This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Closed-form approximations in multi-asset market making

Philippe Bergault philippe.bergault@etu.univ-paris1.fr Université Paris 1 Panthéon-Sorbonne, Centre d’Economie de la Sorbonne, 106 Boulevard de l’Hôpital, 75642 Paris Cedex 13, France. David Evangelista david.evangelista@fgv.br Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, RJ, Brasil. Olivier Guéant olivier.gueant@univ-paris1.fr Douglas Vieira d.machado-vieira15@imperial.ac.uk Imperial College London, Department of Mathematics, London SW7 2AZ, UK.
Abstract

A large proportion of market making models derive from the seminal model of Avellaneda and Stoikov. The numerical approximation of the value function and the optimal quotes in these models remains a challenge when the number of assets is large. In this article, we propose closed-form approximations for the value functions of many multi-asset extensions of the Avellaneda-Stoikov model. These approximations or proxies can be used (i) as heuristic evaluation functions, (ii) as initial value functions in reinforcement learning algorithms, and/or (iii) directly to design quoting strategies through a greedy approach. Regarding the latter, our results lead to new and easily interpretable closed-form approximations for the optimal quotes, both in the finite-horizon case and in the asymptotic (ergodic) regime.

keywords:
Algorithmic trading, Market making, Stochastic optimal control, Closed-form approximations, Monte-Carlo methods.
MSC:
[2010] 91G99, 93E20, 91G60.
journal:

1 Introduction

Since the publication of the paper [1] by Avellaneda and Stoikov, who revisited the paper [24] by Ho and Stoll (see also [25]), there has been an extensive literature on optimal market making.111There is an economic literature on market making, for instance the seminal paper [16] by Grossman and Miller. The results in this literature are, however, more interesting for understanding the price formation process than for building market making algorithms. Guéant, Lehalle, and Fernandez-Tapia provided in [20] a rigorous analysis of the stochastic optimal control problem introduced by Avellaneda and Stoikov and proved that, under inventory constraints, the problem reduces to a system of linear ordinary differential equations in the case of exponential intensity functions suggested by Avellaneda and Stoikov. They also studied the asymptotics when the time horizon TT tends to ++\infty, proposed closed-form approximations, and introduced extensions to include a drift in the price dynamics and market impact / adverse selection. Cartea and Jaimungal, along with their various coauthors, contributed substantially to the literature and added many features to the initial models: alpha signals, ambiguity aversion, etc. (see [8, 10, 11] – see also their book [9]). They also considered a different objective function: the expected PnL minus a running penalty to avoid holding a large inventory instead of the Von Neumann-Morgenstern expected CARA (constant absolute risk aversion) utility of [1] and [20]. Many features have also been added by various authors: general dynamics for the price in [14], general intensities and partial information [7], persistence of the order flow in [26], several requested sizes in [5], client tiering and access to a liquidity pool in [4], etc.

In spite of the focus of initial papers on stock markets,222There was also from the very beginning a focus on options markets – see for instance [29] (cf. [2] and [12] for more recent papers). the models derived from that of Avellaneda and Stoikov have been more useful to build market making algorithms in quote-driven markets: corporate bond markets based on requests for quotes, FX markets based on requests for quotes and requests for stream, etc. For stock markets or, more generally, order-driven markets with relatively low bid-ask spread to tick size ratio, many models have been proposed that depart from the original framework of Avellaneda and Stoikov in that the limit order book is modeled. Instances of papers proposing this type of models include those of Guilbaud and Pham [22, 23], that of Kühn and Muhle-Karbe [27], that of Fodra and Pham [15] or the more recent papers by Lu and Abergel [28] and Baradel, Bouchard, Evangelista, and Mounjid [3].

Most of the literature on optimal market making deals with single-asset models. However, because market making algorithms are typically built for entire portfolios, single-asset models are not sufficient to build operable algorithms, except under the unrealistic assumption that asset prices are uncorrelated. Multi-asset extensions of the Avellaneda-Stoikov model have been proposed. A paper by Guéant and Lehalle [19] touches upon this extension and a complete analysis for the various objective functions present in the literature can be found in [18] (see also the book [17]) or in [5] in which multiple trade sizes are also considered.

Although their mathematical characterization has been known for years, computing the value function and the optimal quotes is complicated in the multi-asset case whenever the prices of the assets are correlated. The grid methods that are classically used to tackle the single-asset case suffer indeed from the curse of dimensionality and do not scale up to many practical multi-asset cases. Bergault and Guéant proposed in [5] a factor method to reduce the dimensionality of the problem. Guéant and Manziuk proposed in [21] a numerical method based on reinforcement learning techniques (an actor-critic approach in fact). In spite of these recent advances, the computational cost of most numerical schemes will still be prohibitive for practical use for some asset classes.

Instead of computing a numerical approximation of the value function (from which one traditionally deduces a numerical approximation of the optimal quotes), we propose in this paper a method for building a closed-form proxy for the value function. The idea behind the approach is that the value function associated with many market making problems is the solution of a Hamilton-Jacobi equation that can be “approximated” by another Hamilton-Jacobi equation for which the solution can be computed in closed form. Of course, such closed-form formula does not define a solution to the initial Hamilton-Jacobi equation, but it has similar properties and should capture most of the relevant financial effects.

Having a proxy of a value function is known to be useful in the community of reinforcement learning (see [30] and [31] for a reference to the reinforcement learning terminology). An important use of a closed-form proxy of a value function is as a heuristic evaluation function. Heuristic evaluation functions are mainly used in game-playing computer programs to evaluate the probability to win the game given the current state – usually the current board in board games – but they can be used as terminal values in many Monte-Carlo-based reinforcement learning techniques. Also, such a proxy can be used as a starting point for many iterative algorithms based on value functions: value iteration algorithm, actor-critic approaches, etc. The last application we highlight – which was also our initial motivation – is that one can build from a proxy of a value function a quoting strategy by using what is called in the reinforcement literature the greedy strategy associated with that proxy (i.e. the strategy that makes the locally optimal choice if at each time step the value function associated with the tail problem is replaced by its proxy in the dynamic programming equation). Having such a strategy in closed form has numerous advantages. First, it can be used directly by market practitioners as a quoting strategy. Second, it can be used as a starting point in iterative algorithms based on policy functions: policy iteration algorithm, actor-critic approaches, etc. Third, it has the advantage of being easily interpretable and gives insights on the true optimal strategy such as the identification of the leading factors and the sensitivity to changes in model parameters.333For market making, the influence of the parameters has already been studied in [20] (one-asset case) and [18] (multi-asset case).

The method we propose is first applied to the multi-asset market making models of [18]. Then we generalize the framework in several directions to cover many important practical cases: (i) drift in prices, (ii) client tiering, (iii) several request sizes for each asset and each tier, and (iv) fixed transaction costs for each asset and each tier. The drift in prices models the views of the market maker. Client tiering is a common practice in OTC markets, justified by the large spectrum of needs and behaviors in the set of clients to be served. The introduction of several request sizes for each asset and each tier reflects the reality that request sizes are not in control of the market makers, but rather of their clients. The fixed transaction costs can model extra costs associated with the market making business, for instance related to trading platforms.

We end this introduction by outlining our paper. In Section 2 we recall the multi-asset extensions of the Avellaneda-Stoikov model proposed in [18], present the system of ordinary differential equations (the Hamilton-Jacobi equation) characterizing the value function, and state the main results regarding the optimal quotes. In Section 3, we present our approach and compute a closed-form proxy for the value function. We deduce from that proxy an approximation of the optimal quotes in closed form. In Section 4, we use a perturbation approach to propose a correction term that can easily be computed thanks to Monte-Carlo simulations. In Section 5, we extend our results to a more general multi-asset market making model with drift in prices, client tiering, several requested sizes for each asset and each tier, and fixed transaction costs for each asset and each tier. Numerical examples are presented in Section 6. They illustrate the quality of our closed-form approximations.

2 The multi-asset market making model

2.1 Model setup

We fix a probability space (Ω,,)(\Omega,\mathcal{F},\mathbb{P}) equipped with a filtration (t)t+(\mathcal{F}_{t})_{t\in{\mathbb{R}}_{+}} satisfying the usual conditions. In what follows, we assume that all stochastic processes are defined on (Ω,,(t)t+,)(\Omega,\mathcal{F},(\mathcal{F}_{t})_{t\in{\mathbb{R}}_{+}},\mathbb{P}). In all this paper, +\mathbb{R}_{+} denotes the set of nonnegative real numbers, and +\mathbb{R}_{+}^{*} denotes the set of positive real numbers.

For i{1,,d}i\in\{1,\ldots,d\}, the reference price of asset ii is modeled by a process (Sti)t+(S_{t}^{i})_{t\in\mathbb{R}_{+}} with dynamics

dSti=σidWti,S0i given,dS^{i}_{t}=\sigma^{i}dW^{i}_{t},\quad\mbox{$S_{0}^{i}$ given,}

where (Wt1,,Wtd)t+(W_{t}^{1},\ldots,W_{t}^{d})_{t\in\mathbb{R}_{+}} is a dd-dimensional Brownian motion with correlation matrix (ρi,j)1i,jd(\rho^{i,j})_{1\leqslant i,j\leqslant d} adapted to the filtration (t)t+(\mathcal{F}_{t})_{t\in\mathbb{R}_{+}} – hereafter we denote by Σ=(ρi,jσiσj)1i,jd\Sigma=(\rho^{i,j}\sigma^{i}\sigma^{j})_{1\leqslant i,j\leqslant d} the variance-covariance matrix associated with the process (St)t+=(St1,,Std)t+(S_{t})_{t\in\mathbb{R}_{+}}=(S_{t}^{1},\ldots,S_{t}^{d})_{t\in\mathbb{R}_{+}}.

The market maker chooses at each point in time the price at which she is ready to buy/sell each asset: for i{1,,d}i\in\{1,\ldots,d\}, we let her bid and ask quotes for asset ii be modeled by two stochastic processes, respectively denoted by (Sti,b)t+(S_{t}^{i,b})_{t\in\mathbb{R}_{+}} and (Sti,a)t+(S_{t}^{i,a})_{t\in\mathbb{R}_{+}}.

For i{1,,d}i\in\{1,\ldots,d\}, we denote by (Nti,b)t+(N_{t}^{i,b})_{t\in\mathbb{R}_{+}} and (Nti,a)t+(N_{t}^{i,a})_{t\in\mathbb{R}_{+}} the two point processes modeling the number of transactions at the bid and at the ask, respectively, for asset ii. We assume in this section that the transaction size for asset ii is constant and denoted by ziz^{i}. The inventory process of the market maker for asset ii, denoted by (qti)t+(q^{i}_{t})_{t\in\mathbb{R}_{+}}, has therefore the dynamics

dqti=zidNti,bzidNti,a,q0i given,dq_{t}^{i}=z^{i}dN_{t}^{i,b}-z^{i}dN_{t}^{i,a},\quad\mbox{$q_{0}^{i}$ given,}

and we denote by (qt)t+(q_{t})_{t\in\mathbb{R}_{+}} the (column) vector process (qt1,,qtd)t+\left(q^{1}_{t},\ldots,q^{d}_{t}\right)^{\intercal}_{t\in\mathbb{R}_{+}}.

For each i{1,,d}i\in\{1,\ldots,d\}, we denote by (λti,b)t+(\lambda_{t}^{i,b})_{t\in\mathbb{R}_{+}} and (λti,a)t+(\lambda_{t}^{i,a})_{t\in\mathbb{R}_{+}} the intensity processes of (Nti,b)t+(N^{i,b}_{t})_{t\in\mathbb{R}_{+}} and (Nti,a)t+(N^{i,a}_{t})_{t\in\mathbb{R}_{+}}, respectively. We assume that the market maker stops proposing a bid (respectively ask) price for asset ii when her position in asset ii following the transaction would exceed a given threshold QiQ^{i} (respectively Qi-Q^{i}).444QiQ^{i} is assumed to be a multiple of ziz^{i}. It corresponds to the risk limit of the market maker for asset ii.

Formally, we assume that the intensities verify

λti,b=Λi,b(δti,b)𝟙{qti+ziQi}andλti,a=Λi,a(δti,a)𝟙{qtiziQi},\lambda^{i,b}_{t}=\Lambda^{i,b}(\delta_{t}^{i,b})\mathds{1}_{\{q^{i}_{t-}+z^{i}\leq Q^{i}\}}\quad\mbox{and}\quad\lambda^{i,a}_{t}=\Lambda^{i,a}(\delta_{t}^{i,a})\mathds{1}_{\{q^{i}_{t-}-z^{i}\geq-Q^{i}\}},

where the processes (δti,b)t+(\delta^{i,b}_{t})_{t\in\mathbb{R}_{+}} and (δti,a)t+(\delta^{i,a}_{t})_{t\in\mathbb{R}_{+}} are defined by555It is often assumed in the literature that the point processes are independent of the Brownian motions. In that case, the quote processes (δti,b)t+(\delta^{i,b}_{t})_{t\in\mathbb{R}_{+}} and (δti,a)t+(\delta^{i,a}_{t})_{t\in\mathbb{R}_{+}} have to be independent of prices. In fact, the optimal control problem can be written in a weak form to show that this assumption is not necessary – see A for more details on the construction of the processes in that case.

δti,b=StiSti,bandδti,a=Sti,aSti,t+.\delta_{t}^{i,b}=S_{t}^{i}-S_{t}^{i,b}\quad\mbox{and}\quad\delta_{t}^{i,a}=S_{t}^{i,a}-S_{t}^{i},\quad\forall t\in\mathbb{R}_{+}.

Moreover, we assume that the functions Λi,b\Lambda^{i,b} and Λi,a\Lambda^{i,a} satisfy the following properties:

  • 1.

    Λi,b\Lambda^{i,b} and Λi,a\Lambda^{i,a} are twice continuously differentiable,

  • 2.

    Λi,b\Lambda^{i,b} and Λi,a\Lambda^{i,a} are decreasing, with δ\forall\delta\in{\mathbb{R}}, Λi,b(δ)<0{\Lambda^{i,b}}^{\prime}(\delta)<0 and Λi,a(δ)<0{\Lambda^{i,a}}^{\prime}(\delta)<0,

  • 3.

    limδ+Λi,b(δ)=limδ+Λi,a(δ)=0\lim_{\delta\to+\infty}\Lambda^{i,b}(\delta)=\lim_{\delta\to+\infty}\Lambda^{i,a}(\delta)=0,

  • 4.

    supδΛi,b(δ)Λi,b′′(δ)(Λi,b(δ))2<2andsupδΛi,a(δ)Λi,a′′(δ)(Λi,a(δ))2<2.\sup_{\delta}\frac{\Lambda^{i,b}(\delta){\Lambda^{i,b}}^{\prime\prime}(\delta)}{\left({\Lambda^{i,b}}^{\prime}(\delta)\right)^{2}}<2\quad\text{and}\quad\sup_{\delta}\frac{\Lambda^{i,a}(\delta){\Lambda^{i,a}}^{\prime\prime}(\delta)}{\left({\Lambda^{i,a}}^{\prime}(\delta)\right)^{2}}<2.

Finally, the process (Xt)t+(X_{t})_{t\in\mathbb{R}_{+}} modelling the amount of cash on the market maker’s cash account has the following dynamics:

dXt\displaystyle dX_{t} =i=1dSti,azidNti,aSti,bzidNti,b\displaystyle=\sum\limits_{i=1}^{d}S_{t}^{i,a}z^{i}dN_{t}^{i,a}-S_{t}^{i,b}z^{i}dN_{t}^{i,b}
=i=1d(Sti+δti,a)zidNti,a(Stiδti,b)zidNti,b\displaystyle=\sum\limits_{i=1}^{d}(S_{t}^{i}+\delta_{t}^{i,a})z^{i}dN_{t}^{i,a}-(S_{t}^{i}-\delta_{t}^{i,b})z^{i}dN_{t}^{i,b}
=i=1d(δti,bzidNti,b+δti,azidNti,a)i=1dStidqti.\displaystyle=\sum\limits_{i=1}^{d}\left(\delta_{t}^{i,b}z^{i}dN_{t}^{i,b}+\delta_{t}^{i,a}z^{i}dN_{t}^{i,a}\right)-\sum\limits_{i=1}^{d}S^{i}_{t}dq^{i}_{t}.

2.2 The optimization problems

We can consider two different optimization problems for the market maker. Following the initial model proposed by Avellaneda and Stoikov in [1], we can assume that she maximizes the expected value of a CARA utility function (with risk aversion parameter γ>0\gamma>0) applied to the mark-to-market value of her portfolio at a given time TT. This mark-to-market value is the sum of the amount XTX_{T} on the cash account and the mark-to-market value i=1dqTiSTi\sum\limits_{i=1}^{d}q_{T}^{i}S_{T}^{i} of the assets remaining in the portfolio at date TT.666In the literature there is sometimes a penalty function applied to the inventory at terminal time TT to “force” liquidation. Here, as we shall focus on the asymptotic regime of the optimal quotes, there is no point considering such a penalty. However, it is noteworthy that most of our non-asymptotic results could be generalized to the case of a quadratic terminal penalty. More precisely, her optimization problem writes

sup(δt1,b)t,,(δtd,b)t𝒜(δt1,a)t,,(δtd,a)t𝒜𝔼[exp(γ(XT+i=1dqTiSTi))],\displaystyle\sup_{\begin{subarray}{c}(\delta_{t}^{1,b})_{t},\ldots,(\delta_{t}^{d,b})_{t}\in\mathcal{A}\\ (\delta_{t}^{1,a})_{t},\ldots,(\delta_{t}^{d,a})_{t}\in\mathcal{A}\end{subarray}}\mathbb{E}\left[-\exp\left(-\gamma\left(X_{T}+\sum\limits_{i=1}^{d}q_{T}^{i}S_{T}^{i}\right)\right)\right],

where 𝒜{\mathcal{A}} is the set of predictable processes bounded from below. We call Model A our model with this first objective function.

Alternatively, as proposed by Cartea et al. in [10], we can consider a risk-adjusted expectation for the objective function of the market maker. In that case, the optimization problem writes

sup(δt1,b)t,,(δtd,b)t𝒜(δt1,a)t,,(δtd,a)t𝒜𝔼[XT+i=1dqTiSTi12γ0TqtΣqt𝑑t].\displaystyle\sup_{\begin{subarray}{c}(\delta_{t}^{1,b})_{t},\ldots,(\delta_{t}^{d,b})_{t}\in\mathcal{A}\\ (\delta_{t}^{1,a})_{t},\ldots,(\delta_{t}^{d,a})_{t}\in\mathcal{A}\end{subarray}}\mathbb{E}\left[X_{T}+\sum_{i=1}^{d}q_{T}^{i}S_{T}^{i}-\frac{1}{2}\gamma\int_{0}^{T}q_{t}^{\intercal}\Sigma q_{t}dt\right].

We call Model B our model with this second objective function.

2.3 The Hamilton-Jacobi-Bellman and Hamilton-Jacobi equations

Let {ei}i=1d\{e^{i}\}_{i=1}^{d} be the canonical basis of d{\mathbb{R}}^{d}. The Hamilton-Jacobi-Bellman equation associated with Model A is

0\displaystyle 0 =\displaystyle= tu(t,x,q,S)+12i,j=1dρi,jσiσjSiSj2u(t,x,q,S)\displaystyle\partial_{t}u(t,x,q,S)+\frac{1}{2}\sum_{i,j=1}^{d}\rho^{i,j}\sigma^{i}\sigma^{j}\partial^{2}_{S^{i}S^{j}}u(t,x,q,S) (1)
+i=1d𝟙{qi+ziQi}supδi,bΛi,b(δi,b)(u(t,xziSi+ziδi,b,q+ziei,S)u(t,x,q,S))\displaystyle+\sum_{i=1}^{d}\mathds{1}_{\{q^{i}+z^{i}\leq Q^{i}\}}\sup_{\delta^{i,b}}\Lambda^{i,b}(\delta^{i,b})\left(u(t,x-z^{i}S^{i}+z^{i}\delta^{i,b},q+z^{i}e^{i},S)-u(t,x,q,S)\right)
+i=1d𝟙{qiziQi}supδi,aΛi,a(δi,a)(u(t,x+ziSi+ziδi,a,qziei,S)u(t,x,q,S)),\displaystyle+\sum_{i=1}^{d}\mathds{1}_{\{q^{i}-z^{i}\geq-Q^{i}\}}\sup_{\delta^{i,a}}\Lambda^{i,a}(\delta^{i,a})\left(u(t,x+z^{i}S^{i}+z^{i}\delta^{i,a},q-z^{i}e^{i},S)-u(t,x,q,S)\right),

for all (t,x,q,S)[0,T)××i=1d(zi[Qi,Qi])×d(t,x,q,S)\in[0,T)\times\mathbb{R}\times\prod_{i=1}^{d}\left(z^{i}\mathbb{Z}\cap[-Q^{i},Q^{i}]\right)\times\mathbb{R}^{d},777Given a positive number z+z\in\mathbb{R}_{+}^{*}, zz\mathbb{Z} denotes the set of multiples of zz, i.e. z={,2z,z,0,z,2z,}.z\mathbb{Z}=\{\ldots,-2z,-z,0,z,2z,\ldots\}. with terminal condition

u(T,x,q,S)=exp(γ(x+i=1dqiSi))(x,q,S)×i=1d(zi[Qi,Qi])×d.u(T,x,q,S)=-\exp\left(-\gamma\left(x+\sum_{i=1}^{d}q^{i}S^{i}\right)\right)\quad\forall(x,q,S)\in\mathbb{R}\times\prod_{i=1}^{d}\left(z^{i}\mathbb{Z}\cap[-Q^{i},Q^{i}]\right)\times\mathbb{R}^{d}.

