This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

CmC^{m} Semialgebraic Sections Over the Plane

Charles Fefferman, Garving K. Luli

1 Introduction

In this paper we settle the two-dimensional case of a conjecture involving unknown semialgebraic functions with specified smoothness.

Recall that a semialgebraic set EnE\subset\mathbb{R}^{n} is a union of finitely many sets of the form

{xn:P1(x),P2(x),,Pr(x)>0, and Q1(x)=Q2(x)==Qs(x)=0}\{x\in\mathbb{R}^{n}:P_{1}(x),P_{2}(x),\cdots,P_{r}(x)>0,\text{ and }Q_{1}(x)=Q_{2}(x)=\cdots=Q_{s}(x)=0\}

for polynomials P1,,Pr,Q1,,QsP_{1},\cdots,P_{r},Q_{1},\cdots,Q_{s} on n\mathbb{R}^{n}. (We allow the cases r=0r=0 or s=0s=0.)

A semialgebraic function ϕ:ED\phi:E\rightarrow\mathbb{R}^{D} is a function whose graph {(x,ϕ(x)):xE}\{(x,\phi(x)):x\in E\} is a semialgebraic set.

We define smoothness in terms of CmC^{m} and ClocmC^{m}_{loc}. Here, Cm(n,D)C^{m}\left(\mathbb{R}^{n},\mathbb{R}^{D}\right) denotes the space of all D\mathbb{R}^{D}-valued functions on n\mathbb{R}^{n} whose derivatives up to order mm are continuous and bounded on n\mathbb{R}^{n}. Clocm(n,D)C_{loc}^{m}\left(\mathbb{R}^{n},\mathbb{R}^{D}\right) denotes the space of D\mathbb{R}^{D}-valued functions on n\mathbb{R}^{n} with continuous derivatives up to order mm. If D=1D=1, we write Cm(n)C^{m}\left(\mathbb{R}^{n}\right) and Clocm(n)C_{loc}^{m}\left(\mathbb{R}^{n}\right) in place of Cm(n,D)C^{m}\left(\mathbb{R}^{n},\mathbb{R}^{D}\right) and Clocm(n,D)C_{loc}^{m}\left(\mathbb{R}^{n},\mathbb{R}^{D}\right), respectively.

To motivate our conjecture, we pose the following problems.

Problem 1 (Semialgebraic Whitney Problem; see [43].)

Fix m0m\geq 0. Let ϕ:E\phi:E\rightarrow\mathbb{R} be semialgebraic. Suppose ϕ\phi extends to a ClocmC^{m}_{loc} function on n\mathbb{R}^{n}. Does it necessarily extend to a ClocmC^{m}_{loc} semialgebraic function on n\mathbb{R}^{n}?

Problem 2 (Linear Equations)

Fix m0.m\geq 0. Consider the linear equation

(1) A1F1++ADFD=fA_{1}F_{1}+\cdots+A_{D}F_{D}=f

for unknowns F1,,FDF_{1},\cdots,F_{D} on n\mathbb{R}^{n}, where A1,,ADA_{1},\cdots,A_{D}, ff are given semialgebraic functions. If equation (1)\left(\ref{equation}\right) admits a ClocmC^{m}_{loc} solution F1,,FDF_{1},\cdots,F_{D}, does it necessarily admit a ClocmC^{m}_{loc} semialgebraic solution?

More generally, in place of (1) we can consider underdetermined systems of linear equations.

Problem 1 was raised by Bierstone and Milman in [43].

Note that mm is fixed in the above problems so we are not allowed to lose derivatives.

Problems 1 and 2 are instances of a more general question. The purpose of this paper is to settle that question, and in particular provide affirmative answers to Problems 1 and 2, in the case of Clocm(2)C^{m}_{loc}\left(\mathbb{R}^{2}\right).

To pose our more general question, we set up notations and give a few basic definitions.

Fix m0m\geq 0. If FClocm(n)F\in C^{m}_{loc}(\mathbb{R}^{n}) and xnx\in\mathbb{R}^{n}, we write Jx(F)J_{x}(F) (the “jet” of FF at xx) to denote the mm-th degree Taylor polynomial of FF at xx.

Thus, Jx(F)J_{x}(F) belongs to 𝒫\mathcal{P}, the vector space of all such polynomials.

For xnx\in\mathbb{R}^{n}, P,Q𝒫P,Q\in\mathcal{P}, we define PxQ=Jx(PQ)P\odot_{x}Q=J_{x}(PQ). The multiplication x\odot_{x} makes 𝒫\mathcal{P} into a ring, denoted by x\mathcal{R}_{x}, the “ring of mm-jets at xx”. We have Jx(FG)=Jx(F)xJx(G)J_{x}\left(FG\right)=J_{x}\left(F\right)\odot_{x}J_{x}\left(G\right) for F,GClocm(n)F,G\in C^{m}_{loc}\left(\mathbb{R}^{n}\right).

We consider vector-valued functions F=(F1,,FD):nDF=\left(F_{1},\cdots,F_{D}\right):\mathbb{R}^{n}\rightarrow\mathbb{R}^{D}, and we write FClocm(n,D)F\in C^{m}_{loc}\left(\mathbb{R}^{n},\mathbb{R}^{D}\right) if each FiClocm(n)F_{i}\in C^{m}_{loc}\left(\mathbb{R}^{n}\right). We define JxF=(JxF1,,JxFD)𝒫𝒫J_{x}F=\left(J_{x}F_{1},\cdots,J_{x}F_{D}\right)\in\mathcal{P\oplus\cdots\oplus P}. Under the natural multiplication

Qx(P1,,PD):=(QxP1,,QxPD),Q\odot_{x}\left(P_{1},\cdots,P_{D}\right):=\left(Q\odot_{x}P_{1},\cdots,Q\odot_{x}P_{D}\right)\text{,}

the vector space 𝒫𝒫\mathcal{P\oplus\cdots\oplus P} becomes an x\mathcal{R}_{x} module, which we denote by xD\mathcal{R}_{x}^{D}.

We will discuss x\mathcal{R}_{x}-submodules of xD\mathcal{R}_{x}^{D}; we allow both {0}\left\{0\right\} and xD\mathcal{R}_{x}^{D} as submodules of xD\mathcal{R}_{x}^{D}.

Fix m,n,Dm,n,D, and a subset EnE\subset\mathbb{R}^{n}. For each xEx\in E, let

H(x)=f(x)+I(x)xDH\left(x\right)=f\left(x\right)+I\left(x\right)\subset\mathcal{R}_{x}^{D}

be given, where f(x)xDf\left(x\right)\in\mathcal{R}_{x}^{D} and I(x)xDI\left(x\right)\subset\mathcal{R}_{x}^{D} is an x\mathcal{R}_{x}-submodule. Then the family

(2) =(H(x))xE\mathcal{H}=(H(x))_{x\in E}

is called a “bundle” over EE. H(x)H(x) is called the fiber of \mathcal{H} at xx.

Remark 1.1

We remark that our notion of bundle differs from the notion of a bundle considered previously (e.g, [28]). In the present version, we do not require EE to be compact and we require all the fibers H(x)H\left(x\right) to be non-empty.

When m,n,Dm,n,D are not clear from context, we speak of a “bundle with respect to Clocm(n,D)C^{m}_{loc}\left(\mathbb{R}^{n},\mathbb{R}^{D}\right)”.

If \mathcal{H} is given by (2) and EEE^{\prime}\subset E, then we write |E\left.\mathcal{H}\right|_{E^{\prime}} to denote the bundle (H(x))xE\left(H\left(x\right)\right)_{x\in E^{\prime}}, and refer to |E\mathcal{H}|_{E^{\prime}} as the restriction of \mathcal{H} to EE^{\prime}.

A “section” of the bundle \mathcal{H} in (2) is a vector-valued function FClocm(n,D)F\in C^{m}_{loc}(\mathbb{R}^{n},\mathbb{R}^{D}) such that JxFH(x)J_{x}F\in H(x) for all xEx\in E.

Note that sections FF belong to Clocm(n,D)C^{m}_{loc}\left(\mathbb{R}^{n},\mathbb{R}^{D}\right) by definition.

The bundle (2) is called “semialgebraic” if

{(x,P1,,PD):n𝒫𝒫:xE,(P1,,PD)H(x)}\left\{\left(x,P_{1},\cdots,P_{D}\right):\mathbb{R}^{n}\oplus\mathcal{P\oplus\cdots\oplus\mathcal{P}}:x\in E,\left(P_{1},\cdots,P_{D}\right)\in H\left(x\right)\right\}

is a semialgebraic set.

We can now state our general problem.

Problem 3

Let =(H(x))xE\mathcal{H}=(H(x))_{x\in E} be a semialgebraic bundle with respect to Clocm(n,D)C^{m}_{loc}\left(\mathbb{R}^{n},\mathbb{R}^{D}\right). If \mathcal{H} has a section, does it necessarily have a semialgebraic section?

Again, we note that sections of \mathcal{H} must belong to ClocmC^{m}_{loc} for fixed mm, so we are not allowed to lose derivatives.

One checks easily that Problems 1 and 2 are instances of Problem 3.

Indeed, suppose ϕ:E\phi:E\rightarrow\mathbb{R} is semialgebraic, as in Problem 1. Set =(H(x))xE\mathcal{H=}\left(H\left(x\right)\right)_{x\in E}, where

H(x)={P𝒫:P(x)=ϕ(x)}.H\left(x\right)=\left\{P\in\mathcal{P}:P\left(x\right)=\phi\left(x\right)\right\}\text{.}

Then \mathcal{H} is a semialgebraic bundle, and a section of \mathcal{H} is precisely a function FClocm(n)F\in C^{m}_{loc}\left(\mathbb{R}^{n}\right) such that F=ϕF=\phi on EE.

Similarly, given an equation (1) as in Problem 2, set =(H(x))xn\mathcal{H=}\left(H\left(x\right)\right)_{x\in\mathbb{R}^{n}} with

H(x)={(P1,,PD)𝒫D:A1(x)P1(x)++AD(x)PD(x)=f(x)}.H\left(x\right)=\left\{\left(P_{1},\cdots,P_{D}\right)\in\mathcal{P}^{D}:A_{1}\left(x\right)P_{1}\left(x\right)+\cdots+A_{D}\left(x\right)P_{D}\left(x\right)=f\left(x\right)\right\}\text{.}

Then \mathcal{H} is a semialgebraic bundle, and a section of \mathcal{H} is precisely a solution F=(F1,,FD)Clocm(n,D)F=\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n},\mathbb{R}^{D}\right) of equation (1).

In this paper, we settle the two-dimensional case of Problem 3.

Theorem 1

Let \mathcal{H} be a semialgebraic bundle with respect to Clocm(2,D).C^{m}_{loc}\left(\mathbb{R}^{2},\mathbb{R}^{D}\right). If \mathcal{H} has a section, then it has a semialgebraic section.

We give a quick sketch of the proof of Theorem 1.

By a change of coordinates and a partition of unity, we may localize the problem to a small thin wedge

Γ(c)={(x1,x2)2:x1[0,c],0x2x1}.\Gamma(c)=\{(x_{1},x_{2})\in\mathbb{R}^{2}:x_{1}\in\left[0,c\right],0\leq x_{2}\leq x_{1}\}.

More precisely, it is enough to prove that |Γ(c)\mathcal{H}|_{\Gamma(c^{\prime})} has a section for sufficiently small cc^{\prime}.

We may assume also that our bundle =(H(x1,x2))(x1,x2)Γ(c)\mathcal{H=}\left(H\left(x_{1},x_{2}\right)\right)_{\left(x_{1},x_{2}\right)\in\Gamma\left(c\right)} satisfies H((0,0))={0}H\left(\left(0,0\right)\right)=\left\{0\right\}.

We analyze what it means for a given F=(F1,,FD)Clocm(n,D)F=\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n},\mathbb{R}^{D}\right) with J(0,0)F=0J_{(0,0)}F=0 to be a section of \mathcal{H}. Our analysis produces finitely many semialgebraic curves γ1,γ2,,γsmax\gamma_{1},\gamma_{2},\cdots,\gamma_{s_{\max}} in Γ(c)\Gamma\left(c\right), and we find that FF is a section of \mathcal{H} if and only if

  • F(x1,x2)F\left(x_{1},x_{2}\right) and its x2x_{2}-derivatives up to order mm satisfy finitely many linear equations on the γs\gamma_{s} and

  • FF satisfies finitely many linear equations on Γ(c)(γ1γsmax).\Gamma(c)\setminus\left(\gamma_{1}\cup\cdots\cup\gamma_{s_{\max}}\right).

The curves γs\gamma_{s} have the form γs={(x,ψs(x)):x[0,c]}\gamma_{s}=\left\{\left(x,\psi_{s}\left(x\right)\right):x\in\left[0,c\right]\right\} for semialgebraic functions ψ1,,ψsmax\psi_{1},\cdots,\psi_{s_{\max}} of one variable.

The heart of our proof is to use the above characterization to produce finitely many linear equations and inequalities for unknown functions ξskl(x)\xi_{sk}^{l}\left(x\right) of one variable (l=0,,m;k=1,,D;s=1,,smaxl=0,\cdots,m;k=1,\cdots,D;s=1,\cdots,s_{\max}) with the following properties:

(A)

If F=(F1,,FD)Clocm(2,D)F=\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{2},\mathbb{R}^{D}\right) is a section of \mathcal{H} then the functions

(3) ξskl(x1)=x2lFk(x1,x2)|x2=ψs(x1)\xi_{sk}^{l}\left(x_{1}\right)=\left.\partial_{x_{2}}^{l}F_{k}\left(x_{1},x_{2}\right)\right|_{x_{2}=\psi_{s}\left(x_{1}\right)}

satisfy the above equations and inequalities for x[0,c]x\in\left[0,c\right]; and conversely

(B)

If semialgebraic functions ξskl(x)\xi_{sk}^{l}\left(x\right) satisfy the above equations and inequalities for x[0,c]x\in\left[0,c\right], then for some small c<cc^{\prime}<c there exists a semialgebraic section F=(F1,,FD)F=\left(F_{1},\cdots,F_{D}\right) of |Γ(c)\mathcal{H}|_{\Gamma{(c}^{\prime}{)}} such that (3) holds for x[0,c]x\in\left[0,c^{\prime}\right].

We can easily deduce Theorem 1 from (A) and (B), as follows.

Because |Γ(c)\mathcal{H}|_{\Gamma\left(c\right)} has a section, (A) tells us that the relevant equations and inequalities for the ξskl\xi_{sk}^{l} admit a solution.

Because all functions appearing in those equations and inequalities are semialgebraic (except perhaps the unknowns ξskl\xi_{sk}^{l}), it follows easily that we may take the ξskl(x)\xi_{sk}^{l}\left(x\right) to depend semialgebraically on xx. Thanks to (B), we obtain a semialgebraic section of |Γ(c)\mathcal{H}|_{\Gamma\left(c^{\prime}\right)}, completing the proof of Theorem 1. See Section 7 for details.

Let us recall some of the literature regarding Problems 1, 2, 3. The literature on Whitney’s extension problem goes back to the seminal works of H. Whitney [41, 42], and includes fundamental contributions by G. Glaeser [31], Yu. Brudnyi and P. Shvartsman [8, 10, 11, 9], E. Bierstone, P. Milman, and W. Pawłucki [4, 5, 3], as well as our own papers [13, 14, 15, 16, 17, 18, 20, 19, 21, 22, 23, 24, 25, 26]. In the semialgebraic (and oo-minimal) setting , the analogue of the classical Whitney extension theorem is due to K. Kurdyka and W. Pawłucki [34] and A. Thamrongthanyalak [39].

Problem 1 in the setting of Cloc1(n)C^{1}_{loc}\left(\mathbb{R}^{n}\right) was settled affirmatively by M. Aschenbrenner and A. Thamrongthanyalak [1]. Our results on Problem 3 imply an affirmative solution for Clocm(2)C^{m}_{loc}\left(\mathbb{R}^{2}\right). For Clocm(n)C^{m}_{loc}\left(\mathbb{R}^{n}\right) with m2m\geq 2 and n3n\geq 3, Problems 1, 2, 3 remain open.

The problem of deciding whether a (possibly underdetermined) system of linear equations of the form (1) admits a Cloc0C^{0}_{loc} solution was proposed by Brenner [7], and Epstein-Hochster [12]. Two independent solutions to this problem appear in Fefferman-Kollár [27]. Fefferman-Luli [30] solved the analogous problem for ClocmC^{m}_{loc} (m1)\left(m\geq 1\right). See also [29].

Kollár-Nowak [33] proved by example that an equation of the form (1) may fail to admit a solution by Cloc0C^{0}_{loc}-rational functions, even though A1,,ADA_{1},\cdots,A_{D} and ff are polynomials and a Cloc0C^{0}_{loc} solution (F1,,FD)\left(F_{1},\cdots,F_{D}\right) exists. They showed that x13x2f1+(x13(1+x32)x23)f2=x14x_{1}^{3}x_{2}f_{1}+(x_{1}^{3}-(1+x_{3}^{2})x_{2}^{3})f_{2}=x_{1}^{4} has a continuous semialgebraic solution but no continuous rational solution (f1,f2)Cloc0(3,2)(f_{1},f_{2})\in C^{0}_{loc}(\mathbb{R}^{3},\mathbb{R}^{2}). However, [40] shows that a semialgebraic Cloc0C^{0}_{loc} solution exists, and [33] shows that a solution by Cloc0C^{0}_{loc} semialgebraic functions exists for Problems 1 and 2 posed over 2\mathbb{R}^{2}, again provided A1,,AD,fA_{1},\cdots,A_{D},f are polynomials.

A recent paper of Bierstone-Campesato-Milman [2] shows that given a system of equations (1) with semialgebraic data AiA_{i}, ff, there exists a function r:r:\mathbb{N}\rightarrow\mathbb{N} independent of ff such that if the system (1) admits a Clocr(m)C^{r(m)}_{loc} solution, then it admits a semialgebraic ClocmC^{m}_{loc} solution. The result of Bierstone-Campesato-Milman is more general than the version stated above; it applies to suitable oo-minimal structures.

Acknowledgement. We are grateful to Matthias Aschenbrenner, Edward Bierstone, Jean-Baptiste Campesato, Fushuai (Black) Jiang, Bo’az Klartag, János Kollár, Pierre Milman, Assaf Naor, Kevin O’Neill, Wiesław Pawłucki, and Pavel Shvartsman for their interest and valuable comments. We would also like to thank the participants of the 11-th Whitney workshop for their interest in our work, and we thank Trinity College Dublin, for hosting the workshop. The first author is supported by the Air Force Office of Scientific Research (AFOSR), under award FA9550-18-1-0069, the National Science Foundation (NSF), under grant DMS-1700180, and the US-Israel Binational Science Foundation (BSF), under grant 2014055. The second author is supported by NSF Grant DMS-1554733 and the UC Davis Chancellor’s Fellowship.

2 Notation and Preliminaries

A function f:nf:\mathbb{R}^{n}\rightarrow\mathbb{R} is called a Nash function if it is real-analytic and semialgebraic.

Write B(x,r)B(x,r) to denote the ball of radius rr about xx in n\mathbb{R}^{n}.

The dimension of a semialgebraic set EnE\subset\mathbb{R}^{n} is the maximum of the dimensions of all the imbedded (not necessarily compact) submanifolds of n\mathbb{R}^{n} that are contained in EE.

We recall a few definitions from the Introduction.

Fix m,n,Dm,n,D, and a subset EnE\subset\mathbb{R}^{n}. For each xEx\in E, let

(4) H(x)=f(x)+I(x)xDH\left(x\right)=f\left(x\right)+I\left(x\right)\subset\mathcal{R}_{x}^{D}

be given, where f(x)xDf\left(x\right)\in\mathcal{R}_{x}^{D} and I(x)xDI\left(x\right)\subset\mathcal{R}_{x}^{D} is an x\mathcal{R}_{x}-submodule. Then the family

=(H(x))xE\mathcal{H}=(H(x))_{x\in E}

is called a bundle over EE. H(x)H(x) is called the fiber of \mathcal{H} at xx.

When m,n,Dm,n,D are not clear from context, we speak of a “bundle with respect to Clocm(n,D)C^{m}_{loc}\left(\mathbb{R}^{n},\mathbb{R}^{D}\right)”.

If \mathcal{H} is given by (4) and EEE^{\prime}\subset E, then we write |E\left.\mathcal{H}\right|_{E^{\prime}} to denote the bundle (H(x))xE\left(H\left(x\right)\right)_{x\in E^{\prime}}, and refer to it as the restriction of \mathcal{H} to EE^{\prime}. If =(H(x))xE\mathcal{H}=(H(x))_{x\in E} and =(H(x))xE\mathcal{H}^{\prime}=(H^{\prime}(x))_{x\in E} are bundles, \mathcal{H}^{\prime} is called a subbundle of \mathcal{H} if H(x)H(x)H^{\prime}(x)\subset H(x) for all xEx\in E. We write \mathcal{H}\supset\mathcal{H}^{\prime} to denote that \mathcal{H}^{\prime} is a subbundle of \mathcal{H}.

What we called a “bundle” in [28] we now call a “classical bundle”.

The definition is as follows. Fix m,n,Dm,n,D. Let EnE\subset\mathbb{R}^{n} be compact. A classical bundle over EE is a family =(H(x))xE\mathcal{{H}}=\left({H}\left(x\right)\right)_{x\in E} of (possibly empty) affine subspaces H(x)𝒫D{H}\left(x\right)\subset\mathcal{P}^{D}, parametrized by the points xEx\in E, such that each non-empty H(x){H}\left(x\right) has the form

H(x)=Px+I(x){H}\left(x\right)=\vec{P}^{x}+\vec{I}\left(x\right)

for some Px𝒫D\vec{P}^{x}\in\mathcal{P}^{D} and some x\mathcal{R}_{x}-submodule I(x)\vec{I}\left(x\right) of 𝒫D\mathcal{P}^{D}.

When m,n,Dm,n,D are not clear from context, we speak of a “classical bundle with respect to Cm(n,D)C^{m}(\mathbb{R}^{n},\mathbb{R}^{D})”.

We remark again that our notion of bundle differs from the notion of bundles considered previously (e.g., [28]). In the present version, we do not require that EE be compact and we require all the fibers H(x)H(x) to be non-empty.

A section of the bundle \mathcal{H} is a vector-valued function FClocm(n,D)F\in C_{loc}^{m}(\mathbb{R}^{n},\mathbb{R}^{D}) such that JxFH(x)J_{x}F\in H(x) for all xEx\in E. A section of a classical bundle \mathcal{H} is a vector-valued function FCm(n,D)F\in C^{m}(\mathbb{R}^{n},\mathbb{R}^{D}) such that JxFH(x)J_{x}F\in H(x) for all xEx\in E.

3 Tools

3.1 Glaeser Refinements, Stable Glaeser Refinements

Given a bundle =(H(x))xE\mathcal{H}=(H(x))_{x\in E} for Clocm(n,D)C^{m}_{loc}(\mathbb{R}^{n},\mathbb{R}^{D}) or a classical bundle =(H(x))xE\mathcal{H}=(H(x))_{x\in E} for Cm(n,D)C^{m}(\mathbb{R}^{n},\mathbb{R}^{D}), we define the Glaeser refinement =(H(x))xE\mathcal{H}^{\prime}=(H^{\prime}(x))_{x\in E} as follows:

(GR)

Let x0Ex_{0}\in E. A given P0H(x0)P_{0}\in H(x_{0}) belongs to H(x0)H^{\prime}(x_{0}) if and only if the following holds. Given ϵ>0\epsilon>0, there exists δ>0\delta>0 such that for all x1,,xkB(x0,δ)Ex_{1},\cdots,x_{k}\in B(x_{0},\delta)\cap E, where kk is a large enough constant depending only on mm, nn, and DD, there exist PiH(xi)P_{i}\in H(x_{i}) (i=1,,ki=1,\cdots,k), such that

|α(PiPj)(xi)|ϵ|xixj|m|α|,\left|\partial^{\alpha}(P_{i}-P_{j})(x_{i})\right|\leq\epsilon|x_{i}-x_{j}|^{m-|\alpha|},

for all |α|m,0i,jk|\alpha|\leq m,0\leq i,j\leq k.

A bundle or a classical bundle \mathcal{H} is Glaeser stable if =\mathcal{H}^{\prime}=\mathcal{H}.

Note that the Glaeser refinement \mathcal{H}^{\prime} of \mathcal{H} may have empty fibers, even if \mathcal{H} has none. In that case, we know that \mathcal{H} has no sections. If \mathcal{H} is a classical bundle, then so is \mathcal{H}^{\prime}. If \mathcal{H} is a bundle and no fibers of \mathcal{H}^{\prime} are empty, then \mathcal{H}^{\prime} is a bundle. Both for bundles and for classical bundles, every section of \mathcal{H} is a section of \mathcal{H}^{\prime}. (See [28] for the case of classical bundles; the elementary proofs carry over unchanged for bundles.) Note in particular that if a given bundle \mathcal{H} has a section, then \mathcal{H}^{\prime} has no empty fibers, hence \mathcal{H}^{\prime} is a bundle and \mathcal{H}^{\prime} has a section.

Starting from a classical bundle \mathcal{H}, or a bundle \mathcal{H} with a section, we can perform iterated Glaeser refinement to pass to ever smaller subbundles (1)\mathcal{H}^{\left(1\right)}, (2)\mathcal{H}^{\left(2\right)}, etc., without losing sections. We set (0)=\mathcal{H}^{\left(0\right)}=\mathcal{H}, and for l0l\geq 0, we set (l+1)=((l))\mathcal{H}^{\left(l+1\right)}=\left(\mathcal{H}^{\left(l\right)}\right)^{\prime}. Thus, by an obvious induction on ll, we have =(0)(1)\mathcal{H=\mathcal{H}}^{\left(0\right)}\supset\mathcal{H}^{\left(1\right)}\supset\cdots, yet \mathcal{H} and (l)\mathcal{H}^{\left(l\right)} have the same sections for all l0l\geq 0.

If =(H(x))xE\mathcal{H}=(H(x))_{x\in E} is a semialgebraic bundle with respect to Clocm(n,D)C^{m}_{loc}(\mathbb{R}^{n},\mathbb{R}^{D}), by an obvious induction on ll, we have H(l)(x)H^{(l)}(x) depends semialgebraically on xx, where (l)=(H(l)(x))xE.\mathcal{H}^{(l)}=(H^{(l)}(x))_{x\in E}.

In principle, each (l)\mathcal{H}^{\left(l\right)} can be computed from \mathcal{H}. We remark that iterated Glaeser refinement stabilizes after finitely many iterations (i.e. for a large enough integer ll^{*} determined by m,n,Dm,n,D, we have (l+1)=(l)\mathcal{H}^{(l^{*}+1)}=\mathcal{H}^{(l^{*})}; thus (l)\mathcal{H}^{(l^{*})} is Glaeser stable. See [28] for the case of classical bundles; the argument, which goes back to Glaeser [31] and Bierstone-Milman-Pawłucki [4, 5], applies unchanged for bundles. We call (l)\mathcal{H}^{(l^{*})} the stable Glaeser refinement of \mathcal{H}.)

The main results of [28] give the following

Theorem 2

For a large enough integer constant ll_{\ast} determined by m,n,m,n, and DD, the following holds. Let \mathcal{H} be a classical bundle with respect to Cm(n,D)C^{m}\left(\mathbb{R}^{n},\mathbb{R}^{D}\right). Let (0),(1),(2),\mathcal{H}^{\left(0\right)},\mathcal{H}^{\left(1\right)},\mathcal{H}^{\left(2\right)},\cdots be its iterated Glaeser refinements. Then \mathcal{H} has a section if and only if (l)\mathcal{H}^{\left(l_{\ast}\right)} has no empty fibers. Suppose (l)\mathcal{H}^{\left(l_{\ast}\right)} has no empty fibers. Let x0Ex_{0}\in E and let P0P_{0} belong to the fiber of (l)\mathcal{H}^{\left(l_{\ast}\right)} at x0x_{0}. Then there exists a section FF of the bundle \mathcal{H}, such that Jx0(F)=P0J_{x_{0}}(F)=P_{0}. Moreover, there exists a constant k#k^{\#} depending only on m,n,m,n, and DD such that the following holds: Suppose =(H(x))xE\mathcal{H}=(H(x))_{x\in E} is a Glaeser stable classical bundle. Assume the following holds for some constant M>0M>0:

  • Given x1,xk#Ex_{1},\cdots x_{k^{\#}}\in E, there exist polynomials P1,,Pk#𝒫DP_{1},\cdots,P_{k^{\#}}\in\mathcal{P}^{D}, with PiH(xi)P_{i}\in H(x_{i}) for 1ik#1\leq i\leq k^{\#}; |αPi(xi)|M|\partial^{\alpha}P_{i}(x_{i})|\leq M for all |α|m,1ik#|\alpha|\leq m,1\leq i\leq k^{\#}; and |α(PiPj)(xj)|M|xixj|m|α||\partial^{\alpha}(P_{i}-P_{j})(x_{j})|\leq M|x_{i}-x_{j}|^{m-|\alpha|} for all |α|m,1i,jk#|\alpha|\leq m,1\leq i,j\leq k^{\#}.

Then there exists FCm(n,D)F\in C^{m}(\mathbb{R}^{n},\mathbb{R}^{D}) with FCm(n,D)C(m,n,D)M\|F\|_{C^{m}(\mathbb{R}^{n},\mathbb{R}^{D})}\leq C(m,n,D)M and Jx(F)H(x)J_{x}(F)\in H(x) for all xEx\in E.

3.2 Puiseux Series

We will use the following elementary result regarding semialgebraic functions. For a proof, see [32].

Lemma 3.1

Suppose f:f:\mathbb{R}\rightarrow\mathbb{R} is semialgebraic. Then there exists a polynomial P(z,x)0P\left(z,x\right)\not\equiv 0 on 2\mathbb{R}^{2} such that P(f(x),x)0P\left(f\left(x\right),x\right)\equiv 0. Moreover, for each x0x_{0}\in\mathbb{R} there exists δ>0\delta>0 such that f(x)f\left(x\right) for x(x0,x0+δ)x\in(x_{0},x_{0}+\delta) is given by a convergent Puiseux series.

Corollary 3.1

Let F(x)F(x) be a semialgebraic function of one variable, satisfying |F(x)|=O(xp)|F(x)|=O(x^{p}) on (0,c](0,c] for some given pp. Then the derivatives of FF satisfy |F(k)(x)|=O(xpk)|F^{(k)}(x)|=O(x^{p-k}) on (0,c](0,c^{\prime}] for some cc^{\prime}. Similarly, if F(x)=o(xp)F(x)=o(x^{p}) for xx in (0,c)(0,c), then F(k)(x)=o(xpk)F^{(k)}(x)=o(x^{p-k}) for xx in (0,c)(0,c^{\prime}). More generally, |F(k)(x)|=O(|F(x)|/xk)|F^{(k)}(x)|=O(|F(x)|/x^{k}) on (0,c)(0,c^{\prime}).

Corollary 3.2

Let FF be a semialgebraic function in Clocm(Ω1)C^{m}_{loc}(\Omega_{1}), where Ωδ={(x,y)2:0yx<δ}\Omega_{\delta}=\{(x,y)\in\mathbb{R}^{2}:0\leq y\leq x<\delta\} for δ>0\delta>0. Then for small enough δ\delta, F|ΩδF|_{\Omega_{\delta}} extends to a CmC^{m} semialgebraic function on 2\mathbb{R}^{2}.

Sketch of proof. The result follows in one line from known results, but we sketch an elementary proof.

Without loss of generality, we may suppose that J(0,0)F=0J_{(0,0)}F=0. Then x2kF(x1,0)=o(x1mk)\partial_{x_{2}}^{k}F(x_{1},0)=o(x_{1}^{m-k}) for kmk\leq m, hence x1lx2kF(x1,0)=o(x1mkl)\partial_{x_{1}}^{l}\partial_{x_{2}}^{k}F(x_{1},0)=o(x_{1}^{m-k-l}) for 0k,lm0\leq k,l\leq m.

We set F~(x1,x2)\tilde{F}(x_{1},x_{2}) equal to the m-th degree Taylor polynomial of x2F(x1,x2)x_{2}\mapsto F(x_{1},x_{2}) about x2=0x_{2}=0 for each fixed x1x_{1}. The above estimates for derivatives of FF show that F~\tilde{F} is CmC^{m} on Ω~δ={(x1,x2):0x2x1δ}\tilde{\Omega}_{\delta}=\{(x_{1},x_{2}):0\leq-x_{2}\leq x_{1}\leq\delta\}, and its x2x_{2}-derivatives up to order mm agree with those of FF on the x1x_{1}-axis. In particular, J(0,0)F~=0J_{(0,0)}\tilde{F}=0.

Similarly, we set F#(x1,x2)F^{\#}(x_{1},x_{2}) equal to the m-th degree Taylor polynomial of x2F(x1,x2)x_{2}\mapsto F(x_{1},x_{2}) about x2=x1x_{2}=x_{1} for each fixed x1x_{1}. Then F#F^{\#} is CmC^{m} on Ωδ#={(x1,x2):0x1x22x12δ}\Omega^{\#}_{\delta}=\{(x_{1},x_{2}):0\leq x_{1}\leq x_{2}\leq 2x_{1}\leq 2\delta\}, and its x2x_{2}-derivatives up to order mm agree with those of FF on the line x1=x2x_{1}=x_{2}. In particular, J(0,0)F#=0J_{(0,0)}F^{\#}=0.

