-ray scattering (RIXS). (a) Primitive unit cell of MnTe showing the ferromagnetic spin ordering within each plane separated by non-magnetic Te atoms, and their anti-ferromagnetic stacking Kunitomi, Nobuhiko et al. (1964); Efrem D’Sa et al. (2005); Kriegner et al. (2017). Along with the magnetically inert Te spacer layers, the crystal structure breaks inversion and translation symmetry which are key ingredients for altermagnetism Šmejkal et al. (2022a, b). (b) Altermagnetic gg-wave symmetry of the order parameter predicted for MnTe. The color gradient represents the spin polarization. (c) Collective magnetic excitations in real space represented as rotations of the spins sitting on each site of the hexagonal lattice. (d) Reciprocal space representation of the spin polarization. The right-hand image represents a projection onto the first Brillouin zone. (e) Schematic of the CD-RIXS process for a transition from Mn 2p2p core level to 3d3d orbitals which harbor an S=5/2S=5/2 spin configuration and subsequent de-excitation, filling the core hole upon emitting a photon of energy ω=ωiωf\omega=\omega_{\mathrm{i}}-\omega_{\mathrm{f}} and momentum 𝐪=𝐤i𝐤f\mathbf{q}=\mathbf{k}_{\mathrm{i}}-\mathbf{k}_{\mathrm{f}}.
Refer to caption
Figure 2: Magnetic excitations of MnTe as seen in RIXS. (a) Incident photon energy ωi\omega_{\mathrm{i}} dependence of the RIXS signal across the Mn L3L_{3} edge. The total fluoresence yield (TFY) is shown as dashed line. (b) Stacked plot highlighting how the magnon shoulder develops slightly off-tuned from the maximum fluorescence signal of the Mn L3L_{3} edge, approximately at ω35\omega\sim 35 meV. The data was taken at q=(0.03,0,0.5)q=(0.03,0,0.5) r.l.u.

A proposed altermagnet, manganese telluride (MnTe) Juza et al. (1956) represents an ideal platform to explore this notion. While hosting robust AA-type anti-ferromagnetic order [Figure 1(a)] Kunitomi, Nobuhiko et al. (1964); Efrem D’Sa et al. (2005); Kriegner et al. (2017), it displays electronic and magnetic properties Krempaský et al. (2024); Lee et al. (2024); Osumi et al. (2024); Hajlaoui et al. (2024); Liu et al. (2024); Amin et al. (2024) unexpected for an anti-ferromagnet Nagaosa et al. (2010); Šmejkal et al. (2022). More fundamentally, its crystalline structure breaks inversion and translation symmetry which are key ingredients for altermagnetism Šmejkal et al. (2022a, b). As a consequence, anisotropies imprint on the spin structure and shape the symmetry of the altermagnetic order parameter in MnTe, characterized by a predicted gg-wave-like spin polarization [Figure 1(b)] Šmejkal et al. (2022a). This gg-wave symmetry captures the effect of broken inversion and translational symmetries, thereby enforcing a momentum-dependent splitting of the electronic band structure, recently confirmed in photo-emission experiments Krempaský et al. (2024); Lee et al. (2024); Osumi et al. (2024); Hajlaoui et al. (2024). Similarly, collective magnetic excitations (i.e. magnons) which would nominally remain degenerate in anti-ferromagnets are expected to split in certain momentum-space regions Šmejkal et al. (2023). Initial observations suggest that such a splitting indeed occurs Liu et al. (2024). Taken together, these results provide strong evidence that MnTe realizes altermagnetism and presents a compelling arena to reveal the chiral magnetic excitations foreseen to emerge in altermagnets Šmejkal et al. (2022b).

In real space, these magnons can be visualized as spin rotations which precess out of phase with neighbors in adjacent sublattice planes, preserving net-zero magnetization [Figure 1(c), see Movie S1 for details]. As the degeneracy of the magnetic branches is lifted, the sublattice excitations are decoupled and the spin polarization expresses a spatial dependence. In a momentum-space perspective, as schematically shown in Figure 1(d), the spin polarization varies across the Brillouin zone (BZ), consistent with gg-wave symmetry. These symmetry constraints enforce nodal lines and promote chiral magnetic excitations in distinct sectors of the BZ.

