This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Circular strings in Kerr-AdS5AdS_{5} black holes

O. V. Geytota The Bogoliubov Laboratory of Theoretical Physics, JINR,
141980 Dubna, Moscow region, Russia
Dubna State University
Universitetskaya str.,141980 Dubna, Moscow region, Russia
A. A. Golubtsova The Bogoliubov Laboratory of Theoretical Physics, JINR,
141980 Dubna, Moscow region, Russia
Steklov Mathematical Institute, Russian Academy of Sciences
Gubkina str. 8, 119991 Moscow, Russia
H. Dimov The Bogoliubov Laboratory of Theoretical Physics, JINR,
141980 Dubna, Moscow region, Russia
Department of Physics, Sofia University,
5 J. Bourchier Blvd., 1164 Sofia, Bulgaria
Vu H. Nguyen The Bogoliubov Laboratory of Theoretical Physics, JINR,
141980 Dubna, Moscow region, Russia
Institute of Physics, VAST, 10000 Hanoi, Vietnam
R. C. Rashkov 111Emails: golubtsova, dimov @theor.jinr.ru and h_dimov,rash@phys.uni-sofia.bg Department of Physics, Sofia University,
5 J. Bourchier Blvd., 1164 Sofia, Bulgaria
Institute for Theoretical Physics, Vienna University of Technology,
Wiedner Hauptstr. 8–10, 1040 Vienna, Austria
Abstract

The quest for extension of holographic correspondence to the case of finite temperature naturally includes Kerr-AdS black holes and their field theory duals. We probe the five-dimensional Kerr-AdS space time by pulsating strings. First we find particular pulsating string solutions and then semi-classically quantize the theory. For the string with large values of energy, we use the Bohr-Sommerfeld analysis to find the energy of the string as a function of a large quantum number. We obtain the wave function of the problem and thoroughly study the corrections to the energy, which according to the holographic dictionary are related to anomalous dimensions of certain operators in the dual gauge theory. The interpretation of results from holographic point of view is not straightforward since the dual theory is at finite temperature. Nevertheless, near or at conformal point the expressions can be thought of as the dispersion relations of stationary states.

1 Introduction

The intensive development of the gauge/gravity correspondence has yielded useful toolkits for exploring non-perturbative regime of quantum field theories. The gauge/gravity duality states that all the physics in a d-dimensional conformal gauge theory at strong coupling can be described in terms of a gravitational theory in a (d+1)(d+1)-dimensional spacetime with certain asymptotics. In particular, the dynamics of the 4d 𝒩=4\mathcal{N}=4 SU(N)SU(N) SYM in the strong coupling regime is equivalent to the dynamics of the classical IIB superstring theory on AdS5×S5AdS_{5}\times S^{5} in the weakly coupled regime. This provides a dictionary between observables of the dual theories, which gives an opportunity to probe non-perturbative dynamics of gauge theories. An important class of observables includes various closed string configurations which energy spectrum can be related to anomalous dimensions of single-trace local operators in SYM. Despite that computing the string spectrum even in asymptotically AdS backgrounds is an intricate problem, the integrability methods used within the holographic duality allowed to find and analyze many string configurations.

Addressing the important issues as strong coupling phenomena, it became of great interest to extend the holographic duality to the case of finite temperature, which generically has less symmetries and phenomenologically more appropriate. Thermal observables contain a lot of information on dynamics of the system, however, they seems to be difficult to compute. The AdS/CFT correspondence allows to relate characteristics of black black holes in asymptotically AdS spacetimes to observables of strongly coupled quantum systems. The solutions are assumed to describe thermal states of the dual CFT with certain Hawking temperature. The use of the AdS/CFT correspondence appears to be a powerful method to investigate the thermal states of CFT. Indeed, the horizon is playing the role of a thermal background. This approach allows to include more dimensionless parameters in the theory making it very useful not only to collect important information for a higher dimensional theory but also to study its holographic dual. Particularly, the AdS black holes with spherical horizon are dual to the thermal ensemble of 𝒩=4\mathcal{N}=4 SYM on 𝕊1×𝕊3\mathbb{S}^{1}\times\mathbb{S}^{3}, while a planar AdS black brane is dual to finite-temperature 𝒩=4\mathcal{N}=4 SYM on 𝕊1×3\mathbb{S}^{1}\times\mathbb{R}^{3}[1, 2]. An intriguing suggestion has been made in [3], namely to consider a 5d Kerr-AdS black hole with a non-zero angular momentum as a gravity dual to "a rotating Einstein universe" on ×𝕊3\mathbb{R}\times\mathbb{S}^{3}. As a higher dimensional black hole the Kerr-AdS5AdS_{5} black hole solution is characterized by two rotational parameters, related to the two parts of the angular momenta independently preserving. These parameters can be associated to the rotation in different planes. Note, that Kerr-AdS black holes share with non-rotating AdS black holes a number of common interesting features including the Hawking-Page phase transition, scaling of the free energy [4] and found its application in a holographic description of a rotating quark-gluon plasma [5]-[10]. At high temperatures the conformal symmetry is restored, so this description seems to be viable.

Certain thermal holographic observables can be found considering string dynamics in the black hole backgrounds. Circular closed strings in AdS black holes have been discussed in [11, 12]. Instead of rotating strings in the pure AdS case, the strings in the black holes are orbiting in these backgrounds. In particular, orbiting strings outside the 5d AdS-Schwarzschild black holes were interpreted as states of large spins in the dual thermal ensemble of 𝒩=4\mathcal{N}=4 SYM theory on 𝕊1×𝕊3\mathbb{S}^{1}\times\mathbb{S}^{3}. For the case of rotating AdS black holes the thermodynamical stability of closed string in the 5d Kerr-AdS black holes was studied with respect to angular momentum leakage to the black hole. A generalization of a pulsating string [19, 20, 21, 22] to the 5d AdS-Schwarzschild background was suggested in [12]. Following the Bohr-Sommerfeld quantization the energy of the string was computed, this energy can be associated with dispersion relations of the states in the 𝒩=4\mathcal{N}=4 SYM theory at finite temperature.

In this paper we study pulsating string configurations in the 5d Kerr-AdS black hole with equal rotational parameters. We construct a pulsating string solution in the black hole background. We also compute the string energy reducing the string Nambu-Goto action to the mechanical Lagrangian and applying the Bohr-Sommerfeld analysis. The potential wells are related to the position of the outer black hole horizon and the boundary of the black hole spacetime. We derive the relation for the energy for the case of a small value of the rotational parameters. In the case of vanishing rotation this relation for the energy comes to that one obtained earlier in the work [12]. Note, that for the pure AdS case the energy of the string can be related to the anomalous dimensions of single trace operators in 𝒩=4\mathcal{N}=4 SYM theory. In the black hole case we cannot establish this connection, since the notion of the anonymous dimension is defined in the conformal point. However, we can think on its relevance to the dispersion relations of the states in the thermal ensemble of 𝒩=4\mathcal{N}=4 SYM theory on 𝕊1×𝕊3\mathbb{S}^{1}\times\mathbb{S}^{3}. We also perform a WKB approximation and obtain the Schrödinger equation on the reduced subspace y=consty=const.

The paper is organized as follows. In Section  2 we give a review of the Kerr-AdS5AdS_{5} black hole with equal rotational parameters. Section 3 is devoted to a pulsating string solutions, we present solutions for a pulsating string in the Kerr-AdS5AdS_{5}. In Section 4 we consider the Bohr-Sommerfeld analysis and the WKB approximation. Finally, in Section 5 we conclude. In appendices we collect a number of useful relations for our computations.

2 5d Kerr-AdS black hole geometry

The 5d Kerr-AdS black hole solution was constructed in [3] and describes a rotating black hole with an AdS asymptotic. The metric of the 5d Kerr-AdS black holes is characterized by two rotational parameters aa, bb, related to the Casimirs of SU(2)×SU(2)SO(4)SU(2)\times SU(2)\simeq SO(4). In present paper we focus on the case of equal rotational parameters a=ba=b. The metric in the so-called AdS coordinates (static-at-infinity frame) can be represented as follows

ds2\displaystyle ds^{2} =\displaystyle= (1+y22)dT2+y2(dΘ2+sin2ΘdΦ2+cos2ΘdΨ2)\displaystyle-(1+y^{2}\ell^{2})dT^{2}+y^{2}(d\Theta^{2}+\sin^{2}\Theta d\Phi^{2}+\cos^{2}\Theta d\Psi^{2})
+\displaystyle+ 2My2Ξ3(dTasin2ΘdΦacos2ΘdΨ)2+y4dy2y4(1+y22)2MΞ2y2+2Ma2Ξ3,\displaystyle\frac{2M}{y^{2}\Xi^{3}}(dT-a\sin^{2}\Theta d\Phi-a\cos^{2}\Theta d\Psi)^{2}+\frac{y^{4}dy^{2}}{y^{4}(1+y^{2}\ell^{2})-\frac{2M}{\Xi^{2}}y^{2}+\frac{2Ma^{2}}{\Xi^{3}}},

where

Ξ=1a22,\Xi=1-a^{2}\ell^{2}, (2.2)

MM is the mass of the black hole, aa is a rotational parameter and we use the Hopf coordinates to parametrize the metric on the sphere with 0Θπ20\leq\Theta\leq\frac{\pi}{2}, 0Φ,Ψ2π0\leq\Phi,\Psi\leq 2\pi. Like ordinary Kerr solutions Kerr-AdS black holes have inner and outer horizons. We consider, that the holographic radial coordinate yy with values on the region (y+,+)(y_{+},+\infty), where y+y_{+} is an outer horizon of the black hole and we reach an AdS-asymptotics as yy goes to ++\infty.

The position of the outer horizon in these coordinates is defined by a largest root of the equation 222We present the solutions to this equation in Appendix B.

1+y222MΞ2y2+2Ma2Ξ3y4=0.1+y^{2}\ell^{2}-\frac{2M}{\Xi^{2}y^{2}}+\frac{2Ma^{2}}{\Xi^{3}y^{4}}=0. (2.3)

Particularly, for the extremal 5d Kerr-AdS black hole the horizon is given by

y+,ext2=14Ξ[4a221+1+8a22].y^{2}_{\rm+,ext}=\frac{1}{4\Xi}\left[4a^{2}\ell^{2}-1+\sqrt{1+8a^{2}\ell^{2}}\right]. (2.4)

From (2) it is easy to see that with yy\to\infty the 4d boundary of 5d Kerr-AdS black hole is 4d R×S3R\times S^{3} [4, 15]

ds2=dT2+dΘ2+sin2ΘdΦ2+cos2ΘdΨ2.ds^{2}=-dT^{2}+d\Theta^{2}+\sin^{2}\Theta d\Phi^{2}+\cos^{2}\Theta d\Psi^{2}. (2.5)

The Hawking temperature of the Kerr-AdS black hole is given by

TH=12π(2y+(1+y+22)(y+2+a2)1y+).T_{H}=\frac{1}{2\pi}\left(\frac{2y_{+}(1+y^{2}_{+}\ell^{2})}{(y^{2}_{+}+a^{2})}-\frac{1}{y_{+}}\right). (2.6)

The angular momentum and the angular velocity are given by

J=πMaΞ3,Ω=a(1+y+22)y+2+a2,J=\frac{\pi Ma}{\Xi^{3}},\quad\Omega=\frac{a(1+y^{2}_{+}\ell^{2})}{y^{2}_{+}+a^{2}}, (2.7)

correspondingly. Note, that there is a Hawking-Page phase transition in the Kerr-AdS black hole, and the rotation has an influence on it [9].

Taking M=0M=0 in the 5d Kerr-AdS solution (2) we get

ds2=(1+y22)dT2+y2(dΘ2+sin2ΘdΦ2+cos2ΘdΨ2)2+dy2(1+y22),ds^{2}=-(1+y^{2}\ell^{2})dT^{2}+y^{2}(d\Theta^{2}+\sin^{2}\Theta d\Phi^{2}+\cos^{2}\Theta d\Psi^{2})^{2}+\frac{dy^{2}}{(1+y^{2}\ell^{2})}, (2.8)

that is merely the global representation of the AdS metric.

The 5d Kerr-AdS black hole holographically is interpreted as a gravity dual of the 4d thermal 𝒩=4\mathcal{N}=4 SYM theory on ×𝕊3\mathbb{R}\times\mathbb{S}^{3} (a thermal ensemble of 𝒩=4\mathcal{N}=4 SYM theory) at strong coupling [3, 4, 11, 12]. The temperature of the theory is defined by the Hawking temperature (2.6). Comparing to the pure AdS case, the energy of the string in the black hole background can not be identified to the scaling dimension, which is defined near the conformal points. However, it is still possible to relate these strings to single gauge-invariant states, so the string analysis can be linked to the dispersion relations of the stationary states of the thermal 𝒩=4\mathcal{N}=4 SYM theory [12].

3 Exact solution of pulsating string in 5d Kerr-AdS background

The approach of pulsating strings for finding the anomalous dimensions of CFT operators starts with the work [19] and further generalizations have been proposed in [20, 21, 22]. Then a number of papers developing its application in the holographic systems appeared , see for instance [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. The purpose of this section is to obtain a pulsating string solutions in the Kerr-AdS5AdS_{5} background. To this end we will construct the Polyakov action and find appropriate solutions.

The starting point is the Polyakov string action in the conformal gauge written as follows

SP=14πα𝑑τ𝑑σ{hhαβαXMβXNGMN},S_{P}=-\frac{1}{4\pi\alpha^{\prime}}\int d\tau d\sigma\{\sqrt{-h}h^{\alpha\beta}\partial_{\alpha}X^{M}\partial_{\beta}X^{N}G_{MN}\}, (3.1)

where hαβ=diag(1,1)h^{\alpha\beta}=\textrm{diag}(-1,1), α,β=0,1\alpha,\beta=0,1, M,N=1,..,5M,N=1,..,5.
Using the notations in appendix A, the string Lagrangian in the Kerr-AdS5AdS_{5} black hole (2) takes the following form

4πα\displaystyle-4\pi\alpha^{\prime}\mathcal{L} =GTT(T2T˙2)+Gyy(y2y˙2)+GΘΘ(Θ2Θ˙2)\displaystyle=\,G_{TT}(T^{\prime 2}-\dot{T}^{2})+G_{yy}(y^{\prime 2}-\dot{y}^{2})+G_{\Theta\Theta}(\Theta^{\prime 2}-\dot{\Theta}^{2})
+GΦΦ(Φ2Φ˙2)+GΨΨ(Ψ2Ψ˙2)\displaystyle+G_{\Phi\Phi}(\Phi^{\prime 2}-\dot{\Phi}^{2})+G_{\Psi\Psi}(\Psi^{\prime 2}-\dot{\Psi}^{2})
+2GTΦ(TΦT˙Φ˙)+2GTΨ(TΨT˙Ψ˙)+2GΦΨ(ΦΨΦ˙Ψ˙),\displaystyle+2G_{T\Phi}(T^{\prime}\Phi^{\prime}-\dot{T}\dot{\Phi})+2G_{T\Psi}(T^{\prime}\Psi^{\prime}-\dot{T}\dot{\Psi})+2G_{\Phi\Psi}(\Phi^{\prime}\Psi^{\prime}-\dot{\Phi}\dot{\Psi})\,, (3.2)

where we have used X˙=τX\,\dot{X}=\partial_{\tau}X\, and X=σX\,X^{\prime}=\partial_{\sigma}X\,.
The Virasoro constraints following from (3.1) are given by

Vir1: M,NGMN(τXMτXN+σXMσXN)=0,\displaystyle\sum_{M,N}G_{MN}\left(\partial_{\tau}X^{M}\partial_{\tau}X^{N}+\partial_{\sigma}X^{M}\partial_{\sigma}X^{N}\right)=0, (3.3)
Vir2: M,NGMNτXMσXN=0.\displaystyle\sum_{M,N}G_{MN}\partial_{\tau}X^{M}\partial_{\sigma}X^{N}=0. (3.4)

3.1 Pulsating string configuration involving the holographic direction "y"

In view of our further considerations, we would like to obtain a classical pulsating string solution having dependence on the holographic direction "y". Through the following calculations we will show that such a solution exists. The ansatz for the pulsating string configuration, involving the yy-direction, which is consistent with the equations of motion is

T=κτ,y=y(τ),Θ=Θ=const,Φ=mϕσ,Ψ=mψσ.T=\kappa\,\tau,\qquad y=y(\tau),\qquad\Theta=\Theta^{*}\,=\,const,\qquad\Phi=\,m_{\phi}\sigma,\qquad\Psi=\,m_{\psi}\sigma\,. (3.5)

