This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\hideLIPIcs

St. Petersburg State Universityegd3700@mail.ru Steklov Mathematical Institute at St. Petersburg, Russian Academy of Sciences and St. Petersburg State University and https://logic.pdmi.ras.ru/˜kulikov/kulikov@logic.pdmi.ras.ruhttps://orcid.org/0000-0002-5656-0336 Steklov Mathematical Institute at St. Petersburg, Russian Academy of Sciencesivmihajlin@gmail.com Steklov Mathematical Institute at St. Petersburg, Russian Academy of Sciencesne.slezkin@gmail.comhttps://orcid.org/0000-0003-1904-9261 \CopyrightGregory Emdin, Alexander S. Kulikov, Ivan Mikhajlin, Nikita Slezkin \ccsdesc[500]Theory of computation Complexity theory and logic \ccsdesc[500]Theory of computation Circuit complexity \EventEditorsJohn Q. Open and Joan R. Access \EventNoEds2 \EventLongTitle42nd Conference on Very Important Topics (CVIT 2016) \EventShortTitleCVIT 2016 \EventAcronymCVIT \EventYear2016 \EventDateDecember 24–27, 2016 \EventLocationLittle Whinging, United Kingdom \EventLogo \SeriesVolume42 \ArticleNo23

CNF Encodings of Parity

Gregory Emdin    Alexander S. Kulikov    Ivan Mihajlin    Nikita Slezkin
Abstract

The minimum number of clauses in a CNF representation of the parity function x1x2xnx_{1}\oplus x_{2}\oplus\dotsb\oplus x_{n} is 2n12^{n-1}. One can obtain a more compact CNF encoding by using non-deterministic variables (also known as guess or auxiliary variables). In this paper, we prove the following lower bounds, that almost match known upper bounds, on the number mm of clauses and the maximum width kk of clauses: 1) if there are at most ss auxiliary variables, then mΩ(2n/(s+1)/n)m\geq\Omega\left(2^{n/(s+1)}/n\right) and kn/(s+1)k\geq n/(s+1); 2) the minimum number of clauses is at least 3n3n. We derive the first two bounds from the Satisfiability Coding Lemma due to Paturi, Pudlák, and Zane using a tight connection between CNF encodings and depth-33 circuits. In particular, we show that lower bounds on the size of a CNF encoding of a Boolean function imply depth-33 circuit lower bounds for this function.

keywords:
encoding, parity, lower bounds, circuits, CNF

1 Overview

1.1 Motivation

A popular approach for solving a difficult combinatorial problem in practice is to encode it in conjunctive normal form (CNF) and to invoke a SAT-solver. There are two main reasons why this approach works well for many hard problems: the state-of-the-art SAT-solvers are extremely efficient and many combinatorial problems are expressed naturally in CNF. At the same time, a CNF encoding is not unique and one usually determines a good encoding empirically. Moreover, there is no such thing as the best encoding of a given problem as it also depends on a SAT-solver at hand. Prestwich [10] gives an overview of various ways to translate problems into CNF and discusses their desirable properties, both from theoretical and practical points of view.

Already for such simple functions as the parity function x1x2xnx_{1}\oplus x_{2}\oplus\dotsb\oplus x_{n}, it is not immediate how to encode them in CNF (to make it efficiently handled by SAT-solvers). Parity function is used frequently in cryptography (hash functions, stream ciphers, etc.). It is known that the minimum number of clauses in a CNF computing parity is 2n12^{n-1}. This becomes impractical quickly as nn grows. A standard way to reduce the size of an encoding is by using non-deterministic variables (also known as guess or auxiliary variables). Namely, one introduces ss non-deterministic variables y1,,ysy_{1},\dotsc,y_{s} and partitions the set of input variables into s+1s+1 blocks of size at most n/(s+1)\lceil n/(s+1)\rceil: {x1,x2,,xn}=X1X2Xs+1\{x_{1},x_{2},\dotsc,x_{n}\}=X_{1}\sqcup X_{2}\sqcup\dotsb\sqcup X_{s+1}. Then, one writes down the following s+1s+1 parity functions in CNF:

(y1=xX1x),(y2=y1xX2x),,(ys=ys1xXsx),(1=ysxXs+1x).\left(y_{1}=\bigoplus_{x\in X_{1}}x\right),\left(y_{2}=y_{1}\oplus\bigoplus_{x\in X_{2}}x\right),\dotsc,\\ \left(y_{s}=y_{s-1}\oplus\bigoplus_{x\in X_{s}}x\right),\left(1=y_{s}\oplus\bigoplus_{x\in X_{s+1}}x\right). (1)

The value for the parameter ss is usually determined experimentally. For example, Prestwich [9] reports that taking s=10s=10 gives the best results when solving the minimal disagreement parity learning problem using local search based SAT-solvers.

The simple construction above implies several upper bounds on the number mm of clauses, the number ss of non-deterministic variables, and the width kk of clauses:

Limited non-determinism:

using ss non-deterministic variables, one can encode parity either as a CNF with at most

m(s+1)2n/(s+1)+214(s+1)2n/(s+1)m\leq(s+1)2^{\lceil n/(s+1)\rceil+2-1}\leq 4(s+1)2^{n/(s+1)}

clauses or as a kk-CNF, where

k=2+n/(s+1)3+n/(s+1).k=2+{\lceil n/(s+1)\rceil}\leq 3+n/(s+1)\,.
Unlimited non-determinism:

one can encode parity as a CNF with at most 4n4n clauses (to do this, use s=n1s=n-1 non-deterministic variables; then, each of nn functions in (1) can be written in CNF using at most four clauses).

1.2 Results

In this paper, we show that the upper bounds mentioned above are essentially optimal.

Theorem 1.1.

Let FF be a CNF-encoding of PARn\operatorname{PAR}_{n} with mm clauses, ss non-deterministic variables, and maximum clause width kk.

  1. 1.

    The parameters ss and mm cannot be too small simultaneously:

    mΩ(s+1n2n/(s+1)).m\geq\Omega\left(\frac{s+1}{n}\cdot 2^{n/(s+1)}\right)\,. (2)
  2. 2.

    The parameters ss and kk cannot be too small simultaneously:

    kn/(s+1).k\geq n/(s+1)\,. (3)
  3. 3.

    The parameter mm cannot be too small:

    m3n9.m\geq 3n-9\,. (4)

1.3 Techniques

We derive a lower bound mΩ((s+1)2n/(s+1)/n)m\geq\Omega((s+1)2^{n/(s+1)}/n) from the Satisfiability Coding Lemma due to Paturi, Pudlák, and Zane [8]. This lemma allows to prove a 2n2^{\sqrt{n}} lower bound on the size of depth-33 circuits computing the parity function. Interestingly, the lower bound mΩ((s+1)2n/(s+1)/n)m\geq\Omega((s+1)2^{n/(s+1)}/n) implies a lower bound 2Ω(n)2^{\Omega(\sqrt{n})} almost immediately, though it is not clear whether a converse implication can be easily proved.