The Hamilton-Jacobi-Bellman equation associated with Model B is

0\displaystyle 0 =\displaystyle= tv(t,x,q,S)12γqΣq+12i,j=1dρi,jσiσjSiSj2v(t,x,q,S)\displaystyle\partial_{t}v(t,x,q,S)-\frac{1}{2}\gamma q^{\intercal}\Sigma q+\frac{1}{2}\sum_{i,j=1}^{d}\rho^{i,j}\sigma^{i}\sigma^{j}\partial^{2}_{S^{i}S^{j}}v(t,x,q,S) (2)
+i=1d𝟙{qi+ziQi}supδi,bΛi,b(δi,b)(v(t,xziSi+ziδi,b,q+ziei,S)v(t,x,q,S))\displaystyle+\sum_{i=1}^{d}\mathds{1}_{\{q^{i}+z^{i}\leq Q^{i}\}}\sup_{\delta^{i,b}}\Lambda^{i,b}(\delta^{i,b})\left(v(t,x-z^{i}S^{i}+z^{i}\delta^{i,b},q+z^{i}e^{i},S)-v(t,x,q,S)\right)
+i=1d𝟙{qiziQi}supδi,aΛi,a(δi,a)(v(t,x+ziSi+ziδi,a,qziei,S)v(t,x,q,S)),\displaystyle+\sum_{i=1}^{d}\mathds{1}_{\{q^{i}-z^{i}\geq-Q^{i}\}}\sup_{\delta^{i,a}}\Lambda^{i,a}(\delta^{i,a})\left(v(t,x+z^{i}S^{i}+z^{i}\delta^{i,a},q-z^{i}e^{i},S)-v(t,x,q,S)\right),

for all (t,x,q,S)[0,T)××i=1d(zi[Qi,Qi])×d(t,x,q,S)\in[0,T)\times\mathbb{R}\times\prod_{i=1}^{d}\left(z^{i}\mathbb{Z}\cap[-Q^{i},Q^{i}]\right)\times\mathbb{R}^{d} with terminal condition

v(T,x,q,S)=x+i=1dqiSi(x,q,S)×i=1d(zi[Qi,Qi])×d.v(T,x,q,S)=x+\sum_{i=1}^{d}q^{i}S^{i}\quad\forall(x,q,S)\in\mathbb{R}\times\prod_{i=1}^{d}\left(z^{i}\mathbb{Z}\cap[-Q^{i},Q^{i}]\right)\times\mathbb{R}^{d}.

For each i{1,,d}i\in\{1,\ldots,d\} and ξ0,\xi\geq 0, let us define two Hamiltonian functions888It is noteworthy that our definition of Hξi,bH_{\xi}^{i,b} and Hξi,aH_{\xi}^{i,a} differs from that of [18] (by a factor ziz^{i}). The alternative definition we use in this paper is also that of [5] for ξ=0\xi=0. Hξi,bH_{\xi}^{i,b} and Hξi,aH_{\xi}^{i,a} by

Hξi,b(p)={sup𝛿Λi,b(δ)ξzi(1exp(ξzi(δp)))if ξ>0,sup𝛿Λi,b(δ)(δp)if ξ=0,H^{i,b}_{\xi}(p)=\begin{cases}\underset{\delta}{\sup}\frac{\Lambda^{i,b}(\delta)}{\xi z^{i}}(1-\exp(-\xi z^{i}(\delta-p)))&\mbox{if }\xi>0,\\ \underset{\delta}{\sup}\Lambda^{i,b}(\delta)(\delta-p)&\mbox{if }\xi=0,\end{cases} (3)

and

Hξi,a(p)={sup𝛿Λi,a(δ)ξzi(1exp(ξzi(δp)))if ξ>0,sup𝛿Λi,a(δ)(δp)if ξ=0.H^{i,a}_{\xi}(p)=\begin{cases}\underset{\delta}{\sup}\frac{\Lambda^{i,a}(\delta)}{\xi z^{i}}(1-\exp(-\xi z^{i}(\delta-p)))&\mbox{if }\xi>0,\\ \underset{\delta}{\sup}\Lambda^{i,a}(\delta)(\delta-p)&\mbox{if }\xi=0.\end{cases} (4)

Using the ansatz introduced in [18] for the two functions u:[0,T]××i=1d(zi[Qi,Qi])×du:[0,T]\times\mathbb{R}\times\prod_{i=1}^{d}\left(z^{i}\mathbb{Z}\cap[-Q^{i},Q^{i}]\right)\times\mathbb{R}^{d}\rightarrow\mathbb{R} and v:[0,T]××i=1d(zi[Qi,Qi])×dv:[0,T]\times\mathbb{R}\times\prod_{i=1}^{d}\left(z^{i}\mathbb{Z}\cap[-Q^{i},Q^{i}]\right)\times\mathbb{R}^{d}\rightarrow\mathbb{R}, i.e.

u(t,x,q,S)=exp(γ(x+i=1dqiSi+θ(t,q))) and v(t,x,q,S)=x+i=1dqiSi+θ(t,q),u(t,x,q,S)=-\exp\left(-\gamma\left(x+\sum_{i=1}^{d}q^{i}S^{i}+\theta(t,q)\right)\right)\text{ and }v(t,x,q,S)=x+\sum_{i=1}^{d}q^{i}S^{i}+\theta(t,q),

we see that solving the Hamilton-Jacobi-Bellman equations (1) and (2) boils down to finding the solution θ:[0,T]×i=1d(zi[Qi,Qi])\theta:[0,T]\times\prod_{i=1}^{d}\left(z^{i}\mathbb{Z}\cap[-Q^{i},Q^{i}]\right)\to\mathbb{R} of the following Hamilton-Jacobi equation with ξ=γ\xi=\gamma in the case of Model A and ξ=0\xi=0 in the case of Model B:

0\displaystyle 0 =\displaystyle= tθ(t,q)12γqΣq\displaystyle\partial_{t}\theta(t,q)-\frac{1}{2}\gamma q^{\intercal}\Sigma q
+i=1d𝟙{qi+ziQi}ziHξi,b(θ(t,q)θ(t,q+ziei)zi)+i=1d𝟙{qiziQi}ziHξi,a(θ(t,q)θ(t,qziei)zi).\displaystyle+\sum_{i=1}^{d}\mathds{1}_{\{q^{i}+z^{i}\leq Q^{i}\}}z^{i}H^{i,b}_{\xi}\left(\frac{\theta(t,q)-\theta(t,q+z^{i}e^{i})}{z^{i}}\right)+\sum_{i=1}^{d}\mathds{1}_{\{q^{i}-z^{i}\geq-Q^{i}\}}z^{i}H^{i,a}_{\xi}\left(\frac{\theta(t,q)-\theta(t,q-z^{i}e^{i})}{z^{i}}\right).

In both cases, the terminal condition simply boils down to

θ(T,q)=0.\displaystyle\theta(T,q)=0. (6)

2.4 Existing theoretical results

From [18, Theorem 5.1], for a given ξ0,\xi\geq 0, there exists a unique θ:[0,T]×i=1d(zi[Qi,Qi])\theta:[0,T]\times\prod_{i=1}^{d}\left(z^{i}\mathbb{Z}\cap[-Q^{i},Q^{i}]\right)\to{\mathbb{R}}, C1C^{1} in time, solution of Eq. (2.3) with terminal condition (6). Moreover (see [18, Theorems 5.2 and 5.3]), a classical verification argument enables to go from θ\theta to optimal controls for both Model A and Model B. The optimal quotes as functions of θ\theta are recalled in the following theorems (for details, see [18]).

In the case of Model A, the result is the following:

Theorem 1.

Let us consider the solution θ\theta of Eq. (2.3) with terminal condition (6) for ξ=γ\xi=\gamma.

Then, for i{1,,d},i\in\{1,\ldots,d\}, the optimal bid and ask quotes Sti,b=Stiδti,bS^{i,b}_{t}=S^{i}_{t}-\delta^{i,b*}_{t} and Sti,a=Sti+δti,aS^{i,a}_{t}=S^{i}_{t}+\delta^{i,a*}_{t} in Model A are characterized by

δti,b=δ~γi,b(θ(t,qt)θ(t,qt+ziei)zi)for qt+zieij=1d(zj[Qj,Qj]),δti,a=δ~γi,a(θ(t,qt)θ(t,qtziei)zi)for qtzieij=1d(zj[Qj,Qj]),\displaystyle\begin{split}\delta^{i,b*}_{t}&=\tilde{\delta}^{i,b*}_{\gamma}\left(\frac{\theta(t,q_{t-})-\theta(t,q_{t-}+z^{i}e^{i})}{z^{i}}\right)\quad\text{for }q_{t-}+z^{i}e^{i}\in\prod_{j=1}^{d}\left(z^{j}\mathbb{Z}\cap[-Q^{j},Q^{j}]\right),\\ \delta^{i,a*}_{t}&=\tilde{\delta}^{i,a*}_{\gamma}\left(\frac{\theta(t,q_{t-})-\theta(t,q_{t-}-z^{i}e^{i})}{z^{i}}\right)\quad\text{for }q_{t-}-z^{i}e^{i}\in\prod_{j=1}^{d}\left(z^{j}\mathbb{Z}\cap[-Q^{j},Q^{j}]\right),\end{split} (7)

where the functions δ~γi,b()\tilde{\delta}^{i,b*}_{\gamma}(\cdot) and δ~γi,a()\tilde{\delta}_{\gamma}^{i,a*}(\cdot) are defined by

δ~γi,b(p)\displaystyle\tilde{\delta}^{i,b*}_{\gamma}(p) =Λi,b1(γziHγi,b(p)Hγi,b(p)),\displaystyle={\Lambda^{i,b}}^{-1}\left(\gamma z^{i}H^{i,b}_{\gamma}(p)-{H_{\gamma}^{i,b}}^{\prime}(p)\right),
δ~γi,a(p)\displaystyle\tilde{\delta}^{i,a*}_{\gamma}(p) =Λi,a1(γziHγi,a(p)Hγi,a(p)),\displaystyle={\Lambda^{i,a}}^{-1}\left(\gamma z^{i}H^{i,a}_{\gamma}(p)-{H_{\gamma}^{i,a}}^{\prime}(p)\right),

where for all i{1,,d},i\in\{1,\ldots,d\}, Hγi,b{H_{\gamma}^{i,b}}^{\prime} and Hγi,a{H_{\gamma}^{i,a}}^{\prime} denote the first derivative of Hγi,b{H_{\gamma}^{i,b}} and Hγi,a{H_{\gamma}^{i,a}}, respectively.

For Model B, the result is the following:

Theorem 2.

Let us consider the solution θ\theta of Eq. (2.3) with terminal condition (6) for ξ=0\xi=0.

Then, for i{1,,d},i\in\{1,\ldots,d\}, the optimal bid and ask quotes Sti,b=Stiδti,bS^{i,b}_{t}=S^{i}_{t}-\delta^{i,b*}_{t} and Sti,a=Sti+δti,aS^{i,a}_{t}=S^{i}_{t}+\delta^{i,a*}_{t} in Model B are characterized by

δti,b=δ~0i,b(θ(t,qt)θ(t,qt+ziei)zi)for qt+zieij=1d(zj[Qj,Qj]),δti,a=δ~0i,a(θ(t,qt)θ(t,qtziei)zi)for qtzieij=1d(zj[Qj,Qj]),\displaystyle\begin{split}\delta^{i,b*}_{t}&=\tilde{\delta}^{i,b*}_{0}\left(\frac{\theta(t,q_{t-})-\theta(t,q_{t-}+z^{i}e^{i})}{z^{i}}\right)\quad\text{for }q_{t-}+z^{i}e^{i}\in\prod_{j=1}^{d}\left(z^{j}\mathbb{Z}\cap[-Q^{j},Q^{j}]\right),\\ \delta^{i,a*}_{t}&=\tilde{\delta}^{i,a*}_{0}\left(\frac{\theta(t,q_{t-})-\theta(t,q_{t-}-z^{i}e^{i})}{z^{i}}\right)\quad\text{for }q_{t-}-z^{i}e^{i}\in\prod_{j=1}^{d}\left(z^{j}\mathbb{Z}\cap[-Q^{j},Q^{j}]\right),\end{split} (8)

where the functions δ~0i,b()\tilde{\delta}^{i,b*}_{0}(\cdot) and δ~0i,a()\tilde{\delta}_{0}^{i,a*}(\cdot) are defined by

δ~0i,b(p)=Λi,b1(H0i,b(p)) and δ~0i,a(p)=Λi,a1(H0i,a(p))\tilde{\delta}^{i,b*}_{0}(p)={\Lambda^{i,b}}^{-1}\left(-{H_{0}^{i,b}}^{\prime}(p)\right)\text{ and }\tilde{\delta}^{i,a*}_{0}(p)={\Lambda^{i,a}}^{-1}\left(-{H_{0}^{i,a}}^{\prime}(p)\right)

where for all i{1,,d},i\in\{1,\ldots,d\}, H0i,b{H_{0}^{i,b}}^{\prime} and H0i,a{H_{0}^{i,a}}^{\prime} denote the first derivative of H0i,b{H_{0}^{i,b}} and H0i,a{H_{0}^{i,a}}, respectively.

In the following two sections, we propose new methods to find approximations of the solution to the system of ordinary differential equations (ODEs) (2.3) with terminal condition (6). Eqs. (7) and (8) can then serve to go from approximations of θ\theta (hereafter called – slightly abusively – the value function) to approximations of the optimal quotes. The resulting quotes correspond to what the reinforcement learning community calls the greedy quoting strategy associated with the proxy of the value function.999The true optimal quotes correspond to the greedy strategy with respect to the value function uu (in Model A) or vv (in Model B) deduced from the true θ\theta.

3 A quadratic approximation of the value function and its applications

3.1 Introduction

In the field of (stochastic) optimal control, finding value functions and optimal controls in closed form is the exception rather than the rule. One important exception goes with the class of Linear-Quadratic (LQ) and Linear-Quadratic-Gaussian (LQG) problems. Of course, the above market making problem does not belong to this class of control problems, for instance because the control of point processes is nonlinear by nature. Nevertheless, we see that price risk appears in both Model A and Model B through the quadratic term 12γqΣq\frac{1}{2}\gamma q^{\intercal}\Sigma q in the Hamilton-Jacobi equation (2.3). The main idea of this paper consists in replacing the Hamiltonian functions associated with our market making problem by quadratic functions that approximate them. The interest of quadratic Hamiltonian functions lies in that the resulting Hamilton-Jacobi equations can be solved in closed-form using the same tools as for LQ/LQG problems, i.e. Riccati equations.

At first sight, approximating the Hamiltonian functions involved in Eq. (2.3) by quadratic functions seems inappropriate. For all i{1,,d}i\in\{1,\ldots,d\}, the functions Hξi,bH_{\xi}^{i,b} and Hξi,aH_{\xi}^{i,a} are indeed positive and decreasing and approximating them with U-shaped functions can only be valid locally. However, one has to bear in mind that our goal is to approximate the solution of the Hamilton-Jacobi equations and not the Hamiltonian functions. This remark is particularly important because the Hamiltonian terms involved in the Hamilton-Jacobi equations are (up to the indicator functions that we shall discard in what follows by considering the limit case where i{1,,d},Qi=+\forall i\in\{1,\ldots,d\},Q^{i}=+\infty) of the form

Hξi,b(θ(t,q)θ(t,q+ziei)zi)+Hξi,a(θ(t,q)θ(t,qziei)zi),H^{i,b}_{\xi}\left(\frac{\theta(t,q)-\theta(t,q+z^{i}e^{i})}{z^{i}}\right)+H^{i,a}_{\xi}\left(\frac{\theta(t,q)-\theta(t,q-z^{i}e^{i})}{z^{i}}\right),

Assuming that θ(t,q)θ(t,q+ziei)ziθ(t,q)θ(t,qziei)zi\frac{\theta(t,q)-\theta(t,q+z^{i}e^{i})}{z^{i}}\simeq-\frac{\theta(t,q)-\theta(t,q-z^{i}e^{i})}{z^{i}}, we clearly see that, with respect to asset ii, the function we need to approximate is pHξi,b(p)+Hξi,a(p)p\mapsto H^{i,b}_{\xi}(p)+H^{i,a}_{\xi}(-p) rather than Hξi,bH^{i,b}_{\xi} and Hξi,aH^{i,a}_{\xi} themselves, and it is natural to approximate the former function with a U-shaped one!

Let us replace for all i{1,,d}i\in\{1,\ldots,d\} the Hamiltonian functions Hξi,bH_{\xi}^{i,b} and Hξi,aH_{\xi}^{i,a} by the quadratic functions101010We omit the subscript ξ\xi in the definition of Hˇi,b\check{H}^{i,b} and Hˇi,a\check{H}^{i,a}. In particular, although the subscript ξ\xi is not written, the coefficients α0i,b\alpha^{i,b}_{0}, α1i,b\alpha^{i,b}_{1}, α2i,b\alpha^{i,b}_{2}, α0i,a\alpha^{i,a}_{0}, α1i,a\alpha^{i,a}_{1}, and α2i,a\alpha^{i,a}_{2} do depend on ξ\xi.

Hˇi,b:pα0i,b+α1i,bp+12α2i,bp2andHˇi,a:pα0i,a+α1i,ap+12α2i,ap2.\check{H}^{i,b}:p\mapsto\alpha^{i,b}_{0}+\alpha^{i,b}_{1}p+\frac{1}{2}\alpha^{i,b}_{2}p^{2}\quad\textrm{and}\quad\check{H}^{i,a}:p\mapsto\alpha^{i,a}_{0}+\alpha^{i,a}_{1}p+\frac{1}{2}\alpha^{i,a}_{2}p^{2}.
Remark 1.

A natural choice for the functions (Hˇi,b)i{1,,d}(\check{H}^{i,b})_{i\in\{1,\ldots,d\}} and (Hˇi,a)i{1,,d}(\check{H}^{i,a})_{i\in\{1,\ldots,d\}} derives from Taylor expansions around p=0p=0. In that case,

i{1,,d},j{0,1,2},αji,b=Hξi,b(j)(0)andαji,a=Hξi,a(j)(0).\forall i\in\{1,\ldots,d\},\forall j\in\{0,1,2\},\quad\alpha^{i,b}_{j}={H^{i,b}_{\xi}}^{(j)}(0)\quad\textrm{and}\quad\alpha^{i,a}_{j}={H^{i,a}_{\xi}}^{(j)}(0).

We denote by θˇ\check{\theta} the approximation of θ\theta associated with the functions (Hˇi,b)i{1,,d}(\check{H}^{i,b})_{i\in\{1,\ldots,d\}} and (Hˇi,a)i{1,,d}(\check{H}^{i,a})_{i\in\{1,\ldots,d\}}, i.e. if we consider the limit case where i{1,,d},Qi=+\forall i\in\{1,\ldots,d\},Q^{i}=+\infty, θˇ\check{\theta} verifies

0\displaystyle 0 =\displaystyle= tθˇ(t,q)12γqΣq+i=1dzi(α0i,b+α0i,a)\displaystyle\partial_{t}\check{\theta}(t,q)-\frac{1}{2}\gamma q^{\intercal}\Sigma q+\sum_{i=1}^{d}z^{i}\left(\alpha^{i,b}_{0}+\alpha^{i,a}_{0}\right) (9)
+i=1d(α1i,b(θˇ(t,q)θˇ(t,q+ziei))+α1i,a(θˇ(t,q)θˇ(t,qziei)))\displaystyle+\sum_{i=1}^{d}\left(\alpha^{i,b}_{1}\left(\check{\theta}(t,q)-\check{\theta}(t,q+z^{i}e^{i})\right)+\alpha^{i,a}_{1}\left(\check{\theta}(t,q)-\check{\theta}(t,q-z^{i}e^{i})\right)\right)
+12i=1d1zi(α2i,b(θˇ(t,q)θˇ(t,q+ziei))2+α2i,a(θˇ(t,q)θˇ(t,qziei))2)\displaystyle+\frac{1}{2}\sum_{i=1}^{d}\frac{1}{z^{i}}\left(\alpha^{i,b}_{2}\left(\check{\theta}(t,q)-\check{\theta}(t,q+z^{i}e^{i})\right)^{2}+\alpha^{i,a}_{2}\left(\check{\theta}(t,q)-\check{\theta}(t,q-z^{i}e^{i})\right)^{2}\right)

and of course we consider the terminal condition

θˇ(T,q)=0.\check{\theta}(T,q)=0. (10)

3.2 An approximation of the value function in closed form

Eq. (9) with terminal condition (10) can be solved in closed form. To prove this point, we start with the following proposition:

Proposition 1.

Let us introduce for i{1,,d},j{0,1,2},ki\in\{1,\ldots,d\},j\in\{0,1,2\},k\in\mathbb{N},

Δj,ki,b=αji,b(zi)kandΔj,ki,a=αji,a(zi)k,\Delta_{j,k}^{i,b}=\alpha^{i,b}_{j}(z^{i})^{k}\quad\text{and}\quad\Delta_{j,k}^{i,a}=\alpha^{i,a}_{j}(z^{i})^{k},
Vj,kb=(Δj,k1,b,,Δj,kd,b)andVj,ka=(Δj,k1,a,,Δj,kd,a),V^{b}_{j,k}=\left(\Delta_{j,k}^{1,b},\ldots,\Delta_{j,k}^{d,b}\right)^{\intercal}\quad\text{and}\quad V^{a}_{j,k}=\left(\Delta_{j,k}^{1,a},\ldots,\Delta_{j,k}^{d,a}\right)^{\intercal},
Dj,kb=diag(Δj,k1,b,,Δj,kd,b)andDj,ka=diag(Δj,k1,a,,Δj,kd,a).D^{b}_{j,k}=\textup{diag}(\Delta_{j,k}^{1,b},\ldots,\Delta_{j,k}^{d,b})\quad\text{and}\quad D^{a}_{j,k}=\textup{diag}(\Delta_{j,k}^{1,a},\ldots,\Delta_{j,k}^{d,a}).

Let us consider three differentiable functions A:[0,T]Sd+A:[0,T]\to S_{d}^{+}, B:[0,T]dB:[0,T]\to\mathbb{R}^{d}, and C:[0,T]C:[0,T]\to\mathbb{R} solutions of the system of ordinary differential equations111111Sd+S_{d}^{+} (resp. Sd++S_{d}^{+}+) stands throughout this paper the set of positive semi-definite (resp. definite) symmetric dd-by-dd matrices.