Setting F+={Fon ΩδF~on Ω~δF#on Ωδ#F^{+}=\begin{cases}F&\mbox{on }\Omega_{\delta}\\ \tilde{F}&\mbox{on }\tilde{\Omega}_{\delta}\\ F^{\#}&\mbox{on }\Omega^{\#}_{\delta}\end{cases}, we see that F+F^{+} is a CmC^{m} semialgebraic function on {(x1,x2):x1[0,δ],x1x22x1},F+=F\{(x_{1},x_{2}):x_{1}\in[0,\delta],-x_{1}\leq x_{2}\leq 2x_{1}\},F^{+}=F on Ωδ\Omega_{\delta}, and J(0,0)F+=0J_{(0,0)}F^{+}=0.

Next, let θ(t)\theta(t) be a CmC^{m} semialgebraic function of one variable, equal to 1 in [0,1][0,1] and supported in [1,2][-1,2]. Then, for small enough δ\delta, the function F++(x1,x2)=θ(x2x1)F+(x1,x2)F^{++}(x_{1},x_{2})=\theta(\frac{x_{2}}{x_{1}})\cdot F^{+}(x_{1},x_{2}) for x1>0x_{1}>0, F++(x1,x2)=0F^{++}(x_{1},x_{2})=0 otherwise, is a CmC^{m} semialgebraic function on the disc B(0,δ)B(0,\delta) that agrees with our given FF on Ωδ\Omega_{\delta}.

Finally, multiplying F++F^{++} by a semialgebraic cutoff function supported in a small disc about (0,0)(0,0) and equal to 11 in a smaller disc, we obtain a CmC^{m} semialgebraic function on 2\mathbb{R}^{2} that agrees with FF on Ωδ\Omega_{\delta} for small enough δ\delta.   

3.3 Singularities of Semialgebraic Sets and Functions

We recall a few standard properties of semialgebraic sets and functions.

  • Let UnU\subset\mathbb{R}^{n} be an open semialgebraic set, and let F:UkF:U\rightarrow\mathbb{R}^{k} be semialgebraic. Then there exists a semialgebraic subset XUX\subset U of dimension less than nn (the “singular set” of FF) such that FF is real-analytic on UXU\setminus X. (See Chapter 8 in [6].)

  • A zero-dimensional semialgebraic set is finite. A one-dimensional semialgebraic set is a union of finitely many real-analytic arcs and finitely many points. (See Chapter 2 in [6].)

3.4 Existence of Semialgebraic Selections

For sets X,YX,Y, we denote a map Ξ\Xi from XX to the power set of YY by Ξ:XY\Xi:X\rightrightarrows Y and call such Ξ\Xi a set-valued map; a set-valued map Ξ\Xi is semialgebraic if {(x,y):yΞ(x)}\{(x,y):y\in\Xi(x)\} is a semialgebraic set. Let EnE\subset\mathbb{R}^{n} and Ξ:ED\Xi:E\rightrightarrows\mathbb{R}^{D}. A selection of Ξ\Xi is a map f:EDf:E\rightarrow\mathbb{R}^{D} such that f(x)Ξ(x)f(x)\in\Xi(x) for every xEx\in E. We recall the following well-known result regarding semialgebraic selection (see, for example, [36]).

Theorem 3

Let Ξ:ED\Xi:E\rightrightarrows\mathbb{R}^{D} be semialgebraic. If each Ξ(x)\Xi(x) is nonempty, then Ξ\Xi has a semialgebraic selection.

3.5 Growth of Semialgebraic Functions

Recall from [30] the following result

Lemma 3.2 (Growth Lemma)

Let En1E\subset\mathbb{R}^{n_{1}} and E+E×n2E^{+}\subset E\times\mathbb{R}^{n_{2}} be compact and semialgebraic, with dimE+1\dim E^{+}\geq 1. Let AA be a semialgebraic function on E+E^{+}. Then there exist an integer K1K\geq 1, a semialgebraic function A1A_{1} on EE, and a compact semialgebraic set E¯+E+\underline{E}^{+}\subset E^{+}, with the following properties.

(GL1)

dimE¯+<dimE+\dim\underline{E}^{+}<\dim E^{+}.

For xEx\in E, set E+(x)={yn2:(x,y)E+}E^{+}\left(x\right)=\left\{y\in\mathbb{R}^{n_{2}}:\left(x,y\right)\in E^{+}\right\} and E¯+(x)={yn2:(x,y)E¯+}\underline{E}^{+}\left(x\right)=\left\{y\in\mathbb{R}^{n_{2}}:\left(x,y\right)\in\underline{E}^{+}\right\}. Then, for each xEx\in E, the following hold.

(GL2)

If E¯+(x)\underline{E}^{+}\left(x\right) is empty, then

|A(x,y)|A1(x) for all yE+(x).\left|A\left(x,y\right)\right|\leq A_{1}\left(x\right)\text{ for all }y\in E^{+}\left(x\right).
(GL3)

If E¯+(x)\underline{E}^{+}\left(x\right) is non-empty, then

|A(x,y)|A1(x)[dist(y,E¯+(x))]K for all yE+(x)E¯+(x).\left|A\left(x,y\right)\right|\leq A_{1}\left(x\right)\cdot\left[\text{dist}\left(y,\underline{E}^{+}\left(x\right)\right)\right]^{-K}\text{ for all }y\in E^{+}\left(x\right)\setminus\underline{E}^{+}\left(x\right).

The Growth Lemma follows easily from a special of a theorem of Łojasiewicz and Wachta [35], as explained in [30]. We thank W. Pawłucki for teaching us that implication.

We will apply the Growth Lemma to prove the following.

Lemma 3.3

Let F(x,y)F\left(x,y\right) be a bounded semialgebraic function on [1,1]×(0,1],\left[-1,1\right]\times(0,1], and suppose that

(5) limy0+F(x,y)=0 for each x[1,1].\lim_{y\rightarrow 0^{+}}F\left(x,y\right)=0\text{ for each }x\in\left[-1,1\right]\text{.}

Then there exist a positive integer NN and a semialgebraic function A(x)A\left(x\right) on [1,1]\left[-1,1\right] such that

F(x,y)A(x)y1N for all (x,y)[1,1]×(0,1].F\left(x,y\right)\leq A\left(x\right)y^{\frac{1}{N}}\text{ for all }\left(x,y\right)\in\left[-1,1\right]\times(0,1]\text{.}

Proof. It is enough to show that for some positive integer NN we have

(6) supy(0,1]|F(x,y)|y1/N< for all x[1,1],\sup_{y\in(0,1]}\frac{\left|F\left(x,y\right)\right|}{y^{1/N}}<\infty\text{ for all }x\in\left[-1,1\right]\text{,}

for we may then set A(x)=supy(0,1]|F(x,y)|y1/NA\left(x\right)=\sup_{y\in(0,1]}\frac{\left|F\left(x,y\right)\right|}{y^{1/N}}, and A(x)A\left(x\right) will depend semialgebraically on xx.

For each fixed xx, the function yF(x,y)y\mapsto F\left(x,y\right) is bounded and given near (0,0)\left(0,0\right) by a convergent Puiseux series that tends to zero as y0+y\rightarrow 0^{+}. Hence, for some positive integer NxN_{x} we have

(7) supy(0,1]|F(x,y)|y1/Nx<.\sup_{y\in(0,1]}\frac{\left|F\left(x,y\right)\right|}{y^{1/N_{x}}}<\infty\text{.}

Our task is to show that NxN_{x} may be taken independent of x.x. Thanks to (7), we may exclude from consideration any given finite set of “bad” x[1,1]x\in\left[-1,1\right].

We recall our main hypothesis (5). For each (x,ε)[1,1]×(0,1]\left(x,\varepsilon\right)\in\left[-1,1\right]\times(0,1] there exists δ(0,1]\delta\in(0,1] such that (x,ε,δ)\left(x,\varepsilon,\delta\right) belongs to the semialgebraic set

{(x,ε,δ)[1,1]×(0,1]×(0,1]:|F(x,y)|ε for all y(0,δ]}.\left\{\left(x,\varepsilon,\delta\right)\in\left[-1,1\right]\times(0,1]\times(0,1]:\left|F\left(x,y\right)\right|\leq\varepsilon\text{ for all }y\in(0,\delta]\right\}.

Hence, there exists a semialgebraic function δ(x,ε)\delta\left(x,\varepsilon\right) mapping [1,1]×(0,1]\left[-1,1\right]\times(0,1] into (0,1](0,1] such that

(8) |F(x,y)|ε for y(0,δ(x,ε)],x[1,1],ε(0,1].\left|F\left(x,y\right)\right|\leq\varepsilon\text{ for }y\in(0,\delta\left(x,\varepsilon\right)],x\in\left[-1,1\right],\varepsilon\in(0,1].

We set δ(x,0)=1\delta\left(x,0\right)=1 for x[1,1]x\in\left[-1,1\right]. Then δ:[1,1]×[0,1](0,1]\delta:\left[-1,1\right]\times\left[0,1\right]\rightarrow(0,1] is semialgebraic and satisfies (8).

We now apply Lemma 3.2 to the function 1δ(x,ε)\frac{1}{\delta\left(x,\varepsilon\right)}.

Thus, we obtain a semialgebraic set E¯[1,1]×[0,1]\underline{E}\subset\left[-1,1\right]\times\left[0,1\right], a positive integer N,N, and a positive semialgebraic function δ¯(x)\underline{\delta}\left(x\right) on [1,1]\left[-1,1\right], with the following properties.

  • dimE¯1\dim\underline{E}\leq 1.

  • For x[1,1]x\in\left[-1,1\right], let E¯(x)={ε:(x,ε)E¯}\underline{E}\left(x\right)=\left\{\varepsilon:\left(x,\varepsilon\right)\in\underline{E}\right\}.

Then

(9) δ(x,ε)δ¯(x) (all ε>0) if E¯=\delta\left(x,\varepsilon\right)\geq\underline{\delta}\left(x\right)\text{ (all }\varepsilon>0\text{) if }\underline{E}=\emptyset

and

(10) δ(x,ε)δ¯(x)[dist(ε,E¯(x))]N (all εE¯(x)) if E¯.\delta\left(x,\varepsilon\right)\geq\underline{\delta}\left(x\right)\cdot\left[\text{dist}\left(\varepsilon,\underline{E}\left(x\right)\right)\right]^{N}\text{ (all }\varepsilon\not\in\underline{E}(x)\text{) if }\underline{E}\not=\emptyset\text{.}

Because dimE¯1,\dim\underline{E}\leq 1, there are at most finitely many x[1,1]x\in\left[-1,1\right] for which E¯(x)\underline{E}\left(x\right) is infinite.

As explained above, we may discard those “bad” xx, it is enough to prove (6) for all xx such that E¯(x)\underline{E}\left(x\right) is finite.

From now on, we restrict attention to “good” x,x, i.e., those xx for which E¯(x)\underline{E}\left(x\right) is finite.

Set

ε¯(x)={12min(E¯(x){0})1if E¯(x) contains points other than 0otherwise.\underline{\mathcal{\varepsilon}}\left(x\right)=\left\{\begin{array}[]{l}\frac{1}{2}\min\left(\underline{E}\left(x\right)\setminus\left\{0\right\}\right)\\ 1\end{array}\right.\begin{array}[]{l}\text{if }\underline{E}\left(x\right)\text{ contains points other than }0\\ \text{otherwise}\end{array}\text{.}

So ε¯(x)>0\underline{\mathcal{\varepsilon}}\left(x\right)>0 for all “good” xx.

If E¯(x)\underline{E}\left(x\right)\not=\emptyset, then dist(ε,E¯(x))ε\text{dist}\left(\varepsilon,\underline{E}\left(x\right)\right)\geq\varepsilon for 0<εε¯(x)0<\varepsilon\leq\underline{\mathcal{\varepsilon}}\left(x\right), hence (10) gives

(11) δ(x,ε)δ¯(x)εN for 0<εε¯(x).\delta\left(x,\varepsilon\right)\geq\underline{\delta}\left(x\right)\varepsilon^{N}\text{ for }0<\varepsilon\leq\underline{\varepsilon}\left(x\right)\text{.}

If instead E¯(x)=\underline{E}\left(x\right)=\emptyset, then because ε¯(x)=1,\underline{\mathcal{\varepsilon}}\left(x\right)=1, (9) again gives (11). Thus, (11) holds in all cases.

Now suppose 0<y<δ¯(x)(ε¯(x))N0<y<\underline{\delta}\left(x\right)\cdot\left(\underline{\varepsilon}\left(x\right)\right)^{N}.

Then, setting ε=(yδ¯(x))1/N\varepsilon=\left(\frac{y}{\underline{\delta}\left(x\right)}\right)^{1/N} and applying (11), we find that δ(x,ε)y.\delta\left(x,\varepsilon\right)\geq y. The defining property of δ(x,ε)\delta\left(x,\varepsilon\right) therefore tells us that

|F(x,y)|ε=(yδ¯(x))1/N.\left|F\left(x,y\right)\right|\leq\varepsilon=\left(\frac{y}{\underline{\delta}\left(x\right)}\right)^{1/N}\text{.}

Thus, for any “good” x,x, we have shown that

(12) |F(x,y)|y1/N(δ¯(x))1/N for 0<y<δ¯(x)(ε¯(x))N.\frac{\left|F\left(x,y\right)\right|}{y^{1/N}}\leq\left(\underline{\delta}\left(x\right)\right)^{-1/N}\text{ for }0<y<\underline{\delta}\left(x\right)\cdot\left(\underline{\varepsilon}\left(x\right)\right)^{N}\text{.}

On the other hand, recall that FF is bounded; say, |F(x,y)|M\left|F\left(x,y\right)\right|\leq M for all (x,y)[1,1]×(0,1]\left(x,y\right)\in\left[-1,1\right]\times(0,1].

Hence,

(13) |F(x,y)|y1/NM(δ¯(x))1/Nε¯(x) for δ¯(x)(ε¯(x))Ny1.\frac{\left|F\left(x,y\right)\right|}{y^{1/N}}\leq\frac{M}{\left(\underline{\delta}\left(x\right)\right)^{1/N}\underline{\varepsilon}\left(x\right)}\text{ for }\underline{\delta}\left(x\right)\cdot\left(\underline{\varepsilon}\left(x\right)\right)^{N}\leq y\leq 1\text{.}

Our desired estimate (6) is now immediate from (12) and (13).

The proof of Lemma 3.3 is complete.   

Similar ideas can be used to prove an nn-dimensional version of Lemma 3.3, but we don’t discuss it here.

3.6 Logarithmic Derivatives of Semialgebraic Functions

Let VV be a semialgebraic subset of n×m\mathbb{R}^{n}\times\mathbb{R}^{m}. Given xnx\in\mathbb{R}^{n}, we write V(x)V(x) to denote the set of all tmt\in\mathbb{R}^{m} such that (x,t)V(x,t)\in V. Given (x,t)n×m(x,t)\in\mathbb{R}^{n}\times\mathbb{R}^{m}, we write δV(x,t)\delta_{V}(x,t) to denote the distance from tt to V(x)V(x). We take δV(x,t)=+\delta_{V}(x,t)=+\infty if V(x)V(x) is empty. For a smooth function F(x,t)F(x,t) on n×m\mathbb{R}^{n}\times\mathbb{R}^{m}, we write tF(x,t)\nabla_{t}F(x,t) to denote the gradient of the function tF(x,t)t\mapsto F(x,t).

The following theorem is proven by A. Parusinski in [37, 38]. We thank Edward Bierstone, Jean-Baptiste Campesato, Pierre Milman, and Wieslaw Pawłucki for pointing out the references, and thus helping us remove 10 pages from our paper.

Theorem 4

Let F(x,t)F(x,t) be a (real-valued) subanalytic function of (x,t)n×m(x,t)\in\mathbb{R}^{n}\times\mathbb{R}^{m}. Then there exist a closed codimension 1 subanalytic set Vn×mV\subset\mathbb{R}^{n}\times\mathbb{R}^{m} and a constant C>0C>0 such that outside VV the function FF is smooth and moreover,

(14) |tF(x,t)|C|F(x,t)|δV(x,t).|\nabla_{t}F(x,t)|\leq C\frac{\left|F\left(x,t\right)\right|}{\delta_{V}\left(x,t\right)}\text{.}

If FF is semialgebraic, then we can take VV to be semialgebraic.

As a special case of Theorem 4, we have the following.

Theorem 5

Let F(x)F\left(x\right) be a semialgebraic function on n\mathbb{R}^{n}. Then there exist a closed semialgebraic VnV\subset\mathbb{R}^{n} of dimension at most (n1)\left(n-1\right), and a constant CC, such that FF is ClocmC^{m}_{loc} outside VV, and

|F(x)|C|F(x)|[dist(x,V)]1\left|\nabla F\left(x\right)\right|\leq C\left|F\left(x\right)\right|\cdot\left[\text{dist}\left(x,V\right)\right]^{-1}

for xnVx\in\mathbb{R}^{n}\setminus V.

3.7 Variant of Helly’s Theorem

We recall the following result from convex geometry. Surely more precise versions of the result are well known, but we had trouble tracking down a reference so we will provide a proof.

Theorem 6 (Helly’s Theorem Variant)

Let (pω)ωΩ(p_{\omega})_{\omega\in\Omega} be a family of seminorms on a vector space VV of dimension DD. Assume that supωΩpω(v)<\sup_{\omega\in\Omega}p_{\omega}(v)<\infty for every vVv\in V. Then there exist ω1,,ωLΩ\omega_{1},\cdots,\omega_{L}\in\Omega, with LL depending only on DD, such that

supωΩpω(v)Cmax{pω1(v),,pωL(v)} for all vV,\sup_{\omega\in\Omega}p_{\omega}(v)\leq C\cdot\max\{p_{\omega_{1}}(v),\cdots,p_{\omega_{L}}(v)\}\text{ for all }v\in V,

with CC also depending only on DD.

We use the following variant of the classical Helly theorem (see Section 3 in [14]) from elementary convex geometry.

Lemma 3.4

Let (Kω)ωΩ(K_{\omega})_{\omega\in\Omega} be a collection of compact convex symmetric subsets of D\mathbb{R}^{D}. Suppose the intersection of all the KωK_{\omega} has nonempty interior. Then there exist ω1,,ωL\omega_{1},\cdots,\omega_{L} such that Kω1KωLCωΩKωK_{\omega_{1}}\cap\cdots\cap K_{\omega_{L}}\subset C\cdot\bigcap_{\omega\in\Omega}K_{\omega}, where CC and LL depend only on DD.

The proof of the “Lemma on Convex Sets” in Section 3 of [14] applies here and proves Lemma 3.4, even though our present hypotheses differ slightly from those of [14].

We apply Lemma 3.4 to prove Theorem 6.

Proof of Theorem 6. Suppose first that each pωp_{\omega} is a norm, not just a seminorm. Then the conclusion of Theorem 6 follows by applying Lemma 3.4 to the family of convex sets Kω={vV:pω(v)1}K_{\omega}=\{v\in V:p_{\omega}(v)\leq 1\}, ωΩ{\omega\in\Omega}.

Now suppose each pωp_{\omega} is a seminorm. Let H(ω)={vV:pω(v)=0}H(\omega)=\{v\in V:p_{\omega}(v)=0\}, and let HH be the intersection of all the H(ω)H(\omega). Each H(ω)H(\omega) is a vector subspace of VV. Consequently there exist λ1,,λsΩ\lambda_{1},\cdots,\lambda_{s}\in\Omega, with sDs\leq D, such that H=H(λ1)H(λs)H=H(\lambda_{1})\cap\cdots\cap H(\lambda_{s}).

For ωΩ\omega\in\Omega and vVv\in V, set pω(v)=pλ1(v)++pλs(v)+pω(v)p^{*}_{\omega}(v)=p_{\lambda_{1}}(v)+\cdots+p_{\lambda_{s}}(v)+p_{\omega}(v). Then pωp^{*}_{\omega} is a seminorm on VV, and pω(v)=0p^{*}_{\omega}(v)=0 if and only if vHv\in H. Regarding each pωp^{*}_{\omega} as a norm on V/HV/H, and applying Theorem 6 for collections of norms, we complete the proof of Theorem 6.   

4 Preliminary Reductions

The purpose of this section is to reduce Theorem 1 to the following:

Lemma 4.1 (Main Lemma)

Let =(H(x))x2\mathcal{H}=(H(x))_{x\in\mathbb{R}^{2}} be a semialgebraic bundle for Clocm(2,D)C^{m}_{loc}(\mathbb{R}^{2},\mathbb{R}^{D}). Assume \mathcal{H} is Glaeser stable. Assume H(0)={0}H(0)=\{0\}. Then, for small enough c>0c>0, |Γ(c)\mathcal{H}|_{\Gamma(c)} has a semialgebraic section, where Γ(c)={(x1,x2)2:x1[0,c],0x2x1}.\Gamma(c)=\{(x_{1},x_{2})\in\mathbb{R}^{2}:x_{1}\in\left[0,c\right],0\leq x_{2}\leq x_{1}\}.

To deduce Theorem 1 from Lemma 4.1 we argue as follows.

Suppose we are given a Glaeser stable bundle =(H(x))x2\mathcal{H}=(H(x))_{x\in\mathbb{R}^{2}} for Clocm(2,D)C^{m}_{loc}(\mathbb{R}^{2},\mathbb{R}^{D}) with H(x)𝒫DH(x)\subset\mathcal{P}^{D} depending semialgebraically on xx. Assume H(0)={0}H(0)=\{0\}.

Let Γ(c)={(x1,x2)2:x1[0,c],0x2x1}\Gamma(c)=\{(x_{1},x_{2})\in\mathbb{R}^{2}:x_{1}\in\left[0,c\right],0\leq x_{2}\leq x_{1}\}. Theorem 2 tells us that |Γ(c)\mathcal{H}|_{\Gamma(c)} has a section FcF_{c}. The main lemma asserts that for cc small enough |Γ(c)\mathcal{H}|_{\Gamma(c)} has a semialgebraic section.

We will cover a full neighborhood of 0 by rotating wedges of the form Γ(c)\Gamma(c). Using a partition of unity subordinate to the cover and the fact that H(0)={0}H(0)=\{0\}, we can then patch together sections of \mathcal{H}, and obtain a semialgebraic section over a full neighborhood of 0.

We may drop the restriction H(0)={0}H(0)=\{0\}, because without loss of generality our given section FcF_{c} has jet 0 at the origin, so we may just cut down H(0)H(0) to {0}\{0\}. We can also drop the restriction that \mathcal{H} is Glaeser stable (assuming \mathcal{H} has a section) since we can always pass to the stable Glaeser refinement. Thus, any semialgebraic bundle having a section has a semialgebraic section over some neighborhood of 0. We can use compactness and a partition of unity to conclude that \mathcal{H} admits a semialgebraic section over any given compact set.

Lemma 4.2

Suppose H(z)H(z) depends semialgebraically on z2z\in\mathbb{R}^{2}. If =(H(z))z2\mathcal{H}=(H(z))_{z\in\mathbb{R}^{2}} has a section, then \mathcal{H} has a section FClocm(2,D)F\in C^{m}_{loc}(\mathbb{R}^{2},\mathbb{R}^{D}) such that for all |α|m|\alpha|\leq m, |αF(x)|C(1+|x|)K|\partial^{\alpha}F(x)|\leq C(1+|x|)^{K} on 2\mathbb{R}^{2}, for some CC and KK.

Proof. To prove this lemma, we may assume that \mathcal{H} is Glaeser stable.

Taking ER={x2:|x|R}E_{R}=\left\{x\in\mathbb{R}^{2}:\left|x\right|\leq R\right\} with R1R\geq 1, and applying Theorem 2, we obtain a section FRF_{R} of |ER\mathcal{H}|_{E_{R}}, with FRCmC(R)K\left|\left|F_{R}\right|\right|_{C^{m}}\leq C\left(R\right)^{K}, because the “MM ” in the result quoted above applied to |ER\mathcal{H}|_{E_{R}} can be taken to depend semialgebraically on RR. (That’s where we use the fact that the bundle \mathcal{H} is semialgebraic.)

We can now easily use a partition of unity to patch together F2kF_{2^{k}}, k=1,2,3,k=1,2,3,\cdots, into a section FF as in the conclusion of Lemma 4.2.   

Fix KK as in the conclusion of Lemma 4.2. Let Φ: Open Disc Δ2\Phi:\text{ Open Disc }\Delta\rightarrow\mathbb{R}^{2} be a semialgebraic diffeomorphism, for example, Φ(x)=x1|x|2\Phi(x)=\frac{x}{1-|x|^{2}}. Let θ(x)>0\theta(x)>0 be a semialgebraic function on 2\mathbb{R}^{2} that tends to zero so rapidly that

α[(θF)Φ](y)0, for all |α|m as yΔ,\partial^{\alpha}[(\theta F)\circ\Phi](y)\rightarrow 0\text{, for all }|\alpha|\leq m\text{ as }y\rightarrow\partial\Delta,

whenever |αF(x)|C(1+|x|)K|\partial^{\alpha}F(x)|\leq C(1+|x|)^{K} on 2\mathbb{R}^{2}, |α|m|\alpha|\leq m.

We can now form a bundle \mathcal{H}^{*} as follows: For xx in Δ\Delta, the fiber H(x)H^{*}(x) consists of all Jx((θF)Φ)J_{x}((\theta F)\circ\Phi) for sections FF of the bundle \mathcal{H}.

The fibers of \mathcal{H}^{*} over points not in Δ\Delta are {0}\{0\}.

Then \mathcal{H}^{*} is a semialgebraic bundle admitting a section.

We have seen that semialgebraic bundles with sections have semialgebraic sections over any compact set. In particular, \mathcal{H}^{*} has a semialgebraic section \mathcal{F} over Δclosure\Delta^{\text{closure}}. Then Φ1(x)θ(x)\frac{\mathcal{F}\circ\Phi^{-1}(x)}{\theta(x)} is a semialgebraic section of \mathcal{H} over 2\mathbb{R}^{2}.

Consequently, we can deduce Theorem 1 from Lemma 4.1.

The rest of the paper is devoted to the proof of Lemma 4.1.

5 Characterization of Sections

5.1 Semialgebraic Bundles

Fix UnU\subset\mathbb{R}^{n} open, semialgebraic. Fix ψ:Uk\psi:U\rightarrow\mathbb{R}^{k} Nash. Let ψ^(x)=(x,ψ(x))n×k\hat{\psi}(x)=(x,\psi(x))\in\mathbb{R}^{n}\times\mathbb{R}^{k} for xUx\in U. We set U^=ψ^(U)\hat{U}=\hat{\psi}(U). Let 𝒫\mathcal{P} denote the vector space of polynomials of degree at most mm on n×k\mathbb{R}^{n}\times\mathbb{R}^{k}. We write z=(x,y)z=(x,y) to denote a point of n×k\mathbb{R}^{n}\times\mathbb{R}^{k}. We write z\mathcal{R}_{z} to denote the ring obtained from 𝒫\mathcal{P} by multiplication of mm-jets at zz. We fix a bundle =(H(z))zU^\mathcal{H}=(H(z))_{z\in\hat{U}}, where, for each z=ψ^(x)U^z=\hat{\psi}(x)\in\hat{U} we have H(z)=fx+I(x)H(z)=f^{x}+I(x), fx𝒫Df^{x}\in\mathcal{P}^{D}, I(x)I(x) an ψ^(x)\mathcal{R}_{\hat{\psi}(x)}-submodule of 𝒫D\mathcal{P}^{D}. (We point out that \mathcal{H} is a bundle, not a classical bundle, see Remark 1.1.)

We suppose \mathcal{H} is Glaeser stable. We assume that H(z)H(z) depends semialgebraically on zU^z\in\hat{U}. (We sometimes abuse notion by writing I(z)I(z) for I(x)I(x), where z=ψ^(x)z=\hat{\psi}(x).)

Under the above assumptions and definitions, we will prove the following result.

Lemma 5.1

There exist a semialgebraic set UbadnU_{\text{bad}}\subset\mathbb{R}^{n} of dimension less than nn; Nash functions Ajβi,GiA_{j\beta}^{i},G^{i} on UUbadU\setminus U_{\text{bad}} (i=1,,imax,j=1,,D,βi=1,\cdots,i_{\max},j=1,\cdots,D,\beta a multiindex of order m\leq m for k\mathbb{R}^{k}) with the following property. Let BUUbadB\subset U\setminus U_{\text{bad}} be a closed ball. Set B^=ψ^(B)\hat{B}=\hat{\psi}(B). Let F=(F1,,FD)Clocm(n×k,D)F=(F_{1},\cdots,F_{D})\in C^{m}_{loc}(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}). Then FF is a section of |B^\mathcal{H}|_{\hat{B}} if and only if |β|mj=1DAjβi(x)(yβFj(x,ψ(x)))=Gi(x)\sum_{|\beta|\leq m}\sum_{j=1}^{D}A_{j\beta}^{i}(x)\cdot(\partial_{y}^{\beta}F_{j}(x,\psi(x)))=G^{i}(x) for all xBx\in B (each ii).

Proof. We may suppose that fxf^{x} and I(x)I(x) depend semialgebraically on xUx\in U. We write fx=(f1x,,fDx)f^{x}=(f_{1}^{x},\cdots,f_{D}^{x}) and ψ(x)=(ψ1(x),,ψk(x))(xU)\psi(x)=(\psi_{1}(x),\cdots,\psi_{k}(x))\quad(x\in U).

For l=1,,nl=1,\cdots,n, we introduce the vector field

Xl=xl+p=1kψp(x)xlypon U×k.X_{l}=\frac{\partial}{\partial x_{l}}+\sum_{p=1}^{k}\frac{\partial\psi_{p}(x)}{\partial x_{l}}\frac{\partial}{\partial y_{p}}\text{on }U\times\mathbb{R}^{k}.

On U×kU\times\mathbb{R}^{k}, then XlX_{l} are Nash, and [Xl,Xl]=0[X_{l},X_{l^{\prime}}]=0. For α=(α1,,αn)\alpha=(\alpha_{1},\cdots,\alpha_{n}), we write Xα=X1α1XnαnX^{\alpha}=X_{1}^{\alpha_{1}}\cdots X_{n}^{\alpha_{n}}.

The X1,,XnX_{1},\cdots,X_{n}, y1,,yk\frac{\partial}{\partial y_{1}},\cdots,\frac{\partial}{\partial y_{k}} form a frame on U×kU\times\mathbb{R}^{k}. Because I(x)I\left(x\right) depends semialgebraically on xUx\in U, we may express

  • (15)

    I(x)={(P1,,PD)𝒫D:|α|+|β|mj=1,,DA~jαβi(x)(XαyβPj)|ψ~(x)=0, for i=1,,imax}I\left(x\right)=\left\{\left(P_{1},\cdots,P_{D}\right)\in\mathcal{P}^{D}:\left.\sum_{\begin{subarray}{c}\left|\alpha\right|+\left|\beta\right|\leq m\\ j=1,\cdots,D\end{subarray}}\tilde{A}_{j\alpha\beta}^{i}\left(x\right)\left(X^{\alpha}\partial_{y}^{\beta}P_{j}\right)\right|_{\tilde{\psi}\left(x\right)}=0\text{, for }i=1,\cdots,i_{\max}\right\} for semialgebraic A~jαβi\tilde{A}_{j\alpha\beta}^{i} on UU.

We take Ubad1U_{\text{bad}}^{1} to be the union of the singular sets of the A~jαβi\tilde{A}_{j\alpha\beta}^{i}. Then Ubad1U_{\text{bad}}^{1} is a semialgebraic set of dimension <n<n in n\mathbb{R}^{n}, and the A~jαβi\tilde{A}_{j\alpha\beta}^{i} are real-analytic on UUbad1U\setminus U_{\text{bad}}^{1}.

We may therefore rewrite the equation in ((15)) in the form

|α|+|β|mj=1,,D(Xα{Ajαβi(x)yβPj})|ψ^(x)=0.\left.\sum_{\begin{subarray}{c}\left|\alpha\right|+\left|\beta\right|\leq m\\ j=1,\cdots,D\end{subarray}}\left(X^{\alpha}\left\{A_{j\alpha\beta}^{i}\left(x\right)\partial_{y}^{\beta}P_{j}\right\}\right)\right|_{\hat{\psi}\left(x\right)}=0\text{.}

The AjαβiA_{j\alpha\beta}^{i} are Nash on UUbad1U\setminus U_{\text{bad}}^{1}. Thus, for any closed ball BUUbad1B\subset U\setminus U_{\text{bad}}^{1} the following holds. (We set B^=ψ^(B)\hat{B}=\hat{\psi}\left(B\right).)

A given F=(F1,,FD)Clocm(n×k,D)F=\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}\right) is a section of (I(z))zB^\left(I\left(z\right)\right)_{z\in\hat{B}} if and only if

|α|mXα{|β|m|α|Ajαβi(x)yβFj(x,y)}=0 on B^ for all i.\sum_{\left|\alpha\right|\leq m}X^{\alpha}\left\{\sum_{\left|\beta\right|\leq m-\left|\alpha\right|}A_{j\alpha\beta}^{i}\left(x\right)\partial_{y}^{\beta}F_{j}\left(x,y\right)\right\}=0\text{ on }\hat{B}\text{ for all }i\text{.}

We look for integers s0s\geq 0 for which there exist Nash functions AjαβiA_{j\alpha\beta}^{i} on UUbad1U\setminus U_{\text{bad}}^{1} with the following property (“Property (s)\prod\left(s\right)”):

Let BUUbad1B\subset U\setminus U_{\text{bad}}^{1} be a closed ball; set B^=ψ^(B)\hat{B}=\hat{\psi}\left(B\right). Then (F1,,FD)Clocm(n×k,D)\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}\right) is a section of (I(z))zB^\left(I\left(z\right)\right)_{z\in\hat{B}} if and only if

(17) |α|sXα{|β|m|α|j=1DAjαβi(x)yβFj(x,y)}=0 on B^ for all i.\sum_{\left|\alpha\right|\leq s}X^{\alpha}\left\{\sum_{\left|\beta\right|\leq m-\left|\alpha\right|}\sum_{j=1}^{D}A_{j\alpha\beta}^{i}\left(x\right)\partial_{y}^{\beta}F_{j}\left(x,y\right)\right\}=0\text{ on }\hat{B}\text{ for all }i\text{.}

We have seen that we can achieve Property (m)\prod\left(m\right).

