This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Λc\Lambda_{c} semileptonic decays

Sheng-Qi Zhang1 and Cong-Feng Qiao1111Corresponding author; qiaocf@ucas.ac.cn.

1School of Physical Sciences, University of Chinese Academy of Sciences
YuQuan Road 19A, Beijing 100049, China

Abstract

Motivated by the recent experimental progress in the Λc\Lambda_{c} decay that contains a neutron in the final state, we analyze the semileptonic decay Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} in the framework of QCD sum rules. The transition form factors are analytically computed using three-point correlation functions and the Cutkosky cutting rules, which can be extrapolated into the physical region by employing the zz-series parametrization. The branching fractions of Λcne+νe\Lambda_{c}\rightarrow ne^{+}\nu_{e} and Λcnμ+νμ\Lambda_{c}\rightarrow n\mu^{+}\nu_{\mu} are estimated to be (0.281±0.056)%(0.281\pm 0.056)\% and (0.275±0.055)%(0.275\pm 0.055)\%, respectively. Furthermore, we calculate as well the relevant decay asymmetry observables sensitive to new physics beyond the standard model. The numerical results of semileptonic decays ΛcΛν\Lambda_{c}\rightarrow\Lambda\ell\nu_{\ell} are also given and confronted to the latest experimental data.

1 Introduction

The semileptonic decay of the lightest charmed baryon Λc\Lambda_{c} plays an important role in exploring strong and weak interactions in charm sectors. It can help elucidate the role of nonperturbative effects in strong interactions and provide crucial inputs for studying heavier charmed baryons and bottom baryon decay. Additionally, the precise measurement of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements |Vcs||V_{cs}| and |Vcd||V_{cd}| can also provide the significant test for the standard model and the probable evidence for new physics beyond the standard model [1].

In recent years, there have been extensive measurements of the semileptonic decay modes ΛcΛν\Lambda_{c}\rightarrow\Lambda\ell\nu_{\ell} [2, 3, 4, 5]. The most precise results of branching fractions yet are (ΛcΛe+νe)=(3.56±0.11±0.07)%\mathcal{B}\left(\Lambda_{c}\rightarrow\Lambda e^{+}\nu_{e}\right)=(3.56\pm 0.11\pm 0.07)\% [4] and (ΛcΛμ+νμ)=(3.48±0.14±0.10)%\mathcal{B}\left(\Lambda_{c}\rightarrow\Lambda\mu^{+}\nu_{\mu}\right)=(3.48\pm 0.14\pm 0.10)\% [5], respectively. Comparing the former result with Λc\Lambda_{c} inclusive semileptonic decay mode (ΛcXe+νe)=(3.95±0.34±0.09)%\mathcal{B}\left(\Lambda_{c}\rightarrow Xe^{+}\nu_{e}\right)=(3.95\pm 0.34\pm 0.09)\% [6], it can be inferred that there still remain some potential exclusive semileptonic decay modes measurable. Recently, the BESIII collaboration reported the evidence of the decay modes containing excited states, specifically ΛcΛ(1520)e+νe\Lambda_{c}\rightarrow\Lambda(1520)e^{+}\nu_{e} and ΛcΛ(1405)e+νe\Lambda_{c}\rightarrow\Lambda(1405)e^{+}\nu_{e} [7]. These two decay modes yield relatively small branching fractions to be (1.02±0.52±0.11)×103(1.02\pm 0.52\pm 0.11)\times 10^{-3} and (0.42±0.19±0.04)×103(0.42\pm 0.19\pm 0.04)\times 10^{-3}, respectively. Moreover, the measurement of two five-body semileptonic decay modes ΛcΛπ+πe+νe\Lambda_{c}\rightarrow\Lambda\pi^{+}\pi^{-}e^{+}\nu_{e} and ΛcpKs0πe+νe\Lambda_{c}\rightarrow pK_{s}^{0}\pi^{-}e^{+}\nu_{e} are also performed [8], in which the upper limits are set to be (ΛcΛπ+πe+νe)<3.9×104\mathcal{B}(\Lambda_{c}\rightarrow\Lambda\pi^{+}\pi^{-}e^{+}\nu_{e})<3.9\times 10^{-4} and (ΛcpKs0πe+νe)<3.3×104\mathcal{B}(\Lambda_{c}\rightarrow pK_{s}^{0}\pi^{-}e^{+}\nu_{e})<3.3\times 10^{-4}. In physics, besides the Λc\Lambda_{c} semileptonic decay modes that include Λ(Λ)\Lambda(\Lambda^{*}) baryon in the final state, the exclusive semileptonic decay modes Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} are also permitted by the standard model. However, there is still a lack of experimental data in this regard.

Theoretically, Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} is dominated by the Cabibbo-suppressed transition cdνc\rightarrow d\ell\nu_{\ell}. As a result, the decay width is anticipated to be much smaller compared with the ΛcΛν\Lambda_{c}\rightarrow\Lambda\ell\nu_{\ell} mode, which is dominated by the Cabibbo-favored transition csνc\rightarrow s\ell\nu_{\ell}. Experimentally, the main challenge lies in distinguishing neutron signals from neutral noises, which leads to the problem of direct neutron detection [9, 10]. Fortunately, with the improvement of detector performance and analysis technique, the BESIII collaboration has made notable progress in measuring Λc\Lambda_{c} decays that involve neutron signals in the final state [9, 10, 11, 12]. It is predictable that the experimental data for the decay mode Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} will be available in the near future, making it beneficial to explore this process theoretically. Furthermore, the semileptonic decay Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} is an exceptional candidate for extracting the magnitude of the CKM matrix element |Vcd||V_{cd}|. Currently, the determination of |Vcd||V_{cd}| relies primarily on the charm meson semileptonic decay DπνD\rightarrow\pi\ell\nu_{\ell} [13, 14, 15, 16, 17]. Therefore, it is of great importance to investigate the semileptonic decay Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} both experimentally and theoretically since such studies are crucial for providing precise verification for |Vcd||V_{cd}| in the charm baryon sector.

In the past, theoretical investigations for Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} semileptonic decay have been performed in-depth in a variety of methods, such as the light-cone sum rules (LCSR) [18, 19, 20], the light front approach (LF) [21], the covariant confined quark model (CCQM) [22], the constituent quark model (CQM) [23], the relativistic quark model (RQM) [24], the SU(3)SU(3) flavor symmetry [25, 26], the MIT bag model (MBM) [27], and the lattice QCD (LQCD) [28]. Additionally, QCD sum rules (QCDSR) has also been widely utilized to deal with the baryonic decay mode [29, 30, 31, 32, 33, 34, 35, 36, 37]. Rather than a phenomenological model, QCDSR is a QCD-based theoretical framework that systematically incorporates nonperturbative effects at each dimension. To evaluate the form factors in the weak transitions, the three-point correlation functions are constructed with appropriate interpolating currents. After equating two representations of the three-point correlation functions, i.e., the QCD representation and the phenomenological representation, using quark-hadron duality, the form factors will be formally determined. In this work, we will apply QCDSR to calculate the form factors of the Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} semileptonic decay mode, after which the branching fractions as well as some other relevant decay asymmetry observables are also obtained. Besides, the numerical results of ΛcΛν\Lambda_{c}\rightarrow\Lambda\ell\nu_{\ell} semileptonic decay are also given and compared with the latest experimental results.

The rest of the paper is structured as follows: in Sec. 2 we interpret the basic idea of QCDSR for the three-point correlation functions. The numerical results and analysis are presented in Sec. 3. The conclusions and discussions are given in the last section.

2 Formalism

The Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} decay is dominated by the Cabibbo-suppressed transition cdνc\rightarrow d\ell\nu_{\ell} at the quark level. The effective Hamiltonian depicting this transition is written as

eff=GF2Vcd[¯γμ(1γ5)ν][d¯γμ(1γ5)c],\displaystyle\mathcal{H}_{eff}=\frac{G_{F}}{\sqrt{2}}V_{cd}[\bar{\ell}\gamma_{\mu}\left(1-\gamma_{5}\right)\nu_{\ell}][\bar{d}\gamma^{\mu}\left(1-\gamma_{5}\right)c], (1)

where GFG_{F} denotes the Fermi constant and VcdV_{cd} is the CKM matrix element. The Feynman diagram of Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} is shown in Fig. 1. The leptonic part of this decay mode can be obtained through electroweak perturbation theory, while the hadronic part cannot be calculated perturbatively due to its involvement in the low-energy aspects of QCD. In general, the weak transition matrix element of the hadronic part can be parametrized in terms of transition form factors

Λc(q1)|jμ|n(q2)\displaystyle\bra{\Lambda_{c}(q_{1})}j_{\mu}\ket{n(q_{2})} =u¯Λc(q1)[f1(q2)γμ+if2(q2)σμνqνMΛc+f3(q2)qμMΛc]un(q2)\displaystyle=\bar{u}_{\Lambda_{c}}(q_{1})\bigg{[}f_{1}(q^{2})\gamma_{\mu}+if_{2}(q^{2})\sigma_{\mu\nu}\frac{q^{\nu}}{M_{\Lambda_{c}}}+f_{3}(q^{2})\frac{q_{\mu}}{M_{\Lambda_{c}}}\bigg{]}u_{n}(q_{2})
u¯Λc(q1)[g1(q2)γμ+ig2(q2)σμνqνMΛc+g3(q2)qμMΛc]γ5un(q2),\displaystyle-\bar{u}_{\Lambda_{c}}(q_{1})\bigg{[}g_{1}(q^{2})\gamma_{\mu}+ig_{2}(q^{2})\sigma_{\mu\nu}\frac{q^{\nu}}{M_{\Lambda_{c}}}+g_{3}(q^{2})\frac{q_{\mu}}{M_{\Lambda_{c}}}\bigg{]}\gamma_{5}u_{n}(q_{2}), (2)

where q1q_{1} and q2q_{2} are the four-vector momentum of the initial state Λc\Lambda_{c} and final state neutron, respectively. The momentum transfer qq is defined as q=q1q2q=q_{1}-q_{2}.