{A(t)=2A(t)(D2,1b+D2,1a)A(t)12γΣB(t)=2A(t)(V1,1bV1,1a)+2A(t)(D2,2bD2,2a)𝒟(A(t))+2A(t)(D2,1b+D2,1a)B(t)C(t)=Tr(D0,1b+D0,1a)+Tr((D1,2b+D1,2a)A(t))+(V1,1bV1,1a)B(t)+12𝒟(A(t))(D2,3b+D2,3a)𝒟(A(t))+12B(t)(D2,1b+D2,1a)B(t)+B(t)(D2,2bD2,2a)𝒟(A(t)),\begin{cases}\displaystyle{A^{\prime}}(t)=&2A(t)\left(D^{b}_{2,1}+D^{a}_{2,1}\right)A(t)-\frac{1}{2}\gamma\Sigma\\ {B^{\prime}}(t)=&2A(t)\left(V^{b}_{1,1}-V^{a}_{1,1}\right)+2A(t)\left(D^{b}_{2,2}-D^{a}_{2,2}\right)\mathcal{D}(A(t))+2A(t)\left(D^{b}_{2,1}+D^{a}_{2,1}\right)B(t)\\ {C^{\prime}}(t)=&\textrm{Tr}\left(D^{b}_{0,1}+D^{a}_{0,1}\right)+\textrm{Tr}\left(\left(D^{b}_{1,2}+D^{a}_{1,2}\right)A(t)\right)+\left(V^{b}_{1,1}-V^{a}_{1,1}\right)^{\intercal}B(t)\\ &+\frac{1}{2}\mathcal{D}(A(t))^{\intercal}\left(D^{b}_{2,3}+D^{a}_{2,3}\right)\mathcal{D}(A(t))+\frac{1}{2}B(t)^{\intercal}\left(D^{b}_{2,1}+D^{a}_{2,1}\right)B(t)+B(t)^{\intercal}\left(D^{b}_{2,2}-D^{a}_{2,2}\right)\mathcal{D}(A(t)),\end{cases} (11)

with terminal conditions

A(T)=0,B(T)=0, and C(T)=0,A(T)=0,B(T)=0,\textrm{ and }C(T)=0, (12)

where 𝒟\mathcal{D} is the linear operator mapping a matrix onto the vector of its diagonal coefficients.

Then θˇ:(t,q)[0,T]×i=1dziqA(t)qqB(t)C(t)\check{\theta}:(t,q)\in[0,T]\times\prod_{i=1}^{d}z^{i}\mathbb{Z}\mapsto-q^{\intercal}A(t)q-q^{\intercal}B(t)-C(t) is solution of Eq. (9) with terminal condition (10).

Proof.

We have

tθˇ(t,q)12γqΣq+i=1dzi(α0i,b+α0i,a)\displaystyle\partial_{t}\check{\theta}(t,q)-\frac{1}{2}\gamma q^{\intercal}\Sigma q\vskip-8.53581pt+\sum_{i=1}^{d}z^{i}\left(\alpha^{i,b}_{0}+\alpha^{i,a}_{0}\right)
+i=1d(α1i,b(θˇ(t,q)θˇ(t,q+ziei))+α1i,a(θˇ(t,q)θˇ(t,qziei)))\displaystyle+\sum_{i=1}^{d}\left(\alpha^{i,b}_{1}\left(\check{\theta}(t,q)-\check{\theta}(t,q+z^{i}e^{i})\right)+\alpha^{i,a}_{1}\left(\check{\theta}(t,q)-\check{\theta}(t,q-z^{i}e^{i})\right)\right)
+12i=1d1zi(α2i,b(θˇ(t,q)θˇ(t,q+ziei))2+α2i,a(θˇ(t,q)θˇ(t,qziei))2)\displaystyle+\frac{1}{2}\sum_{i=1}^{d}\frac{1}{z^{i}}\left(\alpha^{i,b}_{2}\left(\check{\theta}(t,q)-\check{\theta}(t,q+z^{i}e^{i})\right)^{2}+\alpha^{i,a}_{2}\left(\check{\theta}(t,q)-\check{\theta}(t,q-z^{i}e^{i})\right)^{2}\right)
=\displaystyle= qA(t)qqB(t)C(t)12γqΣq+i=1dzi(α0i,b+α0i,a)\displaystyle-q^{\intercal}A^{\prime}(t)q-q^{\intercal}B^{\prime}(t)-C^{\prime}(t)-\frac{1}{2}\gamma q^{\intercal}\Sigma q+\sum_{i=1}^{d}z^{i}(\alpha^{i,b}_{0}+\alpha^{i,a}_{0})
+i=1dα1i,b(2ziqA(t)ei+(zi)2eiA(t)ei+zieiB(t))\displaystyle+\sum_{i=1}^{d}\alpha^{i,b}_{1}\left(2z^{i}q^{\intercal}A(t)e^{i}+(z^{i})^{2}{e^{i}}^{\intercal}A(t)e^{i}+z^{i}{e^{i}}^{\intercal}B(t)\right)
+i=1dα1i,a(2ziqA(t)ei+(zi)2eiA(t)eizieiB(t))\displaystyle+\sum_{i=1}^{d}\alpha^{i,a}_{1}\left(-2z^{i}q^{\intercal}A(t)e^{i}+(z^{i})^{2}{e^{i}}^{\intercal}A(t)e^{i}-z^{i}{e^{i}}^{\intercal}B(t)\right)
+12i=1d1ziα2i,b(2ziqA(t)ei+(zi)2eiA(t)ei+zieiB(t))2\displaystyle+\frac{1}{2}\sum_{i=1}^{d}\frac{1}{z^{i}}\alpha^{i,b}_{2}\left(2z^{i}q^{\intercal}A(t)e^{i}+(z^{i})^{2}{e^{i}}^{\intercal}A(t)e^{i}+z^{i}{e^{i}}^{\intercal}B(t)\right)^{2}
+12i=1d1ziα2i,a(2ziqA(t)ei+(zi)2eiA(t)eizieiB(t))2\displaystyle+\frac{1}{2}\sum_{i=1}^{d}\frac{1}{z^{i}}\alpha^{i,a}_{2}\left(-2z^{i}q^{\intercal}A(t)e^{i}+(z^{i})^{2}{e^{i}}^{\intercal}A(t)e^{i}-z^{i}{e^{i}}^{\intercal}B(t)\right)^{2}
=\displaystyle= qA(t)qqB(t)C(t)12γqΣq+Tr(D0,1b+D0,1a)\displaystyle-q^{\intercal}A^{\prime}(t)q-q^{\intercal}B^{\prime}(t)-C^{\prime}(t)-\frac{1}{2}\gamma q^{\intercal}\Sigma q+\textrm{Tr}\left(D^{b}_{0,1}+D^{a}_{0,1}\right)
+2qA(t)(V1,1bV1,1a)+Tr((D1,2b+D1,2a)A(t))+(V1,1bV1,1a)B(t)\displaystyle+2q^{\intercal}A(t)\left(V^{b}_{1,1}-V^{a}_{1,1}\right)+\textrm{Tr}\left(\left(D^{b}_{1,2}+D^{a}_{1,2}\right)A(t)\right)+\left(V^{b}_{1,1}-V^{a}_{1,1}\right)^{\intercal}B(t)
+2qA(t)(D2,1b+D2,1a)A(t)q+12𝒟(A(t))(D2,3b+D2,3a)𝒟(A(t))+12B(t)(D2,1b+D2,1a)B(t)\displaystyle+2q^{\intercal}A(t)\left(D^{b}_{2,1}+D^{a}_{2,1}\right)A(t)q+\frac{1}{2}\mathcal{D}(A(t))^{\intercal}\left(D^{b}_{2,3}+D^{a}_{2,3}\right)\mathcal{D}(A(t))+\frac{1}{2}B(t)^{\intercal}\left(D^{b}_{2,1}+D^{a}_{2,1}\right)B(t)
+2qA(t)(D2,2bD2,2a)𝒟(A(t))+2qA(t)(D2,1b+D2,1a)B(t)+B(t)(D2,2bD2,2a)𝒟(A(t))\displaystyle+2q^{\intercal}A(t)\left(D^{b}_{2,2}-D^{a}_{2,2}\right)\mathcal{D}(A(t))+2q^{\intercal}A(t)\left(D^{b}_{2,1}+D^{a}_{2,1}\right)B(t)+B(t)^{\intercal}\left(D^{b}_{2,2}-D^{a}_{2,2}\right)\mathcal{D}(A(t))
=\displaystyle= 0,\displaystyle 0,

where the last equality comes from the definitions of (A,B,C)(A,B,C) and the identification of the terms of degree 0, 11, and 22 in qq.

As the terminal conditions are satisfied, the result is proved. ∎

Proposition 2.

Assume α2i,b+α2i,a>0\alpha^{i,b}_{2}+\alpha^{i,a}_{2}>0 for all i{1,,d}i\in\{1,\ldots,d\}. The system of ODEs (11) with terminal conditions (12) admits the unique solution

A(t)\displaystyle A(t) =12D+12A^(eA^(Tt)eA^(Tt))(eA^(Tt)+eA^(Tt))1D+12,\displaystyle=\frac{1}{2}D^{-\frac{1}{2}}_{+}\widehat{A}\left(e^{\widehat{A}(T-t)}-e^{-\widehat{A}(T-t)}\right)\left(e^{\widehat{A}(T-t)}+e^{-\widehat{A}(T-t)}\right)^{-1}D_{+}^{-\frac{1}{2}}, (13)
B(t)\displaystyle B(t) =2e2tTA(u)D+𝑑utTe2sTA(u)D+𝑑uA(s)(V+D𝒟(A(s)))𝑑s,\displaystyle=-2e^{-2\int_{t}^{T}A(u)D_{+}\,du}\int_{t}^{T}e^{2\int_{s}^{T}A(u)D_{+}\,du}A(s)\left(V_{-}+D_{-}\mathcal{D}(A(s))\right)ds, (14)
C(t)\displaystyle C(t) =Tr(D0,1b+D0,1a)(Tt)Tr((D1,2b+D1,2a)tTA(s)𝑑s)VtTB(s)𝑑s\displaystyle=-\textrm{Tr}\left(D^{b}_{0,1}+D^{a}_{0,1}\right)(T-t)-\textrm{Tr}\left(\left(D^{b}_{1,2}+D^{a}_{1,2}\right)\int_{t}^{T}A(s)ds\right)-V_{-}^{\intercal}\int_{t}^{T}B(s)ds
12tT𝒟(A(s))(D2,3b+D2,3a)𝒟(A(s))𝑑s12tTB(s)D+B(s)𝑑s\displaystyle-\frac{1}{2}\int_{t}^{T}\mathcal{D}(A(s))^{\intercal}\left(D^{b}_{2,3}+D^{a}_{2,3}\right)\mathcal{D}(A(s))ds-\frac{1}{2}\int_{t}^{T}B(s)^{\intercal}D_{+}B(s)ds
tTB(s)D𝒟(A(s))𝑑s.\displaystyle-\int_{t}^{T}B(s)^{\intercal}D_{-}\mathcal{D}(A(s))ds. (15)

where

D+=D2,1b+D2,1a,D=D2,2bD2,2a,V=V1,1bV1,1a,andA^=γ(D+12ΣD+12)12.D_{+}=D^{b}_{2,1}+D^{a}_{2,1},\quad D_{-}=D_{2,2}^{b}-D_{2,2}^{a},\quad V_{-}=V_{1,1}^{b}-V_{1,1}^{a},\quad\text{and}\quad\widehat{A}=\sqrt{\gamma}\left(D_{+}^{\frac{1}{2}}\Sigma D_{+}^{\frac{1}{2}}\right)^{\frac{1}{2}}.
Proof.

The system of ODEs (11) being triangular – though not linear – we tackle the equations one by one, in order.

Solution for AA

First, we observe that D+=diag((α21,b+α21,a)z1,,(α2d,b+α2d,a)zd)D_{+}=\textup{diag}((\alpha^{1,b}_{2}+\alpha^{1,a}_{2})z^{1},\ldots,(\alpha^{d,b}_{2}+\alpha^{d,a}_{2})z^{d}) is a positive diagonal matrix. Therefore D+12D_{+}^{\frac{1}{2}} is well defined. Then, since D+12ΣD+12Sd+D_{+}^{\frac{1}{2}}\Sigma D_{+}^{\frac{1}{2}}\in S_{d}^{+}, A^\widehat{A} is well defined and in Sd+S_{d}^{+}.

Now, by introducing the change of variables

𝐚(t)=2D+12A(t)D+12,\mathbf{a}(t)=2D_{+}^{\frac{1}{2}}A(t)D_{+}^{\frac{1}{2}},

the terminal value problem for AA in (11) becomes

{𝐚(t)=𝐚(t)2A^2𝐚(T)=0.\begin{cases}&\mathbf{a}^{\prime}(t)=\mathbf{a}(t)^{2}-\widehat{A}^{2}\\ &\mathbf{a}(T)=0.\end{cases} (16)

To solve (16) let us introduce the function zz defined by

z(t)=eA^(Tt)+eA^(Tt),z(t)=e^{\widehat{A}(T-t)}+e^{-\widehat{A}(T-t)},

that is a C2([0,T],Sd++)C^{2}([0,T],S_{d}^{++}) function verifying z′′(t)=A^2z(t)z^{\prime\prime}(t)=\widehat{A}^{2}z(t) and z(T)=0z^{\prime}(T)=0.

We have

ddt(z(t)z(t)1)=z′′(t)z(t)1+z(t)z(t)1z(t)z(t)1=(z(t)z(t)1)2A^2\frac{d}{dt}\left(-z^{\prime}(t)z(t)^{-1}\right)=-z^{\prime\prime}(t)z(t)^{-1}+z^{\prime}(t)z(t)^{-1}z^{\prime}(t)z(t)^{-1}=\left(z^{\prime}(t)z(t)^{-1}\right)^{2}-\widehat{A}^{2}

and z(T)z(T)1=0-z^{\prime}(T)z(T)^{-1}=0. Therefore, by Cauchy-Lipschitz theorem, we have 𝐚=zz1\mathbf{a}=-z^{\prime}z^{-1}.

Wrapping up, we obtain

A(t)\displaystyle A(t) =12D+12𝐚(t)D+12\displaystyle=\frac{1}{2}D_{+}^{-\frac{1}{2}}\mathbf{a}(t)D_{+}^{-\frac{1}{2}}
=12D+12z(t)z(t)1D+12\displaystyle=-\frac{1}{2}D_{+}^{-\frac{1}{2}}z^{\prime}(t)z(t)^{-1}D_{+}^{-\frac{1}{2}}
=12D+12A^(eA^(Tt)eA^(Tt))(eA^(Tt)+eA^(Tt))1D+12.\displaystyle=\frac{1}{2}D_{+}^{-\frac{1}{2}}\widehat{A}\left(e^{\widehat{A}(T-t)}-e^{-\widehat{A}(T-t)}\right)\left(e^{\widehat{A}(T-t)}+e^{-\widehat{A}(T-t)}\right)^{-1}D_{+}^{-\frac{1}{2}}.
Solution for BB

Let us notice that, by definition of the exponential of a matrix, for all s,t[0,T]s,t\in[0,T], the matrices A^\widehat{A}, (eA^(Ts)eA^(Ts))\left(e^{\widehat{A}(T-s)}-e^{-\widehat{A}(T-s)}\right), (eA^(Ts)+eA^(Ts))1\left(e^{\widehat{A}(T-s)}+e^{-\widehat{A}(T-s)}\right)^{-1}, (eA^(Tt)eA^(Tt))\left(e^{\widehat{A}(T-t)}-e^{-\widehat{A}(T-t)}\right), and (eA^(Tt)+eA^(Tt))1\left(e^{\widehat{A}(T-t)}+e^{-\widehat{A}(T-t)}\right)^{-1} commute. Therefore

A(s)D+A(t)D+\displaystyle A(s)D_{+}A(t)D_{+}
=\displaystyle= 14D+12A^(eA^(Ts)eA^(Ts))(eA^(Ts)+eA^(Ts))1\displaystyle\frac{1}{4}D^{-\frac{1}{2}}_{+}\widehat{A}\left(e^{\widehat{A}(T-s)}-e^{-\widehat{A}(T-s)}\right)\left(e^{\widehat{A}(T-s)}+e^{-\widehat{A}(T-s)}\right)^{-1}
×A^(eA^(Tt)eA^(Tt))(eA^(Tt)+eA^(Tt))1D+12\displaystyle\times\widehat{A}\left(e^{\widehat{A}(T-t)}-e^{-\widehat{A}(T-t)}\right)\left(e^{\widehat{A}(T-t)}+e^{-\widehat{A}(T-t)}\right)^{-1}D_{+}^{\frac{1}{2}}
=\displaystyle= 14D+12A^(eA^(Tt)eA^(Tt))(eA^(Tt)+eA^(Tt))1\displaystyle\frac{1}{4}D^{-\frac{1}{2}}_{+}\widehat{A}\left(e^{\widehat{A}(T-t)}-e^{-\widehat{A}(T-t)}\right)\left(e^{\widehat{A}(T-t)}+e^{-\widehat{A}(T-t)}\right)^{-1}
×A^(eA^(Ts)eA^(Ts))(eA^(Ts)+eA^(Ts))1D+12\displaystyle\times\widehat{A}\left(e^{\widehat{A}(T-s)}-e^{-\widehat{A}(T-s)}\right)\left(e^{\widehat{A}(T-s)}+e^{-\widehat{A}(T-s)}\right)^{-1}D_{+}^{\frac{1}{2}}
=\displaystyle= A(t)D+A(s)D+.\displaystyle A(t)D_{+}A(s)D_{+}.

Therefore, we can apply the method of Variation of Parameters to the linear ODE characterizing BB to obtain

B(t)=2e2tTA(u)D+𝑑utTe2sTA(u)D+𝑑uA(s)(V+D𝒟(A(s)))𝑑s.B(t)=-2e^{-2\int_{t}^{T}A(u)D_{+}\,du}\int_{t}^{T}e^{2\int_{s}^{T}A(u)D_{+}\,du}A(s)\left(V_{-}+D_{-}\mathcal{D}(A(s))\right)ds.
Solution for CC

We simply integrate the ODE characterizing CC to obtain (15)\eqref{eq:solC}.

From Eqs. (13), (14), and (15), we can deduce the asymptotic behaviour of (A,B,C)(A,B,C) when TT goes to infinity.

Proposition 3.

Let (A,B,C)(A,B,C) be the solution of the system of ODEs (11) with terminal conditions (12).

Then,

A(0)\displaystyle A(0) T+12γΓ,\displaystyle\stackrel{{\scriptstyle T\to+\infty}}{{\longrightarrow}}\frac{1}{2}\sqrt{\gamma}\Gamma,
B(0)\displaystyle B(0) T+D+12A^A^+D+12(V+12γD𝒟(Γ)),\displaystyle\stackrel{{\scriptstyle T\to+\infty}}{{\longrightarrow}}-D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}\left(V_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right),
C(0)T\displaystyle\frac{C(0)}{T} T+Tr(D0,1b+D0,1a)12γTr((D1,2b+D1,2a)Γ)+VD+12A^A^+D+12(V+12γD𝒟(Γ))\displaystyle\stackrel{{\scriptstyle T\to+\infty}}{{\longrightarrow}}-\textrm{Tr}\left(D^{b}_{0,1}+D^{a}_{0,1}\right)-\frac{1}{2}\sqrt{\gamma}\textrm{Tr}\left(\left(D^{b}_{1,2}+D^{a}_{1,2}\right)\Gamma\right)+V_{-}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}\left(V_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)
18γ𝒟(Γ)(D2,3b+D2,3a)𝒟(Γ)12(V+12γD𝒟(Γ))D+12A^A^+D+12(V+12γD𝒟(Γ))\displaystyle\qquad-\frac{1}{8}\gamma\mathcal{D}(\Gamma)^{\intercal}\left(D^{b}_{2,3}\!+\!D^{a}_{2,3}\right)\mathcal{D}(\Gamma)-\frac{1}{2}\left(V_{-}\!+\!\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)^{\intercal}\!D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}\left(V_{-}\!+\!\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)
+12γ(V+12γD𝒟(Γ))D+12A^A^+D+12D𝒟(Γ),\displaystyle\qquad+\frac{1}{2}\sqrt{\gamma}\left(V_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}D_{-}\mathcal{D}(\Gamma),

where Γ=D+12(D+12ΣD+12)12D+12\Gamma=D_{+}^{-\frac{1}{2}}\left(D_{+}^{\frac{1}{2}}\Sigma D_{+}^{\frac{1}{2}}\right)^{\frac{1}{2}}D_{+}^{-\frac{1}{2}} and A^+\widehat{A}^{+} is the Moore-Penrose generalized inverse of A^\widehat{A}.

Proof.

This proof is divided into three parts corresponding to the derivation of the asymptotic expression for AA, BB, and CC, respectively.

Asymptotics for AA

Let us recall first that A^=γ(D+12ΣD+12)12Sd+\widehat{A}=\sqrt{\gamma}\left(D_{+}^{\frac{1}{2}}\Sigma D_{+}^{\frac{1}{2}}\right)^{\frac{1}{2}}\in S_{d}^{+}. Therefore, there exists an orthogonal matrix PP and there exists a diagonal matrix with nonnegative entries diag(λ1,,λd)\textup{diag}(\lambda_{1},\ldots,\lambda_{d}) such that A^=Pdiag(λ1,,λd)P\widehat{A}=P\textup{diag}(\lambda_{1},\ldots,\lambda_{d})P^{\intercal}. From Eq. (13) we have

A(0)=12D+12Pdiag(λ1tanh(λ1T),,λdtanh(λdT))PD+12.A(0)=\frac{1}{2}D^{-\frac{1}{2}}_{+}P\textup{diag}\left(\lambda_{1}\tanh(\lambda_{1}T),\ldots,\lambda_{d}\tanh(\lambda_{d}T)\right)P^{\intercal}D_{+}^{-\frac{1}{2}}.

