font=small \altaffiliationCurrent address: Department of Chemistry, Columbia University, New York, New York 10027, United States; dj2667@columbia.edu \alsoaffiliationMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States \alsoaffiliationThe Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, Israel 69978
Circumventing the Phonon Bottleneck by Multiphonon-Mediated Hot Exciton Cooling at the Nanoscale
Abstract
In semiconductor materials, hot exciton cooling is the process by which highly excited carriers nonradiatively relax to form a band edge exciton. While cooling plays an important role in determining the thermal losses and quantum yield of a system, the timescales and mechanism of cooling are not well understood in confined semiconductor nanocrystals (NCs). A mismatch between electronic energy gaps and phonon frequencies in NCs has led to the hypothesis of a phonon bottleneck, in which cooling would be extremely slow, while enhanced electron-hole interactions in NCs have been used to explain cooling that would occur on ultrafast timescales. Here, we develop an atomistic approach for describing phonon-mediated exciton dynamics, and we use it to simulate hot exciton cooling in NCs of experimentally relevant sizes. Our framework includes electron-hole correlations as well as multiphonon processes, both of which are necessary to accurately describe the cooling process. We find that cooling occurs on timescales of tens of femtoseconds in CdSe cores, in agreement with experimental measurements, through a cascade of relaxation events that are mediated by efficient multiphonon emission. Cooling timescales increase with increasing NC size due to decreased exciton-phonon coupling (EXPC), and they are an order of magnitude larger in CdSe-CdS core-shell NCs because of reduced EXPC to low- and mid-frequency acoustic modes.
keywords:
semiconductor nanocrystals, phonon bottleneck, hot exciton cooling, exciton-phonon dynamics, quantum dotsUnderstanding the mechanisms of nonradiative decay of electronic excited states in semiconductor nanocrystals (NCs) is key to developing NC-based technologies with decreased thermal losses and increased device efficiencies.1, 2, 3, 4, 5, 6 When a NC is excited by a photon with an energy larger than that of the NC band gap, the absorbed photon generates a highly excited electron-hole pair. The process by which these excited, or “hot”, carriers nonradiatively relax to form a band edge exciton is often referred to as 7, 8 “hot exciton cooling.” In bulk semiconductors, Fröhlich and deformation potential interactions between excitons and phonons as well as continuous densities of electronic and phonon states allow for efficient hot exciton cooling that occurs on timescales of 1 ps or less.9, 10, 11 However, in semiconductor NCs, confinement changes the nature of exciton-phonon coupling (EXPC) and leads to the discretization of both electronic and phonon states. These qualitative changes have led to open questions regarding the timescales and mechanisms of hot exciton cooling in confined semiconductor materials.12, 13, 7, 8
In a picture of non-interacting electrons and holes, the hot electron and hot hole would relax independently from one another. The hole, which has a heavier effective mass than the electron in most II-VI and III-V semiconductors, has a higher density of states with energy gaps that are on the order of the phonon frequencies in the system.14 Thus, resonance conditions required for hole relaxation via single phonon emission can be easily satisfied, and the hole can relax quickly to the band edge. The electron, however, has energy gaps, especially near the conduction band edge, that can be hundreds of meV, which is an order of magnitude larger than the typical optical phonon frequencies in the system.14 This energy mismatch has led to the hypothesis of a phonon bottleneck in NCs,15 where hot electron cooling via phonon emission would require a multiphonon process, as depicted in Fig. 1a. The simultaneous emission of tens of phonons would be inefficient,16 leading to very slow relaxation.

Experimental measurements of this cooling process in NCs rely on time-resolved spectroscopy, such as transient absorption, and have yielded conflicting results. Some experiments show slow relaxation that occurs on timescales of 10 ps or longer,17, 18, 19, 20, 21, 22, 23 which support the phonon bottleneck hypothesis. These measurements were primarily performed on larger, self-assembled III-V NCs,24 which are in the weak confinement regime and which tend to have many localized trap states associated with structural defects. Other experiments, especially on colloidal II-VI NCs in the strong confinement regime, have observed relaxation that occurs within hundreds of femtoseconds with carrier energy loss rates that are much faster than those of bulk carriers.25, 26, 27, 28, 29, 30, 31
This fast relaxation of strongly confined electron-hole pairs was attributed to an Auger-assisted cooling mechanism that circumvents the phonon bottleneck through Coulomb-mediated interactions between the electron and hole.32, 33 In this mechanism, illustrated schematically in Fig. 1b, the hot hole quickly relaxes to the band edge via phonon emission. Then, the hot electron relaxes to the band edge by nonradiatively re-exciting the hole in an Auger-like process, and finally the hole relaxes again. The Auger cooling mechanism has been supported by observations that relaxation is faster in smaller NCs,25, 26, 28, 34, 30 in which electron-hole correlations are larger and Auger rates are faster.35 Additionally, relaxation timescales increase drastically in NCs that are passivated with hole-accepting pyridine ligands,20, 27, 36 indicating that electron-hole correlations are important in the cooling mechanism. Other studies suggest that fast relaxation is due to efficient multiphonon emission28 or due to coupling of electrons and/or holes to the vibrational modes of surface passivating ligands.36, 31
While the Auger cooling mechanism provides an avenue for breaking the phonon bottleneck, it lacks essential physics for a complete description of hot exciton cooling in NCs. For example, electron-hole interactions, which are enhanced in confined semiconductors,14 are only considered perturbatively. Furthermore, the Auger cooling mechanism lacks the mechanistic details of the rapid hole relaxation and, for certain systems, 37, 31 may result in a hole phonon bottleneck when multiphonon relaxation pathways are assumed to be negligible.