To prove a lower bound m3n9m\geq 3n-9, we analyze carefully the structure of a CNF encoding.

1.4 Related work

Many results for various computational models with limited non-determinism are surveyed by Goldsmith, Levy, and Mundhenk [2]. An overview of known approaches for CNF encodings is given by Prestwich [10]. Two recent results that are close to the results of this paper are the following. Morizumi [7] proved that non-deterministic inputs do not help in the model of Boolean circuits over the U2U_{2} basis (the set of all binary functions except for the binary parity and its complement) for computing the parity function: with and without non-deterministic inputs, the minimum size of a circuit computing parity is 3(n1)3(n-1). Kucera, Savický, Vorel [5] prove almost tight bounds on the size of CNF encodings of the at-most-one Boolean function ([x1++xn1][x_{1}+\dotsb+x_{n}\leq 1]). Sinz [11] proves a linear lower bound on the size of CNF encodings of the at-most-kk Boolean function.

2 General setting

2.1 Computing Boolean functions by CNFs

For a Boolean function f(x1,,xn):{0,1}n{0,1}f(x_{1},\dotsc,x_{n})\colon\{0,1\}^{n}\to\{0,1\}, we say that a CNF F(x1,,xn)F(x_{1},\dotsc,x_{n}) computes ff if fFf\equiv F, that is, for all x1,,xn{0,1}x_{1},\dotsc,x_{n}\in\{0,1\}, f(x1,,xn)=F(x1,,xn)f(x_{1},\dotsc,x_{n})=F(x_{1},\dotsc,x_{n}). We treat a CNF as a set of clauses and by the size of a CNF we mean its number of clauses. It is well known that for every function ff, there exists a CNF computing it. One way to construct such a CNF is the following: for every input x{0,1}nx\in\{0,1\}^{n} such that f(x)=0f(x)=0, populate a CNF with a clause of length nn that is falsified by xx.

This method does not guarantee that the produced CNF has the minimal number of clauses: this would be too good to be true as the problem of finding a CNF of minimum size for a given Boolean function (specified by its truth table) is NP-complete as proved by Masek [6] (see also [1] and references herein). For example, for a function f(x1,x2)=x1f(x_{1},x_{2})=x_{1} the method produces a CNF (x1¯x2)(x1¯x2¯)(\overline{x_{1}}\lor x_{2})\land(\overline{x_{1}}\lor\overline{x_{2}}) whereas the function x1x_{1} is already in CNF format.

2.2 Parity

It is well known that for many functions, the minimum size of a CNF is exponential. The canonical example is the parity function PARn(x1,,xn)=x1xn\operatorname{PAR}_{n}(x_{1},\dotsc,x_{n})=x_{1}\oplus\dotsb\oplus x_{n}. The property of PARn\operatorname{PAR}_{n} that prevents it from being computable by short CNF’s is its high sensitivity: by flipping any bit in any input x{0,1}nx\in\{0,1\}^{n}, one flips the value of PARn(x)\operatorname{PAR}_{n}(x).

Lemma 2.1.

The minimum size of a CNF computing PARn\operatorname{PAR}_{n} has size 2n12^{n-1}.

Proof 2.2.

An upper bound follows from the method above by noting that |PARn1(0)|=2n1|\operatorname{PAR}_{n}^{-1}(0)|=2^{n-1}.

A lower bound is based on the fact that any clause of a CNF FF computing PARn\operatorname{PAR}_{n} must contain all variables x1,,xnx_{1},\dotsc,x_{n}. Indeed, if a clause CFC\in F did not depend on xix_{i}, one could find an input x{0,1}nx\in\{0,1\}^{n} that falsifies CC (hence, F(x)=PARn(x)=0F(x)=\operatorname{PAR}_{n}(x)=0) and remains to be falsifying even after flipping xix_{i}. As any clause of FF has exactly nn variables, it rejects exactly one x{0,1}nx\in\{0,1\}^{n}. Hence, FF must contain at least |PARn1(0)|=2n1|\operatorname{PAR}_{n}^{-1}(0)|=2^{n-1} clauses.

2.3 Encoding Boolean functions by CNFs

We say that a CNF FF encodes a Boolean function f(x1,,xn)f(x_{1},\dotsc,x_{n}) if the following two conditions hold.

  1. 1.

    In addition to the input bits x1,,xnx_{1},\dotsc,x_{n}, FF also depends on ss bits y1,,ysy_{1},\dotsc,y_{s} called guess inputs or non-deterministic inputs.

  2. 2.

    For every x{0,1}nx\in\{0,1\}^{n}, f(x)=1f(x)=1 iff there exists y{0,1}sy\in\{0,1\}^{s} such that F(x,y)=1F(x,y)=1. In other words, for every x{0,1}nx\in\{0,1\}^{n},

    f(x)=y{0,1}sF(x,y).f(x)=\bigvee_{y\in\{0,1\}^{s}}F(x,y)\,. (5)

Such representations of Boolean functions are widely used in practice when one translates a problem to SAT. For example, the following CNF encodes PAR4\operatorname{PAR}_{4}:

(x1x2y1¯)(x1x2¯y1)(x1¯x2y1)(x1¯x2¯y1¯)(y1x3y2¯)(y1x3¯y2)(y1¯x3y2)(y1¯x3¯y2¯)(x4¯y2)(x4y2¯).(x_{1}\lor x_{2}\lor\overline{y_{1}})\land(x_{1}\lor\overline{x_{2}}\lor y_{1})\land(\overline{x_{1}}\lor x_{2}\lor y_{1})\land(\overline{x_{1}}\lor\overline{x_{2}}\lor\overline{y_{1}})\land(y_{1}\lor x_{3}\lor\overline{y_{2}})\land\\ (y_{1}\lor\overline{x_{3}}\lor y_{2})\land(\overline{y_{1}}\lor x_{3}\lor y_{2})\land(\overline{y_{1}}\lor\overline{x_{3}}\lor\overline{y_{2}})\land(\overline{x_{4}}\lor y_{2})\land(x_{4}\lor\overline{y_{2}})\,. (6)

2.4 Boolean Circuits and Tseitin Transformation

A natural way to get a CNF encoding of a Boolean function ff is to take a circuit computing ff and apply Tseitin transformation [12]. We describe this transformation using a toy example. The following circuit computes PAR12\operatorname{PAR}_{12} with three gates. It has 1212 inputs, 33 gates (one of which is an output gate), and has depth 33.

x1x_{1}x2x_{2}x3x_{3}x4x_{4}x5x_{5}x6x_{6}x7x_{7}x8x_{8}x9x_{9}x10x_{10}x11x_{11}x12x_{12}\oplusy1y_{1}\oplusy2y_{2}\oplusy3y_{3} y1=x1x2x3x4y_{1}=x_{1}\oplus x_{2}\oplus x_{3}\oplus x_{4} y2=y1x5x6x7x8y_{2}=y_{1}\oplus x_{5}\oplus x_{6}\oplus x_{7}\oplus x_{8} y3=y2x9x10x11x12y_{3}=y_{2}\oplus x_{9}\oplus x_{10}\oplus x_{11}\oplus x_{12}

To the right of the circuit, we show the functions computed by each gate. One can translate each line into CNF. Adding a clause (y3)(y_{3}) to the resulting CNF gives a CNF encoding of the function computed by the circuit. In fact, the CNF (1) can be obtained this way (after propagating the value of the output gate).

