This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Coded equivalence of one-sided topological Markov shifts

Kengo Matsumoto
Department of Mathematics
Joetsu University of Education
Joetsu, 943-8512, Japan
Abstract

We introduce a notion of coded equivalence in one-sided topological Markov shifts. The notion is inspired by coding theory. One-sided topological conjugacy implies coded equivalence. We will show that coded equivalence implies continuous orbit equivalence of one-sided topological Markov shifts.

2020Mathematics Subject Classification: Primary 94A45, 68Q45; Secondary 37B10, 68R15, 37A55.

Keywords and phrases: code, prefix code, coded equivalence, topological Markov shift, orbit equivalence.


In [13], the author introduced a notion of continuous orbit equivalence of one-sided topological Markov shifts. The definition of the equivalence relation was primary inspired by orbit equivalence theory of minimal homeomorphisms on Cantor sets established by Giordano–Putnam–Skau [9](cf. [10], etc.). Through the studies of classifications of continuous orbit equivalence of one-sided topological Markov shifts, several interesting relationships with other areas of mathematics, CC^{*}-algebras, groupoids, infinite discrete groups, etc. have been clarified (cf. [15], [16], etc. ). As a result, H. Matui and the author have succeeded to classify irreducible one-sided topological Markov shifts under continuous orbit equivalence ([15]). However, there is no known any systematic method to give rise to continuous orbit equivalence of one-sided topological Markov shifts. In this paper, we introduce a notion of coded equivalence in one-sided topological Markov shifts. The definition of the coded equivalence is inspired by coding theory of formal language theory. Although relationship between symbolic dynamics and coding theory has been studied by many authors, for example [1], [3], [4], [6], [7], [8], etc, the coded equivalence treated in this paper has not seen in any other papers than this.

We will study the coded equivalence from the view point of symbolic dynamical systems. It is well-known that topological conjugacy of symbolic dynamical systems is given by a sliding block code (cf. [11], [12]). We will also introduce a notion of moving block code, that is a generalization of sliding block code. We will then see that one-sided topological conjugacy implies coded equivalence. As a main result of the paper, we will show that the coded equivalence implies continuous orbit equivalence of one-sided topological Markov shifts (Theorem 14). We therefore know a close relationship between coding theory and continuous orbit equivalence theory of one-sided topological Markov shifts. Several examples of coded equivalent topological Markov shifts will be presented.

We will first provide several terminology and notation. Let us denote by \mathbb{N} and +{\mathbb{Z}}_{+} the set of positive integers and the set of nonnegative integers, respectively. Let A=[A(i,j)]i,j=1NA=[A(i,j)]_{i,j=1}^{N} be an irreducible non permutation matrix over {0,1}\{0,1\}. Let us denote by ΣA\Sigma_{A} the set {1,2,,N}\{1,2,\dots,N\}. Let XAX_{A} be the set of right one-sided infinite sequences (xn)n(x_{n})_{n\in\mathbb{N}} of ΣA\Sigma_{A} such that A(xn,xn+1)=1A(x_{n},x_{n+1})=1 for all nn\in\mathbb{N}. The set XAX_{A} is endowed with its product topology so that it is a homeomorphic to a Cantor discontinuum. It has a natural shift operation σA\sigma_{A} defined by σA((xn)n)=(xn+1)n\sigma_{A}((x_{n})_{n\in\mathbb{N}})=(x_{n+1})_{n\in\mathbb{N}}. The topological dynamical system (XA,σA)(X_{A},\sigma_{A}) is called the one-sided topological Markov shift defined by the matrix AA. The space XAX_{A} is called the shift space of (XA,σA)(X_{A},\sigma_{A}). Let us denote by Bk(XA)B_{k}(X_{A}) the set of admissible words of XAX_{A} with length kk. We put B(XA)=k=0Bk(XA)B_{*}(X_{A})=\cup_{k=0}^{\infty}B_{k}(X_{A}), where B0(XA)B_{0}(X_{A}) denotes the empty word. For a word μ=(μ1,,μm)Bm(XA)\mu=(\mu_{1},\dots,\mu_{m})\in B_{m}(X_{A}), let us denote by UμU_{\mu} the cylinder set

Uμ={(xn)nXAx1=μ1,,xm=μm}.U_{\mu}=\{(x_{n})_{n\in\mathbb{N}}\in X_{A}\mid x_{1}=\mu_{1},\dots,x_{m}=\mu_{m}\}.

A code 𝒞\mathcal{C} of XAX_{A} is a nonempty subset 𝒞B(XA)\mathcal{C}\subset B_{*}(X_{A}) such that for any equality

ω(i1)ω(i2)ω(ik)=ω(j1)ω(j2)ω(jn)\omega(i_{1})\omega(i_{2})\cdots\omega(i_{k})=\omega(j_{1})\omega(j_{2})\cdots\omega(j_{n})

of words with ω(i1),ω(i2),,ω(ik),ω(j1),ω(j2),,ω(jn)𝒞\omega(i_{1}),\omega(i_{2}),\cdots,\omega(i_{k}),\omega(j_{1}),\omega(j_{2}),\cdots,\omega(j_{n})\in\mathcal{C}, one has

n=k and ω(im)=ω(jm),m=1,2,,n.n=k\qquad\text{ and }\qquad\omega(i_{m})=\omega(j_{m}),\quad m=1,2,\dots,n.

A prefix code is a code such that no word in it can be the beginning of another ( cf. [2], [3]). For example, let A=[1111]A=\begin{bmatrix}1&1\\ 1&1\end{bmatrix} and ΣA={1,2}\Sigma_{A}=\{1,2\}. Consider 𝒞={1,21,22}\mathcal{C}=\{1,21,22\} and 𝒞={1,12,22}\mathcal{C}^{\prime}=\{1,12,22\}. We see that 𝒞\mathcal{C} is a prefix code, whereas 𝒞\mathcal{C}^{\prime} is a code but not a prefix code.

The following lemma is easy to prove.

Lemma 1.

Let 𝒞={ω(1),ω(2),,ω(M)}B(XA)\mathcal{C}=\{\omega(1),\omega(2),\dots,\omega(M)\}\subset B_{*}(X_{A}) be a finite set of admissible words of XAX_{A}. Then 𝒞\mathcal{C} is a prefix code if and only if Uω(i)Uω(j)=U_{\omega(i)}\cap U_{\omega(j)}=\emptyset for iji\neq j.

For a prefix code 𝒞={ω(1),ω(2),,ω(M)}B(XA)\mathcal{C}=\{\omega(1),\omega(2),\dots,\omega(M)\}\subset B_{*}(X_{A}), we denote by ΣA(𝒞)\Sigma_{A(\mathcal{C})} the set {1,2,,M}\{1,2,\dots,M\}. Let us denote by (i)\ell(i) the length of the word ω(i),iΣA(𝒞).\omega(i),i\in\Sigma_{A(\mathcal{C})}. The word ω(i)\omega(i) is written

ω(i)=ω1(i)ω2(i)ω(i)(i)B(i)(XA) for some ωj(i)ΣA.\omega(i)=\omega_{1}(i)\omega_{2}(i)\cdots\omega_{\ell(i)}(i)\in B_{\ell(i)}(X_{A})\quad\text{ for some }\quad\omega_{j}(i)\in\Sigma_{A}.