As λtanh(λT)T+{0,if λ=0λ,if λ>0\lambda\tanh(\lambda T)\stackrel{{\scriptstyle T\to+\infty}}{{\longrightarrow}}\begin{cases}0,&\text{if }\lambda=0\\ \lambda,&\text{if }\lambda>0\end{cases}, we clearly have

A(0)T+12D+12Pdiag(λ1,,λd)PD+12=12D+12A^D+12=12γΓ.A(0)\stackrel{{\scriptstyle T\to+\infty}}{{\longrightarrow}}\frac{1}{2}D^{-\frac{1}{2}}_{+}P\textup{diag}(\lambda_{1},\ldots,\lambda_{d})P^{\intercal}D_{+}^{-\frac{1}{2}}=\frac{1}{2}D^{-\frac{1}{2}}_{+}\widehat{A}D_{+}^{-\frac{1}{2}}=\frac{1}{2}\sqrt{\gamma}\Gamma.
Asymptotics for BB

From Eq. (14), we have

B(0)\displaystyle B(0) =\displaystyle= 2e20TA(u)D+𝑑u0Te2sTA(u)D+𝑑uA(s)(V+D𝒟(A(s)))𝑑s\displaystyle-2e^{-2\int_{0}^{T}A(u)D_{+}\,du}\int_{0}^{T}e^{2\int_{s}^{T}A(u)D_{+}\,du}A(s)\left(V_{-}+D_{-}\mathcal{D}(A(s))\right)ds
=\displaystyle= 2e20TA~(u)D+𝑑u0Te20sA~(u)D+𝑑uA~(s)(V+D𝒟(A~(s)))𝑑s\displaystyle-2e^{-2\int_{0}^{T}\tilde{A}(u)D_{+}\,du}\int_{0}^{T}e^{2\int_{0}^{s}\tilde{A}(u)D_{+}\,du}\tilde{A}(s)\left(V_{-}+D_{-}\mathcal{D}(\tilde{A}(s))\right)ds

where A~:t12D+12A^(eA^teA^t)(eA^t+eA^t)1D+12\tilde{A}:t\mapsto\frac{1}{2}D^{-\frac{1}{2}}_{+}\widehat{A}\left(e^{\widehat{A}t}-e^{-\widehat{A}t}\right)\left(e^{\widehat{A}t}+e^{-\widehat{A}t}\right)^{-1}D^{-\frac{1}{2}}_{+}.

Using the spectral decomposition of A^\widehat{A} introduced in the above paragraph, we see that

2A~(u)D+=D+12Pdiag(λ1tanh(λ1u),,λdtanh(λdu))PD+122\tilde{A}(u)D_{+}=D_{+}^{-\frac{1}{2}}P\textup{diag}\left(\lambda_{1}\tanh(\lambda_{1}u),\ldots,\lambda_{d}\tanh(\lambda_{d}u)\right)P^{\intercal}D_{+}^{\frac{1}{2}}

and therefore, after integration,

e20TA~(u)D+𝑑u=D+12Pdiag(cosh(λ1T),,cosh(λdT))PD+12e^{2\int_{0}^{T}\tilde{A}(u)D_{+}\,du}=D_{+}^{-\frac{1}{2}}P\textup{diag}\left(\cosh(\lambda_{1}T),\ldots,\cosh(\lambda_{d}T)\right)P^{\intercal}D_{+}^{\frac{1}{2}}

and

e20sA~(u)D+𝑑uA~(s)=12D+12Pdiag(λ1sinh(λ1s),,λdsinh(λds))PD+12e^{2\int_{0}^{s}\tilde{A}(u)D_{+}\,du}\tilde{A}(s)=\frac{1}{2}D_{+}^{-\frac{1}{2}}P\textup{diag}\left(\lambda_{1}\sinh(\lambda_{1}s),\ldots,\lambda_{d}\sinh(\lambda_{d}s)\right)P^{\intercal}D_{+}^{-\frac{1}{2}}

Wrapping up, we get that B(0)B(0) is equal to

0TD+12Pdiag(λ1sinh(λ1s)cosh(λ1T),,λdsinh(λds)cosh(λdT))PD+12(V+D𝒟(A~(s)))𝑑s.\displaystyle-\int_{0}^{T}D_{+}^{-\frac{1}{2}}P\textup{diag}\left(\lambda_{1}\frac{\sinh(\lambda_{1}s)}{\cosh(\lambda_{1}T)},\ldots,\lambda_{d}\frac{\sinh(\lambda_{d}s)}{\cosh(\lambda_{d}T)}\right)P^{\intercal}D_{+}^{-\frac{1}{2}}\left(V_{-}+D_{-}\mathcal{D}(\tilde{A}(s))\right)ds.
=\displaystyle= 0TD+12Pdiag(λ1sinh(λ1s)cosh(λ1T),,λdsinh(λds)cosh(λdT))PD+12(V+12γD𝒟(Γ))𝑑s\displaystyle-\int_{0}^{T}D_{+}^{-\frac{1}{2}}P\textup{diag}\left(\lambda_{1}\frac{\sinh(\lambda_{1}s)}{\cosh(\lambda_{1}T)},\ldots,\lambda_{d}\frac{\sinh(\lambda_{d}s)}{\cosh(\lambda_{d}T)}\right)P^{\intercal}D_{+}^{-\frac{1}{2}}\left(V_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)ds
+0TD+12Pdiag(λ1sinh(λ1s)cosh(λ1T),,λdsinh(λds)cosh(λdT))PD+12(12γD𝒟(Γ)D𝒟(A~(s)))𝑑s\displaystyle+\int_{0}^{T}D_{+}^{-\frac{1}{2}}P\textup{diag}\left(\lambda_{1}\frac{\sinh(\lambda_{1}s)}{\cosh(\lambda_{1}T)},\ldots,\lambda_{d}\frac{\sinh(\lambda_{d}s)}{\cosh(\lambda_{d}T)}\right)P^{\intercal}D_{+}^{-\frac{1}{2}}\left(\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)-D_{-}\mathcal{D}(\tilde{A}(s))\right)ds
=\displaystyle= D+12Pdiag(11cosh(λ1T),,11cosh(λdT))PD+12(V+12γD𝒟(Γ))+J(T),\displaystyle D_{+}^{-\frac{1}{2}}P\textup{diag}\left(1-\frac{1}{\cosh(\lambda_{1}T)},\ldots,1-\frac{1}{\cosh(\lambda_{d}T)}\right)P^{\intercal}D_{+}^{-\frac{1}{2}}\left(V_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)+J(T),

where

J(T)=0TD+12Pdiag(λ1sinh(λ1s)cosh(λ1T),,λdsinh(λds)cosh(λdT))PD+12(12γD𝒟(Γ)D𝒟(A~(s)))𝑑s.J(T)=\int_{0}^{T}D_{+}^{-\frac{1}{2}}P\textup{diag}\left(\lambda_{1}\frac{\sinh(\lambda_{1}s)}{\cosh(\lambda_{1}T)},\ldots,\lambda_{d}\frac{\sinh(\lambda_{d}s)}{\cosh(\lambda_{d}T)}\right)P^{\intercal}D_{+}^{-\frac{1}{2}}\left(\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)-D_{-}\mathcal{D}(\tilde{A}(s))\right)ds.

Let us prove that J(T)T+0J(T)\stackrel{{\scriptstyle T\to+\infty}}{{\longrightarrow}}0. For that purpose, let us consider ϵ>0\epsilon>0 and let us notice that there exists τ>0\tau>0 such that s>τ,12γD+1D𝒟(Γ)D+1D𝒟(A~(s))ϵ\forall s>\tau,\|\frac{1}{2}\sqrt{\gamma}D_{+}^{-1}D_{-}\mathcal{D}(\Gamma)-D_{+}^{-1}D_{-}\mathcal{D}(\tilde{A}(s))\|\leq\epsilon, where the norm used is the Euclidian norm on d\mathbb{R}^{d}. Let us also denote by MM the quantity sups012γD𝒟(Γ)D𝒟(A~(s))\sup_{s\geq 0}\|\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)-D_{-}\mathcal{D}(\tilde{A}(s))\|.

Using the operator norm (still denoted by \|\cdot\|) associated with the Euclidian norm on d\mathbb{R}^{d} and its well-known link with the spectral radius, we see that for T>τT>\tau,

J(T)\displaystyle\|J(T)\|
\displaystyle\leq 0TD+12Pdiag(λ1sinh(λ1s)cosh(λ1T),,λdsinh(λds)cosh(λdT))PD+12D+112γD𝒟(Γ)D+1D𝒟(A~(s))𝑑s\displaystyle\!\!\int_{0}^{T}\left\|D_{+}^{-\frac{1}{2}}P\textup{diag}\left(\lambda_{1}\frac{\sinh(\lambda_{1}s)}{\cosh(\lambda_{1}T)},\ldots,\lambda_{d}\frac{\sinh(\lambda_{d}s)}{\cosh(\lambda_{d}T)}\right)P^{\intercal}D_{+}^{\frac{1}{2}}\right\|\left\|D_{+}^{-1}\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\!-\!D_{+}^{-1}D_{-}\mathcal{D}(\tilde{A}(s))\right\|ds
\displaystyle\leq 0T(maxiλisinh(λis)cosh(λiT))12γD+1D𝒟(Γ)D+1D𝒟(A~(s))𝑑s\displaystyle\!\!\int_{0}^{T}\left(\max_{i}\lambda_{i}\frac{\sinh(\lambda_{i}s)}{\cosh(\lambda_{i}T)}\right)\left\|\frac{1}{2}\sqrt{\gamma}D_{+}^{-1}D_{-}\mathcal{D}(\Gamma)-D_{+}^{-1}D_{-}\mathcal{D}(\tilde{A}(s))\right\|ds
\displaystyle\leq M0τmaxiλisinh(λis)cosh(λiT)ds+ϵτTmaxiλisinh(λis)cosh(λiT)ds.\displaystyle M\int_{0}^{\tau}\max_{i}\lambda_{i}\frac{\sinh(\lambda_{i}s)}{\cosh(\lambda_{i}T)}ds+\epsilon\int_{\tau}^{T}\max_{i}\lambda_{i}\frac{\sinh(\lambda_{i}s)}{\cosh(\lambda_{i}T)}ds.

By defining λ¯=max{λ1,,λd}\overline{\lambda}=\max\{\lambda_{1},\ldots,\lambda_{d}\} and λ¯=min{λi|i{1,,d},λi>0}\underline{\lambda}=\min\{\lambda_{i}|\forall i\in\{1,\ldots,d\},\lambda_{i}>0\}, we have

maxi{1,,d}λisinh(λis)cosh(λiT)maxi{1,,d}λieλiseλiT=maxi{1,,d},λi>0λieλi(Ts)λ¯eλ¯(Ts).\max_{i\in\{1,\ldots,d\}}\lambda_{i}\frac{\sinh(\lambda_{i}s)}{\cosh(\lambda_{i}T)}\leq\max_{i\in\{1,\ldots,d\}}\lambda_{i}\frac{e^{\lambda_{i}s}}{e^{\lambda_{i}T}}=\max_{i\in\{1,\ldots,d\},\lambda_{i}>0}\lambda_{i}e^{-\lambda_{i}(T-s)}\leq\overline{\lambda}e^{-\underline{\lambda}(T-s)}.

Therefore,

lim supTJ(T)\displaystyle\limsup_{T\to\infty}\|J(T)\|
\displaystyle\leq Mlim supTλ¯(eλ¯(Tτ)eλ¯T)+ϵlim supTλ¯(1eλ¯(Tτ))\displaystyle M\limsup_{T\to\infty}\overline{\lambda}\left(e^{-\underline{\lambda}(T-\tau)}-e^{-\underline{\lambda}T}\right)+\epsilon\limsup_{T\to\infty}\overline{\lambda}\left(1-e^{-\underline{\lambda}(T-\tau)}\right)
\displaystyle\leq ϵ\displaystyle\epsilon

which allows to conclude that J(T)T+0J(T)\stackrel{{\scriptstyle T\to+\infty}}{{\longrightarrow}}0.

Now, as Pdiag(11cosh(λ1T),,11cosh(λdT))PP\textup{diag}\left(1-\frac{1}{\cosh(\lambda_{1}T)},\ldots,1-\frac{1}{\cosh(\lambda_{d}T)}\right)P^{\intercal} converges toward the orthogonal projector on Im(A^)\text{Im}(\widehat{A}), which is also given by A^A^+\widehat{A}\widehat{A}^{+}, we conclude that

B(0)T+D+12A^A^+D+12(V+12γD𝒟(Γ)).B(0)\stackrel{{\scriptstyle T\to+\infty}}{{\longrightarrow}}-D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}\left(V_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right).
Asymptotics for CC

The asymptotic behavior of CC is a straightforward consequence of that of AA and BB.

3.3 From value functions to heuristics and quotes

3.3.1 Motivation for closed-form approximations

An approximation in closed form of the value function can be motivated by its numerous applications. In the following, we highlight three of them.

First, it can serve as a heuristic evaluation function in reinforcement learning algorithms. Indeed, in problems where the time horizon is too far away to consider full exploration in time, it is often useful, when using Monte-Carlo-based reinforcement learning techniques, to proxy the value of states in a tractable way – analogous to algorithms such as Deep Blue. The above closed-form approximations can be used for that purpose. Moreover, because the value of C(t)C(t) is irrelevant for comparing two states (it vanishes when computing the difference in the value function between two points), it is sometimes possible, especially when TT is large, to consider the asymptotic expression

12γqΓq+qD+12A^A^+D+12(V+12γD𝒟(Γ))-\frac{1}{2}\sqrt{\gamma}q^{\intercal}\Gamma q+q^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}\left(V_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)

instead of θˇ(t,q)\check{\theta}(t,q).

Second, a closed-form approximation of the value function can be used as a starting point in iterative methods designed to compute the value function (value iteration algorithm, actor-critic algorithms, etc.). Unlike for the above use, the value of C(t)C(t) matters in that case.

A third important application, and the one that initially motivated our paper, is for computing policies (quotes, in our case). Indeed, a policy can be deduced from an approximation of the value function by computing the greedy strategy associated with that approximation. In our market making problem, the quotes obtained in this way are not only easy to compute, but also have the advantage of being easily interpretable.

3.3.2 Quotes: the general case

The greedy quoting strategy associated with our closed-form proxy of the value function leads to the following quotes for all i{1,,d}i\in\{1,\ldots,d\}:

δˇti,b\displaystyle\check{\delta}^{i,b}_{t} =\displaystyle= δ~ξi,b(θˇ(t,qt)θˇ(t,qt+ziei)zi)\displaystyle\tilde{\delta}^{i,b*}_{\xi}\left(\frac{\check{\theta}(t,q_{t-})-\check{\theta}(t,q_{t-}+z^{i}e^{i})}{z^{i}}\right)
=\displaystyle= δ~ξi,b(2qtA(t)ei+zieiA(t)ei+eiB(t)),\displaystyle\tilde{\delta}^{i,b*}_{\xi}\left(2q_{t-}^{\intercal}A(t)e^{i}+z^{i}{e^{i}}^{\intercal}A(t)e^{i}+{e^{i}}^{\intercal}B(t)\right),
δˇti,a\displaystyle\check{\delta}^{i,a}_{t} =\displaystyle= δ~ξi,a(θˇ(t,qt)θˇ(t,qtziei)zi)\displaystyle\tilde{\delta}^{i,a*}_{\xi}\left(\frac{\check{\theta}(t,q_{t-})-\check{\theta}(t,q_{t-}-z^{i}e^{i})}{z^{i}}\right)
=\displaystyle= δ~ξi,a(2qtA(t)ei+zieiA(t)eieiB(t)),\displaystyle\tilde{\delta}^{i,a*}_{\xi}\left(-2q_{t-}^{\intercal}A(t)e^{i}+z^{i}{e^{i}}^{\intercal}A(t)e^{i}-{e^{i}}^{\intercal}B(t)\right),

where δ~ξi,b\tilde{\delta}^{i,b*}_{\xi} and δ~ξi,a\tilde{\delta}^{i,a*}_{\xi} are given in Theorems 1 and 2 for ξ=γ\xi=\gamma and ξ=0\xi=0 respectively (depending on whether one considers Model A or Model B).

The asymptotic regime exhibited in the above paragraphs can then serve to obtain the following simple closed-form approximations:

δ˘ti,b\displaystyle\breve{\delta}^{i,b}_{t} =\displaystyle= δ~ξi,b(γqtΓei+12γzieiΓeieiD+12A^A^+D+12(V+12γD𝒟(Γ))),\displaystyle\tilde{\delta}^{i,b*}_{\xi}\left(\sqrt{\gamma}q_{t-}^{\intercal}\Gamma e^{i}+\frac{1}{2}\sqrt{\gamma}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}-{e^{i}}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}\left(V_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)\right), (17)
δ˘ti,a\displaystyle\breve{\delta}^{i,a}_{t} =\displaystyle= δ~ξi,a(γqtΓei+12γzieiΓei+eiD+12A^A^+D+12(V+12γD𝒟(Γ))).\displaystyle\tilde{\delta}^{i,a*}_{\xi}\left(-\sqrt{\gamma}q_{t-}^{\intercal}\Gamma e^{i}+\frac{1}{2}\sqrt{\gamma}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}+{e^{i}}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}\left(V_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)\right). (18)

It is interesting to notice here that the closed-form approximation of the optimal bid and ask quotes for asset ii depend on the current value of the inventory through the term qtΓeiq_{t-}^{\intercal}\Gamma e^{i}. Since ΓSd+\Gamma\in S_{d}^{+} and the functions δ~ξi,b\tilde{\delta}^{i,b*}_{\xi} and δ~ξi,a\tilde{\delta}^{i,a*}_{\xi} are monotone, we have that, all else equal, the quotes for asset ii depend monotonically on the inventory in asset ii (the bid and ask prices decrease (resp. increase) when the inventory is positive (resp. negative)). The dependence on the inventory in other assets is more subtle as it is linked to the matrix Γ=D+12(D+12ΣD+12)12D+12\Gamma=D_{+}^{-\frac{1}{2}}(D_{+}^{\frac{1}{2}}\Sigma D_{+}^{\frac{1}{2}})^{\frac{1}{2}}D_{+}^{-\frac{1}{2}} which models the complex interplay between price risk and liquidity risk. Also, as already noted in [20] the influence of the risk aversion parameter γ\gamma is ambiguous and depends on the value of inventories.

In the case of symmetric intensities, i.e. when Λi,b=Λi,a\Lambda^{i,b}=\Lambda^{i,a} for all i{1,,d}i\in\{1,\ldots,d\}, the Hamiltonian functions Hξi,bH_{\xi}^{i,b} and Hxii,aH_{x}i^{i,a} given in Eqs. (3) and (4) are identical and thus it is natural to set Hˇi,b=Hˇi,a\check{H}^{i,b}=\check{H}^{i,a} for all i{1,,d}i\in\{1,\ldots,d\}. In that case, (17) and (18) simplify into

δ˘ti,b\displaystyle\breve{\delta}^{i,b}_{t} =\displaystyle= δ~ξi,b(γqtΓei+12γzieiΓei),\displaystyle\tilde{\delta}^{i,b*}_{\xi}\left(\sqrt{\gamma}q_{t-}^{\intercal}\Gamma e^{i}+\frac{1}{2}\sqrt{\gamma}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}\right), (19)
δ˘ti,a\displaystyle\breve{\delta}^{i,a}_{t} =\displaystyle= δ~ξi,a(γqtΓei+12γzieiΓei).\displaystyle\tilde{\delta}^{i,a*}_{\xi}\left(-\sqrt{\gamma}q_{t-}^{\intercal}\Gamma e^{i}+\frac{1}{2}\sqrt{\gamma}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}\right). (20)

All these approximations of the optimal quotes can be used directly or as starting points in iterative methods designed to compute the optimal quotes (policy iteration algorithm, actor-critic algorithms, etc.).

3.3.3 Quotes: the case of symmetric exponential intensities

Exponential intensity functions play an important role in the optimal market making literature and more generally in the algorithmic trading literature. This shape of intensity functions, initially proposed by Avellaneda and Stoikov in [1], leads indeed to simplification because of the form of the associated Hamiltonian functions.

If we assume that the intensity functions are given, for all i{1,,d}i\in\{1,\ldots,d\}, by

Λi,b(δ)=Λi,a(δ)=Aiekiδ,Ai,ki>0,\Lambda^{i,b}(\delta)=\Lambda^{i,a}(\delta)=A^{i}e^{-k^{i}\delta},\quad A^{i},k^{i}>0,

then (see [18]) the Hamiltonian functions are given, for all i{1,,d}i\in\{1,\ldots,d\}, by

Hξi,b(p)=Hξi,a(p)=AikiCξiexp(kip),H^{i,b}_{\xi}(p)=H^{i,a}_{\xi}(p)=\frac{A^{i}}{k^{i}}C^{i}_{\xi}\exp(-k^{i}p),

where

Cξi={(1+ξziki)(1+kiξzi)if ξ>0e1if ξ=0,C_{\xi}^{i}=\begin{cases}\left(1+\frac{\xi z^{i}}{k^{i}}\right)^{-\left(1+\frac{k^{i}}{\xi z^{i}}\right)}&\mbox{if }\xi>0\\ e^{-1}&\mbox{if }\xi=0,\end{cases}

and the functions δ~ξi,b\tilde{\delta}^{i,b*}_{\xi} and δ~ξi,a\tilde{\delta}^{i,a*}_{\xi} are given, for all i{1,,d}i\in\{1,\ldots,d\}, by

δ~ξi,b(p)=δ~ξi,a(p)={p+1ξzilog(1+ξziki)if ξ>0p+1kiif ξ=0.\tilde{\delta}^{i,b*}_{\xi}(p)=\tilde{\delta}^{i,a*}_{\xi}(p)=\begin{cases}p+\frac{1}{\xi z^{i}}\log\left(1+\frac{\xi z^{i}}{k^{i}}\right)&\mbox{if }\xi>0\\ p+\frac{1}{k^{i}}&\mbox{if }\xi=0.\end{cases}

Therefore, if we consider the quadratic approximation of the Hamiltonian functions based on their Taylor expansion around p=0p=0 (see Remark 1), then (19) and (20) become

δ˘ti,b\displaystyle\breve{\delta}^{i,b}_{t} =\displaystyle= {γ(qtΓei+12zieiΓei)+1γzilog(1+γziki) in Model A,γ(qtΓei+12zieiΓei)+1ki in Model B.\displaystyle\begin{cases}\sqrt{\gamma}\left(q_{t-}^{\intercal}\Gamma e^{i}+\frac{1}{2}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}\right)+\frac{1}{\gamma z^{i}}\log\left(1+\frac{\gamma z^{i}}{k^{i}}\right)&\mbox{ in Model A,}\\ \sqrt{\gamma}\left(q_{t-}^{\intercal}\Gamma e^{i}+\frac{1}{2}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}\right)+\frac{1}{k^{i}}&\mbox{ in Model B.}\end{cases}
δ˘ti,a\displaystyle\breve{\delta}^{i,a}_{t} =\displaystyle= {γ(qtΓei12zieiΓei)+1γzilog(1+γziki) in Model A,γ(qtΓei12zieiΓei)+1ki in Model B.\displaystyle\begin{cases}-\sqrt{\gamma}\left(q_{t-}^{\intercal}\Gamma e^{i}-\frac{1}{2}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}\right)+\frac{1}{\gamma z^{i}}\log\left(1+\frac{\gamma z^{i}}{k^{i}}\right)&\mbox{ in Model A,}\\ -\sqrt{\gamma}\left(q_{t-}^{\intercal}\Gamma e^{i}-\frac{1}{2}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}\right)+\frac{1}{k^{i}}&\mbox{ in Model B.}\end{cases}

where Γ=D+12(D+12ΣD+12)12D+12\Gamma=D_{+}^{-\frac{1}{2}}(D_{+}^{\frac{1}{2}}\Sigma D_{+}^{\frac{1}{2}})^{\frac{1}{2}}D_{+}^{-\frac{1}{2}} and D+=diag(2A1Cξ1k1z1,,2AdCξdkdzd).D_{+}=\textup{diag}(2A^{1}C_{\xi}^{1}k^{1}z^{1},\ldots,2A^{d}C_{\xi}^{d}k^{d}z^{d}).