A CNF can be viewed as a depth-22 circuit where the output gate is an AND, all other gates are ORs, and the inputs are variables and their negations. For example, the following circuit corresponds to a CNF (6). Such depth-2 circuits are also denoted as ANDOR\operatorname{AND}\circ\operatorname{OR} circuits.

x1x_{1}x2x_{2}y1¯\overline{y_{1}}x1x_{1}x2¯\overline{x_{2}}y1y_{1}x1¯\overline{x_{1}}x2x_{2}y1y_{1}x1¯\overline{x_{1}}x2¯\overline{x_{2}}y1¯\overline{y_{1}}y1y_{1}x3x_{3}y2¯\overline{y_{2}}y1y_{1}x3¯\overline{x_{3}}y2y_{2}y1¯\overline{y_{1}}x3x_{3}y2y_{2}y1¯\overline{y_{1}}x3¯\overline{x_{3}}y2¯\overline{y_{2}}y2y_{2}x4¯\overline{x_{4}}y2¯\overline{y_{2}}x4x_{4}\lor\lor\lor\lor\lor\lor\lor\lor\lor\lor\land

2.5 Depth-33 circuits

Depth-33 circuits is a natural generalization of CNFs: a Σ3\Sigma_{3}-circuit is simply an OR of CNFs. In a circuit, these CNFs are allowed to share clauses. A Σ3\Sigma_{3}-formula is a Σ3\Sigma_{3}-circuit whose CNFs do not share clauses (in other words, it is a circuit where the out-degree of every gate is equal to one).

On the one hand, this computation model is still simple enough. On the other hand, proving lower bounds against this model is much harder: getting a 2ω(n)2^{\omega(n)} lower bound for an explicit function (say, from \NP\NP or \E\NP\E^{\NP}) is a major challenge. Proving a lower bound 2ω(n/loglogn)2^{\omega(n/\log\log n)} would resolve another open question, through Valiant’s depth reduction [13]: proving a superlinear lower bound on the size of logarithmic depth circuits. We refer the reader to Jukna’s book [4, Chapter 11] for an exposition of known results for depth-33 circuits. For the parity function, the best known lower bound on depth-33 circuits is Ω(2n)\Omega(2^{\sqrt{n}}) [8]. If one additionally requires that a circuit is a formula, i.e., that every gate has out-degree at most 1, then the best lower bound is Ω(22n)\Omega(2^{2\sqrt{n}}) [3]. Both lower bounds are tight up to polynomial factors.

Equation (5) shows a tight connection between CNF encodings and depth-33 circuits of type ORANDOR\operatorname{OR}\circ\operatorname{AND}\circ\operatorname{OR}. Namely, let F(x1,,xn,y1,,ys)={C1,,Cm}F(x_{1},\dotsc,x_{n},y_{1},\dotsc,y_{s})=\{C_{1},\dotsc,C_{m}\} be a CNF encoding of a Boolean function f:{0,1}n{0,1}f\colon\{0,1\}^{n}\to\{0,1\}. Then, f(x)=y{0,1}sF(x,y)f(x)=\lor_{y\in\{0,1\}^{s}}F(x,y). By assigning yy’s in all 2s2^{s} ways, one gets an Σ3\Sigma_{3}-formula that computes ff:

f(x)=j[2s]Fj(x),f(x)=\bigvee_{j\in[2^{s}]}F_{j}(x)\,, (7)

where each FjF_{j} is a CNF. We call this an expansion of FF. For example, an expansion of a CNF (6) looks as follows. It is an OR of four CNFs.

x1x_{1}x2¯\overline{x_{2}}x1¯\overline{x_{1}}x2x_{2}x3¯\overline{x_{3}}x4¯\overline{x_{4}}x1x_{1}x2¯\overline{x_{2}}x1¯\overline{x_{1}}x2x_{2}x3x_{3}x4x_{4}x1x_{1}x2x_{2}x1¯\overline{x_{1}}x2¯\overline{x_{2}}x3x_{3}x4x_{4}x1x_{1}x2x_{2}x1¯\overline{x_{1}}x2¯\overline{x_{2}}x3¯\overline{x_{3}}x4¯\overline{x_{4}}\lor\lor\lor\lor\lor\lor\lor\lor\lor\lor\lor\lor\lor\lor\lor\lor\land\land\land\land\lor

An expansion is a formula: it is an OR of CNFs, every gate has out-degree one. One can also get a circuit-expansion: in this case, gates are allowed to have out-degree more than one; alternatively, CNFs are allowed to share clauses. For example, this is a circuit-expansion of (6).

x1x_{1}x2x_{2}x1x_{1}x2¯\overline{x_{2}}x1¯\overline{x_{1}}x2x_{2}x1¯\overline{x_{1}}x2¯\overline{x_{2}}x3x_{3}x3¯\overline{x_{3}}x4x_{4}x4¯\overline{x_{4}}\lor\lor\lor\lor\lor\lor\lor\lor\land\land\land\land\lor

Below, we show that CNF encodings and depth-3 circuits can be easily transformed one into the other. It will prove convenient to define the size of a circuit as its number of gates excluding the output gate. This way, the size of a CNF formula equals its number of clauses (a CNF is a depth-2 formula). By a Σ3(t,r)\Sigma_{3}(t,r)-circuit we denote a Σ3\Sigma_{3}-circuit having at most tt ANDs on the second layer and at most rr ORs on the third layer (hence, its size is at most t+rt+r).

Lemma 2.3.

Let F(x1,,xn,y1,,ys)F(x_{1},\dotsc,x_{n},y_{1},\dotsc,y_{s}) be a CNF encoding of size mm of a function f:{0,1}n{0,1}f\colon\{0,1\}^{n}\to\{0,1\}. Then, ff can be computed by a Σ3(2s,m2s)\Sigma_{3}(2^{s},m\cdot 2^{s})-formula and by a Σ3(2s,m)\Sigma_{3}(2^{s},m)-circuit.

Proof 2.4.