Claim 5.1

Let ss be the smallest possible integer 0\geq 0 for which we can achieve Property (s)\prod\left(s\right), and let AjαβiA_{j\alpha\beta}^{i} be as in Property (s)\prod\left(s\right). Then s=0s=0. In other words, Property (0)\prod(0) holds.

Proof of Claim 5.1. Assuming s1s\geq 1, we will achieve Property (s1)\prod(s-1), contradicting the fact that ss is as small as possible.

Fix BUUbad1B\subset U\setminus U_{\text{bad}}^{1} a closed ball, and let (F1,,FD)Clocm(n×k,D)(F_{1},\cdots,F_{D})\in C^{m}_{loc}(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}) be a section of (I(z))zB^(I(z))_{z\in\hat{B}}. (As always, B^=ψ(B)\hat{B}=\psi(B).) Fix x0Bx_{0}\in B and fix a multiindex α0\alpha_{0} with |α0|=s|\alpha_{0}|=s. For j=1,,Dj=1,\cdots,D, define functions on n×k\mathbb{R}^{n}\times\mathbb{R}^{k} by setting Fj#(z)=θFj(z)F_{j}^{\#}(z)=\theta\cdot F_{j}(z) where θC0(n×k)\theta\in C_{0}^{\infty}(\mathbb{R}^{n}\times\mathbb{R}^{k}) with jet (Jψ^(x0)θ)(x,y)=(xx0)α0(J_{\hat{\psi}(x_{0})}\theta)(x,y)=(x-x_{0})^{\alpha_{0}}.

Then (F1#,,FD#)Clocm(n×k,D)(F_{1}^{\#},\cdots,F_{D}^{\#})\in C^{m}_{loc}(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}) is a section of (I(z))zB^(I(z))_{z\in\hat{B}} because each I(z)I(z) is an z\mathcal{R}_{z}-submodule of zD\mathcal{R}_{z}^{D}.

Applying Property (s)\prod(s) to (F1#,,FD#)(F_{1}^{\#},\cdots,F_{D}^{\#}), we learn that

|β|m|α0|j=1DAjα0βi(x0)(yβFj)|ψ^(x0)=0 (all i).\left.\sum_{\left|\beta\right|\leq m-\left|\alpha_{0}\right|}\sum_{j=1}^{D}A_{j\alpha_{0}\beta}^{i}\left(x_{0}\right)\left(\partial_{y}^{\beta}F_{j}\right)\right|_{\hat{\psi}\left(x_{0}\right)}=0\text{ }\left(\text{all }i\right)\text{.}

This holds for all x0x_{0} and for all |α0|=s\left|\alpha_{0}\right|=s. Thus, if (F1,,FD)Clocm(n×k,D)\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}\right) is a section of (I(z))zB^\left(I\left(z\right)\right)_{z\in\hat{B}}, then

(18) |β|m|α|j=1DAjαβi(x)yβFj(x,y)=0\sum_{\left|\beta\right|\leq m-\left|\alpha\right|}\sum_{j=1}^{D}A_{j\alpha\beta}^{i}\left(x\right)\partial_{y}^{\beta}F_{j}\left(x,y\right)=0

on B^\hat{B} for all |α|=s\left|\alpha\right|=s and for all ii. Because the XjX_{j} are tangent to B^\hat{B}, it follows from (18) that

(19) Xα{|β|m|α|j=1DAjαβi(x)yβFj(x,y)}=0X^{\alpha}\left\{\sum_{\left|\beta\right|\leq m-\left|\alpha\right|}\sum_{j=1}^{D}A_{j\alpha\beta}^{i}\left(x\right)\partial_{y}^{\beta}F_{j}\left(x,y\right)\right\}=0

on B^\hat{B} for all |α|=s\left|\alpha\right|=s and for all ii. From (17) and (19), we conclude that

(20) |α|s1Xα{|β|m|α|j=1DAjαβi(x)yβFj(x,y)}=0\sum_{\left|\alpha\right|\leq s-1}X^{\alpha}\left\{\sum_{\left|\beta\right|\leq m-\left|\alpha\right|}\sum_{j=1}^{D}A_{j\alpha\beta}^{i}\left(x\right)\partial_{y}^{\beta}F_{j}\left(x,y\right)\right\}=0

on B^\hat{B} for all ii. Thus, any section of (I(z))zB^\left(I\left(z\right)\right)_{z\in\hat{B}} satisfies (18) and (20). Conversely, suppose (F1,,FD)Clocm(k×k,D)\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{k}\mathbb{\times\mathbb{R}}^{k},\mathbb{R}^{D}\right) satisfies (18) and (20). Then, because (18) implies (19), it follows that (17) holds, and consequently (F1,,FD)\left(F_{1},\cdots,F_{D}\right) is a section of (I(z))zB^\left(I\left(z\right)\right)_{z\in\hat{B}}. Thus, a given (F1,,FD)Clocm(n×k,D)\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}\right) is a section of (I(z))zB^\left(I\left(z\right)\right)_{z\in\hat{B}} if and only if (18) and (20) hold. If s1,s\geq 1, this implies that we have achieved Property (s1)\prod\left(s-1\right), contradicting the minimal character of ss, and establishing Claim 5.1.   

We return to the proof of Lemma 5.1. Because Property (s)\prod(s) holds with s=0s=0, there exist Nash functions AjβiA_{j\beta}^{i} on UUbad1U\setminus U_{\text{bad}}^{1}, for which the following (“Property \prod^{\ast}”) holds:

Let BUUbad1B\subset U\setminus U_{\text{bad}}^{1} be a closed ball. Set B^=ψ^(B)\hat{B}=\hat{\psi}\left(B\right). Then a given (F1,,FD)Clocm(n×k,D)\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}\right) is a section of (I(z))zB^\left(I\left(z\right)\right)_{z\in\hat{B}} if and only if

(21) |β|mj=1DAjβi(x)yβFj(x,y)=0 on B^ (all i).\sum_{\left|\beta\right|\leq m}\sum_{j=1}^{D}A_{j\beta}^{i}\left(x\right)\partial_{y}^{\beta}F_{j}\left(x,y\right)=0\text{ on }\hat{B}\text{ (all }i\text{)}.

We fix AjβiA_{j\beta}^{i} as above.

We now return to our bundle =(fz+I(z))zU^\mathcal{H}=\left(f^{z}+I\left(z\right)\right)_{z\in\hat{U}}.

(We abuse notation by writing fzf^{z} for fxf^{x} where z=ψ^(x)z=\hat{\psi}\left(x\right).)

Let BUUbad1B\subset U\setminus U_{\text{bad}}^{1} be a closed ball, and let B^=ψ^(B)\hat{B}=\hat{\psi}\left(B\right). Let (F1,,FD)\left(F_{1},\cdots,F_{D}\right) and (F~1,,F~D)Clocm(n×k,D)\left(\tilde{F}_{1},\cdots,\tilde{F}_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}\right) be any two sections of |B^\mathcal{H}|_{\hat{B}}.

Then (F1F~1,,FDF~D)\left(F_{1}-\tilde{F}_{1},\cdots,F_{D}-\tilde{F}_{D}\right) is a section of (I(z))zB^\left(I\left(z\right)\right)_{z\in\hat{B}}, and therefore by (21), we have

(22) |β|mj=1,,DAjβi(x)yβFj(x,y)=|β|mj=1,,DAjβi(x)yβF~j(x,y) on B^ for all i.\sum_{\begin{subarray}{c}\left|\beta\right|\leq m\\ j=1,\cdots,D\end{subarray}}A_{j\beta}^{i}\left(x\right)\partial_{y}^{\beta}F_{j}\left(x,y\right)=\sum_{\begin{subarray}{c}\left|\beta\right|\leq m\\ j=1,\cdots,D\end{subarray}}A_{j\beta}^{i}\left(x\right)\partial_{y}^{\beta}\tilde{F}_{j}\left(x,y\right)\text{ on }\hat{B}\text{ for all }i\text{.}

Moreover, given x0Bx_{0}\in B, we can take our section (F~1,,F~D)\left(\tilde{F}_{1},\cdots,\tilde{F}_{D}\right) above to satisfy

Jψ^(x0)F~j=fjx0 (j=1,,D),J_{\hat{\psi}\left(x_{0}\right)}\tilde{F}_{j}=f_{j}^{x_{0}}\text{ }\left(j=1,\cdots,D\right)\text{,}

because (f1x0,,fDx0)H(ψ^(x0))\left(f_{1}^{x_{0}},\cdots,f_{D}^{x_{0}}\right)\in H\left(\hat{\psi}\left(x_{0}\right)\right) and |B^\mathcal{H}|_{\hat{B}} is Glaeser stable and has nonempty fibers. (See Theorem 2.) Therefore, (22) implies that

(23) |β|mj=1DAjβi(x)yβFj(x,y)=Gi(x) \sum_{\left|\beta\right|\leq m}\sum_{j=1}^{D}A_{j\beta}^{i}\left(x\right)\partial_{y}^{\beta}F_{j}\left(x,y\right)=G^{i}\left(x\right)\text{ }

on B^\hat{B} for each ii, where

Gi(x)=|β|mj=1DAjβi(x)(yβfx)|ψ^(x) (xUUbad1).G^{i}\left(x\right)=\sum_{\left|\beta\right|\leq m}\sum_{j=1}^{D}A_{j\beta}^{i}\left(x\right)\left(\partial_{y}^{\beta}f^{x}\right)|_{\hat{\psi}\left(x\right)}\text{\quad}\left(x\in U\setminus U_{\text{bad}}^{1}\right)\text{.}

Clearly, Gi(x)G^{i}\left(x\right) is a semialgebraic function on UUbad1U\setminus U_{\text{bad}}^{1}, and it is independent of the ball BB in the above discussion.

Thus, we have seen that any section (F1,,FD)\left(F_{1},\cdots,F_{D}\right) of |B^\mathcal{H}|_{\hat{B}} must satisfy (23).

Conversely, suppose (F1,,FD)Clocm(n×k,D)\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}\right) satisfies (23). Let (F~1,,F~D)Clocm(n×k,D)\left(\tilde{F}_{1},\cdots,\tilde{F}_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}\right) be a section of |B^\mathcal{H}|_{\hat{B}}. (We know that a section exists because |B^\mathcal{H}|_{\hat{B}} is Glaeser stable and has nonempty fibers.) We know that (F~1,,F~D)\left(\tilde{F}_{1},\cdots,\tilde{F}_{D}\right) satisfies (23), hence

|β|mj=1DAjβi(x)yβ[FjF~j](x,y)=0\sum_{\left|\beta\right|\leq m}\sum_{j=1}^{D}A_{j\beta}^{i}\left(x\right)\partial_{y}^{\beta}\left[F_{j}-\tilde{F}_{j}\right]\left(x,y\right)=0

on B^\hat{B} for each ii.

Recalling Property \prod^{\ast}, we now see that (F1F~1,,FDF~D)\left(F_{1}-\tilde{F}_{1},\cdots,F_{D}-\tilde{F}_{D}\right) is a section of (I(z))zB^.\left(I\left(z\right)\right)_{z\in\hat{B}}. Because (F~1,,F~D)Clocm(n×k,D)\left(\tilde{F}_{1},\cdots,\tilde{F}_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}\right) is a section of |B^=(fz+I(z))zB^\mathcal{H}|_{\hat{B}}=\left(f^{z}+I\left(z\right)\right)_{z\in\hat{B}}, we conclude that (F1,,FD)\left(F_{1},\cdots,F_{D}\right) is a section of |B^\mathcal{H}|_{\hat{B}}. Thus, if (F1,,FD)Clocm(n×k,D)\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}\right) satisfies (23), then it is a section of |B^\mathcal{H}|_{\hat{B}}.

We have now seen that a given (F1,,FD)Clocm(n×k,D)\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}\right) is a section of |B^\mathcal{H}|_{\hat{B}} if and only if (23) holds.

Thus, all the conclusions of Lemma 5.1 hold, except that perhaps the GiG^{i} are not real-analytic.

We set Ubad2=U_{\text{bad}}^{2}=union of all the singular sets of the semialgebraic functions GiG^{i}. That’s a semialgebraic set of dimension <n<n in n\mathbb{R}^{n}.

We take Ubad=Ubad1Ubad2U_{\text{bad}}=U_{\text{bad}}^{1}\cup U_{\text{bad}}^{2}, a semialgebraic set of dimension <n<n in n\mathbb{R}^{n}.

The functions AjβiA_{j\beta}^{i} and GiG^{i} are Nash on UUbadU\setminus U_{\text{bad}}.

If BUUbadB\subset U\setminus U_{\text{bad}} is a closed ball and B^=ψ(B)\hat{B}=\psi\left(B\right), then a given (F1,,FD)Clocm(n×k,D)\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}\right) is a section of |B^\mathcal{H}|_{\hat{B}} if and only if

|β|mj=1DAjβi(x)(yβFj)|ψ^(x)=Gi(x)\sum_{\left|\beta\right|\leq m}\sum_{j=1}^{D}A_{j\beta}^{i}\left(x\right)\left(\partial_{y}^{\beta}F_{j}\right)|_{\hat{\psi}\left(x\right)}=G^{i}\left(x\right)

on BB for each ii.

This completes the proof of Lemma 5.1.   

Remark 5.1

Lemma 5.1 and its proof hold also for k=0k=0. In that case, ψ^\hat{\psi} is the identity map and there are no yy-variables, hence no yy-derivatives in the conclusion of Lemma 5.1.

Corollary 5.1

Let ,U,ψ,\mathcal{H},U,\psi,\cdots be as in Lemma 5.1. Let (F1,,FD)Clocm(n×k,D).\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\mathbb{R}^{n}\times\mathbb{R}^{k},\mathbb{R}^{D}\right). Then (F1,,FD)\left(F_{1},\cdots,F_{D}\right) is a section of |U^ψ^(Ubad)\mathcal{H}|_{\hat{U}\setminus\hat{\psi}\left(U_{\text{bad}}\right)} if and only if

|β|mj=1DAjβi(x)yβFj(x,y)=Gi(x)\sum_{\left|\beta\right|\leq m}\sum_{j=1}^{D}A_{j\beta}^{i}\left(x\right)\partial_{y}^{\beta}F_{j}\left(x,y\right)=G^{i}\left(x\right)

on U^ψ^(Ubad)\hat{U}\setminus\hat{\psi}\left(U_{\text{bad}}\right), for all ii.

Proof. UUbadU\setminus U_{\text{bad}} is a union of (infinitely many overlapping) closed balls BB. Applying Lemma 5.1 to each BB, we obtain the desired conclusion.   

5.2 Gaussian Elimination with Parameters

Suppose we are given a system of linear equations

  • (24)

    Xi+j>kAijXj=biX_{i}+\sum_{j>k}A_{ij}X_{j}=b_{i}, for i=1,,ki=1,\cdots,k with |Aij|2k\left|A_{ij}\right|\leq 2^{k} for i=1,k,i=1,\cdots k, j=k+1,,Mj=k+1,\cdots,M, and

  • (26)

    j>kCijXj=gi\sum_{j>k}C_{ij}X_{j}=g_{i}, for i=k+1,,Ni=k+1,\cdots,N,

where 0kN,M;0\leq k\leq N,M; the AijA_{ij}, CijC_{ij}, bib_{i}, gig_{i} are semialgebraic functions defined on a semialgebraic set EnE\subset\mathbb{R}^{n}; and X1,,XMX_{1},\cdots,X_{M} are unknowns.

We say that this system is in kk-echelon form on EE

If k=0k=0, then we have simply ((26)) for i=1,,Ni=1,\cdots,N, so every system of linear equations with coefficient matrix and right-hand sides depending semialgebraically on xEx\in E is in 0-echelon form on EE.

If also Cij0C_{ij}\equiv 0 on EE for all i=k+1,,Ni=k+1,\cdots,N, j=k+1,,Mj=k+1,\cdots,M, then we say that our system of equations is in echelon form on EE. In particular, a system in kk-echelon form with k=min{N,M}k=\min\{N,M\} is in echelon form on EE. Suppose our system is in kk-echelon form with k<min{N,M}k<\min\{N,M\}. We partition EE as follows. Let Egood={xE:All the Cij(x)=0}E_{\text{good}}=\{x\in E:\text{All the }C_{ij}(x)=0\}. For i~=k+1,,N\tilde{i}=k+1,\cdots,N and j~=k+1,,M\tilde{j}=k+1,\cdots,M, we let E~(i~,j~)={xE:|Ci~j~|=maxij|Cij|>0}\tilde{E}(\tilde{i},\tilde{j})=\{x\in E:|C_{\tilde{i}\tilde{j}}|=\max_{ij}|C_{ij}|>0\}. The EgoodE_{\text{good}} and E~(i,j)\tilde{E}(i,j) form a covering of EE.

We enumerate the pairs (i,j)(i,j) in any order and then form sets E(i,j)E(i,j) by removing from E~(i,j)\tilde{E}(i,j) all points contained in some E~(i,j)\tilde{E}(i^{\prime},j^{\prime}) with (i,j)(i^{\prime},j^{\prime}) preceding (i,j)(i,j). Then EgoodE_{\text{good}} and the E(i,j)E(i,j) form a partition of EE into semialgebraic sets. On EgoodE_{\text{good}}, our system is in echelon form.

On each E(a,b)E(a,b), we will exhibit a system of linear equations in (k+1)(k+1)-echelon form, equivalent to the given system ((24)), ((26)). For fixed (a,b)(a,b), we relabel equations and unknowns so that our system still has the form ((24)), ((26)), but with |Ck+1,k+1|=maxij|Cij|>0|C_{k+1,k+1}|=\max_{ij}|C_{ij}|>0. Dividing equations ((26)) by Ck+1,k+1C_{k+1,k+1}, we may assume that

(28) Ck+1,k+1=1C_{k+1,k+1}=1

and all

(29) |Cij|1.|C_{ij}|\leq 1.

Note that Aij,Cij,bi,giA_{ij},C_{ij},b_{i},g_{i} still depend semialgebraically on xx. From each equation ((24)), we subtract Ai(k+1)A_{i(k+1)} times equation ((26)) with i=k+1i=k+1. From each equation ((26)) (ik+1i\not=k+1), we subtract Ci,k+1C_{i,k+1} times equation ((26)) with i=k+1i=k+1. Thus, we obtain equations of the form

(30) [Xi+j>kA~ijXj=b~i,for i=1,,kXk+1+j>k+1Ck+1,jXj=gk+1,jk+1C~ijXj=g~i, for i>k+1.\left[\begin{array}[]{l}X_{i}+\sum_{j>k}\tilde{A}_{ij}X_{j}=\tilde{b}_{i},\text{for }i=1,\cdots,k\\ X_{k+1}+\sum_{j>k+1}C_{k+1,j}X_{j}=g_{k+1},\\ \sum_{j\geq k+1}\tilde{C}_{ij}X_{j}=\tilde{g}_{i}\text{, for }i>k+1.\end{array}\right.

Here, A~ij=AijAi(k+1)Ck+1,j\tilde{A}_{ij}=A_{ij}-A_{i\left(k+1\right)}C_{k+1,j} for i=1,,ki=1,\cdots,k, jk+1j\geq k+1; and C~ij=CijCi,k+1Ck+1,j\tilde{C}_{ij}=C_{ij}-C_{i,k+1}C_{k+1,j} for i=k+2,,Ni=k+2,\cdots,N, j>k+1j>k+1.

In particular, A~i,k+1=Ai,k+1Ai,k+1Ck+1,k+1=0\tilde{A}_{i,k+1}=A_{i,k+1}-A_{i,k+1}\cdot C_{k+1,k+1}=0, and C~i,k+1=Ci,k+1Ci,k+1Ck+1,k+1=0\tilde{C}_{i,k+1}=C_{i,k+1}-C_{i,k+1}\cdot C_{k+1,k+1}=0, thanks to (28).

Also, |A~ij||Aij|+|Ai,k+1||Ck+1,j||Aij|+|Ai,k+1|\left|\tilde{A}_{ij}\right|\leq\left|A_{ij}\right|+\left|A_{i,k+1}\right|\cdot\left|C_{k+1,j}\right|\leq\left|A_{ij}\right|+\left|A_{i,k+1}\right| (by (29))2k+2k\leq 2^{k}+2^{k} (because our system ((24)), ((26)) is in kk-echelon form)=2k+1=2^{k+1}. Recall that |Ck+1,j|1|C_{k+1,j}|\leq 1.

These remarks show that the system of equations (30) is in (k+1)\left(k+1\right)-echelon form.

We repeat this procedure, starting with a system in 0-echelon form, and partition EE more and more finely into pieces EνE_{\nu}, on each of which an equivalent system to ((24)), ((26)) is either in echelon form, or in kk-echelon form for ever higher kk. The procedure has to stop after at most min(N,M)\min\left(N,M\right) steps, because a system in kk-echelon form with k=min(N,M)k=\min\left(N,M\right) is automatically in echelon form.

Thus, we have proven the following result

Lemma 5.2

Consider a system of linear equations

(31) j=1MCij(x)Xj=gi(x) (i=1,,N)\sum_{j=1}^{M}C_{ij}\left(x\right)X_{j}=g_{i}\left(x\right)\text{ }\left(i=1,\cdots,N\right)

where the Cij(x)C_{ij}\left(x\right) and gi(x)g_{i}\left(x\right) are semialgebraic functions defined on a semialgebraic set EnE\subset\mathbb{R}^{n}.

Then we can partition EE into semialgebraic sets EνE_{\nu} (ν=1,,νmax)\left(\nu=1,\cdots,\nu_{\max}\right), for which the following holds for each ν\nu:

There exist a permutation π:{1,,M}{1,,M}\pi:\left\{1,\cdots,M\right\}\rightarrow\left\{1,\cdots,M\right\} and an integer 0kmin(N,M)0\leq k\leq\min\left(N,M\right) such that for each xEνx\in E_{\nu}, the system (31) is equivalent to a system of the form

(32) [Xπi+j>kA~ij(x)Xπj=g~i(x) for i=1,,k0=b~i(x) for i=k+1,,N.\left[\begin{array}[]{c}X_{\pi i}+\sum_{j>k}\tilde{A}_{ij}\left(x\right)X_{\pi j}=\tilde{g}_{i}\left(x\right)\text{ for }i=1,\cdots,k\\ 0=\tilde{b}_{i}\left(x\right)\text{ for }i=k+1,\cdots,N\text{.}\end{array}\right.

That is, for each xEνx\in E_{\nu} and each (X1,,XM)M\left(X_{1},\cdots,X_{M}\right)\in\mathbb{C}^{M}, (31) holds at xx if and only if (32) holds at xx. Here, the A~ij,g~i,\tilde{A}_{ij},\tilde{g}_{i}, and b~i\tilde{b}_{i} are semialgebraic functions on EνE_{\nu}, and |A~ij(x)|2k\left|\tilde{A}_{ij}\left(x\right)\right|\leq 2^{k} on EνE_{\nu}.

In essence, the method for solving the system (31) is just the usual Gaussian elimination, except that we take extra care to maintain the growth condition |A~ij(x)|2k\left|\tilde{A}_{ij}\left(x\right)\right|\leq 2^{k}.

5.3 What It Means to be a Section of a Semialgebraic Bundle

We work with a semialgebraic bundle =(H(x))x2\mathcal{H}=(H(x))_{x\in\mathbb{R}^{2}}. Each H(x)H(x) is a coset of an x\mathcal{R}_{x}-submodule of (x)D(\mathcal{R}_{x})^{D}, depending semialgebraically on xx. Here, x\mathcal{R}_{x} is the ring of the mm-jets of functions at xx. A function F=(F1,,FD)Clocm(Ω,D)F=(F_{1},\cdots,F_{D})\in C^{m}_{loc}(\Omega,\mathbb{R}^{D}) (Ω2\Omega\subset\mathbb{R}^{2} open) is a section of \mathcal{H} if for all xΩx\in\Omega the mm-jet JxFJ_{x}F belongs to H(x)H(x). A function FClocm(Ω,D)F\in C^{m}_{loc}(\Omega,\mathbb{R}^{D}) is called a local section near x0x^{0} (x0Ωx^{0}\in\Omega) if for some small disc BΩB\subset\Omega centered at x0x^{0} we have JxFH(x)J_{x}F\in H(x) for all xBx\in B.

Let Ω={(x,y)2:0yx}\Omega=\{(x,y)\in\mathbb{R}^{2}:0\leq y\leq x\}. Let =(H(x))x2\mathcal{H}=(H(x))_{x\in\mathbb{R}^{2}} be a semialgebraic bundle, with H((0,0))={0}H((0,0))=\{0\}. We assume that \mathcal{H} has a section. We want a convenient condition on functions FClocm(Ω,D)F\in C^{m}_{loc}(\Omega,\mathbb{R}^{D}) that is equivalent to the assertion that F|BΩinteriorF|_{B\cap\Omega^{\text{interior}}} is a section of \mathcal{H} for a small enough disc BB centered at the origin. We achieve (approximately) that.

To do so, we partition Ω\Omega into semialgebraic open subsets of 2\mathbb{R}^{2}, finitely many semialgebraic curves in 2\mathbb{R}^{2}, and finitely many points. To start with, we partition Ω\Omega into the point (0,0)(0,0), the arcs {(x,0):x>0},{(x,x):x>0},\{(x,0):x>0\},\{(x,x):x>0\}, and Ωinterior\Omega^{\text{interior}}.

As we proceed, we will cut up each of our semialgebraic open sets into finitely many semialgebraic open subsets, finitely many semialgebraic arcs, and finitely many points. We won’t keep track explicitly of the arcs and points at first; we just discard semialgebraic subsets of 2\mathbb{R}^{2} of dimension 1\leq 1.

We apply Lemma 5.1 in the case k=0k=0 to Ωinterior\Omega^{\text{interior}} and \mathcal{H}. (See Remark 5.1.)

Thus, we obtain a semialgebraic V1ΩinteriorV_{1}\subset\Omega^{\text{interior}} of dimension 1\leq 1, outside of which the following holds for some semialgebraic functions Aij#(x),ϕi#(x)A_{ij}^{\#}(x),\phi_{i}^{\#}(x) for 1iimax,1jD,xΩinteriorV11\leq i\leq i_{\max},1\leq j\leq D,x\in\Omega^{\text{interior}}\setminus V_{1}:

Let F=(F1,,FD)F=(F_{1},\cdots,F_{D}) belong to Clocm(U,D)C^{m}_{loc}(U,\mathbb{R}^{D}) where UU is a neighborhood of x0ΩinteriorV1x^{0}\in\Omega^{\text{interior}}\setminus V_{1}. Then FF is a local section of \mathcal{H} near x0x^{0} if and only if

  • (33)

    j=1DAij#(x)Fj(x)=ϕi#(x)\sum_{j=1}^{D}A_{ij}^{\#}(x)F_{j}(x)=\phi_{i}^{\#}(x), for i=1,,imaxi=1,\cdots,i_{\max}, for all xx in a neighborhood of x0x^{0}.

The equations ((33)) have a solution for each fixed xx, because \mathcal{H} has a section. Next, we apply Lemma 5.2 to the above system of linear equations.

Thus, we obtain a partition of ΩinteriorV1\Omega^{\text{interior}}\setminus V_{1} into semialgebraic sets Eν#E_{\nu}^{\#} (ν=1,,νmax#\nu=1,\cdots,\nu_{\max}^{\#}), for which we have integers k~ν0\tilde{k}_{\nu}\geq 0, permutations π~ν:{1,,D}{1,,D}\tilde{\pi}_{\nu}:\{1,\cdots,D\}\rightarrow\{1,\cdots,D\}, and semialgebraic functions A~ijν(x)\tilde{A}_{ij}^{\nu}(x) (1ik~ν,k~ν+1jD,xEν#1\leq i\leq\tilde{k}_{\nu},\tilde{k}_{\nu}+1\leq j\leq D,x\in E_{\nu}^{\#}), ϕ~iν(x)\tilde{\phi}_{i}^{\nu}(x) such that for any xEν#x\in E_{\nu}^{\#}, the system of equations ((33)) is equivalent to

(35) Fπνi(x)+j>k~νA~ijν(x)Fπνj(x)=φ~iν(x) for i=1,,k~ν.F_{\pi_{\nu}i}\left(x\right)+\sum_{j>\tilde{k}_{\nu}}\tilde{A}_{ij}^{\nu}\left(x\right)F_{\pi_{\nu}j}\left(x\right)=\tilde{\varphi}_{i}^{\nu}\left(x\right)\text{ for }i=1,\cdots,\tilde{k}_{\nu}.

Moreover, the A~ijν(x)\tilde{A}_{ij}^{\nu}\left(x\right) are bounded. Note that the functions b~i\tilde{b}_{i} in (32) are identically 0 because our equations ((33)) have a solution.

Because \mathcal{H} has a section, there exists F=(F1,,FD)Clocm(Ω,D)F=\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(\Omega,\mathbb{R}^{D}\right) satisfying ((33)) for all xΩinteriorV1x\in\Omega^{\text{interior}}\setminus V_{1}, hence also satisfying (35) in Eν#E_{\nu}^{\#}. Consequently, the left-hand side of (35) is bounded (for bounded xx), and thus also the φ~iD(x)\tilde{\varphi}_{i}^{D}\left(x\right) are bounded (for bounded xx).

Applying Theorem 5, we obtain a semialgebraic V22V_{2}\subset\mathbb{R}^{2} of dimension 1\leq 1, satisfying

(36) |αφ~iν(x)|,|αA~ijν(x)|C[dist(x,V2)]|α| for bounded x outside V2, for |α|m+100.\left|\partial^{\alpha}\tilde{\varphi}_{i}^{\nu}\left(x\right)\right|,\left|\partial^{\alpha}\tilde{A}_{ij}^{\nu}\left(x\right)\right|\leq C\left[\text{dist}\left(x,V_{2}\right)\right]^{-\left|\alpha\right|}\text{ for bounded }x\text{ outside }V_{2}\text{, for }\left|\alpha\right|\leq m+100\text{.}

By adding Ω\partial\Omega to V2V_{2} and removing from V2V_{2} all points outside Ω\Omega, we may assume V2ΩV_{2}\subset\Omega. (This operation does not increase the distance from V2V_{2} to any point of Ω\Omega.)

Let E^ν\hat{E}_{\nu} (ν=1,,νmax)\left(\nu=1,\cdots,\nu_{\max}\right) be the connected components of the interiors of the sets Eν#V2E_{\nu}^{\#}\setminus V_{2} (ν=1,,νmax#\nu=1,\cdots,\nu_{\max}^{\#}).

Then Ω\Omega is partitioned into the E^ν\hat{E}_{\nu} and V3V_{3}, where V3V_{3} is a semialgebraic subset of Ω\Omega of dimension 1\leq 1. The E^ν\hat{E}_{\nu} are pairwise disjoint open connected semialgebraic sets. Any path in Ω\Omega that does not meet V3V_{3} stays entirely in a single E^ν\hat{E}_{\nu}. Indeed, suppose not: let γ(t)Ω\gamma\left(t\right)\in\Omega  (t[0,1])\left(t\in\left[0,1\right]\right) be a path starting at γ(0)E^ν\gamma\left(0\right)\in\hat{E}_{\nu} not staying in E^ν\hat{E}_{\nu} and not meeting V3V_{3}. Pick t=t_{\ast}= inf{t>0:γ(t)E^ν}\inf\left\{t>0:\gamma\left(t\right)\not\in\hat{E}_{\nu}\right\}. Then t>0t^{*}>0 since E^ν\hat{E}_{\nu} is open. We can’t have γ(t)E^ν\gamma\left(t_{\ast}\right)\in\hat{E}_{\nu^{\prime}} with νν\nu^{\prime}\not=\nu else γ(t)E^ν\gamma\left(t\right)\in\hat{E}_{\nu^{\prime}} (and E^ν\in\hat{E}_{\nu}) for t[tε,t)t\in[t_{\ast}-\varepsilon,t_{\ast}). We can’t have γ(t)\gamma(t_{\ast}) in EνE_{\nu}, since that would imply γ(t)\gamma(t) in EνE_{\nu} for all tt in [t,t+ε][t_{\ast},t_{\ast}+\varepsilon]. Thus, γ(t)V3\gamma\left(t_{\ast}\right)\in V_{3}, contradicting the fact that γ\gamma does not meet V3V_{3}.

Moreover, there exist integers k^ν0\hat{k}_{\nu}\geq 0, permutations π^ν:{1,,D}{1,,D}\hat{\pi}_{\nu}:\left\{1,\cdots,D\right\}\rightarrow\left\{1,\cdots,D\right\}, and semialgebraic functions A^ijν(x)\hat{A}_{ij}^{\nu}\left(x\right) (1ik^νk^ν+1jD)\left(1\leq i\leq\hat{k}_{\nu}\text{, }\hat{k}_{\nu}+1\leq j\leq D\right) and φ^iν(x)\hat{\varphi}_{i}^{\nu}\left(x\right) (1ik^ν)\left(1\leq i\leq\hat{k}_{\nu}\right) defined on E^ν\hat{E}_{\nu}, with the following properties

  • (37)

    |αA^ijν(x)|\left|\partial^{\alpha}\hat{A}_{ij}^{\nu}\left(x\right)\right|, |αφ^iν(x)|C[dist(x,V3)]|α|\left|\partial^{\alpha}\hat{\varphi}_{i}^{\nu}\left(x\right)\right|\leq C\left[\text{dist}\left(x,V_{3}\right)\right]^{-\left|\alpha\right|} for bounded xE^νx\in\hat{E}_{\nu}, |α|m+100\left|\alpha\right|\leq m+100, and

  • (39)

    Let x0E^νx^{0}\in\hat{E}_{\nu} and let F=(F1,,FD)F=\left(F_{1},\cdots,F_{D}\right) be ClocmC^{m}_{loc} in a neighborhood of x0x^{0}. Then FF is a local section of \mathcal{H} near x0x^{0} if and only if

    Fπνi(x)+j>k^νA^ijν(x)Fπνj(x)=φ^iν(x)F_{\pi_{\nu}i}\left(x\right)+\sum_{j>\hat{k}_{\nu}}\hat{A}_{ij}^{\nu}\left(x\right)F_{\pi_{\nu}j}\left(x\right)=\hat{\varphi}_{i}^{\nu}\left(x\right)

    in a neighborhood of x0x^{0} for each i=1,,k^νi=1,\cdots,\hat{k}_{\nu}.