Refer to caption
Figure 1: Feynman diagram for Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} semileptonic decay.

To calculate the transition form factors by QCDSR, the three-point correlation functions can be formally constructed as

Πμ(q12,q22,q2)=i2d4xd4yei(q1xq2y)<0|T{jΛc(x)jμ(0)jn(y)}|0>.\Pi_{\mu}(q_{1}^{2},q_{2}^{2},q^{2})=i^{2}\int d^{4}x\;d^{4}y\;e^{i(q_{1}x-q_{2}y)}<0|T\{j_{\Lambda_{c}}(x)j_{\mu}(0)j^{\dagger}_{n}(y)\}|0>. (3)

The weak transition current jμj_{\mu} is defined as jμ=c¯γμ(1γ5)dj_{\mu}=\bar{c}\gamma_{\mu}\left(1-\gamma_{5}\right)d, and the interpolating currents of Λc\Lambda_{c} and the neutron take the following quark structure [35, 38]:

jΛc\displaystyle j_{\Lambda_{c}} =ϵijk(uiTCγ5dj)ck,\displaystyle=\epsilon_{ijk}\left(u_{i}^{T}C\gamma_{5}d_{j}\right)c_{k}, (4)
jn\displaystyle j_{n} =ϵijk(uiTCγ5dj)dk,\displaystyle=\epsilon_{ijk}\left(u_{i}^{T}C\gamma_{5}d_{j}\right)d_{k}, (5)

where the subscripts ii, jj, and kk represent the color indices and CC is the charge conjugation matrix. It should be mentioned that there are other choices of interpolating currents of the neutron, such as Ioffe type and tensor type [39, 40, 41]. However, as stated in Ref. [31], if the approximations in sum rule calculations are justified to be good enough, these different currents should give roughly the same physical results.

On the phenomenological side, after inserting a complete set of intermediate hadronic states and exploiting double dispersion relations, the three-point correlation functions in Eq. (3) can be described as,

Πμphe(q12,q22,q2)=\displaystyle\Pi_{\mu}^{\text{phe}}(q_{1}^{2},q_{2}^{2},q^{2})= spins0|jΛc|Λc(q1)Λc(q1)|jμ|n(q2)n(q2)|jn|0(q12MΛc2)(q22Mn2)\displaystyle\sum_{\text{spins}}\frac{\bra{0}j_{\Lambda_{c}}\ket{\Lambda_{c}(q_{1})}\bra{\Lambda_{c}(q_{1})}j_{\mu}\ket{n(q_{2})}\bra{n(q_{2})}j_{n}\ket{0}}{(q_{1}^{2}-M_{\Lambda_{c}}^{2})(q_{2}^{2}-M_{n}^{2})}
+\displaystyle+ higher resonances and continuum states,\displaystyle\text{higher resonances and continuum states}, (6)

where MΛcM_{\Lambda_{c}} and MnM_{n} denote the mass of Λc\Lambda_{c} and the neutron, respectively. The vacuum-to-baryon transition amplitudes can be parametrized by defining the decay constants,

0|jΛc|Λc(q1)\displaystyle\bra{0}j_{\Lambda_{c}}\ket{\Lambda_{c}(q_{1})} =λΛcuΛc(q1),\displaystyle=\lambda_{\Lambda_{c}}u_{\Lambda_{c}}(q_{1}), (7)
0|jn|n(q2)\displaystyle\bra{0}j_{n}\ket{n(q_{2})} =λnun(q2),\displaystyle=\lambda_{n}u_{n}(q_{2}), (8)

where λΛc\lambda_{\Lambda_{c}} and λn\lambda_{n} represent the decay constants of Λc\Lambda_{c} and the neutron, respectively. By introducing the hadronic transition matrix elements in Eq. (2) and utilizing the spin sum completeness relations, uΛc(q1)u¯Λc(q1)=1+MΛc\sum u_{\Lambda_{c}}(q_{1})\bar{u}_{\Lambda_{c}}(q_{1})=\not{q}_{1}+M_{\Lambda_{c}} and un(q2)u¯n(q2)=2+Mn\sum u_{n}(q_{2})\bar{u}_{n}(q_{2})=\not{q}_{2}+M_{n}, we can finally obtain the phenomenological representation of the three-point correlation functions of Eq. (3),

Πμphe(q12,q22,q2)\displaystyle\Pi_{\mu}^{\text{phe}}(q_{1}^{2},q_{2}^{2},q^{2}) =λn(2+Mn)[f1(q2)γμ+if2(q2)σμνqνMΛc+f3(q2)qμMΛc]λΛc(1+MΛc)(q12MΛc2)(q22Mn2)\displaystyle=\frac{\lambda_{n}\left(\not{q}_{2}+M_{n}\right)\bigg{[}f_{1}(q^{2})\gamma_{\mu}+if_{2}(q^{2})\sigma_{\mu\nu}\frac{q^{\nu}}{M_{\Lambda_{c}}}+f_{3}(q^{2})\frac{q_{\mu}}{M_{\Lambda_{c}}}\bigg{]}\lambda_{\Lambda_{c}}\left(\not{q}_{1}+M_{\Lambda_{c}}\right)}{(q_{1}^{2}-M_{\Lambda_{c}}^{2})(q_{2}^{2}-M_{n}^{2})}
λn(2+Mn)[g1(q2)γμ+ig2(q2)σμνqνMΛc+g3(q2)qμMΛc]γ5λΛc(1+MΛc)(q12MΛc2)(q22Mn2).\displaystyle-\frac{\lambda_{n}\left(\not{q}_{2}+M_{n}\right)\bigg{[}g_{1}(q^{2})\gamma_{\mu}+ig_{2}(q^{2})\sigma_{\mu\nu}\frac{q^{\nu}}{M_{\Lambda_{c}}}+g_{3}(q^{2})\frac{q_{\mu}}{M_{\Lambda_{c}}}\bigg{]}\gamma_{5}\lambda_{\Lambda_{c}}\left(\not{q}_{1}+M_{\Lambda_{c}}\right)}{(q_{1}^{2}-M_{\Lambda_{c}}^{2})(q_{2}^{2}-M_{n}^{2})}. (9)

It should be noted that we assume f3(q2)f_{3}(q^{2}) and g3(q2)g_{3}(q^{2}) to be negligible in this study as they will contribute to semileptonic decays at 𝒪(m2)\mathcal{O}\left(m_{\ell}^{2}\right) [42, 33].