Let F={C1,,Cm}F=\{C_{1},\dotsc,C_{m}\}. To expand FF as j[2s]Fj\bigvee_{j\in[2^{s}]}F_{j}, we go through all 2s2^{s} assignments to non-deterministic variables y1,,ysy_{1},\dotsc,y_{s}. Under any such assignment, each clause CiC_{i} is either satisfied or becomes a clause CiCiC_{i}^{\prime}\subseteq C_{i} resulting from CiC_{i} by removing all its non-deterministic variables. Thus, for each j[2s]j\in[2^{s}], Fj{C1,,Cm}F_{j}\subseteq\{C_{1}^{\prime},\dotsc,C_{m}^{\prime}\}. The corresponding Σ3\Sigma_{3}-formula contains at most 2s+m2s2^{s}+m2^{s} gates: there are 2s2^{s} gates for FjF_{j}’s, each FjF_{j} contains no more than mm clauses. The corresponding Σ3\Sigma_{3}-circuit contains no more than 2s+m2^{s}+m gates: there are 2s2^{s} gates for FjF_{j}’s and mm gates for C1,,CmC_{1}^{\prime},\dotsc,C_{m}^{\prime} (each FjF_{j} selects which of these mm clauses to contain).

Interestingly, the upper bounds on depth-3 circuits resulting from this simple transformation cannot be substantially improved. Indeed, by plugging in a CNF encoding of PARn\operatorname{PAR}_{n} with s=ns=\sqrt{n} and m=O(n2n)m=O(\sqrt{n}2^{\sqrt{n}}) (see (1)), one gets a Σ3\Sigma_{3}-formula and a Σ3\Sigma_{3}-circuit of size 22n2^{2\sqrt{n}} and 2n2^{\sqrt{n}}, respectively, up to polynomial factors. As discussed above, these bounds are known to be optimal.

Below, we show a converse transformation.

Lemma 2.5.

Let CC be a Σ3(t,r)\Sigma_{3}(t,r)-formula (circuit) computing a Boolean function f:{0,1}n{0,1}f\colon\{0,1\}^{n}\to\{0,1\}. Then, ff can be encoded as a CNF with logt\lceil\log t\rceil non-deterministic variables of size rr (2rt2rt, respectively).

Proof 2.6.

Let C=F1FtC=F_{1}\lor\dotsb\lor F_{t} be a Σ3\Sigma_{3}-formula (hence, r=size(F1)++size(Ft)r=\operatorname{size}(F_{1})+\dotsb+\operatorname{size}(F_{t})). Introduce s=logts=\lceil\log t\rceil non-deterministic variables y1,,ysy_{1},\dotsc,y_{s}. Then, for every assignment to y1,,ysy_{1},\dotsc,y_{s}, take the corresponding CNF FiF_{i} (1i2s1\leq i\leq 2^{s} is the unique integer corresponding to this assignment) and add yiy_{i}’s with the corresponding signs to every clause of FiF_{i}. Call the resulting CNF FiF_{i}^{\prime}. Then, F=F1F2sF=F_{1}^{\prime}\land\dotsb\land F_{2^{s}}^{\prime} encodes ff and FF has at most rr clauses.

If CC is a Σ3\Sigma_{3}-circuit, we need to create a separate copy of every gate corresponding to a clause in each of 2s2^{s} CNFs. Hence, the size of the resulting CNF encoding is at most r2s2rtr2^{s}\leq 2rt.

Finally, we show that proving strong lower bounds on the size of CNF encodings is not easier than proving strong lower bounds on the size of depth-3 circuits. Let CC be a Σ3(t,r)\Sigma_{3}(t,r)-formula computing PARn\operatorname{PAR}_{n}. Lemma 2.5 guarantees that PARn\operatorname{PAR}_{n} can be encoded as a CNF of size rr with logt\lceil\log t\rceil non-deterministic variables. Then, by the inequality (2),

size(C)=t+rt+Ω(1n2nlogt+2)1n(t+Ω(2nlogt+2))Ω(2nn).\operatorname{size}(C)=t+r\geq t+\Omega\left(\frac{1}{n}\cdot 2^{\frac{n}{\log t+2}}\right)\geq\frac{1}{n}\left(t+\Omega\left(2^{\frac{n}{\log t+2}}\right)\right)\geq\Omega\left(\frac{2^{\sqrt{n}}}{n}\right)\,.

Similarly, if CC is a Σ3(t,r)\Sigma_{3}(t,r)-circuit, Lemma 2.5 guarantees that PARn\operatorname{PAR}_{n} can be encoded as a CNF of size 2rt2rt with logt\lceil\log t\rceil non-deterministic variables. Then,

size(C)=t+rt+Ω(12tn2nlogt+2)Ω(2n/2n).\operatorname{size}(C)=t+r\geq t+\Omega\left(\frac{1}{2tn}\cdot 2^{\frac{n}{\log t+2}}\right)\geq\Omega\left(\frac{2^{\sqrt{n/2}}}{n}\right)\,.

3 Lower bounds for CNF encodings of parity

In this section, we prove Theorem 1.1. The essential property of the parity function used in the proof is its high sensitivity (every satisfying assignment is isolated): for any i[n]i\in[n] and any x,x{0,1}nx,x^{\prime}\in\{0,1\}^{n} that differ in the ii-th position only, PAR(x)PAR(x)\operatorname{PAR}(x)\neq\operatorname{PAR}(x^{\prime}). This means that if a CNF FF computes PAR\operatorname{PAR} and F(x)=1F(x)=1, then FF must contain a clause that is satisfied by xix_{i} only. Following [8], we call such a clause critical with respect to (x,i)(x,i). This notion extends to CNF encodings in a natural way. Namely, let F(x,y)F(x,y) be a CNF encoding of PAR\operatorname{PAR}. Then, for any (x,y)(x,y) such that F(x,y)=1F(x,y)=1 and any i[n]i\in[n], FF contains a clause that becomes falsified if one flips the bit xix_{i}. We call it critical w.r.t. (x,y,i)(x,y,i).

3.1 Limited non-determinism

To prove a lower bound mΩ((s+1)2n/(s+1)/n)m\geq\Omega((s+1)2^{n/(s+1)}/n), we adapt a proof of the Ω(n1/42n)\Omega(n^{1/4}2^{\sqrt{n}}) lower bound for depth-3 circuits computing PARn\operatorname{PAR}_{n} by Paturi, Pudlák, and Zane [8]. Let F(x1,,xn)F(x_{1},\dotsc,x_{n}) be a CNF. For every isolated satisfying assignment x{0,1}nx\in\{0,1\}^{n} of FF and every i[n]i\in[n], fix a shortest critical clause w.r.t. (x,i)(x,i) and denote it by CF,x,iC_{F,x,i}. Then, for an isolated satisfying assignment xx, define its weight w.r.t. FF as

wF(x)=i=1n1|CF,x,i|.w_{F}(x)=\sum\limits_{i=1}^{n}\frac{1}{|C_{F,x,i}|}\,.
Lemma 3.1 (Lemma 5 in [8]).

For any μ\mu, FF has at most 2nμ2^{n-\mu} isolated satisfying assignments of weight at least μ\mu.

Proof 3.2 (Proof of (2), mΩ(s+1n2n/(s+1))m\geq\Omega\left(\frac{s+1}{n}\cdot 2^{n/(s+1)}\right)).

Let F(x1,,xn,y1,,ys)F(x_{1},\dotsc,x_{n},y_{1},\dotsc,y_{s}) be a CNF encoding of size mm of PARn\operatorname{PAR}_{n}. Consider its expansion:

PARn(x)=j[2s]Fj(x).\operatorname{PAR}_{n}(x)=\bigvee_{j\in[2^{s}]}F_{j}(x)\,.