We partition V3{(x,0):x0}{(x,x):x0}V_{3}\cup\left\{\left(x,0\right):x\geq 0\right\}\cup\left\{\left(x,x\right):x\geq 0\right\} into finitely many Nash open arcs (not containing their endpoints) and finitely many points.

For small enough δ>0\delta>0, B(0,δ)2B\left(0,\delta\right)\mathbb{\subset\mathbb{R}}^{2} avoids all the above arcs not containing 0 in their closure, and all the above points except possibly for the point 0. Taking δ\delta small, we may assume that the remaining arcs have convergent Puiseux series in B(0,δ)B(0,\delta).

Notice that our semialgebraic one-dimensional sets are all contained in Ω\Omega; so no arcs have tangent lines at 0 lying outside the sector Ω\Omega. Thus, the remaining arcs have the form {y=ψs(x)}\{y=\psi_{s}(x)\} in B(0,δ)B(0,\delta), where ψ1,,ψsmax\psi_{1},\cdots,\psi_{s_{\max}} are semialgebraic functions of one variable, with convergent Puiseux expansion in [0,δ][0,\delta]. We discard duplicates, i.e., we may assume ψs\psi_{s} is never identically equal to ψs\psi_{s^{\prime}} for sss^{\prime}\not=s. Note that the line segments {(x,0):0<x<δ}\{(x,0):0<x<\delta\} and {(x,x):0<x<δ}\{(x,x):0<x<\delta\} are among our arcs γs\gamma_{s}. Taking δ>0\delta>0 smaller yet, we may assume that for each sss\not=s^{\prime}, either ψs(x)<ψs(x)\psi_{s}(x)<\psi_{s^{\prime}}(x) for all x(0,δ)x\in(0,\delta), or ψs(x)>ψs(x)\psi_{s}(x)>\psi_{s^{\prime}}(x) for all x(0,δ)x\in(0,\delta). (That’s because the ψs\psi_{s} are given by convergent Puiseux expansions.) Thus, in B(0,δ)B(0,\delta), our curves may be labelled so that 0ψ0(x)<ψ1(x)<<ψsmax(x)x0\equiv\psi_{0}(x)<\psi_{1}(x)<\cdots<\psi_{s_{\max}}(x)\equiv x for x(0,δ)x\in(0,\delta). The arcs are γs={(x,ψs(x)):x[0,δ]}\gamma_{s}=\{(x,\psi_{s}(x)):x\in[0,\delta]\} for s=0,,smaxs=0,\cdots,s_{\max}. (Here we have thrown in the point 0, and taken δ\delta small to allow ourselves to include x=δx=\delta, not just x<δx<\delta.)

The sets we discarded in passing from V3V_{3} to the semialgebraic arcs γ0,,γsmax\gamma_{0},\cdots,\gamma_{s_{\max}} are irrelevant in the sense that V3B(0,δ)(γ0γ1γsmax)B(0,δ)V_{3}\cap B(0,\delta)\subset(\gamma_{0}\cup\gamma_{1}\cup\cdots\cup\gamma_{s_{\max}})\cap B(0,\delta).

Let EsE_{s} (s=1,,smaxs=1,\cdots,s_{\max}) be the part of the B(0,δ)B(0,\delta) lying between γs1\gamma_{s-1} and γs\gamma_{s}, i.e., Es={(x,y)B(0,δ):0<x<δ,ψs1(x)<y<ψs(x)}E_{s}=\{(x,y)\in B(0,\delta):0<x<\delta,\psi_{s-1}(x)<y<\psi_{s}(x)\}.

Any two points in a given EsE_{s} may be joined by a path in B(0,δ)s=0smaxγsB(0,δ)V3B(0,\delta)\setminus\bigcup_{s=0}^{s_{\max}}\gamma_{s}\subset B(0,\delta)\setminus V_{3}, hence all points in a given EsE_{s} lie in the same E^ν\hat{E}_{\nu}.

Therefore, for s=1,,smaxs=1,\cdots,s_{\max}, there exist ks0k_{s}\geq 0, permutations πs:{1,,D}{1,,D}\pi_{s}:\{1,\cdots,D\}\rightarrow\{1,\cdots,D\}, and semialgebraic functions Aijs(x)A_{ij}^{s}(x), ψis(x)\psi_{i}^{s}(x) (1iks;j=ks+1,,D1\leq i\leq k_{s};j=k_{s}+1,\cdots,D) on EsE_{s}, with the following properties

  • (41)

    Let x0Esx^{0}\in E_{s}, and let F=(F1,,FD)F=(F_{1},\cdots,F_{D}) be ClocmC^{m}_{loc} in a neighborhood of x0x^{0}. Then FF is a local section of \mathcal{H} near x0x^{0} if and only if

  • (43)

    Fπsi(x)+j>ksAijs(x)Fπsj(x)=ψis(x)F_{\pi_{s}i}(x)+\sum_{j>k_{s}}A_{ij}^{s}(x)F_{\pi_{s}j}(x)=\psi_{i}^{s}(x) in a neighborhood of x0x^{0} for each i=1,,ksi=1,\cdots,k_{s}.

Moreover,

  • (45)

    |αAijs(x)||\partial^{\alpha}A_{ij}^{s}(x)|, |αψis(x)|C[dist(x,γsγs1)]|α||\partial^{\alpha}\psi_{i}^{s}(x)|\leq C\left[\text{dist}(x,\gamma_{s}\cup\gamma_{s-1})\right]^{-|\alpha|} on EsE_{s} for |α|m+100|\alpha|\leq m+100.

In particular, if F=(F1,,FD)Clocm(Ω,D)F=(F_{1},\cdots,F_{D})\in C^{m}_{loc}(\Omega,\mathbb{R}^{D}), then JxFH(x)J_{x}F\in H(x) for all x[ΩB(0,δ)](γ0γsmax)x\in[\Omega\cap B(0,\delta)]\setminus(\gamma_{0}\cup\cdots\cup\gamma_{s_{\max}}) if and only if for each s=1,,smaxs=1,\cdots,s_{\max}, ((43)) holds on all of EsE_{s}.

Next, we apply Lemma 5.1 to s=(H(x))xγs\mathcal{H}_{s}=(H(x))_{x\in\gamma_{s}}, (s=0,,smaxs=0,\cdots,s_{\max}). We obtain semialgebraic functions for which the following holds.

Let (x0,ψs(x0))γs\left(x^{0},\psi_{s}\left(x^{0}\right)\right)\in\gamma_{s} be given, and let F=(F1,,FD)Clocm(U,D)F=\left(F_{1},\cdots,F_{D}\right)\in C^{m}_{loc}\left(U,\mathbb{R}^{D}\right), where UU is a neighborhood of γs\gamma_{s} in 2\mathbb{R}^{2}. Then, except for finitely many bad x0x^{0}, we have the following equivalence:

FF is a local section of s\mathcal{H}_{s} near (x0,ψs(x0))\left(x^{0},\psi_{s}\left(x^{0}\right)\right) if and only if

1jD0lmΘjlis(x)ylFj|(x,ψs(x))=gsi(x)(i=1,,imax(s))\sum_{\begin{subarray}{c}1\leq j\leq D\\ 0\leq l\leq m\end{subarray}}\Theta_{jl}^{is}\left(x\right)\partial_{y}^{l}F_{j}|_{\left(x,\psi_{s}\left(x\right)\right)}=g^{si}\left(x\right)\quad\left(i=1,\cdots,i_{\max}\left(s\right)\right)

for all xx in a neighborhood of x0x^{0}. Here, the Θ\Theta’s and gg’s are semialgebraic functions of one variable. To say that FF is a local section of s\mathcal{H}_{s} near (x0,ψs(x0))\left(x^{0},\psi_{s}\left(x^{0}\right)\right) means that J(x,ψs(x))FH(x,ψs(x))J_{\left(x,\psi_{s}\left(x\right)\right)}F\in H\left(x,\psi_{s}\left(x\right)\right) for all xx in a neighborhood of x0x^{0}.

By restricting attention to B(0,δ)B\left(0,\delta\right) and taking δ>0\delta>0 smaller, we may exclude from B(0,δ)B\left(0,\delta\right) all these bad x0x^{0}, except for x0=0x^{0}=0.

Combining our results ((41)), ((45)) on the EνE_{\nu} with the above result on the arcs γs\gamma_{s}, we obtain the following result.

Lemma 5.3

Let Ω={(x,y)2:0yx1}\Omega=\left\{\left(x,y\right)\in\mathbb{R}^{2}:0\leq y\leq x\leq 1\right\} and let =(H(x))xΩ\mathcal{H=}\left(H\left(x\right)\right)_{x\in\Omega}  be a semialgebraic bundle, with each H(x)H\left(x\right) consisting of mm-jets at xx of functions from 2\mathbb{R}^{2} to D\mathbb{R}^{D}.

Assume H((0,0))={0}H\left(\left(0,0\right)\right)=\left\{0\right\} and assume \mathcal{H} has a section.

Then there exist the following objects, with properties to be specified below:

  • A positive number δ(0,1)\delta\in\left(0,1\right).

  • Semialgebraic functions 0=ψ0(x)<ψ1(x)<<ψsmax(x)=x0=\psi_{0}\left(x\right)<\psi_{1}\left(x\right)<\cdots<\psi_{s_{\max}}\left(x\right)=x on (0,δ),\left(0,\delta\right), all given by convergent Puiseux expansions on (0,δ)\left(0,\delta\right).

  • Integers ksk_{s} (0ksD)\left(0\leq k_{s}\leq D\right) and permutations πs:{1,,D}{1,,D}\pi_{s}:\left\{1,\cdots,D\right\}\rightarrow\left\{1,\cdots,D\right\} for s=1,,Ds=1,\cdots,D.

  • Semialgebraic functions Aijs(x,y)A_{ij}^{s}\left(x,y\right) (s=1,,smax,1iks,ks<jD)\left(s=1,\cdots,s_{\max},1\leq i\leq k_{s},k_{s}<j\leq D\right) and φis(x,y)\varphi_{i}^{s}\left(x,y\right) (s=1,,smax,1iks)(s=1,\cdots,s_{\max},1\leq i\leq k_{s}) defined on Es={(x,y):0<x<δ,ψs1(x)<y<ψs(x)}E_{s}=\left\{\left(x,y\right):0<x<\delta,\psi_{s-1}\left(x\right)<y<\psi_{s}\left(x\right)\right\}.

  • Semialgebraic functions Θjlsi(x)\Theta_{jl}^{si}\left(x\right), gsi(x)g^{si}\left(x\right) (s=0,,smax,i=1,,imax(s)(s=0,\cdots,s_{\max},i=1,\cdots,i_{\max}\left(s\right), j=1,,D,j=1,\cdots,D, l=0,,ml=0,\cdots,m defined on (0,δ)\left(0,\delta\right), and given there by there by convergent Puiseux expansions.

The above objects have the following properties

  • (Estimates) For (x,y)Ω\left(x,y\right)\in\Omega with 0<x<δ0<x<\delta and ψs1(x)<y<ψs(x)\psi_{s-1}\left(x\right)<y<\psi_{s}\left(x\right), we have |αAijs(x,y)|\left|\partial^{\alpha}A_{ij}^{s}\left(x,y\right)\right|, |αφis(x,y)|C[min(|yψs(x)|,|yψs1(x)|)]|α|\left|\partial^{\alpha}\varphi_{i}^{s}\left(x,y\right)\right|\leq C\left[\min\left(\left|y-\psi_{s}\left(x\right)\right|,\left|y-\psi_{s-1}\left(x\right)\right|\right)\right]^{-\left|\alpha\right|} for |α|m+100\left|\alpha\right|\leq m+100.

  • (Condition for sections) Let F=(F1,,FD)Clocm(Ω,D)F=(F_{1},...,F_{D})\in C^{m}_{loc}(\Omega,\mathbb{R}^{D}), and suppose JxFH(x)J_{x}F\in H\left(x\right) for all xΩx\in\Omega.

    • (47)

      Then for s=1,,smaxs=1,\cdots,s_{\max}, i=1,,ksi=1,\cdots,k_{s}, x(0,δ)x\in\left(0,\delta\right), ψs1(x)<y<ψs(x)\psi_{s-1}\left(x\right)<y<\psi_{s}\left(x\right), we have

      Fπsi(x,y)+Dj>ksAijs(x,y)Fπsj(x,y)=φis(x,y);F_{\pi_{s}i}\left(x,y\right)+\sum_{D\geq j>k_{s}}A_{ij}^{s}\left(x,y\right)F_{\pi_{s}j}\left(x,y\right)=\varphi_{i}^{s}\left(x,y\right)\text{;}

      and for s=0,1,,smaxs=0,1,\cdots,s_{\max}, i=1,,imax(s)i=1,\cdots,i_{\max}\left(s\right), x(0,δ)x\in\left(0,\delta\right), we have

      j=1Dl=0mΘjlsi(x)ylFj(x,ψs(x))=gsi(x);\sum_{j=1}^{D}\sum_{l=0}^{m}\Theta_{jl}^{si}\left(x\right)\partial_{y}^{l}F_{j}\left(x,\psi_{s}\left(x\right)\right)=g^{si}\left(x\right)\text{;}

      and J(0,0)Fj=0J_{\left(0,0\right)}F_{j}=0 for all jj.

    Conversely, if F=(F1,,FD)Clocm(Ω,D)F=(F_{1},...,F_{D})\in C^{m}_{loc}(\Omega,\mathbb{R}^{D}) and the conditions in ((47)) are satisfied, then JzFJ_{z}F H(z)\in H\left(z\right) for all z=(x,y)Ωz=\left(x,y\right)\in\Omega  with 0x<δ0\leq x<\delta.

6 A Second Main Lemma

This section is devoted to the proof of the following lemma. See (A) and (B) in the Introduction.

Lemma 6.1 (Second Main Lemma)

Let =(H(z))zΩ\mathcal{H}=(H(z))_{z\in\Omega} with Ω={(x,y)2:0yx1}\Omega=\left\{(x,y)\in\mathbb{R}^{2}:0\leq y\leq x\leq 1\right\} and suppose H(z)H(z) depends semialgebraically on zz. (As usual, H(z)zDH(z)\subset\mathcal{R}_{z}^{D} is a coset of an z\mathcal{R}_{z}-submodule.)

Suppose \mathcal{H} has a section, and suppose ((0,0))={0}\mathcal{H}((0,0))=\left\{0\right\}. Then there exist semialgebraic functions θjlsi(x)\theta_{jl}^{si}(x), gsi(x)g^{si}(x), θ~jlsi(x)\tilde{\theta}_{jl}^{si}(x), g~si(x)\tilde{g}^{si}(x) of one variable, and 0=ψ0(x)<<ψsmax(x)=x0=\psi_{0}(x)<\cdots<\psi_{s_{\max}}(x)=x, also semialgebraic, for which the following hold.

Suppose F=(F1,,FD)Cm(Ω,D)F=(F_{1},\cdots,F_{D})\in C^{m}(\Omega,\mathbb{R}^{D}) is a section of \mathcal{H}. Let fjls(x)=ylFj(x,ψs(x))f_{jl}^{s}(x)=\partial_{y}^{l}F_{j}(x,\psi_{s}(x)) for 0ssmax0\leq s\leq s_{\max}, 0lm0\leq l\leq m, 1jD1\leq j\leq D.

Then

  1. (49)

    j,lθjlsi(x)fjls(x)=gsi(x)\sum_{j,l}\theta_{jl}^{si}(x)f_{jl}^{s}(x)=g^{si}(x) on (0,δ)(0,\delta) for some δ>0\delta>0 for each s,is,i; and j,lθ~jlsi(x)fjls(x)=g~si(x)+o(1)\sum_{j,l}\tilde{\theta}_{jl}^{si}(x)f_{jl}^{s}(x)=\tilde{g}^{si}(x)+o(1) as x0+x\rightarrow 0^{+}, each ss, ii; and fjls(x)=k=0ml1k!fj(l+k)s1(x)(ψs(x)ψs1(x))k+o([ψs(x)ψs1(x)]ml)f_{jl}^{s}(x)=\sum_{k=0}^{m-l}\frac{1}{k!}f_{j(l+k)}^{s-1}(x)\cdot\left(\psi_{s}\left(x\right)-\psi_{s-1}\left(x\right)\right)^{k}+o\left(\left[\psi_{s}\left(x\right)-\psi_{s-1}\left(x\right)\right]^{m-l}\right) as x0+x\rightarrow 0^{+}, each ss, jj, ll.

  1. (51)

    Conversely, if fjls(x)f_{jl}^{s}\left(x\right) are semialgebraic functions satisfying ((49)), then there exists a semialgebraic CmC^{m} section F=(F1,,FD)F=\left(F_{1},\cdots,F_{D}\right) of \mathcal{H} over Ωδ={(x,y):0yxδ}\Omega_{\delta^{\prime}}=\left\{\left(x,y\right):0\leq y\leq x\leq\delta^{\prime}\right\} (some δ>0\delta^{\prime}>0) such that ylFj(x,ψs(x))=fjls(x)\partial_{y}^{l}F_{j}\left(x,\psi_{s}\left(x\right)\right)=f_{jl}^{s}\left(x\right) for 0<x<δ0<x<\delta^{\prime}.

We call the curves y=ψs(x)y=\psi_{s}(x) “critical curves”.

6.1 The Jet of a Section at a Critical Curve

Fix m1m\geq 1. Recall that 𝒫\mathcal{P} denotes the space of polynomials of degree m\leq m on 2\mathbb{R}^{2}, and JzF𝒫J_{z}F\in\mathcal{P} denotes the mm-jet of FF at z2z\in\mathbb{R}^{2}. z\odot_{z} denotes multiplication of jets at zz. We write 𝔭\mathfrak{p} to denote the space of polynomials of degree m\leq m on \mathbb{R}. If F(x,y)F(x,y) is a ClocmC^{m}_{loc} function in a neighborhood of (x¯,0)(\bar{x},0), then jx¯F𝔭j_{\bar{x}}F\in\mathfrak{p} is the mm-jet at 0 of the function yF(x¯,y)y\mapsto F(\bar{x},y). We write \boxdot to denote multiplication of mm-jets at 0 of ClocmC^{m}_{loc} functions of one variable.

If F=(F1,,Fjmax)\vec{F}=(F_{1},\cdots,F_{j_{\max}}) is a vector of ClocmC^{m}_{loc} functions on 2\mathbb{R}^{2}, then JzFJ_{z}\vec{F} denotes

(JzF1,,JzFjmax)𝒫jmax.(J_{z}F_{1},\cdots,J_{z}F_{j_{\max}})\in\mathcal{P}^{j_{\max}}.

Similarly, jx¯Fj_{\bar{x}}\vec{F} denotes (jx¯F1,,jx¯Fjmax)𝔭jmax.(j_{\bar{x}}F_{1},\cdots,j_{\bar{x}}F_{j_{\max}})\in\mathfrak{p}^{j_{\max}}.

A function F#:(0,δ)𝔭F^{\#}:(0,\delta)\rightarrow\mathfrak{p} may be regarded as a function of (x,y)(0,δ)×(x,y)\in(0,\delta)\times\mathbb{R} such that for fixed xx, the function yF#(x,y)y\mapsto F^{\#}(x,y) is a polynomial of degree at most mm.

Fix positive integers imax,jmaxi_{\max},j_{\max}. Let Aff denote the vector space of all affine functions defined on 𝔭jmax+imax\mathfrak{p}^{j_{\max}+i_{\max}}. We make the following assumptions:

  • We are given CC^{\infty} semialgebraic functions Aij,Bi,(i=1,,imax,j=1,,jmax)A_{ij},B_{i},(i=1,\cdots,i_{\max},j=1,\cdots,j_{\max}) defined on Ω1\Omega_{1}, where for δ>0\delta>0, Ωδ={(x,y)2:0<x<δ,0<y<ψ(x)}\Omega_{\delta}=\{(x,y)\in\mathbb{R}^{2}:0<x<\delta,0<y<\psi(x)\}, and ψ:(0,1)(0,)\psi:(0,1)\rightarrow(0,\infty) is a semialgebraic function satisfying 0<ψ(x)x0<\psi(x)\leq x for x(0,1)x\in(0,1).

  • We assume that αAij,αBi\partial^{\alpha}A_{ij},\partial^{\alpha}B_{i} extend to continuous functions on Ω1+\Omega_{1}^{+} for |α|m|\alpha|\leq m, where, for δ>0\delta>0, Ωδ+={(x,y)2:0<xδ,0<yψ(x)}\Omega_{\delta}^{+}=\{(x,y)\in\mathbb{R}^{2}:0<x\leq\delta,0<y\leq\psi(x)\}.

  • We suppose that

    |αAij(x,y)|\displaystyle|\partial^{\alpha}A_{ij}(x,y)| \displaystyle\leq Cy|α|, and\displaystyle Cy^{-|\alpha|},\text{ and}
    |αBi(x,y)|\displaystyle|\partial^{\alpha}B_{i}(x,y)| \displaystyle\leq Cy|α|\displaystyle Cy^{-|\alpha|}

    on Ω1+\Omega^{+}_{1} for |α|m|\alpha|\leq m.

Lemma 6.2

Under the above assumptions, there exist δ(0,1)\delta\in(0,1) and semialgebraic maps λ1,,λkmax,μ1,,μlmax:(0,δ)Aff\lambda_{1},\cdots,\lambda_{k_{\max}},\mu_{1},\cdots,\mu_{l_{\max}}:(0,\delta)\rightarrow\text{Aff} such that the following hold:

  • (53)

    Suppose F=(F1,,Fjmax)\vec{F}=(F_{1},\cdots,F_{j_{\max}}) and G=(G1,,Gimax)\vec{G}=(G_{1},\cdots,G_{i_{\max}}) belong to Cm(Ωδclosure,jmax)C^{m}(\Omega_{\delta}^{\text{closure}},\mathbb{R}^{j_{\max}}) and Cm(Ωδclosure,imax)C^{m}(\Omega_{\delta}^{\text{closure}},\mathbb{R}^{i_{\max}}) respectively, with J(0,0)F=0,J(0,0)G=0J_{(0,0)}\vec{F}=0,J_{(0,0)}\vec{G}=0. Suppose also that Gi=jAijFj+BiG_{i}=\sum_{j}A_{ij}F_{j}+B_{i} for each ii. Then [λk(x¯)](jx¯F,jx¯G)=0[\lambda_{k}(\bar{x})](j_{\bar{x}}\vec{F},j_{\bar{x}}\vec{G})=0 for k=1,,kmax,x¯(0,δ)k=1,\cdots,k_{\max},\bar{x}\in(0,\delta), and [μl(x¯)](jx¯F,jx¯G)[\mu_{l}(\bar{x})](j_{\bar{x}}\vec{F},j_{\bar{x}}\vec{G}) is bounded on (0,δ)(0,\delta) and tends to zero as x¯0\bar{x}\rightarrow 0, for each l=1,,lmaxl=1,\cdots,l_{\max}. We do not assume F\vec{F} or G\vec{G} is semialgebraic.

  • (55)

    Suppose there exists an (F,G)(\vec{F},\vec{G}) as in ((53)). Let F#=(F1#,,Fjmax#)\vec{F}^{\#}=(F_{1}^{\#},\cdots,F_{j_{\max}}^{\#}), G#=(G1#,,Gimax#)\vec{G}^{\#}=(G_{1}^{\#},\cdots,G_{i_{{}_{\max}}}^{\#}), where the Fj#F_{j}^{\#} and Gi#G_{i}^{\#} are semialgebraic maps from (0,δ)𝔭(0,\delta)\rightarrow\mathfrak{p}. Suppose that

    [λk(x¯)](F#(x¯),G#(x¯))=0,[\lambda_{k}(\bar{x})](\vec{F}^{\#}(\bar{x}),\vec{G}^{\#}(\bar{x}))=0,

    for k=1,,kmax,x¯(0,δ)k=1,\cdots,k_{\max},\bar{x}\in(0,\delta); and that [μl(x¯)](F#(x¯),G#(x¯))[\mu_{l}(\bar{x})](\vec{F}^{\#}(\bar{x}),\vec{G}^{\#}(\bar{x})) is bounded on (0,δ)(0,\delta) and tends to zero as x¯0\bar{x}\rightarrow 0. Then there exist δ>0\delta^{\prime}>0 and F=(F1,,Fjmax)\vec{F}=(F_{1},\cdots,F_{j_{\max}}), G=(G1,,Gimax)\vec{G}=(G_{1},\cdots,G_{i_{\max}}) semialgebraic and in Cm(Ωδclosure,jmax)C^{m}(\Omega_{\delta^{\prime}}^{\text{closure}},\mathbb{R}^{j_{\max}}) and Cm(Ωδclosure,imax)C^{m}(\Omega_{\delta^{\prime}}^{\text{closure}},\mathbb{R}^{i_{\max}}) respectively, with J(0,0)F=0,J(0,0)G=0J_{(0,0)}\vec{F}=0,J_{(0,0)}\vec{G}=0, Gi=jAijFj+BiG_{i}=\sum_{j}A_{ij}F_{j}+B_{i} and jx¯F=F#(x¯),jx¯G=G#(x¯)j_{\bar{x}}\vec{F}=\vec{F}^{\#}(\bar{x}),j_{\bar{x}}\vec{G}=\vec{G}^{\#}(\bar{x}), for all x¯(0,δ)\bar{x}\in(0,\delta^{\prime}). (Note that here we have passed from δ\delta to a smaller δ\delta^{\prime}.)

The remainder of this section is devoted to a proof of Lemma 6.2.

Let δ>0\delta>0 be small enough to be picked below,

Definition 6.1

We define a bundle \mathcal{H} over [0,1]×{0}2[0,1]\times\{0\}\subset\mathbb{R}^{2}. Here, =(H(x¯,0))x¯[0,1]\mathcal{H}=(H(\bar{x},0))_{\bar{x}\in[0,1]}, with H(x¯,0)𝒫jmax+imaxH(\bar{x},0)\subset\mathcal{P}^{j_{\max}+i_{\max}} defined as follows.

  • H(0,0)={0}H(0,0)=\{0\}.

  • If x¯(0,1]\bar{x}\in(0,1], then (P,Q)=(P1,,Pjmax,Q1,,Qimax)H(x¯,0)(\vec{P},\vec{Q})=(P_{1},\cdots,P_{j_{\max}},Q_{1},\cdots,Q_{i_{\max}})\in H(\bar{x},0) if and only if

    y|α|mα{jAijPj+BiQi}(x¯,y)0y^{|\alpha|-m}\partial^{\alpha}\left\{\sum_{j}A_{ij}P_{j}+B_{i}-Q_{i}\right\}(\bar{x},y)\rightarrow 0

    as y0+y\rightarrow 0^{+}, for each |α|m|\alpha|\leq m and each ii.

We will show that \mathcal{H} is a bundle, i.e., H(z)H(z) is a translate of an z\mathcal{R}_{z}-submodule of zjmax+imax\mathcal{R}_{z}^{j_{\max}+i_{\max}} for each z[0,δ]×{0}z\in[0,\delta]\times\{0\}; and we will show that J(x¯,0)(F,G)H(x¯,0)J_{(\bar{x},0)}(\vec{F},\vec{G})\in H(\bar{x},0) (each x¯[0,δ]\bar{x}\in[0,\delta]) if F,G\vec{F},\vec{G} are as in ((53)).

Suppose J(0,0)(F,G)=0J_{(0,0)}(\vec{F},\vec{G})=0, F,G\vec{F},\vec{G} are CmC^{m} on Ωδclosure\Omega_{\delta}^{\text{closure}}, Gi=jAijFj+BiG_{i}=\sum_{j}A_{ij}F_{j}+B_{i} on Ωδ\Omega_{\delta}. Let x¯(0,δ]\bar{x}\in(0,\delta]. Then

α[Aij(FjJ(x¯,0)Fj)](x¯,y)=o(ym|α|)\partial^{\alpha}[A_{ij}(F_{j}-J_{(\bar{x},0)}F_{j})](\bar{x},y)=o(y^{m-|\alpha|})

and

α[GiJ(x¯,0)Gi](x¯,y)=o(ym|α|)\partial^{\alpha}[G_{i}-J_{(\bar{x},0)}G_{i}](\bar{x},y)=o(y^{m-|\alpha|})

on Ωδ\Omega_{\delta} for |α|m|\alpha|\leq m, by Taylor’s theorem and our estimates for αAij\partial^{\alpha}A_{ij}. The above remarks imply that α{jAijJ(x¯,0)Fj+BiJ(x¯,0)Gi}(x¯,0)=o(ym|α|)\partial^{\alpha}\{\sum_{j}A_{ij}J_{(\bar{x},0)}F_{j}+B_{i}-J_{(\bar{x},0)}G_{i}\}(\bar{x},0)=o(y^{m-|\alpha|}).

Therefore, J(x¯,0)(F,G)H(x¯,0)J_{(\bar{x},0)}(\vec{F},\vec{G})\in H(\bar{x},0) for x¯(0,δ]\bar{x}\in(0,\delta]. For x¯=0\bar{x}=0, we just note that J(0,0)(F,G)=0H(0,0)J_{(0,0)}(\vec{F},\vec{G})=0\in H(0,0). That proves our assertion about J(x¯,0)(F,G)J_{(\bar{x},0)}(\vec{F},\vec{G}).

Note that for x¯0,\bar{x}\not=0, H(x¯,0)H\left(\bar{x},0\right) is a translate in 𝒫\mathcal{P} of

I(x¯)={(P,Q):α(jAijPiQi)(x¯,y)=o(ym|α|), as y0+|α|m}.I\left(\bar{x}\right)=\left\{\left(\vec{P},\vec{Q}\right):\partial^{\alpha}\left(\sum_{j}A_{ij}P_{i}-Q_{i}\right)\left(\bar{x},y\right)=o\left(y^{m-\left|\alpha\right|}\right)\text{, as }y\rightarrow 0^{+}\text{, }\left|\alpha\right|\leq m\right\}\text{.}

Let (P,Q)I(x¯)\left(\vec{P},\vec{Q}\right)\in I\left(\bar{x}\right) and let S𝒫S\in\mathcal{P}. Then for |α|m,\left|\alpha\right|\leq m, we have

α(S[jAijPjQi])(x¯,y)=o(ym|α|),\partial^{\alpha}\left(S\cdot\left[\sum_{j}A_{ij}P_{j}-Q_{i}\right]\right)\left(\bar{x},y\right)=o\left(y^{m-\left|\alpha\right|}\right),

hence

(57) α(jAij(SPj)(SQi))(x¯,y)=o(ym|α|), as y0+.\partial^{\alpha}\left(\sum_{j}A_{ij}\left(SP_{j}\right)-\left(SQ_{i}\right)\right)\left(\bar{x},y\right)=o\left(y^{m-\left|\alpha\right|}\right)\text{, as }y\rightarrow 0^{+}\text{.}

Also, our estimates on αAij,\partial^{\alpha}A_{ij}, together with Taylor’s theorem, give

α(Aij(SPiJ(x¯,0)(SPj)))(x¯,0)=o(ym|α|)\partial^{\alpha}\left(A_{ij}\left(SP_{i}-J_{\left(\bar{x},0\right)}\left(SP_{j}\right)\right)\right)\left(\bar{x},0\right)=o\left(y^{m-\left|\alpha\right|}\right)

and

α(SQiJ(x¯,0)(SQi))(x¯,0)=o(ym|α|) as y0+ for |α|m.\partial^{\alpha}\left(SQ_{i}-J_{\left(\bar{x},0\right)}\left(SQ_{i}\right)\right)\left(\bar{x},0\right)=o\left(y^{m-\left|\alpha\right|}\right)\text{ as }y\rightarrow 0^{+}\text{ for }\left|\alpha\right|\leq m\text{.}

That is,

(58) α(Aij(SPjS(x¯,0)Pj))(x¯,y)=o(ym|α|)\partial^{\alpha}\left(A_{ij}\left(SP_{j}-S\odot_{\left(\bar{x},0\right)}P_{j}\right)\right)\left(\bar{x},y\right)=o\left(y^{m-\left|\alpha\right|}\right)

and

(59) α(SQiS(x¯,0)Qi)(x¯,0)=o(ym|α|) as y0+ for |α|m.\partial^{\alpha}\left(SQ_{i}-S\odot_{\left(\bar{x},0\right)}Q_{i}\right)\left(\bar{x},0\right)=o\left(y^{m-\left|\alpha\right|}\right)\text{ as }y\rightarrow 0^{+}\text{ for }\left|\alpha\right|\leq m.

It now follows from (57), (58), and (59) that

α(jAij[S(x¯,0)Pj][S(x¯,0)Qi])(x¯,y)=o(ym|α|)\partial^{\alpha}\left(\sum_{j}A_{ij}\left[S\odot_{\left(\bar{x},0\right)}P_{j}\right]-\left[S\odot_{\left(\bar{x},0\right)}Q_{i}\right]\right)\left(\bar{x},y\right)=o\left(y^{m-\left|\alpha\right|}\right)

as y0+y\rightarrow 0^{+}, for each |α|m\left|\alpha\right|\leq m.

This completes the proof that the I(x¯)I\left(\bar{x}\right) is a submodule, when x¯0\bar{x}\not=0.