On the QCD side, the three-point correlation functions of Eq. (3) can be expressed by operator-product expansion (OPE) and double dispersion relations,

ΠμQCD(q12,q22,q2)=s1min𝑑s1s2min𝑑s2ρμQCD(s1,s2,q2)(s1q12)(s2q22),\displaystyle\Pi_{\mu}^{\text{QCD}}(q_{1}^{2},q_{2}^{2},q^{2})=\int_{s_{1}^{\text{min}}}^{\infty}ds_{1}\int_{s_{2}^{\text{min}}}^{\infty}ds_{2}\frac{\rho^{\text{QCD}}_{\mu}(s_{1},s_{2},q^{2})}{(s_{1}-q_{1}^{2})(s_{2}-q_{2}^{2})}, (10)

where s1(2)mins_{1(2)}^{\text{min}} is the kinematic limit. ρμQCD(s1,s2,q2)\rho^{\text{QCD}}_{\mu}(s_{1},s_{2},q^{2}) stands for the spectral density, which can be obtained through the application of Cutkosky cutting rules [35, 33, 34, 36, 37, 43, 44, 45]. In this work, contributions up to dimension 6 are considered in ρμQCD(s1,s2,q2)\rho^{\text{QCD}}_{\mu}(s_{1},s_{2},q^{2}), which can be expressed as:

ρμQCD(s1,s2,q2)\displaystyle\rho^{\text{QCD}}_{\mu}(s_{1},s_{2},q^{2}) =ρμpert(s1,s2,q2)+ρμq¯q(s1,s2,q2)+ρμgs2G2(s1,s2,q2)\displaystyle=\rho^{\text{pert}}_{\mu}(s_{1},s_{2},q^{2})+\rho^{\langle\bar{q}q\rangle}_{\mu}(s_{1},s_{2},q^{2})+\rho^{\langle g_{s}^{2}G^{2}\rangle}_{\mu}(s_{1},s_{2},q^{2})
+ρμgsq¯σGq(s1,s2,q2)+ρμq¯q2(s1,s2,q2).\displaystyle+\rho^{\langle g_{s}\bar{q}\sigma\cdot Gq\rangle}_{\mu}(s_{1},s_{2},q^{2})+\rho^{\langle\bar{q}q\rangle^{2}}_{\mu}(s_{1},s_{2},q^{2}). (11)

The first term corresponds to the perturbative contribution, while q¯q\langle\bar{q}q\rangle, gs2G2\langle g_{s}^{2}G^{2}\rangle, gsq¯σGq\langle g_{s}\bar{q}\sigma\cdot Gq\rangle, and q¯q2\langle\bar{q}q\rangle^{2} represent condensates that describe the nonperturbative effects. The relevant Feynman diagrams are plotted in Fig. 2.

To establish the relation between phenomenological representation and QCD representation, the quark-hadron duality is adopted,

Πμphe(q12,q22,q2)s1mins10𝑑s1s2mins20𝑑s2ρμQCD(s1,s2,q2)(s1q12)(s2q22).\Pi_{\mu}^{\text{phe}}(q_{1}^{2},q_{2}^{2},q^{2})\simeq\int_{s_{1}^{\text{min}}}^{s_{1}^{0}}ds_{1}\int_{s_{2}^{\text{min}}}^{s_{2}^{0}}ds_{2}\frac{\rho^{\text{QCD}}_{\mu}(s_{1},s_{2},q^{2})}{(s_{1}-q_{1}^{2})(s_{2}-q_{2}^{2})}. (12)

Here, s10s_{1}^{0} and s20s_{2}^{0} denote the threshold parameters of Λc\Lambda_{c} and the neutron, respectively. After taking into account the double Borel transform to suppress the higher excited states and continuum states contributions, the analytic expression of fi(q2)f_{i}(q^{2}) and gi(q2)g_{i}(q^{2}) can be derived:

f1(t)=g1(t)=\displaystyle f_{1}(t)=g_{1}(t)= eMΛc2/MB12eMn2/MB22λΛcλnMΛc[s1mins10ds1s2mins20ds2dξ3mcξ64π4λ(s1,s2,t)3/2×\displaystyle\frac{e^{M_{\Lambda_{c}}^{2}/M_{B_{1}}^{2}}e^{M_{n}^{2}/M_{B_{2}}^{2}}}{\lambda_{\Lambda_{c}}\lambda_{n}M_{\Lambda_{c}}}\bigg{[}\int_{s_{1}^{\text{min}}}^{s_{1}^{0}}ds_{1}\int_{s_{2}^{\text{min}}}^{s_{2}^{0}}ds_{2}\int d\xi\frac{3\,m_{c}\,\xi}{64\,\pi^{4}\lambda(s_{1},s_{2},t)^{3/2}}\times
(mc2(s1ts2)t(s1t+s22ξ))×es1/MB12es2/MB22\displaystyle\big{(}m_{c}^{2}(s_{1}-t-s_{2})-t\,(s_{1}-t+s_{2}-2\,\xi)\big{)}\times e^{-s_{1}/M_{B_{1}}^{2}}e^{-s_{2}/M_{B_{2}}^{2}}
+mcq¯q26emc2/MB12emd2/MB22],\displaystyle+\frac{m_{c}\langle\bar{q}q\rangle^{2}}{6}e^{-m_{c}^{2}/M_{B_{1}}^{2}}e^{-m_{d}^{2}/M_{B_{2}}^{2}}\bigg{]}, (13)
f2(t)=g2(t)=\displaystyle f_{2}(t)=g_{2}(t)= eMΛc2/MB12eMn2/MB22λΛcλns1mins10ds1s2mins20ds2dξ3ξ64π4λ(s1,s2,t)5/2[\displaystyle\frac{e^{M_{\Lambda_{c}}^{2}/M_{B_{1}}^{2}}e^{M_{n}^{2}/M_{B_{2}}^{2}}}{\lambda_{\Lambda_{c}}\lambda_{n}}\int_{s_{1}^{\text{min}}}^{s_{1}^{0}}ds_{1}\int_{s_{2}^{\text{min}}}^{s_{2}^{0}}ds_{2}\int d\xi\frac{3\,\xi}{64\,\pi^{4}\lambda(s_{1},s_{2},t)^{5/2}}\Big{[}
mc4(s2(s1+t)+(s1t)22s22)\displaystyle m_{c}^{4}\big{(}s_{2}(s_{1}+t)+(s_{1}-t)^{2}-2\,s_{2}^{2}\big{)}-
mc2(s13s12(t+s2+2ξ)s1(t2+2t(ξ3s2)+s2(s24ξ))\displaystyle m_{c}^{2}\big{(}s_{1}^{3}-s_{1}^{2}(t+s_{2}+2\,\xi)-s_{1}(t^{2}+2\,t\,(\xi-3\,s_{2})+s_{2}(s_{2}-4\,\xi))
+(ts2)(t2+4tξs2(s22ξ)))\displaystyle+(t-s_{2})(t^{2}+4\,t\,\xi-s_{2}(s_{2}-2\,\xi))\big{)}-
t(2ξ(2s12+s1(t+s2)+(ts2)2)3ξ2(s1+ts2)\displaystyle t\big{(}-2\xi(-2\,s_{1}^{2}+s_{1}(t+s_{2})+(t-s_{2})^{2})-3\,\xi^{2}(s_{1}+t-s_{2})
s1s2(s1+t)s1(s1t)2+2s1s22)]×es1/MB12es2/MB22,\displaystyle-s_{1}s_{2}(s_{1}+t)-s_{1}(s_{1}-t)^{2}+2\,s_{1}s_{2}^{2}\big{)}\Big{]}\times e^{-s_{1}/M_{B_{1}}^{2}}e^{-s_{2}/M_{B_{2}}^{2}}, (14)

where we define t=q2t=q^{2} and λ(s1,s2,t)=s12+s22+t22s1s22s1t2s2t\lambda(s_{1},s_{2},t)=s_{1}^{2}+s_{2}^{2}+t^{2}-2s_{1}s_{2}-2s_{1}t-2s_{2}t. MB12M_{B_{1}}^{2} and MB22M_{B_{2}}^{2} represent the Borel parameters which will appear after double Borel transform. Note, there are twenty-four Lorentz structures of form factors in Eq. (12). Here, we only present those that meet the parameter selection criteria. Details will be discussed in the next section. The variable ξ\xi is introduced in the integral through the phase space integration by utilizing Cutkosky cutting rules. It can be observed from Eqs. (2) and (2) that the quark condensate q¯q\langle\bar{q}q\rangle and the mixed quark-gluon condensate gsq¯σGq\langle g_{s}\bar{q}\sigma\cdot Gq\rangle do not contribute to the transition form factors, while we find the contribution from gluon condensate gs2G2\langle g_{s}^{2}G^{2}\rangle is negligible and can be ignored. Thus, only the four-quark condensate q¯q2\langle\bar{q}q\rangle^{2} determines the primary nonperturbative contribution to f1f_{1}, which is in agreement with previous theoretical studies of heavy to light transitions [33, 31, 32].

Refer to caption
Figure 2: The Feynman diagrams for the computation of ρμQCD(s1,s2,q2)\rho^{\text{QCD}}_{\mu}(s_{1},s_{2},q^{2}). Double solid lines represent charm quark, and ordinary solid lines denote light quark.