For the word ω(i)\omega(i), define σA(ω(i))B(i)1(XA)\sigma_{A}(\omega(i))\in B_{\ell(i)-1}(X_{A}) by setting

σA(ω(i))=ω2(i)ω3(i)ω(i)(i).\sigma_{A}(\omega(i))=\omega_{2}(i)\omega_{3}(i)\cdots\omega_{\ell(i)}(i).

We will introduce a notion of right Markov code in the following way.

Definition 2.

Let 𝒞={ω(1),ω(2),,ω(M)}B(XA)\mathcal{C}=\{\omega(1),\omega(2),\dots,\omega(M)\}\subset B_{*}(X_{A}) be a prefix code. The prefix code 𝒞\mathcal{C} is called a right Markov code for (XA,σA)(X_{A},\sigma_{A}) if it satisfies the following three conditions:

  1. (i)

    (unique factorization) For any γB(XA)\gamma\in B_{*}(X_{A}), there exists a word ηB(XA)\eta\in B_{*}(X_{A}) such that γηB(XA)\gamma\eta\in B_{*}(X_{A}), and there exists a unique finite sequence (i1,i2,,ik)(ΣA(𝒞))k(i_{1},i_{2},\dots,i_{k})\in{(\Sigma_{A(\mathcal{C})})}^{k} such that

    γη=ω(i1)ω(i2)ω(ik).\gamma\eta=\omega(i_{1})\omega(i_{2})\cdots\omega(i_{k}).
  2. (ii)

    (shift invariance) There exists LL\in\mathbb{N} such that for any i1,i2,,iLΣA(𝒞)i_{1},i_{2},\dots,i_{L}\in\Sigma_{A(\mathcal{C})} with ω(i1)ω(i2)ω(iL)B(XA)\omega(i_{1})\omega(i_{2})\cdots\omega(i_{L})\in B_{*}(X_{A}), there exists j1,j2,,jkΣA(𝒞)j_{1},j_{2},\dots,j_{k}\in\Sigma_{A(\mathcal{C})} such that

    σA(ω(i1))ω(i2)ω(iL)=ω(j1)ω(j2)ω(jk),\sigma_{A}(\omega(i_{1}))\omega(i_{2})\cdots\omega(i_{L})=\omega(j_{1})\omega(j_{2})\cdots\omega(j_{k}), (1)

    where kk depends on the finite sequence (i1,i2,,iL)(i_{1},i_{2},\dots,i_{L}).

  3. (iii)

    (irreducibility) For any ordered pair ω(i),ω(j)𝒞\omega(i),\omega(j)\in\mathcal{C}, there exist n1,n2,nlΣA(𝒞)n_{1},n_{2}\dots,n_{l}\in\Sigma_{A(\mathcal{C})} such that

    ω(i)ω(n1)ω(n2)ω(nl)ω(j)B(XA)\omega(i)\omega(n_{1})\omega(n_{2})\cdots\omega(n_{l})\omega(j)\in B_{*}(X_{A})

We call (i), (ii) and (iii) unique factorization property, shift equivalence property and irreducible condition, respectively.

Remark 3.

In the definition of right Markov code, we do not necessarily assume that ω(i)𝒞\omega(i)\in\mathcal{C} implies σ(ω(i))𝒞\sigma(\omega(i))\in\mathcal{C}. Hence in the above definition (ii), the word σA(ω(i))\sigma_{A}(\omega(i)) does not necessarily belong to the set 𝒞\mathcal{C} when ω(i)𝒞\omega(i)\in\mathcal{C}.

Lemma 4.

Let 𝒞={ω(1),ω(2),,ω(M)}B(XA)\mathcal{C}=\{\omega(1),\omega(2),\dots,\omega(M)\}\subset B_{*}(X_{A}) be a prefix code. The following assertions are equivalent.

  1. (i)

    𝒞\mathcal{C} satisfies the unique factorization property (i) of Definition 2.

  2. (ii)

    For any x=(xn)nXAx=(x_{n})_{n\in\mathbb{N}}\in X_{A} there exists a unique increasing sequence 1<k1<k2<1<k_{1}<k_{2}<\cdots of positive integers and i1,i2,ΣA(𝒞)i_{1},i_{2},\cdots\in\Sigma_{A(\mathcal{C})} such that

    x[1,k1)=ω(i1),x[k1,k2)=ω(i2),,x[kn,kn+1)=ω(in+1),x_{[1,k_{1})}=\omega(i_{1}),\qquad x_{[k_{1},k_{2})}=\omega(i_{2}),\quad\dots,\quad x_{[k_{n},k_{n+1})}=\omega(i_{n+1}),\quad\dots

    That is, xx has a unique factorization:

    x=ω(i1)ω(i2)ω(in)x=\omega(i_{1})\omega(i_{2})\cdots\omega(i_{n})\cdots
Proof.

(i) \Longrightarrow (ii): Assume that 𝒞={ω(1),ω(2),,ω(M)}B(XA)\mathcal{C}=\{\omega(1),\omega(2),\dots,\omega(M)\}\subset B_{*}(X_{A}) satisfies the unique factorization property (i) of Definition 2. Put K0=max{(i)iΣA(𝒞)},K_{0}=\max\{\ell(i)\mid i\in\Sigma_{A(\mathcal{C})}\}, where (i)\ell(i) denotes the length of ω(i)\omega(i). Take an increasing sequence 1<m1<m2<1<m_{1}<m_{2}<\cdots of positive integers such that nK0<mnn\cdot K_{0}<m_{n} for nn\in\mathbb{N}. Take an arbitrary x=(xn)nXAx=(x_{n})_{n\in\mathbb{N}}\in X_{A}. For the word x[1,mn]Bmn(XA)x_{[1,m_{n}]}\in B_{m_{n}}(X_{A}) for each nn\in\mathbb{N}, by the unique factorization property (i) of Definition 2, there exists η(n)B(XA)\eta(n)\in B_{*}(X_{A}) such that x[1,mn]η(n)B(XA)x_{[1,m_{n}]}\eta(n)\in B_{*}(X_{A}), and there exists a unique finite sequence (i1(n),i2(n),,ikn(n))(ΣA(𝒞))kn(i_{1}(n),i_{2}(n),\dots,i_{k_{n}}(n))\in(\Sigma_{A(\mathcal{C})})^{k_{n}} such that

x[1,mn]η(n)=ω(i1(n))ω(i2(n))ω(ikn(n)).x_{[1,m_{n}]}\eta(n)=\omega(i_{1}(n))\omega(i_{2}(n))\cdots\omega(i_{k_{n}}(n)).