For x¯=0,\bar{x}=0, we just note that {0}\left\{0\right\} is an (0,0)\mathcal{R}_{\left(0,0\right)}-submodule of (0,0)jmax+imax.\mathcal{R}_{\left(0,0\right)}^{j_{\max}+i_{\max}}.

We have now shown that

  • =(H(x¯,0))x¯[0,δ]\mathcal{H}=(H(\bar{x},0))_{\bar{x}\in[0,\delta]} is a bundle.

  • If (F,G)(\vec{F},\vec{G}) is as in (I) of Lemma 6.2, then (F,G)(\vec{F},\vec{G}) is a section of \mathcal{H}.

  • H(x¯,0)𝒫jmax+imaxH(\bar{x},0)\subset\mathcal{P}^{j_{\max}+i_{\max}} depends semialgebraically on x¯\bar{x}, since AijA_{ij} and BiB_{i} are semialgebraic.

Lemma 6.3

Let =(H(x¯,0))(x¯,0)[0,δ]×{0}\mathcal{H}=(H(\bar{x},0))_{(\bar{x},0)\in[0,\delta]\times\{0\}} be a semialgebraic bundle, =H(x¯,0)𝒫jmax+imax\mathcal{H}=H(\bar{x},0)\subset\mathcal{P}^{j_{\max}+i_{\max}}. Then there exist semialgebraic functions λ1,,λkmax:(0,δ)Aff\lambda_{1},\cdots,\lambda_{k_{\max}}:(0,\delta)\rightarrow\text{Aff}, and a finite set of bad points {x¯¯1bad,,x¯¯Sbad}\{\bar{\bar{x}}_{1}^{\text{bad}},\cdots,\bar{\bar{x}}_{S}^{\text{bad}}\} such that the following holds for any x¯¯(0,δ)\bar{\bar{x}}\in\left(0,\delta\right) other than the bad points. Let (F,G)=(F1,,Fjmax,G1,,Gimax)\left(\vec{F},\vec{G}\right)=\left(F_{1},\cdots,F_{j_{\max}},G_{1},\cdots,G_{i_{\max}}\right) be CmC^{m} in a neighborhood of (x¯¯,0)\left(\bar{\bar{x}},0\right) in 2\mathbb{R}^{2}. Then

J(x¯,0)(F,G)H(x¯,0) for all x¯ in some neighborhood of x¯¯J_{\left(\bar{x},0\right)}\left(\vec{F},\vec{G}\right)\in H\left(\bar{x},0\right)\text{ for all }\bar{x}\text{ in some neighborhood of }\bar{\bar{x}}

if and only if

[λk(x¯)](jx¯F,jx¯G)=0 for all x¯ in some neighborhood of x¯¯,(k=1,,kmax).\left[\lambda_{k}\left(\bar{x}\right)\right]\left(j_{\bar{x}}\vec{F},j_{\bar{x}}\vec{G}\right)=0\text{ for all }\bar{x}\text{ in some neighborhood of }\bar{\bar{x}},(k=1,\cdots,k_{\max})\text{.}

Proof. This is a 1 dimensional case of Lemma 5.1, whose proof can be found in Section 5.1.   

Proof of Lemma 6.2. We apply Lemma 6.3 to the bundle \mathcal{H} defined in Definition 6.1. By making δ\delta smaller, we may assume there are no bad points x¯¯bad\bar{\bar{x}}_{{}^{\text{bad}}}. Thus, we have achieved the following: There exist semialgebraic functions λ1,,λkmax:(0,δ]Aff\lambda_{1},\cdots,\lambda_{k_{\max}}:(0,\delta]\rightarrow\text{Aff} such that for any x¯¯(0,δ)\bar{\bar{x}}\in(0,\delta) and any (F,G)(\vec{F},\vec{G}) that is CmC^{m} in a neighborhood of (x¯¯,0)(\bar{\bar{x}},0), we have

J(x¯,0)(F,G)H(x¯,0) for all x¯ in some neighborhood of x¯¯J_{\left(\bar{x},0\right)}(\vec{F},\vec{G})\in H(\bar{x},0)\text{ for all }\bar{x}\text{ in some neighborhood of }\bar{\bar{x}}

if and only if

[λk(x¯)]jx¯(F,G)=0 for all x¯ in some neighborhood of x¯¯,(k=1,,kmax).\left[\lambda_{k}\left(\bar{x}\right)\right]j_{\bar{x}}\left(\vec{F},\vec{G}\right)=0\text{ for all }\bar{x}\text{ in some neighborhood of }\bar{\bar{x}},(k=1,\cdots,k_{\max})\text{.}

In particular, if (F,G)\left(\vec{F},\vec{G}\right) is as in ((53)), then

[λk(x¯)]jx¯(F,G)=0 for all x¯(0,δ),(k=1,,kmax).\left[\lambda_{k}\left(\bar{x}\right)\right]j_{\bar{x}}\left(\vec{F},\vec{G}\right)=0\text{ for all }\bar{x}\in(0,\delta),(k=1,\cdots,k_{\max})\text{.}

Next, we apply Theorem 6 in Section 3.7.

Recall H(x¯,0)H(\bar{x},0) is an affine space, so H(x¯,0)\mathbb{R}\cdot H(\bar{x},0) is a vector space.

We regard H(x¯,0)\mathbb{R}\cdot H(\bar{x},0) as the space of all (P,Q,t)(\vec{P},\vec{Q},t) such that α{jAijPj+tBiQi}(x¯,y)=o(ym|α|)\partial^{\alpha}\{\sum_{j}A_{ij}P_{j}+tB_{i}-Q_{i}\}(\bar{x},y)=o(y^{m-|\alpha|}) as y0+y\rightarrow 0^{+}.

We define seminorms on H(x¯,0)\mathbb{R}\cdot H(\bar{x},0) by

|(P,Q,t)|α,i,y=|y|α|mα{jAijPj+tBiQi}(x¯,y)||||(\vec{P},\vec{Q},t)|||_{\alpha,i,y}=\left|y^{|\alpha|-m}\partial^{\alpha}\left\{\sum_{j}A_{ij}P_{j}+tB_{i}-Q_{i}\right\}(\bar{x},y)\right|

for fixed x¯\bar{x} and 0<y<ψ(x¯)0<y<\psi(\bar{x}). Notice that on H(x¯,0)H(\bar{x},0), the seminorm agrees with

|(P,Q)|α,i,y=|y|α|mα{jAijPj+BiQi}(x¯,y)||||(\vec{P},\vec{Q})|||_{\alpha,i,y}=\left|y^{|\alpha|-m}\partial^{\alpha}\left\{\sum_{j}A_{ij}P_{j}+B_{i}-Q_{i}\right\}(\bar{x},y)\right|

for fixed x¯0\bar{x}\not=0 and 0<y<ψ(x¯),|α|m,i=1,,imax0<y<\psi(\bar{x}),|\alpha|\leq m,i=1,\cdots,i_{\max}.

Note that

supα,i,y|(P,Q)|α,i,y\sup_{\alpha,i,y}|||(\vec{P},\vec{Q})|||_{\alpha,i,y}

is bounded for fixed (P,Q)H(x¯,0)\left(\vec{P},\vec{Q}\right)\in H\left(\bar{x},0\right), by definition of H(x¯,0)H\left(\bar{x},0\right).

Thus, by Theorem 6 in Section 3.7, for each x¯(0,δ),\bar{x}\in\left(0,\delta\right), there exist yσ(0,ψ(x¯))y_{\sigma}\in\left(0,\psi\left(\bar{x}\right)\right) (σ=1,,σmax)\left(\sigma=1,\cdots,\sigma_{\max}\right) with σmax\sigma_{\max} depending only on imax,jmax,mi_{\max},j_{\max},m such that for any (P,Q)H(x¯,0)\left(\vec{P},\vec{Q}\right)\in H\left(\bar{x},0\right), we have

(60) sup0<y<ψ(x¯)|α|mi=1,,imax|y||α|m|α{jAijPj+BjQi}(x¯,y)|\displaystyle\sup_{\begin{subarray}{c}0<y<\psi\left(\bar{x}\right)\\ \left|\alpha\right|\leq m\\ i=1,\cdots,i_{\max}\end{subarray}}\left|y\right|^{\left|\alpha\right|-m}\left|\partial^{\alpha}\left\{\sum_{j}A_{ij}P_{j}+B_{j}-Q_{i}\right\}\left(\bar{x},y\right)\right|
\displaystyle\leq Cmaxσ=1,,σmax|α|mi=1,,imax|yσ||α|m|α{jAijPj+BjQi}(x¯,yσ)|.\displaystyle C\max_{\begin{subarray}{c}\sigma=1,\cdots,\sigma_{\max}\\ \left|\alpha\right|\leq m\\ i=1,\cdots,i_{\max}\end{subarray}}\left|y_{\sigma}\right|^{\left|\alpha\right|-m}\left|\partial^{\alpha}\left\{\sum_{j}A_{ij}P_{j}+B_{j}-Q_{i}\right\}\left(\bar{x},y_{\sigma}\right)\right|\text{.}

Moreover, (60) is a semialgebraic condition. Therefore, we may take y1,,yσ(0,ψ(x¯))y_{1},\cdots,y_{\sigma}\in\left(0,\psi\left(\bar{x}\right)\right) satisfying (60) to depend semialgebraically on x¯(0,δ)\bar{x}\in\left(0,\delta\right).

Because 0<yσ(x¯)<ψ(x¯)x¯0<y_{\sigma}\left(\bar{x}\right)<\psi\left(\bar{x}\right)\leq\bar{x} for x¯(0,δ)\bar{x}\in\left(0,\delta\right) and because yσ(x¯)y_{\sigma}\left(\bar{x}\right) depends semialgebraically on x¯\bar{x}, we can take δ\delta small to achieve the estimates

  • (61)

    |(ddx)αyσ(x¯)|Cx¯1α\left|\left(\frac{d}{dx}\right)^{\alpha}y_{\sigma}\left(\bar{x}\right)\right|\leq C\bar{x}^{1-\alpha} for 0αm+1000\leq\alpha\leq m+100, σ=1,,σmax,\sigma=1,\cdots,\sigma_{\max}, x¯(0,δ).\bar{x}\in\left(0,\delta\right).

  • (63)

    0<yσ(x¯)<ψ(x¯)x¯0<y_{\sigma}(\bar{x})<\psi(\bar{x})\leq\bar{x} for σ=1,,σmax\sigma=1,\cdots,\sigma_{\max}, x¯(0,δ)\bar{x}\in\left(0,\delta\right).

  • (65)

    x¯yσ(x¯)\bar{x}\mapsto y_{\sigma}(\bar{x}) is a semialgebraic function.

  • (67)

    For any x¯(0,δ)\bar{x}\in(0,\delta) and any (P,Q)=(P1,,Pjmax,Q1,,Qimax)H(x¯,0),\left(\vec{P},\vec{Q}\right)=\left(P_{1},\cdots,P_{j_{\max}},Q_{1},\cdots,Q_{i_{\max}}\right)\in H\left(\bar{x},0\right), we have

    sup0<y<ψ(x¯)|α|mi=1,,imax|y||α|m|α{jAijPj+BjQi}(x¯,y)|\displaystyle\sup_{\begin{subarray}{c}0<y<\psi\left(\bar{x}\right)\\ \left|\alpha\right|\leq m\\ i=1,\cdots,i_{\max}\end{subarray}}\left|y\right|^{\left|\alpha\right|-m}\left|\partial^{\alpha}\left\{\sum_{j}A_{ij}P_{j}+B_{j}-Q_{i}\right\}\left(\bar{x},y\right)\right|
    \displaystyle\leq Cmaxσ=1,,σmax|α|mi=1,,imax|yσ(x¯)||α|m|α{jAijPj+BjQi}(x¯,yσ(x¯))|.\displaystyle C\max_{\begin{subarray}{c}\sigma=1,\cdots,\sigma_{\max}\\ \left|\alpha\right|\leq m\\ i=1,\cdots,i_{\max}\end{subarray}}\left|y_{\sigma}\left(\bar{x}\right)\right|^{\left|\alpha\right|-m}\left|\partial^{\alpha}\left\{\sum_{j}A_{ij}P_{j}+B_{j}-Q_{i}\right\}\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)\right|\text{.}

    with CC depending only on imax,jmax,mi_{\max},j_{\max},m.

Fix x¯(0,δ)\bar{x}\in(0,\delta), and let (p,q)=(p1,,pjmax,q1,,qimax)𝔭jmax+imax(\vec{p},\vec{q})=\left(p_{1},\cdots,p_{j_{\max}},q_{1},\cdots,q_{i_{\max}}\right)\in\mathfrak{p}^{j_{\max}+i_{\max}}. Thus, each pjp_{j} and qiq_{i} is a polynomial in yy of degree at most mm. For 0am,0\leq a\leq m, σ=1,,σmax,\sigma=1,\cdots,\sigma_{\max}, i=1,,imax,i=1,\cdots,i_{\max}, let

μa,σ,i#[x¯](p1,,pjmax,q1,,qimax)\displaystyle\mu_{a,\sigma,i}^{\#}\left[\bar{x}\right]\left(p_{1},\cdots,p_{j_{\max}},q_{1},\cdots,q_{i_{\max}}\right)
=\displaystyle= (yσ(x¯))amya{jAij(x¯,y)pj(y)+Bi(x¯,y)qi(y)}|y=yσ(x¯).\displaystyle\left.\left(y_{\sigma}\left(\bar{x}\right)\right)^{a-m}\partial_{y}^{a}\left\{\sum_{j}A_{ij}\left(\bar{x},y\right)p_{j}\left(y\right)+B_{i}\left(\bar{x},y\right)-q_{i}\left(y\right)\right\}\right|_{y=y_{\sigma}\left(\bar{x}\right)}.

Note that we don’t take xx-derivatives here, only yy-derivatives.

The μa,σ,i#(x¯)\mu_{a,\sigma,i}^{\#}(\bar{x}) are affine functions from 𝔭jmax+imax\mathfrak{p}^{j_{\max}+i_{\max}} to \mathbb{R}; thus, each μa,σ,i#(x¯)\mu_{a,\sigma,i}^{\#}(\bar{x}) belongs to Aff. Let μ1(x¯),,μlmax(x¯)\mu_{1}\left(\bar{x}\right),\cdots,\mu_{l_{\max}}\left(\bar{x}\right) be an enumeration of the μa,σ,i#(x¯)\mu_{a,\sigma,i}^{\#}\left(\bar{x}\right), together with the linear maps

(p1,,pjmax,q1,,qimax)\displaystyle\left(p_{1},\cdots,p_{j_{\max}},q_{1},\cdots,q_{i_{\max}}\right) \displaystyle\mapsto (x¯)amyapj(0)\displaystyle\left(\bar{x}\right)^{a-m}\partial_{y}^{a}p_{j}\left(0\right)
(p1,,pjmax,q1,,qimax)\displaystyle\left(p_{1},\cdots,p_{j_{\max}},q_{1},\cdots,q_{i_{\max}}\right) \displaystyle\mapsto (x¯)amyaqi(0).\displaystyle\left(\bar{x}\right)^{a-m}\partial_{y}^{a}q_{i}\left(0\right)\text{.}

We will prove the following

  • (69)

    Let F,G\vec{F},\vec{G} be as assumed in ((53)). Then, as x¯\bar{x} varies over (0,δ)\left(0,\delta\right), the [μl(x¯)](jx¯F,jx¯G¯)\left[\mu_{l}\left(\bar{x}\right)\right]\left(j_{\bar{x}}\vec{F},j_{\bar{x}}\bar{G}\right) remain bounded, and these quantities tend to zero as x¯\bar{x} tends to 0+0^{+}.

To prove ((69)), we recall that

jAijFj+BiGi=0,\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}=0\text{,}

hence

μa,σ,i#(x¯)(jx¯F,jx¯G)\displaystyle\mu_{a,\sigma,i}^{\#}\left(\bar{x}\right)\left(j_{\bar{x}}\vec{F},j_{\bar{x}}\vec{G}\right)
=\displaystyle= (yσ(x¯))amya[iAij(x¯,y){Fj(x¯,y)jx¯Fj(y)}{Gj(x¯,y)jx¯Gj(y)}]|y=yσ.\displaystyle-\left(y_{\sigma}\left(\bar{x}\right)\right)^{a-m}\left.\partial_{y}^{a}\left[\sum_{i}A_{ij}\left(\bar{x},y\right)\left\{F_{j}\left(\bar{x},y\right)-j_{\bar{x}}F_{j}\left(y\right)\right\}-\left\{G_{j}\left(\bar{x},y\right)-j_{\bar{x}}G_{j}\left(y\right)\right\}\right]\right|_{y=y_{\sigma}}.

Let wF(x¯)=max|β|=m,j=1,,jmax(sup0yψ(x¯)[βFj(x¯,y)]inf0yψ(x¯)[βFj(x¯,y)])w_{F}\left(\bar{x}\right)=\max_{\left|\beta\right|=m,j=1,\cdots,j_{\max}}\left(\sup_{0\leq y\leq\psi\left(\bar{x}\right)}\left[\partial^{\beta}F_{j}\left(\bar{x},y\right)\right]-\inf_{0\leq y\leq\psi\left(\bar{x}\right)}\left[\partial^{\beta}F_{j}\left(\bar{x},y\right)\right]\right) and similarly define wG(x¯)w_{G}\left(\bar{x}\right) as above, with GG in place of F.F.

Because F,G\vec{F},\vec{G} belong to Cm(Ωδclosure,jmax)C^{m}\left({\Omega}^{\text{closure}}_{\delta},\mathbb{R}^{j_{\max}}\right) and Cm(Ωδclosure,imax)C^{m}\left({\Omega}^{\text{closure}}_{\delta},\mathbb{R}^{i_{\max}}\right) respectively, while ψ(x¯)0\psi\left(\bar{x}\right)\rightarrow 0 as x¯0,\bar{x}\rightarrow 0, we know that wF(x¯)w_{F}\left(\bar{x}\right), wG(x¯)w_{G}\left(\bar{x}\right) are bounded as x¯\bar{x} varies over (0,δ)\left(0,\delta\right), and moreover wF(x¯),wG(x¯)0w_{F}\left(\bar{x}\right),w_{G}\left(\bar{x}\right)\rightarrow 0 as x¯0+\bar{x}\rightarrow 0^{+}.

Taylor’s theorem gives

  • (72)

    |ya[Fj(x¯,y)jx¯Fj(y)]|CwF(x¯)yma\left|\partial_{y}^{a}\left[F_{j}\left(\bar{x},y\right)-j_{\bar{x}}F_{j}\left(y\right)\right]\right|\leq Cw_{F}\left(\bar{x}\right)\cdot y^{m-a} for 0am0\leq a\leq m, 0<y<ψ(x¯),0<y<\psi\left(\bar{x}\right), j=1,,jmaxj=1,\cdots,j_{\max}.

  • (74)

    |ya{Gi(x¯,y)jx¯Gi(y)}|CwG(x¯)yma\left|\partial_{y}^{a}\left\{G_{i}\left(\bar{x},y\right)-j_{\bar{x}}G_{i}\left(y\right)\right\}\right|\leq Cw_{G}\left(\bar{x}\right)\cdot y^{m-a} for 0am,0<y<ψ(x¯),i=1,,imax0\leq a\leq m,0<y<\psi\left(\bar{x}\right),i=1,\cdots,i_{\max}.

We recall that

  • (76)

    |yaAij(x¯,y)|Cya|\partial_{y}^{a}A_{ij}(\bar{x},y)|\leq Cy^{-a} for 0am,0<y<ψ(x¯),i=1,,imax,j=1,,jmax0\leq a\leq m,0<y<\psi\left(\bar{x}\right),i=1,\cdots,i_{\max},j=1,\cdots,j_{\max}.

Putting ((72)),((74)),((76)) into (6.1), we find that

|μa,σ,i#(x¯)(jx¯F,jx¯G)|CwF(x¯)+CwG(x¯),\left|\mu_{a,\sigma,i}^{\#}\left(\bar{x}\right)\left(j_{\bar{x}}\vec{F},j_{\bar{x}}\vec{G}\right)\right|\leq Cw_{F}\left(\bar{x}\right)+Cw_{G}\left(\bar{x}\right)\text{,}

hence the μa,σ,i#(x¯)(jx¯F,Jx¯G)\mu_{a,\sigma,i}^{\#}\left(\bar{x}\right)\left(j_{\bar{x}}\vec{F},J_{\bar{x}}\vec{G}\right) remain bounded as x¯\bar{x} varies over (0,δ)\left(0,\delta\right), and these quantities tend to zero as x¯0+\bar{x}\rightarrow 0^{+}.

Also, because J(0,0)F=0,J(0,0)G=0,J_{\left(0,0\right)}\vec{F}=0,J_{\left(0,0\right)}\vec{G}=0, and F,G\vec{F},\vec{G} are in Cm(Ωδclosure,jmax)C^{m}\left({\Omega}_{\delta}^{\text{closure}},\mathbb{R}^{j_{\max}}\right) and Cm(Ωδclosure,imax)C^{m}\left({\Omega}_{\delta}^{\text{closure}},\mathbb{R}^{i_{\max}}\right) respectively, we see that

(x¯)amyaFj(x¯,0),(x¯)amyaGi(x¯,0),\left(\bar{x}\right)^{a-m}\partial_{y}^{a}F_{j}\left(\bar{x},0\right),\left(\bar{x}\right)^{a-m}\partial_{y}^{a}G_{i}\left(\bar{x},0\right),

for 0am0\leq a\leq m, remain bounded as x¯\bar{x} varies over (0,δ),\left(0,\delta\right), and these quantities tend to zero as x¯0+\bar{x}\rightarrow 0^{+}.

Thus, all the μl(x¯)(jx¯F,jx¯G)\mu_{l}\left(\bar{x}\right)\left(j_{\bar{x}}\vec{F},j_{\bar{x}}\vec{G}\right) remain bounded on (0,δ)\left(0,\delta\right) and tend to zero as x¯0+\bar{x}\rightarrow 0^{+}.

We have proven ((69)). Thus, we have defined our λ1,,λkmax\lambda_{1},\cdots,\lambda_{k_{\max}} and μ1,,μlmax\mu_{1},\cdots,\mu_{l_{\max}} and we have proven ((53)).

We now set out to prove ((55)).

Thus, let F#=(F1#,,Fjmax#)\vec{F}^{\#}=\left(F_{1}^{\#},\cdots,F_{j_{\max}}^{\#}\right) and G#=(G1#,,Gimax#)\vec{G}^{\#}=\left(G_{1}^{\#},\cdots,G_{i_{\max}}^{\#}\right) be as in ((55)).

Recall, each Fj#F_{j}^{\#} and Gi#G_{i}^{\#} is a semialgebraic map from (0,δ)(0,\delta) into 𝔭\mathfrak{p}, and moreover

[λk(x¯)](F#(x¯),G#(x¯))=0 for k=1,,kmax, all x¯(0,δ); and\left[\lambda_{k}\left(\bar{x}\right)\right]\left(\vec{F}^{\#}\left(\bar{x}\right),\vec{G}^{\#}\left(\bar{x}\right)\right)=0\text{ for }k=1,\cdots,k_{\max},\text{ all }\bar{x}\in\left(0,\delta\right);\text{ and}

[μl(x¯)](F#(x¯),G#(x¯))\left[\mu_{l}\left(\bar{x}\right)\right]\left(\vec{F}^{\#}\left(\bar{x}\right),\vec{G}^{\#}\left(\bar{x}\right)\right) is bounded as x¯\bar{x} varies over (0,δ)\left(0,\delta\right) and tends to zero as x¯0+\bar{x}\rightarrow 0^{+} for each l=1,,lmaxl=1,\cdots,l_{\max}.

Then

  • (78)

    Fj#(x¯)F_{j}^{\#}\left(\bar{x}\right) has the form ys=0mFjs(x¯)ysy\mapsto\sum_{s=0}^{m}F_{js}\left(\bar{x}\right)y^{s} and

  • (80)

    Gi#(x¯)G_{i}^{\#}\left(\bar{x}\right) has the form ys=0mGis(x¯)ysy\mapsto\sum_{s=0}^{m}G_{is}\left(\bar{x}\right)y^{s},

with Fjs,GisF_{js},G_{is} semialgebraic functions of one variable. Taking δ\delta small (depending on F#,G#\vec{F}^{\#},\vec{G}^{\#}), we may assume the Fjs,GisF_{js},G_{is} are CC^{\infty} on (0,δ)(0,\delta).

Now, we define F=(F1,,Fjmax)\vec{F}=\left(F_{1},\cdots,F_{j_{\max}}\right), G=(G1,,Gimax),G##=(G1##,,Gimax##),\vec{G}=\left(G_{1},\cdots,G_{i_{\max}}\right),\vec{G}^{\#\#}=\left(G_{1}^{\#\#},\cdots,G_{i_{\max}}^{\#\#}\right), where

(82) Fj(x¯,y)=s=0mFjs(x¯)ysF_{j}\left(\bar{x},y\right)=\sum_{s=0}^{m}F_{js}\left(\bar{x}\right)y^{s}

for (x¯,y)(0,δ)×\left(\bar{x},y\right)\in\left(0,\delta\right)\times\mathbb{R}, j=1,,jmax,j=1,\cdots,j_{\max},

(83) Gi##(x¯,y)=s=0mGis(x¯)ysG_{i}^{\#\#}\left(\bar{x},y\right)=\sum_{s=0}^{m}G_{is}\left(\bar{x}\right)y^{s}

for (x¯,y)(0,δ)×\left(\bar{x},y\right)\in\left(0,\delta\right)\times\mathbb{R}, i=1,,imaxi=1,\cdots,i_{\max},

Gi(x¯,y)=jAij(x¯,y)Fj(x¯,y)+Bi(x¯,y)G_{i}\left(\bar{x},y\right)=\sum_{j}A_{ij}\left(\bar{x},y\right)F_{j}\left(\bar{x},y\right)+B_{i}\left(\bar{x},y\right)

for (x¯,y)Ωδ\left(\bar{x},y\right)\in\Omega_{\delta}, i=1,,imaxi=1,\cdots,i_{\max}.

Note that Fj,Gi##F_{j},G_{i}^{\#\#} are CC^{\infty} functions on (0,δ)×\left(0,\delta\right)\times\mathbb{R} because the Fjs,GisF_{js},G_{is} are CC^{\infty} functions on (0,δ)\left(0,\delta\right).

The functions Fj,Gi##,GiF_{j},G_{i}^{\#\#},G_{i} are semialgebraic because Fj#,Gi#F_{j}^{\#},G_{i}^{\#} are semialgebraic.

Let x¯(0,δ)\bar{x}\in\left(0,\delta\right). Then

(84) jx¯Fj=Fj#(x¯)𝔭,jx¯Gi##=Gi#(x¯)𝔭.j_{\bar{x}}F_{j}=F_{j}^{\#}\left(\bar{x}\right)\in\mathfrak{p},j_{\bar{x}}G_{i}^{\#\#}=G_{i}^{\#}\left(\bar{x}\right)\in\mathfrak{p}.

Therefore, for all x¯\bar{x} in a small neighborhood of a given x¯¯(0,δ)\overline{\overline{x}}\in\left(0,\delta\right), we have

λk(x¯)(jx¯F,jx¯G##)=λk(x¯)(F#(x¯),G#(x¯))=0\lambda_{k}(\bar{x})\left(j_{\bar{x}}\vec{F},j_{\bar{x}}\vec{G}^{\#\#}\right)=\lambda_{k}(\bar{x})\left(\vec{F}^{\#}\left(\bar{x}\right),\vec{G}^{\#}\left(\bar{x}\right)\right)=0

for k=1,,kmaxk=1,\cdots,k_{\max}; the last equality is an assumption made in ((55)).

Because F,G##\vec{F},\vec{G}^{\#\#} are CC^{\infty} in a neighborhood of (x¯¯,0),\left(\overline{\overline{x}},0\right), the defining property of the λk\lambda_{k} now tells us that

(J(x¯,0)F,J(x¯,0)G##)H(x¯,0)\left(J_{\left(\bar{x},0\right)}\vec{F},J_{\left(\bar{x},0\right)}\vec{G}^{\#\#}\right)\in H\left(\bar{x},0\right)

for all x¯\bar{x} in a small neighborhood of x¯¯\overline{\overline{x}}.

Recalling that x¯¯(0,δ)\overline{\overline{x}}\in\left(0,\delta\right) is arbitrary, we conclude that

(85) (J(x¯,0)F,J(x¯,0)G##)H(x¯,0) for all x¯(0,δ).\left(J_{\left(\bar{x},0\right)}\vec{F},J_{\left(\bar{x},0\right)}\vec{G}^{\#\#}\right)\in H\left(\bar{x},0\right)\text{ for all }\bar{x}\in\left(0,\delta\right).

By definition of H(x¯,0)H\left(\bar{x},0\right) and by the estimates

α(FjJ(x¯,0)Fj)(x¯,y)\displaystyle\partial^{\alpha}\left(F_{j}-J_{\left(\bar{x},0\right)}F_{j}\right)\left(\bar{x},y\right) =\displaystyle= o(ym|α|),\displaystyle o\left(y^{m-\left|\alpha\right|}\right),
α(Gi##J(x¯,0)Gi##)(x¯,y)\displaystyle\partial^{\alpha}\left(G_{i}^{\#\#}-J_{\left(\bar{x},0\right)}G_{i}^{\#\#}\right)\left(\bar{x},y\right) =\displaystyle= o(ym|α|), and\displaystyle o\left(y^{m-\left|\alpha\right|}\right),\text{ and}
|αAij(x,y)|\displaystyle\left|\partial^{\alpha}A_{ij}\left(x,y\right)\right| \displaystyle\leq Cy|α|,\displaystyle Cy^{-\left|\alpha\right|}\text{,}

we therefore have the following:

  • (86)

    For any x¯(0,δ),\bar{x}\in\left(0,\delta\right), any i=1,,imax,i=1,\cdots,i_{\max}, and any |α|m\left|\alpha\right|\leq m, the quantity

    y|α|mα{jAijFj+BiGi##}(x¯,y)y^{\left|\alpha\right|-m}\partial^{\alpha}\left\{\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right\}\left(\bar{x},y\right)

    is bounded as yy varies over (0,ψ(x¯))\left(0,\psi\left(\bar{x}\right)\right) and tends to zero as y0+y\rightarrow 0^{+}.

We don’t yet know that the above convergence is uniform in x¯.\bar{x}.

Next, we recall from ((55)) the assumption that the μl(x¯)(F#(x¯),G#(x¯))\mu_{l}\left(\bar{x}\right)\left(\vec{F}^{\#}\left(\bar{x}\right),\vec{G}^{\#}\left(\bar{x}\right)\right) remain bounded as x¯\bar{x} varies over (0,δ)\left(0,\delta\right) and moreover these quantities tend to zero as x¯0+\bar{x}\rightarrow 0^{+}.

Thus, the quantities

(88) (yσ(x¯))amya{jAijFj+BiGi##}(x¯,yσ(x¯))\left(y_{\sigma}\left(\bar{x}\right)\right)^{a-m}\partial_{y}^{a}\left\{\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right\}\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)

for 0am,i=1,,imax,σ=1,,σmax0\leq a\leq m,i=1,\cdots,i_{\max},\sigma=1,\cdots,\sigma_{\max}, remain bounded as x¯\bar{x} varies over (0,δ)\left(0,\delta\right), and tend to zero as x¯0+\bar{x}\rightarrow 0^{+}.

Because those quantities are semialgebraic functions of one variable, we may pass to a smaller δ\delta and assert for any bb, say 0bm0\leq b\leq m, that

(89) (ddx¯)b{yσ(x¯)amya[jAijFj+BiGi##](x¯,yσ(x¯))}=o(x¯b)\left(\frac{d}{d\bar{x}}\right)^{b}\left\{y_{\sigma}\left(\bar{x}\right)^{a-m}\partial_{y}^{a}\left[\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right]\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)\right\}=o\left(\bar{x}^{-b}\right)

as x¯0+\bar{x}\rightarrow 0^{+} and this quantity is bounded for x¯\bar{x} bounded away from 0.

For 0a+bm,0\leq a+b\leq m, we will check that

(90) (x¯)a+bm(ddx¯)b{ya[jAijFj+BiGi##](x¯,yσ(x¯))}=o(1)\left(\bar{x}\right)^{a+b-m}\left(\frac{d}{d\bar{x}}\right)^{b}\left\{\partial_{y}^{a}\left[\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right]\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)\right\}=o\left(1\right)

as x¯0+\bar{x}\rightarrow 0^{+} and the left-hand side is bounded.