3 Numerical results and discussions

In our numerical calculation, the following input parameters are adopted [46, 47, 45, 44, 48, 20, 49, 50],

q¯q\displaystyle\langle\bar{q}q\rangle =(0.24±0.01)3GeV3,\displaystyle=-(0.24\pm 0.01)^{3}\text{GeV}^{3},
s10\displaystyle s_{1}^{0} =(9.510.5)GeV2,s20=(2.43.0)GeV2\displaystyle=(9.5\sim 10.5)\,\text{GeV}^{2},\quad s_{2}^{0}=(2.4\sim 3.0)\,\text{GeV}^{2}
mc\displaystyle m_{c} =1.27±0.02GeV,md=4.670.17+0.48MeV,\displaystyle=1.27\pm 0.02\,\text{GeV},\quad m_{d}=4.67^{+0.48}_{-0.17}\,\text{MeV},
λΛc\displaystyle\lambda_{\Lambda_{c}} =0.0119GeV3,λn=0.02GeV3,\displaystyle=0.0119\,\text{GeV}^{3},\quad\lambda_{n}=0.02\,\text{GeV}^{3},
MΛc\displaystyle M_{\Lambda_{c}} =2.286GeV,Mn=0.938GeV.\displaystyle=2.286\,\text{GeV},\quad M_{n}=0.938\,\text{GeV}. (15)

Here, the standard value of the quark condensate q¯q\langle\bar{q}q\rangle is taken at the renormalization point μ=1GeV\mu=1\,\text{GeV}. The decay constants and the threshold parameters are determined using the two-point sum rules [20, 49], employing the same interpolating currents of Eq. (4) and Eq. (5).

Moreover, two additional free parameters, namely the Borel parameters MB12M_{B_{1}}^{2} and MB22M_{B_{2}}^{2}, are introduced in the framework of QCDSR. For simplicity, we adopt the following relation of Borel parameters [34, 33, 51],

MB12MB22=MΛc2mc2Mn2md2.\displaystyle\frac{M_{B_{1}}^{2}}{M_{B_{2}}^{2}}=\frac{M_{\Lambda_{c}}^{2}-m_{c}^{2}}{M_{n}^{2}-m_{d}^{2}}. (16)

In general, two criteria are employed to determine the values of Borel parameters. First is the pole contribution. In order to investigate the contribution of ground-state hadrons, the pole contribution has to dominate the spectrum. Thus, the pole contribution can be selected larger than 40%40\% for the transition form factors, which can be formulated as follows:

RΛcPC=s1mins10𝑑s1s2mins20𝑑s2s1min𝑑s1s2mins20𝑑s2,\displaystyle R^{\text{PC}}_{\Lambda_{c}}=\frac{\int_{s_{1}^{\text{min}}}^{s_{1}^{0}}ds_{1}\int_{s_{2}^{\text{min}}}^{s_{2}^{0}}ds_{2}}{\int_{s_{1}^{\text{min}}}^{\infty}ds_{1}\int_{s_{2}^{\text{min}}}^{s_{2}^{0}}ds_{2}}, (17)
RnPC=s1mins10𝑑s1s2mins20𝑑s2s1mins10𝑑s1s2min𝑑s2.\displaystyle R^{\text{PC}}_{n}=\frac{\int_{s_{1}^{\text{min}}}^{s_{1}^{0}}ds_{1}\int_{s_{2}^{\text{min}}}^{s_{2}^{0}}ds_{2}}{\int_{s_{1}^{\text{min}}}^{s_{1}^{0}}ds_{1}\int_{s_{2}^{\text{min}}}^{\infty}ds_{2}}. (18)

These two ratios can be regarded as the pole contribution from the Λc\Lambda_{c} channel and neutron channel, respectively.

The second criterion is the convergence of OPE, which ensures that the neglected power corrections in the condensate term remain small and the truncated OPE remains effective. In our calculation, only the four-quark condensate q¯q2\langle\bar{q}q\rangle^{2} in Eq. (2) contributes to the expansion of OPE, which means the relative contribution from the condensate q¯q2\langle\bar{q}q\rangle^{2} needs to be less than 30%30\%. Additionally, since the Borel parameters MB12M_{B_{1}}^{2} and MB22M_{B_{2}}^{2} are not physical parameters, it is necessary to find an optimal window in which the transition form factors exhibit minimal dependence of MB12M_{B_{1}}^{2} and MB22M_{B_{2}}^{2}.

Through the above preparation, we notice that only one Lorentz structure of f1f_{1} and f2f_{2} in Eqs. (2) and (2) can meet all the above criteria, while we are unable to identify suitable Borel parameters that simultaneously satisfy both criteria for the remaining structures. Then the transition form factors of the semileptonic decay Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} can be numerically calculated. The dependence of the form factors at the maximum recoil point q2=0q^{2}=0 with the required range of Borel parameter MB22M_{B_{2}}^{2} is shown in Fig. 3. In Fig. 3, it can be observed that the variation of s10s_{1}^{0} has a negligible effect on f1(0)f_{1}(0) and f2(0)f_{2}(0), whereas the variation of s20s_{2}^{0} has a more significant impact. For comparison, we show our results and previous theoretical predictions of transition form factors at maximum recoil point q2=0q^{2}=0 in Table 1. The errors are mainly determined by the uncertainties of the Borel parameters MB12M_{B_{1}}^{2} and MB22M_{B_{2}}^{2} and other input parameters listed in Eq. (3). In Table. 1, our results for f1(0)f_{1}(0), f2(0)f_{2}(0), and g1(0)g_{1}(0) are comparable to other predictions, while there is significant variation for g2(0)g_{2}(0) obtained from different theoretical methods. In this work, the sign of g2(0)g_{2}(0) aligns with the results from the LCSR [20] and LF approach [21], but differs from those derived by other theoretical methods. Further investigations are needed to resolve this discrepancy. Moreover, it is worth mentioning that the results from LCSR [20] are derived using the same interpolating current as in Eq. (4), where the transition form factors at q2=0q^{2}=0 show a high level of consistency with QCDSR.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: The transition form factors f1(0)f_{1}(0) and f2(0)f_{2}(0) as functions of Borel parameter MB22M_{B_{2}}^{2} for different values of s10s_{1}^{0} and s20s_{2}^{0}.
Table 1: Theoretical predictions for the form factors of the semileptonic decay Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} at the maximum recoil point q2=0q^{2}=0 with different approaches.
Method f1(0)f_{1}(0) f2(0)f_{2}(0) g1(0)g_{1}(0) g2(0)g_{2}(0)
QCDSR 0.53±0.040.53\pm 0.04 0.25±0.03-0.25\pm 0.03 0.53±0.040.53\pm 0.04 0.25±0.03-0.25\pm 0.03
LCSR [20] 0.590.16+0.150.59^{+0.15}_{-0.16} 0.430.12+0.13-0.43^{+0.13}_{-0.12} 0.550.15+0.140.55^{+0.14}_{-0.15} 0.160.05+0.08-0.16^{+0.08}_{-0.05}
LF [21] 0.513 0.266-0.266 0.443 0.034-0.034
CCQM [22] 0.47 0.246-0.246 0.414 0.073
RQM [24] 0.627 0.259-0.259 0.433 0.118
MBM [27] 0.40 0.22-0.22 0.43 0.07
LQCD [28] 0.672±0.0390.672\pm 0.039 0.321±0.038-0.321\pm 0.038 0.602±0.0310.602\pm 0.031 0.003±0.0520.003\pm 0.052

Considering that the QCDSR method is applicable only in the small q2q^{2} region, and the physical region for q2q^{2} in the Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} decay extends from m2m_{\ell}^{2} to (MΛcMn)2(M_{\Lambda_{c}}-M_{n})^{2}, we employ a conformal mapping q2zq^{2}\rightarrow z and zz-series parametrization to extrapolate the obtained values to the entire physical region. Specifically, we utilize the zz-series parametrization in the BCL version proposed in [52]. The mapping transform is expressed as follows:

z(q2,t0)=t+q2t+t0t+q2+t+t0,\displaystyle z(q^{2},t_{0})=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}, (19)

where t±=(MΛc±Mn)2t_{\pm}=(M_{\Lambda_{c}}\pm M_{n})^{2}, and t0=t+t+tt+tmint_{0}=t_{+}-\sqrt{t_{+}-t_{-}}\sqrt{t_{+}-t_{min}} is chosen to maximally reduce the interval of zz after mapping q2q^{2} to zz with the interval tmin<q2<tt_{min}<q^{2}<t_{-} [20, 53]. In the numerical analysis, we choose tmin=0.4GeVt_{min}=-0.4\,\text{GeV}. Moreover, the following parametrization is adopted,

fi(q2)=fi(0)1q2/(mpole)2{1+a1(z(q2,t0)z(0,t0))}.\displaystyle f_{i}(q^{2})=\frac{f_{i}(0)}{1-q^{2}/(m_{pole})^{2}}\Bigl{\{}1+a_{1}(z(q^{2},t_{0})-z(0,t_{0}))\Bigr{\}}. (20)

Here, a1a_{1} is a fitting parameter. fi(0)f_{i}(0) represents the value of form factors at q2=0q^{2}=0, which is also treated as a fitted parameter here. For the pole masses, we employ mpole=mD+=1.87GeVm_{pole}=m_{D^{+}}=1.87\,\text{GeV} [48] for the Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} decay mode. To ascertain the central values, uncertainties, and correlation coefficients of the fitted parameters fi(0)f_{i}(0) and a1a_{1} for each form factor, we begin by generating a set of QCDSR data points for these form factors. The QCDSR data points for each form factor are computed at q2={0.4,0.2,0,0.2,0.4}q^{2}=\{-0.4,-0.2,0,0.2,0.4\}, utilizing a total of N=500N=500 ensembles of input parameter sets, which encompass MB22M_{B_{2}}^{2}, s10s_{1}^{0}, s20s_{2}^{0}, and other input parameters such as the quark condensate q¯q\langle\bar{q}q\rangle. The input parameter values are distributed randomly according to a multivariate joint distribution [54]. We subsequently perform a fitting of the zz-series expansion to f1(q2)f_{1}(q^{2}) and f2(q2)f_{2}(q^{2}) in order to obtain the fitting parameters, namely fi(0)f_{i}(0) and a1a_{1}, along with the correlation coefficients ρ\rho between them. The fitting results are presented in Table. 2, where the values of fi(0)f_{i}(0) obtained from the fitting procedure are consistent with our directly calculated results given in Table. 1. The q2q^{2} dependence of form factors is shown in Fig. 4.