We extend the definitions of CF,x,iC_{F,x,i} and w(x)w(x) to CNFs with non-deterministic variables as follows. Let xPARn1(1)x\in\operatorname{PAR}^{-1}_{n}(1) and let j[2s]j\in[2^{s}] be the smallest index such that Fj(x)=1F_{j}(x)=1. For i[n]i\in[n], let CF,x,i=CFj,x,iC^{\prime}_{F,x,i}=C_{F_{j},x,i} (that is, we simply take the first FjF_{j} that is satisfied by xx and take its critical clause w.r.t. (x,i)(x,i)). Then, the weight wF(x)w^{\prime}_{F}(x) of xx w.r.t. to FF is defined simply as wFj(x)w_{F_{j}}(x). Clearly,

wF(x)=i[n]1|C(F,x,i)|.w^{\prime}_{F}(x)=\sum_{i\in[n]}\frac{1}{|C^{\prime}_{(F,x,i)}|}\,.

For l[n]l\in[n], let also Nl,F(x)=|{i[n]:|CF,x,i|=l}|N_{l,F}(x)=|\{i\in[n]\colon|C^{\prime}_{F,x,i}|=l\}| be the number of critical clauses (w.r.t. xx) of length ll. Clearly,

wF(x)=l[n]Nl,F(x)l.w^{\prime}_{F}(x)=\sum_{l\in[n]}\frac{N_{l,F}(x)}{l}\,. (8)

For a parameter 0<ε<10<\varepsilon<1 to be chosen later, split PARn1(1)\operatorname{PAR}_{n}^{-1}(1) into light and heavy parts:

H\displaystyle H ={xPARn1(1):wF(x)s+1+ε},\displaystyle=\{x\in\operatorname{PAR}_{n}^{-1}(1)\colon w^{\prime}_{F}(x)\geq s+1+\varepsilon\}\,,
L\displaystyle L ={xPARn1(1):wF(x)<s+1+ε}.\displaystyle=\{x\in\operatorname{PAR}_{n}^{-1}(1)\colon w^{\prime}_{F}(x)<s+1+\varepsilon\}\,.

We claim that

|H|2s2ns1ε.|H|\leq 2^{s}\cdot 2^{n-s-1-\varepsilon}\,.

Indeed, for every xHx\in H, wF(x)=wFj(x)w^{\prime}_{F}(x)=w_{F_{j}}(x) for some j[2s]j\in[2^{s}], and by Lemma 3.1, FjF_{j} cannot accept more than 2ns1ε2^{n-s-1-\varepsilon} isolated solutions of weight at least s+1+εs+1+\varepsilon. Since |H|+|L|=|PARn1(1)|=2n1|H|+|L|=|\operatorname{PAR}^{-1}_{n}(1)|=2^{n-1}, we conclude that

|L|=2n1|H|(12ε)2n1.|L|=2^{n-1}-|H|\geq(1-2^{-\varepsilon})2^{n-1}\,. (9)

Let F={C1,,Cm}F=\{C_{1},\dotsc,C_{m}\}. For every k[m]k\in[m], let CkCkC^{\prime}_{k}\subseteq C_{k} be the clause CkC_{k} with all non-deterministic variables removed. Hence, for every j[2s]j\in[2^{s}], Fj{C1,,Cm}F_{j}\subseteq\{C_{1}^{\prime},\dotsc,C_{m}^{\prime}\}. For l[n]l\in[n], let ml=|{k[m]:|Ck|=l}|m_{l}=|\{k\in[m]\colon|C^{\prime}_{k}|=l\}| be the number of such clauses of length ll. Consider a clause CkC^{\prime}_{k} and let l=|Ck|l=|C^{\prime}_{k}|. Then, there are at most l2nll2^{n-l} pairs (x,i)(x,i), where xPAR1(1)x\in\operatorname{PAR}^{-1}(1) and i[n]i\in[n], such that CF,x,i=CkC^{\prime}_{F,x,i}=C_{k}^{\prime}: there are at most ll choices for ii, fixing ii fixes the values of all ll literals in CkC_{k}^{\prime} (all of them are equal to zero except for the ii-th one), and there are no more than 2nl2^{n-l} choices for the other bits of xx. Recall that Nl,F(x)N_{l,F}(x) is the number of critical clauses w.r.t. xx of length ll. Thus, we arrive at the following inequality:

mll2nlxPAR1(1)NF,l(x)xLNF,l(x).m_{l}\cdot l\cdot 2^{n-l}\geq\sum_{x\in\operatorname{PAR}^{-1}(1)}N_{F,l}(x)\geq\sum_{x\in L}N_{F,l}(x)\,.

Then,

m=l[n]mll[n]xLNF,l(x)l2nl=xLl[n]NF,l(x)l2nl=xLn2nl[n]NF,l(x)n2ll.m=\sum_{l\in[n]}m_{l}\geq\sum_{l\in[n]}\frac{\sum_{x\in L}N_{F,l}(x)}{l2^{n-l}}=\sum_{x\in L}\sum_{l\in[n]}\frac{N_{F,l}(x)}{l2^{n-l}}=\sum_{x\in L}n2^{-n}\sum_{l\in[n]}\frac{N_{F,l}(x)}{n}\cdot\frac{2^{l}}{l}\,. (10)

To estimate the last sum, let

T(x)=l[n]NF,l(x)n2ll=l[n]NF,l(x)ng(l),T(x)=\sum_{l\in[n]}\frac{N_{F,l}(x)}{n}\cdot\frac{2^{l}}{l}=\sum_{l\in[n]}\frac{N_{F,l}(x)}{n}\cdot g(l)\,,

where g(l)=2llg(l)=\frac{2^{l}}{l}. Since g(l)g(l) is convex (for l>0l>0) and l[n]NF,l(x)n=1\sum_{l\in[n]}\frac{N_{F,l}(x)}{n}=1, Jensen’s inequality gives

T(x)g(l[n]NF,l(x)nl).T(x)\geq g\left(\sum_{l\in[n]}\frac{N_{F,l}(x)}{n}\cdot l\right)\,. (11)

Further, Sedrakyan’s inequality111Sedrakyan’s inequality is a special case of Cauchy–Schwarz inequality: for all a1,,ana_{1},\dotsc,a_{n}\in\mathbb{R} and b1,,bn>0b_{1},\dotsc,b_{n}\in\mathbb{R}_{>0}, i=1nai2/bi(i=1nai)2/i=1nbi\sum_{i=1}^{n}a_{i}^{2}/b_{i}\geq\left(\sum_{i=1}^{n}a_{i}\right)^{2}/\sum_{i=1}^{n}b_{i}. (combined with (8) and l[n]NF,l(x)=n\sum_{l\in[n]}N_{F,l}(x)=n) gives

l[n]lNF,l(x)=l[n]NF,l2(x)NF,l(x)/l(l[n]NF,l(x))2l[n]NF,l(x)/l=n2wF(x).\sum_{l\in[n]}lN_{F,l}(x)=\sum_{l\in[n]}\frac{N_{F,l}^{2}(x)}{N_{F,l}(x)/l}\geq\frac{(\sum_{l\in[n]}N_{F,l}(x))^{2}}{\sum_{l\in[n]}N_{F,l}(x)/l}=\frac{n^{2}}{w^{\prime}_{F}(x)}\,. (12)