To see this, we write

(ddx¯)b{ya[jAijFj+BiGi##](x¯,yσ(x¯))}\displaystyle\left(\frac{d}{d\bar{x}}\right)^{b}\left\{\partial_{y}^{a}\left[\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right]\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)\right\}
=\displaystyle= (ddx¯)b{(yσ(x¯))ma(yσ(x¯))amya[jAijFj+BiGi##](x¯,yσ(x¯))}\displaystyle\left(\frac{d}{d\bar{x}}\right)^{b}\left\{\left(y_{\sigma}\left(\bar{x}\right)\right)^{m-a}\left(y_{\sigma}\left(\bar{x}\right)\right)^{a-m}\partial_{y}^{a}\left[\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right]\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)\right\}
=\displaystyle= b+b′′=bcoeff(b,b′′)[(ddx¯)b(yσ(x¯))ma]()\displaystyle\sum_{b^{\prime}+b^{\prime\prime}=b}\text{coeff}\left(b^{\prime},b^{\prime\prime}\right)\underset{\left(\dagger\right)}{\underbrace{\left[\left(\frac{d}{d\bar{x}}\right)^{b^{\prime}}\left(y_{\sigma}\left(\bar{x}\right)\right)^{m-a}\right]}}\cdot
[(ddx¯)b′′{(yσ(x¯))amya[jAijFj+BiGi##](x¯,yσ(x¯))}]().\displaystyle\underset{\left(\ddagger\right)}{\underbrace{\left[\left(\frac{d}{d\bar{x}}\right)^{b^{\prime\prime}}\left\{\left(y_{\sigma}\left(\bar{x}\right)\right)^{a-m}\partial_{y}^{a}\left[\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right]\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)\right\}\right]}}\text{.}

Since yσ(x¯)y_{\sigma}\left(\bar{x}\right) is given by a Puiseux series for x¯(0,δ)\bar{x}\in\left(0,\delta\right) (small enough δ\delta),

()=O(yσ(x¯))max¯b=O(yσ(x¯)mab),\left(\dagger\right)=O\left(y_{\sigma}\left(\bar{x}\right)\right)^{m-a}\cdot\bar{x}^{-b^{\prime}}=O\left(y_{\sigma}\left(\bar{x}\right)^{m-a-b^{\prime}}\right),

because 0<yσ(x¯)<ψ(x¯)x¯0<y_{\sigma}\left(\bar{x}\right)<\psi\left(\bar{x}\right)\leq\bar{x}. By (89), ()\left(\ddagger\right) is o(x¯b′′)o\left(\bar{x}^{-b^{\prime\prime}}\right) as x¯0+\bar{x}\rightarrow 0^{+}.

So in fact, we get not only (90) but the stronger result

(91) (ddx¯)b{ya[jAijFj+BiGi##](x¯,yσ(x¯))}=o(yσ(x¯)max¯b)\left(\frac{d}{d\bar{x}}\right)^{b}\left\{\partial_{y}^{a}\left[\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right]\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)\right\}=o\left(y_{\sigma}\left(\bar{x}\right)^{m-a}\cdot\bar{x}^{-b}\right)

as x¯0+;\bar{x}\rightarrow 0^{+}; the left-hand side is bounded.

Introduce the vector field Xσ=x+yσ(x¯)yX_{\sigma}=\frac{\partial}{\partial x}+y_{\sigma}^{\prime}\left(\bar{x}\right)\frac{\partial}{\partial y} on 2.\mathbb{R}^{2}. We have

(ddx¯)b{(x¯,yσ(x¯))}=(Xσ)b|(x¯,yσ(x¯)) for any Clocb(2).\left(\frac{d}{d\bar{x}}\right)^{b}\left\{\mathcal{F}\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)\right\}=\left.\left(X_{\sigma}\right)^{b}\mathcal{F}\right|_{\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)}\text{ for any }\mathcal{F}\in C_{loc}^{b}\left(\mathbb{R}^{2}\right)\text{.}

Therefore, (91) yields

(92) (Xσbya)[jAijFj+BiGi##](x¯,yσ(x¯))=o(yσ(x¯)max¯b) as x¯0+\left(X_{\sigma}^{b}\partial_{y}^{a}\right)\left[\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right]\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)=o\left(y_{\sigma}\left(\bar{x}\right)^{m-a}\cdot\bar{x}^{-b}\right)\text{ as }\bar{x}\rightarrow 0^{+}

and the left-hand side is bounded for all x¯\bar{x}, for a+bm,σ=1,,σmax,i=1,,imaxa+b\leq m,\sigma=1,\cdots,\sigma_{\max},i=1,\cdots,i_{\max}.

This implies that

  • (93)

    (yσ(x¯))|α|mα[jAijFj+BiGi##](x¯,yσ(x¯))\left(y_{\sigma}\left(\bar{x}\right)\right)^{\left|\alpha\right|-m}\partial^{\alpha}\left[\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right]\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right) is bounded on (0,δ)(0,\delta) and tends to zero as x¯0+\bar{x}\rightarrow 0^{+}, for |α|m,i=1,,imax,σ=1,,σmax\left|\alpha\right|\leq m,i=1,\cdots,i_{\max},\sigma=1,\cdots,\sigma_{\max}.

Let α=(b,a),\alpha=\left(b,a\right), α=xbya\partial^{\alpha}=\partial_{x}^{b}\partial_{y}^{a}.

We deduce ((93)) from (92) by induction on bb. For b=0,b=0, ((93)) is the same as (92).

Assume we know ((93)) for all b<b.b^{\prime}<b. We prove ((93)) for the given b,b, using our induction hypothesis for bb^{\prime}, together with (92).

The quantity

(95) Xσbya{jAijFj+BiGi##}(x¯,yσ(x¯))X_{\sigma}^{b}\partial_{y}^{a}\left\{\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right\}\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)

is a sum of terms of the form

(96) (xb1yσ(x¯))(xbνyσ(x¯))xb¯ya+ν{jAijFj+BiGi##}(x¯,yσ(x¯))\left(\partial_{x}^{b_{1}}y_{\sigma}\left(\bar{x}\right)\right)\cdot\cdots\cdot\left(\partial_{x}^{b_{\nu}}y_{\sigma}\left(\bar{x}\right)\right)\cdot\partial_{x}^{\bar{b}}\partial_{y}^{a+\nu}\left\{\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right\}\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)

with bt1b_{t}\geq 1 each tt, b1++bν+b¯=b.b_{1}+\cdots+b_{\nu}+\bar{b}=b.

Note b¯+(a+ν)=a+b¯+b1++bν(b11)(bν1)a+b\bar{b}+\left(a+\nu\right)=a+\bar{b}+b_{1}+\cdots+b_{\nu}-\left(b_{1}-1\right)-\cdots-\left(b_{\nu}-1\right)\leq a+b.

We know that (95)=o(yσ(x¯)mab)\eqref{LHS}=o\left(y_{\sigma}\left(\bar{x}\right)^{m-a-b}\right) by (92).

If b¯<b,\bar{b}<b, then by our induction hypothesis, the term (96) is dominated by

O(yσ(x¯)[b11][bν1]Here again we use 0<yσ<x¯.)o(yσ(x¯)m[a+ν]b¯)\displaystyle O\left(\overset{\text{Here again we use }0<y_{\sigma}<\bar{x}\text{.}}{\overbrace{y_{\sigma}\left(\bar{x}\right)^{-\left[b_{1}-1\right]-\cdots-\left[b_{\nu}-1\right]}}}\right)\cdot o\left(y_{\sigma}\left(\bar{x}\right)^{m-\left[a+\nu\right]-\bar{b}}\right)
=\displaystyle= o(yσ(x¯)mab¯b1bν)=o(yσ(x¯)mab).\displaystyle o\left(y_{\sigma}\left(\bar{x}\right)^{m-a-\bar{b}-b_{1}-\cdots-b_{\nu}}\right)=o\left(y_{\sigma}\left(\bar{x}\right)^{m-a-b}\right)\text{.}

Therefore, in the equation (95)=(96)\eqref{LHS}=\sum\eqref{RHS}, all terms are o(yσ(x¯)mab)o\left(y_{\sigma}\left(\bar{x}\right)^{m-a-b}\right), except possibly the term arising from b¯=b\bar{b}=b, which is

xbya{jAijFj+BiGi##}(x¯,yσ(x¯)).\partial_{x}^{b}\partial_{y}^{a}\left\{\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right\}\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)\text{.}

Therefore,

xbya{jAijFj+BiGi##}(x¯,yσ(x¯))=o(yσ(x¯)mab), as x¯0+.\partial_{x}^{b}\partial_{y}^{a}\left\{\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right\}\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)=o\left(y_{\sigma}\left(\bar{x}\right)^{m-a-b}\right)\text{, as }\bar{x}\rightarrow 0^{+}\text{.}

This completes our induction on bb, proving ((93)).

Thus,

  • (97)

    maxσ=1,,σmaxi=1,,imax|α|m(yσ(x¯))|α|m|α{jAijFj+BiGi##}(x¯,yσ(x¯))| \max_{\begin{subarray}{c}\sigma=1,\cdots,\sigma_{\max}\\ i=1,\cdots,i_{\max}\\ \left|\alpha\right|\leq m\end{subarray}}\left(y_{\sigma}\left(\bar{x}\right)\right)^{\left|\alpha\right|-m}\left|\partial^{\alpha}\left\{\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right\}\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)\right|\text{ } is bounded on (0,δ)\left(0,\delta\right) and tends to zero as x¯\bar{x} tends to 0+0^{+}.

Recall that our μl(x¯)\mu_{l}(\bar{x}) include the affine maps (p1,,pjmax,q1,,qimax)x¯amyapj(0)(p_{1},\cdots,p_{j_{\max}},q_{1},\cdots,q_{i_{\max}})\mapsto\bar{x}^{a-m}\partial_{y}^{a}p_{j}(0) and (p1,,pjmax,q1,,qimax)x¯amyaqi(0)(p_{1},\cdots,p_{j_{\max}},q_{1},\cdots,q_{i_{\max}})\mapsto\bar{x}^{a-m}\partial_{y}^{a}q_{i}(0) for 0am.0\leq a\leq m. Our assumption on the μ\mu’s made in ((55)) tells us therefore that x¯amya(Fj#(x¯))(0)\bar{x}^{a-m}\partial_{y}^{a}\left(F_{j}^{\#}\left(\bar{x}\right)\right)\left(0\right) and x¯amya(Gi#(x¯))(0)\bar{x}^{a-m}\partial_{y}^{a}\left(G_{i}^{\#}\left(\bar{x}\right)\right)\left(0\right) are bounded on (0,δ)\left(0,\delta\right) and tend to zero as x¯0+\bar{x}\rightarrow 0^{+}.

That is,

  • (99)

    x¯smFjs(x¯),x¯smGis(x¯)\bar{x}^{s-m}F_{js}\left(\bar{x}\right),\bar{x}^{s-m}G_{is}\left(\bar{x}\right) are bounded on (0,δ)\left(0,\delta\right) and tend to zero as x¯0+\bar{x}\rightarrow 0^{+}. (0sm)\left(0\leq s\leq m\right).

  • (101)

    Because Fjs,GjsF_{js},G_{js} are semialgebraic functions of one variable, it follows that, for s,tms,t\leq m, the functions

    (ddx¯)tFjs(x¯),(ddx¯)tGis(x¯)\left(\frac{d}{d\bar{x}}\right)^{t}F_{js}\left(\bar{x}\right),\left(\frac{d}{d\bar{x}}\right)^{t}G_{is}\left(\bar{x}\right)

    are bounded on (0,δ)\left(0,\delta\right) if s+tms+t\leq m and are o(x¯mst)o\left(\bar{x}^{m-s-t}\right) as x¯0+\bar{x}\rightarrow 0^{+} (even if s+t>ms+t>m).

Recalling now the definitions of the FjF_{j} and Gi##G_{i}^{\#\#} in terms of the Fj,GisF_{j},G_{is} (see (82), (83)), we conclude that

x¯tysFj(x¯,y)\displaystyle\partial_{\bar{x}}^{t}\partial_{y}^{s}F_{j}\left(\bar{x},y\right) =\displaystyle= ms¯s[(ddx¯)tFjs¯(x¯)](coefficient (s¯,s))ys¯s\displaystyle\sum_{m\geq\underline{s}\geq s}\left[\left(\frac{d}{d\bar{x}}\right)^{t}F_{j\underline{s}}\left(\bar{x}\right)\right]\left(\text{coefficient }\left(\underline{s},s\right)\right)\cdot y^{\underline{s}-s}
=\displaystyle= ms¯so(x¯mts¯)ys¯s.\displaystyle\sum_{m\geq\underline{s}\geq s}o\left(\bar{x}^{m-t-\underline{s}}\right)\cdot y^{\underline{s}-s}\text{.}

If s+t=m,s+t=m, then this is equal to o(yx¯)s¯s=o(1)o\left(\frac{y}{\bar{x}}\right)^{\underline{s}-s}=o\left(1\right) for 0<y<ψ(x¯)x¯0<y<\psi\left(\bar{x}\right)\leq\bar{x}.

Therefore, for |β|=m,\left|\beta\right|=m, we have |βFj(x¯,y)|=o(1)\left|\partial^{\beta}F_{j}\left(\bar{x},y\right)\right|=o\left(1\right) as (x¯,y)Ωδ\left(\bar{x},y\right)\in\Omega_{\delta} tends to zero.

Similarly, |βGi##(x¯,y)|=o(1)\left|\partial^{\beta}G_{i}^{\#\#}\left(\bar{x},y\right)\right|=o\left(1\right) as (x¯,y)Ωδ\left(\bar{x},y\right)\in\Omega_{\delta} tends to zero.

That is, for |β|=m\left|\beta\right|=m, the functions βFj(x¯,y)\partial^{\beta}F_{j}\left(\bar{x},y\right) and βGi##(x¯,y)\partial^{\beta}G_{i}^{\#\#}\left(\bar{x},y\right) are bounded on Ωδ\Omega_{\delta} and they tend to zero as x¯0+\bar{x}\rightarrow 0^{+} (keeping (x¯,y)Ωδ\left(\bar{x},y\right)\in\Omega_{\delta}).

Let (x¯)=sup{|βFj(x¯,y)|,|βGi##(x¯,y)|:|β|=m,0<y<ψ(x¯) (all i,j)}.\mathcal{E}\left(\bar{x}\right)=\sup\left\{\left|\partial^{\beta}F_{j}\left(\bar{x},y\right)\right|,\left|\partial^{\beta}G_{i}^{\#\#}\left(\bar{x},y\right)\right|:\left|\beta\right|=m,0<y<\psi\left(\bar{x}\right)\text{ (all }i,j)\right\}.

Then

(103) (x¯)is bounded on (0,δ) and tends to zero as x¯0+.\mathcal{E}\left(\bar{x}\right)\text{is bounded on }\left(0,\delta\right)\text{ and tends to zero as }\bar{x}\rightarrow 0^{+}.

By Taylor’s theorem,

|α{FjJ(x¯,0)Fj}(x¯,y)|Cym|α|(x¯) for |α|m,(x¯,y)Ωδ.\left|\partial^{\alpha}\left\{F_{j}-J_{\left(\bar{x},0\right)}F_{j}\right\}\left(\bar{x},y\right)\right|\leq Cy^{m-\left|\alpha\right|}\mathcal{E}\left(\bar{x}\right)\text{ for }\left|\alpha\right|\leq m,\left(\bar{x},y\right)\in\Omega_{\delta}\text{.}

Recall that

|αAij(x¯,y)|Cy|α| for |α|m and (x¯,y)Ωδ.\left|\partial^{\alpha}A_{ij}\left(\bar{x},y\right)\right|\leq Cy^{-\left|\alpha\right|}\text{ for }\left|\alpha\right|\leq m\text{ and }\left(\bar{x},y\right)\in\Omega_{\delta}\text{.}

Just as we estimated the functions FjF_{j} above, we have from Taylor’s theorem that

|α{Gi##J(x¯,0)Gi##}(x¯,y)|Cym|α|(x¯) for |α|m,(x¯,y)Ωδ.\left|\partial^{\alpha}\left\{G_{i}^{\#\#}-J_{\left(\bar{x},0\right)}G_{i}^{\#\#}\right\}\left(\bar{x},y\right)\right|\leq Cy^{m-\left|\alpha\right|}\mathcal{E}\left(\bar{x}\right)\text{ for }\left|\alpha\right|\leq m,\left(\bar{x},y\right)\in\Omega_{\delta}\text{.}

Combining these estimates, we see that

(104) |α{jAij(FjJ(x¯,0)Fj)(Gi##J(x¯,0)Gi##)}(x,y)|\displaystyle\left|\partial^{\alpha}\left\{\sum_{j}A_{ij}\left(F_{j}-J_{\left(\bar{x},0\right)}F_{j}\right)-\left(G_{i}^{\#\#}-J_{\left(\bar{x},0\right)}G_{i}^{\#\#}\right)\right\}\left(x,y\right)\right|
\displaystyle\leq Cym|α|(x¯) for |α|m,(x¯,y)Ωδ.\displaystyle Cy^{m-\left|\alpha\right|}\mathcal{E}\left(\bar{x}\right)\text{ for }\left|\alpha\right|\leq m,\left(\bar{x},y\right)\in\Omega_{\delta}\text{.}

Combining ((97)), (103), (104), we see that

(105) (yσ(x¯))|α|mα{jAij[J(x¯,0)Fj]+Bi[J(x¯,0)Gi##]}(x¯,yσ(x¯))\displaystyle\left(y_{\sigma}\left(\bar{x}\right)\right)^{\left|\alpha\right|-m}\partial^{\alpha}\left\{\sum_{j}A_{ij}\left[J_{\left(\bar{x},0\right)}F_{j}\right]+B_{i}-\left[J_{\left(\bar{x},0\right)}G_{i}^{\#\#}\right]\right\}\left(\bar{x},y_{\sigma}\left(\bar{x}\right)\right)
is bounded on (0,δ) and tends to 0 as x¯ tends to 0+.\displaystyle\text{is bounded on }\left(0,\delta\right)\text{ and tends to 0 as }\bar{x}\text{ tends to }0^{+}\text{.}

Recall that (J(x¯,0)F,J(x¯,0)G##)H(x¯)\left(J_{(\bar{x},0)}\vec{F},J_{\left(\bar{x},0\right)}\vec{G}^{\#\#}\right)\in H\left(\bar{x}\right) for all x¯(0,δ]\bar{x}\in(0,\delta] (see (85)).

The above results, together with the property ((67)) of the yσ(x¯)y_{\sigma}\left(\bar{x}\right) now tells us that

  • (106)

    y|α|mα{jAij(J(x¯,0)Fj)+Bi(J(x¯,0)Gi##)}(x¯,y)y^{\left|\alpha\right|-m}\partial^{\alpha}\left\{\sum_{j}A_{ij}\left(J_{\left(\bar{x},0\right)}F_{j}\right)+B_{i}-\left(J_{\left(\bar{x},0\right)}G_{i}^{\#\#}\right)\right\}\left(\bar{x},y\right) is bounded on Ωδ\Omega_{\delta} and tends to zero as (x¯,y)Ωδ\left(\bar{x},y\right)\in\Omega_{\delta} tends to zero.

Together with (103), (104), this yields the following result

  • (108)

    y|α|mα{jAijFj+BiGi##}(x¯,y)y^{\left|\alpha\right|-m}\partial^{\alpha}\left\{\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right\}\left(\bar{x},y\right) is bounded on Ωδ\Omega_{\delta} and tends to zero as (x¯,y)Ωδ\left(\bar{x},y\right)\in\Omega_{\delta} tends to zero. Here, i=1,,imaxi=1,\cdots,i_{\max} and |α|m|\alpha|\leq m are arbitrary.

From ((86)), we have

  • (110)

    limy0+y|α|mα(jAijFj+BiGi##)(x,y)=0\lim_{y\rightarrow 0^{+}}y^{|\alpha|-m}\partial^{\alpha}\left(\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right)(x,y)=0 for each fixed x(0,δ)x\in(0,\delta).

The functions Aij,Fj,Bi,Gi##A_{ij},F_{j},B_{i},G_{i}^{\#\#} are semialgebraic. Therefore, by Lemma 3.3, there exist a positive integer KK and a semialgebraic function of one variable 𝒜(x)\mathcal{A}(x) such that

  • (112)

    |y|α|mα(jAijFj+BiGi##)(x,y)|𝒜(x)y1K\left|y^{|\alpha|-m}\partial^{\alpha}\left(\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right)(x,y)\right|\leq\mathcal{A}(x)\cdot y^{\frac{1}{K}} for all (x,y)Ωδ(x,y)\in\Omega_{\delta}, |α|m,i=1,,imax|\alpha|\leq m,i=1,\cdots,i_{\max}.

Taking δ\delta smaller, we may assume 𝒜(x)\mathcal{A}(x) is CC^{\infty} on (0,δ](0,\delta].

Consequently, y|α|mα(jAijFj+BiGi##)(x,y)y^{|\alpha|-m}\partial^{\alpha}\left(\sum_{j}A_{ij}F_{j}+B_{i}-G_{i}^{\#\#}\right)(x,y) tends to zero as y0+y\rightarrow 0^{+}, uniformly as xx varies over (ε,δ)(\varepsilon,\delta) for any ε>0\varepsilon>0.

Recalling that Gi=jAijFj+BiG_{i}=\sum_{j}A_{ij}F_{j}+B_{i}, we see that for |α|m,i=1,,imax,\left|\alpha\right|\leq m,i=1,\cdots,i_{\max},

(114) y|α|mα{GiGi##}(x,y)0y^{|\alpha|-m}\partial^{\alpha}\left\{G_{i}-G_{i}^{\#\#}\right\}\left(x,y\right)\rightarrow 0

as y0+y\rightarrow 0^{+} uniformly for xx in each interval (ε,δ)\left(\varepsilon,\delta\right).

Recalling that Gi##G_{i}^{\#\#} belongs to CC^{\infty} in a neighborhood of (x,0)\left(x,0\right) (each x(0,δ)x\in\left(0,\delta\right)), we conclude that the derivatives αGi(x,y)\partial^{\alpha}G_{i}\left(x,y\right) (|α|m,i=1,,imax\left|\alpha\right|\leq m,i=1,\cdots,i_{\max}), initially defined on Ωδ={(x,y):0<x<δ,0<y<ψ(x)}\Omega_{\delta}=\left\{\left(x,y\right):0<x<\delta,0<y<\psi\left(x\right)\right\} extend to continuous functions on

(115) Ωδ++{(x,y):0<x<δ,0y<ψ(x)}.\Omega_{\delta}^{++}\equiv\left\{\left(x,y\right):0<x<\delta,0\leq y<\psi\left(x\right)\right\}.

Next, recall that FjsF_{js} is CC^{\infty} on (0,δ)\left(0,\delta\right) and that we assume that |αAij(x,y)|,|αBi(x,y)|Cy|α|\left|\partial^{\alpha}A_{ij}\left(x,y\right)\right|,\left|\partial^{\alpha}B_{i}\left(x,y\right)\right|\leq Cy^{-\left|\alpha\right|} on

(116) Ω+={(x,y):0<x<δ,0<yψ(x)}\Omega^{+}=\left\{\left(x,y\right):0<x<\delta,0<y\leq\psi\left(x\right)\right\}

on which the functions αAij,αBi\partial^{\alpha}A_{ij},\partial^{\alpha}B_{i} are assumed to be continuous.

We defined

Gi\displaystyle G_{i} =\displaystyle= jAijFj+Bi\displaystyle\sum_{j}A_{ij}F_{j}+B_{i}
=\displaystyle= jAij(x,y)[s=0mFjs(x)ys]+Bi(x,y).\displaystyle\sum_{j}A_{ij}\left(x,y\right)\left[\sum_{s=0}^{m}F_{js}\left(x\right)y^{s}\right]+B_{i}\left(x,y\right)\text{.}

The above remarks (and the fact that ψ(x)0\psi\left(x\right)\not=0 for x(0,δ)x\in\left(0,\delta\right)) show that αGi\partial^{\alpha}G_{i} extends to a continuous function on Ω+\Omega^{+} (see (116)), for |α|m,i=1,,imax\left|\alpha\right|\leq m,i=1,\cdots,i_{\max}.

Combining our results for Ω+\Omega^{+} (see (116)) and for Ω++\Omega^{++} (see (115)), we see that αGi\partial^{\alpha}G_{i} extends to a continuous function on Ω2δ3closure{(0,0)}\Omega_{\frac{2\delta}{3}}^{\text{closure}}\setminus\left\{\left(0,0\right)\right\} for each i=1,,imax,|α|mi=1,\cdots,i_{\max},\left|\alpha\right|\leq m.

Also, αFi\partial^{\alpha}F_{i} is a continuous function on Ω23δclosure{(0,0)}\Omega_{\frac{2}{3}\delta}^{\text{closure}}\setminus\left\{\left(0,0\right)\right\} because FiF_{i} is CC^{\infty} on (0,δ)×\left(0,\delta\right)\times\mathbb{R}.

By ((99)), we have Gis(x)=o(xms)G_{is}(x)=o(x^{m-s}) (0sm0\leq s\leq m) on (0,δ)(0,\delta). Because GisG_{is} is semialgebraic, it follows that after possibly reducing δ\delta, we have

(ddx)tGis(x)=o(xmst) for 0tm,0sm,i=1,,imax.\left(\frac{d}{dx}\right)^{t}G_{is}\left(x\right)=o\left(x^{m-s-t}\right)\text{ for }0\leq t\leq m,0\leq s\leq m,i=1,\cdots,i_{\max}\text{.}

Because Gi##(x,y)=s¯=0mGis¯(x)ys¯G_{i}^{\#\#}\left(x,y\right)=\sum_{\underline{s}=0}^{m}G_{i\underline{s}}\left(x\right)y^{\underline{s}} and 0<y<ψ(x)x0<y<\psi\left(x\right)\leq x on Ωδ\Omega_{\delta}, we have on Ωδ\Omega_{\delta} that

|xtysGi##(x,y)|\displaystyle\left|\partial_{x}^{t}\partial_{y}^{s}G_{i}^{\#\#}\left(x,y\right)\right| =\displaystyle= |s¯=smcoeff(s¯,s)(ddx)tGis¯(x)ys¯s|\displaystyle\left|\sum_{\underline{s}=s}^{m}\text{coeff}\left(\underline{s},s\right)\cdot\left(\frac{d}{dx}\right)^{t}G_{i\underline{s}}\left(x\right)\cdot y^{\underline{s}-s}\right|
=\displaystyle= o(s¯=smxms¯tys¯s)\displaystyle o\left(\sum_{\underline{s}=s}^{m}x^{m-\underline{s}-t}\cdot y^{\underline{s}-s}\right)
=\displaystyle= o(s¯=smxms¯txs¯s)\displaystyle o\left(\sum_{\underline{s}=s}^{m}x^{m-\underline{s}-t}\cdot x^{\underline{s}-s}\right)
=\displaystyle= o(xmst) on Ωδ for s,tm.\displaystyle o\left(x^{m-s-t}\right)\text{ on }\Omega_{\delta}\text{ for }s,t\leq m\text{.}

In particular,

  • (117)

    αGi##(x,y)0\partial^{\alpha}G_{i}^{\#\#}\left(x,y\right)\rightarrow 0 as (x,y)Ωδ\left(x,y\right)\in\Omega_{\delta} tends to (0,0)\left(0,0\right) for |α|m,i=1,,imax\left|\alpha\right|\leq m,i=1,\cdots,i_{\max}.

On the other hand, recalling the definition Gi=jAijFj+BiG_{i}=\sum_{j}A_{ij}F_{j}+B_{i}, we see from ((108)) that α(GiGi##)(x,y)0\partial^{\alpha}\left(G_{i}-G_{i}^{\#\#}\right)\left(x,y\right)\rightarrow 0 as (x,y)Ωδ\left(x,y\right)\in\Omega_{\delta} tends to (0,0)\left(0,0\right) for each |α|m\left|\alpha\right|\leq m. Together with ((117)), this shows that αGi(x,y)0\partial^{\alpha}G_{i}\left(x,y\right)\rightarrow 0 as (x,y)Ωδ\left(x,y\right)\in\Omega_{\delta} tends to (0,0)\left(0,0\right) for each |α|m\left|\alpha\right|\leq m.

Next, recall from ((99)) that Fjs(x)=o(xms)F_{js}(x)=o(x^{m-s}) for x(0,δ)x\in(0,\delta), j=1,,jmax,s=0,,mj=1,\cdots,j_{\max},s=0,\cdots,m.

Because the FjkF_{jk} are semialgebraic functions of one variable, we conclude (after reducing δ\delta) that (ddx)tFjs(x)=o(xmst)\left(\frac{d}{dx}\right)^{t}F_{js}\left(x\right)=o\left(x^{m-s-t}\right) on (0,δ)\left(0,\delta\right) for tmt\leq m.

Now, for s+tms+t\leq m and (x,y)Ωδ\left(x,y\right)\in\Omega_{\delta} (hence 0<y<ψ(x)x0<y<\psi\left(x\right)\leq x), we have

|(y)s(x)tFj(x,y)|\displaystyle\left|\left(\frac{\partial}{\partial y}\right)^{s}\left(\frac{\partial}{\partial x}\right)^{t}F_{j}\left(x,y\right)\right| =\displaystyle= |(y)s(x)ts¯=0mFjs¯(x)ys¯|\displaystyle\left|\left(\frac{\partial}{\partial y}\right)^{s}\left(\frac{\partial}{\partial x}\right)^{t}\sum_{\underline{s}=0}^{m}F_{j\underline{s}}\left(x\right)y^{\underline{s}}\right|
=\displaystyle= |s¯=smcoeff(s¯,s)[(ddx)tFjs¯(x)]ys¯s|\displaystyle\left|\sum_{\underline{s}=s}^{m}\text{coeff}\left(\underline{s},s\right)\left[\left(\frac{d}{dx}\right)^{t}F_{j\underline{s}}\left(x\right)\right]\cdot y^{\underline{s}-s}\right|
\displaystyle\leq Cs¯=sm|(ddx)tFjs¯(x)|xs¯s\displaystyle C\sum_{\underline{s}=s}^{m}\left|\left(\frac{d}{dx}\right)^{t}F_{j\underline{s}}\left(x\right)\right|\cdot x^{\underline{s}-s}
=\displaystyle= o(s¯=0mxms¯txs¯s)=o(xmst).\displaystyle o\left(\sum_{\underline{s}=0}^{m}x^{m-\underline{s}-t}x^{\underline{s}-s}\right)=o\left(x^{m-s-t}\right)\text{.}

Thus, for |α|m\left|\alpha\right|\leq m, and j=1,,jmax,j=1,\cdots,j_{\max}, we have

αFj(x,y)0 as (x,y)Ωδ tends to (0,0).\partial^{\alpha}F_{j}\left(x,y\right)\rightarrow 0\text{ as }\left(x,y\right)\in\Omega_{\delta}\text{ tends to }\left(0,0\right)\text{.}

We now know the following: Gi=jAijFj+BiG_{i}=\sum_{j}A_{ij}F_{j}+B_{i} on Ωδ.\Omega_{\delta}. The FjF_{j} and GiG_{i} are semialgebraic on Ωδ\Omega_{\delta}

For |α|m\left|\alpha\right|\leq m, the derivatives αFj,αGi\partial^{\alpha}F_{j},\partial^{\alpha}G_{i} extend to continuous functions on Ω2δ/3closure{(0,0)}\Omega_{2\delta/3}^{\text{closure}}\setminus\left\{\left(0,0\right)\right\}. For |α|m,\left|\alpha\right|\leq m, the derivatives αFj(z)\partial^{\alpha}F_{j}\left(z\right), αGi(z)\partial^{\alpha}G_{i}\left(z\right) tend to zero as zΩδz\in\Omega_{\delta} tends to zero.

It follows that the FjF_{j} and GiG_{i} extend from Ωδ/2\Omega_{\delta/2} to semialgebraic functions in Cm(Ωδ/2closure)C^{m}\left(\Omega_{\delta/2}^{\text{closure}}\right) and those functions all have mm-jet zero at the origin. We extend Fj,GiF_{j},G_{i} to semialgebraic ClocmC^{m}_{loc} functions on 2\mathbb{R}^{2}, using Corollary 3.2.

Next, we show that jx¯(F,G)=(F#(x¯),G#(x¯))j_{\bar{x}}\left(\vec{F},\vec{G}\right)=\left(\vec{F}^{\#}\left(\bar{x}\right),\vec{G}^{\#}\left(\bar{x}\right)\right) for x¯(0,δ)\bar{x}\in\left(0,\delta\right).

From (84), we have

jx¯(F,G##)=(F#(x¯),G#(x¯)).j_{\bar{x}}\left(\vec{F},\vec{G}^{\#\#}\right)=\left(\vec{F}^{\#}\left(\bar{x}\right),\vec{G}^{\#}\left(\bar{x}\right)\right)\text{.}

From (114), we see that jx¯(GiGi##)=0j_{\bar{x}}\left(G_{i}-G_{i}^{\#\#}\right)=0 for all x¯(0,δ)\bar{x}\in\left(0,\delta\right). Therefore,

jx¯(F,G)=jx¯(F,G##)=(F#(x¯),G#(x¯)),j_{\bar{x}}\left(\vec{F},\vec{G}\right)=j_{\bar{x}}\left(\vec{F},\vec{G}^{\#\#}\right)=\left(\vec{F}^{\#}\left(\bar{x}\right),\vec{G}^{\#}\left(\bar{x}\right)\right)\text{,}

as desired.

Thus, we have proven ((55)).

The proof of Lemma 6.2 is complete.   

6.2 Patching near a cusp

Lemma 6.4

Let ψ(x)\psi(x) be a semialgebraic function on [0,δ][0,\delta], satisfying ψ(0)=0,0<ψ(x)x\psi(0)=0,0<\psi(x)\leq x for all x(0,δ]x\in(0,\delta]. We set

Eδ={(x,y)2:0xδ,0yψ(x)},E_{\delta}=\{(x,y)\in\mathbb{R}^{2}:0\leq x\leq\delta,0\leq y\leq\psi(x)\},
Eδ+={(x,y)2:0xδ,13ψ(x)yψ(x)}, and E_{\delta}^{+}=\{(x,y)\in\mathbb{R}^{2}:0\leq x\leq\delta,\frac{1}{3}\psi(x)\leq y\leq\psi(x)\},\text{ and }
Eδ={(x,y)2:0xδ,0y23ψ(x)}.E_{\delta}^{-}=\{(x,y)\in\mathbb{R}^{2}:0\leq x\leq\delta,0\leq y\leq\frac{2}{3}\psi(x)\}.

Fix a semialgebraic function of one variable, θ(t)\theta\left(t\right), satisfying 0θ(t)10\leq\theta\left(t\right)\leq 1, θ(t)=1\theta\left(t\right)=1 for t1/3,t\leq 1/3, θ(t)=0\theta\left(t\right)=0 for t2/3t\geq 2/3, θCm+100\theta\in C^{m+100}.