The Polyakov string lagrangian takes the form

LPGTTT˙2Gyyy˙2+GΦΦmϕ2+GΨΨmψ2+2GΦΨmϕmψ.L_{P}\,\sim\,-G_{TT}\,\dot{T}^{2}-G_{yy}\,\dot{y}^{2}+G_{\Phi\Phi}\,m_{\phi}^{2}+G_{\Psi\Psi}\,m_{\psi}^{2}+2G_{\Phi\Psi}\,m_{\phi}\,m_{\psi}\,. (3.6)

Let’s consider the Virasoro constraints (3.4) and (3.4) more precisely. Substituting the string ansatz (3.5) into (3.4) can be rewritten as

Vir2:κ2aMy2Ξ3(mϕsin2Θ+mψcos2Θ)=0.Vir2:\qquad\kappa\,\frac{2aM}{y^{2}\Xi^{3}}\left(m_{\phi}\,\sin^{2}\Theta+m_{\psi}\,\cos^{2}\Theta\right)=0\,. (3.7)

Since yy is not a constant, this condition fixes Θ=Θ\,\Theta=\Theta^{*}\, as follows

mϕsin2Θ+mψcos2Θ=0tan2Θ=mψmϕ> 0,sign(mϕ)sign(mψ).m_{\phi}\,\sin^{2}\Theta^{*}+m_{\psi}\,\cos^{2}\Theta^{*}=0\,\Rightarrow\,\tan^{2}\Theta^{*}=\,-\,\frac{m_{\psi}}{m_{\phi}}\,>\,0,\,\textrm{sign}(m_{\phi})\,\neq\,\textrm{sign}(m_{\psi})\,. (3.8)

Substituting the ansatz (3.5) in (3.3), we have

GTTκ2+Gyyy˙2+y2(mϕ2sin2Θ+mψ2cos2Θ)+2a2My2Ξ3(mϕsin2Θ+mψcos2Θ)2= 0.G_{TT}\kappa^{2}+G_{yy}\,\dot{y}^{2}+y^{2}\,\left(m_{\phi}^{2}\,\sin^{2}\Theta+m_{\psi}^{2}\,\cos^{2}\Theta\right)+\frac{2a^{2}M}{y^{2}\Xi^{3}}\left(m_{\phi}\,\sin^{2}\Theta+m_{\psi}\,\cos^{2}\Theta\right)^{2}\,=\,0\,. (3.9)

Taking into account (3.7), eq.(3.9) can be written as

GTTκ2+Gyyy˙2+y2(mϕ2sin2Θ+mψ2cos2Θ)= 0,G_{TT}\kappa^{2}+G_{yy}\,\dot{y}^{2}+y^{2}\,\left(m_{\phi}^{2}\,\sin^{2}\Theta^{*}+m_{\psi}^{2}\,\cos^{2}\Theta^{*}\right)\,=\,0\,, (3.10)

or in a detailed form

y4(y4(1+y22)2MΞ2y2+2Ma2Ξ3)y˙2=κ2(1+y222My2Ξ3)y2K2,\frac{y^{4}}{\left(y^{4}(1+y^{2}\ell^{2})-\frac{2M}{\Xi^{2}}y^{2}+\frac{2Ma^{2}}{\Xi^{3}}\right)}\,\dot{y}^{2}\,=\,\kappa^{2}\,\left(1+y^{2}\ell^{2}-\frac{2M}{y^{2}\Xi^{3}}\right)-y^{2}\,K^{2}\,, (3.11)

where

K2mϕ2sin2Θ+mψ2cos2Θ.K^{2}\,\equiv\,m_{\phi}^{2}\,\sin^{2}\Theta^{*}+m_{\psi}^{2}\,\cos^{2}\Theta^{*}\,. (3.12)

The above equation can be represented as in the following form

(y˙y2)2=[κ2(2MΞ31y4+1y2+2)K2][2Ma2Ξ31y62MΞ21y4+1y2+2],\left(\frac{\dot{y}}{y^{2}}\right)^{2}\,=\,\left[\kappa^{2}\,\left(-\frac{2M}{\Xi^{3}}\,\frac{1}{y^{4}}+\frac{1}{y^{2}}+\ell^{2}\right)-K^{2}\right]\,\left[\frac{2Ma^{2}}{\Xi^{3}}\,\frac{1}{y^{6}}-\frac{2M}{\Xi^{2}}\,\frac{1}{y^{4}}+\frac{1}{y^{2}}+\ell^{2}\right],\, (3.13)

or, equivalently

y˙2=(κ2(1+2y22MΞ3y2)y2K2)(1+2y22MΞ2y2+2Ma2Ξ3y4).\dot{y}^{2}\,=\,\left(\kappa^{2}\left(1+\ell^{2}y^{2}-\frac{2M}{\Xi^{3}y^{2}}\right)-y^{2}K^{2}\right)\left(1+\ell^{2}y^{2}-\frac{2M}{\Xi^{2}y^{2}}+\frac{2Ma^{2}}{\Xi^{3}y^{4}}\right).\, (3.14)

The first multiplier in (3.14) has the following roots

y1=2|κ|Mκ2Ξ3+κ2Ξ3(κ2(82M+Ξ3)8K2M),y2=2|κ|Mκ2Ξ3κ2Ξ3(κ2(82M+Ξ3)8K2M),\displaystyle y_{1}=\frac{2|\kappa|M}{\sqrt{\kappa^{2}\Xi^{3}+\sqrt{\kappa^{2}\Xi^{3}(\kappa^{2}(8\ell^{2}M+\Xi^{3})-8K^{2}M)}}},\quad y_{2}=\frac{2|\kappa|\sqrt{M}}{\sqrt{\kappa^{2}\Xi^{3}-\sqrt{\kappa^{2}\Xi^{3}(\kappa^{2}(8\ell^{2}M+\Xi^{3})-8K^{2}M)}}},\, (3.15)
y3=2|κ|Mκ2Ξ3κ2Ξ3(κ2(82M+Ξ3)8K2M),y4=2|κ|Mκ2Ξ3+κ2Ξ3(κ2(82M+Ξ3)8K2M)..\displaystyle y_{3}=\frac{-2|\kappa|\sqrt{M}}{\sqrt{\kappa^{2}\Xi^{3}-\sqrt{\kappa^{2}\Xi^{3}(\kappa^{2}(8\ell^{2}M+\Xi^{3})-8K^{2}M)}}},\quad y_{4}=\frac{-2|\kappa|\sqrt{M}}{\sqrt{\kappa^{2}\Xi^{3}+\sqrt{\kappa^{2}\Xi^{3}(\kappa^{2}(8\ell^{2}M+\Xi^{3})-8K^{2}M)}}}.\,. (3.16)

We are able to tune parameters MM, aa, KK and κ\kappa in such a way that there will be two real positive roots y1y_{1} and y2y_{2} (3.15).

Refer to caption
Figure 1: The behaviour of the effective potential of the system (3.17). The parameters are fixed as follows: M=1M=1, a=0.2a=0.2, K2=1.55K^{2}=1.55, κ2=1.5\kappa^{2}=1.5, y+=1.01347y_{+}=1.01347, y1=3.45935y_{1}=3.45935, y2=1.66944y_{2}=1.66944.

As for the second multiplier in (3.14), it is nothing but the blackening function with a greater root, which is the horizon y+y_{+} of the Kerr-AdS5AdS_{5} black hole. The zeroes of this function are presented in the Appendix (A.2)-(A.12). It worth to be noted that four of them are complex.

Then, the equation (3.14) can be represented in the following form

y˙2=κ2(2K2κ2)2y6(yy)(yy+)j=14(yyj)(yyj),\dot{y}^{2}\,=\kappa^{2}\left(\ell^{2}-\frac{K^{2}}{\kappa^{2}}\right)\frac{\ell^{2}}{y^{6}}(y-y_{-})(y-y_{+})\displaystyle{\prod_{j=1}^{4}(y-y_{j})(y-y_{j}^{*})}, (3.17)

where yy_{-}, y+y_{+} are real zeros of blackening function, thus y+y_{+} (A.2) is the horizon, y1,y2,y3,y4y_{1}^{*},y^{*}_{2},y^{*}_{3},y^{*}_{4} are complex zeros of the blackening function given by (A.2)-(A.12), while y1y_{1}, y2y_{2}, y3y_{3} and y4y_{4} (3.15)-(3.16) are zeros of the first multiplier of eq.(3.14). So we can always find appropriate conditions on the right-hand side of (3.17) for the existence of a periodic solution

y<0<y+<y2<y(τ)<y1,y_{-}<0<y_{+}<y_{2}<y(\tau)<y_{1}, (3.18)

where y1y_{1} and y2y_{2} are given by (3.15). Therefore, there exists a pulsating string configuration, expanding and contracting between the turning points y1\,y_{1} and y2\,y_{2}\,. In Fig. 1 we plot the potential of the effective mechanical system (3.17). One can see that it has three positive real zeroes y+y_{+}, y1y_{1}, y2y_{2}. The evolution of the pulsating string is defined in the region y1<y(τ)<y2\,y_{1}<y(\tau)<\,y_{2}\,.

We also note that Φ\Phi and Ψ\Psi are defined by the relations

Φ=mϕσ,Ψ=mψσ.\Phi=m_{\phi}\sigma,\quad\Psi=m_{\psi}\sigma. (3.19)

3.2 Pulsating string configuration on the subspace y=consty=const

In order to obtain pulsating string solutions on the subspace y=consty=const we consider the following string ansatz (κ>0\,\kappa>0\,):

T=κτ,Θ=θ(τ),Φ=mϕσ+ϕ(τ),Ψ=mψσ+ψ(τ),y=const.T=\kappa\tau,\quad\Theta=\theta(\tau),\quad{\Phi=m_{\phi}\sigma+\phi(\tau),\quad\Psi=m_{\psi}\sigma+\psi(\tau)},\quad y=const. (3.20)

Taking into account (3.20) the string Lagrangian can be represented as

P\displaystyle\mathcal{L}_{P} \displaystyle\sim (κ2GTT+θ˙2GΘΘ+ϕ˙2GΦΦ+ψ˙2GΨΨ+2κ(ϕ˙GTΦ+ψ˙GTΨ)+2ϕ˙ψ˙GΦΨ)\displaystyle-\left(\kappa^{2}G_{TT}+\dot{\theta}^{2}G_{\Theta\Theta}+\dot{\phi}^{2}G_{\Phi\Phi}+\dot{\psi}^{2}G_{\Psi\Psi}+2\kappa(\dot{\phi}G_{T\Phi}+\dot{\psi}G_{T\Psi})+2\dot{\phi}\dot{\psi}G_{\Phi\Psi}\right) (3.21)
+\displaystyle+ mϕ2GΦΦ+mψ2GΨΨ+2mϕmψGΦΨ.\displaystyle m_{\phi}^{2}G_{\Phi\Phi}+m_{\psi}^{2}G_{\Psi\Psi}+2m_{\phi}m_{\psi}G_{\Phi\Psi}.

Let us list the relevant equations of motion (EoM). Since the ansatz (3.20) is linear in worldsheet time τ\,\tau\,, the EoMs become actually equations with respect to σ\,\sigma\,, while all constants AT,Aϕ,Aψ\,A_{T},\,\,A_{\phi},\,\,A_{\psi}\, below are the integration constants. The EoMs for Φ,Ψ\,\Phi,\,\,\Psi\, and T\,T\, read off as follows

Φ:\displaystyle\Phi:\quad \displaystyle- 2My2Ξ3κ+(y2a+2aMy2Ξ3sin2θ)ϕ˙+2Macos2θΞ3y2ψ˙=Aϕasin2θ,\displaystyle\frac{2M}{y^{2}\Xi^{3}}\kappa+\left(\frac{y^{2}}{a}+\frac{2aM}{y^{2}\Xi^{3}}\sin^{2}\theta\right)\dot{\phi}+\frac{2Ma\cos^{2}\theta}{\Xi^{3}y^{2}}\dot{\psi}=\frac{A_{\phi}}{a\sin^{2}\theta}, (3.22)
Ψ:\displaystyle\Psi:\quad \displaystyle- 2My2Ξ3κ+(y2a+2aMy2Ξ3cos2θ)ψ˙+2Masin2θΞ3y2ϕ˙=Aψacos2θ,\displaystyle\frac{2M}{y^{2}\Xi^{3}}\kappa+\left(\frac{y^{2}}{a}+\frac{2aM}{y^{2}\Xi^{3}}\cos^{2}\theta\right)\dot{\psi}+\frac{2Ma\sin^{2}\theta}{\Xi^{3}y^{2}}\dot{\phi}=\frac{A_{\psi}}{a\cos^{2}\theta}, (3.23)
T:\displaystyle T:\quad 2My2Ξ3κ2aMy2Ξ3(ϕ˙sin2θ+ψ˙cos2Θ)=AT+(1+y2l2)κ.\displaystyle\frac{2M}{y^{2}\Xi^{3}}\kappa-\frac{2aM}{y^{2}\Xi^{3}}(\dot{\phi}\sin^{2}\theta+\dot{\psi}\cos^{2}\Theta)=A_{T}+(1+y^{2}l^{2})\kappa. (3.24)

Correspondingly, the equation for y\,y\, has the form

κ2(22y+4My3Ξ3)2yθ˙24κy(2Masin2θϕ˙y2Ξ3+2Macos2θψ˙y2Ξ3)\displaystyle\kappa^{2}(2\ell^{2}y+\frac{4M}{y^{3}\Xi^{3}})-2y\dot{\theta}^{2}-\frac{4\kappa}{y}\left(\frac{2Ma\sin^{2}\theta\dot{\phi}}{y^{2}\Xi^{3}}+\frac{2Ma\cos^{2}\theta\dot{\psi}}{y^{2}\Xi^{3}}\right) (3.25)
+\displaystyle+ 2y(sin2θmϕ2+mψ2cos2θ)2y(sin2θϕ˙2+cos2θψ˙2)\displaystyle 2y\left(\sin^{2}\theta m^{2}_{\phi}+m^{2}_{\psi}\cos^{2}\theta\right)-2y(\sin^{2}\theta\dot{\phi}^{2}+\cos^{2}\theta\dot{\psi}^{2})
\displaystyle- 4Ma2y3Ξ3(sin4θϕ˙2cos4θψ˙22sin2θcos2θϕ˙ψ˙\displaystyle\frac{4Ma^{2}}{y^{3}\Xi^{3}}\Bigl{(}-\sin^{4}\theta\dot{\phi}^{2}-\cos^{4}\theta\dot{\psi}^{2}-2\sin^{2}\theta\cos^{2}\theta\dot{\phi}\dot{\psi}
+\displaystyle+ mϕ2sin4θ+mψ2cos4θ+2mϕmψcos2θsin2θ)=0.\displaystyle m^{2}_{\phi}\sin^{4}\theta+m^{2}_{\psi}\cos^{4}\theta+2m_{\phi}m_{\psi}\cos^{2}\theta\sin^{2}\theta\Bigr{)}=0.