The computational challenges 38, 39, 40, 41 associated with accurately calculating excitons and their phonon-mediated dynamics in systems with thousands of valence electrons and hundreds of atoms have made it difficult to delineate the mechanism of hot exciton cooling and its dependence on NC properties, such as size and material composition.7, 8 A fundamental understanding of this process may offer rational design principles for NCs with tuned cooling timescales that are optimized for different NC-based applications.12, 4, 23, 42
Here, we develop an atomistic theory to describe hot exciton cooling in II-VI NCs of experimentally relevant sizes. Our framework describes phonon-mediated transitions between excitonic states, which inherently include electron-hole correlations (Fig. 1c). Furthermore, we accurately describe the exciton-phonon couplings (EXPC) 43, 44 and include multiphonon-mediated excitonic transitions. We use a master equation approach, which assumes weak EXPC, to propagate exciton population dynamics.
The timescales and exciton decay mechanism emerge naturally in our approach. We find that cooling occurs on timescales of tens of femtoseconds in wurtzite CdSe NCs, in agreement with measurements,26, 30 and occurs an order of magnitude slower in wurtzite CdSe-CdS core-shell NCs due to the weaker EXPC in these systems. We show that this ultrafast timescale is governed by both electron-hole correlations and multiphonon emission processes, which are made efficient by the large number and quasi-continuous phonon modes in NCs. Our results are consistent with the picture emerging from the Auger-assisted relaxation mechanism, but, in addition, we attribute the lack of a phonon bottleneck to the important role of multiphonon emission processes.
1 Results and Discussion
1.1 Describing phonon-mediated exciton cooling
We adopt the following Hamiltonian to describe a manifold of excitonic states coupled to vibrational modes, with EXPC expanded to lowest order in the atomic displacements:43
(1) |
The excitonic energies, , and states, , as well as the EXPC matrix elements, , were calculated using the semiempirical pseudopotential method coupled with the Bethe-Salpeter equation (see Jasrasaria et al. 43, 14 and the SI for more details). Phonon modes and frequencies, , were obtained by diagonalizing the dynamical matrix computed using a previously-parameterized atomic force field.45

In Fig. 2a we show the density of excitonic states scaled by the oscillator strengths for a typical CdSe NC with a diameter of 3.9 nm as well as the corresponding linear absorption spectrum. We find that the underlying density of excitonic states is relatively high due to the dense spectrum of hole states. Some of these excitonic states correspond to bright transitions from the ground state with large oscillator strengths while others correspond to dim transitions for which the oscillator strengths are small. Note that we only show the bright/dim states, and the dark (forbidden) transitions are not shown. The linear absorption spectrum shows several distinct features, in agreement with experiments,26, 46 that are governed by a few excitonic transitions with large oscillator strengths. We label the main transitions as and , following the literature convention. With the dense manifold of excitonic states, the relaxation from the excitonic state, in which the exciton electron is primarily composed of -like, single-particle electron states, to the ground excitonic state, in which both the exciton electron and hole are primarily comprised of band edge single-particle states, should occur through a cascade of phonon-mediated transitions, where both bright and dim excitonic states are involved.
We first consider the limit of single-phonon processes. We focused on the population dynamics and computed the phonon-mediated transition rates between excitonic states and using Fermi’s golden rule, which assumes weak system-bath coupling and employs the Markovian approximation:
(2) |
where denotes an equilibrium average over bath coordinates. We computed these rates for all excitonic transitions and used them to build a kinetic master equation and propagate phonon-mediated exciton dynamics. We then calculated the average energy above equilibrium, , where is the population of state at time and is the population of state at thermal equilibrium.