Table 2: Fitted parameters and the correlation coefficient ρ\rho between them for f1(q2)f_{1}(q^{2}) and f2(q2)f_{2}(q^{2}) using the zz-series parametrization in Eq. (20)
fi(0)f_{i}(0) a1a_{1} ρ\rho
f1f_{1} 0.57±0.040.57\pm 0.04 0.24±0.76-0.24\pm 0.76 0.380.38
f2f_{2} 0.25±0.02-0.25\pm 0.02 10.99±0.96-10.99\pm 0.96 0.53-0.53
Refer to caption
Refer to caption
Figure 4: The q2q^{2} dependence of form factors, in which the solid lines represent the central value of fitting parameters listed in Table. 2, while the error bands represent the uncertainties allowed by the fitting parameters. Besides, the symbol point as well as the error bar denote the fitted points and the uncertainties for each of the form factors.

After deriving the q2q^{2} dependence of transition form factors, the branching fractions and the relevant decay asymmetry observables of semileptonic decay Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} can be analyzed. To facilitate this analysis, it is convenient to introduce the helicity amplitudes, which provide a more intuitive understanding of the physical pictures and simplify the expressions when discussing the asymmetries of the decay processes. The relations between helicity amplitudes and the form factors are as follows [55, 53, 34]:

H12,0V=Qq2(M+f1(q2)q2MΛcf2(q2)),H12,0A=Q+q2(Mg1(q2)+q2MΛcg2(q2)),\displaystyle H_{\frac{1}{2},0}^{V}=\frac{\sqrt{Q_{-}}}{\sqrt{q^{2}}}\big{(}M_{+}f_{1}(q^{2})-\frac{q^{2}}{M_{\Lambda_{c}}}f_{2}(q^{2})\big{)},\quad H_{\frac{1}{2},0}^{A}=\frac{\sqrt{Q_{+}}}{\sqrt{q^{2}}}\big{(}M_{-}g_{1}(q^{2})+\frac{q^{2}}{M_{\Lambda_{c}}}g_{2}(q^{2})\big{)},
H12,1V=2Q(f1(q2)+M+MΛcf2(q2)),H12,1A=2Q+(g1(q2)MMΛcg2(q2)),\displaystyle H_{\frac{1}{2},1}^{V}=\sqrt{2Q_{-}}\big{(}-f_{1}(q^{2})+\frac{M_{+}}{M_{\Lambda_{c}}}f_{2}(q^{2})\big{)},\quad H_{\frac{1}{2},1}^{A}=\sqrt{2Q_{+}}\big{(}-g_{1}(q^{2})-\frac{M_{-}}{M_{\Lambda_{c}}}g_{2}(q^{2})\big{)},
H12,tV=Q+q2(Mf1(q2)+q2MΛcf3(q2)),H12,tA=Qq2(M+g1(q2)q2MΛcg3(q2)).\displaystyle H_{\frac{1}{2},t}^{V}=\frac{\sqrt{Q_{+}}}{\sqrt{q^{2}}}\big{(}M_{-}f_{1}(q^{2})+\frac{q^{2}}{M_{\Lambda_{c}}}f_{3}(q^{2})\big{)},\quad H_{\frac{1}{2},t}^{A}=\frac{\sqrt{Q_{-}}}{\sqrt{q^{2}}}\big{(}M_{+}g_{1}(q^{2})-\frac{q^{2}}{M_{\Lambda_{c}}}g_{3}(q^{2})\big{)}. (21)

Here, Hλ,λWV(A)H_{\lambda^{\prime},\lambda_{W}}^{V(A)} is the helicity amplitudes for weak transitions induced by vector and axial-vector currents, where λ\lambda^{\prime} and λW\lambda_{W} represent the helicity of the neutron and the WW boson, respectively. Q±Q_{\pm} is defined as Q±=M±2q2Q_{\pm}=M_{\pm}^{2}-q^{2} and M±=MΛc±MnM_{\pm}=M_{\Lambda_{c}}\pm M_{n}. The negative helicity amplitudes can be derived using the following relations:

Hλ,λWV=Hλ,λWV,Hλ,λWA=Hλ,λWA.\displaystyle H_{-\lambda^{\prime},-\lambda_{W}}^{V}=H_{\lambda^{\prime},\lambda_{W}}^{V},\quad\quad H_{-\lambda^{\prime},-\lambda_{W}}^{A}=-H_{\lambda^{\prime},\lambda_{W}}^{A}. (22)

Then the total helicity amplitudes can be obtained,

Hλ,λW=Hλ,λWVHλ,λWA.\displaystyle H_{\lambda^{\prime},\lambda_{W}}=H_{\lambda^{\prime},\lambda_{W}}^{V}-H_{\lambda^{\prime},\lambda_{W}}^{A}. (23)

With the above helicity amplitudes, the differential distribution of Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} can be expressed as [24, 34]

dΓ(Λcnν)dq2=GF2|Vcd|2q2Q+Q384π3MΛc3(1m2q2)2Htot,\displaystyle\frac{d\Gamma\left(\Lambda_{c}\rightarrow n\ell\nu_{\ell}\right)}{dq^{2}}=\frac{G_{F}^{2}\left|V_{cd}\right|^{2}q^{2}\sqrt{Q_{+}Q_{-}}}{384\,\pi^{3}\,M_{\Lambda_{c}}^{3}}(1-\frac{m_{\ell}^{2}}{q^{2}})^{2}H_{\text{tot}}, (24)

where mm_{\ell} denotes the lepton mass (=e,μ\ell=e,\mu) and HtotH_{\text{tot}} is defined as

Htot\displaystyle H_{\text{tot}} =(1+m22q2)(H12,12+H12,12+H12,02+H12,02)\displaystyle=\big{(}1+\frac{m_{\ell}^{2}}{2q^{2}}\big{)}\big{(}H_{\frac{1}{2},1}^{2}+H_{-\frac{1}{2},-1}^{2}+H_{\frac{1}{2},0}^{2}+H_{-\frac{1}{2},0}^{2}\big{)}
+3m22q2(H12,t2+H12,t2).\displaystyle+\frac{3\,m_{\ell}^{2}}{2q^{2}}\big{(}H_{\frac{1}{2},t}^{2}+H_{-\frac{1}{2},t}^{2}\big{)}. (25)

According to the definition of HtotH_{\text{tot}}, the contribution to the differential decay width from f3(q2)f_{3}(q^{2}) and g3(q2)g_{3}(q^{2}) can be found in the term H12,t2H_{\frac{1}{2},t}^{2} and H12,t2H_{-\frac{1}{2},t}^{2}, which is clearly suppressed by the factor m2m_{\ell}^{2}. Hence, we neglect the effect of f3(q2)f_{3}(q^{2}) and g3(q2)g_{3}(q^{2}) in Eq. (2). In order to obtain the numerical results of differential decay width, the following input parameters related to the decay analysis are taken from the Particle Data Group [48], where

GF=1.166×105GeV2,|Vcd|=0.221±0.004,\displaystyle G_{F}=1.166\times 10^{-5}\,\text{GeV}^{-2},\quad|V_{cd}|=0.221\pm 0.004,
me=0.511MeV,mμ=0.106GeV,τΛc=(201.5±2.7)×1015s.\displaystyle m_{e}=0.511\,\text{MeV},\quad m_{\mu}=0.106\,\text{GeV},\quad\tau_{\Lambda_{c}}=(201.5\pm 2.7)\times 10^{-15}\,\text{s}. (26)

Here, the mean lifetime of Λc\Lambda_{c}, noted as τΛc\tau_{\Lambda_{c}}, is introduced to calculate the branching fractions. We plot the q2q^{2} dependence of the differential decay width for Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} semileptonic decay in Fig. 5(a) and list the numerical results of branching fractions in Table. 3. It can be found that the branching fractions for Λcne+νe\Lambda_{c}\rightarrow ne^{+}\nu_{e} semileptonic decay obtained using QCDSR are very close to the results derived by CQM [23], RQM [24], SU(3)SU(3) flavor symmetry [25], and MBM [27]. As for the Λcnμ+νμ\Lambda_{c}\rightarrow n\mu^{+}\nu_{\mu} decay mode, we find our results are consistent with RQM [24] and relatively smaller than the Lattice QCD predictions [28].