It is noteworthy that these approximations of the optimal quotes are affine in the current inventory. In particular, in the case of Model A, when the number of assets is reduced to one (with unitary transaction size), they coincide with the affine closed-form approximations obtained in the paper [20] of Guéant, Lehalle, and Fernandez-Tapia. Their approximations, however, are obtained in a fundamentally different manner, by using spectral arguments and a continuous approximation of the initial discrete problem.

Another useful point of view on the above quoting strategy is by observing the resulting approximations of the optimal (half) bid-ask spread and skew. The approximations of the optimal (half) bid-ask spread and skew for asset ii are respectively given by

δ˘ti,a+δ˘ti,b2\displaystyle\frac{\breve{\delta}^{i,a}_{t}+\breve{\delta}^{i,b}_{t}}{2} =\displaystyle= {12γzieiΓei+1γzilog(1+γziki) in Model A,12γzieiΓei+1ki in Model B,\displaystyle\begin{cases}\frac{1}{2}\sqrt{\gamma}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}+\frac{1}{\gamma z^{i}}\log\left(1+\frac{\gamma z^{i}}{k^{i}}\right)&\mbox{ in Model A,}\\ \frac{1}{2}\sqrt{\gamma}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}+\frac{1}{k^{i}}&\mbox{ in Model B,}\end{cases}

and

δ˘ti,aδ˘ti,b2\displaystyle\frac{\breve{\delta}^{i,a}_{t}-\breve{\delta}^{i,b}_{t}}{2} =\displaystyle= γqtΓei in both Model A and Model B.\displaystyle-\sqrt{\gamma}q_{t-}^{\intercal}\Gamma e^{i}\text{ in both Model A and Model B.}

These approximations give us a constant bid-ask spread and a skew linear in the inventory. This translates well the intuition that the skew has the role of inventory risk management, whereas the spread balances the trade-off between frequency of transactions and profit per round-trip trade (the term 1γzilog(1+γziki)\frac{1}{\gamma z^{i}}\log\left(1+\frac{\gamma z^{i}}{k^{i}}\right) in Model A, which reduces to 1ki\frac{1}{k^{i}} in the case of Model B121212It is noteworthy that in the case of Model B the bid-ask spread is a nondecreasing function of the risk aversion parameter γ\gamma.), plus an additional risk aversion buffer (the term 12γzieiΓei\frac{1}{2}\sqrt{\gamma}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}).

On the parameter sensitivity analysis, beyond the above remarks, the reader is referred to [20] for a comprehensive analysis in the single-asset case. The complex interplay between price risk and liquidity risk expressed through Γ=D+12(D+12ΣD+12)12D+12\Gamma=D_{+}^{-\frac{1}{2}}(D_{+}^{\frac{1}{2}}\Sigma D_{+}^{\frac{1}{2}})^{\frac{1}{2}}D_{+}^{-\frac{1}{2}} makes the sensitivity analysis less obvious in the multi-asset case.

4 Beyond the quadratic approximation: towards a correction term

In Section 3, we approximated the Hamiltonian functions by quadratic functions in order to “approximate” the Hamilton-Jacobi equation characterizing the value function and then approximate the value function itself. To go further, we can consider a perturbative approach around our quadratic approximation. This means that we regard the real Hamiltonian functions as small perturbations of the quadratic functions used to approximate them and consider then a first order approximation (the zero-th order approximation being then that obtained in Section 3).

Formally, writing

Hξi,b(p)=Hˇi,b(p)+ϵhi,b(p),Hξi,a(p)=Hˇi,a(p)+ϵhi,a(p),and θ(t,q)=θˇ(t,q)+ϵη(t,q),H_{\xi}^{i,b}(p)=\check{H}^{i,b}(p)+\epsilon h^{i,b}(p),\quad H_{\xi}^{i,a}(p)=\check{H}^{i,a}(p)+\epsilon h^{i,a}(p),\quad\text{and }\quad\theta(t,q)=\check{\theta}(t,q)+\epsilon\eta(t,q),

and plugging these expressions in Eq. (2.3) in the limit case where Qi=+Q^{i}=+\infty for all i{1,,d}i\in\{1,\ldots,d\}, we obtain

0\displaystyle 0 =\displaystyle= tθ(t,q)12γqΣq+i=1dziHξi,b(θ(t,q)θ(t,q+ziei)zi)+i=1dziHξi,a(θ(t,q)θ(t,qziei)zi)\displaystyle\partial_{t}\theta(t,q)-\frac{1}{2}\gamma q^{\intercal}\Sigma q+\sum_{i=1}^{d}z^{i}H^{i,b}_{\xi}\left(\frac{\theta(t,q)-\theta(t,q+z^{i}e^{i})}{z^{i}}\right)+\sum_{i=1}^{d}z^{i}H^{i,a}_{\xi}\left(\frac{\theta(t,q)-\theta(t,q-z^{i}e^{i})}{z^{i}}\right)
=\displaystyle= tθˇ(t,q)12γqΣq+i=1dziHˇi,b(θˇ(t,q)θˇ(t,q+ziei)zi)+i=1dziHˇi,a(θˇ(t,q)θˇ(t,qziei)zi)\displaystyle\partial_{t}\check{\theta}(t,q)-\frac{1}{2}\gamma q^{\intercal}\Sigma q+\sum_{i=1}^{d}z^{i}\check{H}^{i,b}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q+z^{i}e^{i})}{z^{i}}\right)+\sum_{i=1}^{d}z^{i}\check{H}^{i,a}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q-z^{i}e^{i})}{z^{i}}\right)
+ϵ(tη(t,q)+i=1dzihi,b(θˇ(t,q)θˇ(t,q+ziei)zi)+i=1dzihi,a(θˇ(t,q)θˇ(t,qziei)zi)\displaystyle+\epsilon\left(\partial_{t}\eta(t,q)+\sum_{i=1}^{d}z^{i}h^{i,b}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q+z^{i}e^{i})}{z^{i}}\right)+\sum_{i=1}^{d}z^{i}h^{i,a}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q-z^{i}e^{i})}{z^{i}}\right)\right.
+i=1dHˇi,b(θˇ(t,q)θˇ(t,q+ziei)zi)(η(t,q)η(t,q+ziei))\displaystyle\qquad\qquad\quad+\sum_{i=1}^{d}\check{H}^{i,b\prime}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q+z^{i}e^{i})}{z^{i}}\right)\left(\eta(t,q)-\eta(t,q+z^{i}e^{i})\right)
+i=1dHˇi,a(θˇ(t,q)θˇ(t,qziei)zi)(η(t,q)η(t,qziei)))+o(ϵ)\displaystyle\left.\qquad\qquad\quad+\sum_{i=1}^{d}\check{H}^{i,a\prime}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q-z^{i}e^{i})}{z^{i}}\right)\left(\eta(t,q)-\eta(t,q-z^{i}e^{i})\right)\right)+o(\epsilon)
=\displaystyle= ϵ(tη(t,q)+i=1dzihi,b(θˇ(t,q)θˇ(t,q+ziei)zi)+i=1dzihi,a(θˇ(t,q)θˇ(t,qziei)zi)\displaystyle\epsilon\left(\partial_{t}\eta(t,q)+\sum_{i=1}^{d}z^{i}h^{i,b}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q+z^{i}e^{i})}{z^{i}}\right)+\sum_{i=1}^{d}z^{i}h^{i,a}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q-z^{i}e^{i})}{z^{i}}\right)\right.
+i=1d(Hˇi,b(θˇ(t,q)θˇ(t,q+ziei)zi))(η(t,q+ziei)η(t,q))\displaystyle\qquad\qquad\quad+\sum_{i=1}^{d}\left(-\check{H}^{i,b\prime}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q+z^{i}e^{i})}{z^{i}}\right)\right)\left(\eta(t,q+z^{i}e^{i})-\eta(t,q)\right)
+i=1d(Hˇi,a(θˇ(t,q)θˇ(t,qziei)zi))(η(t,qziei)η(t,q)))+o(ϵ).\displaystyle\left.\qquad\qquad\quad+\sum_{i=1}^{d}\left(-\check{H}^{i,a\prime}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q-z^{i}e^{i})}{z^{i}}\right)\right)\left(\eta(t,q-z^{i}e^{i})-\eta(t,q)\right)\right)+o(\epsilon).

Therefore,

0\displaystyle 0 =\displaystyle= tη(t,q)+i=1dzihi,b(θˇ(t,q)θˇ(t,q+ziei)zi)+i=1dzihi,a(θˇ(t,q)θˇ(t,qziei)zi)\displaystyle\partial_{t}\eta(t,q)+\sum_{i=1}^{d}z^{i}h^{i,b}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q+z^{i}e^{i})}{z^{i}}\right)+\sum_{i=1}^{d}z^{i}h^{i,a}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q-z^{i}e^{i})}{z^{i}}\right)
+i=1d(Hˇi,b(θˇ(t,q)θˇ(t,q+ziei)zi))(η(t,q+ziei)η(t,q))\displaystyle+\sum_{i=1}^{d}\left(-\check{H}^{i,b\prime}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q+z^{i}e^{i})}{z^{i}}\right)\right)\left(\eta(t,q+z^{i}e^{i})-\eta(t,q)\right)
+i=1d(Hˇi,a(θˇ(t,q)θˇ(t,qziei)zi))(η(t,qziei)η(t,q)),\displaystyle+\sum_{i=1}^{d}\left(-\check{H}^{i,a\prime}\left(\frac{\check{\theta}(t,q)-\check{\theta}(t,q-z^{i}e^{i})}{z^{i}}\right)\right)\left(\eta(t,q-z^{i}e^{i})-\eta(t,q)\right),

and we have the terminal condition η(T,q)=0\eta(T,q)=0.

By Feynman-Kac representation theorem, we have

η(t,q)=𝔼ˇ[tT(i=1dzihi,b(θˇ(s,qst,q)θˇ(s,qst,q+ziei)zi)+i=1dzihi,a(θˇ(s,qst,q)θˇ(s,qst,qziei)zi))𝑑s],\eta(t,q)\!=\!\mathbb{E}^{\check{\mathbb{P}}}\!\!\left[\!\int_{t}^{T}\!\left(\sum_{i=1}^{d}z^{i}h^{i,b}\left(\frac{\check{\theta}(s,q^{t,q}_{s-})-\check{\theta}(s,q^{t,q}_{s-}+z^{i}e^{i})}{z^{i}}\right)\!+\!\sum_{i=1}^{d}z^{i}h^{i,a}\left(\frac{\check{\theta}(s,q^{t,q}_{s-})-\check{\theta}(s,q^{t,q}_{s-}-z^{i}e^{i})}{z^{i}}\right)\right)\!ds\right]\!,

where under ˇ\check{\mathbb{P}} the process (qst,q)s[t,T]\left(q_{s}^{t,q}\right)_{s\in[t,T]} satisfies

dqst,q=i=1dzi(dNˇsi,bdNˇsi,a)eiandqtt,q=q,dq^{t,q}_{s}=\sum_{i=1}^{d}z^{i}(d\check{N}^{i,b}_{s}-d\check{N}^{i,a}_{s})e^{i}\quad\text{and}\quad q^{t,q}_{t}=q,

with, for each i{1,,d}i\in\{1,\ldots,d\}, Nˇi,b\check{N}^{i,b} and Nˇi,a\check{N}^{i,a} constructed like Ni,bN^{i,b} and Ni,aN^{i,a} but with respective intensities given at time ss by

Hˇi,b(θˇ(s,qst,q)θˇ(s,qst,q+ziei)zi)andHˇi,a(θˇ(s,qst,q)θˇ(s,qst,qziei)zi).-\check{H}^{i,b\prime}\left(\frac{\check{\theta}(s,q^{t,q}_{s-})-\check{\theta}(s,q^{t,q}_{s-}+z^{i}e^{i})}{z^{i}}\right)\quad\text{and}\quad-\check{H}^{i,a\prime}\left(\frac{\check{\theta}(s,q^{t,q}_{s-})-\check{\theta}(s,q^{t,q}_{s-}-z^{i}e^{i})}{z^{i}}\right).

In practice, it means that we can approximate θ(t,q)\theta(t,q) by θˇ(t,q)\check{\theta}(t,q) plus a correction term that takes the form of an expectation:

θ(t,q)θˇ(t,q)\displaystyle\theta(t,q)\simeq\check{\theta}(t,q) +𝔼ˇ[tT(i=1dzi(Hξi,bHˇi,b)(θˇ(s,qst,q)θˇ(s,qst,q+ziei)zi)\displaystyle+\mathbb{E}^{\check{\mathbb{P}}}\left[\int_{t}^{T}\left(\sum_{i=1}^{d}z^{i}\left(H_{\xi}^{i,b}-\check{H}^{i,b}\right)\left(\frac{\check{\theta}(s,q^{t,q}_{s-})-\check{\theta}(s,q^{t,q}_{s-}+z^{i}e^{i})}{z^{i}}\right)\right.\right.
+i=1dzi(Hξi,aHˇi,a)(θˇ(s,qst,q)θˇ(s,qst,qziei)zi))ds].\displaystyle\left.\left.+\sum_{i=1}^{d}z^{i}\left(H_{\xi}^{i,a}-\check{H}^{i,a}\right)\left(\frac{\check{\theta}(s,q^{t,q}_{s-})-\check{\theta}(s,q^{t,q}_{s-}-z^{i}e^{i})}{z^{i}}\right)\right)ds\right].

Of course this new approximation is not a closed-form one. However, the correction term can be computed using a Monte-Carlo simulation for a specific (t,q)(t,q). In particular, it means that upon receiving a request for quote from a client and if time permits (which depends on asset class and market conditions), a market maker can perform a Monte-Carlo simulation to obtain an approximation of the value function at the relevant points to compute a quote that might account more accurately for the liquidity of the requested asset than a quote computed using the closed forms of Section 3.3.2.

5 A multi-asset market making model with additional features

5.1 A more general model

In Section 2.1 we presented a multi-asset extension to the classical single-asset market making model of Avellaneda and Stoikov. This extension can itself be extended to encompass important features of OTC markets. In this section we extend our results to a more general multi-asset market making model with drift in prices to model the views of the market maker, client tiering, distributed requested sizes for each asset and each tier, and fixed transaction costs for each asset and each tier.

In terms of modeling, the addition of drifts to the price processes is straightforward. Formally, we assume that for each i{1,,d}i\in\{1,\ldots,d\}, the dynamics of the price process (Sti)t+(S^{i}_{t})_{t\in\mathbb{R}_{+}} of asset ii is now given by

dSti=μidt+σidWti,dS^{i}_{t}=\mu^{i}dt+\sigma^{i}dW^{i}_{t},

where σi\sigma^{i} and (Wti)t+(W^{i}_{t})_{t\in\mathbb{R}_{+}} are defined as in Section 2.1 and where μi\mu^{i} is a real constant. In what follows, we denote by μ\mu the vector μ=(μ1,,μd)\mu=\left(\mu^{1},\ldots,\mu^{d}\right)^{\intercal}.

In OTC markets, market makers often divide their clients into groups, called tiers, for instance because they do not have the same commercial relationship with all clients or because the propensity to transact given a quote differs across clients. In particular, they can answer/stream different quotes to clients from different tiers.131313There can also be tiers to proxy the existence of trading platforms with different clients and/or different costs. Let us denote here by NN\in\mathbb{N}^{*} the number of such tiers.

In addition to introducing tiers, we can drop the assumption of constant request size per asset and consider instead that, for each asset and each tier, the size of the requests at the bid and at the ask are distributed according to known distributions.

Mathematically, the bid and ask quotes that the market maker propose are then modeled by the maps

Si,n,b:(ω,t,z)Ω×[0,T]×+Sti,n,b(ω,z)andSi,n,a:(ω,t,z)Ω×[0,T]×+Sti,n,a(ω,z),S^{i,n,b}:\!(\omega,t,z)\in\Omega\times[0,T]\times\mathbb{R}_{+}^{*}\mapsto S^{i,n,b}_{t}(\omega,z)\in\mathbb{R}\!\!\!\quad\text{and}\!\!\!\quad S^{i,n,a}:\!(\omega,t,z)\in\Omega\times[0,T]\times\mathbb{R}_{+}^{*}\mapsto S^{i,n,a}_{t}(\omega,z)\in\mathbb{R},

where i{1,,d}i\in\{1,\ldots,d\} is the index of the asset, n{1,,N}n\in\{1,\ldots,N\} is the index of the tier, and z+z\in\mathbb{R}_{+}^{*} is the size of the request (in number of assets). In the same vein as in Section 2.1, we introduce141414ω\omega is omitted in what follows.

δti,n,b(z)=StiSti,n,b(z)andδti,n,a(z)=Sti,n,a(z)Sti,\delta^{i,n,b}_{t}(z)=S^{i}_{t}-S^{i,n,b}_{t}(z)\quad\text{and}\quad\delta^{i,n,a}_{t}(z)=S^{i,n,a}_{t}(z)-S^{i}_{t},

and the maps (δti,n,b(.))t+(\delta^{i,n,b}_{t}(.))_{t\in\mathbb{R}_{+}} and (δti,n,a(.))t+(\delta^{i,n,a}_{t}(.))_{t\in\mathbb{R}_{+}} are assumed to be 𝔽\mathbb{F}-predictable and bounded from below by a given constant δ<0-\delta_{\infty}<0.151515This additional constraint of a fixed lower bound is just a technical one to be able to state theorems in the general case where request sizes are distributed (see [5]).

With these new features in mind, we introduce for each asset i{1,,d}i\in\{1,\ldots,d\} and for each tier n{1,,N}n\in\{1,\ldots,N\} the processes (Nti,n,b)t+(N^{i,n,b}_{t})_{t\in\mathbb{R}_{+}} and (Nti,n,a)t+(N^{i,n,a}_{t})_{t\in\mathbb{R}_{+}} modeling the number of transactions in asset ii with clients from tier nn at the bid and at the ask, respectively. They are +\mathbb{R}_{+}^{*}-marked point processes, with respective intensity kernels (λti,n,b(dz))t+(\lambda^{i,n,b}_{t}(dz))_{t\in\mathbb{R}_{+}^{*}} and (λti,n,a(dz))t+(\lambda^{i,n,a}_{t}(dz))_{t\in\mathbb{R}_{+}^{*}} given by

λti,n,b(dz)=Λi,n,b(δti,n,b(z))𝟙{qti+zQi}νi,n,b(dz)andλti,n,a(dz)=Λi,n,a(δti,n,a(z))𝟙{qtizQi}νi,n,a(dz),\lambda^{i,n,b}_{t}(dz)=\Lambda^{i,n,b}(\delta^{i,n,b}_{t}(z))\mathds{1}_{\{q^{i}_{t-}+z\leq Q^{i}\}}\nu^{i,n,b}(dz)\!\!\quad\text{and}\!\!\quad\lambda^{i,n,a}_{t}(dz)=\Lambda^{i,n,a}(\delta^{i,n,a}_{t}(z))\mathds{1}_{\{q^{i}_{t-}-z\geq-Q^{i}\}}\nu^{i,n,a}(dz),

where νi,n,b\nu^{i,n,b} and νi,n,a\nu^{i,n,a} are the two probability measures representing the distribution of the requested sizes at the bid and at the ask respectively, for asset ii and tier nn, and where Λi,n,b\Lambda^{i,n,b} and Λi,n,a\Lambda^{i,n,a} satisfy the same assumptions as those satisfied by the intensity functions of Section 2.1.

For asset i{1,,d}i\in\{1,\ldots,d\}, the resulting inventory (qti)t+(q^{i}_{t})_{t\in\mathbb{R}_{+}} has dynamics

dqti=n=1N+zNi,n,b(dt,dz)n=1N+zNi,n,a(dt,dz),dq^{i}_{t}=\sum_{n=1}^{N}\int_{\mathbb{R}_{+}^{*}}zN^{i,n,b}(dt,dz)-\sum_{n=1}^{N}\int_{\mathbb{R}_{+}^{*}}zN^{i,n,a}(dt,dz),

where for each tier n{1,,N},n\in\{1,\ldots,N\}, Ni,n,b(dt,dz)N^{i,n,b}(dt,dz) and Ni,n,a(dt,dz)N^{i,n,a}(dt,dz) are the random measures associated with the processes (Nti,n,b)t+(N^{i,n,b}_{t})_{t\in\mathbb{R}_{+}} and (Nti,n,a)t+(N^{i,n,a}_{t})_{t\in\mathbb{R}_{+}}, respectively.

Finally, we consider the addition of fixed transaction costs.161616Proportional transaction costs can be considered in the initial model through shifts in the intensity functions. For that purpose, we introduce for each asset i{1,,d}i\in\{1,\ldots,d\} and for each tier n{1,,N}n\in\{1,\ldots,N\} two real numbers ci,n,bc^{i,n,b} and ci,n,ac^{i,n,a} modelling the fixed cost of a transaction in asset ii with a client from tier nn, at the bid and at the ask, respectively.

The resulting cash process (Xt)t+(X_{t})_{t\in\mathbb{R}_{+}} has, consequently, the following dynamics:

dXt=i=1dn=1N+[(δti,n,b(z)zci,n,b)Ni,n,b(dt,dz)+(δti,n,a(z)zci,n,a)Ni,n,a(dt,dz)]i=1dStidqti.dX_{t}=\sum_{i=1}^{d}\sum_{n=1}^{N}\int_{\mathbb{R}_{+}^{*}}\left[\left(\delta^{i,n,b}_{t}(z)z-c^{i,n,b}\right)N^{i,n,b}(dt,dz)+\left(\delta^{i,n,a}_{t}(z)z-c^{i,n,a}\right)N^{i,n,a}(dt,dz)\right]-\sum_{i=1}^{d}S^{i}_{t}dq^{i}_{t}.