Because Eq. (1) describes the EXPC to first order in the phonon mode coordinates, the Fermi’s golden rule rates given by Eq. (2) only account for excitonic transitions that occur via the absorption or emission of a single phonon. While the largest energy gaps between excitonic states are an order of magnitude smaller than those between single-particle, electron states, they can still be larger than the phonon frequencies. Thus, transitions between those excitonic states would require the simultaneous emission of multiple phonons. Indeed, single-phonon-mediated cooling simulations for CdSe NCs of different sizes shows a phonon bottleneck (Fig. 2b). This phonon bottleneck is especially significant in smaller NCs for which confinement results in larger excitonic energy gaps, particularly at low excitonic energies, preventing the hot exciton from fully relaxing to the band edge through single-phonon emission.
1.2 Multiphonon emission
To account for multiphonon processes and maintain the simplicity of the master equation, we performed a unitary polaron transformation 47, 48, 49, 50 to the Hamiltonian in Eq. (1):
(3) |
where
(4) |
and is the momentum of phonon mode . A detailed derivation and description of the polaron-transformed Hamiltonian and its consequences are given in the Supporting Information.
With respect to the polaron-transformed Hamiltonian, Fermi’s golden rule transition rates can be computed as
(5) |
where is the energy of exciton scaled by its reorganization energy, and is the coupling between the polaronic states and (see the SI for more details). The Markovian approximation is not necessarily valid for this polaron-transformed Hamiltonian, as described in the Methods, so we compute the time-dependent, non-Markovian rates. Again, we computed all transition rates to build a kinetic master equation and propagate dynamics. Within this framework, we calculate the average energy above thermal equilibrium as before; namely, as .
Note that includes exponential functions of the phonon momenta, so multiphonon-mediated transitions are accounted for even in the lowest-order perturbation theory rate given by Eq. (5). Including multiphonon processes enables transitions between excitonic states that have energy differences that are larger than the highest-frequency phonons. Multiphonon-mediated cooling simulations show that all NC systems fully relax to thermal equilibrium (Fig. 3a), indicating that multiphonon transitions involving a few phonon modes are essential to the cooling mechanism. Furthermore, the average energy relaxes within 100 fs, much faster within the single-phonon scheme.

Examining the transition rate as a function of transition energy for a 3.9 nm CdSe NC, illustrated in Fig. 3b, demonstrates that the single-phonon rates are larger for low-energy transitions, but there are no single-phonon transitions between excitonic states that have energy differences greater than 32 meV (i.e., greater than the largest phonon energy). The multiphonon rates, however, cover the full range of transition energies. Importantly, multiphonon relaxation between excitonic states with energy differences of 100 meV or less consistently have relatively high rates (ranging from ps-1 for multiphonon transitions as compared to ps-1 for single-phonon transitions). This difference makes accessible many more relaxation channels and leads to a cooling timescale that is an order of magnitude faster than that resulting from single-phonon processes alone. The fast multiphonon relaxation is a result of the large number of phonon modes (approximately 3000 modes for a 3.9 nm CdSe NC) that quasi-continuously span a wide frequency range and that are all coupled, to some degree, to excitonic transitions. Thus, many phonon combinations satisfy the energy conservation requirement for phonon-mediated exciton transitions, leading to efficient relaxation via the emission of multiple phonons.
The asymmetry in rates about 0 meV transition energy reflects detailed balance (see Methods for more details). Furthermore, Fig. 3b shows a Gaussian relationship between the transition energy and the transition rate instead of the exponential dependence of the rate on the energy that results from the assumption that only the highest-frequency modes participate in nonradiative transitions.51 This result indicates that lower-frequency acoustic and optical modes are important to this cooling process, extending previous expectations that only high-frequency optical modes would be responsible for cooling.15, 28
Fig. 3a also demonstrates that smaller NCs relax more quickly to thermal equilibrium than larger NCs. Due to stronger quantum confinement, smaller NCs have more energy to dissipate during the cooling process. Smaller NCs also have larger excitonic gaps and a smaller number of phonon modes. However, smaller NCs have stronger EXPC than larger NCs,43 resulting in overall faster cooling timescales for smaller NCs.
1.3 Controlling the cooling timescales
The longer cooling timescales for larger CdSe NCs suggests that controlling the magnitude of EXPC may allow for tuning of the hot exciton cooling timescale. CdSe-CdS core-shell NCs have EXPC that is about five times smaller than that of bare cores due to suppression of exciton coupling to lower-frequency surface modes.43 Fig. 4a compares simulations of the cooling process for a 3.9 nm CdSe core and a 3.9 nm CdSe core with 3 monolayers of CdS shell. Because of the quasi-type II band alignment in CdSe-CdS core-shell NCs, the exciton hole is confined to the CdSe core while the electron somewhat delocalizes into the CdS shell.52 This decreased quantum confinement leads to a smaller - excitonic gap in core-shell NCs, so hot excitons have less energy to dissipate in core-shell NCs than in bare cores. However, cooling still takes about five times longer in the core-shell NC as a result of the weaker EXPC.