Since 𝒞\mathcal{C} is a prefix code, we see that

ω(i1(1))\displaystyle\omega(i_{1}(1)) =ω(i1(n)) for all n1,\displaystyle=\omega(i_{1}(n))\quad\text{ for all }n\geq 1,
ω(i2(2))\displaystyle\omega(i_{2}(2)) =ω(i2(n)) for all n2,\displaystyle=\omega(i_{2}(n))\quad\text{ for all }n\geq 2,
\displaystyle\cdots =\displaystyle=\cdots
ω(i())\displaystyle\omega(i_{\ell}(\ell)) =ω(i(n)) for all n.\displaystyle=\omega(i_{\ell}(n))\quad\text{ for all }n\geq\ell.

Take ξ(n)XA\xi(n)\in X_{A} such that x[1,mn]η(n)ξ(n)XAx_{[1,m_{n}]}\eta(n)\xi(n)\in X_{A}. Put x(n)=x[1,mn]η(n)ξ(n)XAx(n)=x_{[1,m_{n}]}\eta(n)\xi(n)\in X_{A} for nn\in\mathbb{N}. Then x(n)x(n) converges to xx and we have

x=ω(i1(1))ω(i2(2))ω(i())x=\omega(i_{1}(1))\omega(i_{2}(2))\cdots\omega(i_{\ell}(\ell))\cdots

The factorization is unique, because 𝒞\mathcal{C} is a prefix code.

(ii) \Longrightarrow (i): The assertion is obvious. ∎

For an N×NN\times N irreducible matrix A=[A(i,j)]i,j=1NA=[A(i,j)]_{i,j=1}^{N} with entries in {0,1}\{0,1\}, an associated directed graph GA=(VA,EA)G_{A}=(V_{A},E_{A}) is defined in the following way. The vertex set VA=ΣA(={1,2,,N})V_{A}=\Sigma_{A}(=\{1,2,\dots,N\}). If A(i,j)=1,A(i,j)=1, then a directed edge from the vertex ii to the vertex jj is defined. The edge set EAE_{A} consists of such edges. The transition matrix of the graph GAG_{A} is the original matrix AA. Hence the shift space XAX_{A} consists of right infinite sequences of concatenating vertices in the graph GAG_{A}.

Example 5.

0. Let A=[A(i,j)]i,j=1NA=[A(i,j)]_{i,j=1}^{N} be an N×NN\times N irreducible matrix with entries in {0,1}\{0,1\}. Define 𝒞0=ΣA\mathcal{C}_{0}=\Sigma_{A} the set of admissible words of length 11. Then 𝒞0\mathcal{C}_{0} is a right Markov code. It is called the trivial right Markov code for (XA,σA)(X_{A},\sigma_{A}).

1. Let A1=[1110].A_{1}=\begin{bmatrix}1&1\\ 1&0\end{bmatrix}. Define 𝒞1={1,21}\mathcal{C}_{1}=\{1,21\}. Then 𝒞1\mathcal{C}_{1} is a right Markov code. The directed graph GA1G_{A_{1}} is Figure 1.

112222
Figure 1: The directed graph GA1G_{A_{1}}

2. Let A2=[010001110].A_{2}=\begin{bmatrix}0&1&0\\ 0&0&1\\ 1&1&0\end{bmatrix}. Define 𝒞2={12,23,323,312}\mathcal{C}_{2}=\{12,23,323,312\}. Then 𝒞2\mathcal{C}_{2} is a right Markov code.

3. Let A3=[111101100].A_{3}=\begin{bmatrix}1&1&1\\ 1&0&1\\ 1&0&0\end{bmatrix}. Define 𝒞3={1,21,31,231}\mathcal{C}_{3}=\{1,21,31,231\}. Then 𝒞3\mathcal{C}_{3} is a right Markov code.

The directed graphs GA2G_{A_{2}} and GA3G_{A_{3}} are Figure 2.

332211332211
Figure 2: The directed graphs GA2G_{A_{2}} and GA3G_{A_{3}}

The following lemma shows that a one-sided full shift has only trivial right Markov code.

Lemma 6.

Let 𝒞B(XA)\mathcal{C}\subset B_{*}(X_{A}) be a right Markov code for (XA,σA)(X_{A},\sigma_{A}). Suppose that XAX_{A} has a fixed point a=(a,a,a,)XAa^{\infty}=(a,a,a,\dots)\in X_{A}. We then have am=aam𝒞a^{m}=\overbrace{a\cdots a}^{m}\in\mathcal{C} if and only if m=1m=1.

Proof.

Let 𝒞={ω(1),ω(2),,ω(M)}B(XA)\mathcal{C}=\{\omega(1),\omega(2),\dots,\omega(M)\}\subset B_{*}(X_{A}) be a right Markov code for (XA,σA)(X_{A},\sigma_{A}). By Lemma 4, there uniquely exists i1,i2,ΣA(𝒞)i_{1},i_{2},\dots\in\Sigma_{A(\mathcal{C})} such that the fixed point aa^{\infty} is uniquely factorized as

a=ω(i1)ω(i2)ω(in)a^{\infty}=\omega(i_{1})\omega(i_{2})\cdots\omega(i_{n})\cdots

Suppose that

ω(i1)=aam1,ω(i2)=aam2,\omega(i_{1})=\overbrace{a\cdots a}^{m_{1}},\qquad\omega(i_{2})=\overbrace{a\cdots a}^{m_{2}},\qquad\dots

Since the code 𝒞\mathcal{C} is a prefix code, we know that m1=m2=m_{1}=m_{2}=\cdots putting m0m_{0}. Suppose that m0>1m_{0}>1. By the shift invariance property of right Markov code, there exists LL\in\mathbb{N} such that there exist j1,j2,,jkΣA(𝒞)j_{1},j_{2},\dots,j_{k}\in\Sigma_{A(\mathcal{C})} satisfying

σA(am0)am0am0L1=ω(j1)ω(j2)ω(jk).\sigma_{A}(a^{m_{0}})\overbrace{a^{m_{0}}\cdots a^{m_{0}}}^{L-1}=\omega(j_{1})\omega(j_{2})\cdots\omega(j_{k}). (2)

The words ω(j1),ω(j2),,ω(jk)\omega(j_{1}),\omega(j_{2}),\dots,\omega(j_{k}) appeared in the right hand side of (2) must be am0a^{m_{0}}, because 𝒞\mathcal{C} is a prefix code. Hence we see that

am01am0am0L1=am0am0am0ka^{m_{0}-1}\overbrace{a^{m_{0}}\cdots a^{m_{0}}}^{L-1}=\overbrace{a^{m_{0}}a^{m_{0}}\cdots a^{m_{0}}}^{k}

so that m01+(L1)m0=km0m_{0}-1+(L-1)m_{0}=k\cdot m_{0}, proving m0=1m_{0}=1. This implies that am=aam𝒞a^{m}=\overbrace{a\cdots a}^{m}\in\mathcal{C} if and only if m=1m=1. ∎

Let us denote by (X[N],σ[N])(X_{[N]},\sigma_{[N]}) the full NN-shift over Σ[N]={1,2,,N}\Sigma_{[N]}=\{1,2,\dots,N\}

Proposition 7.