II Methods

II.1 Sample synthesis

Single crystals of MnTe were grown by the Tin-flux method. Mn pieces (Thermo scientific; 99.9%), Te shots (Thermo scientific; 99.999%), and Sn shots (Thermo scientific; 99.9999%) were loaded in a 5-ml aluminum oxide crucible in a molar ratio of 1:1:20. The crucible was sealed in a fused silica ampule under vacuum and heated to 960C over 10 h, homogenized at 960C for 12 h, and then cooled to 840C over 100 h. After reaching 840C the excess flux was decanted from the crystals using a centrifuge leaving behind well-faceted shinny multiple hexagonal single crystals with few millimeters in dimensions.

II.2 X-ray scattering

X-Ray Absorption Spectroscopy (XAS) and Resonant Inelastic X-ray Scattering (RIXS) measurements were performed at the ID32 beamline of the European Synchrotron Research Facility (ESRF) using left- and right-handed circularly polarized lightBrookes et al. (2018). The combined energy resolution (beamline and spectrometer) was 21meV\sim 21\,\mathrm{meV} at the Mn L3 edge (640 eV). As described in the text, the incident photon energy was tuned to optimize the feature in the inelastic spectrum at ω35meV\omega\sim 35\,\mathrm{meV}. Both the sample (using the four-circle high-precision goniometer) and the scattering arm were moved to measure different points in momentum space. The momentum dependent measurements were conducted at (0.1, 0.1, 0.5) r.l.u. and along the (0.2, 0, \ell) r.l.u. and (hh, 0, 0.5) r.l.u. directions with units given in reciprocal lattice units (r.l.u.) of the hexagonal unit cell, having lattice parameters a=b=4.17a=b=4.17 Å and c=6.75c=6.75 Å. The sample temperature was set to 30 K.

Refer to caption
Figure 3: Magnetic dispersion along 𝐤𝐳\mathbf{k_{z}}. (a) Hexagonal Brillouin zone of MnTe, with the triangle spanned by the points Γ\Gamma, AA and LL indicating the region of interest in this work. (b) Illustration of a magnon dispersion for the ΓA\Gamma\rightarrow A direction from a generic Heisenberg model. (c) RIXS spectra at indicated momentum points showing the shoulder at (0.2, 0, 0.4) r.l.u. developing into a sharp peak for larger momentum. The in-plane momentum was off-tuned along hh from specular reflection to reduce the elastic line intensity [see figure S1]. The inset shows the peak positions ωc\omega_{\mathrm{c}} of the magnetic excitation.
Refer to caption
Figure 4: Evidence of chiral altermagnons. (a) Spectra of the magnetic excitations for the two orthogonal circular polarization channels at the indicated point in the BZ. The subtraction of the signals in the two channels demonstrates the chiral nature of magnons in MnTe. (b) Momentum dependence of the chiral altermagnon (CAM) which vanishes towards the high-symmetry AA-point. At high-symmetry points, the modes with opposite chirality are degenerate leading to equal RIXS intensities using circularly polarized light. (c) Intensity dispersion of the CAM where 𝒜CD=𝒜𝒜\mathcal{A}_{\mathrm{CD}}=\mathcal{A}_{\circlearrowleft}-\mathcal{A}_{\circlearrowright} which increases systematically towards the center of the ALA-L direction. (d) Width of the magnetic excitation in the two orthogonal polarization channels which shows a significant broadening for the subdominant magnon branch suggesting a lifetime decrease.

III Results

To capture chiral excitations experimentally, circular dichroism resonant inelastic X-ray scattering (CD-RIXS) has developed into a promising tool Schüler et al. (2023); Ueda et al. (2023). In this work, circularly polarized photons were used to excite electrons from the Mn 2p2p core levels to its half-filled 3d3d orbitals [Figure 1(e)]. Within the lifetime of this intermediate state, energy transferred from the incident photons can create magnetic excitations which manifest as red-shifted, i.e. inelastic, features upon spectrally resolving the scattered photon energy Ament et al. (2011). To locate a clean resonance condition of the magnetic excitation, we tuned the incident photon energy ωi\omega_{\mathrm{i}} across the Mn L3L_{3} absorption edge. Indeed, such an incident photon energy dependence revealed a feature in the inelastic spectrum appearing just below the fluorescence main peak energy [Figure 2(a)]. This excitation is located at an energy transfer of ω35meV\omega\sim 35\,\mathrm{meV} [Figure 2(b)], an energy scale that aligns with the previously reported magnon band in MnTe Szuszkiewicz et al. (2005); Liu et al. (2024).