The multiphonon transition rates for both systems are shown in Fig. 4b, demonstrating that rates are one or more orders of magnitude smaller in the core-shell NC than in the bare core. For transitions with energies of 100 meV for less, the multiphonon relaxation rates range from ps-1 for the CdSe NC and from ps-1 for the CdSe-CdS core-shell NC.

We can further understand the role of EXPC in the cooling mechanism by examining the spectral densities, which describe the phonon densities of states weighted by the EXPC, of the core and core-shell NCs (Fig. 4c). The spectral density of the CdSe core shows significant EXPC to acoustic modes with frequencies of 4.0 THz or less as well as optical modes between 7.58.0 THz.43, 44 The core-shell NC, however, has negligible EXPC at lower phonon frequencies, as the presence of the CdS shell prevents coupling to delocalized and surface-localized modes at those frequencies, but it has slightly stronger coupling to the CdSe optical modes. These results provide further evidence that both acoustic and optical modes play an essential role in the cooling process. Exciton coupling to phonons with a quasi-continuous frequency range allows for resonance conditions to be more easily satisfied; for every excitonic energy gap, a set of phonons with the corresponding energy is easily found. However, exciton coupling to phonons within a narrow energy range restrict the set of phonons that would satisfy the necessary resonance conditions.
1.4 Energy loss rates
To allow for more meaningful comparison between our calculations and experimental measurements, we simulate changes in the absorption spectrum of a system initially excited to the excitonic state as it relaxes to the ground excitonic state. Assuming that the electric field, , is weak, such that the population of the ground state remains approximately 1 and that the population of the excited state is proportional to , the change in absorption is given by
(6) |
where is the transition dipole moment from the ground state to excitonic state and is the population of excitonic state at time .

The change in absorption, , shows a fast decay of the excitonic peak and a slower rise of the ground excitonic peak (Fig. S1). The dynamics of the rise of the peak reflect those of hot exciton cooling. For each system, the rise dynamics were fit to an exponential function, and the extracted timescale was divided by the energy difference between the and excitonic peaks to yield an energy loss rate. The calculated energy loss rates are illustrated in Fig. 5a along with those measured experimentally using transient absorption spectroscopy26 and state-resolved pump-probe spectroscopy30 on wurtzite CdSe NCs. In agreement with experiment, our simulations show faster energy loss rates for smaller CdSe NCs. Smaller NCs have larger excitonic gaps due to quantum confinement and a smaller number of phonon modes, but they have stronger EXPC than larger NCs. Similarly, core-shell NCs, which have significantly weaker EXPC to lower-frequency acoustic modes,43 show energy loss rates that are an order of magnitude slower than those of bare cores.

While Fig. 5a initially suggests that the calculated energy loss rates for CdSe NCs are larger than the measured values (but within the experimental error bars), those experiments use 100 fs pulses that obscure the observation of dynamics between states with spectral overlap,53 like those measured here, and they measure NCs with very low photoluminescence quantum yields of around 1%, where carrier trapping may lead to dynamics that complicate the hot exciton cooling process. Two-dimensional electronic spectroscopy (ES) measurements, which are able to clearly resolve the features corresponding to excitonic relaxation, on 3.5 nm CdSe NCs show that hot exciton cooling from the higher-energy excitonic peak to the ground excitonic peak occurs within 30 fs,53 which is consistent with our findings. Furthermore, more recent two-dimensional ES experiments observe that cooling slows by an order of magnitude with the addition of a shell to a CdSe core,54 in agreement with our calculated results.