Since g(l)g(l) is monotonically increasing for l1/ln2l\geq 1/\ln 2 and wF(x)<s+1+εw^{\prime}_{F}(x)<s+1+\varepsilon for every xLx\in L, combining (11) and (12), we get

T(x)g(nwF(x))g(ns+1+ε),T(x)\geq g\left(\frac{n}{w^{\prime}_{F}(x)}\right)\geq g\left(\frac{n}{s+1+\varepsilon}\right)\,, (13)

for snln21εs\leq n\ln 2-1-\varepsilon. (If s>nln21εs>n\ln 2-1-\varepsilon, then the lower bound mΩ(2n/(s+1)/n)m\geq\Omega(2^{n/(s+1)}/n) is trivial.)

Thus,

m\displaystyle m xLn2nT(x)\displaystyle\geq\sum_{x\in L}n2^{-n}T(x)\geq (10 and 13)
xLn2ng(ns+1+ε)=\displaystyle\geq\sum_{x\in L}n2^{-n}g\left(\frac{n}{s+1+\varepsilon}\right)= (definition of gg)
=|L|2n2ns+1+ε(s+1+ε)\displaystyle=|L|2^{-n}2^{\frac{n}{s+1+\varepsilon}}(s+1+\varepsilon)\geq (9)
(1212ε+1)(s+1+ε)2ns+1+ε=\displaystyle\geq\left(\frac{1}{2}-\frac{1}{2^{\varepsilon+1}}\right)(s+1+\varepsilon)2^{\frac{n}{s+1+\varepsilon}}= (rewriting)
=(1212ε+1)(s+1+ε)2ns+12nε(s+1)(s+1+ε).\displaystyle=\left(\frac{1}{2}-\frac{1}{2^{\varepsilon+1}}\right)(s+1+\varepsilon)2^{\frac{n}{s+1}}2^{\frac{-n\varepsilon}{(s+1)(s+1+\varepsilon)}}\,.

Set ε=1/n\varepsilon=1/n. Then,

(12121n+1)=Θ(1n).\left(\frac{1}{2}-\frac{1}{2^{\frac{1}{n}+1}}\right)=\Theta\left(\frac{1}{n}\right)\,.

Also,

1221(s+1)(s+1+1/n)1,\frac{1}{2}\leq 2^{\frac{-1}{(s+1)(s+1+1/n)}}\leq 1\,,

as 21/x2^{-1/x} is increasing for x>0x>0. This finally gives a lower bound

mΩ(s+1n2ns+1).m\geq\Omega\left(\frac{s+1}{n}\cdot 2^{\frac{n}{s+1}}\right)\,.

3.2 Width of clauses

To prove the lower bound kn/(s+1)k\geq n/(s+1), we use the following corollary of the Satisfiability Coding Lemma.

Lemma 3.3 (Lemma 2 in [8]).

Any kk-CNF F(x1,,xn)F(x_{1},\dotsc,x_{n}) has at most 2nn/k2^{n-n/k} isolated satisfying assignments.

Proof 3.4 (Proof of (3), kn/(s+1)k\geq n/(s+1)).

Consider a kk-CNF F(x1,,xn,y1,,ys)F(x_{1},\dotsc,x_{n},y_{1},\dotsc,y_{s}) that encodes PARn\operatorname{PAR}_{n}. Expand FF to an OR of 2s2^{s} kk-CNFs:

PARn(x)=j[2s]Fj(x).\operatorname{PAR}_{n}(x)=\bigvee_{j\in[2^{s}]}F_{j}(x)\,.

By Lemma 3.3, each FjF_{j} accepts at most 2nn/k2^{n-n/k} isolated solutions. Hence,

2s2n12nn/k=2n/k12^{s}\geq\frac{2^{n-1}}{2^{n-n/k}}=2^{n/k-1}

and thus, kn/(s+1)k\geq n/(s+1).

3.3 Unlimited non-determinism

In this section, we prove the lower bound m3n9m\geq 3n-9.

Proof 3.5 (Proof of (4), m3n9m\geq 3n-9).

We use induction on nn. The base case n3n\leq 3 is clear. To prove the induction step, assume that n>3n>3 and consider a CNF encoding F(x1,,xn,y1,,ys)F(x_{1},\dotsc,x_{n},y_{1},\dotsc,y_{s}) of PARn\operatorname{PAR}_{n} with the minimum number of clauses. Below, we show that one can find kk deterministic variables (where k=1k=1 or k=2k=2) such that assigning appropriately chosen constants to them reduces the number of clauses by at least 3k3k, respectively. The resulting function computes PARnk\operatorname{PAR}_{n-k} or its negation. It is not difficult to see that the minimum number of clauses in encodings of PAR\operatorname{PAR} and its negation are equal (by flipping the signs of all occurrences of any deterministic variable in a CNF encoding of PAR\operatorname{PAR}, one gets a CNF encoding of the negation of PAR\operatorname{PAR}, and vice versa). Hence, one can proceed by induction and conclude that FF contains at least 3(nk)9+3k=3n93(n-k)-9+3k=3n-9 clauses.

To find the required kk deterministic variables, we go through a number of cases. In the analysis below, by a dd-literal we mean a literal that appears exactly dd times in FF, a d+d^{+}-literal appears at least dd times. A (d1,d2)(d_{1},d_{2})-literal occurs d1d_{1} times positively and d2d_{2} times negatively. Other types of literals are defined similarly. We treat a clause as a set of literals (that do not contain a literal together with its negation) and a CNF formula as a set of clauses.

Note that for all i[s]i\in[s], yiy_{i} must be a (2+,2+)(2^{+},2^{+})-literal. Indeed, if yiy_{i} (or yi¯\overline{y_{i}}) is a 0-literal, one can assign yi0y_{i}\leftarrow 0 (y11y_{1}\leftarrow 1, respectively). It is not difficult to see that the resulting formula still encodes PAR\operatorname{PAR}. If yiy_{i} is a (1,t)(1,t)-literal, one can eliminate it using resolution: for all pairs of clauses C0,C1FC_{0},C_{1}\in F such that yi¯C0\overline{y_{i}}\in C_{0} and yiC1y_{i}\in C_{1}, add a clause C0C1{yi,yi¯}C_{0}\cup C_{1}\setminus\{y_{i},\overline{y_{i}}\} (if this clause contains a pair of complementary literals, ignore it); then, remove all clauses containing yiy_{i} or yi¯\overline{y_{i}}. The resulting formula still encodes PARn\operatorname{PAR}_{n}, but has a smaller number of clauses than FF (we remove 1+t1+t clauses and add at most tt clauses).