The equation for TT gives the ratio

ϕ˙sin2θ+ψ˙cos2θ=y2Ξ32aM(2My2Ξ3κAT(1+y22)κ).\dot{\phi}\sin^{2}\theta+\dot{\psi}\cos^{2}\theta=\frac{y^{2}\Xi^{3}}{2aM}\left(\frac{2M}{y^{2}\Xi^{3}}\kappa-A_{T}-(1+y^{2}\ell^{2})\kappa\right). (3.26)

Combining the equations for Φ\Phi\,, Ψ\Psi\, and TT and doing some algebra we obtain the relevant equations for ϕ\,\phi\, and ψ\,\psi\,

T+Φ:\displaystyle T+\Phi: \displaystyle- (1+y2l2)κ+y2aϕ˙=Aϕasin2θ+AT,\displaystyle(1+y^{2}l^{2})\kappa+\frac{y^{2}}{a}\dot{\phi}=\frac{A_{\phi}}{a\sin^{2}\theta}+A_{T},
ϕ˙\displaystyle\dot{\phi} =\displaystyle= 1y2Aϕsin2θ+ay2(AT+(1+y22)κ),\displaystyle\frac{1}{y^{2}}\frac{A_{\phi}}{\sin^{2}\theta}+\frac{a}{y^{2}}\left(A_{T}+(1+y^{2}\ell^{2})\kappa\right), (3.27)
T+Ψ:\displaystyle T+\Psi: \displaystyle- (1+y2l2)κ+y2aψ˙=Aψasin2θ+AT,\displaystyle(1+y^{2}l^{2})\kappa+\frac{y^{2}}{a}\dot{\psi}=\frac{A_{\psi}}{a\sin^{2}\theta}+A_{T},
ψ˙\displaystyle\dot{\psi} =\displaystyle= 1y2Aψcos2θ+ay2(AT+(1+y22)κ).\displaystyle\frac{1}{y^{2}}\frac{A_{\psi}}{\cos^{2}\theta}+\frac{a}{y^{2}}\left(A_{T}+(1+y^{2}\ell^{2})\kappa\right). (3.28)

Putting the expressions (3.27) and (3.28) into the equation for TT (3.26) we obtain the relation between constants

2My2Ξ3κ(Aϕ+Aψ)2aMy4Ξ3(1+2a2My4Ξ3)(AT+(1+y22)κ)=0.\frac{2M}{y^{2}\Xi^{3}}\kappa-\left(A_{\phi}+A_{\psi}\right)\frac{2aM}{y^{4}\Xi^{3}}-(1+\frac{2a^{2}M}{y^{4}\Xi^{3}})\left(A_{T}+(1+y^{2}\ell^{2})\kappa\right)=0. (3.29)

The equations for the functions ϕ\,\phi\, and ψ\,\psi\, can be rewritten in the form

ϕ˙\displaystyle\dot{\phi} =\displaystyle= Aϕy2sin2θ+P1y2(Aϕ+Aψ),\displaystyle\frac{A_{\phi}}{y^{2}\sin^{2}\theta}+P-\frac{1}{y^{2}}(A_{\phi}+A_{\psi}), (3.30)
ψ˙\displaystyle\dot{\psi} =\displaystyle= Aψy2cos2θ+P1y2(Aϕ+Aψ),\displaystyle\frac{A_{\psi}}{y^{2}\cos^{2}\theta}+P-\frac{1}{y^{2}}(A_{\phi}+A_{\psi}), (3.31)

where the constant PP is given by

P=1y2Aϕ+1y2Aψ+ay2(AT+(1+y22)κ).P=\frac{1}{y^{2}}A_{\phi}+\frac{1}{y^{2}}A_{\psi}+\frac{a}{y^{2}}\left(A_{T}+(1+y^{2}\ell^{2})\kappa\right). (3.32)

From here we find

ϕ˙sin2θ+ψ˙cos2θ=P,AT+(1+y22)κ=2M(a(Aϕ+Aψ)κy2)2a2M+y4Ξ3.\dot{\phi}\sin^{2}\theta+\dot{\psi}\cos^{2}\theta=P,\quad A_{T}+(1+y^{2}\ell^{2})\kappa=-\frac{2M(a(A_{\phi}+A_{\psi})-\kappa y^{2})}{2a^{2}M+y^{4}\Xi^{3}}. (3.33)

Substituting (3.26) in (3.25) with 1y\frac{1}{y} factor we obtain the yy-equation in the form

κ2y(2y+2My3Ξ3)θ˙22κy2(2Mκy2Ξ3(AT+(1+y22)κ))\displaystyle\frac{\kappa^{2}}{y}\left(\ell^{2}y+\frac{2M}{y^{3}\Xi^{3}}\right)-\dot{\theta}^{2}-\frac{2\kappa}{y^{2}}\left(\frac{2M\kappa}{y^{2}\Xi^{3}}-(A_{T}+(1+y^{2}\ell^{2})\kappa)\right) (3.34)
+\displaystyle+ (sin2θmϕ2+mψ2cos2θ)(sin2θϕ˙2+cos2θψ˙2)\displaystyle\left(\sin^{2}\theta m^{2}_{\phi}+m^{2}_{\psi}\cos^{2}\theta\right)-(\sin^{2}\theta\dot{\phi}^{2}+\cos^{2}\theta\dot{\psi}^{2})
\displaystyle- 2Ma2y4Ξ3((sin2θϕ˙+cos2θψ˙)2+(mϕsin2θ+mψcos2θ)2)=0.\displaystyle\frac{2Ma^{2}}{y^{4}\Xi^{3}}\left(-(\sin^{2}\theta\dot{\phi}+\cos^{2}\theta\dot{\psi})^{2}+(m_{\phi}\sin^{2}\theta+m_{\psi}\cos^{2}\theta)^{2}\right)=0.

The first Virasoro constraint (3.3) explicitly reads

κ2y2(1+y2l22My2Ξ3)4aMy4Ξ3κ(sin2θϕ˙+cos2θψ˙)+θ˙2\displaystyle-\frac{\kappa^{2}}{y^{2}}\left(1+y^{2}l^{2}-\frac{2M}{y^{2}\Xi^{3}}\right)-\frac{4aM}{y^{4}\Xi^{3}}\kappa(\sin^{2}\theta\dot{\phi}+\cos^{2}\theta\dot{\psi})+\dot{\theta}^{2} (3.35)
+(sin2θϕ˙2+cos2θψ˙2)+(sin2θmϕ2+cos2θmψ2)\displaystyle+(\sin^{2}\theta\dot{\phi}^{2}+\cos^{2}\theta\dot{\psi}^{2})+(\sin^{2}\theta m_{\phi}^{2}+\cos^{2}\theta m^{2}_{\psi})
+2Ma2Ξ3y4((sin2θϕ˙+cos2θψ˙)2+(sin2θmϕ+cos2θmψ)2)=0.\displaystyle+2\frac{Ma^{2}}{\Xi^{3}y^{4}}\left((\sin^{2}\theta\dot{\phi}+\cos^{2}\theta\dot{\psi})^{2}+(\sin^{2}\theta m_{\phi}+\cos^{2}\theta m_{\psi})^{2}\right)=0.

Remembering the equation for y\,y\, (3.34) and expression for the constant P\,P\, (3.32) and summing equations (3.34) and (3.35) we obtain the constraint

κ2y2+4κ2My4Ξ38aMy4Ξ3κP+2(mϕ2sin2θ+mψ2cos2θ)+4Ma2y4Ξ3P2=0.\displaystyle-\frac{\kappa^{2}}{y^{2}}+4\frac{\kappa^{2}M}{y^{4}\Xi^{3}}-8\frac{aM}{y^{4}\Xi^{3}}\kappa P+2\left(m^{2}_{\phi}\sin^{2}\theta+m^{2}_{\psi}\cos^{2}\theta\right)+\frac{4Ma^{2}}{y^{4}\Xi^{3}}P^{2}=0. (3.36)

Since, θ\,\theta\, is essentially time dependent (3.20), we are forward to impose the condition

mϕ2=mψ2m2.m^{2}_{\phi}\,=\,m^{2}_{\psi}\,\equiv\,m^{2}. (3.37)

With this choice the second Virasoro constraint (3.4) give us the relation

Vir2:2My2Ξ3κ+(Aϕ+Aψ)(1a+2aMy4Ξ3)+(1+2a2My4Ξ3)(AT+(1+y22)κ)=0.\textrm{Vir2}:\qquad-\frac{2M}{y^{2}\Xi^{3}}\kappa+(A_{\phi}+A_{\psi})(\frac{1}{a}+\frac{2aM}{y^{4}\Xi^{3}})+(1+\frac{2a^{2}M}{y^{4}\Xi^{3}})\left(A_{T}+(1+y^{2}\ell^{2})\kappa\right)=0. (3.38)

As a result, we find

Aϕ+Aψa=0,Aϕ=AψA.\frac{A_{\phi}+A_{\psi}}{a}=0,\quad A_{\phi}=-A_{\psi}\,\equiv\,A\,. (3.39)

Thus, the constant PP (3.32) can be rewritten as

P=ay2(AT+(1+y22)κ).P=\frac{a}{y^{2}}(A_{T}+(1+y^{2}\ell^{2})\kappa). (3.40)

Consequently, by virtue of the above relations between the constants and expression for the second Virasoro constraint (3.38) we can fix AT\,A_{T}\,

AT=2Mκy22a2M+y4Ξ3(1+y22)κ,P=2aMκ2a2M+y4Ξ3.A_{T}\,=\,\frac{2M\kappa\,y^{2}}{2a^{2}M+y^{4}\Xi^{3}}-(1+y^{2}\ell^{2})\kappa\,,\qquad P=\frac{2aM\kappa}{2a^{2}M+y^{4}\Xi^{3}}. (3.41)

Having mϕ2=mψ2=m2m^{2}_{\phi}=m^{2}_{\psi}=m^{2} and with the assumptions (3.39), the equation for the first Virasoro constraint (3.35) takes the form

θ˙2κ2y2(1+y2l22My2Ξ3)4aMy4Ξ3κP+(2Ma2Ξ3y4+1)(P2+m2)+A2y41sin2θcos2θ=0.\dot{\theta}^{2}-\frac{\kappa^{2}}{y^{2}}(1+y^{2}l^{2}-\frac{2M}{y^{2}\Xi^{3}})-\frac{4aM}{y^{4}\Xi^{3}}\kappa P+(2\frac{Ma^{2}}{\Xi^{3}y^{4}}+1)(P^{2}+m^{2})+\frac{A^{2}}{y^{4}}\frac{1}{\sin^{2}\theta\cos^{2}\theta}=0. (3.42)

Finally, plugging the expression for PP (3.40) we obtain the following differential equation for θ\,\theta\,

θ˙2+A2y41sin2θcos2θ+Υ=0,\dot{\theta}^{2}+\frac{A^{2}}{y^{4}}\frac{1}{\sin^{2}\theta\cos^{2}\theta}+\Upsilon=0, (3.43)

where

Υ=κ2y2(1+y2l22My2Ξ3)+(2Ma2Ξ3y4+1)m24a2M2κ2y4Ξ3(2Ma2+y4Ξ3).\Upsilon=-\frac{\kappa^{2}}{y^{2}}(1+y^{2}l^{2}-\frac{2M}{y^{2}\Xi^{3}})+(2\frac{Ma^{2}}{\Xi^{3}y^{4}}+1)m^{2}-\frac{4a^{2}M^{2}\kappa^{2}}{y^{4}\Xi^{3}(2Ma^{2}+y^{4}\Xi^{3})}. (3.44)

At this point, it is convenient to introduce a new variable uu

u(τ)sin2θ(τ)>0,0<u<1.u(\tau)\equiv\sin^{2}\theta(\tau)>0,\quad 0<u<1. (3.45)

Then we have

u˙22+2|Υ|u22|Υ|u+2A2y4=0,Υ<0.\frac{\dot{u}^{2}}{2}+2|\Upsilon|u^{2}-2|\Upsilon|u+\frac{2A^{2}}{y^{4}}=0,\qquad\Upsilon<0. (3.46)

The equation (3.46) can be written in the form

u˙22+V(u)=0,V(u)=2|Υ|u22|Υ|u+2A2y4.\frac{\dot{u}^{2}}{2}+V(u)=0,\quad V(u)=2|\Upsilon|u^{2}-2|\Upsilon|u+\frac{2A^{2}}{y^{4}}. (3.47)

If 4A2|Υ|2y4<1\frac{4A^{2}}{|\Upsilon|^{2}\,y^{4}}\,<1\, the potential V(u)V(u) has two turning points u1,2=1214A2|Υ|2y42\,u_{1,2}=\frac{1}{2}\mp\frac{\sqrt{1-\frac{4A^{2}}{|\Upsilon|^{2}\,y^{4}}}}{2}\, symmetrical about the point of minimum of the potential u=12\,u=\dfrac{1}{2}\, and V(u)0\,V(u)\leq 0\,, for  0<u1u(τ)u2<1\,0<u_{1}\leq\,u(\tau)\,\leq\,u_{2}<1\,. Therefore, the above equation

u˙2=4|Υ|u2+4|Υ|u4A2y42V(u)0\dot{u}^{2}=-4|\Upsilon|u^{2}+4|\Upsilon|u-\frac{4A^{2}}{y^{4}}\equiv\,-2V(u)\geq 0 (3.48)

has a periodic solution between turning points u1,2\,u_{1,2}\,. The periodic solution of the above equation is

u(τ)=12+14A2|Υ|y4sin(2|Υ|τ).u(\tau)=\frac{1}{2}+\sqrt{\frac{1}{4}-\frac{A^{2}}{|\Upsilon|y^{4}}}\sin(2\sqrt{|\Upsilon}|\tau). (3.49)

It is a pulsating string solution moving between the turning points. Correspondingly, the dynamics on the angular variables Φ\Phi and Ψ\Psi is defined by (3.30)-(3.31),which with the constraint (3.39) and (3.45) take the form

ϕ˙\displaystyle\dot{\phi} =\displaystyle= Ay2u(τ)+2aMκ2a2M+y4Ξ3,\displaystyle\frac{A}{y^{2}u(\tau)}+\frac{2aM\kappa}{2a^{2}M+y^{4}\Xi^{3}}, (3.50)
ψ˙\displaystyle\dot{\psi} =\displaystyle= Ay2(1u(τ))+2aMκ2a2M+y4Ξ3.\displaystyle-\frac{A}{y^{2}(1-u(\tau))}+\frac{2aM\kappa}{2a^{2}M+y^{4}\Xi^{3}}. (3.51)

4 Energy spectrum

In this section we will semi-classically quantize the pulsating string configuration in 5d Kerr-AdS geometry. The approach has been presented for the first time in [19]. We will calculate the corresponding energy spectra. First, we will relate a study of the string energy spectra to the Bohr-Sommerfeld problem. After this, we discuss the large energies (large quantum numbers) to find the first correction to the energy. Note, the energy spectra of the circular string in the AdS background are related to the anomalous dimensions of the CFT operators according to the AdS/CFT dictionary. However, for the case of the Kerr-AdS spacetime we cannot carry out this connection, but we are able to relate the energy spectra to the dispersion relations.

4.1 Bohr-Sommerfeld analysis in 5d Kerr-AdS

We consider a circular closed string in the 5d Kerr-AdS black hole (2). In this analysis the string dynamics is governed by the Nambu-Goto action reads as

SNG=12πα𝑑τ𝑑σ|h|,S_{NG}=-\frac{1}{2\pi\alpha^{\prime}}\int d\tau d\sigma\sqrt{|h|}, (4.1)

where the induced metric on the worldsheet

hαβ=GMNαXMβXN,withXM=(T,Θ,Φ,Ψ,y).h_{\alpha\beta}=G_{MN}\partial_{\alpha}X^{M}\partial_{\beta}X^{N},\quad\textrm{with}\quad X^{M}=(T,\Theta,\Phi,\Psi,y)\,. (4.2)

For the embedding we choose the ansatz

T=κτ,y=y(τ),Θ=Θ=const,Φ=mϕσ,Ψ=mψσ.T=\kappa\,\tau,\qquad y=y(\tau),\qquad\Theta=\Theta^{*}\,=\,const,\qquad\Phi=\,m_{\phi}\sigma,\qquad\Psi=\,m_{\psi}\sigma\,. (4.3)

The components of the induced metric (4.2) take the form

hττ\displaystyle h_{\tau\tau} =\displaystyle= GTT(τT)2+Gyy(τy)2=κ2(1y22+2My2Ξ3)+y˙τ2f(y),\displaystyle G_{TT}(\partial_{\tau}T)^{2}+G_{yy}(\partial_{\tau}y)^{2}=\kappa^{2}\Bigl{(}-1-y^{2}\ell^{2}+\frac{2M}{y^{2}\Xi^{3}}\Bigr{)}+\frac{\dot{y}_{\tau}^{2}}{f(y)}, (4.4)
hσσ\displaystyle h_{\sigma\sigma} =\displaystyle= GΦΦ(σΦ)2+2GΦΨσΦσΨ+GΨΨ(σΨ)2\displaystyle G_{\Phi\Phi}(\partial_{\sigma}\Phi)^{2}+2G_{\Phi\Psi}\partial_{\sigma}\Phi\partial_{\sigma}\Psi+G_{\Psi\Psi}(\partial_{\sigma}\Psi)^{2} (4.5)
=\displaystyle= y2(sin2Θmϕ2+cos2Θmψ2)+2Ma2Ξ3y2(sin2Θmϕ+cos2Θmψ)2,\displaystyle y^{2}(\sin^{2}\Theta^{*}m^{2}_{\phi}+\cos^{2}\Theta^{*}m_{\psi}^{2})+\frac{2Ma^{2}}{\Xi^{3}y^{2}}\left(\sin^{2}\Theta^{*}{}m_{\phi}+\cos^{2}\Theta^{*}m_{\psi}\right)^{2},
hστ\displaystyle h_{\sigma\tau} =\displaystyle= 2GTΦτTσΦ+2GTΨτTσΨ=2κMaΞ3y2(sin2Θmϕ+cos2Θmψ).\displaystyle 2G_{T\Phi}\partial_{\tau}T\partial_{\sigma}\Phi+2G_{T\Psi}\partial_{\tau}T\partial_{\sigma}\Psi=-\frac{2\kappa Ma}{\Xi^{3}y^{2}}\Bigr{(}\sin^{2}\Theta^{*}m_{\phi}+\cos^{2}\Theta^{*}m_{\psi}\Bigr{)}. (4.6)