While changing the size and composition of NCs is one avenue for tuning the cooling timescale, changing the temperature is another. The energy loss rates for 2.2 nm CdSe and 3.9 nm CdSe NCs simulated at different temperatures are illustrated in Fig. 5b. For both NCs, the energy loss rates are eV/ps at 10 K, and they monotonically increase with temperature, as expected for phonon-mediated processes. While both systems show a linear relationship between energy loss rate and temperature, the rate for 2.2 nm NC shows a stronger dependence on temperature than that of the 3.9 nm NC. This steeper scaling with increasing temperature may be a result of the stronger quantum confinement in the 2.2 nm NC, which leads to larger energy gaps between excitonic states. Thus, multiphonon processes at larger transition energies are more important. As those transition rates are very sensitive to temperature (Fig. S2), the overall cooling process in smaller NCs has a stronger temperature dependence. Interestingly, as shown in Fig. S3, the single-phonon-mediated cooling process also depends on temperature, but the dynamics converge above a threshold temperature. The threshold temperature is 300 K for the 2.2 nm CdSe NC while it is 50 K for the 3.9 nm CdSe. Again, this result may be due to the larger excitonic gaps in the smaller NC system. Note that our model given by Eq. (1) includes EXPC to lowest order in the phonon mode coordinates and ignores higher-order terms (Duschinsky rotations), which may influence the hot exciton cooling process at higher temperatures.55
1.5 Mechanistic insight
Finally, we investigate the mechanism underlying this ultrafast hot exciton cooling process. We calculated the density of excitonic states for a 3.9 nm CdSe NC and scaled it by the time-dependent population, as illustrated in Fig. 6a. We see that cooling occurs via a cascade of relaxation events through the manifold of excitonic states, as opposed to being dominated by a single or a few, higher-energy non-radiative transitions, as expected previously.16, 15, 28
We wanted to understand the relationship between this multiphonon-mediated, hot exciton cooling mechanism (Fig. 1c) and the Auger-assisted cooling mechanism (Fig. 1b), which was first proposed to explain the breaking of the phonon bottleneck.33 To this end, we projected our simulated exciton cooling dynamics for a 3.9 nm CdSe NC onto a single-particle picture of non-interacting electron-hole pair states, shown in Fig. 6b, and find that the Auger cooling mechanism emerges naturally from our excitonic dynamics. The hole quickly relaxes to the band edge via multiphonon emission followed by electron relaxation by 400 meV that results in hole re-excitation, and then the hole once again relaxes to the band edge by multiphonon emission. This result indicates that both Coulomb-mediated electron-hole correlations, which are inherent in our formalism, and multiphonon-mediated excitonic transitions are required to circumvent the phonon bottleneck and lead to ultrafast timescales of hot exciton cooling. These mechanistic insights are consistent for core-shell NCs, as illustrated in Fig. S4.
2 Conclusions
Hot exciton cooling in confined semiconductor NCs involves rich physics, including electron-hole correlations, EXPC, and multiphonon-mediated nonradiative transitions—all of which are required to break the phonon bottleneck and enable fast relaxation of hot excitons to the band edge. We have developed the first atomistic theory that describes multiphonon-mediated exciton dynamics in NCs of experimentally relevant sizes. Our approach yields cooling timescales of tens of fs, which are consistent with measurements of similar systems. These ultrafast timescales are enabled by a cascade of multiphonon-mediated transitions between excitonic states that are relatively close in energy. These nonradiative transitions are made efficient by the large number of phonon modes in NCs that span a wide frequency range. The timescale of cooling is governed largely by the overall magnitude of EXPC, so that larger cores show slower relaxation, and core-shell NCs show relaxation that is slower by an order of magnitude.
Our approach provides fundamental insights to phonon-mediated exciton dynamics at the nanoscale, which differ significantly from those in molecular and bulk semiconductor systems. These simulations provide the first unified, microscopic theory for hot exciton cooling in nanoscale systems that addresses longstanding questions regarding the timescales and mechanisms of this process and that provides design principles for NCs with tuned EXPC and cooling timescales. The framework presented here is sufficiently general that it can be used to study timescales and mechanisms of exciton dephasing and carrier trapping. Furthermore, it can be used to investigate dynamics in NCs of different dimensionalities, such as in nanorods and nanoplatelets, and materials, including III-V, as long as EXPC is weak. Further elucidating the principles of phonon-mediated dynamics at the nanoscale is key to ultimately tuning these processes to realize novel phenomena in NC systems and NC-based applications with higher device efficiencies.
3 Methods
As described in previous work,43 CdSe and CdSe-CdS core-shell structures were optimized via the LAMMPS molecular dynamics code56 using Stillinger-Weber interatomic potentials.45 The outermost atomic monolayer was then removed and the subsequent monolayer was replaced by potentials representing the passivation layer.
Electronic structure calculations were performed using the semiempirical pseudopotential method.57, 58, 59 We used the filter-diagonalization technique to solve for single-particle electron and hole states near the band edges and then used these as input to the Bethe-Salpeter equation, which was solved to obtain correlated electron-hole pair states.35 The exciton-phonon couplings were calculated within this framework,43 and phonon modes and frequencies were obtained by diagonalizing the dynamical matrix computed using the same Stillinger-Weber interatomic potentials.45
The correlation functions in Eq. (5) were evaluated within a harmonic approximation by sampling from a thermal distribution of bath coordinates and propagating classical trajectories. To facilitate convergence, we propagate and average trajectories to short times and then approximate the correlation functions as Gaussian functions. However, the timescales on which the correlation functions decay are not necessarily faster than those of the system dynamics, so we calculated non-Markovian relaxation rates. We also applied the standard quantum correction scheme to impose detailed balance.60 Thus, the final transition rates are given by
(7) |
We computed rates for all transitions and used them to build a kinetic master equation and propagate phonon-mediated exciton dynamics. Further details for all methods are provided in the Supporting Information.