A one-sided full shift has only trivial right Markov code.

Proof.

Let 𝒞\mathcal{C} be a right Markov code for (X[N],σ[N])(X_{[N]},\sigma_{[N]}). By Lemma 6, we see that Σ[N]𝒞\Sigma_{[N]}\subset\mathcal{C}. As 𝒞\mathcal{C} is a prefix code, there are no other words in 𝒞\mathcal{C} than Σ[N].\Sigma_{[N]}.

Let 𝒞={ω(1),ω(2),,ω(M)}B(XA)\mathcal{C}=\{\omega(1),\omega(2),\dots,\omega(M)\}\subset B_{*}(X_{A}) be a right Markov code for (XA,σA)(X_{A},\sigma_{A}). We write ω(i)=(ω1(i),ω2(i),,ω(i)(i))B(i)(XA)\omega(i)=(\omega_{1}(i),\omega_{2}(i),\dots,\omega_{\ell(i)}(i))\in B_{\ell(i)}(X_{A}) with ωj(i)ΣA\omega_{j}(i)\in\Sigma_{A}. We put

s(ω(i))=ω1(i)ΣA,r(ω(i))=ω(i)(i)ΣA.s(\omega(i))=\omega_{1}(i)\in\Sigma_{A},\qquad r(\omega(i))=\omega_{\ell(i)}(i)\in\Sigma_{A}.

Define an M×MM\times M matrix A(𝒞)=[A(𝒞)(i,j)]i,j=1MA(\mathcal{C})=[A(\mathcal{C})(i,j)]_{i,j=1}^{M} with entries in {0,1}\{0,1\} by setting

A(𝒞)(i,j)=A(r(ω(i)),s(ω(j))),i,jΣA(𝒞).A(\mathcal{C})(i,j)=A(r(\omega(i)),s(\omega(j))),\qquad i,j\in\Sigma_{A(\mathcal{C})}.

This means that

A(𝒞)(i,j)={1 if ω(i)ω(j)B(XA),0 otherwise. A(\mathcal{C})(i,j)=\begin{cases}1&\text{ if }\omega(i)\omega(j)\in B_{*}(X_{A}),\\ 0&\text{ otherwise. }\end{cases}

Hence we have a one-sided topological Markov shift (XA(𝒞),σA(𝒞))(X_{A(\mathcal{C})},\sigma_{A(\mathcal{C})}) from a right Markov code 𝒞\mathcal{C} for (XA,σA)(X_{A},\sigma_{A}).

Lemma 8.

Suppose that AA is irreducible and not any permutation. Then the matrix A(𝒞)A(\mathcal{C}) is irreducible and not any permutation.

Proof.

By the irreducible condition (iii) of Definition 2, it is direct to see that the matrix A(𝒞)A(\mathcal{C}) is irreducible. It suffices to show that A(𝒞)A(\mathcal{C}) is not any permutation. As AA is irreducible and not any permutation, for any x1ΣAx_{1}\in\Sigma_{A}, there exists a finite sequence x2,,xk,xk+1,xk+1ΣAx_{2},\dots,x_{k},x_{k+1},x^{\prime}_{k+1}\in\Sigma_{A} with xk+1xk+1x_{k+1}\neq x^{\prime}_{k+1} such that (x1,x2,,xk,xk+1)Bk+1(XA)(x_{1},x_{2},\dots,x_{k},x_{k+1})\in B_{k+1}(X_{A}) and (x1,x2,,xk,xk+1)Bk+1(XA)(x_{1},x_{2},\dots,x_{k},x^{\prime}_{k+1})\in B_{k+1}(X_{A}). Extend the admissible words (x1,x2,,xk,xk+1)(x_{1},x_{2},\dots,x_{k},x_{k+1}) and (x1,x2,,xk,xk+1)(x_{1},x_{2},\dots,x_{k},x^{\prime}_{k+1}) to its right infinitely as elements of XAX_{A}. We denote them by x,xXAx,x^{\prime}\in X_{A}, respectively, so that xxx\neq x^{\prime}. By Lemma 4, there exist nn\in\mathbb{N} and

ω(i1)ω(i2)ω(in1)ω(in),ω(i1)ω(i2)ω(in1)ω(in)B(XA)\omega(i_{1})\omega(i_{2})\cdots\omega(i_{n-1})\omega(i_{n}),\qquad\omega(i_{1})\omega(i_{2})\cdots\omega(i_{n-1})\omega(i^{\prime}_{n})\in B_{*}(X_{A})

for x,xx,x^{\prime} so that (i1,i2,,in1,in),(i1,i2,,in1,in)Bn(A(𝒞)),(i_{1},i_{2},\dots,i_{n-1},i_{n}),(i_{1},i_{2},\dots,i_{n-1},i^{\prime}_{n})\in B_{n}(A(\mathcal{C})), such that inini_{n}\neq i^{\prime}_{n}. As A(𝒞)A(\mathcal{C}) is irreducible, any ikΣA(𝒞)i_{k}\in\Sigma_{A(\mathcal{C})} goes to i1i_{1}, so that iki_{k} has distinct followers in XA(𝒞)X_{A(\mathcal{C})}. This means that the matrix A(𝒞)A(\mathcal{C}) is not any permutation. ∎

Two one-sided topological Markov shifts (XA,σA)(X_{A},\sigma_{A}) and (XB,σB)(X_{B},\sigma_{B}) are said to be topologically conjugate if there exists a homeomorphism h:XAXBh:X_{A}\longrightarrow X_{B} such that hσA=σBhh\circ\sigma_{A}=\sigma_{B}\circ h. The homeomorphism h:XAXBh:X_{A}\longrightarrow X_{B} is called a topological conjugacy. Now we will introduce a notion of coded equivalence in one-sided topological Markov shifts.

Definition 9.