To further corroborate the magnetic origin, we measured its momentum dependence along a trajectory in the Brillouin zone (BZ) [Figure 3(a)]. In hexagonal anti-ferromagnets with anti-parallel spins aligned along the cc-axis, the magnon dispersion typically exhibits its maximum bandwidth at (0,0,0.5) reciprocal lattice units (r.l.u.) at the AA-point [Figure 3(b)], as is the case for MnTe Szuszkiewicz et al. (2005); Liu et al. (2024). Conversely, the magnon mode disperses to zero as it approaches the Γ\Gamma point [Figure 3(b)], reflecting the broken spin-rotational symmetry Goldstone et al. (1962). This behavior also holds for MnTe where the magnon shifts away from the elastic line as the out-of-plane momentum component is tuned towards the ALA-L plane [see Figure 3(c) and figure S1].

Having confirmed its magnetic origin, we focused on probing its chirality. The spin polarization in momentum space representation [Figure 1 (d)] indicates a significant anisotropy in chiral magnon intensity. In this picture, a lifted degeneracy manifests as a dichroic signal in a region of the BZ exhibiting a non-zero spin polarization. Conversely, along nodal directions, the dichroism is expected to vanish, as the spin polarization is suppressed.

Towards the ALA-L direction at (0.2, 0, 0.5) r.l.u., a pronounced difference of the magnon intensity is seen for the two polarization channels, as depicted in Figure 4(a). This difference in intensity reflects the orbital angular momentum transfer associated with the excitation, providing a direct measure of the magnon chirality. In other words, as altermagnets exhibit a momentum-dependent spin-polarization Šmejkal et al. (2022b), the sub-lattice decoupling manifests as selective sensitivity to one circular polarization, a hallmark of their fundamentally broken inversion and translational symmetry.

Subtracting these two spectra yields a peak-like signature that encapsulates the chiral portion of the magnetic excitations. We term this excitation a chiral altermagnon (CAM). Modulating the momentum transfer from (0.2, 0, 0.5) r.l.u. towards the AA-point decreases the CAM intensity systematically [Figure 4(b),(c)], consistent with the picture drawn in Figure 1(d). This intensity dispersion, along with a vanishingly small circular dichroism along the nodal direction [see figure S2] is consistent with an altermagnetic spin polarization.

IV Discussion and conclusion

We note that along the ALA-L direction, an energy splitting was not observed in a prior neutron scattering study Liu et al. (2024). However, in this work, the CAM width obtained from CD-RIXS differs between the two polarization channels [Figure 4(d)], indicating distinct lower bounds for the magnon lifetimes. The subdominant branch exhibits a broader peak (shorter lifetime), whereas the width of the dominant branch remains essentially constant and is near the instrumental resolution limit. These observations could imply that any lifting of degeneracy is governed more by damping than by a resolvable energy gap. Consequently, a conventional inelastic neutron scattering probe might not detect a splitting precisely where CD-RIXS reveals strong dichroism. However, future experiments at higher resolution - both RIXS and polarized inelastic neutron scattering - will be essential to resolve this apparent discrepancy. With these, it may be possible to clarify whether a small energy splitting or purely lifetime-based effects (or both) underlie the observed CAM response.

We have demonstrated that chiral altermagnons arise in MnTe, an anti-ferromagnet that displays characteristics canonically associated with finite magnetization. The pronounced dichroic signal whose momentum-dependence aligns with the altermagnetic gg-wave symmetry underscores how broken spatial symmetries may foster chirality in otherwise collinear spin systems. Moreover, our results complete a crucial triad in the rapidly developing field of altermagnetism: the observations of spin-split electronic band structures Krempaský et al. (2024); Lee et al. (2024); Osumi et al. (2024); Hajlaoui et al. (2024), the splitting of magnon bands Liu et al. (2024), and now, the direct experimental observation of chirality in magnetic excitations, which positions MnTe as the archetypal altermagnet.

Future investigations will need to address the role of chiral magnons in shaping both transport and spectroscopic properties of altermagnetic materials. Advancing this field further will require a robust theoretical framework that captures the momentum-resolved nature of these excitations and their interaction with electronic and magnetic degrees of freedom, including damping-driven effects.

Lastly, as altermagnets lack stray magnetic fields, they are ideal for compact and interference-free device integration. By demonstrating that altermagnets host chiral excitations, our work paves the way for novel spin-based applications in which chiral altermagnons take center stage.

Author contributions

D.J. conceived the study, led the experiment and analyzed the data. D.J., S.S.S., M.S., M.N., R.N. and S.G. performed the experiments. R.B.R. and N.J.G. synthesized and characterized the samples. D.J. wrote the first draft. D.J., R.B.R, S.S.S., M.S., M.N., R.N., F.Y., K.K., N.B., L.S., G.L.D., N.J.G., S.G., and M.F.K. discussed and interpreted the results and contributed to the final version of the manuscript.