In the case analysis below, by lil_{i} we denote a literal that corresponds to a deterministic variable xix_{i} or its negation xi¯\overline{x_{i}}.

  1. 1.

    FF contains a 3+3^{+}-literal lil_{i}. Assigning li1l_{i}\leftarrow 1 eliminates at least three clauses from FF.

  2. 2.

    FF contains a 11-literal lil_{i}. Let liCFl_{i}\in C\in F be a clause containing lil_{i}. CC cannot contain other deterministic variables: if li,ljCl_{i},l_{j}\in C (for ij[n]i\neq j\in[n]), consider x{0,1}nx\in\{0,1\}^{n} such that PARn(x)=1\operatorname{PAR}_{n}(x)=1 and li=lj=1l_{i}=l_{j}=1 (such xx exists since n>3n>3), and its extension y{0,1}sy\in\{0,1\}^{s} such that F(x,y)=1F(x,y)=1; then, FF does not contain a critical clause w.r.t. (x,y,i)(x,y,i). Clearly, CC cannot be a unit clause, hence it must contain a non-deterministic variable yjy_{j}. Consider x{0,1}nx\in\{0,1\}^{n}, such that PARn(x)=1\operatorname{PAR}_{n}(x)=1 and li=1l_{i}=1, and its extension y{0,1}sy\in\{0,1\}^{s} such that F(x,y)=1F(x,y)=1. If yj=1y_{j}=1, then FF does not contain a critical clause w.r.t. (x,y,i)(x,y,i). Thus, for every (x,y){0,1}n+s(x,y)\in\{0,1\}^{n+s} such that F(x,y)=1F(x,y)=1 and li=1l_{i}=1, it holds that yj=0y_{j}=0. This observation allows us to proceed as follows: first assign li1l_{i}\leftarrow 1, then assign yj0y_{j}\leftarrow 0. The former assignment satisfies the clause CC, the latter one satisfies all the clauses containing yj¯\overline{y_{j}}. Thus, at least three clauses are removed.

  3. 3.

    For all i[n]i\in[n], xix_{i} is a (2,2)(2,2)-literal. If there is no clause in FF containing at least two deterministic variables, then FF contains at least 4n4n clauses and there is nothing to prove. Let li,ljC1Fl_{i},l_{j}\in C_{1}\in F, where iji\neq j, be a clause containing two deterministic variables and let liC2Fl_{i}\in C_{2}\in F and ljC3Fl_{j}\in C_{3}\in F be the two clauses containing other occurrences of lil_{i} and ljl_{j} (C1C2C_{1}\neq C_{2} and C1C3C_{1}\neq C_{3}, but it can be the case that C2=C3C_{2}=C_{3}).

    Assume that C2C_{2} contains another deterministic variable: lkC2l_{k}\in C_{2}, where ki,jk\neq i,j. Consider x{0,1}nx\in\{0,1\}^{n}, such that PARn(x)=1\operatorname{PAR}_{n}(x)=1 and li=lj=lk=1l_{i}=l_{j}=l_{k}=1 (such xx exists since n>3n>3), and its extension y{0,1}sy\in\{0,1\}^{s} such that F(x,y)=1F(x,y)=1. Then, FF does not contain a critical clause w.r.t. (x,y,i)(x,y,i): C1C_{1} is satisfied by ljl_{j}, C2C_{2} is satisfied by lkl_{k}. For the same reason, C2C_{2} cannot contain the literal ljl_{j}. Similarly, C3C_{3} cannot contain other deterministic variables and the literal lil_{i}. (At the same time, it is not excluded that lj¯C2\overline{l_{j}}\in C_{2} or li¯C3\overline{l_{i}}\in C_{3}.) Hence, C2C3C_{2}\neq C_{3}. Note that each of C2C_{2} and C3C_{3} must contain at least one non-deterministic variable: otherwise, it would be possible to falsify FF by assigning lil_{i} and ljl_{j}.

    1. (a)

      At least one of C2C_{2} and C3C_{3} contains a single non-deterministic variable. Assume that it is C2C_{2}:

      {li,y1}C2{li,lj¯,y1}.\{l_{i},y_{1}\}\subseteq C_{2}\subseteq\{l_{i},\overline{l_{j}},y_{1}\}\,.

      Assign lj1l_{j}\leftarrow 1. This eliminates two clauses: C1C_{1} and C3C_{3} are satisfied. Also, under this substitution, C2={li,y1}C_{2}=\{l_{i},y_{1}\} and lil_{i} is a 11-literal. We claim that in any satisfying assignment of the resulting formula FF^{\prime}, li=y1¯l_{i}=\overline{y_{1}}. Indeed, if (x,y)(x,y) satisfies FF^{\prime} and li=y1l_{i}=y_{1}, then li=y1=1l_{i}=y_{1}=1 (otherwise C2C_{2} is falsified). But then there is no critical clause in FF^{\prime} w.r.t. (x,y,i)(x,y,i). Since in every satisfying assignment li=y1¯l_{i}=\overline{y_{1}}, we can replace every occurrence of y1y_{1} (y1¯\overline{y_{1}}) by li¯\overline{l_{i}} (y1y_{1}, respectively). This, in particular, satisfies the clause C2C_{2}.

    2. (b)

      Both C2C_{2} and C3C_{3} contain at least two non-deterministic variables:

      {li,lj}C1,{li,y1,y2}C2,{lj,y3,y4}C3.\{l_{i},\ l_{j}\}\subseteq C_{1},\quad\{l_{i},\ y_{1},\ y_{2}\}\subseteq C_{2},\quad\{l_{j},\ y_{3},\ y_{4}\}\subseteq C_{3}\,.

      Here, y1y_{1} and y2y_{2} are different variables, y3y_{3} and y4y_{4} are also different, though it is not excluded that some of y1y_{1} and y2y_{2} coincide with some of y3y_{3} and y4y_{4}. Let Y{y1,,ys}Y\subseteq\{y_{1},\dotsc,y_{s}\} be non-deterministic variables appearing in C2C_{2} or C3C_{3}.

      Recall that for every (x,y){0,1}n+s(x,y)\in\{0,1\}^{n+s} such that F(x,y)=1F(x,y)=1 and li=lj=1l_{i}=l_{j}=1, it holds that y=0y=0 for all yYy\in Y. This means that if a variable yYy\in Y appears in both C2C_{2} and C3C_{3}, then it has the same sign in both clauses. Consider two subcases.

      1. i.

        Y={y1,y2}Y=\{y_{1},y_{2}\}:

        {li,lj}C1,{li,y1,y2}C2,{lj,y1,y2}C3.\{l_{i},\ l_{j}\}\subseteq C_{1},\quad\{l_{i},\ y_{1},\ y_{2}\}\subseteq C_{2},\quad\{l_{j},\ y_{1},\ y_{2}\}\subseteq C_{3}\,.