Let A,BA,B be irreducible non permutation matrices. The one-sided topological Markov shifts (XA,σA)(X_{A},\sigma_{A}) and (XB,σB)(X_{B},\sigma_{B}) are said to be elementary coded equivalent if there exist a right Markov code 𝒞1\mathcal{C}_{1} for (XA,σA)(X_{A},\sigma_{A}) and a right Markov code 𝒞2\mathcal{C}_{2} for (XB,σB)(X_{B},\sigma_{B}) such that the one-sided topological Markov shifts (XA(𝒞1),σA(𝒞1))(X_{A(\mathcal{C}_{1})},\sigma_{A(\mathcal{C}_{1})}) and (XB(𝒞2),σB(𝒞2))(X_{B(\mathcal{C}_{2})},\sigma_{B(\mathcal{C}_{2})}) are topologically conjugate. It is written (XA,σA)code(XB,σB)(X_{A},\sigma_{A})\underset{{{\operatorname{code}}}}{\approx}(X_{B},\sigma_{B}). If there exists a finite sequence A0,A1,A2,AmA_{0},A_{1},A_{2},\dots A_{m} of irreducible non permutation matrices such that A=A0,Am=BA=A_{0},A_{m}=B and

(XA0,σA0)code(XA1,σA1)codecode(XAm1,σAm1)code(XAm,σAm),(X_{A_{0}},\sigma_{A_{0}})\underset{{{\operatorname{code}}}}{\approx}(X_{A_{1}},\sigma_{A_{1}})\underset{{{\operatorname{code}}}}{\approx}\cdots\underset{{{\operatorname{code}}}}{\approx}(X_{A_{m-1}},\sigma_{A_{m-1}})\underset{{{\operatorname{code}}}}{\approx}(X_{A_{m}},\sigma_{A_{m}}),

then (XA,σA)(X_{A},\sigma_{A}) and (XB,σB)(X_{B},\sigma_{B}) are said to be coded equivalent. It is written (XA,σA)code(XB,σB)(X_{A},\sigma_{A})\underset{{{\operatorname{code}}}}{\sim}(X_{B},\sigma_{B}).

Lemma 10.
  1. (i)

    Let A,BA,B be irreducible non permutation matrices. If the one-sided topological Markov shifts (XA,σA)(X_{A},\sigma_{A}) and (XB,σB)(X_{B},\sigma_{B}) are topologically conjugate, then they are coded equivalent.

  2. (ii)

    Let 𝒞B(XA)\mathcal{C}\subset B_{*}(X_{A}) be a right Markov code for (XA,σA)(X_{A},\sigma_{A}). Then (XA,σA)(X_{A},\sigma_{A}) and (XA(𝒞),σA(𝒞))(X_{A(\mathcal{C})},\sigma_{A(\mathcal{C})}) are coded equivalent.

Proof.

(i) The assertion is clear by considering trivial right Markov codes for each of (XA,σA)(X_{A},\sigma_{A}) and (XB,σB)(X_{B},\sigma_{B}).

(ii) The assertion is also clear by considering trivial right Markov codes for each of (XA,σA)(X_{A},\sigma_{A}) and (XA(𝒞),σA(𝒞))(X_{A(\mathcal{C})},\sigma_{A(\mathcal{C})}) . ∎

We will next introduce a notion of moving block code between one-sided topological Markov shifts. It is a generalization of sliding block codes between one-sided topological Markov shifts and gives rise to a coded equivalence.

Let 𝒞={ω(1),ω(2),,ω(M)}B(XA)\mathcal{C}=\{\omega(1),\omega(2),\dots,\omega(M)\}\subset B_{*}(X_{A}) be a right Markov code for (XA,σA)(X_{A},\sigma_{A}). Let us define κ𝒞:𝒞ΣA(𝒞)\kappa_{\mathcal{C}}:\mathcal{C}\longrightarrow\Sigma_{A(\mathcal{C})} by κ𝒞(ω(i))=i\kappa_{\mathcal{C}}(\omega(i))=i for iΣA(𝒞)i\in\Sigma_{A(\mathcal{C})}, and a homeomorphism h𝒞:XAXA(𝒞)h_{\mathcal{C}}:X_{A}\longrightarrow X_{A(\mathcal{C})} by setting

h𝒞(ω(i1)ω(i2)ω(in))=(i1,i2,,in,) for ω(i1)ω(i2)ω(in)XA.h_{\mathcal{C}}(\omega(i_{1})\omega(i_{2})\cdots\omega(i_{n})\cdots)=(i_{1},i_{2},\dots,i_{n},\dots)\quad\text{ for }\quad\omega(i_{1})\omega(i_{2})\cdots\omega(i_{n})\cdots\in X_{A}.

We call the homeomorphism h𝒞:XAXA(𝒞)h_{\mathcal{C}}:X_{A}\longrightarrow X_{A(\mathcal{C})} the standard coding homeomorphism and write h𝒞=κ𝒞h_{\mathcal{C}}=\kappa_{\mathcal{C}}^{\infty}.

Let us denote by Bn(𝒞)B_{n}(\mathcal{C}) the set of concatenated nn words of the code 𝒞\mathcal{C}, that is

Bn(𝒞)={ω(i1)ω(in)B(XA)i1,,inΣA(𝒞)}.B_{n}(\mathcal{C})=\{\omega(i_{1})\cdots\omega(i_{n})\in B_{*}(X_{A})\mid i_{1},\dots,i_{n}\in\Sigma_{A(\mathcal{C})}\}.
Definition 11.

Let 𝒞1={ω(1),ω(2),,ω(M1)}B(XA)\mathcal{C}_{1}=\{\omega(1),\omega(2),\dots,\omega(M_{1})\}\subset B_{*}(X_{A}) be a right Markov code for (XA,σA)(X_{A},\sigma_{A}) and 𝒞2={ξ(1),ξ(2),,ξ(M2)}B(XB)\mathcal{C}_{2}=\{\xi(1),\xi(2),\dots,\xi(M_{2})\}\subset B_{*}(X_{B}) be a right Markov code for (XB,σB)(X_{B},\sigma_{B}). Let Φ:Bn+1(XA(𝒞1))ΣB(𝒞2)\Phi:B_{n+1}(X_{A(\mathcal{C}_{1})})\longrightarrow\Sigma_{B(\mathcal{C}_{2})} be a block map in the ordinary sense (cf. [12]). Then a coded block map Φ𝒞:Bn+1(𝒞1)B1(𝒞2)(=𝒞2)\Phi_{\mathcal{C}}:B_{n+1}(\mathcal{C}_{1})\longrightarrow B_{1}(\mathcal{C}_{2})(=\mathcal{C}_{2}) is defined by

ΦC(ω(i1)ω(i2)ω(in+1))=κ𝒞21Φ(i1,i2,,in+1),i1,i2,,in+1ΣA(𝒞1).\Phi_{C}(\omega(i_{1})\omega(i_{2})\dots\omega(i_{n+1}))=\kappa_{\mathcal{C}_{2}}^{-1}\circ\Phi(i_{1},i_{2},\dots,i_{n+1}),\qquad i_{1},i_{2},\dots,i_{n+1}\in\Sigma_{A(\mathcal{C}_{1})}.

For the block map Φ:Bn+1(XA(𝒞1))ΣB(𝒞2)\Phi:B_{n+1}(X_{A(\mathcal{C}_{1})})\longrightarrow\Sigma_{B(\mathcal{C}_{2})}, let us denote by ϕ:=Φ[0,n]:XA(𝒞1)XB(𝒞2)\phi:=\Phi_{\infty}^{[0,n]}:X_{A(\mathcal{C}_{1})}\longrightarrow X_{B(\mathcal{C}_{2})} the sliding block code with memory 0 and anticipation nn (see [12, p. 15]). The moving block code

φΦ:XAXB\varphi_{\Phi}:X_{A}\longrightarrow X_{B}

is a map defined by

φΦ:=h𝒞21ϕh𝒞1.\varphi_{\Phi}:=h_{\mathcal{C}_{2}}^{-1}\circ\phi\circ h_{\mathcal{C}_{1}}.