5.2 The Hamilton-Jacobi equation

In this new setting, one can again show that the two optimization problems introduced in Section 2.1 boil down to the resolution of a Hamilton-Jacobi equation of the form

0=\displaystyle 0= tθ(t,q)+μqγ2qΣq\displaystyle\ \partial_{t}\theta(t,q)+\mu^{\intercal}q-\frac{\gamma}{2}q^{\intercal}\Sigma q (21)
+i=1dn=1N+𝟙{qi+zQi}zHξi,n,b(z,θ(t,q)θ(t,q+zei)+ci,n,bz)νi,n,b(dz)\displaystyle\ +\sum_{i=1}^{d}\sum_{n=1}^{N}\int_{\mathbb{R}_{+}^{*}}\mathds{1}_{\{q^{i}+z\leq Q^{i}\}}zH^{i,n,b}_{\xi}\left(z,\frac{\theta(t,q)-\theta(t,q+ze^{i})+c^{i,n,b}}{z}\right)\nu^{i,n,b}(dz)
+i=1dn=1N+𝟙{qizQi}zHξi,n,a(z,θ(t,q)θ(t,qzei)+ci,n,az)νi,n,a(dz),\displaystyle\ +\sum_{i=1}^{d}\sum_{n=1}^{N}\int_{\mathbb{R}_{+}^{*}}\mathds{1}_{\{q^{i}-z\geq-Q^{i}\}}zH^{i,n,a}_{\xi}\left(z,\frac{\theta(t,q)-\theta(t,q-ze^{i})+c^{i,n,a}}{z}\right)\nu^{i,n,a}(dz),

with terminal condition

θ(T,q)=0,\displaystyle\theta(T,q)=0, (22)

where ξ=γ\xi=\gamma in the case of Model A and ξ=0\xi=0 in the case of Model B, and where the functions Hξi,n,bH^{i,n,b}_{\xi} and Hξi,n,aH^{i,n,a}_{\xi} are defined by

Hξi,n,b(z,p):={supδ>δΛi,n,b(δ)ξz(1exp(ξz(δp)))if ξ>0,supδ>δΛi,n,b(δ)(δp)if ξ=0H^{i,n,b}_{\xi}(z,p):=\begin{cases}\underset{\delta>-\delta_{\infty}}{\sup}\frac{\Lambda^{i,n,b}(\delta)}{\xi z}(1-\exp(-\xi z(\delta-p)))&\mbox{if }\xi>0,\\ \underset{\delta>-\delta_{\infty}}{\sup}\Lambda^{i,n,b}(\delta)(\delta-p)&\mbox{if }\xi=0\end{cases}

and

Hξi,n,a(z,p):={supδ>δΛi,n,a(δ)ξz(1exp(ξz(δp)))if ξ>0,supδ>δΛi,n,a(δ)(δp)if ξ=0.H^{i,n,a}_{\xi}(z,p):=\begin{cases}\underset{\delta>-\delta_{\infty}}{\sup}\frac{\Lambda^{i,n,a}(\delta)}{\xi z}(1-\exp(-\xi z(\delta-p)))&\mbox{if }\xi>0,\\ \underset{\delta>-\delta_{\infty}}{\sup}\Lambda^{i,n,a}(\delta)(\delta-p)&\mbox{if }\xi=0.\end{cases}
Remark 2.

When ξ=0\xi=0, the dependence in zz of the Hamiltonian functions vanishes. Nevertheless, we keep the variable zz for the sake of consistency.

Following a method similar to that developed in [5], we can show that, for a given ξ0,\xi\geq 0, there exists a unique bounded function θ:[0,T]×i=1d[Qi,Qi]\theta:[0,T]\times\prod_{i=1}^{d}[-Q^{i},Q^{i}]\to{\mathbb{R}}, C1C^{1} in time, solution of Eq. (21) with terminal condition (22).

Moreover, under the (mild) assumption that the measures νi,n,b\nu^{i,n,b} and νi,n,a\nu^{i,n,a} have moments of order 22, a classical verification argument enables to go from θ\theta to optimal controls for both Model A and Model B. The optimal quotes as functions of θ\theta are given by the two theorems that follow.

In the case of Model A, the result is the following:

Theorem 3.

Let us consider the solution θ\theta of Eq. (21) with terminal condition (22), for ξ=γ\xi=\gamma.

Then, for i{1,,d}i\in\{1,\ldots,d\} and n{1,,N}n\in\{1,\ldots,N\}, the optimal bid and ask quotes as functions of the trade size zz, Sti,n,b(z)=Stiδti,n,b(z)S^{i,n,b}_{t}(z)=S^{i}_{t}-\delta^{i,n,b*}_{t}(z) and Sti,n,a(z)=Sti+δti,n,a(z)S^{i,n,a}_{t}(z)=S^{i}_{t}+\delta^{i,n,a*}_{t}(z) in Model A are characterized by

δti,n,b(z)=δ~γi,n,b(z,θ(t,qt)θ(t,qt+zei)+ci,n,bz)for qt+zeij=1d[Qj,Qj],δti,n,a(z)=δ~γi,n,a(z,θ(t,qt)θ(t,qtzei)+ci,n,az)for qtzeij=1d[Qj,Qj],\displaystyle\begin{split}\delta^{i,n,b*}_{t}(z)&=\tilde{\delta}^{i,n,b*}_{\gamma}\left(z,\frac{\theta(t,q_{t-})-\theta(t,q_{t-}+ze^{i})+c^{i,n,b}}{z}\right)\quad\text{for }q_{t-}+ze^{i}\in\prod_{j=1}^{d}[-Q^{j},Q^{j}],\\ \delta^{i,n,a*}_{t}(z)&=\tilde{\delta}^{i,n,a*}_{\gamma}\left(z,\frac{\theta(t,q_{t-})-\theta(t,q_{t-}-ze^{i})+c^{i,n,a}}{z}\right)\quad\text{for }q_{t-}-ze^{i}\in\prod_{j=1}^{d}[-Q^{j},Q^{j}],\\ \end{split}

where the functions δ~γi,n,b(,)\tilde{\delta}^{i,n,b*}_{\gamma}(\cdot,\cdot) and δ~γi,n,a(,)\tilde{\delta}_{\gamma}^{i,n,a*}(\cdot,\cdot) are defined by

δ~γi,n,b(z,p)\displaystyle\tilde{\delta}^{i,n,b*}_{\gamma}(z,p) =Λi,n,b1(γzHγi,n,b(z,p)pHγi,n,b(z,p))(δ),\displaystyle={\Lambda^{i,n,b}}^{-1}\left(\gamma zH^{i,n,b}_{\gamma}(z,p)-{\partial_{p}H_{\gamma}^{i,n,b}}(z,p)\right)\vee(-\delta_{\infty}),
δ~γi,n,a(z,p)\displaystyle\tilde{\delta}^{i,n,a*}_{\gamma}(z,p) =Λi,n,a1(γzHγi,n,a(z,p)pHγi,n,a(z,p))(δ).\displaystyle={\Lambda^{i,n,a}}^{-1}\left(\gamma zH^{i,n,a}_{\gamma}(z,p)-{\partial_{p}H_{\gamma}^{i,n,a}}(z,p)\right)\vee(-\delta_{\infty}).

For Model B, the result is the following:

Theorem 4.

Let us consider the solution θ\theta of Eq. (21) with terminal condition (22), for ξ=0\xi=0.

Then, for i{1,,d}i\in\{1,\ldots,d\} and n{1,,N}n\in\{1,\ldots,N\}, the optimal bid and ask quotes as functions of the trade size zz, Sti,n,b(z)=Stiδti,n,b(z)S^{i,n,b}_{t}(z)=S^{i}_{t}-\delta^{i,n,b*}_{t}(z) and Sti,n,a(z)=Sti+δti,n,a(z)S^{i,n,a}_{t}(z)=S^{i}_{t}+\delta^{i,n,a*}_{t}(z) in Model B are characterized by

δti,n,b(z)=δ~0i,n,b(z,θ(t,qt)θ(t,qt+zei)+ci,n,bz)for qt+zeij=1d[Qj,Qj],δti,n,a(z)=δ~0i,n,a(z,θ(t,qt)θ(t,qtzei)+ci,n,az)for qtzeij=1d[Qj,Qj],\displaystyle\begin{split}\delta^{i,n,b*}_{t}(z)&=\tilde{\delta}^{i,n,b*}_{0}\left(z,\frac{\theta(t,q_{t-})-\theta(t,q_{t-}+ze^{i})+c^{i,n,b}}{z}\right)\quad\text{for }q_{t-}+ze^{i}\in\prod_{j=1}^{d}[-Q^{j},Q^{j}],\\ \delta^{i,n,a*}_{t}(z)&=\tilde{\delta}^{i,n,a*}_{0}\left(z,\frac{\theta(t,q_{t-})-\theta(t,q_{t-}-ze^{i})+c^{i,n,a}}{z}\right)\quad\text{for }q_{t-}-ze^{i}\in\prod_{j=1}^{d}[-Q^{j},Q^{j}],\\ \end{split}

where the functions δ~0i,n,b(,)\tilde{\delta}^{i,n,b*}_{0}(\cdot,\cdot) and δ~0i,n,a(,)\tilde{\delta}_{0}^{i,n,a*}(\cdot,\cdot) are defined by

δ~0i,n,b(z,p)=Λi,n,b1(pH0i,n,b(z,p))(δ) and δ~0i,n,a(z,p)=Λi,n,a1(pH0i,n,a(z,p))(δ).\tilde{\delta}^{i,n,b*}_{0}(z,p)={\Lambda^{i,n,b}}^{-1}\left(-{\partial_{p}H_{0}^{i,n,b}}(z,p)\right)\vee(-\delta_{\infty})\text{ and }\tilde{\delta}^{i,n,a*}_{0}(z,p)={\Lambda^{i,n,a}}^{-1}\left(-{\partial_{p}H_{0}^{i,n,a}}(z,p)\right)\vee(-\delta_{\infty}).

5.3 Quadratic approximation

As before, let us replace for all i{1,,d}i\in\{1,\ldots,d\} and n{1,,N}n\in\{1,\ldots,N\}, the Hamiltonian functions Hξi,n,bH_{\xi}^{i,n,b} and Hξi,n,aH_{\xi}^{i,n,a} by the functions

Hˇi,n,b:(z,p)α0i,n,b(z)+α1i,n,b(z)p+12α2i,n,b(z)p2 and Hˇi,n,a:(z,p)α0i,n,a(z)+α1i,n,a(z)p+12α2i,n,a(z)p2.\check{H}^{i,n,b}:(z,p)\mapsto\alpha^{i,n,b}_{0}(z)+\alpha^{i,n,b}_{1}(z)p+\frac{1}{2}\alpha^{i,n,b}_{2}(z)p^{2}\textrm{ and }\check{H}^{i,n,a}:(z,p)\mapsto\alpha^{i,n,a}_{0}(z)+\alpha^{i,n,a}_{1}(z)p+\frac{1}{2}\alpha^{i,n,a}_{2}(z)p^{2}.
Remark 3.

Here, αji,n,b\alpha^{i,n,b}_{j} and αji,n,a\alpha^{i,n,a}_{j} (for j{0,1,2}j\in\{0,1,2\}) are functions of z.z. A natural choice for the functions (Hˇi,n,b)(i,n){1,,d}×{1,,N}(\check{H}^{i,n,b})_{(i,n)\in\{1,\ldots,d\}\times\{1,\ldots,N\}} and (Hˇi,n,a)(i,n){1,,d}×{1,,N}(\check{H}^{i,n,a})_{(i,n)\in\{1,\ldots,d\}\times\{1,\ldots,N\}} derives from Taylor expansions around p=0p=0. In that case,

i{1,,d},n{1,,N},j{0,1,2},αji,n,b(z)=pjHξi,n,b(z,0)andαji,n,a=pjHξi,n,a(z,0).\forall i\in\{1,\ldots,d\},\forall n\in\{1,\ldots,N\},\forall j\in\{0,1,2\},\quad\alpha^{i,n,b}_{j}(z)=\partial^{j}_{p}{H^{i,n,b}_{\xi}}(z,0)\quad\textrm{and}\quad\alpha^{i,n,a}_{j}=\partial^{j}_{p}{H^{i,n,a}_{\xi}}(z,0).

If we consider the limit case where Qi=+Q^{i}=+\infty for all i{1,,d}i\in\{1,\ldots,d\}, Eq. (21) then becomes

0=\displaystyle 0= tθˇ(t,q)+μqγ2qΣq+i=1dn=1N(+zα0i,n,b(z)νi,n,b(dz)++zα0i,n,a(z)νi,n,a(dz))\displaystyle\ \partial_{t}\check{\theta}(t,q)+\mu^{\intercal}q-\frac{\gamma}{2}q^{\intercal}\Sigma q+\sum_{i=1}^{d}\sum_{n=1}^{N}\left(\int_{\mathbb{R}_{+}^{*}}z\alpha^{i,n,b}_{0}(z)\nu^{i,n,b}(dz)+\int_{\mathbb{R}_{+}^{*}}z\alpha^{i,n,a}_{0}(z)\nu^{i,n,a}(dz)\right)
+i=1dn=1N(+α1i,n,b(z)(θˇ(t,q)θˇ(t,q+zei)+ci,n,b)νi,n,b(dz)\displaystyle\ +\sum_{i=1}^{d}\sum_{n=1}^{N}\Bigg{(}\int_{\mathbb{R}_{+}^{*}}\alpha^{i,n,b}_{1}(z)\left(\check{\theta}(t,q)-\check{\theta}(t,q+ze^{i})+c^{i,n,b}\right)\nu^{i,n,b}(dz)
++α1i,n,a(z)(θˇ(t,q)θˇ(t,qzei)+ci,n,a)νi,n,a(dz))\displaystyle\qquad\qquad\qquad\qquad+\int_{\mathbb{R}_{+}^{*}}\alpha^{i,n,a}_{1}(z)\left(\check{\theta}(t,q)-\check{\theta}(t,q-ze^{i})+c^{i,n,a}\right)\nu^{i,n,a}(dz)\Bigg{)}
+12i=1dn=1N(+1zα2i,n,b(z)(θˇ(t,q)θˇ(t,q+zei)+ci,n,b)2νi,n,b(dz)\displaystyle\ +\frac{1}{2}\sum_{i=1}^{d}\sum_{n=1}^{N}\Bigg{(}\int_{\mathbb{R}_{+}^{*}}\frac{1}{z}\alpha^{i,n,b}_{2}(z)\left(\check{\theta}(t,q)-\check{\theta}(t,q+ze^{i})+c^{i,n,b}\right)^{2}\nu^{i,n,b}(dz)
++1zα2i,n,a(z)(θˇ(t,q)θˇ(t,qzei)+ci,n,a)2νi,n,a(dz)),\displaystyle\qquad\qquad\qquad\qquad+\int_{\mathbb{R}_{+}^{*}}\frac{1}{z}\alpha^{i,n,a}_{2}(z)\left(\check{\theta}(t,q)-\check{\theta}(t,q-ze^{i})+c^{i,n,a}\right)^{2}\nu^{i,n,a}(dz)\Bigg{)}, (23)

with terminal condition

θˇ(T,q)=0.\displaystyle\check{\theta}(T,q)=0. (24)

Using the same ansatz as in Section 3, we obtain the following result (we omit the proof as it follows the same logic as for that of Proposition 1):

Proposition 4.

Let us introduce for all i{1,,d},n{1,,N},j{0,1,2},ki\in\{1,\ldots,d\},n\in\{1,\ldots,N\},j\in\{0,1,2\},k\in\mathbb{N}, the following constants:

Δj,ki,n,b=+zkαji,n,b(z)νi,n,b(dz)andΔj,ki,n,a=+zkαji,n,a(z)νi,n,a(dz),\Delta^{i,n,b}_{j,k}=\int_{\mathbb{R}_{+}^{*}}\!\!z^{k}\alpha^{i,n,b}_{j}(z)\nu^{i,n,b}(dz)\quad\text{and}\quad\Delta^{i,n,a}_{j,k}=\int_{\mathbb{R}_{+}^{*}}\!\!z^{k}\alpha^{i,n,a}_{j}(z)\nu^{i,n,a}(dz),
Vj,kb=(n=1NΔj,k1,n,b,,n=1NΔj,kd,n,b)andVj,ka=(n=1NΔj,k1,n,a,,n=1NΔj,kd,n,a),V^{b}_{j,k}=\left(\sum_{n=1}^{N}{\Delta^{1,n,b}_{j,k}},\ldots,\sum_{n=1}^{N}{\Delta^{d,n,b}_{j,k}}\right)^{\intercal}\quad\text{and}\quad V^{a}_{j,k}=\left(\sum_{n=1}^{N}{\Delta^{1,n,a}_{j,k}},\ldots,\sum_{n=1}^{N}{\Delta^{d,n,a}_{j,k}}\right)^{\intercal},
V~j,kb=(n=1Nc1,n,bΔj,k1,n,b,,n=1Ncd,n,bΔj,kd,n,b)andV~j,ka=(n=1Nc1,n,aΔj,k1,n,a,,n=1Ncd,n,aΔj,kd,n,a),{\tilde{V}^{b}_{j,k}}=\left(\sum_{n=1}^{N}c^{1,n,b}{\Delta^{1,n,b}_{j,k}},\ldots,\sum_{n=1}^{N}c^{d,n,b}{\Delta^{d,n,b}_{j,k}}\right)^{\intercal}\quad\text{and}\quad{\tilde{V}^{a}_{j,k}}=\left(\sum_{n=1}^{N}c^{1,n,a}{\Delta^{1,n,a}_{j,k}},\ldots,\sum_{n=1}^{N}c^{d,n,a}{\Delta^{d,n,a}_{j,k}}\right)^{\intercal},
χj,kb=i=1dn=1NΔj,ki,n,bandχj,ka=i=1dn=1NΔj,ki,n,a,\chi^{b}_{j,k}=\sum_{i=1}^{d}\sum_{n=1}^{N}{\Delta^{i,n,b}_{j,k}}\quad\text{and}\quad\chi^{a}_{j,k}=\sum_{i=1}^{d}\sum_{n=1}^{N}{\Delta^{i,n,a}_{j,k}},
χ~j,kb=i=1dn=1Nci,n,bΔj,ki,n,bandχ~j,ka=i=1dn=1Nci,n,aΔj,ki,n,a,{\tilde{\chi}^{b}_{j,k}}=\sum_{i=1}^{d}\sum_{n=1}^{N}c^{i,n,b}{\Delta^{i,n,b}_{j,k}}\quad\text{and}\quad{\tilde{\chi}^{a}_{j,k}}=\sum_{i=1}^{d}\sum_{n=1}^{N}c^{i,n,a}{\Delta^{i,n,a}_{j,k}},
χ^j,kb=i=1dn=1N(ci,n,b)2Δj,ki,n,bandχ^j,ka=i=1dn=1N(ci,n,a)2Δj,ki,n,a,{\hat{\chi}^{b}_{j,k}}=\sum_{i=1}^{d}\sum_{n=1}^{N}(c^{i,n,b})^{2}{\Delta^{i,n,b}_{j,k}}\quad\text{and}\quad{\hat{\chi}^{a}_{j,k}}=\sum_{i=1}^{d}\sum_{n=1}^{N}(c^{i,n,a})^{2}{\Delta^{i,n,a}_{j,k}},

and

Dj,kb=diag(n=1NΔj,k1,n,b,,n=1NΔj,kd,n,b)andDj,ka=diag(n=1NΔj,k1,n,a,,n=1NΔj,kd,n,a).D^{b}_{j,k}=\textup{diag}\left(\sum_{n=1}^{N}{\Delta^{1,n,b}_{j,k}},\ldots,\sum_{n=1}^{N}{\Delta^{d,n,b}_{j,k}}\right)\quad\text{and}\quad D^{a}_{j,k}=\textup{diag}\left(\sum_{n=1}^{N}{\Delta^{1,n,a}_{j,k}},\ldots,\sum_{n=1}^{N}{\Delta^{d,n,a}_{j,k}}\right).

Let us consider three differentiable functions A:[0,T]Sd+A:[0,T]\to S_{d}^{+}, B:[0,T]dB:[0,T]\to\mathbb{R}^{d}, and C:[0,T]C:[0,T]\to\mathbb{R} solutions of the system of ordinary differential equations

{A(t)= 2A(t)(D2,1b+D2,1a)A(t)12γΣ,B(t)=μ+2A(t)(V1,1bV1,1a)+2A(t)(D2,2bD2,2a)𝒟(A(t))+2A(t)(D2,1b+D2,1a)B(t)+2A(t)(V~2,0bV~2,0a),C(t)=Tr(D0,1b+D0,1a)+Tr((D1,2b+D1,2a)A(t))+(V1,1bV1,1a)B(t)+(χ~1,0b+χ~1,0a)+12𝒟(A(t))(D2,3b+D2,3a)𝒟(A(t))+B(t)(D2,2bD2,2a)𝒟(A(t))+(V~2,1b+V~2,1a)𝒟(A(t))+12B(t)(D2,1b+D2,1a)B(t)+(V~2,0bV~2,0a)B(t)+12(χ^2,0b+χ^2,0a).\begin{cases}\displaystyle A^{\prime}(t)=&\ 2A(t)\left(D^{b}_{2,1}+D^{a}_{2,1}\right)A(t)-\frac{1}{2}\gamma\Sigma,\\ B^{\prime}(t)=&\ \mu+2A(t)\left({V^{b}_{1,1}}-{V^{a}_{1,1}}\right)+2A(t)\left(D^{b}_{2,2}-D^{a}_{2,2}\right)\mathcal{D}(A(t))\\ &\ +2A(t)\left(D^{b}_{2,1}+D^{a}_{2,1}\right)B(t)+2A(t)\left({\tilde{V}^{b}_{2,0}}-{\tilde{V}^{a}_{2,0}}\right),\\ C^{\prime}(t)=&\ \textrm{Tr}\left(D^{b}_{0,1}+D^{a}_{0,1}\right)+\textrm{Tr}\left(\left(D^{b}_{1,2}+D^{a}_{1,2}\right)A(t)\right)+\left({V^{b}_{1,1}}-{V^{a}_{1,1}}\right)^{\intercal}B(t)\\ &\ +\left(\tilde{\chi}^{b}_{1,0}+\tilde{\chi}^{a}_{1,0}\right)+\frac{1}{2}\mathcal{D}(A(t))^{\intercal}\left(D^{b}_{2,3}+D^{a}_{2,3}\right)\mathcal{D}(A(t))\\ &\ +B(t)^{\intercal}\left(D^{b}_{2,2}-D^{a}_{2,2}\right)\mathcal{D}(A(t))+\left({\tilde{V}^{b}_{2,1}}+{\tilde{V}^{a}_{2,1}}\right)^{\intercal}\mathcal{D}(A(t))\\ &\ +\frac{1}{2}B(t)^{\intercal}\left({D^{b}_{2,1}}+{D^{a}_{2,1}}\right)B(t)+\left({\tilde{V}^{b}_{2,0}}-{\tilde{V}^{a}_{2,0}}\right)^{\intercal}B(t)\\ &\ +\frac{1}{2}\left(\hat{\chi}^{b}_{2,0}+\hat{\chi}^{a}_{2,0}\right).\end{cases} (25)

with terminal conditions

A(T)=0,B(T)=0, and C(T)=0.A(T)=0,B(T)=0,\textrm{ and }C(T)=0. (26)

Then θˇ:(t,q)[0,T]×dqA(t)qqB(t)C(t)\check{\theta}:(t,q)\in[0,T]\times\mathbb{R}^{d}\mapsto-q^{\intercal}A(t)q-q^{\intercal}B(t)-C(t) is solution of Eq. (23) with terminal condition (24).