Then set

θ(x,y)=θ(yψ(x))θ+(x,y)=1θ(x,y) for (x,y)Eδ{(0,0)}.\theta_{-}\left(x,y\right)=\theta\left(\frac{y}{\psi\left(x\right)}\right)\text{, }\theta_{+}\left(x,y\right)=1-\theta_{-}\left(x,y\right)\text{ for }\left(x,y\right)\in E_{\delta}\setminus\{(0,0)\}\text{.}

Thus, θ+,θ0\theta_{+},\theta_{-}\geq 0 and θ++θ=1\theta_{+}+\theta_{-}=1 on Eδ{(0,0)}E_{\delta}\setminus\{(0,0)\}.

Let F+Cm(Eδ+)F^{+}\in C^{m}(E_{\delta}^{+}) and FCm(Eδ)F^{-}\in C^{m}(E_{\delta}^{-}) be semialgebraic functions, with J(0,0)F+=J(0,0)F=0J_{(0,0)}F^{+}=J_{(0,0)}F^{-}=0.

Suppose that

(119) ylF+(x,ψ(x))j=0ml1j!yl+jF(x,0)(ψ(x))j=o((ψ(x))ml)\partial_{y}^{l}F^{+}(x,\psi(x))-\sum_{j=0}^{m-l}\frac{1}{j!}\partial_{y}^{l+j}F^{-}(x,0)\cdot(\psi(x))^{j}=o((\psi(x))^{m-l})

as x0+x\rightarrow 0^{+} for each l=0,,ml=0,\cdots,m.

Define F=θ+F++θFF=\theta_{+}\cdot F^{+}+\theta_{-}\cdot F^{-} on Eδ{(0,0)},F(0,0)=0E_{\delta}\setminus\{(0,0)\},F(0,0)=0.

Then FF is a CmC^{m} semialgebraic function on EδE_{\delta^{\prime}} for some small δ\delta^{\prime}. The jet of FF at the origin is zero. Moreover, F=F+F=F^{+} in a neighborhood of any point (x,ψ(x))(x,\psi(x)), 0<x<δ0<x<\delta^{\prime}; and F=FF=F^{-} in a neighborhood of any point (x,0),0<x<δ(x,0),0<x<\delta^{\prime}.

Proof. Because 0ψ(x)x0\leq\psi(x)\leq x and ψ\psi is given near 0 by a convergent Puiseux series, we have ψ(k)(x)=O(x1k)\psi^{(k)}(x)=O(x^{1-k}) as x0+x\rightarrow 0^{+}, for k=0,,m+100k=0,\cdots,m+100. Also, because F+,FF^{+},F^{-} have zero jet at (0,0)(0,0), we have, for |α|=m|\alpha|=m, αF+(x,y)=o(1)\partial^{\alpha}F^{+}(x,y)=o(1) as (x,y)Eδ+(x,y)\in E_{\delta}^{+} tends to zero and αF(x,y)=o(1)\partial^{\alpha}F^{-}(x,y)=o(1) as (x,y)Eδ(x,y)\in E_{\delta}^{-} tends to zero.

By induction on μ\mu, we now prove that

  • (120)

    xμylF+(x,ψ(x))j=0mlμ1j!xμyl+jF(x,0)(ψ(x))j=o((ψ(x))mμl)\partial_{x}^{\mu}\partial_{y}^{l}F^{+}(x,\psi(x))-\sum_{j=0}^{m-l-\mu}\frac{1}{j!}\partial_{x}^{\mu}\partial_{y}^{l+j}F^{-}(x,0)\cdot(\psi(x))^{j}=o((\psi(x))^{m-\mu-l}) as x0+x\rightarrow 0^{+} for μ+lm\mu+l\leq m.

For μ=0\mu=0, ((120)) is a hypothesis of our lemma. Assuming ((120)) for μ\mu, we prove it for μ+1\mu+1. Thus, fix ll satisfying (μ+1)+lm(\mu+1)+l\leq m. Recalling that xμyl+jF(x,0)=o(1)\partial_{x}^{\mu}\partial_{y}^{l+j}F^{-}(x,0)=o(1) when μ+(l+j)=m\mu+(l+j)=m, we conclude from ((120)) that

  • (122)

    xμylF+(x,ψ(x))j=0mlμ11j!xμyl+jF(x,0)(ψ(x))j=o((ψ(x))mμl)\partial_{x}^{\mu}\partial_{y}^{l}F^{+}(x,\psi(x))-\sum_{j=0}^{m-l-\mu-1}\frac{1}{j!}\partial_{x}^{\mu}\partial_{y}^{l+j}F^{-}(x,0)\cdot(\psi(x))^{j}=o((\psi(x))^{m-\mu-l}) as x0+x\rightarrow 0^{+}.

Because the above functions are semialgebraic functions of one variable and thus given near 0 by convergent Puiseux series, it follows that ddx{((122))}=o((ψ(x))mμlx1)\frac{d}{dx}\{\eqref{pnc-1-lhs}\}=o((\psi(x))^{m-\mu-l}\cdot x^{-1}), hence ddx{((122))}=o((ψ(x))mμl1)\frac{d}{dx}\{\eqref{pnc-1-lhs}\}=o((\psi(x))^{m-\mu-l-1}), because 0<ψ(x)x0<\psi(x)\leq x. Thus,

[(x+ψ(x)y)(xμylF+)](x,ψ(x))j=0mlμ11j!xμ+1yl+jF(x,0)(ψ(x))j\displaystyle\left[\left(\partial_{x}+\psi^{\prime}\left(x\right)\partial_{y}\right)\left(\partial_{x}^{\mu}\partial_{y}^{l}F^{+}\right)\right]\left(x,\psi\left(x\right)\right)-\sum_{j=0}^{m-l-\mu-1}\frac{1}{j!}\partial_{x}^{\mu+1}\partial_{y}^{l+j}F^{-}\left(x,0\right)\left(\psi\left(x\right)\right)^{j}
j=1mlμ11j!xμyl+jF(x,0)j(ψ(x))j1ψ(x)\displaystyle-\sum_{j=1}^{m-l-\mu-1}\frac{1}{j!}\partial_{x}^{\mu}\partial_{y}^{l+j}F^{-}\left(x,0\right)j\left(\psi\left(x\right)\right)^{j-1}\psi^{\prime}\left(x\right)
=\displaystyle= o((ψ(x))mμl1).\displaystyle o\left(\left(\psi\left(x\right)\right)^{m-\mu-l-1}\right)\text{.}

It follows that

[xμ+1ylF+(x,ψ(x))j=0ml(μ+1)1j!xμ+1yl+jF(x,0)(ψ(x))j]\displaystyle\left[\partial_{x}^{\mu+1}\partial_{y}^{l}F^{+}\left(x,\psi\left(x\right)\right)-\sum_{j=0}^{m-l-\left(\mu+1\right)}\frac{1}{j!}\partial_{x}^{\mu+1}\partial_{y}^{l+j}F^{-}\left(x,0\right)\left(\psi\left(x\right)\right)^{j}\right]
+ψ(x)[xμyl+1F+(x,ψ(x))j=0mlμ21j!xμyl+1+jF(x,0)(ψ(x))j]\displaystyle+\psi^{\prime}\left(x\right)\left[\partial_{x}^{\mu}\partial_{y}^{l+1}F^{+}\left(x,\psi\left(x\right)\right)-\sum_{j=0}^{m-l-\mu-2}\frac{1}{j!}\partial_{x}^{\mu}\partial_{y}^{l+1+j}F^{-}\left(x,0\right)\left(\psi\left(x\right)\right)^{j}\right]
=\displaystyle= o((ψ(x))m(μ+1)l).\displaystyle o\left(\left(\psi\left(x\right)\right)^{m-\left(\mu+1\right)-l}\right)\text{.}

For j=mlμ1j=m-l-\mu-1, we have xμyl+1+jF(x,0)=o(1)\partial_{x}^{\mu}\partial_{y}^{l+1+j}F^{-}\left(x,0\right)=o\left(1\right), hence inductive hypothesis ((120)) for (l+1)\left(l+1\right) in place of ll tells us that the second term in square brackets in (6.2) is o((ψ(x))m(μ+1)l)o\left(\left(\psi\left(x\right)\right)^{m-\left(\mu+1\right)-l}\right). Also, |ψ(x)|=O(1)\left|\psi^{\prime}\left(x\right)\right|=O\left(1\right).

Consequently, the first term in square brackets in (6.2) is o((ψ(x))m(μ+1)l)o\left(\left(\psi\left(x\right)\right)^{m-\left(\mu+1\right)-l}\right), proving the analogue of ((120)) for μ+1,\mu+1, thus completing the induction and establishing ((120)).

We bring in the cutoff functions θ+\theta_{+} and θ\theta_{-}. Note that θ+\theta_{+} is supported in Eδ+E_{\delta}^{+} and θ\theta_{-} is supported in EδE_{\delta}^{-}.

We will estimate the derivatives of θ+\theta_{+}, θ\theta_{-} on EδE_{\delta}.

We have

(ddx)k1ψ(x)=O(1ψ(x)xk) as x0+,\left(\frac{d}{dx}\right)^{k}\frac{1}{\psi\left(x\right)}=O\left(\frac{1}{\psi\left(x\right)}x^{-k}\right)\text{ as }x\rightarrow 0^{+},

because ψ\psi is given by a convergent Puiseux series.

Because 0<ψ(x)x0<\psi\left(x\right)\leq x for x(0,δ)x\in\left(0,\delta\right) and 0yψ(x)0\leq y\leq\psi\left(x\right) in EδE_{\delta}, it follows that

xlyk(yψ(x))=O((ψ(x))kl)\partial_{x}^{l}\partial_{y}^{k}\left(\frac{y}{\psi\left(x\right)}\right)=O\left(\left(\psi\left(x\right)\right)^{-k-l}\right)

as (x,y)Eδ0\left(x,y\right)\in E_{\delta}\rightarrow 0, for all k,l0k,l\geq 0.

Now, x,yαθ(x,y)\partial_{x,y}^{\alpha}\theta_{-}\left(x,y\right) is a sum of terms θ(s)(yψ(x))σ=1s[x,yασ(yψ(x))]\theta^{\left(s\right)}\left(\frac{y}{\psi\left(x\right)}\right)\cdot\prod_{\sigma=1}^{s}\left[\partial_{x,y}^{\alpha_{\sigma}}\left(\frac{y}{\psi\left(x\right)}\right)\right] with α1++αs=α\alpha_{1}+\cdots+\alpha_{s}=\alpha, s|α|s\leq\left|\alpha\right|.

Each such term is O(σ=1s(1ψ(x))|ασ|)=O((1ψ(x))|α|)O\left(\prod_{\sigma=1}^{s}\left(\frac{1}{\psi\left(x\right)}\right)^{\left|\alpha_{\sigma}\right|}\right)=O\left(\left(\frac{1}{\psi\left(x\right)}\right)^{\left|\alpha\right|}\right).

Thus,

(125) |x,yαθ(x,y)|,|x,yαθ+(x,y)|Cα(ψ(x))|α| on Eδ (smaller δ) for |α|m+100.\left|\partial_{x,y}^{\alpha}\theta_{-}\left(x,y\right)\right|,\left|\partial_{x,y}^{\alpha}\theta_{+}\left(x,y\right)\right|\leq\frac{C_{\alpha}}{\left(\psi\left(x\right)\right)^{\left|\alpha\right|}}\text{ on }E_{\delta}\text{ (smaller }\delta\text{) for }\left|\alpha\right|\leq m+100\text{.}

Next, we return to F+,FF^{+},F^{-}, and prove the following estimate

(126) xμyl(F+F)(x,y)=o([ψ(x)]mμl) as (x,y)Eδ+Eδ0\partial_{x}^{\mu}\partial_{y}^{l}\left(F^{+}-F^{-}\right)\left(x,y\right)=o\left(\left[\psi\left(x\right)\right]^{m-\mu-l}\right)\text{ as }\left(x,y\right)\in E_{\delta}^{+}\cap E_{\delta}^{-}\rightarrow 0

for each μ,l\mu,l with μ+lm\mu+l\leq m.

To see this, fix μ\mu, 0μm0\leq\mu\leq m, and look at the polynomials

Px+(y)\displaystyle P_{x}^{+}\left(y\right) =\displaystyle= j=0mμ1j![yjxμF+(x,ψ(x))](yψ(x))j,\displaystyle\sum_{j=0}^{m-\mu}\frac{1}{j!}\left[\partial_{y}^{j}\partial_{x}^{\mu}F^{+}\left(x,\psi\left(x\right)\right)\right]\cdot\left(y-\psi\left(x\right)\right)^{j}\text{,}
Px(y)\displaystyle P_{x}^{-}\left(y\right) =\displaystyle= j=0mμ1j![yjxμF(x,0)]yj.\displaystyle\sum_{j=0}^{m-\mu}\frac{1}{j!}\left[\partial_{y}^{j}\partial_{x}^{\mu}F^{-}\left(x,0\right)\right]\cdot y^{j}\text{.}

Estimate ((120)) shows that

(127) yl(Px+Px)|y=ψ(x)=o((ψ(x))mμl) for l=0,,mμ.\partial_{y}^{l}\left(P_{x}^{+}-P_{x}^{-}\right)|_{y=\psi\left(x\right)}=o\left(\left(\psi\left(x\right)\right)^{m-\mu-l}\right)\text{ for }l=0,\cdots,m-\mu\text{.}

For yy satisfying (x,y)Eδ+Eδ\left(x,y\right)\in E_{\delta}^{+}\cap E_{\delta}^{-}, we have |y|,|yψ(x)|ψ(x)\left|y\right|,\left|y-\psi\left(x\right)\right|\leq\psi\left(x\right) and therefore (127) yields

yl(Px+Px)(x,y)=o((ψ(x))mμl)\partial_{y}^{l}\left(P_{x}^{+}-P_{x}^{-}\right)\left(x,y\right)=o\left(\left(\psi\left(x\right)\right)^{m-\mu-l}\right)

as (x,y)Eδ+Eδ\left(x,y\right)\in E_{\delta}^{+}\cap E_{\delta}^{-} tends to zero.

On the other hand, Taylor’s theorem gives for (x,y)Eδ+Eδ{(0,0)}\left(x,y\right)\in E_{\delta}^{+}\cap E_{\delta}^{-}\setminus\{(0,0)\} the estimates

yl[xμF+Px+](x,y)=O((ψ(x))mμlmaxy¯[13ψ(x),ψ(x)]|ymμxμF+(x,y¯)|)\partial_{y}^{l}\left[\partial_{x}^{\mu}F^{+}-P_{x}^{+}\right]\left(x,y\right)=O\left(\left(\psi\left(x\right)\right)^{m-\mu-l}\cdot\max_{\bar{y}\in\left[\frac{1}{3}\psi\left(x\right),\psi\left(x\right)\right]}\left|\partial_{y}^{m-\mu}\partial_{x}^{\mu}F^{+}\left(x,\bar{y}\right)\right|\right)

and

yl[xμFPx](x,y)=O((ψ(x))mμlmaxy¯[0,23ψ(x)]|ymμxμF(x,y¯)|).\partial_{y}^{l}\left[\partial_{x}^{\mu}F^{-}-P_{x}^{-}\right]\left(x,y\right)=O\left(\left(\psi\left(x\right)\right)^{m-\mu-l}\cdot\max_{\bar{y}\in\left[0,\frac{2}{3}\psi\left(x\right)\right]}\left|\partial_{y}^{m-\mu}\partial_{x}^{\mu}F^{-}\left(x,\bar{y}\right)\right|\right)\text{.}

The maxima in these last two estimates are o(1)o\left(1\right), because J(0,0)F+=J(0,0)F=0J_{\left(0,0\right)}F^{+}=J_{\left(0,0\right)}F^{-}=0.

Thus, as (x,y)Eδ+Eδ{(0,0)}\left(x,y\right)\in E_{\delta}^{+}\cap E_{\delta}^{-}\setminus\{(0,0)\} approaches zero, the quantities yl[xμF+Px+](x,y)\partial_{y}^{l}\left[\partial_{x}^{\mu}F^{+}-P_{x}^{+}\right]\left(x,y\right),
yl[xμFPx](x,y)\partial_{y}^{l}\left[\partial_{x}^{\mu}F^{-}-P_{x}^{-}\right]\left(x,y\right), yl[Px+Px](x,y)\partial_{y}^{l}\left[P_{x}^{+}-P_{x}^{-}\right]\left(x,y\right) are all o((ψ(x))mμl)o\left(\left(\psi\left(x\right)\right)^{m-\mu-l}\right).

Consequently, (ylxμF+ylxμF)(x,y)=o((ψ(x))mμl)\left(\partial_{y}^{l}\partial_{x}^{\mu}F^{+}-\partial_{y}^{l}\partial_{x}^{\mu}F^{-}\right)\left(x,y\right)=o\left(\left(\psi\left(x\right)\right)^{m-\mu-l}\right) as (x,y)Eδ+Eδ{(0,0)}\left(x,y\right)\in E_{\delta}^{+}\cap E_{\delta}^{-}\setminus\{(0,0)\} approaches zero, completing the proof of (126).

We now set F=θ+F++θFF=\theta_{+}F^{+}+\theta_{-}F^{-} on Eδ{(0,0)}E_{\delta}\setminus\{(0,0)\} and F(0,0)=0F(0,0)=0.

Evidently, FF is CmC^{m} away from the origin, and semialgebraic; moreover, F=F+F=F^{+} in a neighborhood of any point (x0,ψ(x0))\left(x^{0},\psi\left(x^{0}\right)\right) in EδE_{\delta} (x00)\left(x^{0}\not=0\right) and F=FF=F^{-} in a neighborhood of any point (x0,0)Eδ\left(x^{0},0\right)\in E_{\delta} (x00)\left(x^{0}\not=0\right).

It remains to check that FCm(Eδ)F\in C^{m}\left(E_{\delta}\right) near 0 and that J(0,0)F=0J_{\left(0,0\right)}F=0. That amounts to showing that

(128) x,yαF(x,y)=o(xm|α|) as (x,y)Eδ{(0,0)} approaches (0,0) (all |α|m).\partial_{x,y}^{\alpha}F\left(x,y\right)=o\left(x^{m-\left|\alpha\right|}\right)\text{ as }\left(x,y\right)\in E_{\delta}\setminus\{(0,0)\}\text{ approaches }(0,0)\text{ (all }\left|\alpha\right|\leq m\text{).}

To prove (128), we may assume (x,y)Eδ+Eδ{(0,0)}\left(x,y\right)\in E_{\delta}^{+}\cap E_{\delta}^{-}\setminus\{(0,0)\}, because otherwise the left-hand side of (128) is x,yαF+\partial_{x,y}^{\alpha}F^{+} for (x,y)Eδ+{(0,0)}\left(x,y\right)\in E_{\delta}^{+}\setminus\{(0,0)\} or else x,yαF\partial_{x,y}^{\alpha}F^{-} for (x,y)Eδ{(0,0)}\left(x,y\right)\in E_{\delta}^{-}\setminus\{(0,0)\}, in which case (128) holds because J(0,0)F+=J(0,0)F=0J_{\left(0,0\right)}F^{+}=J_{\left(0,0\right)}F^{-}=0.

For (x,y)Eδ+Eδ{(0,0)}\left(x,y\right)\in E_{\delta}^{+}\cap E_{\delta}^{-}\setminus\{(0,0)\}, we have

(129) F=F+θ+(F+F).F=F^{-}+\theta_{+}\left(F^{+}-F^{-}\right)\text{.}

Because J(0,0)F=0J_{\left(0,0\right)}F^{-}=0, we have

(130) x,yαF(x,y)=o(xm|α|) as (x,y)Eδ+Eδ{(0,0)} tends to (0,0), for |α|m.\partial_{x,y}^{\alpha}F^{-}\left(x,y\right)=o\left(x^{m-\left|\alpha\right|}\right)\text{ as }\left(x,y\right)\in E_{\delta}^{+}\cap E_{\delta}^{-}\setminus\{(0,0)\}\text{ tends to }(0,0)\text{, for }\left|\alpha\right|\leq m\text{.}

We recall that x,yαθ+(x,y)=O((ψ(x))|α|)\partial_{x,y}^{\alpha}\theta_{+}\left(x,y\right)=O\left(\left(\psi\left(x\right)\right)^{-\left|\alpha\right|}\right) for |α|m\left|\alpha\right|\leq m and that x,yα(F+F)(x,y)=o((ψ(x))m|α|)\partial_{x,y}^{\alpha}\left(F^{+}-F^{-}\right)\left(x,y\right)=o\left(\left(\psi\left(x\right)\right)^{m-\left|\alpha\right|}\right) for |α|m\left|\alpha\right|\leq m as (x,y)Eδ+Eδ{(0,0)}\left(x,y\right)\in E_{\delta}^{+}\cap E_{\delta}^{-}\setminus\{(0,0)\} tends to (0,0)(0,0), for |α|m\left|\alpha\right|\leq m.

Therefore, for |α|m\left|\alpha\right|\leq m, as (x,y)Eδ+Eδ{(0,0)}\left(x,y\right)\in E_{\delta}^{+}\cap E_{\delta}^{-}\setminus\{(0,0)\} tends to (0,0)(0,0), we have

x,yα{θ+(F+F)(x,y)}=o((ψ(x))m|α|),\partial_{x,y}^{\alpha}\left\{\theta_{+}\left(F^{+}-F^{-}\right)\left(x,y\right)\right\}=o\left(\left(\psi\left(x\right)\right)^{m-\left|\alpha\right|}\right)\text{,}

hence

(131) x,yα{θ+(F+F)(x,y)}=o(xm|α|),\partial_{x,y}^{\alpha}\left\{\theta_{+}\left(F^{+}-F^{-}\right)\left(x,y\right)\right\}=o\left(x^{m-\left|\alpha\right|}\right)\text{,}

because 0<ψ(x)x0<\psi\left(x\right)\leq x. Putting (130), (131) into (129), we see that

x,yαF(x,y)=o(xm|α|)\partial_{x,y}^{\alpha}F\left(x,y\right)=o\left(x^{m-\left|\alpha\right|}\right)

as (x,y)Eδ+Eδ{(0,0)}\left(x,y\right)\in E_{\delta}^{+}\cap E_{\delta}^{-}\setminus\{(0,0)\} tends to (0,0)(0,0), for |α|m\left|\alpha\right|\leq m.

Thus, (128) holds. The proof of Lemma 6.4 is complete.   

Next, we introduce a change of variables in a neighborhood of 0 in +2={(x,y):x>0}\mathbb{R}_{+}^{2}=\left\{\left(x,y\right):x>0\right\} of the form

(132) x¯=x,y¯=y+ψ~(x),\bar{x}=x,\bar{y}=y+\tilde{\psi}\left(x\right)\text{,}

where ψ~(x)\tilde{\psi}\left(x\right) is semialgebraic and satisfies |ψ~(x)|Cx\left|\tilde{\psi}\left(x\right)\right|\leq Cx for x(0,δ)x\in\left(0,\delta\right).

The inverse change of variables is of course

x=x¯,y=y¯ψ~(x¯).x=\bar{x},y=\bar{y}-\tilde{\psi}\left(\bar{x}\right)\text{.}

Note that x,yα(x¯,y¯)=O(x1|α|)\partial_{x,y}^{\alpha}\left(\bar{x},\bar{y}\right)=O\left(x^{1-\left|\alpha\right|}\right) for |y|Cx1\left|y\right|\leq Cx\ll 1 because ψ~\tilde{\psi} is given near 0 as  a convergent Puiseux series, hence |ψ~(x)|Cx\left|\tilde{\psi}\left(x\right)\right|\leq Cx implies |ψ~(k)|Ckx1k\left|\tilde{\psi}^{\left(k\right)}\right|\leq C_{k}x^{1-k} for small xx.

The change of variables (132) does not preserve CmC^{m}, but it does preserve CmC^{m} functions whose jets at 0 are equal to zero.

Indeed, suppose F(x¯,y¯)Cm(E¯)F\left(\bar{x},\bar{y}\right)\in C^{m}\left(\bar{E}\right) for E¯{(x¯,y¯):|y¯|Cx¯}\bar{E}\subset\left\{\left(\bar{x},\bar{y}\right):\left|\bar{y}\right|\leq C\bar{x}\right\}, with 0E¯0\in\bar{E} and J0F=0J_{0}F=0.

Then E¯\bar{E} corresponds under (132) to a set E{(x,y):|y|Cx}E\subset\left\{\left(x,y\right):\left|y\right|\leq C^{\prime}x\right\}, 0E0\in E.

We may regard FF as a function of (x,y)\left(x,y\right), and for |α|m\left|\alpha\right|\leq m, x,yαF(x,y)\partial_{x,y}^{\alpha}F\left(x,y\right) is a sum of terms |x¯,y¯βF(x¯,y¯)|ν=1|β|[x,yαν(x¯,y¯)]\left|\partial_{\bar{x},\bar{y}}^{\beta}F\left(\bar{x},\bar{y}\right)\right|\cdot\prod_{\nu=1}^{\left|\beta\right|}\left[\partial_{x,y}^{\alpha_{\nu}}\left(\bar{x},\bar{y}\right)\right] with |β|m|\beta|\leq m and ναν=α\sum_{\nu}\alpha_{\nu}=\alpha. If J(0,0)F=0J_{\left(0,0\right)}F=0 as a function of (x¯,y¯)\left(\bar{x},\bar{y}\right), then x¯,y¯βF(x¯,y¯)=o(x¯m|β|)\partial_{\bar{x},\bar{y}}^{\beta}F\left(\bar{x},\bar{y}\right)=o\left(\bar{x}^{m-\left|\beta\right|}\right) on E¯\bar{E}, hence x¯,y¯βF(x¯,y¯)=o(xm|β|)\partial_{\bar{x},\bar{y}}^{\beta}F\left(\bar{x},\bar{y}\right)=o\left(x^{m-\left|\beta\right|}\right) on EE. Also, on E,E,

ν=1|β|[x,yαν(x¯,y¯)]=ν=1|β|O(x1|αν|)=O(x|β|ν|αν|)=O(x|β||α|).\prod_{\nu=1}^{\left|\beta\right|}\left[\partial_{x,y}^{\alpha_{\nu}}\left(\bar{x},\bar{y}\right)\right]=\prod_{\nu=1}^{\left|\beta\right|}O\left(x^{1-\left|\alpha_{\nu}\right|}\right)=O\left(x^{\left|\beta\right|-\sum_{\nu}\left|\alpha_{\nu}\right|}\right)=O\left(x^{\left|\beta\right|-\left|\alpha\right|}\right)\text{.}

Consequently, x,yαF(x,y)=o(xm|α|)\partial_{x,y}^{\alpha}F\left(x,y\right)=o\left(x^{m-\left|\alpha\right|}\right) on E{(0,0)}E\setminus\{(0,0)\}, for |α|m\left|\alpha\right|\leq m. Thus, as claimed, FCm(E)F\in C^{m}\left(E\right) and J(0,0)F=0J_{\left(0,0\right)}F=0.

The following generalization of Lemma 6.4 is reduced to Lemma 6.4 by means of the change of variables discussed above.

Lemma 6.5

Let 0ψ(x)ψ+(x)x0\leq\psi_{-}(x)\leq\psi_{+}\left(x\right)\leq x be semialgebraic functions on [0,δ][0,\delta], with ψ<ψ+\psi_{-}<\psi_{+} on (0,δ](0,\delta]. We set

Eδ={(x,y)2:0xδ,ψ(x)yψ+(x)},E_{\delta}=\{(x,y)\in\mathbb{R}^{2}:0\leq x\leq\delta,\psi_{-}\left(x\right)\leq y\leq\psi_{+}(x)\},
Eδ+={(x,y)2:0xδ,0ψ+(x)y23(ψ+(x)ψ(x))}, andE_{\delta}^{+}=\{(x,y)\in\mathbb{R}^{2}:0\leq x\leq\delta,0\leq\psi_{+}(x)-y\leq\frac{2}{3}\left(\psi_{+}(x)-\psi_{-}\left(x\right)\right)\},\text{ and}
Eδ={(x,y)2:0xδ,0yψ(x)23(ψ+(x)ψ(x))}.E_{\delta}^{-}=\{(x,y)\in\mathbb{R}^{2}:0\leq x\leq\delta,0\leq y-\psi_{-}\left(x\right)\leq\frac{2}{3}\left(\psi_{+}(x)-\psi_{-}\left(x\right)\right)\}.

Fix a semialgebraic function of one variable, θ(t)\theta\left(t\right), satisfying 0θ(t)10\leq\theta\left(t\right)\leq 1, θ(t)=1\theta\left(t\right)=1 for t1/3,t\leq 1/3, θ(t)=0\theta\left(t\right)=0 for t2/3t\geq 2/3, θCm+100\theta\in C^{m+100}.

Then set

θ(x,y)=θ(yψ(x)(ψ+ψ)(x))θ+(x,y)=1θ(x,y) for (x,y)Eδ{(0,0)}.\theta_{-}\left(x,y\right)=\theta\left(\frac{y-\psi_{-}(x)}{(\psi_{+}-\psi_{-})\left(x\right)}\right)\text{, }\theta_{+}\left(x,y\right)=1-\theta_{-}\left(x,y\right)\text{ for }\left(x,y\right)\in E_{\delta}\setminus\{(0,0)\}\text{.}

Thus, θ+,θ0\theta_{+},\theta_{-}\geq 0 and θ++θ=1\theta_{+}+\theta_{-}=1 on Eδ{(0,0)}E_{\delta}\setminus\{(0,0)\}.

Let F+Cm(Eδ+)F^{+}\in C^{m}(E_{\delta}^{+}) and FCm(Eδ)F^{-}\in C^{m}(E_{\delta}^{-}) be semialgebraic functions, with J(0,0)F+=J(0,0)F=0J_{(0,0)}F^{+}=J_{(0,0)}F^{-}=0.

Suppose that

ylF+(x,ψ+(x))j=0ml1j!yl+jF(x,ψ(x))(ψ+(x)ψ(x))j=o((ψ+(x)ψ(x))ml)\partial_{y}^{l}F^{+}(x,\psi_{+}(x))-\sum_{j=0}^{m-l}\frac{1}{j!}\partial_{y}^{l+j}F^{-}(x,\psi_{-}(x))\cdot(\psi_{+}(x)-\psi_{-}\left(x\right))^{j}=o((\psi_{+}(x)-\psi_{-}\left(x\right))^{m-l})

as x0+x\rightarrow 0^{+} for each l=0,,ml=0,\cdots,m.

Define F=θ+F++θFF=\theta_{+}\cdot F^{+}+\theta_{-}\cdot F^{-} on Eδ{(0,0)},F(0,0)=0E_{\delta}\setminus\{(0,0)\},F(0,0)=0.

Then FF is a CmC^{m} semialgebraic function on EδE_{\delta^{\prime}} for some small δ\delta^{\prime}. The jet of FF at (0,0)(0,0) is zero. Moreover, F=F+F=F^{+} in a neighborhood of any point (x,ψ+(x))(x,\psi_{+}(x)), 0<x<δ0<x<\delta^{\prime}, and F=FF=F^{-} in a neighborhood of any point (x,ψ(x))(x,\psi_{-}(x)), 0<x<δ0<x<\delta^{\prime}.

6.3 Proof of Lemma 6.1

Let =(H(z))z2\mathcal{H}=(H(z))_{z\in\mathbb{R}^{2}} be a semialgebraic bundle with a ClocmC^{m}_{loc} section. Each H(z)H(z) is a coset of an z\mathcal{R}_{z} submodule in zD\mathcal{R}_{z}^{D}. Assume H((0,0))={0}H((0,0))=\{0\}. Let Ωδ={(x,y)2:0xδ,0yx}\Omega_{\delta}=\{(x,y)\in\mathbb{R}^{2}:0\leq x\leq\delta,0\leq y\leq x\} for δ>0\delta>0. We look for semialgebraic ClocmC^{m}_{loc} sections of |Ωδ\mathcal{H}|_{\Omega_{\delta}}, for some small δ\delta (which will keep shrinking as we discuss further).

We apply Lemma 5.3. Thus, we obtain the following

  • Semialgebraic functions 0ψ0(x)ψ1(x)ψsmax(x)=x0\leq\psi_{0}\left(x\right)\leq\psi_{1}\left(x\right)\leq\cdots\leq\psi_{s_{\max}}\left(x\right)=x on (0,δ),\left(0,\delta\right), all given by convergent Puiseux expansions on (0,δ)\left(0,\delta\right).

  • Integers ksk_{s} (0ksD)\left(0\leq k_{s}\leq D\right) and permutations πs:{1,,D}{1,,D}\pi_{s}:\left\{1,\cdots,D\right\}\rightarrow\left\{1,\cdots,D\right\} for s=1,,smaxs=1,\cdots,s_{\max}.

  • Semialgebraic functions Aijs(x,y)A_{ij}^{s}\left(x,y\right) (s=1,,smax(s=1,\cdots,s_{\max}, 1iks,ks<jD)1\leq i\leq k_{s},k_{s}<j\leq D) and φis(x,y)\varphi_{i}^{s}\left(x,y\right) (s=1,,smax,1iks)\left(s=1,\cdots,s_{\max},1\leq i\leq k_{s}\right) defined on Es={(x,y):0<x<δ,ψs1(x)<y<ψs(x)}E_{s}=\left\{\left(x,y\right):0<x<\delta,\psi_{s-1}\left(x\right)<y<\psi_{s}\left(x\right)\right\}.

  • Semialgebraic functions θjlsi(x)\theta_{jl}^{si}\left(x\right), gsi(x)g^{si}\left(x\right) (s=0,,smax,i=1,,imax(s)(s=0,\cdots,s_{\max},i=1,\cdots,i_{\max}\left(s\right), j=1,,D,j=1,\cdots,D, l=0,,m)l=0,\cdots,m) defined on (0,δ)\left(0,\delta\right), and given there by convergent Puiseux expansions.