Hence the diagram

XAφΦXBh𝒞1h𝒞2XA(𝒞1)ϕXB(𝒞2)\begin{CD}X_{A}@>{\varphi_{\Phi}}>{}>X_{B}\\ @V{h_{\mathcal{C}_{1}}}V{}V@V{}V{h_{\mathcal{C}_{2}}}V\\ X_{A(\mathcal{C}_{1})}@>{\phi}>{}>X_{B(\mathcal{C}_{2})}\end{CD}

commutes.

If both right Markov codes 𝒞1,𝒞2\mathcal{C}_{1},\mathcal{C}_{2} are trivial right Markov codes, then the coded block map and the moving block code are block map and sliding block code in the ordinary sense.

Lemma 12.

Let (XA,σA)(X_{A},\sigma_{A}) and (XB,σB)(X_{B},\sigma_{B}) be one-sided topological Markov shifts. Then they are elementary coded equivalent if and only if there exists a homeomorphism φΦ:XAXB\varphi_{\Phi}:X_{A}\longrightarrow X_{B} of moving block code for some block map Φ:Bn+1(XA(𝒞1))ΣB(𝒞2)\Phi:B_{n+1}(X_{A(\mathcal{C}_{1})})\longrightarrow\Sigma_{B(\mathcal{C}_{2})} with right Markov codes 𝒞1\mathcal{C}_{1} for (XA,σA)(X_{A},\sigma_{A}) and 𝒞2\mathcal{C}_{2} for (XB,σB)(X_{B},\sigma_{B}), respectively.

Proof.

Since φΦ:XAXB\varphi_{\Phi}:X_{A}\longrightarrow X_{B} is a homeomorphism if and only if ϕ:XA(𝒞1)XB(𝒞2)\phi:X_{A(\mathcal{C}_{1})}\longrightarrow X_{B(\mathcal{C}_{2})} is a homeomorphism. Since ϕ:XA(𝒞1)XB(𝒞2)\phi:X_{A(\mathcal{C}_{1})}\longrightarrow X_{B(\mathcal{C}_{2})} is always shift-commuting, we know that φΦ:XAXB\varphi_{\Phi}:X_{A}\longrightarrow X_{B} is a homeomorphism of moving block code if and only if ϕ:XA(𝒞1)XB(𝒞2)\phi:X_{A(\mathcal{C}_{1})}\longrightarrow X_{B(\mathcal{C}_{2})} is a topological conjugacy. The latter is equivalent to the condition that (XA,σA)(X_{A},\sigma_{A}) and (XB,σB)(X_{B},\sigma_{B}) are elementary coded equivalent. Hence we have the assertion. ∎

In [13], a notion of continuous orbit equivalence of one-sided topological Markov shifts was defined in the following way. Two one-sided topological Markov shifts (XA,σA)(X_{A},\sigma_{A}) and (XB,σB)(X_{B},\sigma_{B}) are said to be continuously orbit equivalent if there exist continuous maps k1,l1:XA+k_{1},\,l_{1}:X_{A}\rightarrow{\mathbb{Z}}_{+} such that σBk1(x)(h(σA(x)))=σBl1(x)(h(x))\sigma_{B}^{k_{1}(x)}(h(\sigma_{A}(x)))=\sigma_{B}^{l_{1}(x)}(h(x)) for xXAx\in X_{A}, and similarly there exist continuous maps k2,l2:XB+k_{2},\,l_{2}:X_{B}\rightarrow{\mathbb{Z}}_{+} such that σAk2(y)(h1(σB(y)))=σAl2(y)(h1(y))\sigma_{A}^{k_{2}(y)}(h^{-1}(\sigma_{B}(y)))=\sigma_{A}^{l_{2}(y)}(h^{-1}(y)) for yXBy\in X_{B}. The following proposition is a key to show Theorem 14.

Proposition 13.

Let AA be an irreducible, non permutation matrix with entries in {0,1}\{0,1\}. Let 𝒞\mathcal{C} be a right Markov code for (XA,σA)(X_{A},\sigma_{A}). Then the one-sided topological Markov shift (XA(𝒞),σA(𝒞))(X_{A(\mathcal{C})},\sigma_{A(\mathcal{C})}) is continuously orbit equivalent to (XA,σA)(X_{A},\sigma_{A}).

Proof.

Put B=A(𝒞)B=A(\mathcal{C}). By Lemma 4 with the unique factorization property of 𝒞\mathcal{C}, for any x=(xn)nXAx=(x_{n})_{n\in\mathbb{N}}\in X_{A} there exists a unique increasing sequence 1<k1<k2<1<k_{1}<k_{2}<\cdots of positive integers and i1,i2,ΣBi_{1},i_{2},\cdots\in\Sigma_{B} such that

x[1,k1)=ω(i1),x[k1,k2)=ω(i2),x[kn,kn+1)=ω(in+1),x_{[1,k_{1})}=\omega(i_{1}),\qquad x_{[k_{1},k_{2})}=\omega(i_{2}),\quad\dots\quad x_{[k_{n},k_{n+1})}=\omega(i_{n+1}),\quad\dots

That is, xx has a unique factorization:

x=ω(i1)ω(i2)ω(in).x=\omega(i_{1})\omega(i_{2})\cdots\omega(i_{n})\cdots.

Let h:XAXBh:X_{A}\longrightarrow X_{B} be the standard coding homeomorphism h𝒞h_{\mathcal{C}} defined by

h(x)=(i1,i2,i3,) for x=ω(i1)ω(i2)ω(in).h(x)=(i_{1},i_{2},i_{3},\dots)\quad\text{ for }\quad x=\omega(i_{1})\omega(i_{2})\cdots\omega(i_{n})\cdots.

Since

A(𝒞)(in,in+1)=A(r(ω(in)),s(ω(in+1)))=A(xkn1,xkn)=1,A(\mathcal{C})(i_{n},i_{n+1})=A(r(\omega({i_{n}})),s(\omega({i_{n+1}})))=A(x_{k_{n}-1},x_{k_{n}})=1,

we have h(x)XB.h(x)\in X_{B}. It is easy to see that h:XAXBh:X_{A}\longrightarrow X_{B} is continuous. As 𝒞\mathcal{C} has unique factorization property, hh is bijective, so that it is a homeomorphism. Let Uω(i)U_{\omega(i)} be the cylinder set of XAX_{A} beginning with the word ω(i)\omega(i). As 𝒞\mathcal{C} is a prefix code with unique factorization property, we have a disjoint union XA=iΣBUω(i)X_{A}=\sqcup_{i\in\Sigma_{B}}U_{\omega(i)} so that we have a disjoint union

XA=(i1,i2,,iL)BL(XB)Uω(i1)ω(i2)ω(iL).X_{A}=\bigsqcup_{(i_{1},i_{2},\dots,i_{L})\in B_{L}(X_{B})}U_{\omega(i_{1})\omega(i_{2})\cdots\omega(i_{L})}.