We can now solve (25) with terminal conditions (26) in closed form. This is the purpose of the following proposition whose proof is omitted (see Proposition 2 for a similar proof).

Proposition 5.

Assume n=1NΔ2,1i,n,b+Δ2,1i,n,a>0\sum_{n=1}^{N}\Delta^{i,n,b}_{2,1}+\Delta^{i,n,a}_{2,1}>0 for all i{1,,d}i\in\{1,\ldots,d\}. The system of ODEs (25) with terminal conditions (26) admits the unique solution

A(t)\displaystyle A(t) =12D+12A^(eA^(Tt)eA^(Tt))(eA^(Tt)+eA^(Tt))1D+12,\displaystyle=\frac{1}{2}D^{-\frac{1}{2}}_{+}\widehat{A}\left(e^{\widehat{A}(T-t)}-e^{-\widehat{A}(T-t)}\right)\left(e^{\widehat{A}(T-t)}+e^{-\widehat{A}(T-t)}\right)^{-1}D_{+}^{-\frac{1}{2}},
B(t)\displaystyle B(t) =2e2tTA(u)D+𝑑utTe2sTA(u)D+𝑑u(12μ+A(s)(V+V~+D𝒟(A(s))))𝑑s,\displaystyle=-2e^{-2\int_{t}^{T}A(u)D_{+}\,du}\int_{t}^{T}e^{2\int_{s}^{T}A(u)D_{+}\,du}\left(\frac{1}{2}\mu+A(s)\left(V_{-}+\tilde{V}_{-}+D_{-}\mathcal{D}(A(s))\right)\right)ds,
C(t)\displaystyle C(t) =Tr(D0,1b+D0,1a)(Tt)Tr((D1,2b+D1,2a)tTA(s)𝑑s)VtTB(s)𝑑s\displaystyle=-\textrm{Tr}\left(D^{b}_{0,1}+D^{a}_{0,1}\right)(T-t)-\textrm{Tr}\left(\left(D^{b}_{1,2}+D^{a}_{1,2}\right)\int_{t}^{T}A(s)ds\right)-V_{-}^{\intercal}\int_{t}^{T}B(s)ds
12tT𝒟(A(s))(D2,3b+D2,3a)𝒟(A(s))𝑑s12tTB(s)D+B(s)𝑑s\displaystyle\quad-\frac{1}{2}\int_{t}^{T}\mathcal{D}(A(s))^{\intercal}\left(D^{b}_{2,3}+D^{a}_{2,3}\right)\mathcal{D}(A(s))ds-\frac{1}{2}\int_{t}^{T}B(s)^{\intercal}D_{+}B(s)ds
tTB(s)D𝒟(A(s))𝑑s(χ~1,0b+χ~1,0a)(Tt)12(χ^2,0b+χ^2,0a)(Tt)\displaystyle\quad-\int_{t}^{T}B(s)^{\intercal}D_{-}\mathcal{D}(A(s))ds-\left(\tilde{\chi}^{b}_{1,0}+\tilde{\chi}^{a}_{1,0}\right)(T-t)-\frac{1}{2}\left(\hat{\chi}^{b}_{2,0}+\hat{\chi}^{a}_{2,0}\right)(T-t)
(V~2,1b+V~2,1a)tT𝒟(A(s))𝑑s,\displaystyle\quad-\left({\tilde{V}^{b}_{2,1}}+{\tilde{V}^{a}_{2,1}}\right)^{\intercal}\int_{t}^{T}\mathcal{D}(A(s))ds,

where

D+=D2,1b+D2,1a,D=D2,2bD2,2a,V=V1,1bV1,1a,V~=V~2,0bV~2,0a, and A^=γ(D+12ΣD+12)12.D_{+}=D^{b}_{2,1}+D^{a}_{2,1},\quad D_{-}=D_{2,2}^{b}-D_{2,2}^{a},\quad V_{-}=V_{1,1}^{b}-V_{1,1}^{a},\quad\tilde{V}_{-}=\tilde{V}^{b}_{2,0}-\tilde{V}^{a}_{2,0},\text{ and }\widehat{A}=\sqrt{\gamma}\left(D_{+}^{\frac{1}{2}}\Sigma D_{+}^{\frac{1}{2}}\right)^{\frac{1}{2}}.

Now, using the same method as in Section 3, we get the following asymptotic results:

Proposition 6.

Let (A,B,C)(A,B,C) be the solution of the system of ODEs (25) with terminal conditions (26).

If D+12μIm(A^)D_{+}^{\frac{1}{2}}\mu\in\text{Im}(\widehat{A}), then,

A(0)\displaystyle A(0) T+12γΓ,\displaystyle\stackrel{{\scriptstyle T\to+\infty}}{{\longrightarrow}}\frac{1}{2}\sqrt{\gamma}\Gamma,
B(0)\displaystyle B(0) T+D+12A^+D+12μD+12A^A^+D+12(V+V~+12γD𝒟(Γ)),\displaystyle\stackrel{{\scriptstyle T\to+\infty}}{{\longrightarrow}}-D_{+}^{-\frac{1}{2}}\widehat{A}^{+}D_{+}^{\frac{1}{2}}\mu-D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}\left(V_{-}+\tilde{V}_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right),
C(0)T\displaystyle\frac{C(0)}{T} T+Tr(D0,1b+D0,1a)12γTr((D1,2b+D1,2a)Γ)+VD+12A^+D+12μ\displaystyle\stackrel{{\scriptstyle T\to+\infty}}{{\longrightarrow}}-\textrm{Tr}\left(D^{b}_{0,1}+D^{a}_{0,1}\right)-\frac{1}{2}\sqrt{\gamma}\textrm{Tr}\left(\left(D^{b}_{1,2}+D^{a}_{1,2}\right)\Gamma\right)+V_{-}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}^{+}D_{+}^{\frac{1}{2}}\mu
+VD+12A^A^+D+12(V+V~+12γD𝒟(Γ))18γ𝒟(Γ)(D2,3b+D2,3a)𝒟(Γ)\displaystyle\qquad+V_{-}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}\!\left(V_{-}+\tilde{V}_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)\!\!-\!\frac{1}{8}\gamma\mathcal{D}(\Gamma)^{\intercal}\!\!\left(D^{b}_{2,3}\!+\!D^{a}_{2,3}\right)\mathcal{D}(\Gamma)
12μD+12A^+A^+D+12μμD+12A^+D+12(V+V~+12γD𝒟(Γ))\displaystyle\qquad-\frac{1}{2}\mu^{\intercal}D_{+}^{\frac{1}{2}}\widehat{A}^{+}\widehat{A}^{+}D_{+}^{\frac{1}{2}}\mu-\mu^{\intercal}D_{+}^{\frac{1}{2}}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}\left(V_{-}+\tilde{V}_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)
12(V+V~+12γD𝒟(Γ))D+12A^A^+D+12(V+V~+12γD𝒟(Γ))\displaystyle\qquad-\frac{1}{2}\left(V_{-}+\tilde{V}_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)^{\intercal}\!D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}\left(V_{-}+\tilde{V}_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)
+12γμD+12A^+D+12D𝒟(Γ)+12γ(V+V~+12γD𝒟(Γ))D+12A^A^+D+12D𝒟(Γ)\displaystyle\qquad+\frac{1}{2}\sqrt{\gamma}\mu^{\intercal}D_{+}^{\frac{1}{2}}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}D_{-}\mathcal{D}(\Gamma)+\frac{1}{2}\sqrt{\gamma}\left(V_{-}+\tilde{V}_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}D_{-}\mathcal{D}(\Gamma)
(χ^2,0b+χ^2,0a)12(χ^2,0b+χ^2,0a)12γ(V~2,1b+V~2,1a)𝒟(Γ),\displaystyle\qquad-\left(\hat{\chi}^{b}_{2,0}+\hat{\chi}^{a}_{2,0}\right)-\frac{1}{2}\left(\hat{\chi}^{b}_{2,0}+\hat{\chi}^{a}_{2,0}\right)-\frac{1}{2}\sqrt{\gamma}\left({\tilde{V}^{b}_{2,1}}+{\tilde{V}^{a}_{2,1}}\right)^{\intercal}\mathcal{D}(\Gamma),

where Γ=D+12(D+12ΣD+12)12D+12\Gamma=D_{+}^{-\frac{1}{2}}\left(D_{+}^{\frac{1}{2}}\Sigma D_{+}^{\frac{1}{2}}\right)^{\frac{1}{2}}D_{+}^{-\frac{1}{2}} and A^+\widehat{A}^{+} is the Moore-Penrose generalized inverse of A^\widehat{A}.

Remark 4.

The assumption D+12μIm(A^)D_{+}^{\frac{1}{2}}\mu\in\text{Im}(\widehat{A}) is satisfied when μ=0\mu=0 or when Σ\Sigma is invertible. If this assumption is not satisfied, then it can be shown that B(0)TT+D+12A^+A^D+12μ\frac{B(0)}{T}\stackrel{{\scriptstyle T\to+\infty}}{{\longrightarrow}}-D_{+}^{-\frac{1}{2}}\widehat{A}^{+}\widehat{A}D_{+}^{\frac{1}{2}}\mu. In particular, there is no constant asymptotic approximation of the quotes. In fact, if the assumption D+12μIm(A^)D_{+}^{\frac{1}{2}}\mu\in\text{Im}(\widehat{A}) is not satisfied, the market maker may have an incentive to propose very good quotes to clients in order to build portfolios bearing positive return at no risk.

5.4 From value functions to heuristics and quotes

5.4.1 Quotes: the general case

The greedy quoting strategy associated with our closed-form proxy of the value function leads to the following quotes for all i{1,,d}i\in\{1,\ldots,d\} and n{1,,N}n\in\{1,\ldots,N\}:

δˇti,n,b(z)\displaystyle\check{\delta}^{i,n,b}_{t}(z) =\displaystyle= δ~ξi,n,b(z,θˇ(t,qt)θˇ(t,qt+zei)+ci,n,bz)\displaystyle\tilde{\delta}^{i,n,b*}_{\xi}\left(z,\frac{\check{\theta}(t,q_{t-})-\check{\theta}(t,q_{t-}+ze^{i})+c^{i,n,b}}{z}\right)
=\displaystyle= δ~ξi,n,b(z,2qtA(t)ei+zeiA(t)ei+eiB(t)+ci,n,bz),\displaystyle\tilde{\delta}^{i,n,b*}_{\xi}\left(z,2q_{t-}^{\intercal}A(t)e^{i}+z{e^{i}}^{\intercal}A(t)e^{i}+{e^{i}}^{\intercal}B(t)+\frac{c^{i,n,b}}{z}\right),
δˇti,n,a(z)\displaystyle\check{\delta}^{i,n,a}_{t}(z) =\displaystyle= δ~ξi,n,a(z,θˇ(t,qt)θˇ(t,qtzei)+ci,n,az)\displaystyle\tilde{\delta}^{i,n,a*}_{\xi}\left(z,\frac{\check{\theta}(t,q_{t-})-\check{\theta}(t,q_{t-}-ze^{i})+c^{i,n,a}}{z}\right)
=\displaystyle= δ~ξi,n,a(z,2qtA(t)ei+zeiA(t)eieiB(t)+ci,n,az),\displaystyle\tilde{\delta}^{i,n,a*}_{\xi}\left(z,-2q_{t-}^{\intercal}A(t)e^{i}+z{e^{i}}^{\intercal}A(t)e^{i}-{e^{i}}^{\intercal}B(t)+\frac{c^{i,n,a}}{z}\right),

where δ~ξi,n,b\tilde{\delta}^{i,n,b*}_{\xi} and δ~ξi,n,a\tilde{\delta}^{i,n,a*}_{\xi} are given in Theorems 3 and 4 for ξ=γ\xi=\gamma and ξ=0\xi=0 respectively (depending on whether one considers Model A or Model B).

The asymptotic regime exhibited in the above paragraphs can then serve to obtain the following simple closed-form approximations:

δ˘ti,n,b(z)\displaystyle\breve{\delta}^{i,n,b}_{t}(z) =δ~ξi,n,b(z,γqtΓei+12γzeiΓeieiD+12A^+D+12μ\displaystyle=\tilde{\delta}^{i,n,b*}_{\xi}\bigg{(}z,\sqrt{\gamma}q_{t-}^{\intercal}\Gamma e^{i}+\frac{1}{2}\sqrt{\gamma}z{e^{i}}^{\intercal}\Gamma e^{i}-{e^{i}}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}^{+}D_{+}^{\frac{1}{2}}\mu (27)
eiD+12A^A^+D+12(V+V~+12γD𝒟(Γ))+ci,n,bz),\displaystyle\qquad\qquad\qquad\qquad\qquad-{e^{i}}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}\left(V_{-}+\tilde{V}_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)+\frac{c^{i,n,b}}{z}\bigg{)},
δ˘ti,n,a(z)\displaystyle\breve{\delta}^{i,n,a}_{t}(z) =δ~ξi,n,a(z,γqtΓei+12γzeiΓei+eiD+12A^+D+12μ\displaystyle=\tilde{\delta}^{i,n,a*}_{\xi}\bigg{(}z,-\sqrt{\gamma}q_{t-}^{\intercal}\Gamma e^{i}+\frac{1}{2}\sqrt{\gamma}z{e^{i}}^{\intercal}\Gamma e^{i}+{e^{i}}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}^{+}D_{+}^{\frac{1}{2}}\mu (28)
+eiD+12A^A^+D+12(V+V~+12γD𝒟(Γ))+ci,n,az).\displaystyle\qquad\qquad\qquad\qquad\qquad+{e^{i}}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}\widehat{A}^{+}D_{+}^{-\frac{1}{2}}\left(V_{-}+\tilde{V}_{-}+\frac{1}{2}\sqrt{\gamma}D_{-}\mathcal{D}(\Gamma)\right)+\frac{c^{i,n,a}}{z}\bigg{)}.

If we assume that for all i{1,,d}i\in\{1,\ldots,d\} and for all n{1,,N}n\in\{1,\ldots,N\} we have νi,n,b=νi,n,a\nu^{i,n,b}=\nu^{i,n,a} and Λi,n,b=Λi,n,a\Lambda^{i,n,b}=\Lambda^{i,n,a}, then i{1,,d},n{1,,N},Hi,n,b=Hi,n,a\forall i\in\{1,\ldots,d\},\forall n\in\{1,\ldots,N\},H^{i,n,b}=H^{i,n,a}, and it is thus natural to chose symmetric approximations of the Hamiltonian functions, i.e. i{1,,d},n{1,,N},Hˇi,n,b=Hˇi,n,a\forall i\in\{1,\ldots,d\},\forall n\in\{1,\ldots,N\},\check{H}^{i,n,b}=\check{H}^{i,n,a}. In that case, (27) and (28) simplify into

δ˘ti,n,b(z)\displaystyle\breve{\delta}^{i,n,b}_{t}(z) =\displaystyle= δ~ξi,n,b(z,γqtΓei+12γzeiΓeieiD+12A^+D+12μ+ci,n,bz),\displaystyle\tilde{\delta}^{i,n,b*}_{\xi}\left(z,\sqrt{\gamma}q_{t-}^{\intercal}\Gamma e^{i}+\frac{1}{2}\sqrt{\gamma}z{e^{i}}^{\intercal}\Gamma e^{i}-{e^{i}}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}^{+}D_{+}^{\frac{1}{2}}\mu+\frac{c^{i,n,b}}{z}\right), (29)
δ˘ti,n,a(z)\displaystyle\breve{\delta}^{i,n,a}_{t}(z) =\displaystyle= δ~ξi,n,a(z,γqtΓei+12γzeiΓei+eiD+12A^+D+12μ+ci,n,az).\displaystyle\tilde{\delta}^{i,n,a*}_{\xi}\left(z,-\sqrt{\gamma}q_{t-}^{\intercal}\Gamma e^{i}+\frac{1}{2}\sqrt{\gamma}z{e^{i}}^{\intercal}\Gamma e^{i}+{e^{i}}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}^{+}D_{+}^{\frac{1}{2}}\mu+\frac{c^{i,n,a}}{z}\right). (30)

All these approximations of the quotes can be used directly or as a starting point in iterative methods designed to compute the optimal quotes (policy iteration algorithms, actor-critic algorithms, etc.).

5.4.2 Quotes: the case of symmetric exponential intensities

If we assume that for all i{1,,d}i\in\{1,\ldots,d\} and for all n{1,,N}n\in\{1,\ldots,N\} we have νi,n,b=νi,n,a=:νi,n\nu^{i,n,b}=\nu^{i,n,a}=:\nu^{i,n} and intensity functions given by

Λi,n,b(δ)=Λi,n,a(δ)=Ai,neki,nδ,Ai,n,ki,n>0,\Lambda^{i,n,b}(\delta)=\Lambda^{i,n,a}(\delta)=A^{i,n}e^{-k^{i,n}\delta},\quad A^{i,n},k^{i,n}>0,

then (see [18]), in the limit case where δ=+\delta_{\infty}=+\infty the Hamiltonian functions are given, for all i{1,,d}i\in\{1,\ldots,d\} and n{1,,N}n\in\{1,\ldots,N\}, by

Hξi,n,b(z,p)=Hξi,n,a(z,p)=Ai,nki,nCξi,n(z)exp(ki,np),H^{i,n,b}_{\xi}(z,p)=H^{i,n,a}_{\xi}(z,p)=\frac{A^{i,n}}{k^{i,n}}C^{i,n}_{\xi}(z)\exp(-k^{i,n}p),

where

Cξi,n(z)={(1+ξzki,n)(1+ki,nξz)if ξ>0e1if ξ=0,C_{\xi}^{i,n}(z)=\begin{cases}\left(1+\frac{\xi z}{k^{i,n}}\right)^{-\left(1+\frac{k^{i,n}}{\xi z}\right)}&\mbox{if }\xi>0\\ e^{-1}&\mbox{if }\xi=0,\end{cases}

and the functions δ~ξi,n,b\tilde{\delta}^{i,n,b*}_{\xi} and δ~ξi,n,a\tilde{\delta}^{i,n,a*}_{\xi} are given, for all i{1,,d}i\in\{1,\ldots,d\} and n{1,,N}n\in\{1,\ldots,N\}, by

δ~ξi,n,b(z,p)=δ~ξi,n,a(z,p)={p+1ξzlog(1+ξzki,n)if ξ>0p+1ki,nif ξ=0.\tilde{\delta}^{i,n,b*}_{\xi}(z,p)=\tilde{\delta}^{i,n,a*}_{\xi}(z,p)=\begin{cases}p+\frac{1}{\xi z}\log\left(1+\frac{\xi z}{k^{i,n}}\right)&\mbox{if }\xi>0\\ p+\frac{1}{k^{i,n}}&\mbox{if }\xi=0.\end{cases}

Therefore, if we consider the quadratic approximation of the Hamiltonian functions based on their Taylor expansion around p=0p=0 (see Remark 3), then (29) and (30) become

δ˘ti,n,b(z)\displaystyle\breve{\delta}^{i,n,b}_{t}(z) =\displaystyle= {γ(qtΓei+12zieiΓei1γeiD+12A^+D+12μ)+ci,n,bz+1γzlog(1+γzki,n) in Model A,γ(qtΓei+12zieiΓei1γeiD+12A^+D+12μ)+ci,n,bz+1ki,n in Model B.\displaystyle\begin{cases}\sqrt{\gamma}\left(q_{t-}^{\intercal}\Gamma e^{i}+\frac{1}{2}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}-\frac{1}{\gamma}{e^{i}}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}^{+}D_{+}^{\frac{1}{2}}\mu\right)+\frac{c^{i,n,b}}{z}+\frac{1}{\gamma z}\log\left(1+\frac{\gamma z}{k^{i,n}}\right)&\mbox{ in Model A,}\\ \sqrt{\gamma}\left(q_{t-}^{\intercal}\Gamma e^{i}+\frac{1}{2}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}-\frac{1}{\gamma}{e^{i}}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}^{+}D_{+}^{\frac{1}{2}}\mu\right)+\frac{c^{i,n,b}}{z}+\frac{1}{k^{i,n}}&\mbox{ in Model B.}\end{cases}
δ˘ti,n,a(z)\displaystyle\breve{\delta}^{i,n,a}_{t}(z) =\displaystyle= {γ(qtΓei12zieiΓei+1γeiD+12A^+D+12μ)+ci,n,az+1γzlog(1+γzki,n) in Model A,γ(qtΓei12zieiΓei+1γeiD+12A^+D+12μ)+ci,n,az+1ki,n in Model B.\displaystyle\begin{cases}\sqrt{\gamma}\left(q_{t-}^{\intercal}\Gamma e^{i}-\frac{1}{2}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}+\frac{1}{\gamma}{e^{i}}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}^{+}D_{+}^{\frac{1}{2}}\mu\right)+\frac{c^{i,n,a}}{z}+\frac{1}{\gamma z}\log\left(1+\frac{\gamma z}{k^{i,n}}\right)&\mbox{ in Model A,}\\ \sqrt{\gamma}\left(q_{t-}^{\intercal}\Gamma e^{i}-\frac{1}{2}z^{i}{e^{i}}^{\intercal}\Gamma e^{i}+\frac{1}{\gamma}{e^{i}}^{\intercal}D_{+}^{-\frac{1}{2}}\widehat{A}^{+}D_{+}^{\frac{1}{2}}\mu\right)+\frac{c^{i,n,a}}{z}+\frac{1}{k^{i,n}}&\mbox{ in Model B.}\end{cases}

where Γ=D+12(D+12ΣD+12)12D+12\Gamma=D_{+}^{-\frac{1}{2}}(D_{+}^{\frac{1}{2}}\Sigma D_{+}^{\frac{1}{2}})^{\frac{1}{2}}D_{+}^{-\frac{1}{2}} and

D+=diag(2n=1NA1,nk1,n+Cξ1,n(z)zν1,n(dz),,2n=1NAd,nkd,n+Cξd,n(z)zνd,n(dz)).D_{+}=\textup{diag}\left(2\sum_{n=1}^{N}A^{1,n}k^{1,n}\int_{\mathbb{R}^{*}_{+}}C_{\xi}^{1,n}(z)z\nu^{1,n}(dz),\ldots,2\sum_{n=1}^{N}A^{d,n}k^{d,n}\int_{\mathbb{R}^{*}_{+}}C_{\xi}^{d,n}(z)z\nu^{d,n}(dz)\right).