Acknowledgements.
This work was supported by the Department of Energy, Basic Energy Science. The experiment was performed at the European Synchrotron Radiation Facility in Grenoble, France under proposal HC-5866, DOI: 10.15151/ESRF-ES-1901557821.

References

  • Šmejkal et al. (2018) L. Šmejkal, Y. Mokrousov, B. Yan,  and A. H. MacDonald, Nature Physics 14, 242 (2018).
  • Tokura et al. (2019) Y. Tokura, K. Yasuda,  and A. Tsukazaki, Nature Reviews Physics 1, 126 (2019).
  • Dieterle et al. (2019) G. Dieterle, J. Förster, H. Stoll, A. S. Semisalova, S. Finizio, A. Gangwar, M. Weigand, M. Noske, M. Fähnle, I. Bykova, J. Gräfe, D. A. Bozhko, H. Y. Musiienko-Shmarova, V. Tiberkevich, A. N. Slavin, C. H. Back, J. Raabe, G. Schütz,  and S. Wintz, Phys. Rev. Lett. 122, 117202 (2019).
  • Yu et al. (2019) T. Yu, Y. M. Blanter,  and G. E. W. Bauer, Phys. Rev. Lett. 123, 247202 (2019).
  • Wang et al. (2020) H. Wang, J. Chen, T. Liu, J. Zhang, K. Baumgaertl, C. Guo, Y. Li, C. Liu, P. Che, S. Tu, S. Liu, P. Gao, X. Han, D. Yu, M. Wu, D. Grundler,  and H. Yu, Phys. Rev. Lett. 124, 027203 (2020).
  • Yang (2020) S.-H. Yang, Applied Physics Letters 116, 120502 (2020).
  • Yang et al. (2021) S.-H. Yang, R. Naaman, Y. Paltiel,  and S. S. P. Parkin, Nature Reviews Physics 3, 328 (2021).
  • Fert et al. (2017) A. Fert, N. Reyren,  and V. Cros, Nature Reviews Materials 2, 17031 (2017).
  • Zhou et al. (2024) Y. Zhou, S. Li, X. Liang,  and Y. Zhou, Advanced Materials n/a, 2312935 (2024).
  • Nambu et al. (2020) Y. Nambu, J. Barker, Y. Okino, T. Kikkawa, Y. Shiomi, M. Enderle, T. Weber, B. Winn, M. Graves-Brook, J. M. Tranquada, T. Ziman, M. Fujita, G. E. W. Bauer, E. Saitoh,  and K. Kakurai, Phys. Rev. Lett. 125, 027201 (2020).
  • Cheong and Xu (2022) S.-W. Cheong and X. Xu, npj Quantum Materials 7, 40 (2022).
  • Šmejkal et al. (2020) L. Šmejkal, R. González-Hernández, T. Jungwirth,  and J. Sinova, Science Advances 6, eaaz8809 (2020).
  • Šmejkal et al. (2022a) L. Šmejkal, J. Sinova,  and T. Jungwirth, Physical Review X 12 (2022a).
  • Šmejkal et al. (2022b) L. Šmejkal, J. Sinova,  and T. Jungwirth, Physical Review X 12 (2022b).
  • Kunitomi, Nobuhiko et al. (1964) Kunitomi, Nobuhiko, Hamaguchi, Yoshikazu,  and Anzai, Shuichiro, J. Phys. France 25, 568 (1964).
  • Efrem D’Sa et al. (2005) J. Efrem D’Sa, P. Bhobe, K. Priolkar, A. Das, S. Paranjpe, R. Prabhu,  and P. Sarode, Journal of Magnetism and Magnetic Materials 285, 267 (2005).
  • Kriegner et al. (2017) D. Kriegner, H. Reichlova, J. Grenzer, W. Schmidt, E. Ressouche, J. Godinho, T. Wagner, S. Y. Martin, A. B. Shick, V. V. Volobuev, G. Springholz, V. Holý, J. Wunderlich, T. Jungwirth,  and K. Výborný, Physical Review B 96 (2017).
  • Juza et al. (1956) R. Juza, A. Rabenau,  and G. Pascher, Zeitschrift für anorganische und allgemeine Chemie 285, 61 (1956).
  • Krempaský et al. (2024) J. Krempaský, L. Šmejkal, S. W. D’Souza, M. Hajlaoui, G. Springholz, K. Uhlířová, F. Alarab, P. C. Constantinou, V. Strocov, D. Usanov, W. R. Pudelko, R. González-Hernández, A. Birk Hellenes, Z. Jansa, H. Reichlová, Z. Šobáň, R. D. Gonzalez Betancourt, P. Wadley, J. Sinova, D. Kriegner, J. Minár, J. H. Dil,  and T. Jungwirth, Nature 626, 517 (2024).