Procedure used to construct NC configurations; additional discussion regarding the implementation of the semi-empirical pseudopotential method, filter-diagonalization technique, Bethe-Salpeter equation, and EXPC matrix elements; detailed derivation and analysis of polaron transform and resulting Hamiltonian; illustration of calculated absorption spectra, temperature-dependent dynamics, and cooling mechanisms for core-shell NCs.
E.R. acknowledges support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231 within the Fundamentals of Semiconductor Nanowire Program (KCPY23). Methods used in this work were provided by the Center for Computational Study of Excited State Phenomena in Energy Materials (C2SEPEM), which is funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, via Contract No. DE-AC02-05CH11231, as part of the Computational Materials Sciences Program. D.J. acknowledges the support of the Computational Science Graduate Fellowship from the U.S. Department of Energy under Grant No. DE-SC0019323.
![[Uncaptioned image]](https://cdn.awesomepapers.org/papers/d554e227-df03-4a7d-bd7d-a8b9786ffa39/x7.png)
References
- Lannoo et al. 1996 Lannoo, M.; Delerue, C.; Allan, G. Theory of radiative and nonradiative transitions for semiconductor nanocrystals. J. Lumin. 1996, 70, 170–184
- Klimov 2006 Klimov, V. I. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: Implications for lasing and solar energy conversion. J. Phys. Chem. B 2006, 110, 16827–16845
- Sheik-Bahae and Epstein 2007 Sheik-Bahae, M.; Epstein, R. I. Optical refrigeration. Nat. Photon. 2007, 1, 693–699
- Fomenko and Nesbitt 2008 Fomenko, V.; Nesbitt, D. J. Solution control of radiative and nonradiative lifetimes: A novel contribution to quantum dot blinking suppression. Nano Lett. 2008, 8, 287–293
- Talapin et al. 2010 Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458
- Hanifi et al. 2019 Hanifi, D. A.; Bronstein, N. D.; Koscher, B. A.; Nett, Z.; Swabeck, J. K.; Takano, K.; Schwartzberg, A. M.; Maserati, L.; Vandewal, K.; van de Burgt, Y.; Salleo, A.; Alivisatos, A. P. Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science 2019, 363, 1199–1202
- Peterson et al. 2014 Peterson, M. D.; Cass, L. C.; Harris, R. D.; Edme, K.; Sung, K.; Weiss, E. A. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots. Annu. Rev. Phys. Chem. 2014, 65, 317–339
- Melnychuk and Guyot-Sionnest 2021 Melnychuk, C.; Guyot-Sionnest, P. Multicarrier dynamics in quantum dots. Chem. Rev. 2021, 121, 2325–2372
- von der Linde and Lambrich 1979 von der Linde, D.; Lambrich, R. Direct measurement of hot-electron relaxation by picosecond spectroscopy. Phys. Rev. Lett. 1979, 42, 1090–1093
- Pugnet et al. 1981 Pugnet, M.; Collet, J.; Cornet, A. Cooling of hot electron-hole plasmas in the presence of screened electron-phonon interactions. Solid State Commun. 1981, 38, 531–536
- Prabhu et al. 1995 Prabhu, S. S.; Vengurlekar, A. S.; Roy, S. K.; Shah, J. Nonequilibrium dynamics of hot carriers and hot phonons in CdSe and GaAs. Phys. Rev. B 1995, 51, 14233–14246
- Kambhampati 2011 Kambhampati, P. Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale. J. Phys. Chem. C 2011, 115, 22089–22109
- Knowles et al. 2011 Knowles, K. E.; McArthur, E. A.; Weiss, E. A. A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots. ACS Nano 2011, 5, 2026–2035
- Jasrasaria et al. 2022 Jasrasaria, D.; Weinberg, D.; Philbin, J. P.; Rabani, E. Simulations of nonradiative processes in semiconductor nanocrystals. J. Chem. Phys. 2022, 157, 020901
- Nozik 2001 Nozik, A. J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 2001, 193–231
- Inoshita and Sakaki 1992 Inoshita, T.; Sakaki, H. Electron relaxation in a quantum dot: Significance of multiphonon processes. Phys. Rev. B 1992, 46, 7260–7263