Refer to caption
Refer to caption
Refer to caption
Figure 5: The q2q^{2} dependence of the differential decay width and the relevant decay observables for Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} semileptonic decay. The red solid line denotes =e+\ell=e^{+}, while the blue dashed line denotes =μ+\ell=\mu^{+}.
Table 3: Theoretical predictions of branching fractions, the forward-backward asymmetry, and the asymmetry parameter for Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} and ΛcΛν\Lambda_{c}\rightarrow\Lambda\ell\nu_{\ell} semileptonic decay with different methods.
Channel Method (%)\mathcal{B}(\%) AFB\langle A_{FB}\rangle αΛc\langle\alpha_{\Lambda_{c}}\rangle
Λcne+νe\Lambda_{c}\rightarrow ne^{+}\nu_{e} QCDSR 0.281±0.0560.281\pm 0.056 0.23±0.01-0.23\pm 0.01 0.93±0.03-0.93\pm 0.03
LF [21] 0.2010.201
CCQM [22] 0.2070.207 0.236-0.236
CQM [23] 0.2700.270
RQM [24] 0.2680.268 0.251-0.251 0.91-0.91
SU(3)SU(3) [25] 0.289±0.0350.289\pm 0.035
SU(3)SU(3) [26] 0.51±0.040.51\pm 0.04 0.89±0.04-0.89\pm 0.04
MBM [27] 0.2790.279 0.87-0.87
LFCQM [27] 0.36±0.150.36\pm 0.15 0.96±0.04-0.96\pm 0.04
LQCD [28] 0.410±0.0260.410\pm 0.026
Λcnμ+νμ\Lambda_{c}\rightarrow n\mu^{+}\nu_{\mu} QCDSR 0.275±0.0550.275\pm 0.055 0.25±0.02-0.25\pm 0.02 0.93±0.03-0.93\pm 0.03
CCQM [22] 0.2020.202 0.260-0.260
RQM [24] 0.2620.262 0.276-0.276 0.90-0.90
LQCD [28] 0.400±0.0260.400\pm 0.026
ΛcΛe+νe\Lambda_{c}\rightarrow\Lambda e^{+}\nu_{e} QCDSR 3.49±0.653.49\pm 0.65 0.20±0.01-0.20\pm 0.01 0.90±0.03-0.90\pm 0.03
LQCD [56] 3.80±0.223.80\pm 0.22 0.20±0.06-0.20\pm 0.06 0.87±0.10-0.87\pm 0.10
Exp [4, 5] 3.56±0.11±0.073.56\pm 0.11\pm 0.07 0.24±0.03-0.24\pm 0.03 0.86±0.04-0.86\pm 0.04
ΛcΛμ+νμ\Lambda_{c}\rightarrow\Lambda\mu^{+}\nu_{\mu} QCDSR 3.37±0.543.37\pm 0.54 0.24±0.01-0.24\pm 0.01 0.90±0.02-0.90\pm 0.02
LQCD [56] 3.69±0.223.69\pm 0.22 0.17±0.07-0.17\pm 0.07 0.87±0.10-0.87\pm 0.10
Exp [4, 5] 3.48±0.173.48\pm 0.17 0.22±0.04-0.22\pm 0.04 0.94±0.08-0.94\pm 0.08

In addition, two relevant decay asymmetry observables, e.g., the leptonic forward-backward asymmetry (AFBA_{FB}) and the asymmetry parameter (αΛc\alpha_{\Lambda_{c}}) are defined as [24, 57, 5],

AFB(q2)\displaystyle A_{FB}(q^{2}) =dΓdq2(forward)dΓdq2(backward)dΓdq2\displaystyle=\frac{\frac{d\Gamma}{dq^{2}}(\text{forward})-\frac{d\Gamma}{dq^{2}}(\text{backward})}{\frac{d\Gamma}{dq^{2}}}
=34H12,12H12,122m2q2(H12,0H12,t+H12,0H12,t)Htot,\displaystyle=\frac{3}{4}\frac{H_{\frac{1}{2},1}^{2}-H_{-\frac{1}{2},-1}^{2}-2\frac{m_{\ell}^{2}}{q^{2}}(H_{\frac{1}{2},0}H_{\frac{1}{2},t}+H_{-\frac{1}{2},0}H_{-\frac{1}{2},t})}{H_{\text{tot}}}, (27)
αΛc(q2)\displaystyle\alpha_{\Lambda_{c}}(q^{2}) =dΓλ=12/dq2dΓλ=12/dq2dΓλ=12/dq2+dΓλ=12/dq2,\displaystyle=\frac{d\Gamma^{\lambda^{\prime}=\frac{1}{2}}/dq^{2}-d\Gamma^{\lambda^{\prime}=-\frac{1}{2}}/dq^{2}}{d\Gamma^{\lambda^{\prime}=\frac{1}{2}}/dq^{2}+d\Gamma^{\lambda^{\prime}=-\frac{1}{2}}/dq^{2}}, (28)

where

dΓλ=12dq2=\displaystyle\frac{d\Gamma^{\lambda^{\prime}=\frac{1}{2}}}{dq^{2}}= 4ml23q2(H12,12+H12,02+3H12,t2)+83(H12,12+H12,02),\displaystyle\,\frac{4m_{l}^{2}}{3q^{2}}\big{(}H_{\frac{1}{2},1}^{2}+H_{\frac{1}{2},0}^{2}+3H_{\frac{1}{2},t}^{2}\big{)}+\frac{8}{3}\big{(}H_{\frac{1}{2},1}^{2}+H_{\frac{1}{2},0}^{2}\big{)}, (29)
dΓλ=12dq2=\displaystyle\frac{d\Gamma^{\lambda^{\prime}=-\frac{1}{2}}}{dq^{2}}= 4ml23q2(H12,12+H12,02+3H12,t2)+83(H12,12+H12,02).\displaystyle\,\frac{4m_{l}^{2}}{3q^{2}}\big{(}H_{-\frac{1}{2},-1}^{2}+H_{-\frac{1}{2},0}^{2}+3H_{-\frac{1}{2},t}^{2}\big{)}+\frac{8}{3}\big{(}H_{-\frac{1}{2},-1}^{2}+H_{-\frac{1}{2},0}^{2}\big{)}. (30)

The q2q^{2} dependence of the decay asymmetry observables are plotted in Figs. 5(b) and 5(c). In Fig. 5, we can see the dependence of the differential decay width and the decay asymmetry observables on the lepton mass is consistent near the zero recoil region q2=(MΛcMn)2q^{2}=(M_{\Lambda_{c}}-M_{n})^{2}. However, near the maximum recoil point q2=m2q^{2}=m_{\ell}^{2}, the behavior of the differential decay width and the leptonic forward-backward asymmetry is significantly different. The leptonic forward-backward asymmetry is going to 0 for the Λcne+νe\Lambda_{c}\rightarrow ne^{+}\nu_{e} decay mode and to 0.5-0.5 for the Λcnμ+νμ\Lambda_{c}\rightarrow n\mu^{+}\nu_{\mu} decay mode at q2=m2q^{2}=m_{\ell}^{2}. This character agrees with Ref. [24]. As for the asymmetry parameter, it varies from αΛc=1\alpha_{\Lambda_{c}}=-1 to αΛc=0\alpha_{\Lambda_{c}}=0 as the q2q^{2} increases from zero to qmax2q^{2}_{max}. Besides, it is almost indistinguishable throughout the entire physical region, which is also consistent with the findings in Ref. [24]. We also present the mean values of the relevant decay asymmetry observables in Table 3, which are obtained by separately integrating the numerators and denominators in Eqs.(3) and (28) over the physical region of q2q^{2}. From Table. 3, it can be observed that our results for AFB\langle A_{FB}\rangle and αΛc\langle\alpha_{\Lambda_{c}}\rangle agree with the previous theoretical predictions. Future experiments measuring these observables and comparing them with the predictions of the present study will contribute to our understanding of the relevant decay channels and the internal structures of baryons. In addition, the possibility of new physics effects beyond the standard model can be explored through these observables [55, 58].