For any xUω(i1)ω(i2)ω(iL)XAx\in U_{\omega(i_{1})\omega(i_{2})\cdots\omega(i_{L})}\subset X_{A}, we set l1(x)=L,k1(x)=k(i)l_{1}(x)=L,k_{1}(x)=k(i), where k(i)k(i) is the number kk determined by (1). As ω(i1)ω(i2)ω(iL)=x[1,kL),\omega(i_{1})\omega(i_{2})\cdots\omega(i_{L})=x_{[1,k_{L})}, its length is kL1k_{L}-1. We then have h(x)=(i1,i2,,iL)h(x[kL,))h(x)=(i_{1},i_{2},\dots,i_{L})h(x_{[k_{L},\infty)}) so that

σBl1(x)(h(x))=σBL(h(x))=h(x[kL,)).\sigma_{B}^{l_{1}(x)}(h(x))=\sigma_{B}^{L}(h(x))=h(x_{[k_{L},\infty)}).

On the other hand, by (1),

σA(x)=σA(ω(i1))ω(i2)ω(iL)x[kL,)=ω(j1)ω(j2)ω(jk)x[kL,)\sigma_{A}(x)=\sigma_{A}(\omega(i_{1}))\omega(i_{2})\cdots\omega(i_{L})x_{[k_{L},\infty)}=\omega(j_{1})\omega(j_{2})\cdots\omega(j_{k})x_{[k_{L},\infty)}

so that

h(σA(x))=(j1,j2,jk)h(x[kL,)).h(\sigma_{A}(x))=(j_{1},j_{2},\cdots j_{k})h(x_{[k_{L},\infty)}).

We then have

σBk1(x)(h(σA(x))=σBk(h(σA(x)))=h(x[kL,))\sigma_{B}^{k_{1}(x)}(h(\sigma_{A}(x))=\sigma_{B}^{k}(h(\sigma_{A}(x)))=h(x_{[k_{L},\infty)})

and hence

σBk1(x)(h(σA(x))=σBl1(x)(h(x)).\sigma_{B}^{k_{1}(x)}(h(\sigma_{A}(x))=\sigma_{B}^{l_{1}(x)}(h(x)).

We will next study the inverse h1:XBXAh^{-1}:X_{B}\longrightarrow X_{A}. For y=(i1,i2,i3,)XBy=(i_{1},i_{2},i_{3},\dots)\in X_{B} with i1,i2,i3,ΣBi_{1},i_{2},i_{3},\dots\in\Sigma_{B} consider

h1(y)=ω(i1)ω(i2)ω(i3)=(x1,,xk11,xk1,,xk21,xk2,).h^{-1}(y)=\omega(i_{1})\omega(i_{2})\omega(i_{3})\cdots=(x_{1},\dots,x_{k_{1}-1},x_{k_{1}},\dots,x_{k_{2}-1},x_{k_{2}},\dots).

Put

l2(y)=kn1(=(in)) for yUinXBl_{2}(y)=k_{n}-1(=\ell(i_{n}))\quad\text{ for }\quad y\in U_{i_{n}}\subset X_{B}

Since XB=ijΣBUijX_{B}=\sqcup_{i_{j}\in\Sigma_{B}}U_{i_{j}}, the map l2:XB+l_{2}:X_{B}\longrightarrow{\mathbb{Z}}_{+} is continuous map. We also put k2(y)=0k_{2}(y)=0 for all yXBy\in X_{B}. As σB(y)=(i2,i3,),\sigma_{B}(y)=(i_{2},i_{3},\dots), we have

h1(σB(y))=ω(i2)ω(i3)=(xk1,,xk21,xk2,)h^{-1}(\sigma_{B}(y))=\omega(i_{2})\omega(i_{3})\cdots=(x_{k_{1}},\dots,x_{k_{2}-1},x_{k_{2}},\dots)

so that

σAl2(y)(h1(y))\displaystyle\sigma_{A}^{l_{2}(y)}(h^{-1}(y)) =σAk11(x1,,xk11,xk1,,xk21,xk2,)\displaystyle=\sigma_{A}^{k_{1}-1}(x_{1},\dots,x_{k_{1}-1},x_{k_{1}},\dots,x_{k_{2}-1},x_{k_{2}},\dots)
=(xk1,,xk21,xk2,)\displaystyle=(x_{k_{1}},\dots,x_{k_{2}-1},x_{k_{2}},\dots)

and hence we have

σAk2(y)(h1(σB(y)))=h1(σB(y))=σAl2(y)(h1(y)).\sigma_{A}^{k_{2}(y)}(h^{-1}(\sigma_{B}(y)))=h^{-1}(\sigma_{B}(y))=\sigma_{A}^{l_{2}(y)}(h^{-1}(y)).

We thus see that (XA,σA)(X_{A},\sigma_{A}) and (XB,σB)(X_{B},\sigma_{B}) are continuously orbit equivalent. ∎

The following is a main result of the paper.

Theorem 14.

Let AA and BB be irreducible non permutation matrices. If the one-sided topological Markov shifts (XA,σA)(X_{A},\sigma_{A}) and (XB,σB)(X_{B},\sigma_{B}) are coded equivalent, then they are continuously orbit equivalent.

Proof.

We first note that continuous orbit equivalence in one-sided topological Markov shifts is an equivalence relation ([13, Theorem 1.1]). We may assume that (XA,σA)code(XB,σB)(X_{A},\sigma_{A})\underset{{{\operatorname{code}}}}{\approx}(X_{B},\sigma_{B}). Take a right Markov code 𝒞1\mathcal{C}_{1}(resp. 𝒞2\mathcal{C}_{2}) for (XA,σA)(X_{A},\sigma_{A}) (resp. (XB,σB))(X_{B},\sigma_{B})) such that (XA(𝒞1),σA(𝒞1))(X_{A(\mathcal{C}_{1})},\sigma_{A(\mathcal{C}_{1})}) is topologically conjugate to (XB(𝒞2),σB(𝒞2))(X_{B(\mathcal{C}_{2})},\sigma_{B(\mathcal{C}_{2})}). Since topological conjugacy implies continuous orbit equivalence, we conclude that (XA,σA)(X_{A},\sigma_{A}) and (XB,σB)(X_{B},\sigma_{B}) are continuously orbit equivalent, because of Proposition 13. ∎

Example 15.