By virtue of (4.4)-(4.6) the NG action (4.1) is written down as

SNG=12πα𝑑τ𝑑σ(κ2(1+y222My2Ξ3)y˙τ2f(y))(y2~+2Ma2Ξ3y22)+(2κMaΞ3y2)2,S_{NG}=-\frac{1}{2\pi\alpha^{\prime}}\int d\tau d\sigma\sqrt{\Bigr{(}\kappa^{2}\Bigl{(}1+y^{2}\ell^{2}-\frac{2M}{y^{2}\Xi^{3}}\Bigr{)}-\frac{\dot{y}_{\tau}^{2}}{f(y)}\Bigr{)}\cdot\Bigr{(}y^{2}\tilde{\mathcal{M}}+\frac{2Ma^{2}}{\Xi^{3}y^{2}}\mathcal{M}^{2}\Bigr{)}+\Bigr{(}\frac{2\kappa Ma}{\Xi^{3}y^{2}}\mathcal{M}\Bigr{)}^{2}}, (4.7)

where

f(y)=1+2Ma2Ξ3y42MΞ2y2+2y2f(y)=1+\frac{2Ma^{2}}{\Xi^{3}y^{4}}-\frac{2M}{\Xi^{2}y^{2}}+\ell^{2}y^{2} (4.8)

and

=mϕsin2Θ+mψcos2Θ,~=mϕ2sin2Θ+mψ2cos2Θ.\mathcal{M}=m_{\phi}\sin^{2}\Theta^{*}+m_{\psi}\cos^{2}\Theta^{*},\quad\tilde{\mathcal{M}}=m^{2}_{\phi}\sin^{2}\Theta^{*}+m^{2}_{\psi}\cos^{2}\Theta^{*}. (4.9)

Doing some algebra, we can be represent the action (4.7) in the simplified form

SNG=12πακΞ3/2𝑑τ(1+2y2)(y2Ξ3~+2M2a2y2)2M~y˙τ2κ2f(y)(y2Ξ3~+2M2a2y2).S_{NG}=-\frac{1}{2\pi\alpha^{\prime}}\frac{\kappa}{\Xi^{3/2}}\int d\tau\sqrt{(1+\ell^{2}y^{2})\left(y^{2}\Xi^{3}\tilde{\mathcal{M}}+\frac{2M\mathcal{M}^{2}a^{2}}{y^{2}}\right)-2M\tilde{\mathcal{M}}-\frac{\dot{y}^{2}_{\tau}}{\kappa^{2}f(y)}\left(y^{2}\Xi^{3}\tilde{\mathcal{M}}+\frac{2M\mathcal{M}^{2}a^{2}}{y^{2}}\right)}. (4.10)

The canonical momentum corresponding to (4.7) is

Π=y˙(2a2M2+~Ξ3y4)κΞ3/2yf(y)(1+2y2)(2a2M2+~Ξ3y4)2M~y2y˙2(2a2M2+~Ξ3y4)κ2f(y).\Pi=-\frac{\dot{y}(2a^{2}M\mathcal{M}^{2}+\tilde{\mathcal{M}}\Xi^{3}y^{4})}{\kappa\Xi^{3/2}yf(y)\sqrt{(1+\ell^{2}y^{2})(2a^{2}M\mathcal{M}^{2}+\tilde{\mathcal{M}}\Xi^{3}y^{4})-2M\tilde{\mathcal{M}}y^{2}-\frac{\dot{y}^{2}\left(2a^{2}M\mathcal{M}^{2}+\tilde{\mathcal{M}}\Xi^{3}y^{4}\right)}{\kappa^{2}f(y)}}}. (4.11)

and the first integral related to (4.7) is given by

=κ((~Ξ3y4+2a2M2)(1+2y2)2M~y2)Ξ3/2y(1+2y2)(2a2M2+~Ξ3y4)2M~y2y˙2(2a2M2+~Ξ3y4)f(y)κ2.\mathcal{H}=-\frac{\kappa\left((\tilde{\mathcal{M}}\Xi^{3}y^{4}+2a^{2}M\mathcal{M}^{2})(1+\ell^{2}y^{2})-2M\tilde{\mathcal{M}}y^{2}\right)}{\Xi^{3/2}y\sqrt{(1+\ell^{2}y^{2})(2a^{2}M\mathcal{M}^{2}+\tilde{\mathcal{M}}\Xi^{3}y^{4})-2M\tilde{\mathcal{M}}y^{2}-\frac{\dot{y}^{2}\left(2a^{2}M\mathcal{M}^{2}+\tilde{\mathcal{M}}\Xi^{3}y^{4}\right)}{f(y)\kappa^{2}}}}. (4.12)

It is convenient to pass to a new variable333Comment on the change of the variable ξ=𝐟(y)𝑑y\xi=\int\mathbf{f}(y)dy \Rightarrow ξ=𝐅(y)\xi=\mathbf{F}(y) \Rightarrow ξ=𝐅(y(τ))\xi=\mathbf{F}(y(\tau)) \Rightarrow ξ˙=𝐅yy˙\dot{\xi}=\frac{\partial\mathbf{F}}{\partial y}\dot{y} \Rightarrow ξ=𝐟(y)y˙\xi=\mathbf{f}(y)\dot{y}.

ξ=dyκf(y)(y2Ξ3~+2M2a2y2)(1+2y2)(y2Ξ3~+2M2a2y2)2M~.\xi=\int\frac{dy}{\sqrt{\kappa f(y)}}\sqrt{\frac{(y^{2}\Xi^{3}\tilde{\mathcal{M}}+\frac{2M\mathcal{M}^{2}a^{2}}{y^{2}})}{(1+\ell^{2}y^{2})(y^{2}\Xi^{3}\tilde{\mathcal{M}}+\frac{2M\mathcal{M}^{2}a^{2}}{y^{2}})-2M\tilde{\mathcal{M}}}}. (4.13)

In terms of the ξ\xi-variable (4.13) the string Lagrangian (4.7) significantly simplifies

Lsg(ξ)Ξ3/21ξ˙2,L_{s}\sim\frac{g(\xi)}{\Xi^{3/2}}\sqrt{1-\dot{\xi}^{2}}, (4.14)

where the function g(ξ)g(\xi) is defined as

g(ξ)=(1+2y2)(y2Ξ3~+2M2a2y2)2M~.g(\xi)=\sqrt{(1+\ell^{2}y^{2})\Bigl{(}y^{2}\Xi^{3}\tilde{\mathcal{M}}+\frac{2M\mathcal{M}^{2}a^{2}}{y^{2}}\Bigr{)}-2M\tilde{\mathcal{M}}}. (4.15)

The Hamiltonian and the canonical momenta take the form, correspondingly

ξ=g(ξ)Ξ3/21ξ˙2,Πξ=g(ξ)ξ˙Ξ3/21ξ˙2\mathcal{H}_{\xi}=-\frac{g(\xi)}{\Xi^{3/2}\sqrt{1-\dot{\xi}^{2}}},\quad\Pi_{\xi}=-\frac{g(\xi)\dot{\xi}}{\Xi^{3/2}\sqrt{1-\dot{\xi}^{2}}} (4.16)

Then the system can be described as

ξ=Πξ2+Vξ,\mathcal{H}_{\xi}=\sqrt{\Pi^{2}_{\xi}+V_{\xi}}, (4.17)

where the potential is given by

Vξ=g(ξ)2Ξ3.V_{\xi}=\frac{g(\xi)^{2}}{\Xi^{3}}. (4.18)

The behaviour of the potential VV (4.18) is presented in Fig. 2. In Fig. 2 a) and b) we show the potential for the fixed mass of the black hole varying the rotational parameter, the case a) corresponds to a small rotational parameter, while b) is for a(0.5;0.97)a\in(0.5;0.97). We recall that a=1a=1 is a critical value of the rotational parameter for =1\ell=1. In Fig. 2 b) we observe a jump of the potential for a=0.97a=0.97.

Refer to caption
Refer to caption

a  Refer to captionRefer to captionb 
   
Refer to caption
Refer to captionc 

Figure 2: The dependence of the potential VV on the radial coordinate yy: a), b) we keep fixed the mass MM and vary the rotational parameter aa; c) keep fixed the rotational parameter aa and change the mass MM. We also keep mϕ=1m_{\phi}=1, mψ=2m_{\psi}=-2 and Θ=π/4\Theta^{*}=\pi/4.

The horizon of the black hole y+y_{+} and the boundary of the background can be considered as potential wells. So we can perform the Bohr-Sommerfeld analysis for the quantization. Then we have the following condition

(n+12)π=ξ1ξ2𝑑ξE2g(ξ)2α2Ξ3,(n+\frac{1}{2})\pi=\int^{\xi_{2}}_{\xi_{1}}d\xi\sqrt{E^{2}-\frac{g(\xi)^{2}}{\alpha^{\prime 2}\Xi^{3}}}, (4.19)

with the turning point ξ1,2\xi_{1,2}.

In terms of the holographic radial coordinate yy (4.19) takes the form

(n+12)π=y+y1Edyκf(y)(y2Ξ3~+2M2a2y2)(1+2y2)(y2Ξ3~+2M2a2y2)2M~×\displaystyle\left(n+\frac{1}{2}\right)\pi=\int^{y_{1}}_{y_{+}}\frac{Edy}{\sqrt{\kappa f(y)}}\sqrt{\frac{(y^{2}\Xi^{3}\tilde{\mathcal{M}}+\frac{2M\mathcal{M}^{2}a^{2}}{y^{2}})}{(1+\ell^{2}y^{2})(y^{2}\Xi^{3}\tilde{\mathcal{M}}+\frac{2M\mathcal{M}^{2}a^{2}}{y^{2}})-2M\tilde{\mathcal{M}}}}\times
1(1+2y2)(y2Ξ3~+2M2a2y2)2M~α2Ξ3E2\displaystyle\sqrt{1-\frac{(1+\ell^{2}y^{2})\Bigl{(}y^{2}\Xi^{3}\tilde{\mathcal{M}}+\frac{2M\mathcal{M}^{2}a^{2}}{y^{2}}\Bigr{)}-2M\tilde{\mathcal{M}}}{\alpha^{\prime 2}\Xi^{3}E^{2}}}
=Ey+y1𝑑yQ(y)(1κf(y)P(y)111B2Ξ3~P(y)κf(y)P(y)),\displaystyle=E\int^{y_{1}}_{y_{+}}dy\sqrt{Q(y)}\left(\frac{1}{\sqrt{\kappa f(y)}\sqrt{P(y)}}-\frac{1-\sqrt{1-\frac{1}{B^{2}\Xi^{3}\tilde{\mathcal{M}}}P(y)}}{\sqrt{\kappa f(y)}\sqrt{P(y)}}\right), (4.20)

where we define B=Eα~B=\frac{E\alpha^{\prime}}{\sqrt{\tilde{\mathcal{M}}}} and

P(y)\displaystyle P(y) =\displaystyle= (1+2y2)(y2Ξ3~+2M2a2y2)2M~,\displaystyle(1+\ell^{2}y^{2})\left(y^{2}\Xi^{3}\tilde{\mathcal{M}}+\frac{2M\mathcal{M}^{2}a^{2}}{y^{2}}\right)-2M\tilde{\mathcal{M}}, (4.21)
Q(y)\displaystyle Q(y) =\displaystyle= y2Ξ3~+2M2a2y2.\displaystyle y^{2}\Xi^{3}\tilde{\mathcal{M}}+\frac{2M\mathcal{M}^{2}a^{2}}{y^{2}}. (4.22)

We are not able to calculate eq. (4.20) exactly. However, supposing that the rotational parameter aa is small we can expand in series (4.20), then we get

(n+12)π=EκyHy~1𝑑y(112My2+2y211y2B2(1+2y22My2)12My2+2y2)+\displaystyle\left(n+\frac{1}{2}\right)\pi=\frac{E}{\sqrt{\kappa}}\int^{\tilde{y}_{1}}_{y_{H}}dy\left(\frac{1}{1-\frac{2M}{y^{2}}+\ell^{2}y^{2}}-\frac{1-\sqrt{1-\frac{y^{2}}{B^{2}}(1+\ell^{2}y^{2}-\frac{2M}{y^{2}})}}{1-\frac{2M}{y^{2}}+\ell^{2}y^{2}}\right)+ (4.23)
2~y2((52y21)y2B2(22y21)(1+2y22My2))32(2M+y4B2(1+2y22My2)2)2κ~y6(2y22My2+1)21y2B2(2y2+12My2)a2M.\displaystyle\frac{2\tilde{\mathcal{M}}y^{2}((5\ell^{2}y^{2}-1)-\frac{y^{2}}{B^{2}}(2\ell^{2}y^{2}-1)(1+\ell^{2}y^{2}-\frac{2M}{y^{2}}))-3\mathcal{M}^{2}(2M+\frac{y^{4}}{B^{2}}(1+\ell^{2}y^{2}-\frac{2M}{y^{2}})^{2})}{2\sqrt{\kappa}\tilde{\mathcal{M}}y^{6}(\ell^{2}y^{2}-\frac{2M}{y^{2}}+1)^{2}\sqrt{1-\frac{y^{2}}{B^{2}}(\ell^{2}y^{2}+1-\frac{2M}{y^{2}})}}a^{2}M.

In eq. (4.23) we observe the contribution

h(y)=12My2+2y2,h(y)=1-\frac{2M}{y^{2}}+\ell^{2}y^{2}, (4.24)

which is nothing but the blackenning function of the AdS-Schwarzschild black hole, i.e. the black hole without rotation. The horizon yHy_{H} for the the AdS-Schwarzschild black hole is defined as a root of the equation h(y)=0h(y)=0, i.e.

yH=112(1+1+8M2).y_{H}=\frac{1}{\ell}\sqrt{\frac{1}{2}\Bigr{(}1+\sqrt{1+8M\ell^{2}}\Bigr{)}}. (4.25)

It is worth to note that the quantities h(y)h(y) (4.24) and yHy_{H} (4.25) related to the non-rotating AdS black hole appear due to expanding around a small rotational parameter aa.

Integrating the first term in the integral (4.23) we get

EκyHy~1𝑑y112My2+2y2=Eκ1+82M1tanh1(2y1+82M1)21+82M|yHy~1\displaystyle\frac{E}{\sqrt{\kappa}}\int^{\tilde{y}_{1}}_{y_{H}}dy\frac{1}{1-\frac{2M}{y^{2}}+\ell^{2}y^{2}}=-\frac{E}{\sqrt{\kappa}}\frac{\sqrt{\sqrt{1+8\ell^{2}M}-1}\tanh^{-1}\left(\frac{\sqrt{2}\ell y}{\sqrt{\sqrt{1+8\ell^{2}M}-1}}\right)}{\ell\sqrt{2}\sqrt{1+8\ell^{2}M}}\Big{|}^{\tilde{y}_{1}}_{y_{H}} (4.26)
+Eκ2Mtan1(2y1+82M+1)1+82M1+82M1|yHy~1.\displaystyle+\frac{E}{\sqrt{\kappa}}\frac{2\sqrt{M}\tan^{-1}\left(\frac{\sqrt{2}\ell y}{\sqrt{\sqrt{1+8\ell^{2}M}+1}}\right)}{\sqrt{1+8\ell^{2}M}\sqrt{\sqrt{1+8\ell^{2}M}-1}}\Big{|}^{\tilde{y}_{1}}_{y_{H}}.

In the case of large energies B1B\cdot\ell\gg 1 eq.(4.26) can be approximated as follows

yHy~1𝑑y112My2+2y2π212M31B3.\int^{\tilde{y}_{1}}_{y_{H}}dy\frac{1}{1-\frac{2M}{y^{2}}+\ell^{2}y^{2}}\approx\frac{\pi}{2}\sqrt{\frac{1}{\sqrt{2M}\ell^{3}}}-\sqrt{\frac{1}{B\ell^{3}}}. (4.27)

The second integral (4.1) can be calculated easily in terms of a new variable y=rB/y=r\sqrt{B/\ell}

yHy1𝑑y11y2B2(1+2y22My2)1+y222My2\displaystyle\int^{y_{1}}_{y_{H}}dy\frac{1-\sqrt{1-\frac{y^{2}}{B^{2}}\left(1+\ell^{2}y^{2}-\frac{2M}{y^{2}}\right)}}{1+y^{2}\ell^{2}-\frac{2M}{y^{2}}} \displaystyle\rightarrow 13B01drr2(11r4)\displaystyle\sqrt{\frac{1}{\ell^{3}B}}\int^{1}_{0}\frac{dr}{r^{2}}(1-\sqrt{1-r^{4}}) (4.28)
=\displaystyle= 13B(1+(2π)3/2Γ(14)2).\displaystyle\sqrt{\frac{1}{\ell^{3}B}}\left(-1+\frac{(2\pi)^{3/2}}{\Gamma(\frac{1}{4})^{2}}\right).