By replacing the second dd quark in the current (5) with a strange quark and applying the same analysis procedure, we also investigate the semileptonic decay mode ΛcΛν\Lambda_{c}\rightarrow\Lambda\ell\nu_{\ell}. The relevant input parameters are ms=93.43.4+8.6MeVm_{s}=93.4^{+8.6}_{-3.4}\,\text{MeV} [48], λΛ=0.0208GeV3\lambda_{\Lambda}=0.0208\,\text{GeV}^{3} [32], MΛ=1.116GeVM_{\Lambda}=1.116\,\text{GeV} [48], |Vcs|=0.975±0.006|V_{cs}|=0.975\pm 0.006 [48], and mpole=mDs+=1.97GeVm_{pole}=m_{D_{s}^{+}}=1.97\,\text{GeV} [48]. As this decay mode has been thoroughly investigated both theoretically and experimentally, we solely provide the numerical results of branching fractions and decay asymmetry observables in Table. 3 as a validation of the QCDSR method. It is evident that the branching fractions, the forward-backward asymmetry, and the asymmetry parameter obtained through QCDSR for the semileptonic decay ΛcΛν\Lambda_{c}\rightarrow\Lambda\ell\nu_{\ell} are in excellent agreement with Lattice QCD results [56] and experimental data [4, 5].

4 Conclusions

In this work, we calculate the weak transition form factors of Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} semileptonic decay in the framework of QCD sum rules. The analytic results of the transition form factors are obtained through the analysis of the three-point correlation functions and the application of Cutkosky cutting rules. The numerical results for the form factors at the maximum recoil region point q2=0q^{2}=0 are computed and compared with other methods. In order to extend the form factors to the full physical region, we utilize a zz-series parametrization that adequately captures the q2q^{2} dependence of the form factors, ensuring a smooth extrapolation.

Based on the obtained form factors, we predict the branching fractions to be (Λcne+νe)=(0.281±0.056)%\mathcal{B}(\Lambda_{c}\rightarrow ne^{+}\nu_{e})=(0.281\pm 0.056)\% and (Λcnμ+νμ)=(0.275±0.055)%\mathcal{B}(\Lambda_{c}\rightarrow n\mu^{+}\nu_{\mu})=(0.275\pm 0.055)\%, which will provide important information to determine the value of the CKM matrix element |Vcd||V_{cd}|. Moreover, the mean values of the leptonic forward-backward asymmetry AFB\langle A_{FB}\rangle and the asymmetry parameter αΛc\langle\alpha_{\Lambda_{c}}\rangle are also given, which will play a crucial role in probing potential new physics effects beyond the standard model. Although there are still no experimental data for Λcnν\Lambda_{c}\rightarrow n\ell\nu_{\ell} semileptonic decay to date, considering the recent experimental progress of Λc\Lambda_{c} decay modes involving the neutron final state, we believe our predicted results can be tested by the future experiments at BESIII, BELLEII, and LHCb.

Finally, we analyze the semileptonic decay mode ΛcΛν\Lambda_{c}\rightarrow\Lambda\ell\nu_{\ell}. Our results exhibit a strong agreement with the experimental data, indicating that the QCDSR calculation can be applied to other charmed baryons, such as Ξc+(0)\Xi_{c}^{+(0)}. Furthermore, there is still potential for further improvement in this method. The relatively large errors in the branching fractions compared with the experimental data suggest the necessity for further refinement. One possible approach to address this issue is to calculate the contributions from radiation corrections, although this presents a significant challenge in the application of QCD sum rules.

Acknowledgments

We thank K.S. Huang, L. Tang, B.D. Wan, and D.S. Ye for their meaningful discussions. This work was supported in part by National Natural Science Foundation of China(NSFC) under Grants No. 11975236 and No. 12235008, and the University of Chinese Academy of Sciences.