        Assume that y1¯C1\overline{y_{1}}\not\in C_{1}. Assign li1l_{i}\leftarrow 1, lj1l_{j}\leftarrow 1. Then, assigning y10y_{1}\leftarrow 0 eliminates at least two clauses. Let us show that there remains a clause that contains y2¯\overline{y_{2}}. Consider xPARn1(1)x\in\operatorname{PAR}_{n}^{-1}(1), such that li=lj=1l_{i}=l_{j}=1, and its extension y{0,1}sy\in\{0,1\}^{s}, such F(x,y)=1F(x,y)=1. We know that y1y_{1} and y2y_{2} must be equal to 0. However, flipping the value of y2y_{2} results in a satisfying assignment. Thus, it remains to analyze the following case:

        {li,lj,y1¯,y2¯}C1,{li,y1,y2}C2,{lj,y1,y2}C3.\{l_{i},\ l_{j},\overline{y_{1}},\overline{y_{2}}\}\subseteq C_{1},\quad\{l_{i},\ y_{1},\ y_{2}\}\subseteq C_{2},\quad\{l_{j},\ y_{1},\ y_{2}\}\subseteq C_{3}\,.

        Assume that lj¯C2\overline{l_{j}}\not\in C_{2} and li¯C1\overline{l_{i}}\not\in C_{1}. Assign li1l_{i}\leftarrow 1, then assign y10y_{1}\leftarrow 0 and y20y_{2}\leftarrow 0. Under this assignment, C3={lj}C_{3}=\{l_{j}\} (recall that C3C_{3} cannot contain other deterministic variables, see Case 3). This would mean that lj=1l_{j}=1 in every satisfying assignment of the resulting CNF formula which cannot be the case for a CNF encoding of parity. Thus, we may assume that either lj¯C2\overline{l_{j}}\in C_{2} or li¯C1\overline{l_{i}}\in C_{1}. Without loss of generality, assume that lj¯C2\overline{l_{j}}\in C_{2}.

        Let us show that for every (x,y){0,1}n+s(x,y)\in\{0,1\}^{n+s}, such that F(x,y)=1F(x,y)=1 and li=1l_{i}=1, it holds that ljy1l_{j}\neq y_{1} and ljy2l_{j}\neq y_{2}. Indeed, if there is (x,y){0,1}n+s(x,y)\in\{0,1\}^{n+s} such that F(x,y)=1F(x,y)=1 and li=lj=1l_{i}=l_{j}=1, then y1y_{1} and y2y_{2} must be equal to 0. If there is (x,y){0,1}n+s(x,y)\in\{0,1\}^{n+s}, such that F(x,y)=1,li=1,lj=0F(x,y)=1,l_{i}=1,l_{j}=0, then y1y_{1} and y2y_{2} must be equal to 0, otherwise FF does not contain a critical clause w.r.t. (x,y,i)(x,y,i). Thus, assigning li1l_{i}\leftarrow 1 eliminates two clauses (C1C_{1} and C2C_{2}). We then replace y1y_{1} and y2y_{2} with lj¯\overline{l_{j}} and delete the clause C3C_{3}.

      2. ii.

        |Y|3,{y1,y2,y3}Y|Y|\geq 3,\{y_{1},y_{2},y_{3}\}\subseteq Y:

        {li,lj}C1,{li,y1,y2}C2,{lj,y1,y3}C3.\{l_{i},\ l_{j}\}\subseteq C_{1},\quad\{l_{i},\ y_{1},\ y_{2}\}\subseteq C_{2},\quad\{l_{j},\ y_{1},\ y_{3}\}\subseteq C_{3}\,.

        Assigning li1,lj1l_{i}\leftarrow 1,l_{j}\leftarrow 1 eliminates C1,C2,C3C_{1},C_{2},C_{3}. Assigning y10y_{1}\leftarrow 0 eliminates at least one more clause (y1y_{1} appears positively at least two times, but it may appear in C1C_{1}). There must be a clause with y2¯\overline{y_{2}} (otherwise we could assign y21y_{2}\leftarrow 1). Assigning y20y_{2}\leftarrow 0 eliminates at least one more clause. Similarly, assigning y31y_{3}\leftarrow 1 eliminates another clause. In total, we eliminate at least six clauses.

Acknowledgments

Research is partially supported by Huawei (grant TC20211214628).

References

  • [1] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks. Minimizing disjunctive normal form formulas and AC0\operatorname{AC}^{0} circuits given a truth table. SIAM J. Comput., 38(1):63–84, 2008. doi:10.1137/060664537.
  • [2] Judy Goldsmith, Matthew A. Levy, and Martin Mundhenk. Limited nondeterminism. SIGACT News, 27(2):20–29, 1996. doi:10.1145/235767.235769.
  • [3] Shuichi Hirahara. A duality between depth-three formulas and approximation by depth-two. Electron. Colloquium Comput. Complex., page 92, 2017. URL: https://eccc.weizmann.ac.il/report/2017/092.
  • [4] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.
  • [5] Petr Kucera, Petr Savický, and Vojtech Vorel. A lower bound on CNF encodings of the at-most-one constraint. Theor. Comput. Sci., 762:51–73, 2019. doi:10.1016/j.tcs.2018.09.003.
  • [6] William J. Masek. Some NP-complete set covering problems. Unpublished Manuscript, 1979.
  • [7] Hiroki Morizumi. Lower bounds for the size of nondeterministic circuits. In Dachuan Xu, Donglei Du, and Ding-Zhu Du, editors, Computing and Combinatorics - 21st International Conference, COCOON 2015, Beijing, China, August 4-6, 2015, Proceedings, volume 9198 of Lecture Notes in Computer Science, pages 289–296. Springer, 2015. doi:10.1007/978-3-319-21398-9\_23.
  • [8] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chic. J. Theor. Comput. Sci., 1999, 1999. URL: http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html.
  • [9] Steven David Prestwich. SAT problems with chains of dependent variables. Discret. Appl. Math., 130(2):329–350, 2003. doi:10.1016/S0166-218X(02)00410-9.
  • [10] Steven David Prestwich. CNF encodings. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages 75–97. IOS Press, 2009. doi:10.3233/978-1-58603-929-5-75.
  • [11] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality constraints. In Peter van Beek, editor, Principles and Practice of Constraint Programming - CP 2005, 11th International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings, volume 3709 of Lecture Notes in Computer Science, pages 827–831. Springer, 2005. doi:10.1007/11564751\_73.
  • [12] G. S. Tsejtin. On the complexity of derivation in propositional calculus. Semin. Math., V. A. Steklov Math. Inst., Leningrad 8, 115-125 (1970); translation from Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 8, 234-259 (1968)., 1968.
  • [13] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Jozef Gruska, editor, Mathematical Foundations of Computer Science 1977, 6th Symposium, Tatranska Lomnica, Czechoslovakia, September 5-9, 1977, Proceedings, volume 53 of Lecture Notes in Computer Science, pages 162–176. Springer, 1977. doi:10.1007/3-540-08353-7\_135.