The above objects have the following properties

  • (Estimates) For (x,y)Ω1\left(x,y\right)\in\Omega_{1} with 0<x<δ0<x<\delta and ψs1(x)<y<ψs(x)\psi_{s-1}\left(x\right)<y<\psi_{s}\left(x\right), we have |αAijs(x,y)|\left|\partial^{\alpha}A_{ij}^{s}\left(x,y\right)\right|, |αφis(x,y)|C[min(|yψs(x)|,|yψs1(x)|)]|α|\left|\partial^{\alpha}\varphi_{i}^{s}\left(x,y\right)\right|\leq C\left[\min\left(\left|y-\psi_{s}\left(x\right)\right|,\left|y-\psi_{s-1}\left(x\right)\right|\right)\right]^{-\left|\alpha\right|} for |α|m+100\left|\alpha\right|\leq m+100.

  • (Condition for sections) Let F=(F1,,FD)Cm(Ω1,D)F=(F_{1},\cdots,F_{D})\in C^{m}\left(\Omega_{1},\mathbb{R}^{D}\right), and suppose JxFH(x)J_{x}F\in H\left(x\right) for all xΩ1x\in\Omega_{1}.

    Then for s=1,,smaxs=1,\cdots,s_{\max}, i=1,,ksi=1,\cdots,k_{s}, x(0,δ)x\in\left(0,\delta\right), ψs1(x)<y<ψs(x)\psi_{s-1}\left(x\right)<y<\psi_{s}\left(x\right), we have

    (133) Fπsi(x,y)+Dj>ksAijs(x,y)Fπsj(x,y)=φis(x,y);F_{\pi_{s}i}\left(x,y\right)+\sum_{D\geq j>k_{s}}A_{ij}^{s}\left(x,y\right)F_{\pi_{s}j}\left(x,y\right)=\varphi_{i}^{s}\left(x,y\right)\text{;}

    and for s=0,1,,smaxs=0,1,\cdots,s_{\max}, i=1,,imax(s)i=1,\cdots,i_{\max}\left(s\right), x(0,δ)x\in\left(0,\delta\right), we have

    (134) j=1Dl=0mθjlsi(x)ylFj(x,ψs(x))=gsi(x);\sum_{j=1}^{D}\sum_{l=0}^{m}\theta_{jl}^{si}\left(x\right)\partial_{y}^{l}F_{j}\left(x,\psi_{s}\left(x\right)\right)=g^{si}\left(x\right)\text{;}

    and

    (135) J(0,0)Fj=0J_{\left(0,0\right)}F_{j}=0

    for all jj.

    Conversely, if F=(Fj)j=1,,DClocm(2,D)F=(F_{j})_{j=1,\cdots,D}\in C^{m}_{loc}\left(\mathbb{R}^{2},\mathbb{R}^{D}\right) satisfies (133), (134), (135), then FF is a section of \mathcal{H} over Ωδclosure\Omega_{\delta}^{\text{closure}}.

Next, we set (for s=1,,smax)s=1,\cdots,s_{\max}):

Es+={(x,y)2:0xδ, 0ψs(x)y23(ψsψs1(x))}E_{s}^{+}=\left\{\left(x,y\right)\in\mathbb{R}^{2}:0\leq x\leq\delta,\text{ }0\leq\psi_{s}\left(x\right)-y\leq\frac{2}{3}\left(\psi_{s}-\psi_{s-1}\left(x\right)\right)\right\}

and

Es={(x,y)2:0xδ0yψs1(x)23(ψs(x)ψs1(x))}.E_{s}^{-}=\left\{\left(x,y\right)\in\mathbb{R}^{2}:0\leq x\leq\delta\text{, }0\leq y-\psi_{s-1}\left(x\right)\leq\frac{2}{3}\left(\psi_{s}\left(x\right)-\psi_{s-1}\left(x\right)\right)\right\}\text{.}

Then Es+,interiorEs,interior=EsE_{s}^{+,\text{interior}}\cup E_{s}^{-,\text{interior}}=E_{s}. On Es+,interiorE_{s}^{+,\text{interior}} we have |αAijs(x)|\left|\partial^{\alpha}A_{ij}^{s}\left(x\right)\right|, |αφis(x,y)|C(ψs(x)y)|α|\left|\partial^{\alpha}\varphi_{i}^{s}\left(x,y\right)\right|\leq C\left(\psi_{s}\left(x\right)-y\right)^{-\left|\alpha\right|} for |α|m+100\left|\alpha\right|\leq m+100, and on Es, interiorE_{s}^{-\text{, interior}} we have |αAijs(x)|\left|\partial^{\alpha}A_{ij}^{s}\left(x\right)\right|, |αφis(x,y)|C(yψs1(x))|α|\left|\partial^{\alpha}\varphi_{i}^{s}\left(x,y\right)\right|\leq C\left(y-\psi_{s-1}\left(x\right)\right)^{-\left|\alpha\right|} for |α|m+100\left|\alpha\right|\leq m+100.

We may apply Lemma 6.2 after a change of variables of the form (x¯,y¯)=(x,±(yψ(x))).(\bar{x},\bar{y})=(x,\pm(y-\psi(x))).

Thus, we obtain the following objects, with properties described below.

  • Semialgebraic functions θjl+,si(x)\theta_{jl}^{+,si}\left(x\right), g+,si(x)g^{+,si}\left(x\right), i=1,,imax+(s)i=1,\cdots,i_{\max}^{+}\left(s\right), θjl,si(x)\theta_{jl}^{-,si}\left(x\right), g,si(x)g^{-,si}\left(x\right), i=1,,imax(s)i=1,\cdots,i_{\max}^{-}\left(s\right), l=0,,m,l=0,\cdots,m, defined on (0,δ)\left(0,\delta\right) (smaller δ\delta).

  • Semialgebraic functions θ~jl+,si(x)\tilde{\theta}_{jl}^{+,si}\left(x\right), g~+,si(x)\tilde{g}^{+,si}\left(x\right), i=1,,ı~max+(s)i=1,\cdots,\tilde{\imath}_{\max}^{+}\left(s\right), θ~jl,si(x)\tilde{\theta}_{jl}^{-,si}\left(x\right), g~,si(x)\tilde{g}^{-,si}\left(x\right), i=1,,ı~max(s)i=1,\cdots,\tilde{\imath}_{\max}^{-}\left(s\right), l=0,,m,l=0,\cdots,m, defined on (0,δ)\left(0,\delta\right) (smaller δ\delta).

The properties for these functions are as follows.

Let F=(F1,,FD)Clocm(2,D)F=(F_{1},\cdots,F_{D})\in C^{m}_{loc}\left(\mathbb{R}^{2},\mathbb{R}^{D}\right) satisfy (133) in Es+,interiorE_{s}^{+,\text{interior}} and J(0,0)F=0J_{\left(0,0\right)}F=0. Then

(136) 1jD0lmθjl+,siylFj(x,ψs(x))=g+,si(x)\sum_{\begin{subarray}{c}1\leq j\leq D\\ 0\leq l\leq m\end{subarray}}\theta_{jl}^{+,si}\partial_{y}^{l}F_{j}\left(x,\psi_{s}\left(x\right)\right)=g^{+,si}\left(x\right)

for x(0,δ)x\in\left(0,\delta\right) and all ii, and

(137) 1jD0lmθ~jl+,siylFj(x,ψs(x))=g~+,si(x)+o(1) as x0+\sum_{\begin{subarray}{c}1\leq j\leq D\\ 0\leq l\leq m\end{subarray}}\tilde{\theta}_{jl}^{+,si}\partial_{y}^{l}F_{j}\left(x,\psi_{s}\left(x\right)\right)=\tilde{g}^{+,si}\left(x\right)+o\left(1\right)\text{ as }x\rightarrow 0^{+}

for x(0,δ)x\in\left(0,\delta\right) and all ii.

Similarly, let F=(F1,,FD)Clocm(2,D)F=(F_{1},\cdots,F_{D})\in C^{m}_{loc}\left(\mathbb{R}^{2},\mathbb{R}^{D}\right) satisfy (133) in Es,interiorE_{s}^{-,\text{interior}} and J(0,0)F=0J_{\left(0,0\right)}F=0. Then

(138) 1jD0lmθjl,siylFj(x,ψs1(x))=g,si(x)\sum_{\begin{subarray}{c}1\leq j\leq D\\ 0\leq l\leq m\end{subarray}}\theta_{jl}^{-,si}\partial_{y}^{l}F_{j}\left(x,\psi_{s-1}\left(x\right)\right)=g^{-,si}\left(x\right)

for x(0,δ)x\in\left(0,\delta\right) and all ii, and

(139) 1jD0lmθ~jl,siylFj(x,ψs1(x))=g~,si(x)+o(1) as x0+\sum_{\begin{subarray}{c}1\leq j\leq D\\ 0\leq l\leq m\end{subarray}}\tilde{\theta}_{jl}^{-,si}\partial_{y}^{l}F_{j}\left(x,\psi_{s-1}\left(x\right)\right)=\tilde{g}^{-,si}\left(x\right)+o\left(1\right)\text{ as }x\rightarrow 0^{+}

for all ii.

  • (140)

    Conversely, fix ss and suppose we are given semialgebraic functions fjl+,s(x)f_{jl}^{+,s}\left(x\right) on (0,δ)\left(0,\delta\right) satisfying

    1jD0lmθjl+,sifjl+,s(x)=g+,si(x) (all i)\sum_{\begin{subarray}{c}1\leq j\leq D\\ 0\leq l\leq m\end{subarray}}\theta_{jl}^{+,si}f_{jl}^{+,s}\left(x\right)=g^{+,si}\left(x\right)\text{ (all }i\text{)}

    and

    1jD0lmθ~jl+,sifjl+,s(x)=g~+,si(x)+o(1) as x0+ (all i).\sum_{\begin{subarray}{c}1\leq j\leq D\\ 0\leq l\leq m\end{subarray}}\tilde{\theta}_{jl}^{+,si}f_{jl}^{+,s}\left(x\right)=\tilde{g}^{+,si}\left(x\right)+o\left(1\right)\text{ as }x\rightarrow 0^{+}\text{ (all }i\text{)}.

    Then there exists a semialgebraic function F=(F1,,FD)Cm(Es+,D)F=\left(F_{1},\cdots,F_{D}\right)\in C^{m}\left(E_{s}^{+},\mathbb{R}^{D}\right) such that (133) holds in Es+,interiorE_{s}^{+,\text{interior}} and ylFj(x,ψs(x))=fjl+,s(x)\partial_{y}^{l}F_{j}\left(x,\psi_{s}\left(x\right)\right)=f_{jl}^{+,s}\left(x\right) and J(0,0)Fj=0J_{\left(0,0\right)}F_{j}=0 for all jj.

  • (142)

    Similarly, fix ss and suppose we are given we are given semialgebraic functions fjl,s(x)f_{jl}^{-,s}\left(x\right) on (0,δ)\left(0,\delta\right) satisfying

    1jD0lmθjl,sifjl,s(x)=g,si(x) (all i)\sum_{\begin{subarray}{c}1\leq j\leq D\\ 0\leq l\leq m\end{subarray}}\theta_{jl}^{-,si}f_{jl}^{-,s}\left(x\right)=g^{-,si}\left(x\right)\text{ (all }i\text{)}

    and

    1jD0lmθ~jl,sifjl,s(x)=g~,si(x)+o(1) as x0+ (all i).\sum_{\begin{subarray}{c}1\leq j\leq D\\ 0\leq l\leq m\end{subarray}}\tilde{\theta}_{jl}^{-,si}f_{jl}^{-,s}\left(x\right)=\tilde{g}^{-,si}\left(x\right)+o\left(1\right)\text{ as }x\rightarrow 0^{+}\text{ (all }i\text{)}.

    Then there exists a semialgebraic function F=(F1,,FD)Cm(Es,D)F=\left(F_{1},\cdots,F_{D}\right)\in C^{m}\left(E_{s}^{-},\mathbb{R}^{D}\right) such that (133) holds in Es,interiorE_{s}^{-,\text{interior}} and ylFj(x,ψs(x))=fjl,s(x)\partial_{y}^{l}F_{j}\left(x,\psi_{s}\left(x\right)\right)=f_{jl}^{-,s}\left(x\right) and J(0,0)Fj=0J_{\left(0,0\right)}F_{j}=0 for all jj.

  • (144)

    Moreover, if F=(F1,,FD)Cm(Esclosure,D)F=(F_{1},\cdots,F_{D})\in C^{m}\left(E_{s}^{\text{closure}},\mathbb{R}^{D}\right) with J(0,0)F=0J_{\left(0,0\right)}F=0, then fjl+,s=ylFj(x,ψs(x))f_{jl}^{+,s}=\partial_{y}^{l}F_{j}\left(x,\psi_{s}\left(x\right)\right) and fjl,s=ylFj(x,ψs1(x))f_{jl}^{-,s}=\partial_{y}^{l}F_{j}\left(x,\psi_{s-1}\left(x\right)\right) satisfy the key hypothesis of Lemma 6.5, namely,

    fjl+,s(x)k=0ml1k!fj(l+k),s(x)(ψs(x)ψs1(x))k=o([ψs(x)ψs1(x)]ml) as x0+f_{jl}^{+,s}\left(x\right)-\sum_{k=0}^{m-l}\frac{1}{k!}f_{j(l+k)}^{-,s}\left(x\right)\left(\psi_{s}\left(x\right)-\psi_{s-1}\left(x\right)\right)^{k}=o\left(\left[\psi_{s}\left(x\right)-\psi_{s-1}\left(x\right)\right]^{m-l}\right)\text{ as }x\rightarrow 0^{+}

    by Taylor’s theorem.

Now, suppose F=(F1,,FD)Clocm(2,D)F=(F_{1},\cdots,F_{D})\in C^{m}_{loc}\left(\mathbb{R}^{2},\mathbb{R}^{D}\right) is a section of \mathcal{H} over Ωδ\Omega_{\delta}. Then, setting fjls(x)=ylFj(x,ψs(x))f_{jl}^{s}\left(x\right)=\partial_{y}^{l}F_{j}\left(x,\psi_{s}\left(x\right)\right) for x(0,δ)x\in\left(0,\delta\right) (smaller δ\delta), we learn that (because the FjF_{j} satisfy (133), (134), (135)), properties (134)\cdots(139) yield a collection of assertions of the form

(146) j=1,,Dl=0,,mθjl#,si(x)fjls(x)=g#,si(x) on (0,δ)\sum_{\begin{subarray}{c}j=1,\cdots,D\\ l=0,\cdots,m\end{subarray}}\theta_{jl}^{\#,si}\left(x\right)f_{jl}^{s}\left(x\right)=g^{\#,si}\left(x\right)\text{ on }\left(0,\delta\right)

and

(147) j=1,,Dl=0,,mθ~jl#,si(x)fjls(x)=g~#,si(x)+o(1) as x0+;\sum_{\begin{subarray}{c}j=1,\cdots,D\\ l=0,\cdots,m\end{subarray}}\tilde{\theta}_{jl}^{\#,si}\left(x\right)f_{jl}^{s}\left(x\right)=\tilde{g}^{\#,si}\left(x\right)+o\left(1\right)\text{ as }x\rightarrow 0^{+}\text{;}

and also from ((144)) we have

(148) fjls(x)=k=0ml1k!fj(l+k)s1(x)[ψs(x)ψs1(x)]k+o([ψs(x)ψs1(x)]ml) as x0+.f_{jl}^{s}\left(x\right)=\sum_{k=0}^{m-l}\frac{1}{k!}f_{j\left(l+k\right)}^{s-1}\left(x\right)\left[\psi_{s}\left(x\right)-\psi_{s-1}\left(x\right)\right]^{k}+o\left(\left[\psi_{s}\left(x\right)-\psi_{s-1}\left(x\right)\right]^{m-l}\right)\text{ as }x\rightarrow 0^{+}\text{.}

Conversely, if the fjls(x)f_{jl}^{s}\left(x\right) are semialgebraic functions of one variable, satisfying (146), (147), and (148), then for each s=1,,smaxs=1,\cdots,s_{\max} there exist F+s=(F+,1s,,F+,Ds)Cm(E+s, closure,D)F_{+}^{s}=(F_{+,1}^{s},\cdots,F_{+,D}^{s})\in C^{m}\left(E_{+}^{s\text{, closure}},\mathbb{R}^{D}\right), Fs=(F,1s,,F,Ds)Cm(Es, closure,D)F_{-}^{s}=(F_{-,1}^{s},\cdots,F_{-,D}^{s})\in C^{m}\left(E_{-}^{s\text{, closure}},\mathbb{R}^{D}\right) semialgebraic such that (133), (134), (135) hold in Es+E_{s}^{+}, EsE_{s}^{-}, respectively and ylF+,js(x,ψs(x))=fjls(x)\partial_{y}^{l}F_{+,j}^{s}\left(x,\psi_{s}\left(x\right)\right)=f_{jl}^{s}\left(x\right), ylF,js(x,ψs1(x))=fjls1(x)\partial_{y}^{l}F_{-,j}^{s}\left(x,\psi_{s-1}\left(x\right)\right)=f_{jl}^{s-1}\left(x\right) and J(0,0)F+s=J(0,0)Fs=0J_{\left(0,0\right)}F_{+}^{s}=J_{\left(0,0\right)}F_{-}^{s}=0.

Note that F+sF_{+}^{s} is a section of \mathcal{H} over Es+E_{s}^{+}, and FsF_{-}^{s} is a section of \mathcal{H} over EsE_{s}^{-}.

Thanks to (148) and Lemma 6.5, we may patch together F+sF_{+}^{s}, FsF_{-}^{s} into a semialgebraic Fs=(Fs,1,,Fs,D)Cm(Esclosure,D)F_{s}=(F_{s,1},\cdots,F_{s,D})\in C^{m}(E_{s}^{\text{closure}},\mathbb{R}^{D}) such that J(0,0)Fs=0J_{(0,0)}F_{s}=0, FsF_{s} is a section of \mathcal{H} over EsclosureE_{s}^{\text{closure}}, and ylFsj(x,ψ(x))=fjls(x)\partial_{y}^{l}F_{sj}(x,\psi(x))=f_{jl}^{s}(x) and ylFsj(x,ψs1(x))=fjls1(x)\partial_{y}^{l}F_{sj}(x,\psi_{s-1}(x))=f_{jl}^{s-1}(x).

Because of these conditions, the FsF_{s} (s=1,,smaxs=1,\cdots,s_{\max}) fit together (their transverse derivatives up to order mm match at the boundaries where the EsE_{s} meet), so using also Corollary 3.2, we obtain from the FsF_{s} a single semialgebraic F=(F1,,FD)Clocm(2,D)F=(F_{1},\cdots,F_{D})\in C^{m}_{loc}(\mathbb{R}^{2},\mathbb{R}^{D}) such that J(0,0)F=0J_{(0,0)}F=0, and FF is a section of \mathcal{H} over Ωδ\Omega_{\delta}.

Thus, we have proven Lemma 6.1.

7 Proof of Lemma 4.1 (Main Lemma)

From the Second Main Lemma (Lemma 6.1), we can easily deduce Lemma 4.1.

Indeed, suppose =(H(x,y))(x,y)Ωδ\mathcal{H=}\left(H\left(x,y\right)\right)_{\left(x,y\right)\in\Omega_{\delta}} is as in the hypotheses of Lemma 4.1.

Let θjlsi,gsi,θ~jlsi,g~si,ψs\theta_{jl}^{si},g^{si},\tilde{\theta}_{jl}^{si},\tilde{g}^{si},\psi_{s} be as in Lemma 6.1.

For x(0,δ)x\in\left(0,\delta\right) with δ\delta small enough, we introduce the following objects:

W(x)\displaystyle W\left(x\right) =\displaystyle= {(ξjls)0ssmax0lm1jD(smax+1)(m+1)D:j,lθjlsi(x)ξjls=gsi(x), each s,i},\displaystyle\left\{\left(\xi_{jl}^{s}\right)_{\begin{subarray}{c}0\leq s\leq s_{\max}\\ 0\leq l\leq m\\ 1\leq j\leq D\end{subarray}}\in\mathbb{R}^{\left(s_{\max}+1\right)\cdot\left(m+1\right)\cdot D}:\sum_{j,l}\theta_{jl}^{si}\left(x\right)\xi_{jl}^{s}=g^{si}\left(x\right)\text{, each }s,i\right\}\text{,}
((ξjls),x)\displaystyle\mathcal{F}\left(\left(\xi_{jl}^{s}\right),x\right) =\displaystyle= s,i|j,lθ~jlsi(x)ξjlsg~si(x)|\displaystyle\sum_{s,i}\left|\sum_{j,l}\tilde{\theta}_{jl}^{si}\left(x\right)\xi_{jl}^{s}-\tilde{g}^{si}\left(x\right)\right|
+s0j,l|ξjlsk=0ml1k!ξj(l+k)s1(ψs(x)ψs1(x))k|[ψs(x)ψs1(x)]ml,\displaystyle+\sum_{s\not=0}\sum_{j,l}\frac{\left|\xi_{jl}^{s}-\sum_{k=0}^{m-l}\frac{1}{k!}\xi_{j\left(l+k\right)}^{s-1}\cdot\left(\psi_{s}\left(x\right)-\psi_{s-1}\left(x\right)\right)^{k}\right|}{\left[\psi_{s}\left(x\right)-\psi_{s-1}\left(x\right)\right]^{m-l}}\text{,}
min(x)\displaystyle\mathcal{F}_{\min}\left(x\right) =\displaystyle= inf{((ξjls),x):(ξjls)W(x)}, and\displaystyle\inf\left\{\mathcal{F}\left(\left(\xi_{jl}^{s}\right),x\right):\left(\xi_{jl}^{s}\right)\in W\left(x\right)\right\}\text{, and}
ΞOK(x)\displaystyle\Xi_{OK}\left(x\right) =\displaystyle= {(ξjls)W(x):((ξjls),x)min(x)+x}.\displaystyle\left\{\left(\xi_{jl}^{s}\right)\in W\left(x\right):\mathcal{F}\left(\left(\xi_{jl}^{s}\right),x\right)\leq\mathcal{F}_{\min}\left(x\right)+x\right\}\text{.}

Because θjlsi,gsi,θ~jlsi,g~si,ψs\theta_{jl}^{si},g^{si},\tilde{\theta}_{jl}^{si},\tilde{g}^{si},\psi_{s} are semialgebraic, the objects defined above depend semialgebraically on xx. Thanks to conclusion ((49)) of Lemma 6.1, each W(x)W\left(x\right) and each ΞOK(x)\Xi_{OK}(x) is non-empty, and

(149) min(x)0 as x0+.\mathcal{F}_{\min}\left(x\right)\rightarrow 0\text{ as }x\rightarrow 0^{+}\text{.}

From Theorem 3 we obtain

  • (150)

    Semialgebraic functions ξjls(x)\xi_{jl}^{s}\left(x\right) on (0,δ)\left(0,\delta\right) such that (ξjls(x))ΞOK(x)\left(\xi_{jl}^{s}\left(x\right)\right)\in\Xi_{OK}\left(x\right) for each x(0,δ)x\in\left(0,\delta\right).

In particular, for x(0,δ)x\in\left(0,\delta\right), we have

(152) j,lθjls,i(x)ξjls(x)\displaystyle\sum_{j,l}\theta_{jl}^{s,i}\left(x\right)\xi_{jl}^{s}\left(x\right) =\displaystyle= gsi(x) for each s,i,j;\displaystyle g^{si}\left(x\right)\text{ for each }s,i,j;
(153) |j,lθ~jlsi(x)ξjls(x)g~si(x)|\displaystyle\left|\sum_{j,l}\tilde{\theta}_{jl}^{si}\left(x\right)\xi_{jl}^{s}\left(x\right)-\tilde{g}^{si}\left(x\right)\right| \displaystyle\leq [min(x)+x] for each s,i;\displaystyle\left[\mathcal{F}_{\min}\left(x\right)+x\right]\text{ for each }s,i;

and

(154) |ξjls(x)k=0ml1k!ξj(l+k)s1(x)(ψs(x)ψs1(x))k|\displaystyle\left|\xi_{jl}^{s}\left(x\right)-\sum_{k=0}^{m-l}\frac{1}{k!}\xi_{j\left(l+k\right)}^{s-1}(x)\cdot\left(\psi_{s}\left(x\right)-\psi_{s-1}\left(x\right)\right)^{k}\right|
\displaystyle\leq [min(x)+x](ψs(x)ψs1(x))ml, for each s,j,l (s0).\displaystyle\left[\mathcal{F}_{\min}\left(x\right)+x\right]\cdot\left(\psi_{s}\left(x\right)-\psi_{s-1}\left(x\right)\right)^{m-l}\text{, for each }s,j,l\text{ }\left(s\not=0\right)\text{.}

From (149), (153), (154), we see that

(155) j,lθ~jlsi(x)ξjls(x)=g~si(x)+o(1) as x0+,\sum_{j,l}\tilde{\theta}_{jl}^{si}\left(x\right)\xi_{jl}^{s}\left(x\right)=\tilde{g}^{si}\left(x\right)+o\left(1\right)\text{ as }x\rightarrow 0^{+}\text{,}

and

(156) ξjls(x)k=0ml1k!ξj(l+k)s1(x)(ψs(x)ψs1(x))k\displaystyle\xi_{jl}^{s}\left(x\right)-\sum_{k=0}^{m-l}\frac{1}{k!}\xi_{j\left(l+k\right)}^{s-1}(x)\cdot\left(\psi_{s}\left(x\right)-\psi_{s-1}\left(x\right)\right)^{k}
=\displaystyle= o([ψs(x)ψs1(x)]ml) as x0+.\displaystyle o\left(\left[\psi_{s}\left(x\right)-\psi_{s-1}\left(x\right)\right]^{m-l}\right)\text{ as }x\rightarrow 0^{+}\text{.}

Finally, from ((150)), (152), (155), (156), and the assertion ((51)) in Lemma 6.1, we conclude that |Ωδ\mathcal{H}|_{\Omega_{\delta^{\prime}}} has a ClocmC^{m}_{loc} semialgebraic section for some δ<δ\delta^{\prime}<\delta.

This completes the proof of Lemma 4.1 and that of Theorem 1.

References

  • [1] Matthias Aschenbrenner and Athipat Thamrongthanyalak. Whitney’s extension problem in o-minimal structures. Rev. Mat. Iberoam., 35(4):1027–1052, 2019.
  • [2] Edward Bierstone, Jean-Baptiste Campesato, and Pierre D. Milman. 𝒞m\mathcal{C}^{m} solutions of semialgebraic or definable equations. arXiv e-prints, page arXiv:2010.13815, October 2020.
  • [3] Edward Bierstone, Charles Fefferman, Pierre D. Milman, and Wiesław Pawłucki. Examples concerning Whitney’s Cm{C}^{m} extension problem. Math. Res. Lett., 13(5-6):833–845, 2006.
  • [4] Edward Bierstone, Pierre D. Milman, and Wiesław Pawłucki. Differentiable functions defined in closed sets. A problem of Whitney. Invent. Math., 151(2):329–352, 2003.
  • [5] Edward Bierstone, Pierre D. Milman, and Wiesław Pawłucki. Higher-order tangents and Fefferman’s paper on Whitney’s extension problem. Ann. of Math. (2), 164(1):361–370, 2006.
  • [6] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real Algebraic Geometry, volume 36 of A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, first edition, 1998.
  • [7] Holger Brenner and Jonathan Steinbuch. Tight closure and continuous closure. arXiv:1712.00337, December 2017.
  • [8] Yuri A. Brudnyĭ and Pavel Shvartsman. A linear extension operator for a space of smooth functions defined on a closed subset in 𝐑n{\bf R}^{n}. Dokl. Akad. Nauk SSSR, 280(2):268–272, 1985.
  • [9] Yuri A. Brudnyĭ and Pavel Shvartsman. Generalizations of Whitney’s extension theorem. Internat. Math. Res. Notices, 1994(3):129 ff., approx. 11 pp. (electronic), 1994.
  • [10] Yuri A. Brudnyĭ and Pavel Shvartsman. The Whitney problem of existence of a linear extension operator. J. Geom. Anal., 7(4):515–574, 1997.
  • [11] Yuri A. Brudnyĭ and Pavel Shvartsman. Whitney’s extension problem for multivariate C1,ωC^{1,\omega}-functions. Trans. Amer. Math. Soc., 353(6):2487–2512 (electronic), 2001.
  • [12] Neil Epstein and Melvin Hochster. Continuous closure, axes closure, and natural closure. Trans. Amer. Math. Soc., 370(5):3315–3362, 2018.
  • [13] Charles Fefferman. A generalized sharp Whitney theorem for jets. Rev. Mat. Iberoam., 21(2):577–688, 2005.
  • [14] Charles Fefferman. Interpolation and extrapolation of smooth functions by linear operators. Rev. Mat. Iberoamericana, 21(1):313–348, 2005.
  • [15] Charles Fefferman. A sharp form of Whitney’s extension theorem. Ann. of Math. (2), 161(1):509–577, 2005.
  • [16] Charles Fefferman. Whitney’s extension problem for CmC^{m}. Ann. of Math. (2), 164(1):313–359, 2006.
  • [17] Charles Fefferman. CmC^{m} extension by linear operators. Ann. of Math. (2), 166(2):779–835, 2007.
  • [18] Charles Fefferman. The structure of linear extension operators for CmC^{m}. Rev. Mat. Iberoam., 23(1):269–280, 2007.
  • [19] Charles Fefferman. Extension of Cm,ωC^{m,\omega}-smooth functions by linear operators. Rev. Mat. Iberoam., 25(1):1–48, 2009.
  • [20] Charles Fefferman. Fitting a CmC^{m}-smooth function to data III. Ann. of Math. (2), 170(1):427–441, 2009.
  • [21] Charles Fefferman, Arie Israel, and Garving K. Luli. Sobolev extension by linear operators. Journal A.M.S., 27(1):69–145, 2013.
  • [22] Charles Fefferman, Arie Israel, and Garving K. Luli. Fitting a Sobolev function to data i. Rev. Mat. Iberoam., 32(1):275–376, 2015.
  • [23] Charles Fefferman, Arie Israel, and Garving K. Luli. Fitting a Sobolev function to data ii. Rev. Mat. Iberoam., 32(2):649–750, 2015.
  • [24] Charles Fefferman, Arie Israel, and Garving K. Luli. Fitting a Sobolev function to data iii. Rev. Mat. Iberoam., 32(3):1039–1126, 2015.
  • [25] Charles Fefferman, Arie Israel, and Garving K. Luli. Finiteness principles for smooth selections. Geom. Funct. Anal., 26(2):422–477, 2016.
  • [26] Charles Fefferman, Arie Israel, and Garving K. Luli. Interpolation of data by smooth non-negative functions. Rev. Mat. Iberoam., 33(1):305—324, 2016.
  • [27] Charles Fefferman and János Kollár. Continuous solutions of linear equations. In From Fourier analysis and number theory to Radon transforms and geometry, volume 28 of Dev. Math., pages 233–282. Springer, New York, 2013.
  • [28] Charles Fefferman and Garving K. Luli. The Brenner-Hochster-Kollár and Whitney problems for vector-valued functions and jets. Rev. Mat. Iberoam., 30(3):875–892, 2014.
  • [29] Charles Fefferman and Garving K. Luli. Generators for the CmC^{m}-closures of ideals. Rev. Mat. Iberoam, 2020.
  • [30] Charles Fefferman and Garving K. Luli. Solutions to a system of equations for CmC^{m} functions. Rev. Mat. Iberoam., 2020.
  • [31] Georges Glaeser. Étude de quelques algèbres tayloriennes. J. Analyse Math., 6:1–124; erratum, insert to 6 (1958), no. 2, 1958.
  • [32] Lars Hörmander. The analysis of linear partial differential operators. II. Classics in Mathematics. Springer-Verlag, Berlin, 2005. Differential operators with constant coefficients, Reprint of the 1983 original.
  • [33] János Kollár and Krzysztof Nowak. Continuous rational functions on real and pp-adic varieties. Math. Z., 279(1-2):85–97, 2015.
  • [34] Krzysztof Kurdyka and Wiesław Pawłucki. O-minimal version of Whitney’s extension theorem. Studia Math., 224(1):81–96, 2014.
  • [35] Stanisł aw Ł ojasiewicz and Krystyna Wachta. Séparation regulière avec un paramètre pour les sous-analytiques. Bull. Acad. Polon. Sci. Sér. Sci. Math., 30(7-8):325–328, 1982.
  • [36] Abraham Neyman. Real algebraic tools in stochastic games. In Stochastic games and applications (Stony Brook, NY, 1999), volume 570 of NATO Sci. Ser. C Math. Phys. Sci., pages 57–75. Kluwer Acad. Publ., Dordrecht, 2003.
  • [37] Adam Parusiński. Lipschitz properties of semi-analytic sets. Ann. Inst. Fourier (Grenoble), 38(4):189–213, 1988.
  • [38] Adam Parusiński. Lipschitz stratification of subanalytic sets. Ann. Sci. École Norm. Sup. (4), 27(6):661–696, 1994.
  • [39] Athipat Thamrongthanyalak. Whitney’s extension theorem in o-minimal structures. Ann. Polon. Math., 119(1):49–67, 2017.
  • [40] Athipat Thamrongthanyalak. On pp-adic semi-algebraic continuous selections. MLQ Math. Log. Q., 66(1):73–81, 2020.
  • [41] Hassler Whitney. Differentiable functions defined in closed sets. I. Trans. Amer. Math. Soc., 36(2):369–387, 1934.
  • [42] Hassler Whitney. Functions differentiable on the boundaries of regions. Ann. of Math. (2), 35(3):482–485, 1934.
  • [43] Nahum Zobin. Open problems. Second Workshop on Whitney Problems, August 3-8, 2009, College of William and Mary, Williamsburg, VA, USA, https://nxzobi.people.wm.edu/whitney/whitproblems.pdf.