References

  • [1] J. D. Richman and P. R. Burchat, Leptonic and semileptonic decays of charm and bottom hadrons, Rev. Mod. Phys. 67, 893–976 (1995).
  • [2] M. Ablikim et al., Measurement of the absolute branching fraction for Λc+Λe+νe\Lambda^{+}_{c}\to\Lambda e^{+}\nu_{e}, Phys. Rev. Lett. 115, 221805 (2015).
  • [3] M. Ablikim et al., Measurement of the absolute branching fraction for Λc+Λμ+νμ\Lambda_{c}^{+}\rightarrow\Lambda\mu^{+}\nu_{\mu}, Phys. Lett. B 767, 42–47 (2017).
  • [4] M. Ablikim et al., Study of the Semileptonic Decay Λc+Λe+νe\Lambda_{c}^{+}\rightarrow\Lambda e^{+}\nu_{e}, Phys. Rev. Lett. 129, 231803 (2022).
  • [5] M. Ablikim et al., Study of Λc+Λμ+νμ\Lambda_{c}^{+}\rightarrow\Lambda\mu^{+}\nu_{\mu} and test of lepton flavor universality with Λc+Λ+ν\Lambda_{c}^{+}\rightarrow\Lambda\ell^{+}\nu_{\ell} decays, Phys. Rev. D 108, L031105 (2023).
  • [6] M. Ablikim et al., Measurement of the absolute branching fraction of the inclusive semileptonic Λc+\Lambda_{c}^{+} decay, Phys. Rev. Lett. 121, 251801 (2018).
  • [7] M. Ablikim et al., First observation of the semileptonic decay Λc+pKe+νe\Lambda_{c}^{+}\rightarrow pK^{-}e^{+}\nu_{e}, Phys. Rev. D 106, 112010 (2022).
  • [8] M. Ablikim et al., Search for the semi-leptonic decays ΛcΛπ+πe+νe\Lambda_{c}\rightarrow\Lambda\pi^{+}\pi^{-}e^{+}\nu_{e} and ΛcpKs0πe+νe\Lambda_{c}\rightarrow pK_{s}^{0}\pi^{-}e^{+}\nu_{e}, Phys. Lett. B 843, 137993 (2023).
  • [9] M. Ablikim et al., Measurement of the absolute branching fraction of the inclusive decay Λ¯cn¯+X\bar{\Lambda}_{c}^{-}\to\bar{n}+X, Phys. Rev. D 108, L031101 (2023).
  • [10] M. Ablikim et al., Observations of the Cabibbo-Suppressed decays Λc+nπ+π0\Lambda_{c}^{+}\to n\pi^{+}\pi^{0}, nπ+ππ+n\pi^{+}\pi^{-}\pi^{+} and the Cabibbo-Favored decay Λc+nKπ+π+\Lambda_{c}^{+}\to nK^{-}\pi^{+}\pi^{+}, Chin. Phys. C 47, 023001 (2023).
  • [11] M. Ablikim et al., Observation of Λc+nKS0π+\Lambda^{+}_{c}\to nK^{0}_{S}\pi^{+}, Phys. Rev. Lett. 118, 112001 (2017).
  • [12] M. Ablikim et al., Observation of the Singly Cabibbo Suppressed Decay Λc+nπ+\Lambda^{+}_{c}\to n\pi^{+}, Phys. Rev. Lett. 128, 142001 (2022).
  • [13] L. Widhalm et al., Measurement of D0πlν(Klν)D_{0}\rightarrow\pi l\nu(Kl\nu) Form Factors and Absolute Branching Fractions, Phys. Rev. Lett. 97, 061804 (2006).
  • [14] D. Besson et al., Improved measurements of D meson semileptonic decays to pi and K mesons, Phys. Rev. D 80, 032005 (2009).
  • [15] J. P. Lees et al., Measurement of the D0πe+νeD^{0}\to\pi^{-}e^{+}\nu_{e} differential decay branching fraction as a function of q2q^{2} and study of form factor parameterizations, Phys. Rev. D 91, 052022 (2015).
  • [16] M. Ablikim et al., Study of Dynamics of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} and D0πe+νeD^{0}\to\pi^{-}e^{+}\nu_{e} Decays, Phys. Rev. D 92, 072012 (2015).
  • [17] M. Ablikim et al., Analysis of D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} and D+π0e+νeD^{+}\to\pi^{0}e^{+}\nu_{e} semileptonic decays, Phys. Rev. D 96, 012002 (2017).
  • [18] C.-F. Li, Y.-L. Liu, K. Liu, C.-Y. Cui, and M.-Q. Huang, Analysis of the semileptonic decay Λcne+νe{{\rm{\Lambda}}}_{c}\rightarrow{{ne}}^{+}{\nu}_{e}, J. Phys. G 44, 075006 (2017).
  • [19] K. Azizi, M. Bayar, Y. Sarac, and H. Sundu, Semileptonic Λ(b,c)\Lambda_{(b,c)} to Nucleon Transitions in Full QCD at Light Cone, Phys. Rev. D 80, 096007 (2009).
  • [20] A. Khodjamirian, C. Klein, T. Mannel, and Y. M. Wang, Form Factors and Strong Couplings of Heavy Baryons from QCD Light-Cone Sum Rules, JHEP 09, 106 (2011).
  • [21] Z.-X. Zhao, Weak decays of heavy baryons in the light-front approach, Chin. Phys. C 42, 093101 (2018).
  • [22] T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij, and P. Santorelli, Heavy-to-light semileptonic decays of Λb\Lambda_{b} and Λc\Lambda_{c} baryons in the covariant confined quark model, Phys. Rev. D 90, 114033 (2014), [Erratum: Phys.Rev.D 94, 059902 (2016)].
  • [23] M. Pervin, W. Roberts, and S. Capstick, Semileptonic decays of heavy lambda baryons in a quark model, Phys. Rev. C 72, 035201 (2005).
  • [24] R. N. Faustov and V. O. Galkin, Semileptonic decays of Λc\Lambda_{c} baryons in the relativistic quark model, Eur. Phys. J. C 76, 628 (2016).
  • [25] C.-D. Lü, W. Wang, and F.-S. Yu, Test flavor SU(3) symmetry in exclusive Λc\Lambda_{c} decays, Phys. Rev. D 93, 056008 (2016).
  • [26] C.-Q. Geng, C.-W. Liu, T.-H. Tsai, and S.-W. Yeh, Semileptonic decays of anti-triplet charmed baryons, Phys. Lett. B 792, 214–218 (2019).
  • [27] C. Q. Geng, C.-C. Lih, C.-W. Liu, and T.-H. Tsai, Semileptonic decays of Λc+\Lambda_{c}^{+} in dynamical approaches, Phys. Rev. D 101, 094017 (2020).
  • [28] S. Meinel, ΛcN\Lambda_{c}\to N form factors from lattice QCD and phenomenology of Λcn+ν\Lambda_{c}\to n\ell^{+}\nu_{\ell} and Λcpμ+μ\Lambda_{c}\to p\mu^{+}\mu^{-} decays, Phys. Rev. D 97, 034511 (2018).
  • [29] Y.-B. Dai, C.-S. Huang, M.-Q. Huang, and C. Liu, QCD sum rule analysis for the Λb\Lambda_{b} \rightarrow Λc\Lambda_{c} semileptonic decay, Phys. Lett. B 387, 379–385 (1996).
  • [30] H. G. Dosch, E. Ferreira, M. Nielsen, and R. Rosenfeld, Heavy Lambda semileptonic decay: A QCD sum rule approach, Nucl. Phys. B Proc. Suppl. 74, 218–221 (1999).
  • [31] C.-S. Huang, C.-F. Qiao, and H.-G. Yan, Decay Λb\Lambda_{b} \rightarrow plν¯pl\bar{\nu} in QCD sum rules, Phys. Lett. B 437, 403–407 (1998).
  • [32] C.-S. Huang and H.-G. Yan, Exclusive rare decays of heavy baryons to light baryons: ΛbΛγ\Lambda_{b}\rightarrow\Lambda\gamma and ΛbΛl+l\Lambda_{b}\rightarrow\Lambda l^{+}l^{-}, Phys. Rev. D 59, 114022 (1999), [Erratum: Phys.Rev.D 61, 039901 (2000)].
  • [33] R. S. Marques de Carvalho, F. S. Navarra, M. Nielsen, E. Ferreira, and H. G. Dosch, Form-factors and decay rates for heavy Lambda semileptonic decays from QCD sum rules, Phys. Rev. D 60, 034009 (1999).
  • [34] Y.-J. Shi, W. Wang, and Z.-X. Zhao, QCD Sum Rules Analysis of Weak Decays of Doubly-Heavy Baryons, Eur. Phys. J. C 80, 568 (2020).
  • [35] Z.-X. Zhao, R.-H. Li, Y.-L. Shen, Y.-J. Shi, and Y.-S. Yang, The semi-leptonic form factors of ΛbΛc\Lambda_{b}\to\Lambda_{c} and ΞbΞc\Xi_{b}\to\Xi_{c} in QCD sum rules, Eur. Phys. J. C 80, 1181 (2020).
  • [36] Z.-X. Zhao, Semi-leptonic form factors of ΞcΞ\Xi_{c}\to\Xi in QCD sum rules, arXiv:2103.09436 (2021).
  • [37] Z.-P. Xing and Z.-X. Zhao, QCD sum rules analysis of weak decays of doubly heavy baryons: the bcb\rightarrow c processes, Eur. Phys. J. C 81, 1111 (2021).
  • [38] Y. Chung, H. G. Dosch, M. Kremer, and D. Schall, QCD Sum Rules for ’Baryonic Currents’, Phys. Lett. B 102, 175–179 (1981).
  • [39] B. L. Ioffe, On the choice of quark currents in the QCD sum rules for baryon masses, Z. Phys. C 18, 67 (1983).
  • [40] B. L. Ioffe, Calculation of Baryon Masses in Quantum Chromodynamics, Nucl. Phys. B 188, 317–341 (1981), [Erratum: Nucl.Phys.B 191, 591–592 (1981)].
  • [41] V. M. Braun, A. Lenz, and M. Wittmann, Nucleon Form Factors in QCD, Phys. Rev. D 73, 094019 (2006).
  • [42] M. Emmerich, N. Offen, and A. Schäfer, The decays Λb,cNlν\Lambda_{b,c}\to N^{*}\,l\,\nu in QCD, J. Phys. G 43, 115003 (2016).
  • [43] Z.-G. Wang, Semileptonic decays Bcηcν¯B_{c}^{*}\to\eta_{c}\ell\bar{\nu}_{\ell} with QCD sum rules, Commun. Theor. Phys. 61, 81–88 (2014).
  • [44] M.-Z. Yang, Semileptonic decay of BB and DK0(1430)¯νD\to K_{0}^{*}(1430)\bar{\ell}\nu from QCD sum rule, Phys. Rev. D 73, 034027 (2006), [Erratum: Phys.Rev.D 73, 079901 (2006)].
  • [45] D.-S. Du, J.-W. Li, and M.-Z. Yang, Form-factors and semileptonic decay of Ds+ϕl¯νD^{+}_{s}\to\phi\bar{l}\nu from QCD sum rule, Eur. Phys. J. C 37, 173–184 (2004).
  • [46] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, QCD and Resonance Physics: Applications, Nucl. Phys. B 147, 448–518 (1979).
  • [47] P. Colangelo and A. Khodjamirian, QCD sum rules, a modern perspective, At The Frontier of Particle Physics 1495–1576 (2000).
  • [48] R. L. Workman et al., Review of Particle Physics, PTEP 2022, 083C01 (2022).
  • [49] Y. Chung, H. G. Dosch, M. Kremer, and D. Schall, Chiral Symmetry Breaking Condensates for Baryonic Sum Rules, Z. Phys. C 25, 151 (1984).
  • [50] B.-D. Wan, S.-Q. Zhang, and C.-F. Qiao, Light baryonium spectrum, Phys. Rev. D 105, 014016 (2022).
  • [51] D. Leljak and B. Melic, |Vub||V_{ub}| determination and testing of lepton flavour universality in semileptonic BcDB_{c}\to D^{\ast} decays, JHEP 02, 171 (2020).
  • [52] C. Bourrely, I. Caprini, and L. Lellouch, Model-independent description of BπlνB\rightarrow\pi l\nu decays and a determination of |V(ub)||V(ub)|, Phys. Rev. D 79, 013008 (2009), [Erratum: Phys.Rev.D 82, 099902 (2010)].
  • [53] K.-S. Huang, W. Liu, Y.-L. Shen, and F.-S. Yu, Λbp,N(1535)\Lambda_{b}\rightarrow p,N^{*}(1535) form factors from QCD light-cone sum rules, Eur. Phys. J. C 83, 272 (2023).
  • [54] I. Sentitemsu Imsong, A. Khodjamirian, T. Mannel, and D. van Dyk, Extrapolation and unitarity bounds for the BπB\rightarrow\pi form factor, JHEP 02, 126 (2015).
  • [55] Y.-S. Li, X. Liu, and F.-S. Yu, Revisiting semileptonic decays of Λb(c)\Lambda_{b(c)} supported by baryon spectroscopy, Phys. Rev. D 104, 013005 (2021).
  • [56] S. Meinel, ΛcΛl+νl\Lambda_{c}\to\Lambda l^{+}\nu_{l} form factors and decay rates from lattice QCD with physical quark masses, Phys. Rev. Lett. 118, 082001 (2017).
  • [57] C.-Q. Geng, X.-N. Jin, and C.-W. Liu, Anatomy of Λc+\Lambda_{c}^{+} semileptonic decays, Phys. Rev. D 107, 033008 (2023).
  • [58] K. Azizi, A. T. Olgun, and Z. Tavukoğlu, Effects of vector leptoquarks on ΛbΛcν¯\Lambda_{b}\to\Lambda_{c}\ell\bar{\nu}_{\ell} decay, Chin. Phys. C 45, 013113 (2021).