- Gfroerer et al. 1996 Gfroerer, T. H.; Sturge, M. D.; Kash, K.; Yater, J. A.; Plaut, A. S.; Lin, P. S. D.; Florez, L. T.; Harbison, J. P.; Das, S. R.; Lebrun, L. Slow relaxation of excited states in strain-induced quantum dots. Phys. Rev. B 1996, 53, 16474–16480
- Yu et al. 1996 Yu, H.; Lycett, S.; Roberts, C.; Murray, R. Time resolved study of self-assembled InAs quantum dots. Appl. Phys. Lett. 1996, 69, 4087–4089
- Heitz et al. 1997 Heitz, R.; Veit, M.; Ledentsov, N. N.; Hoffmann, A.; Bimberg, D.; Ustinov, V. M.; Kop’ev, P. S.; Alferov, Z. I. Energy relaxation by multiphonon processes in InAs/GaAs quantum dots. Phys. Rev. B 1997, 56, 10435–10445
- Guyot-Sionnest et al. 1999 Guyot-Sionnest, P.; Shim, M.; Matranga, C.; Hines, M. Intraband relaxation in CdSe quantum dots. Phys. Rev. B 1999, 60, R2181–R2184
- Sosnowski et al. 1998 Sosnowski, T. S.; Norris, T. B.; Jiang, H.; Singh, J.; Kamath, K.; Bhattacharya, P. Rapid carrier relaxation in quantum dots characterized by differential transmission spectroscopy. Phys. Rev. B 1998, 57, R9423–R9426
- Mukai and Sugawara 1998 Mukai, K.; Sugawara, M. Slow carrier relaxation among sublevels in annealed self-formed InGaAs/GaAs quantum dots. Jpn. J. Appl. Phys. 1998, 37, 5451–5456
- Pandey and Guyot-Sionnest 2008 Pandey, A.; Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science 2008, 322, 929–932
- Asahi 1997 Asahi, H. Self-organized quantum wires and dots in III–V semiconductors. Adv. Mater. 1997, 9, 1019–1026
- Klimov and McBranch 1998 Klimov, V. I.; McBranch, D. W. Femtosecond 1P-to-1S electron relaxation in strongly confined semiconductor nanocrystals. Phys. Rev. Lett. 1998, 80, 4028–4031
- Klimov et al. 1999 Klimov, V. I.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Electron and hole relaxation pathways in semiconductor quantum dots. Phys. Rev. B 1999, 60, 13740–13749
- Klimov et al. 2000 Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Mechanisms for intraband energy relaxation in semiconductor quantum dots: The role of electron-hole interactions. Phys. Rev. B 2000, 61, R13349–R13352
- Schaller et al. 2005 Schaller, R. D.; Pietryga, J. M.; Goupalov, S. V.; Petruska, M. A.; Ivanov, S. A.; Klimov, V. I. Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions. Phys. Rev. Lett. 2005, 95, 196401
- Harbold et al. 2005 Harbold, J. M.; Du, H.; Krauss, T. D.; Cho, K.-S.; Murray, C. B.; Wise, F. W. Time-resolved intraband relaxation of strongly confined electrons and holes in colloidal PbSe nanocrystals. Phys. Rev. B 2005, 72, 195312
- Cooney et al. 2007 Cooney, R. R.; Sewall, S. L.; Dias, E. A.; Sagar, D. M.; Anderson, K. E. H.; Kambhampati, P. Unified picture of electron and hole relaxation pathways in semiconductor quantum dots. Phys. Rev. B 2007, 75, 245311
- Cooney et al. 2007 Cooney, R. R.; Sewall, S. L.; Anderson, K. E. H.; Dias, E. A.; Kambhampati, P. Breaking the phonon bottleneck for holes in semiconductor quantum dots. Phys. Rev. Lett. 2007, 98, 177403
- Kharchenko and Rosen 1996 Kharchenko, V.; Rosen, M. Auger relaxation processes in semiconductor nanocrystals and quantum wells. J. Lumin. 1996, 70, 158–169
- Efros et al. 1995 Efros, A. L.; Kharchenko, V.; Rosen, M. Breaking the phonon bottleneck in nanometer quantum dots: Role of Auger-like processes. Solid State Commun. 1995, 93, 281–284
- Hendry et al. 2006 Hendry, E.; Koeberg, M.; Wang, F.; Zhang, H.; de Mello Donegá, C.; Vanmaekelbergh, D.; Bonn, M. Direct observation of electron-to-hole energy transfer in CdSe quantum dots. Phys. Rev. Lett. 2006, 96, 057408
- Philbin and Rabani 2018 Philbin, J. P.; Rabani, E. Electron-hole correlations govern Auger recombination in nanostructures. Nano Lett. 2018, 18, 7889–7895
- Guyot-Sionnest et al. 2005 Guyot-Sionnest, P.; Wehrenberg, B.; Yu, D. Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands. J. Chem. Phys. 2005, 123, 074709
- Xu et al. 2002 Xu, S.; Mikhailovsky, A. A.; Hollingsworth, J. A.; Klimov, V. I. Hole intraband relaxation in strongly confined quantum dots: Revisiting the “phonon bottleneck” problem. Phys. Rev. B 2002, 65, 045319
