This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Coherent orientations in symplectic field theory revisited

Erkao Bao School of Mathematics, University of Minnesota, Minneapolis, MN 55455 bao@umn.edu https://erkaobao.github.io/math/
Abstract.

In symplectic field theory (SFT), the moduli spaces of JJ-holomorphic curves can be oriented coherently (compatible with gluing). In this note, we correct the signs involved in the generating function 𝐇\mathbf{H} in SFT so that the master equation 𝐇⋅𝐇=0\mathbf{H}\cdot\mathbf{H}=0 holds assuming transversality. The orientation convention that we use is consistent with that of Hutchings-Taubes from [HT09], but differs from that of Bourgeois-Mohnke in [BM04].

Key words and phrases:
coherent orientation, contact structure, contact homology, symplectic field theory
2010 Mathematics Subject Classification:
Primary 53D10; Secondary 53D40.

1. Introduction

Symplectic Field Theory (SFT) was introduced by Eliashberg, Hofer and Givental in [EGH00], and is a generalization of the Gromov-Witten invariants in the spirit of a topological field theory. SFT packs a signed count of elements of moduli spaces of JJ-holomorphic curves in the symplectization of a contact manifold into a potential function 𝐇\mathbf{H}. The potential function 𝐇\mathbf{H} satisfies the master equation 𝐇⋅𝐇=0\mathbf{H}\cdot\mathbf{H}=0. There are different choices to orient the moduli spaces of JJ-holomorphic curves, such as those of Bourgeois-Mohnke [BM04] and Hutchings-Taubes [HT09]. However, the algebraic setup of 𝐇\mathbf{H} in [EGH00] is not compatible with either of the two orientation conventions.

In this paper, correct the signs of 𝐇\mathbf{H} so that they match with the orientation convention of [HT09]111It is likely that a different correction of 𝐇\mathbf{H} can match the orientation convention of [Bou02] resulting in an equivalent SFT.;

In Section 2, we recall the coherent orientations for Cauchy-Riemann tuples used in [HT09]. In Section 3, we orient moduli spaces of JJ-holomorphic curves. In Section 4, we correct the definition of 𝐇\mathbf{H} and prove 𝐇⋅𝐇=0\mathbf{H}\cdot\mathbf{H}=0.

2. Coherent orientations of Cauchy-Riemann tuples

2.1. Cauchy-Riemann tuples

Definition 2.1.

A decorated Riemann surface with (k+,kβˆ’)(k_{+},k_{-}) marked points is a tuple (Ξ£,j,𝒑,𝒓)(\Sigma,j,\boldsymbol{p},\boldsymbol{r}) such that

  1. (1)

    (Ξ£,j)(\Sigma,j) is a possibly disconnected closed Riemann surface,

  2. (2)

    𝒑=(𝒑+,π’‘βˆ’)\boldsymbol{p}=(\boldsymbol{p}^{+},\boldsymbol{p}^{-}) and 𝒑±=(p1Β±,…,pkΒ±Β±)\boldsymbol{p}^{\pm}=(p^{\pm}_{1},\dots,p^{\pm}_{k_{\pm}}) is an ordered tuple of points on Ξ£\Sigma,

  3. (3)

    𝒓=(𝒓+,π’“βˆ’)\boldsymbol{r}=(\boldsymbol{r}^{+},\boldsymbol{r}^{-}) and 𝒓±=(r1Β±,…,rkΒ±Β±)\boldsymbol{r}^{\pm}=(r^{\pm}_{1},\dots,r^{\pm}_{k_{\pm}}) is an ordered tuple of rays on Ξ£\Sigma at 𝒑\boldsymbol{p}, i.e., ri±∈TpiΒ±β€‹Ξ£βˆ’{0}r^{\pm}_{i}\in T_{p^{\pm}_{i}}\Sigma-\{0\}.