  • Lee et al. (2024) S. Lee, S. Lee, S. Jung, J. Jung, D. Kim, Y. Lee, B. Seok, J. Kim, B. G. Park, L. Šmejkal, C. J. Kang,  and C. Kim, Physical Review Letters 132 (2024).
  • Osumi et al. (2024) T. Osumi, S. Souma, T. Aoyama, K. Yamauchi, A. Honma, K. Nakayama, T. Takahashi, K. Ohgushi,  and T. Sato, Physical Review B 109 (2024).
  • Hajlaoui et al. (2024) M. Hajlaoui, S. Wilfred D’Souza, L. Šmejkal, D. Kriegner, G. Krizman, T. Zakusylo, N. Olszowska, O. Caha, J. Michalička, J. Sánchez-Barriga, A. Marmodoro, K. Výborný, A. Ernst, M. Cinchetti, J. Minar, T. Jungwirth,  and G. Springholz, Advanced Materials 36, 2314076 (2024).
  • Liu et al. (2024) Z. Liu, M. Ozeki, S. Asai, S. Itoh,  and T. Masuda, Phys. Rev. Lett. 133, 156702 (2024).
  • Amin et al. (2024) O. J. Amin, A. Dal Din, E. Golias, Y. Niu, A. Zakharov, S. C. Fromage, C. J. B. Fields, S. L. Heywood, R. B. Cousins, F. Maccherozzi, J. Krempaský, J. H. Dil, D. Kriegner, B. Kiraly, R. P. Campion, A. W. Rushforth, K. W. Edmonds, S. S. Dhesi, L. Šmejkal, T. Jungwirth,  and P. Wadley, Nature 636, 348 (2024).
  • Nagaosa et al. (2010) N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald,  and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
  • Šmejkal et al. (2022) L. Šmejkal, A. H. MacDonald, J. Sinova, S. Nakatsuji,  and T. Jungwirth, Nature Reviews Materials 7, 482 (2022).
  • Šmejkal et al. (2023) L. Šmejkal, A. Marmodoro, K.-H. Ahn, R. González-Hernández, I. Turek, S. Mankovsky, H. Ebert, S. W. D’Souza, O. c. v. Šipr, J. Sinova,  and T. c. v. Jungwirth, Phys. Rev. Lett. 131, 256703 (2023).
  • Brookes et al. (2018) N. Brookes, F. Yakhou-Harris, K. Kummer, A. Fondacaro, J. Cezar, D. Betto, E. Velez-Fort, A. Amorese, G. Ghiringhelli, L. Braicovich, et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 903, 175 (2018).
  • Schüler et al. (2023) M. Schüler, T. Schmitt,  and P. Werner, npj Quantum Materials 8, 6 (2023).
  • Ueda et al. (2023) H. Ueda, M. García-Fernández, S. Agrestini, C. P. Romao, J. van den Brink, N. A. Spaldin, K.-J. Zhou,  and U. Staub, Nature 618, 946 (2023).
  • Ament et al. (2011) L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill,  and J. van den Brink, Rev. Mod. Phys. 83, 705 (2011).
  • Szuszkiewicz et al. (2005) W. Szuszkiewicz, B. Hennion, B. Witkowska, E. Łusakowska,  and A. Mycielski, Physica Status Solidi C: Conferences 2, 1141 (2005).
  • Goldstone et al. (1962) J. Goldstone, A. Salam,  and S. Weinberg, Phys. Rev. 127, 965 (1962).

Supplementary Material

Refer to caption
Figure S1: Momentum dependence along the ΓA\Gamma-A-direction. RIXS measurement at (0, 0, 0.4) r.l.u. and (0,0,0.5) r.l.u. showing the magnetic excitation off the elastic line at the AA-point. The strong elastic contribution is due to specular reflection.
Refer to caption
Figure S2: Circular dichroism measurement along the nodal direction. CD-RIXS measurement at (0.1, 0.1, 0.5) r.l.u. showing a strongly suppressed dichroism compared to an equivalent momentum point along the ALA-L-direction.