Applying the same procedure to the third integral (4.1), in the limit of large BB we get

y+y~𝑑y2~y2((52y21)y2B2(22y21)(1+2y22My2))32(2M+y4B2(1+2y22My2)2)2~y6(2y22My2+1)21y2B2(2y2+12My2)a2M\displaystyle\int^{\tilde{y}}_{y_{+}}dy\frac{2\tilde{\mathcal{M}}y^{2}((5\ell^{2}y^{2}-1)-\frac{y^{2}}{B^{2}}(2\ell^{2}y^{2}-1)(1+\ell^{2}y^{2}-\frac{2M}{y^{2}}))-3\mathcal{M}^{2}(2M+\frac{y^{4}}{B^{2}}(1+\ell^{2}y^{2}-\frac{2M}{y^{2}})^{2})}{2\tilde{\mathcal{M}}y^{6}(\ell^{2}y^{2}-\frac{2M}{y^{2}}+1)^{2}\sqrt{1-\frac{y^{2}}{B^{2}}(\ell^{2}y^{2}+1-\frac{2M}{y^{2}})}}a^{2}M (4.29)
=\displaystyle= B5/2Ma201𝑑r(2r21r45r61r4+322~r21r4)\displaystyle-\frac{\sqrt{\ell}}{B^{5/2}}Ma^{2}\int^{1}_{0}dr\left(\frac{2}{r^{2}\sqrt{1-r^{4}}}-\frac{5}{r^{6}\sqrt{1-r^{4}}}+\frac{3\mathcal{M}^{2}}{2\tilde{\mathcal{M}}r^{2}\sqrt{1-r^{4}}}\right)
=\displaystyle= B5/2(2π3/2Γ(14)2+3π2Γ(34)2~Γ(14))Ma2.\displaystyle-\frac{\sqrt{\ell}}{B^{5/2}}\left(\frac{\sqrt{2}\pi^{3/2}}{\Gamma(\frac{1}{4})^{2}}+\frac{3\sqrt{\pi}\mathcal{M}^{2}\Gamma(\frac{3}{4})}{2\tilde{\mathcal{M}}\Gamma(\frac{1}{4})}\right)Ma^{2}.

Combining together (4.27),(4.28) and (4.29) we get for Bohr-Sommerfeld quantisation condition

(n+12)π13/2κ(π2E(2M)1/2(2π)3/2Γ(14)2(~E)1/2(α)1/22π~5/4α5/2E3/2(2πΓ(14)2+32Γ(34)2~Γ(14))Ma2).(n+\frac{1}{2})\pi\approx\frac{1}{\ell^{3/2}\sqrt{\kappa}}\left(\frac{\pi}{2}\frac{E}{(\sqrt{2M})^{1/2}}-\frac{(2\pi)^{3/2}}{\Gamma(\frac{1}{4})^{2}}\frac{(\tilde{\mathcal{M}}E)^{1/2}}{(\alpha^{\prime})^{1/2}}-\frac{\ell^{2}\sqrt{\pi}\tilde{\mathcal{M}}^{5/4}}{\alpha^{5/2}E^{3/2}}\left(\frac{\sqrt{2}\pi}{\Gamma(\frac{1}{4})^{2}}+\frac{3\mathcal{M}^{2}\Gamma(\frac{3}{4})}{2\tilde{\mathcal{M}}\Gamma(\frac{1}{4})}\right)Ma^{2}\right). (4.30)

In (4.30) we can recognize the result for the energy from [12] if one sends aa to 0.

4.2 WKB approximation

4.2.1 Derivation of the Hamiltonian

As in the previous section the string dynamics is governed by the Nambu-Goto action (4.1) with the induced metric (4.2). The first ingredient towards finding the spectrum is to make a pullback of the line element of the metric of the 5d Kerr-AdS background (2) to the subspace, where string dynamics takes place. In this section one can consider more general ansatz than (3.20) and (4.3), such as

Θξ1=ξ1(τ),yξ2=ξ2(τ),\displaystyle\Theta\equiv\,\xi_{1}=\xi_{1}(\tau)\,,\,y\equiv\,\xi_{2}=\xi_{2}(\tau)\,, (4.31)
TX0=x0(τ)+m0σ,x0(τ)=κτ,m0=0,\displaystyle T\equiv\,X_{0}=x_{0}(\tau)+m_{0}\sigma,\qquad x_{0}(\tau)=\kappa\tau,\qquad m_{0}=0\,, (4.32)
ΦX1=m1σ+x1(τ),ΨX2=m2σ+x2(τ).\displaystyle\Phi\equiv\,X_{1}=m_{1}\sigma+x_{1}(\tau)\,,\quad\Psi\equiv\,X_{2}=m_{2}\sigma+x_{2}(\tau)\,. (4.33)

For convenience, we use the following notations of the Kerr-AdS metric (2)

ds2=i,j=12gijdξidξj+k,p=02G^kpdXkdXp,ds^{2}=\sum\limits_{i,j=1}^{2}g_{ij}d\xi_{i}d\xi_{j}\,+\,\sum\limits_{k,p=0}^{2}\hat{G}_{kp}dX_{k}dX_{p}\,, (4.34)

where the following quantities have been defined

(gij)=(GΘΘ00Gyy),i,j=1,2,\left(g_{ij}\right)=\left(\begin{matrix}G_{\Theta\Theta}&0\\ 0&G_{yy}\end{matrix}\right)\,,\qquad i,j=1,2\,, (4.35)
(G^kp)=(GTTGTΦGTΨGTΦGΦΦGΦΨGTΨGΦΨGΨΨ),k,p=0,1,2,\left(\hat{G}_{kp}\right)=\left(\begin{matrix}G_{TT}&G_{T\Phi}&G_{T\Psi}\\ G_{T\Phi}&G_{\Phi\Phi}&G_{\Phi\Psi}\\ G_{T\Psi}&G_{\Phi\Psi}&G_{\Psi\Psi}\end{matrix}\right)\,,\qquad k,p=0,1,2\,, (4.36)

and the submatrix

(g^kp)=(GΦΦGΦΨGΦΨGΨΨ),k,p=1,2.\left(\hat{g}_{kp}\right)=\left(\begin{matrix}G_{\Phi\Phi}&G_{\Phi\Psi}\\ G_{\Phi\Psi}&G_{\Psi\Psi}\end{matrix}\right)\,,\qquad k,p=1,2\,. (4.37)

We note, that for the inverse of (g^kp)\left(\hat{g}_{kp}\right) matrix, we find

(g^kp)=(y4Ξ3+2a2Mcos2Θy2sin2Θ(y4Ξ3+2a2M)2a2My2(y4Ξ3+2a2M)2a2My2(y4Ξ3+2a2M)y4Ξ3+2a2Msin2Θy2cos2Θ(y4Ξ3+2a2M)),k,p=1,2.\left(\hat{g}^{kp}\right)=\left(\begin{matrix}\frac{y^{4}\Xi^{3}+2a^{2}M\cos^{2}\Theta}{y^{2}\sin^{2}\Theta\,(y^{4}\Xi^{3}+2a^{2}M)}&-\,\frac{2a^{2}M}{y^{2}\,(y^{4}\Xi^{3}+2a^{2}M)}\\ -\,\frac{2a^{2}M}{y^{2}\,(y^{4}\Xi^{3}+2a^{2}M)}&\frac{y^{4}\Xi^{3}+2a^{2}M\sin^{2}\Theta}{y^{2}\cos^{2}\Theta\,(y^{4}\Xi^{3}+2a^{2}M)}\end{matrix}\right)\,,\qquad k,p=1,2\,. (4.38)

The components of the induced metric on the worldsheet:

dsws2=(i,j=12gijξ˙iξ˙j+k,p=02G^kpx˙kx˙p)dτ2+(k,p=02G^kpmkmp)dσ2++2(k,p=02G^kpmkx˙p)dτdσ.ds^{2}_{ws}=\left(\sum\limits_{i,j=1}^{2}g_{ij}\,\dot{\xi}_{i}\dot{\xi}_{j}+\sum\limits_{k,p=0}^{2}\hat{G}_{kp}\,\dot{x}_{k}\dot{x}_{p}\right)d\tau^{2}+\left(\sum\limits_{k,p=0}^{2}\hat{G}_{kp}\,m_{k}m_{p}\right)\,d\sigma^{2}+\\ +2\left(\sum\limits_{k,p=0}^{2}\hat{G}_{kp}\,m_{k}\dot{x}_{p}\right)\,d\tau d\sigma\,. (4.39)

The Nambu-Goto action (4.1) with (4.2) becomes

SNG=1α𝑑τ(k,p=12G^kpmkx˙p+k=12G^k0mkκ)2+m2(i,j=12gijξ˙iξ˙j+k,p=12g^kpx˙kx˙p+G^00κ2+2k=12G^0kκx˙k)¯,S_{NG}=-\,\dfrac{1}{\alpha^{\prime}}\int\,d\tau\,\sqrt{\left(\sum\limits_{k,p=1}^{2}\hat{G}_{kp}\,m_{k}\dot{x}_{p}+\sum\limits_{k=1}^{2}\hat{G}_{k0}\,m_{k}\,\kappa\right)^{2}+\,\,}\\ \overline{\,\,-\left\|\vec{m}\right\|^{2}\,\left(\sum\limits_{i,j=1}^{2}g_{ij}\,\dot{\xi}_{i}\dot{\xi}_{j}+\sum\limits_{k,p=1}^{2}\hat{g}_{kp}\,\dot{x}_{k}\dot{x}_{p}+\hat{G}_{00}\,\kappa^{2}+2\,\sum\limits_{k=1}^{2}\hat{G}_{0k}\,\kappa\dot{x}_{k}\right)\,\,}\,, (4.40)

where 1/α=λ1/\alpha^{\prime}=\sqrt{\lambda} is the ’t Hooft coupling constant and

m2=k,h=02G^khmkmh=k,h=12G^kh(ξ1,ξ2)mkmhk,h=12g^kh(ξ1,ξ2)mkmh> 0.\displaystyle\left\|\vec{m}\right\|^{2}=\sum\limits_{k,h=0}^{2}\hat{G}_{kh}m_{k}m_{h}=\sum\limits_{k,h=1}^{2}\hat{G}_{kh}(\xi_{1},\xi_{2})m_{k}m_{h}\equiv\sum\limits_{k,h=1}^{2}\hat{g}_{kh}(\xi_{1},\xi_{2})m_{k}m_{h}\,>\,0\,. (4.41)

The problem reduces again to the dynamics of an effective point-particle with Lagrangian

Leff=λ(k,p=12g^kpmkx˙p+k=12G^k0mkκ)2m2(i,j=12gijξ˙iξ˙j++k,p=12g^kpx˙kx˙p+G^00κ2+2k=12G^0kκx˙k)¯.L_{eff}=-\,\sqrt{\lambda}\,\sqrt{\left(\sum\limits_{k,p=1}^{2}\hat{g}_{kp}\,m_{k}\dot{x}_{p}+\sum\limits_{k=1}^{2}\hat{G}_{k0}\,m_{k}\,\kappa\right)^{2}-\left\|\vec{m}\right\|^{2}\,\left(\sum\limits_{i,j=1}^{2}g_{ij}\,\dot{\xi}_{i}\dot{\xi}_{j}+\,\,\right.}\\ \overline{\left.\,\,+\sum\limits_{k,p=1}^{2}\hat{g}_{kp}\,\dot{x}_{k}\dot{x}_{p}+\hat{G}_{00}\,\kappa^{2}+2\,\sum\limits_{k=1}^{2}\hat{G}_{0k}\,\kappa\dot{x}_{k}\right)\,\,}\,. (4.42)

For convenience we will use the shorthand notation

(k,p=12g^kpmkx˙p+k=12G^k0mkκ)2m2(i,j=12gijξ˙iξ˙j++k,p=12g^kpx˙kx˙p+G^00κ2+2k=12G^0kκx˙k)¯.\sqrt{\left(\sum\limits_{k,p=1}^{2}\hat{g}_{kp}\,m_{k}\dot{x}_{p}+\sum\limits_{k=1}^{2}\hat{G}_{k0}\,m_{k}\,\kappa\right)^{2}-\left\|\vec{m}\right\|^{2}\,\left(\sum\limits_{i,j=1}^{2}g_{ij}\,\dot{\xi}_{i}\dot{\xi}_{j}+\,\,\right.}\\ \overline{\left.\,\,+\sum\limits_{k,p=1}^{2}\hat{g}_{kp}\,\dot{x}_{k}\dot{x}_{p}+\hat{G}_{00}\,\kappa^{2}+2\,\sum\limits_{k=1}^{2}\hat{G}_{0k}\,\kappa\dot{x}_{k}\right)\,\,}\,\equiv\,\sqrt{......\,\,}\,. (4.43)

As before, it is useful to consider the Hamiltonian formulation of the problem. To this end, we have to calculate the canonical momenta

Πξi\displaystyle\Pi_{\xi_{i}} =Leffξ˙i=λm2gijξ˙j,\displaystyle=\frac{\partial L_{eff}}{\partial\dot{\xi}_{i}}=\sqrt{\lambda}\,\dfrac{\left\|\vec{m}\right\|^{2}g_{ij}\,\dot{\xi}_{j}}{\sqrt{......\,\,}}\,, (4.44)
Πxp\displaystyle\Pi_{x_{p}} =Leffx˙p=λm2g^pqx˙q(g^kqmkx˙q)g^pqmq+m2G^p0κ(G^k0mkκ)g^pqmq,\displaystyle=\frac{\partial L_{eff}}{\partial\dot{x}_{p}}=\sqrt{\lambda}\,\dfrac{\,\left\|\vec{m}\right\|^{2}\hat{g}_{pq}\,\dot{x}_{q}-(\hat{g}_{kq}\,m_{k}\dot{x}_{q})\,\hat{g}_{pq}\,m_{q}+\left\|\vec{m}\right\|^{2}\hat{G}_{p0}\,\kappa-(\hat{G}_{k0}\,m_{k}\kappa)\,\hat{g}_{pq}\,m_{q}\,}{\sqrt{......\,\,}}\,, (4.45)

which also implies the constraint

p=12mpΠxp=0.\sum\limits_{p=1}^{2}m_{p}\,\Pi_{x_{p}}=0. (4.46)

Applying a Legendre transformation, it is straightforward to find the (square of) the pulsating string Hamiltonian

H2=κ2(l,s=12G^0lg^lsΠxs)2+κ2(G^00+l,s=12G^0lg^lsG^s0){i,j=12ΠξigijΠξj+i,j=12Πxig^ijΠxj+λm2}.H^{2}=\kappa^{2}\,\left(\sum\limits_{l,s=1}^{2}\hat{G}_{0l}\,\hat{g}^{ls}\,\Pi_{x_{s}}\right)^{2}+\\ -\kappa^{2}\,\left(\hat{G}_{00}+\sum\limits_{l,s=1}^{2}\hat{G}_{0l}\,\hat{g}^{ls}\,\hat{G}_{s0}\right)\,\left\{\sum\limits_{i,j=1}^{2}\Pi_{\xi_{i}}\,g^{ij}\,\Pi_{\xi_{j}}+\sum\limits_{i,j=1}^{2}\Pi_{x_{i}}\,\hat{g}^{ij}\,\Pi_{x_{j}}+\lambda\,\left\|\vec{m}\right\|^{2}\right\}\,. (4.47)

The explicit expressions for the terms in the brackets are

l,s=12G^0lg^lsΠxs=h2(y)(Πx1+Πx2)\sum\limits_{l,s=1}^{2}\hat{G}_{0l}\,\hat{g}^{ls}\,\Pi_{x_{s}}\,=\,-\,h_{2}(y)\,\left(\Pi_{x_{1}}+\Pi_{x_{2}}\right) (4.48)

and

G^00+l,s=12G^0lg^lsG^s0=y2Ξ32aMh1(y)h2(y)h1(y)y2Ξ3K2(y),\hat{G}_{00}+\sum\limits_{l,s=1}^{2}\hat{G}_{0l}\,\hat{g}^{ls}\,\hat{G}_{s0}\,=\,-\,\frac{y^{2}\Xi^{3}-2aM\,h_{1}(y)\,h_{2}(y)}{h_{1}(y)\,y^{2}\Xi^{3}}\,\equiv\,-\,K^{2}(y)\,, (4.49)

where

h1(y)=y2Ξ32M+y2(1+2y2)Ξ3,h2(y)=2aM2a2M+y4Ξ3.h_{1}(y)\,=\,\frac{y^{2}\Xi^{3}}{-2M+y^{2}(1+\ell^{2}y^{2})\Xi^{3}}\,,\qquad h_{2}(y)\,=\,\frac{2aM}{2a^{2}M+y^{4}\Xi^{3}}\,. (4.50)