6 Numerical results

To assess the quality of our approximations, we consider a two-asset example for which we can approximate numerically the true function θ\theta and the optimal quotes. By using a Euler scheme in dimension 3 (one dimension for time and two dimensions for inventory) it is indeed possible to approximate numerically the solution of Hamilton-Jacobi equations on a grid.

6.1 Characteristics of our example with two assets

We consider the following characteristics for the two assets:

  • 1.

    Asset prices: S01=S02=100S^{1}_{0}=S^{2}_{0}=100\ \textrm{€}.

  • 2.

    Drifts: μ1=0.1day1\mu^{1}=0.1\ \textrm{€}\cdot\textrm{day}^{-1}, μ2=0.1day1\mu^{2}=-0.1\ \textrm{€}\cdot\textrm{day}^{-1}.

  • 3.

    Volatilities: σ1=1.2day12\sigma^{1}=1.2\ \textrm{€}\cdot\textrm{day}^{-\frac{1}{2}}, σ2=0.6day12\sigma^{2}=0.6\ \textrm{€}\cdot\textrm{day}^{-\frac{1}{2}}.

  • 4.

    Correlation: ρ=0.5.\rho=0.5.

This corresponds to a covariance matrix Σ\Sigma given by

Σ=((σ1)2ρσ1σ2ρσ1σ2(σ2)2)=(1.440.360.360.36).\Sigma=\begin{pmatrix}(\sigma^{1})^{2}&\rho\sigma^{1}\sigma^{2}\\ \rho\sigma^{1}\sigma^{2}&(\sigma^{2})^{2}\end{pmatrix}=\begin{pmatrix}1.44&0.36\\ 0.36&0.36\end{pmatrix}.

We consider Model B171717The results would be similar for Model A. with time horizon T=7daysT=7\ \textrm{days} and risk aversion parameter γ=81061\gamma=8\cdot 10^{-6}\ \textrm{€}^{-1}.

We consider a framework with one tier only and no transaction costs.

The intensity functions are given for all i{1,2}i\in\{1,2\} by:

Λi,b(δ)=Λi,a(δ)=λRFQ11+eαΛ+βΛδ,\Lambda^{i,b}(\delta)=\Lambda^{i,a}(\delta)=\lambda_{RFQ}\frac{1}{1+e^{\alpha_{\Lambda}+\beta_{\Lambda}\delta}},

with λRFQ=30day1\lambda_{RFQ}=30\ \textrm{day}^{-1}, αΛ=0.7\alpha_{\Lambda}=0.7, and βΛ=301\beta_{\Lambda}=30\ \textrm{€}^{-1}. This corresponds to 3030 requests per day, a probability of 11+e0.733%\frac{1}{1+e^{0.7}}\simeq 33\% to trade when the answered quote is the reference price and a probability of 11+e0.440%\frac{1}{1+e^{0.4}}\simeq 40\% to trade when the answered quote is the reference price improved by 1 cent.

Request sizes are distributed according to a Gamma distribution Γ(αμ,βμ)\Gamma(\alpha_{\mu},\beta_{\mu}) with αμ=4\alpha_{\mu}=4 and βμ=4104.\beta_{\mu}=4\cdot 10^{-4}. This corresponds to an average request size of 1000010000 assets (i.e. approximately 10000001000000\textrm{€}) and a standard deviation equal to half the average.

6.2 Value function and optimal quotes

In order to discretize the problem, we first approximate the Gamma distribution of sizes with 44 sizes: z1=6250z^{1}=6250, z2=12500z^{2}=12500, z3=18750z^{3}=18750, and z4=25000z^{4}=25000 assets – thereafter refered to by very small, small, large, and very large size – with respective probability p1=0.534p^{1}=0.534, p2=0.350p^{2}=0.350, p3=0.097p^{3}=0.097 and p4=0.019p^{4}=0.019. We impose risk limits Q1=75000Q^{1}=75000 and Q2=300000Q^{2}=300000, i.e. no trade that would result in an inventory q1q^{1} for asset 1 such that |q1|>75000|q^{1}|>75000 is accepted, and similarly no trade that would result in an inventory q2q^{2} for asset 2 such that |q2|>300000|q^{2}|>300000 is accepted.

The solution θ\theta to Eq. (21) with terminal condition (22) can then be approximated numerically using a monotone implicit Euler scheme on a grid of size 101×25×97101\times 25\times 97 (101101 points in time, 2525 points for the inventory of asset 11, and 9797 points for the inventory of asset 2).

Because we are mainly interested in asymptotic quotes, it is important to check that the time horizon chosen is sufficienty long. For that purpose, we plot in Figure 1 the optimal bid quotes for asset 1 and asset 2 at time t=0t=0 for different values of the inventory. We see that the asymptotic regime is clearly reached and, from now on, we will only consider the value function and the optimal quotes at time t=0t=0.

Refer to caption
Figure 1: Optimal bid quotes as a function of time for different values of the inventory (very small trades) – top left: bid quotes of asset 1 for different values of inventory q2q^{2} (q1=0q^{1}=0), top right: bid quotes of asset 1 for different values of inventory q1q^{1} (q2=0q^{2}=0), bottom left: bid quotes of asset 2 for different values of inventory q2q^{2} (q1=0q^{1}=0), bottom right: bid quotes of asset 2 for different values of inventory q1q^{1} (q2=0q^{2}=0).
Refer to caption
Figure 2: Function θ\theta at time t=0t=0 for different values of the inventory.

The numerical approximation of the value function θ\theta (at time t=0t=0) is plotted in Figure 2. The shape of the function θ\theta is as expected given the risk penalty, the positive drift in the prices of asset 1 and the negative drift in the prices of asset 2. The associated bid quotes are plotted in Figures 3 and 4 respectively. The shape of the quote surfaces is as expected given the positive correlation coefficient (see [5] or [18] for a deeper discussion about the effect of the different parameters).

Refer to caption
Figure 3: Optimal bid quote at t=0t=0 for asset 1 as a function of the inventory (very small trades).
Refer to caption
Figure 4: Optimal bid quote at t=0t=0 for asset 2 as a function of the inventory (very small trades).

6.3 Comparison with closed-form approximations

We now move on to our closed-form approximations. We first plot in Figure 5 the closed-form approximation θˇ\check{\theta} given by Proposition 4.

Refer to caption
Figure 5: Function θˇ\check{\theta} at t=0t=0 for different values of the inventory.

We clearly see that, in spite of differences in level between the true value function aproximated numerically and the closed-form approximation, the shape is the same. Therefore, the finite differences involved in the computation of the associated quotes should be similar. This is roughly confirmed in Figures 6 and 7 that are the closed-form counterparts of Figures 3 and 4.

Refer to caption
Figure 6: Closed-form approximation for the optimal bid quote at t=0t=0 for asset 1 as a function of the inventory (very small trades).
Refer to caption
Figure 7: Closed-form approximation for the optimal bid quote at t=0t=0 for asset 2 as a function of the inventory (very small trades).

In order to assess more precisely the quality of our closed-form approximations, we plot in Figures 8, 9, 10, and 11 the functions

q1δ¯1,b(q1,0,zk),k{1,,4}q1δ^1,b(q1,0,zk),k{1,,4}q^{1}\mapsto\bar{\delta}^{1,b}(q^{1},0,z^{k}),\ k\in\{1,\ldots,4\}\qquad q^{1}\mapsto\hat{\delta}^{1,b}(q^{1},0,z^{k}),\ k\in\{1,\ldots,4\}
q2δ¯1,b(0,q2,zk),k{1,,4}q2δ^1,b(0,q2,zk),k{1,,4}q^{2}\mapsto\bar{\delta}^{1,b}(0,q^{2},z^{k}),\ k\in\{1,\ldots,4\}\qquad q^{2}\mapsto\hat{\delta}^{1,b}(0,q^{2},z^{k}),\ k\in\{1,\ldots,4\}
q1δ¯2,b(q1,0,zk),k{1,,4}q1δ^2,b(q1,0,zk),k{1,,4}q^{1}\mapsto\bar{\delta}^{2,b}(q^{1},0,z^{k}),\ k\in\{1,\ldots,4\}\qquad q^{1}\mapsto\hat{\delta}^{2,b}(q^{1},0,z^{k}),\ k\in\{1,\ldots,4\}
q2δ¯2,b(0,q2,zk),k{1,,4}q2δ^2,b(0,q2,zk),k{1,,4}q^{2}\mapsto\bar{\delta}^{2,b}(0,q^{2},z^{k}),\ k\in\{1,\ldots,4\}\qquad q^{2}\mapsto\hat{\delta}^{2,b}(0,q^{2},z^{k}),\ k\in\{1,\ldots,4\}

where δ¯i,b\bar{\delta}^{i,b} is the optimal bid quote for asset ii as a function of time, inventory, and size of request and δ^i,b\hat{\delta}^{i,b} is the closed-form approximation of the optimal bid quote for asset ii as a function of inventory and size of request.

We clearly see that our closed-form approximations are close to the true optimal quotes, except for large values of the inventory in asset 2.

Refer to caption
Figure 8: Comparison between optimal bid quote for asset 1 and its closed-form approximation for different trade sizes as a function of q1q^{1} (q2=0q^{2}=0).
Refer to caption
Figure 9: Comparison between optimal bid quote for asset 1 and its closed-form approximation for different trade sizes as a function of q2q^{2} (q1=0q^{1}=0).
Refer to caption
Figure 10: Comparison between optimal bid quote for asset 2 and its closed-form approximation for different trade sizes as a function of q1q^{1} (q2=0q^{2}=0).
Refer to caption
Figure 11: Comparison between optimal bid quote for asset 2 and its closed-form approximation for different trade sizes as a function of q2q^{2} (q1=0q^{1}=0).

In order to confirm the quality of our closed-form approximations, we compare the performance of a market maker, when quoting the true optimal quotes versus their closed-form approximations. The respective distributions of PnL after 4000 Monte-Carlo simulations are plotted in Figures 12 and 13.

Refer to caption
Figure 12: Distribution of the PnL of a market maker using the optimal quotes.
Refer to caption
Figure 13: Distribution of the PnL of a market maker using the closed-form approximations.

When using the optimal quotes, the market maker gets an average PnL of 8860088600\textrm{€} with a standard deviation of 8690086900\textrm{€}. When using the closed-form approximation, the performance is very similar, as she gets an average PnL of 8900089000\textrm{€} with a standard deviation of 8750087500\textrm{€}.

These results are really satisfying in terms of performance. We see that, although the closed-form approximation of optimal quotes may be inaccurate for large values of the inventory, such large inventory are seldom reached and therefore the gap between quotes does not really impact the distribution of the PnL.

We believe that what we observe here in this two-asset example is general. In particular, the results in higher dimensions should be just as good.

Conclusion

We proposed closed-form approximations for the value functions associated with many multi-asset extensions of the market making models available in the literature. These closed-form approximations have been obtained through the “approximation” of a Hamilton-Jacobi equation by another Hamilton-Jacobi equation that can be simplified into a Riccati equation and two linear ordinary differential equations, all solvable in closed form. These closed-form approximations can be used for various purposes, in particular to design quoting strategies through a greedy approach. The resulting closed-form approximations of the optimal quotes generalize those obtained by Guéant, Lehalle, and Fernandez-Tapia in [20] to a general framework suitable for practical use.

Acknowledgements

The authors would like to thank Bastien Baldacci (Ecole Polytechnique) and Iuliia Manziuk (Ecole Polytechnique) for their careful reading of an initial version of the paper. Olivier Guéant would like to thank the Research Initiative “Nouveaux traitements pour les données lacunaires issues des activités de crédit” financed by BNP Paribas under the aegis of the Europlace Institute of Finance for its support. A special thank goes to Laurent Carlier (BNP Paribas) for his vivid interest in academic questions around market making throughout the years.

Appendix A On the construction of the processes Ni,bN^{i,b} and Ni,aN^{i,a}

Let us consider a new filtered probability space (Ω,,(t)t+,~)\big{(}\Omega,\mathcal{F},(\mathcal{F}_{t})_{t\in\mathbb{R}_{+}},\tilde{\mathbb{P}}\big{)}. For the sake of simplicity, assume that there is only one asset with size of transactions denoted by zz and risk limit QQ (the generalization is straightforward). Let us assume that the reference price of that asset is driven by a Brownian motion WW as in Section 2.1. Let us introduce N¯b\bar{N}^{b} and N¯a\bar{N}^{a} two independent Poisson processes of intensity 11, independent of WW. Let NbN^{b} and NaN^{a} be two processes, starting at 0, solutions of the coupled stochastic differential equation:

dNtb=𝟙{zNtbzNta+zQ}dN¯tb,\displaystyle dN^{b}_{t}=\mathds{1}_{\left\{zN^{b}_{t-}-zN^{a}_{t-}+z\leq Q\right\}}d\bar{N}^{b}_{t},
dNta=𝟙{zNtbzNtazQ}dN¯ta.\displaystyle dN^{a}_{t}=\mathds{1}_{\left\{zN^{b}_{t-}-zN^{a}_{t-}-z\geq-Q\right\}}d\bar{N}^{a}_{t}.

Then, under ~,\tilde{\mathbb{P}}, NbN^{b} and NaN^{a} are two point processes with respective intensities

λtb=𝟙{qt+zQ}andλta=𝟙{qtzQ},\lambda^{b}_{t}=\mathds{1}_{\left\{q_{t-}+z\leq Q\right\}}\quad\text{and}\quad\lambda^{a}_{t}=\mathds{1}_{\left\{q_{t-}-z\geq-Q\right\}},

where qt=zNtbzNta.q_{t}=zN^{b}_{t}-zN^{a}_{t}. For each δ𝒜\delta\in\mathcal{A}, we introduce the probability measure ~δ\tilde{\mathbb{P}}^{\delta} given by the Radon-Nikodym derivative

d~δd~|t=Ltδ,\frac{d\tilde{\mathbb{P}}^{\delta}}{d\tilde{\mathbb{P}}}\Big{|}_{\mathcal{F}_{t}}=L_{t}^{\delta}, (31)

where (Ltδ)t+\left(L_{t}^{\delta}\right)_{t\in\mathbb{R}^{+}} is the unique solution of the stochastic differential equation

dLtδ=Ltδ((Λb(δtb)1)dN~tb+(Λa(δta)1)dN~ta),dL_{t}^{\delta}=L_{t-}^{\delta}\left(\left(\Lambda^{b}(\delta^{b}_{t})-1\right)d\tilde{N}^{b}_{t}+\left(\Lambda^{a}(\delta^{a}_{t})-1\right)d\tilde{N}^{a}_{t}\right),

with L0δ=1L_{0}^{\delta}=1, where N~b\tilde{N}^{b} and N~a\tilde{N}^{a} are the compensated processes associated with NbN^{b} and NaN^{a}, respectively.

We then know from the Brémaud-Jacod version of Girsanov theorem (see [6]) that under ~δ\tilde{\mathbb{P}}^{\delta}, the jump processes NbN^{b} and NaN^{a} have respective intensities

λtδ,b=Λb(δtb)𝟙{qt+zQ}andλtδ,a=Λa(δta)𝟙{qtzQ}\lambda^{\delta,b}_{t}=\Lambda^{b}(\delta^{b}_{t})\mathds{1}_{\left\{q_{t-}+z\leq Q\right\}}\quad\text{and}\quad\lambda^{\delta,a}_{t}=\Lambda^{a}(\delta^{a}_{t})\mathds{1}_{\left\{q_{t-}-z\geq-Q\right\}}

as in Section 2.1 of the paper. Since WW is still a Brownian motion under ~δ\tilde{\mathbb{P}}^{\delta}, our optimal control problem can be seen as the choice of an optimal probability measure ~δ\tilde{\mathbb{P}}^{\delta}.

References

  • [1] Marco Avellaneda and Sasha Stoikov. High-frequency trading in a limit order book. Quantitative Finance, 8(3):217–224, 2008.
  • [2] Bastien Baldacci, Philippe Bergault and Olivier Guéant. Algorithmic market making for options. Quantitative Finance, 21(1):85–97, 2021.
  • [3] Nicolas Baradel, Bruno Bouchard, David Evangelista, and Othmane Mounjid. Optimal inventory management and order book modeling. ESAIM: Proceedings and Surveys, 65:145–181, 2018.
  • [4] Alexander Barzykin, Philippe Bergault, and Olivier Guéant. Algorithmic market making in FX cash markets. arXiv preprint arXiv:2106.06974, 2021.
  • [5] Philippe Bergault and Olivier Guéant. Size matters for OTC market makers: general results and dimensionality reduction technique. Mathematical Finance, 31(1):279–322 2020.
  • [6] Pierre Brémaud and Jean Jacod. Processus ponctuels et martingales: résultats récents sur la modélisation et le filtrage. Advances in Applied Probability, 9(2), 362–416, 1977.
  • [7] Luciano Campi and Diego Zabaljauregui Optimal market making under partial information with general intensities. Applied Mathematical Finance–27, 2020.
  • [8] Álvaro Cartea, Ryan Donnelly, and Sebastian Jaimungal. Algorithmic trading with model uncertainty. SIAM Journal on Financial Mathematics, 8(1):635–671, 2017.
  • [9] Álvaro Cartea, Sebastian Jaimungal, and José Penalva. Algorithmic and high-frequency trading. Cambridge University Press, 2015.
  • [10] Álvaro Cartea, Sebastian Jaimungal, and Jason Ricci. Buy low, sell high: A high frequency trading perspective. SIAM Journal on Financial Mathematics, 5(1):415–444, 2014.
  • [11] Álvaro Cartea, Sebastian Jaimungal, and Jason Ricci. Algorithmic trading, stochastic control, and mutually exciting processes. SIAM Review, 60(3):673–703, 2018.
  • [12] Sofiene El Aoud and Frédéric Abergel. A stochastic control approach to option market making. Market microstructure and liquidity, 1(01):1550006, 2015.
  • [13] Omar El Euch, Thibaut Mastrolia, Mathieu Rosenbaum, and Nizar Touzi. Optimal make-take fees for market making regulation. Mathematical Finance, 31(1):109–148, 2021.
  • [14] Pietro Fodra and Mauricio Labadie. High-frequency market-making with inventory constraints and directional bets. arXiv preprint arXiv:1206.4810, 2012.
  • [15] Pietro Fodra and Huyên Pham. High frequency trading and asymptotics for small risk aversion in a Markov renewal model. SIAM Journal on Financial Mathematics, 6(1):656–684, 2015.
  • [16] Sanford J Grossman and Merton H Miller. Liquidity and market structure. the Journal of Finance, 43(3):617–633, 1988.
  • [17] Olivier Guéant. The Financial Mathematics of Market Liquidity: From optimal execution to market making, volume 33. CRC Press, 2016.
  • [18] Olivier Guéant. Optimal market making. Applied Mathematical Finance, 24(2):112–154, 2017.
  • [19] Olivier Guéant and Charles-Albert Lehalle. General intensity shapes in optimal liquidation. Mathematical Finance, 25(3):457–495, 2015.
  • [20] Olivier Guéant, Charles-Albert Lehalle, and Joaquin Fernandez-Tapia. Dealing with the inventory risk: a solution to the market making problem. Mathematics and financial economics, 7(4):477–507, 2013.
  • [21] Olivier Guéant and Iuliia Manziuk. Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality. Applied Mathematical Finance, 26(5):387–452, 2019.
  • [22] Fabien Guilbaud and Huyên Pham. Optimal high-frequency trading with limit and market orders. Quantitative Finance, 13(1):79–94, 2013.
  • [23] Fabien Guilbaud and Huyên Pham. Optimal high-frequency trading in a pro rata microstructure with predictive information. Mathematical Finance, 25(3):545–575, 2015.
  • [24] Thomas Ho and Hans R Stoll. Optimal dealer pricing under transactions and return uncertainty. Journal of Financial economics, 9(1):47–73, 1981.
  • [25] Thomas Ho and Hans R Stoll. The dynamics of dealer markets under competition. The Journal of finance, 38(4):1053–1074, 1983.
  • [26] Paul Jusselin. Optimal market making with persistent order flow. arXiv preprint arXiv:2003.05958, 2020.
  • [27] Christoph Kühn and Johannes Muhle-Karbe. Optimal liquidity provision in limit order markets. Swiss Finance Inst., 2013.
  • [28] Xiaofei Lu and Frédéric Abergel. Order-book modelling and market making strategies. Market Microstructure and Liquidity, 2018.
  • [29] Sasha Stoikov and Mehmet Sağlam. Option market making under inventory risk. Review of Derivatives Research, 12(1):55–79, 2009.
  • [30] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, 2018.
  • [31] Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on artificial intelligence and machine learning 4.1:1–103, 2010.