- Wang et al. 2003 Wang, L.-W.; Califano, M.; Zunger, A.; Franceschetti, A. Pseudopotential theory of Auger processes in CdSe quantum dots. Phys. Rev. Lett. 2003, 91, 056404
- Kilina et al. 2009 Kilina, S. V.; Kilin, D. S.; Prezhdo, O. V. Breaking the phonon bottleneck in PbSe and CdSe quantum dots: Time-domain density functional theory of charge carrier relaxation. ACS Nano 2009, 3, 93–99
- Prezhdo 2009 Prezhdo, O. V. Photoinduced dynamics in semiconductor quantum dots: Insights from time-domain ab initio studies. Acc. Chem. Res. 2009, 42, 2005–2016
- Zeng and He 2021 Zeng, T.; He, Y. Ab initio modeling of phonon-assisted relaxation of electrons and excitons in semiconductor nanocrystals for multiexciton generation. Phys. Rev. B 2021, 103, 1–15
- Pandey and Guyot-Sionnest 2010 Pandey, A.; Guyot-Sionnest, P. Hot electron extraction from colloidal quantum dots. J. Phys. Chem. Lett. 2010, 1, 45–47
- Jasrasaria and Rabani 2021 Jasrasaria, D.; Rabani, E. Interplay of surface and interior modes in exciton-phonon coupling at the nanoscale. Nano Lett. 2021, 21, 8741–8748
- Jasrasaria and Rabani 2022 Jasrasaria, D.; Rabani, E. Correction to interplay of surface and interior modes in exciton–phonon coupling at the nanoscale. Nano Lett. 2022, 22, 8033–8034
- Zhou et al. 2013 Zhou, X. W.; Ward, D. K.; Martin, J. E.; Van Swol, F. B.; Cruz-Campa, J. L.; Zubia, D. Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te. Phys. Rev. B 2013, 88, 085309
- Sewall et al. 2006 Sewall, S. L.; Cooney, R. R.; Anderson, K. E.; Dias, E. A.; Kambhampati, P. State-to-state exciton dynamics in semiconductor quantum dots. Phys. Rev. B 2006, 74, 235328
- Nitzan and Press 2006 Nitzan, A.; Press, O. U. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems; Oxford Graduate Texts; OUP Oxford, 2006
- Zimanyi and Silbey 2012 Zimanyi, E. N.; Silbey, R. J. Theoretical description of quantum effects in multi-chromophoric aggregates. Philos. Trans. R. Soc. A 2012, 370, 3620–3637
- Xu and Cao 2016 Xu, D.; Cao, J. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach. Front. Phys. 2016, 11, 110308
- Franchini et al. 2021 Franchini, C.; Reticcioli, M.; Setvin, M.; Diebold, U. Polarons in materials. Nat. Rev. Mater. 2021, 6, 560–586
- Englman and Jortner 1970 Englman, R.; Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 1970, 18, 145–164
- Eshet et al. 2013 Eshet, H.; Grünwald, M.; Rabani, E. The electronic structure of CdSe/CdS core/shell seeded nanorods: Type-I or quasi-type-II? Nano Lett. 2013, 13, 5880–5885
- Griffin et al. 2013 Griffin, G. B.; Ithurria, S.; Dolzhnikov, D. S.; Linkin, A.; Talapin, D. V.; Engel, G. S. Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power. J. Chem. Phys. 2013, 138, 014705
- Brosseau et al. 2022 Brosseau, P. J.; Geuchies, J. J.; Jasrasaria, D.; Houtepen, A. J.; Rabani, E.; Kambhampati, P. New ultrafast hole relaxation channels in quantum dots revealed by two-dimensional electronic spectroscopy. In review. 2022,
- Lin et al. 2022 Lin, K.; Jasrasaria, D.; Yoo, J. J.; Bawendi, M.; Utzat, H.; Rabani, E. Theory of photoluminescence spectral line shapes of semiconductor nanocrystals. arXiv:2212.06323 2022,
- Plimpton 1995 Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19
- Wang and Zunger 1994 Wang, L. W.; Zunger, A. Electronic structure pseudopotential calculations of large (1000 atoms) Si quantum dots. J. Phys. Chem. 1994, 98, 2158–2165
- Wang and Zunger 1996 Wang, L.-W.; Zunger, A. Pseudopotential calculations of nanoscale CdSe quantum dots. Phys. Rev. B 1996, 53, 9579–9582
- Rabani et al. 1999 Rabani, E.; Hetenyi, B.; Berne, B. J.; Brus, L. E. Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium. J. Chem. Phys. 1999, 110, 5355–5369
- Egorov and Skinner 1998 Egorov, S.; Skinner, J. Semiclassical approximations to quantum time correlation functions. Chem. Phys. Lett. 1998, 293, 469–476