The expression of H2H^{2} can be conveniently written

H2κ2=K2(y){i,j=12ΠξigijΠξj+i,j=12Πxi[h22(y)K2(y)δ^ij+g^ij]Πxj+λm2},\frac{H^{2}}{\kappa^{2}}\,=\,K^{2}(y)\left\{\sum\limits_{i,j=1}^{2}\Pi_{\xi_{i}}\,g^{ij}\,\Pi_{\xi_{j}}+\sum\limits_{i,j=1}^{2}\Pi_{x_{i}}\,\left[\frac{h_{2}^{2}(y)}{K^{2}(y)}\,\hat{\delta}^{ij}+\hat{g}^{ij}\right]\,\Pi_{x_{j}}+\lambda\,\left\|\vec{m}\right\|^{2}\right\}\,, (4.51)

where

(δ^ij)=(1111),i,j=1,2.\left(\hat{\delta}^{ij}\right)\,=\,\left(\begin{matrix}1&1\\ 1&1\end{matrix}\right)\,,\,\,i,j=1,2\,. (4.52)

It should be noted here that the above Hamiltonian (4.47) can be considered as the effective Hamiltonian of an effective point-particle on the Kerr-AdS background. The last term

λκ2m2(G^00+l,s=12G^0lg^lsG^s0)λκ2m2K2(y)λU(Θ,y),-\lambda\,\kappa^{2}\,\left\|\vec{m}\right\|^{2}\,\left(\hat{G}_{00}+\sum\limits_{l,s=1}^{2}\hat{G}_{0l}\,\hat{g}^{ls}\,\hat{G}_{s0}\right)\,\equiv\,\lambda\,\kappa^{2}\,\left\|\vec{m}\right\|^{2}\,K^{2}(y)\,\equiv\,\lambda\,U(\Theta,\,y)\,, (4.53)

serves as an effective potential, which encodes the relevant dynamics of the strings.
In the context of the holographic correspondence, the potential is very small comparing to the kinetic part. Therefore, we can calculate quantum corrections to the energy by making use of the perturbation theory.

4.2.2 Laplace-Beltrami operator and wave function

The standard Laplace-Beltrami operator in the AdS coordinates for the 5d Kerr-AdS (2) is

KerrAdS(5)=GTT2T2+2GTΦ(Ψ)T(Φ+Ψ)+GΦΦ2Φ2+2GΦΨ2ΦΨ+GΨΨ2Ψ2++1detGΘ(detGGΘΘΘ)++1detGy(detGGyyy).\bigtriangleup^{(5)}_{Kerr-AdS}\,=\,G^{TT}\frac{\partial^{2}}{\partial T^{2}}+2\,G^{T\Phi(\Psi)}\frac{\partial}{\partial T}\left(\frac{\partial}{\partial\Phi}+\frac{\partial}{\partial\Psi}\right)+G^{\Phi\Phi}\frac{\partial^{2}}{\partial\Phi^{2}}+2\,G^{\Phi\Psi}\frac{\partial^{2}}{\partial\Phi\partial\Psi}+G^{\Psi\Psi}\frac{\partial^{2}}{\partial\Psi^{2}}+\\ +\frac{1}{\sqrt{-\det G}}\,\frac{\partial}{\partial\Theta}\left(\sqrt{-\det G\,}\,G^{\Theta\Theta}\,\frac{\partial}{\partial\Theta}\right)++\frac{1}{\sqrt{-\det G}}\,\frac{\partial}{\partial y}\left(\sqrt{-\det G\,}\,G^{yy}\,\frac{\partial}{\partial y}\right)\,. (4.54)

In the notations of Appendix A (see (A.1) and (A.5)), we have

KerrAdS(5)=h1(y)2T22h1(y)h2(y)T(Φ+Ψ)+1y2ah2(y)(Φ+Ψ)2+1y2sin2Θ2Φ2+1y2cos2Θ2Ψ2++1y21sin(2Θ)Θ(sin(2Θ)Θ)+1h(y)y(h(y)Gyyy),\bigtriangleup^{(5)}_{Kerr-AdS}\,=\,-h_{1}(y)\,\frac{\partial^{2}}{\partial T^{2}}-2\,h_{1}(y)\,h_{2}(y)\,\frac{\partial}{\partial T}\left(\frac{\partial}{\partial\Phi}+\frac{\partial}{\partial\Psi}\right)+\\ -\,\frac{1}{y^{2}}a\,h_{2}(y)\,\left(\frac{\partial}{\partial\Phi}+\frac{\partial}{\partial\Psi}\right)^{2}+\frac{1}{y^{2}\sin^{2}\Theta}\,\frac{\partial^{2}}{\partial\Phi^{2}}+\frac{1}{y^{2}\cos^{2}\Theta}\,\frac{\partial^{2}}{\partial\Psi^{2}}+\\ +\frac{1}{y^{2}}\,\frac{1}{\sin(2\Theta)}\frac{\partial}{\partial\Theta}\left(\sin(2\Theta)\,\frac{\partial}{\partial\Theta}\right)+\frac{1}{\sqrt{h(y)\,}}\,\frac{\partial}{\partial y}\left(\sqrt{h(y)\,}\,G^{yy}\,\frac{\partial}{\partial y}\right)\,, (4.55)

where h1(y)h_{1}(y) and h2(y)h_{2}(y) are given by (4.50).

To obtain the wave function, we have to solve the equation

KerrAdS(5)F(T,Θ,y,Φ,Ψ)= 0,\bigtriangleup^{(5)}_{Kerr-AdS}\,F(T,\,\Theta,\,y,\,\Phi,\,\Psi)\,=\,0\,, (4.56)

using separation of variables

F(T,Θ,y,Φ,Ψ)=eiETein1Φein2Ψf(Θ,y),n1,n2.F(T,\,\Theta,\,y,\,\Phi,\,\Psi)\,=\,e^{-iE\,T}\,e^{in_{1}\Phi}\,e^{in_{2}\Psi}\,f(\Theta,\,y)\,,\qquad n_{1},\,n_{2}\,\in\mathbb{Z}\,. (4.57)

Substituting (4.57) in to the equation (4.56), we find the following partial differential equation for f(Θ,y)\,f(\Theta,\,y)\,

E2h1(y)f2h1(y)h2(y)E(n1+n2)f+1y2ah2(y)(n1+n2)2f+1y2(n12sin2Θ+n22cos2Θ)f+1y21sin(2Θ)Θ(sin(2Θ)fΘ)++1h(y)y(h(y)Gyyfy)= 0.E^{2}\,h_{1}(y)\,f-2h_{1}(y)h_{2}(y)\,E\,(n_{1}+n_{2})\,f+\frac{1}{y^{2}}\,ah_{2}(y)\,(n_{1}+n_{2})^{2}\,f+\\ -\frac{1}{y^{2}}\,\left(\frac{n_{1}^{2}}{\sin^{2}\Theta}+\frac{n_{2}^{2}}{\cos^{2}\Theta}\right)\,f+\frac{1}{y^{2}}\,\frac{1}{\sin(2\Theta)}\frac{\partial}{\partial\Theta}\left(\sin(2\Theta)\,\frac{\partial f}{\partial\Theta}\right)+\\ +\frac{1}{\sqrt{h(y)\,}}\,\frac{\partial}{\partial y}\left(\sqrt{h(y)\,}\,G^{yy}\,\frac{\partial f}{\partial y}\right)\,=\,0\,. (4.58)

We can further separate the variables defining f(Θ,y)=f(Θ)Y(y)\,f(\Theta,\,y)\,=\,f(\Theta)\,Y(y)\,.

4.2.3 Solving the Schrödinger equation on the reduced subspace y=consty=const

In the subsection (3.2), we obtain an explicit pulsating solution (3.49) in the case for the string winding numbers satisfy m12=m22m2\,m_{1}^{2}=m_{2}^{2}\equiv\,m^{2}\, and y=const 0\,y=const\neq\,0\,.
In this case, taking into account (4.46), for the first term of the Hamiltonian (4.47), we have

(l,s=12G^0lg^lsΠxs)2=h22(y)(Πx1+Πx2)2= 0.\left(\sum\limits_{l,s=1}^{2}\hat{G}_{0l}\,\hat{g}^{ls}\,\Pi_{x_{s}}\right)^{2}\,=\,h^{2}_{2}(y)\,\left(\Pi_{x_{1}}+\Pi_{x_{2}}\right)^{2}\,=\,0\,. (4.59)

Moreover, all functions of yy are constants and

G^00+l,s=12G^0lg^lsG^s0=y2Ξ32aMh1(y)h2(y)h1(y)y2Ξ3K2=const,\hat{G}_{00}+\sum\limits_{l,s=1}^{2}\hat{G}_{0l}\,\hat{g}^{ls}\,\hat{G}_{s0}\,=\,-\frac{y^{2}\Xi^{3}-2aM\,h_{1}(y)\,h_{2}(y)}{h_{1}(y)\,y^{2}\Xi^{3}}\,\equiv\,-K^{2}=const\,, (4.60)

where h1h_{1} and h2h_{2} (4.50) are taken to be constant. Therefore, the square of the Hamiltonian (4.47) has the form

H2=κ2K2{ΠΘgΘΘΠΘ+i,j=12Πxig^ijΠxj+λm2}.H^{2}=\,\kappa^{2}\,K^{2}\,\left\{\Pi_{\Theta}\,g^{\Theta\Theta}\,\Pi_{\Theta}+\sum\limits_{i,j=1}^{2}\Pi_{x_{i}}\,\hat{g}^{ij}\,\Pi_{x_{j}}+\lambda\,\left\|\vec{m}\right\|^{2}\right\}\,. (4.61)

We observe that H2H^{2} looks like a point-particle Hamiltonian, which seems to be characteristic feature for pulsating strings in holography. The last term,

λκ2K2m2λU(Θ)\lambda\,\kappa^{2}\,K^{2}\left\|\vec{m}\right\|^{2}\,\equiv\,\lambda\,U(\Theta) (4.62)

serves as an effective potential, which encodes the relevant dynamics of the strings.
In the context of holographic correspondence, the potential is very small compared to the kinetic part. Therefore, we can calculate quantum corrections to the energy using perturbation theory.

Wave functions

The kinetic term of the Hamiltonian (4.61) can be considered as a three dimensional Laplace-Beltrami operator of the Kerr-AdS subspace with y=consty=const

P2={ΠΘgΘΘΠΘ+i,j=12Πxig^ijΠxj}KerrAdS(3),\vec{P}^{2}\,=\,\left\{\Pi_{\Theta}\,g^{\Theta\Theta}\,\Pi_{\Theta}+\sum\limits_{i,j=1}^{2}\Pi_{x_{i}}\,\hat{g}^{ij}\,\Pi_{x_{j}}\right\}\,\,\longrightarrow\,\,\bigtriangleup^{(3)}_{Kerr-AdS}\,, (4.63)

which defines the eigen-functions of the Hamiltonian, satisfying the following Schrödinger equation

KerrAdS(3)F=E2κ2K2F.\bigtriangleup^{(3)}_{Kerr-AdS}\,F\,=\,-\,\frac{E^{2}}{\kappa^{2}\,K^{2}}\,F\,. (4.64)

Comparing it with the equation (4.58), we notice that it corresponds to taking n1=n2n,nn_{1}=-n_{2}\equiv\,n\,,\,\,n\in\mathbb{Z}\,. Thus, we can write the equation (4.64) in the form 444In this case, the solution of the below equation can be written directly in terms of Shifted Legendre polynomials, but below we will follow the more general procedure.

{1y21sinΘcosΘΘ(sinΘcosΘΘ)n2y21sin2Θcos2Θ+E2κ2K2}F(Θ)= 0.\left\{\frac{1}{y^{2}}\,\frac{1}{\sin\Theta\,\cos\Theta}\,\frac{\partial}{\partial\Theta}\left(\sin\Theta\,\cos\Theta\,\frac{\partial}{\partial\Theta}\right)-\frac{n^{2}}{y^{2}}\,\frac{1}{\sin^{2}\Theta\,\cos^{2}\Theta}+\frac{E^{2}}{\kappa^{2}\,K^{2}}\right\}\,F(\Theta)\,=\,0\,. (4.65)

Since in this case the potential λU\,\lambda\,U is a constant, the corresponding Schrödinger equation can be easily solved. The eigenvalue problem for the Hamilton (square of) operator is exactly solvable.
The last term in the equation (4.65) is shifted with a constant and can be written as

{1sinθθ(sinθθ)n2sin2θ+y2(Efull2+λU)4κ2K2}F(θ)= 0,θ 2Θ.\left\{\frac{1}{\sin\theta}\,\frac{\partial}{\partial\theta}\left(\sin\theta\,\frac{\partial}{\partial\theta}\right)-\frac{n^{2}}{\sin^{2}\theta}+\frac{y^{2}\,(E_{full}^{2}+\lambda\,U)}{4\,\kappa^{2}\,K^{2}}\right\}\,F(\theta)\,=\,0\,,\qquad\theta\equiv\,2\Theta\,. (4.66)

As far as, we want square integrable eigenfunctions with a discrete spectrum, the solution of the above equation can be directly written in terms of Shifted Legendre polynomials

F(θ)Pnk(cosθ),knk,k.F(\theta)\,\sim\,P_{n}^{k}(\cos\theta)\,,\,\,-k\,\leq\,n\,\leq\,k\,,\,\,k\in\mathbb{N}\,. (4.67)

The discrete spectrum is determined by

y2(Efull2+λU)4κ2K2=k(k+1).\frac{y^{2}\,(E_{full}^{2}+\lambda\,U)}{4\,\kappa^{2}\,K^{2}}\,=\,k(k+1)\,. (4.68)

Below we will follow slightly more general procedure, which is also valid for non-constant potentials.
To this end it is convenient to define a new variable z=sin2Θ,  0z 1z=\sin^{2}\Theta\,,\,\,0\leq\,z\,\leq\,1\,. Then the equation (4.65) can be written as

{d2dz2+(12z)z(1z)ddzN2z2(1z)2+E^2z(1z)}F(z)= 0,\left\{\frac{d^{2}}{dz^{2}}+\frac{(1-2z)}{z(1-z)}\,\frac{d}{dz}-\frac{N^{2}}{z^{2}(1-z)^{2}}+\frac{\hat{E}^{2}}{z(1-z)}\right\}\,F(z)\,=\,0\,, (4.69)

where N=n24\,N=\frac{n^{2}}{4}\, and E^2=y2E2κ2K2\,\hat{E}^{2}\,=\,\frac{y^{2}\,E^{2}}{\kappa^{2}\,K^{2}}\,.
The general solution is the following linear combination

F(z)=C1zN(1z)NF12[2N+12+121+4E^2, 2N+12121+4E^2; 1+2N;z]++C2zN(1z)NF12[12+121+4E^2,12121+4E^2; 12N;z].F(z)=C_{1}\,z^{N}\,(1-z)^{N}\,{{}_{2}F_{1}}\left[2N+\frac{1}{2}+\frac{1}{2}\,\sqrt{1+4\hat{E}^{2}}\,,\,2N+\frac{1}{2}-\frac{1}{2}\,\sqrt{1+4\hat{E}^{2}}\,;\,1+2N\,;\,z\right]+\\ +C_{2}\,z^{-N}\,(1-z)^{N}\,{{}_{2}F_{1}}\left[\frac{1}{2}+\frac{1}{2}\,\sqrt{1+4\hat{E}^{2}}\,,\,\frac{1}{2}-\frac{1}{2}\,\sqrt{1+4\hat{E}^{2}}\,;\,1-2N\,;\,z\right]\,. (4.70)

Since the second term is singular at zero, we set C2=0\,C_{2}=0\,, and the solution satisfying the boundary conditions is

F(z)=CzN(1z)NF12[2N+12+121+4E^2, 2N+12121+4E^2; 1+2N;z].F(z)=C\,z^{N}\,(1-z)^{N}\,{{}_{2}F_{1}}\left[2N+\frac{1}{2}+\frac{1}{2}\,\sqrt{1+4\hat{E}^{2}}\,,\,2N+\frac{1}{2}-\frac{1}{2}\,\sqrt{1+4\hat{E}^{2}}\,;\,1+2N\,;\,z\right]\,. (4.71)