1. Let A1=[1110].A_{1}=\begin{bmatrix}1&1\\ 1&0\end{bmatrix}. Define 𝒞1={1,21}\mathcal{C}_{1}=\{1,21\}. Then 𝒞1\mathcal{C}_{1} is a right Markov code. Put ω(1)=1,ω(2)=21\omega(1)=1,\omega(2)=21. Since

s(ω(1))=r(ω(1))=r(ω(2))=1,s(ω(2))=2,s(\omega(1))=r(\omega(1))=r(\omega(2))=1,\qquad s(\omega(2))=2,

we have A(𝒞1)(i,j)=A(i,j)=1A(\mathcal{C}_{1})(i,j)=A(i,j)=1 for all i,j=1,2i,j=1,2 so that

A(𝒞1)=[1111]=[2]A(\mathcal{C}_{1})=\begin{bmatrix}1&1\\ 1&1\end{bmatrix}=[2] (3)

Therefore (XA1,σA1)code(X[2],σ[2])(X_{A_{1}},\sigma_{A_{1}})\underset{{{\operatorname{code}}}}{\sim}(X_{[2]},\sigma_{[2]}) and hence (XA1,σA1)(X_{A_{1}},\sigma_{A_{1}}) is continuously orbit equivalent to the full 22-shift. This fact is already seen in [13].

2. Let A2=[010001110].A_{2}=\begin{bmatrix}0&1&0\\ 0&0&1\\ 1&1&0\end{bmatrix}. Define 𝒞2={12,23,323,312}\mathcal{C}_{2}=\{12,23,323,312\}. Then 𝒞2\mathcal{C}_{2} is a right Markov code. Put ω(1)=12,ω(2)=23,ω(3)=323,ω(4)=312\omega(1)=12,\omega(2)=23,\omega(3)=323,\omega(4)=312. Since

s(ω(1))=1,r(ω(1))=r(ω(4))=s(ω(2))=2,r(ω(2))=r(ω(3))=s(ω(3))=s(ω(4))=3,s(\omega(1))=1,\quad r(\omega(1))=r(\omega(4))=s(\omega(2))=2,\quad r(\omega(2))=r(\omega(3))=s(\omega(3))=s(\omega(4))=3,

we have

A(𝒞2)=[0011110011000011].A(\mathcal{C}_{2})=\begin{bmatrix}0&0&1&1\\ 1&1&0&0\\ 1&1&0&0\\ 0&0&1&1\end{bmatrix}.

As the total column amalgamation of the matrix A(𝒞2)A(\mathcal{C}_{2}) is the matrix A(𝒞1)A(\mathcal{C}_{1}) in (3). Hence the one-sided topological Markov shift (XA(𝒞2),σA(𝒞2))(X_{A(\mathcal{C}_{2})},\sigma_{A(\mathcal{C}_{2})}) is topologically conjugate to the full 2-shift (X[2],σ[2])(X_{[2]},\sigma_{[2]}). Theherefore (XA2,σA2)code(X[2],σ[2])(X_{A_{2}},\sigma_{A_{2}})\underset{{{\operatorname{code}}}}{\sim}(X_{[2]},\sigma_{[2]}).

3. Let A3=[111101100].A_{3}=\begin{bmatrix}1&1&1\\ 1&0&1\\ 1&0&0\end{bmatrix}. Define 𝒞3={1,21,31,231}\mathcal{C}_{3}=\{1,21,31,231\}. Then 𝒞3\mathcal{C}_{3} is a right Markov code. Put ω(1)=1,ω(2)=21,ω(3)=31,ω(4)=231\omega(1)=1,\omega(2)=21,\omega(3)=31,\omega(4)=231. Since

s(ω(1))=r(ω(1))=r(ω(2))=r(ω(3))=r(ω(4))=1,s(ω(2))=s(ω(4))=2,s(ω(3))=3,s(\omega(1))=r(\omega(1))=r(\omega(2))=r(\omega(3))=r(\omega(4))=1,\quad s(\omega(2))=s(\omega(4))=2,\quad s(\omega(3))=3,

we have

A(𝒞3)=[1111111111111111]=[4].A(\mathcal{C}_{3})=\begin{bmatrix}1&1&1&1\\ 1&1&1&1\\ 1&1&1&1\\ 1&1&1&1\end{bmatrix}=[4].

Hence the one-sided topological Markov shift (XA(𝒞3),σA(𝒞3))(X_{A(\mathcal{C}_{3})},\sigma_{A(\mathcal{C}_{3})}) is the full 4-shift (X[4],σ[4]).(X_{[4]},\sigma_{[4]}). Theherefore (XA3,σA3)code(X[4],σ[4])(X_{A_{3}},\sigma_{A_{3}})\underset{{{\operatorname{code}}}}{\sim}(X_{[4]},\sigma_{[4]}).

Related results to classification of Cuntz–Krieger algebras are seen in [5], [14].

Acknowledgments: The author would like to thank the referee for his/her careful reading the first draft of the paper. This work was supported by JSPS KAKENHI Grant Numbers 15K04896, 19K03537.

References

  • [1] M-P.  Béal, Codage Symbolique, Masson, Parris 1993.
  • [2] J. Berstel and D.  Perrin, Theory of codes, Academic Press, London (1985).
  • [3] F. Blanchard and G. Hansel, Systems codés, Theor. Computer Sci. 44(1986), pp. 17–49.
  • [4] F. Blanchard and G. Hansel, Sofic constant-to-one extensions of subshifts of finite type, Proc. Amer. Math. Soc. 112(1991), pp. 259–265.
  • [5] M. Enomoto, M. Fujii and Y. Watatani, K0K_{0}-groups and classifications of Cuntz–Krieger algebras, Math. Japon. 26(1981), pp. 443–460.
  • [6] D. Fiebig, Common closing extensions and finitary regular isomorphisms for synchronized systems, in Symbolic Dynamics and Its Applications, Contemporary Mathematics 135(1992), pp.  125–138.
  • [7] D. Fiebig, Common extensions and hyperbolic factor maps for coded systems, Ergodic Theory Dynam. Systems 35(1995), pp.  517–534.
  • [8] D. Fiebig and U. -R. Fiebig, Covers for coded system, in Symbolic Dynamics and Its Applications, Contemporary Mathematics 135(1992), pp.  139–180.
  • [9] T. Giordano, I. F. Putnam and C. F. Skau, Topological orbit equivalence and CC^{*}-crossed products, J. Reine Angew. Math. 469(1995), pp. 51–111.
  • [10] R. H. Herman, I. F. Putnam and C. F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3(1992),pp. 827–864.
  • [11] B. P.  Kitchens, Symbolic dynamics, Springer-Verlag, Berlin, Heidelberg and New York (1998).
  • [12] D.  Lind and B.  Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge (1995).
  • [13] K. Matsumoto, Orbit equivalence of topological Markov shifts and Cuntz–Krieger algebras, Pacific J. Math. 246(2010), 199–225.
  • [14] K. Matsumoto, Some remarks on orbit equivalence of topological Markov shifts and Cuntz–Krieger algebras, Yokohama Math. J. 58(2012), pp. 41–52.
  • [15] K. Matsumoto and H. Matui, Continuous orbit equivalence of topological Markov shifts and Cuntz–Krieger algebras, Kyoto J. Math. 54(2014), pp. 863–878.
  • [16] K. Matsumoto and H. Matui, Full groups of Cuntz-Krieger algebras and Higman-Thompson groups, Groups Geom. Dyn. 11(2017), pp.  499–531.