In addition, we have to ensure that the solutions F(Θ)F(\Theta) are square integrable with respect to the measure Θ\Theta (respectively zz). The integrability condition leads to the following restriction on the parameters

2N+12121+4E^2=k,k.2N+\frac{1}{2}-\frac{1}{2}\,\sqrt{1+4\hat{E}^{2}}\,=\,-k\,,\qquad k\in\mathbb{N}\,. (4.72)

This requirement imposes energy quantization:

E2=κ2K24y2[(4N+1+k)21].E^{2}\,=\,\kappa^{2}\,\frac{K^{2}}{4y^{2}}\,\left[(4N+1+k)^{2}-1\right]. (4.73)

The condition (4.72) converts the solution (4.71) in terms of Jacobi ortogonal polynomials (in this case the solution of the equation can also be written directly in terms of Shifted Legendre polynomials)

F(z)=Czα/2(1z)β/2k!Γ(α+1)Γ(α+1+k)Pk(α,β)(12z),k,F(z)=\,C\,z^{\alpha/2}\,(1-z)^{\beta/2}\,\dfrac{k!\,\Gamma(\alpha+1)}{\Gamma(\alpha+1+k)}P^{(\alpha,\beta)}_{k}(1-2z)\,,\qquad k\in\mathbb{N}\,, (4.74)

where α=β= 2Nn22,n\,\alpha=\beta\,=\,2N\equiv\,\frac{n^{2}}{2}\,,\,\,n\in\mathbb{Z}\,. It is more convenient to work in terms of u 12z,1u 1\,u\equiv\,1-2z\,,\,\,-1\leq\,u\,\leq\,1\,

Fk,n(u)=C(1u2)α/2(1u2)α/2k!Γ(α+1)Γ(α+1+k)Pk(α,β)(u),1u 1.F_{k,n}(u)=\,C\,\left(\frac{1-u}{2}\right)^{\alpha/2}\,\left(\frac{1-u}{2}\right)^{\alpha/2}\,\dfrac{k!\,\Gamma(\alpha+1)}{\Gamma(\alpha+1+k)}P^{(\alpha,\beta)}_{k}(u)\,,\,\,-1\leq\,u\,\leq\,1\,\,. (4.75)

Then with respect to the measure

dΩ=detG(4)dΘdΦdΨ=h1h22aMΞ3y2du4dΦdΨ,d\Omega=\,\sqrt{-\det G^{(4)}}\,d\Theta\,d\Phi\,d\Psi\,=\,-\,\sqrt{\frac{h_{1}\,h_{2}}{2aM\Xi^{3}\,y^{2}}}\,\,\frac{du}{4}\,d\Phi\,d\Psi, (4.76)

we find that the normalized wave function is

fk,n(u)=(2α+1+2k)k!Γ(2α+1+k)2α1Γ(α+1+k)Γ(α+1+k)(1u)α/2(1+u)α/2Pk(α,α)(u).f_{k,n}(u)=\,\sqrt{\frac{(2\alpha+1+2k)\,k!\,\Gamma(2\alpha+1+k)}{2^{\alpha-1}\,\Gamma(\alpha+1+k)\,\Gamma(\alpha+1+k)}}\,(1-u)^{\alpha/2}\,(1+u)^{\alpha/2}P^{(\alpha,\alpha)}_{k}(u)\,. (4.77)

Finally, the total free wave functions have the form

fk,ntot(u,Φ,Ψ)=\displaystyle f^{tot}_{k,n}(u,\,\Phi,\,\Psi)=\, (2α+1+2k)k!Γ(2α+1+k)ω(y) 2α1Γ(α+1+k)Γ(α+1+k)×\displaystyle\sqrt{\frac{(2\alpha+1+2k)\,k!\,\Gamma(2\alpha+1+k)}{\,\omega(y)\,2^{\alpha-1}\,\Gamma(\alpha+1+k)\,\Gamma(\alpha+1+k)}}\,\times
×(1u)α/2(1+u)α/2Pk(α,α)(u)einΦeinΨ.\displaystyle\times\,(1-u)^{\alpha/2}\,(1+u)^{\alpha/2}P^{(\alpha,\alpha)}_{k}(u)\,e^{in\Phi}\,e^{-in\Psi}\,. (4.78)

The next step is to calculate perturbatively the corrections to the energy of the free ground states.

Leading correction to the energy

Perurbatively, the first correction to the energy reads

δE2=λfk,ntot|U|fk,ntot=λ1102π02π|fk,ntot(u,Φ,Ψ)|2U(u,Φ,Ψ)𝑑Ω(u,Φ,Ψ).\delta E^{2}=\,\lambda\,\langle\,f^{tot}_{k,n}\,|\,U\,|\,f^{tot}_{k,n}\,\rangle=\lambda\int\limits_{\!\!\!\!\!-1}^{1}\!\int\limits_{0}^{2\pi}\!\int\limits_{0}^{2\pi}\,\left|f^{tot}_{k,n}(u,\,\Phi,\,\Psi)\right|^{2}\,\,U(u,\,\Phi,\,\Psi)\,\,d\Omega(u,\,\Phi,\,\Psi)\,. (4.79)

Let us remind the form of the potential (4.62)

U(Θ)=κ2K2m2=κ2K2k,h=12g^kh(y,Θ)mkmh.U(\Theta)\,=\,\kappa^{2}\,K^{2}\left\|\vec{m}\right\|^{2}\,=\,\kappa^{2}\,K^{2}\,\sum\limits_{k,h=1}^{2}\hat{g}_{kh}(y,\,\Theta)m_{k}m_{h}\,. (4.80)

Since for y=const\,y=const\,, the value of m2\,\left\|\vec{m}\right\|^{2}\, is also a constant, the potential is

U=κ2K2m2(y2+2a2My2Ξ3)=const.U\,=\,\kappa^{2}\,K^{2}\,m^{2}\,\left(y^{2}+\frac{2a^{2}M}{y^{2}\Xi^{3}}\right)=const\,. (4.81)

Using the scalar product (4.79), one can easily compute the first correction to the energy

δE2=λfk,ntot|U|fk,ntot=λUfk,ntot|fk,ntot=λU=κ2K2m2(y2+2a2My2Ξ3).\delta E^{2}=\,\lambda\,\langle\,f^{tot}_{k,n}\,|\,U\,|\,f^{tot}_{k,n}\,\rangle=\,\lambda\,U\,\langle\,f^{tot}_{k,n}\,|\,f^{tot}_{k,n}\,\rangle\,=\,\lambda\,U\,=\,\kappa^{2}\,K^{2}\,m^{2}\,\left(y^{2}+\frac{2a^{2}M}{y^{2}\Xi^{3}}\right)\,. (4.82)

According to the standard holographic dictionary, the anomalous dimension of the corresponding dual operators are directly related to the corrections of the string energy. The interpretation of results from the holographic point of view is not straightforward since the dual theory is at finite temperature. Nevertheless, near or at conformal point the expressions can be thought of as the dispersion relations of stationary states.

5 Conclusions

In this paper, we have explored pulsating strings in the 5d Kerr-AdS black hole. The holographic dual for the Kerr-AdS5AdS_{5} black hole is 𝒩=4\mathcal{N}=4 SYM on 𝕊1×𝕊3\mathbb{S}^{1}\times\mathbb{S}^{3} at finite temperature (a thermal ensemble). For simplicity we have focused on the Kerr-AdS5AdS_{5} background with equal rotating parameters in the static-at-infinity frame. We have found exact solutions describing pulsating strings in the Kerr-AdS5AdS_{5} background. To construct this we have reduced the string Lagrangian to an effective model of a mechanical particle with a potential. We have shown that the corresponding equations of motions can be solved in terms of quadratures. The periodicity of the string solutions are guaranteed by certain constraints on the parameters of the original model. Thus the pulsating string solutions oscillate between two turning points, which are above the horizon. It worth to be noted that, these solution are the first pulsating string solutions in the Kerr-AdS5AdS_{5} black holes.

Moreover, we have computed the energy of the pulsating string the Kerr-AdS5AdS_{5} background following the Bohr-Sommerfeld analysis. We have found corrections related to the rotation and temperature of the black hole. At zero value of the rotational parameter the relation for the energy tends to be known from [12].

In this paper we picked the asymptotically AdS black hole in five dimensions, Kerr-AdS, which possesses SO(4)SO(4) symmetry. If the space-time is only asymptotically anti-de Sitter it corresponds to UV conformal fixed points in the boundary theory. Compared to AdS case the IR behavior is expected to be quite different, with the horizon now playing the role of a thermal background. The holographic interpretation of the space-time conserved quantities however is not unique. It essentially depends on the choice of the conformal structure of the asymptotic metric at the boundary. As we already mentioned in the bulk text, the notion of anomalous dimensions is well defined only in the vicinity of the conformal point. This makes the interpretation from holographic point of view somewhat complicated and subtle. One way to make sense of the expressions is to consider two-point function, or scalar bulk-to-bulk Green’s functions and see its behavior when one of the insertions is approaching the boundary. Indeed, one can see the considerations near conformal point are quite reasonable, thus the expressions can be interpreted as dispersion relations of stationary states in the gauge theory side.

Thinking about more general picture of the Kerr-AdS/CFT correspondence, many issues remain to be investigated and understood. In this paper we made some approximations to find the corrections to the string energy. It will be also interesting to consider other holographic observables, i.e. thermal nn-point correlation functions, in the Kerr-AdS5AdS_{5} background as it was done for non-rotating AdS black holes [37]-[46]. Particularly, to probe holographic four-point functions one needs to study a motion of a highly energetic particle in the 5d Kerr-AdS black hole [39]-[42].

Kerr-AdS black holes are remarkable with that its wave equation allows separation of variables. The radial and angular equations are of Fuchsian type and analyzing structure of singularities can be reduced to Heun type. Thus, it is literally calling to apply method from integrable systems and Riemann-Hilbert problem. Indeed, the authors of [48] have shown that the monodromy problem of the Heun equation is related to the connection problem for the Painleve VI and conformal blocks in 2d CFT, in particular Liouville field theory. Applying such an approach to scattering off black holes the authors of [49] have found that for generic charges the problem can be reduced to the Painleve VI transcendent. Moreover, the accessory parameters are expressed through the charges. For the 5d case of the Kerr-AdS black holes scalar perturbations it was shown that corrections to the extremal limit can be encoded in the monodromy parameters of the Painlevé V transcendent [50]-[53]. Pulsating strings approach also relates dispersion relations to conserved charges, as well as field theory characteristics. It would be very interesting to investigate how and why all these quatities are related. Is there any relation to Alday-Gaiotto-Tachikawa conjecture?

We hope to return to these issues in the near future.

Acknowledgements

A.G., R.R. and H.D. would like to thank Alexey Isaev and Sergey Krivonos for insightful discussions. A.G. is also grateful to I.Ya. Aref’eva for useful discussions. H. D. would like also to thank T. Vetsov for discussions on various issues of holography. The work of R.R. and H.D. is partially supported by the Program “JINR– Bulgaria” at Bulgarian Nuclear Regulatory Agency. The work of R.R. and H.D. was also supported in part by BNSF H-28/5. The work of A.G. is supported by Russian Science Foundation grant 20-12-00200.

Appendix A The geometric characteristics of the metric

A.1 Non-zero mertic components of Kerr-AdS5AdS_{5}

The metric components of the Kerr-AdS black hole metric (2) are given by

GTT\displaystyle G_{TT} =\displaystyle= (1+y2l22My2Ξ3),Gyy=y4y4(1+y22)2MΞ2y2+2Ma2Ξ3,GΘΘ=y2,\displaystyle-(1+y^{2}l^{2}-\frac{2M}{y^{2}\Xi^{3}}),\quad G_{yy}=\frac{y^{4}}{y^{4}(1+y^{2}\ell^{2})-\frac{2M}{\Xi^{2}}y^{2}+\frac{2Ma^{2}}{\Xi^{3}}},\quad G_{\Theta\Theta}=y^{2},
GΦΦ\displaystyle G_{\Phi\Phi} =\displaystyle= sin2Θ(y2+2a2My2Ξ3sin2Θ),GΨΨ=cos2Θ(y2+2a2Mcos2Θy2Ξ3),\displaystyle\sin^{2}\Theta\left(y^{2}+\frac{2a^{2}M}{y^{2}\Xi^{3}}\sin^{2}\Theta\right),\quad G_{\Psi\Psi}=\cos^{2}\Theta\left(y^{2}+\frac{2a^{2}M\cos^{2}\Theta}{y^{2}\Xi^{3}}\right), (A.1)
GTΦ\displaystyle G_{T\Phi} =\displaystyle= GΦT=2aMsin2Θy2Ξ3,GTΨ=GΨT=2aMcos2Θy2Ξ3,\displaystyle G_{\Phi T}=-\frac{2aM\sin^{2}\Theta}{y^{2}\Xi^{3}},\quad G_{T\Psi}=G_{\Psi T}=-\frac{2aM\cos^{2}\Theta}{y^{2}\Xi^{3}},
GΦΨ\displaystyle G_{\Phi\Psi} =\displaystyle= GΨΦ=2Ma2sin2Θcos2ΘΞ3y2.\displaystyle G_{\Psi\Phi}=\frac{2Ma^{2}\sin^{2}\Theta\cos^{2}\Theta}{\Xi^{3}y^{2}}.

The inverse non-zero components of the 5d Kerr-AdS metric (2)

GTT\displaystyle G^{TT} =\displaystyle= y2Ξ32M+y2(1+2y2)Ξ3,GΘΘ=1y2,\displaystyle-\frac{y^{2}\Xi^{3}}{-2M+y^{2}(1+\ell^{2}y^{2})\Xi^{3}},\quad G^{\Theta\Theta}=\frac{1}{y^{2}},
GTΦ\displaystyle G^{T\Phi} =\displaystyle= 2aMy2Ξ3(2a2M+y4Ξ3)(2My2(1+2y2)Ξ3)=GTΨ,\displaystyle\frac{2aMy^{2}\Xi^{3}}{(2a^{2}M+y^{4}\Xi^{3})(2M-y^{2}(1+\ell^{2}y^{2})\Xi^{3})}\,=\,G^{T\Psi},
GΦΦ\displaystyle G^{\Phi\Phi} =\displaystyle= 1y2(2a2M2a2M+y4Ξ3+1sin2Θ),GΨΨ=1y2(2a2M2a2M+y4Ξ3+1cos2Θ),\displaystyle\frac{1}{y^{2}}\left(-\frac{2a^{2}M}{2a^{2}M+y^{4}\Xi^{3}}+\frac{1}{\sin^{2}\Theta}\right),\,G^{\Psi\Psi}=\frac{1}{y^{2}}\left(-\frac{2a^{2}M}{2a^{2}M+y^{4}\Xi^{3}}+\frac{1}{\cos^{2}\Theta}\right),
GΦΨ\displaystyle G^{\Phi\Psi} =\displaystyle= 2a2M2a2My2+y6Ξ3,Gyy=1+2y2+2M(a2y2Ξ)y4Ξ3.\displaystyle-\frac{2a^{2}M}{2a^{2}My^{2}+y^{6}\Xi^{3}},\quad G^{yy}=1+\ell^{2}y^{2}+\frac{2M(a^{2}-y^{2}\Xi)}{y^{4}\Xi^{3}}\,. (A.2)

The determinant of the metric reads

detG=y4(2a2M+y4Ξ3)(2My2(1+2y2)Ξ3)sin2(2Θ)4Ξ3(2a2M2My2Ξ+y4(1+2y2)Ξ3).\displaystyle\det G=\frac{y^{4}(2a^{2}M+y^{4}\Xi^{3})(2M-y^{2}(1+\ell^{2}y^{2})\Xi^{3})\sin^{2}(2\Theta)}{4\Xi^{3}(2a^{2}M-2My^{2}\Xi+y^{4}(1+\ell^{2}y^{2})\Xi^{3})}\,. (A.3)

In terms h1(y)=y2Ξ32M+y2(1+2y2)Ξ3,h2(y)=2aM2a2M+y4Ξ3\,\,h_{1}(y)\,=\,\frac{y^{2}\Xi^{3}}{-2M+y^{2}(1+\ell^{2}y^{2})\Xi^{3}}\,,\,\,h_{2}(y)\,=\,\frac{2aM}{2a^{2}M+y^{4}\Xi^{3}}\,\, we can rewrite the inverse non-zero components of the 5d Kerr-AdS metric

GTT\displaystyle G^{TT} =\displaystyle= h1(y),GΘΘ=1y2,\displaystyle-h_{1}(y)\,,\quad G^{\Theta\Theta}=\frac{1}{y^{2}}\,,
GTΦ\displaystyle G^{T\Phi} =\displaystyle= h1(y)h2(y)=GTΨ,\displaystyle-h_{1}(y)\,h_{2}(y)=G^{T\Psi}\,, (A.4)
GΦΦ\displaystyle G^{\Phi\Phi} =\displaystyle= 1y2(ah2(y)+1sin2Θ),GΨΨ=1y2(ah2(y)+1cos2Θ)\displaystyle\frac{1}{y^{2}}\left(-a\,h_{2}(y)+\frac{1}{\sin^{2}\Theta}\right),\quad G^{\Psi\Psi}=\frac{1}{y^{2}}\left(-a\,h_{2}(y)+\frac{1}{\cos^{2}\Theta}\right)\,
GΦΨ\displaystyle G^{\Phi\Psi} =\displaystyle= 1y2ah2(y),Gyy=1+2y2+2M(a2y2Ξ)y4Ξ3\displaystyle-\frac{1}{y^{2}}\,a\,h_{2}(y)\,,\quad G^{yy}=1+\ell^{2}y^{2}+\frac{2M(a^{2}-y^{2}\Xi)}{y^{4}\Xi^{3}}\,

and the determinant of the metric reads

detG=aMy62h1(y)h2(y)[2a2M2My2Ξ+y4(1+2y2)Ξ3]sin2(2Θ)h(y)sin2(2Θ).\det G=\,-\,\frac{aM\,y^{6}}{2h_{1}(y)\,h_{2}(y)\,\left[2a^{2}M-2My^{2}\Xi+y^{4}(1+\ell^{2}y^{2})\Xi^{3}\right]}\,\sin^{2}(2\Theta)\,\equiv\,-\,h(y)\,\sin^{2}(2\Theta)\,. (A.5)

A.2 Roots of the blackening function

The horizon for the Kerr-AdS5AdS_{5} black hole is defined as the greatest root to the equation

1+y222MΞ2y2+2Ma2Ξ3y4=0.1+y^{2}\ell^{2}-\frac{2M}{\Xi^{2}y^{2}}+\frac{2Ma^{2}}{\Xi^{3}y^{4}}=0. (A.6)

There are 6 roots for it, namely,

y+=Ξ332M𝐪𝐩3+(332M𝐪𝐩)2/3+62M+Ξ232Ξ332M𝐪𝐩3\displaystyle y_{+}=\sqrt{\frac{-\Xi\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}+(3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p})^{2/3}+6\ell^{2}M+\Xi^{2}}{3\ell^{2}\Xi\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}}}
y2=Ξ332M𝐪𝐩3+(332M𝐪𝐩)2/3+62M+Ξ232Ξ332M𝐪𝐩3,\displaystyle y_{2}=-\sqrt{\frac{-\Xi\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}+(3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p})^{2/3}+6\ell^{2}M+\Xi^{2}}{3\ell^{2}\Xi\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}}},
y1=2Ξ332M𝐪𝐩3(1+i3)(332M𝐪𝐩)2/3+6i(3+i)2M+i(3+i)Ξ262Ξ332M𝐪𝐩3,\displaystyle y_{1}^{*}=-\sqrt{\frac{-2\Xi\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}-(1+i\sqrt{3})(3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p})^{2/3}+6i(\sqrt{3}+i)\ell^{2}M+i(\sqrt{3}+i)\Xi^{2}}{6\ell^{2}\Xi\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}}},
y2=2Ξ332M𝐪𝐩3(1+i3)(332M𝐪𝐩)2/3+6i(3+i)2M+i(3+i)Ξ262Ξ332M𝐪𝐩3,\displaystyle y_{2}^{*}=\sqrt{\frac{-2\Xi\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}-(1+i\sqrt{3})(3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p})^{2/3}+6i(\sqrt{3}+i)\ell^{2}M+i(\sqrt{3}+i)\Xi^{2}}{6\ell^{2}\Xi\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}}},
y3=i(332M𝐪𝐩3+Ξ)((3+i)332M𝐪𝐩3(3i)Ξ)6(1+i3)2M62Ξ332M𝐪𝐩3,\displaystyle y_{3}^{*}=-\sqrt{\frac{i(\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}+\Xi)((\sqrt{3}+i)\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}-(\sqrt{3}-i)\Xi)-6(1+i\sqrt{3})\ell^{2}M}{6\ell^{2}\Xi\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}}},
(A.12)
y4=i(332M𝐪𝐩3+Ξ)((3+i)332M𝐪𝐩3(3i)Ξ)6(1+i3)2M62Ξ332M𝐪𝐩3,\displaystyle y_{4}^{*}=\sqrt{\frac{i(\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}+\Xi)((\sqrt{3}+i)\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}-(\sqrt{3}-i)\Xi)-6(1+i\sqrt{3})\ell^{2}M}{6\ell^{2}\Xi\sqrt[3]{3\sqrt{3}\ell^{2}\sqrt{M\mathbf{q}}-\mathbf{p}}}},

where we define

𝐩=27a24M+92MΞ+Ξ3,𝐪=27a44M+2a2(92MΞ+Ξ3)M(82M+Ξ2)\mathbf{p}=27a^{2}\ell^{4}M+9\ell^{2}M\Xi+\Xi^{3},\quad\mathbf{q}=27a^{4}\ell^{4}M+2a^{2}(9\ell^{2}M\Xi+\Xi^{3})-M(8\ell^{2}M+\Xi^{2}) (A.13)

References

  • [1] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253–291, [arXiv:hep-th/9802150].
  • [2] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2 (1998) 505–532, [arXiv:hep-th/9803131].
  • [3] S.W.Hawking, C.J.Hunter and M.Taylor-Robinson, Rotation and the AdS/CFT correspondence, Phys.Rev. D 59 (1999) 064005; [arXiv:hep-th/9811056].
  • [4] S.W. Hawking and H.S. Reall, Charged and rotating AdS black holes and their CFT duals, Phys.Rev. D 61 (2000) 024014; [arXiv:hep-th/9908109].
  • [5] A. Nata Atmaja and K. Schalm, Anisotropic Drag Force from 4D Kerr-AdS Black Holes, JHEP 1104 (2011) 070; [arXiv:1012.3800 [hep-th]]
  • [6] H. Bantilan, T. Ishii and P. Romatschke, Holographic Heavy-Ion Collisions: Analytic Solutions with Longitudinal Flow, Elliptic Flow and Vorticity, Phys. Lett. B 785, 201 (2018); [arXiv:1803.10774[nucl-th]].
  • [7] M. Garbiso and M. Kaminski, Hydrodynamics of simply spinning black holes & hydrodynamics for spinning quantum fluids, JHEP 12 (2020), 112; [arXiv:2007.04345[hep-th]].
  • [8] I. Aref’eva, A. Golubtsova and E. Gourgoulhon, On the Drag Force of a Heavy Quark via 5d Kerr-AdS Background, Phys. Part. Nucl. 51 (2020) no.4, 535-539.
  • [9] I. Ya. Aref’eva, A.A. Golubtsova and E. Gourgoulhon, Holographic drag force in 5d Kerr-AdS black hole, JHEP 04 (2021) 169 [arXiv:2004.12984[hep-th]].
  • [10] A.A. Golubtsova, E. Gourgoulhon and M.K. Usova, Heavy quarks in rotating plasma via holography, Nucl.Phys. B 979 (2022) 115786; [arXiv:2107.11672[hep-th]].
  • [11] A. Armoni, J. L. F. Barbon, A. C. Petkou, Orbiting strings in AdS black holes and N=4 SYM at finite temperature, JHEP 0206 (2002) 058; arXiv:hep-th/0205280].
  • [12] M. Alishahiha and A. E. Mosaffa, Circular semiclassical string solutions on confining AdS / CFT backgrounds, JHEP 10 (2002), 060; arXiv:hep-th/0210122].
  • [13] D. S. Berman, M. K. Parikh, Holography and Rotating AdS Black Holes, Phys.Lett. B463 (1999) 168-173, [hep-th/9907003].
  • [14] A. M. Awad, C. V. Johnson, Higher dimensional Kerr-AdS black holes and the AdS/CFT correspondence, Phys.Rev. D 61 (2001) 124023; [arXiv:hep-th/0008211].
  • [15] G. W. Gibbons, M. J. Perry and C. N. Pope, The First law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22, 1503 (2005); [arXiv:hep-th/0408217].
  • [16] I. Papadimitriou and K. Skenderis, Thermodynamics of Asymptotically Locally AdS Spacetimes, JHEP 0508 (2005)004 ; [arXiv:hep-th/0505190].
  • [17] A. M. Award, First Law, Counterterms and Kerr-AdS5 Black Holes, Int.J.Mod.Phys D 18 (2007); [arXiv:0708.3458 [hep-th]].
  • [18] R. C. Myers and M. J. Perry, Black Holes In Higher Dimensional Space-Times,Annals. Phys. 172 (1986) 304.
  • [19] J. Minahan, Circular Semiclassical String Solutions on AdS5×S5AdS_{5}\times S_{5}, Nucl.Phys. B 648 (2003) 203,[arXiv:hep-th/0209047].
  • [20] J. Engquist, J. A. Minahan and K. Zarembo, Yang-Mills duals for semiclassical strings on AdS5×S5AdS_{5}\times S^{5}, JHEP 11 (2003) 063, [arXiv:hep-th/0310188].
  • [21] H. Dimov and R. C. Rashkov, Generalized pulsating strings, JHEP 05 (2004) 068, [arXiv:hep-th/0404012].
  • [22] M. Smedback, Pulsating strings on AdS5×S5AdS_{5}\times S^{5}, JHEP 07 (2004) 004, [arXiv:hep-th/0405102].
  • [23] A. Khan, A. L. Larsen,Spinning pulsating string solitons in AdS5×S5AdS_{5}\times S^{5}, Phys. Rev.D 69, 026001 (2004), [arXiv:hep-th/0310019].
  • [24] G. Arutyunov, J. Russo, A. A. Tseytlin, Spinning strings in AdS5×S5AdS_{5}\times S^{5}: New integrable system relations, Phys. Rev. D 69, 086009 (2004), [arXiv:hep-th/0311004].
  • [25] M. Kruczenski and A. A. Tseytlin, Semiclassical relativistic strings in S5S^{5} and long coherent operators in 𝒩=4\mathcal{N}=4 SYM theory, JHEP 0409, 038 (2004), [arXiv:hep-th/0406189].
  • [26] N. P. Bobev, H. Dimov and R. C. Rashkov, Pulsating strings in warped AdS6×S4AdS_{6}\times S^{4} geometry, [arXiv:hep-th/0410262].
  • [27] I. Y. Park, A. Tirziu and A. A. Tseytlin, Semiclassical circular strings in AdS5AdS_{5} and ’long’ gauge field strength operators, Phys. Rev. D 71, 126008 (2005), [arXiv:hep-th/0505130].
  • [28] H. J. de Vega, A. L. Larsen, N. G. Sanchez, Semiclassical quantization of circular strings in de Sitter and anti-de Sitter space-times, Phys. Rev. D51, 6917-6928 (1995), arXiv:hep-th/9410219].
  • [29] B. Chen and J. B. Wu, Semi-classical strings in AdS4×CP3AdS_{4}\times CP^{3}, JHEP 0809, 096 (2008), [arXiv:0807.0802 [hep-th]].
  • [30] H. Dimov and R. C. Rashkov, “On the pulsating strings in AdS4×CP3AdS_{4}\times CP3,” Adv. High Energy Phys. 2009, 953987 (2009), [arXiv:0908.2218 [hep-th]].
  • [31] D. Arnaudov, H. Dimov and R. C. Rashkov, On the pulsating strings in AdS5×T1,1AdS_{5}\times T^{1,1}, J. Phys. A 44, 495401 (2011), [arXiv:1006.1539 [hep-th]].
  • [32] D. Arnaudov, H. Dimov and R. C. Rashkov, On the pulsating strings in Sasaki-Einstein spaces, AIP Conf. Proc. 1301, 51 (2010), [arXiv:1007.3364 [hep-th]].
  • [33] M. Beccaria, G. V. Dunne, G. Macorini, A. Tirziu and A. A. Tseytlin, Exact computation of one-loop correction to energy of pulsating strings in AdS5×S5AdS_{5}\times S^{5}, J. Phys. A 44, 015404 (2011), [arXiv:1009.2318 [hep-th]].
  • [34] S. Giardino and V. O. Rivelles, Pulsating Strings in Lunin-Maldacena Backgrounds, JHEP 1107, 057 (2011), [arXiv:1105.1353 [hep-th]].
  • [35] P. M. Pradhan and K. L. Panigrahi, Pulsating Strings With Angular Momenta, Phys. Rev. D 88, 086005 (2013), [arXiv:1306.0457 [hep-th]].
  • [36] P. M. Pradhan, Oscillating Strings and Non-Abelian T-dual Klebanov-Witten Background, Phys. Rev. D 90, 046003 (2014), [arXiv:1406.2152 [hep-th]].
  • [37] P. Kraus, A. Sivaramakrishnan and R. Snively, Black holes from CFT: Universality of correlators at large c, JHEP 08 (2017), 084, [arXiv:1706.00771 [hep-th]].
  • [38] L. Iliesiu, M. Koloğlu, R. Mahajan, E. Perlmutter and D. Simmons-Duffin, The Conformal Bootstrap at Finite Temperature, JHEP 10 (2018), 070, [arXiv:1802.10266 [hep-th]].
  • [39] M. Kulaxizi, G. S. Ng and A. Parnachev, Black Holes, Heavy States, Phase Shift and Anomalous Dimensions, SciPost Phys. 6 (2019) no.6, 065, [arXiv:1812.03120 [hep-th]].
  • [40] A. L. Fitzpatrick and K. W. Huang, Universal Lowest-Twist in CFTs from Holography, JHEP 08 (2019), 138, [arXiv:1903.05306 [hep-th]].
  • [41] R. Karlsson, M. Kulaxizi, A. Parnachev and P. Tadić, Black Holes and Conformal Regge Bootstrap, JHEP 10 (2019), 046, [arXiv:1904.00060 [hep-th]].
  • [42] M. Kulaxizi, G. S. Ng and A. Parnachev, Subleading Eikonal, AdS/CFT and Double Stress Tensors, JHEP 10 (2019), 107, [arXiv:1907.00867 [hep-th]].
  • [43] L. F. Alday, M. Kologlu and A. Zhiboedov, Holographic Correlators at Finite Temperature, [arXiv:2009.10062 [hep-th]].
  • [44] M. Grinberg and J. Maldacena, Proper time to the black hole singularity from thermal one-point functions, JHEP 03 (2021), 131, [arXiv:2011.01004 [hep-th]].
  • [45] A. Parnachev and K. Sen, Notes on AdS-Schwarzschild eikonal phase, JHEP 03 (2021), 289, [arXiv:2011.06920 [hep-th]].
  • [46] R. Karlsson, A. Parnachev and P. Tadić, Thermalization in Large-N CFTs, [arXiv:2102.04953 [hep-th]].
  • [47] D. Rodriguez-Gomez and J. G. Russo, Correlation functions in finite temperature CFT and black hole singularities, JHEP 06 (2021), 048, [arXiv:2102.11891 [hep-th]].
  • [48] A. Litvinov, S. Lukyanov, N. Nekrasov and A. Zamolodchikov, Classical Conformal Blocks and Painleve VI, JHEP 07 (2014), 144, [arXiv:1309.4700 [hep-th]].
  • [49] F. Novaes and B. Carneiro da Cunha, Isomonodromy, Painlevé transcendents and scattering off of black holes, JHEP 07 (2014), 132, [arXiv:1404.5188 [hep-th]].
  • [50] J. B. Amado, B. Carneiro da Cunha and E. Pallante, On the Kerr-AdS/CFT correspondence, JHEP 08 (2017), 094, [arXiv:1702.01016 [hep-th]].
  • [51] J. Barragán Amado, B. Carneiro Da Cunha and E. Pallante, Scalar quasinormal modes of Kerr-AdS5, Phys. Rev. D 99 (2019) no.10, 105006, [arXiv:1812.08921 [hep-th]].
  • [52] J. B. Amado, B. Carneiro da Cunha and E. Pallante, Vector perturbations of Kerr-AdS5 and the Painlevé VI transcendent, JHEP 04 (2020), 155, [arXiv:2002.06108 [hep-th]].
  • [53] J. Barragán Amado, B. Carneiro da Cunha and E. Pallante, Remarks on holographic models of the Kerr-AdS5 geometry,” JHEP 05 (2021), 251, [arXiv:2102.02657 [hep-th]].