Given a decorated Riemann surface (Ξ£,j,𝒑,𝒓)(\Sigma,j,\boldsymbol{p},\boldsymbol{r}), we regard its marked points as punctures and find holomorphic cylindrical coordinates around them. Let Ο•iΒ±:DβŠ‚β„‚β†’π’°piΒ±βŠ‚Ξ£\phi_{i}^{\pm}:D\subset\mathbb{C}\to\mathcal{U}_{p_{i}^{\pm}}\subset\Sigma be a biholomorphic map from the unit disc DD to a neighborhood 𝒰piΒ±\mathcal{U}_{p_{i}^{\pm}} of piΒ±p^{\pm}_{i} such that Ο•i±​(o)=piΒ±\phi_{i}^{\pm}(o)=p_{i}^{\pm} and d​ϕi±​(βˆ‚βˆ‚x)=riΒ±,d\phi_{i}^{\pm}(\frac{\partial}{\partial x})=r^{\pm}_{i}, where o∈Do\in D is the origin and βˆ‚βˆ‚x∈To​D.\frac{\partial}{\partial x}\in T_{o}D. Let 𝒰˙piΒ±=𝒰piΒ±βˆ’{piΒ±},\dot{\mathcal{U}}_{p_{i}^{\pm}}={\mathcal{U}}_{p_{i}^{\pm}}-\{p_{i}^{\pm}\}, and hiΒ±:ℝβ‰₯0(≀0)Γ—S1→𝒰˙piΒ±h_{i}^{\pm}:\mathbb{R}^{\geq 0(\leq 0)}\times S^{1}\to\dot{\mathcal{U}}_{p_{i}^{\pm}} be the biholomorphic map defined by

(2.1.1) hi±​(s,t)=(Ο•iΒ±)βˆ’1​(eβˆ“sβˆ“βˆ’1​t).h_{i}^{\pm}(s,t)=(\phi^{\pm}_{i})^{-1}(e^{\mp s\mp\sqrt{-1}t}).
Definition 2.2 ([Sch95]).

A smooth loop of symmetric matrices

S∈Cβˆžβ€‹(S1,End⁑(ℝ2​nβˆ’2))S\in C^{\infty}(S^{1},\operatorname{End}(\mathbb{R}^{2n-2}))

is called admissible if the ordinary differential equation

x˙​(t)=J0​S​(t)​x​(t),\dot{x}(t)=J_{0}S(t)x(t),
x:S1→ℝ2​nβˆ’2x:S^{1}\to\mathbb{R}^{2n-2}

has only the zero solution, where J0J_{0} is the standard complex structure on ℝ2​nβˆ’2\mathbb{R}^{2n-2}.

Definition 2.3.

A Cauchy-Riemann tuple (CR tuple for short) is a tuple

𝒯=(Ξ£,j,𝒑,𝒓,E,J,𝝍={ψiΒ±}i,𝑺={SiΒ±}i)\mathcal{T}=(\Sigma,j,\boldsymbol{p},\boldsymbol{r},E,J,\boldsymbol{\psi}=\{\psi_{i}^{\pm}\}_{i},\boldsymbol{S}=\{S_{i}^{\pm}\}_{i})

consisting of the following data:

  1. (1)

    A decorated Riemann surface (Ξ£,j,𝒑,𝒓)(\Sigma,j,\boldsymbol{p},\boldsymbol{r}) with (k+,kβˆ’)(k_{+},k_{-}) marked points.

  2. (2)

    A complex vector bundle (E,J)(E,J) over Ξ£Λ™=Ξ£βˆ’π’‘\dot{\Sigma}=\Sigma-\boldsymbol{p}, such that for each piΒ±p_{i}^{\pm}, there exist:

    1. (a)

      A neighborhood 𝒰piΒ±\mathcal{U}_{p_{i}^{\pm}} of piΒ±p_{i}^{\pm} in Ξ£\Sigma and a trivialization

      (2.1.2) ψiΒ±:(E,J)|𝒰˙pi±≃(ℝ2​n×𝒰˙piΒ±,J0),\psi_{i}^{\pm}:(E,J)|_{\dot{\mathcal{U}}_{p_{i}^{\pm}}}\simeq(\mathbb{R}^{2n}\times\dot{\mathcal{U}}_{p_{i}^{\pm}},J_{0}),

      where 𝒰˙piΒ±=𝒰piΒ±βˆ’piΒ±\dot{\mathcal{U}}_{p_{i}^{\pm}}=\mathcal{U}_{p_{i}^{\pm}}-p_{i}^{\pm}, and J0J_{0} is the standard complex structure on ℝ2​n\mathbb{R}^{2n}.

    2. (b)

      An admissible Si∈Cβˆžβ€‹(S1,End⁑(ℝ2​nβˆ’2))S_{i}\in C^{\infty}(S^{1},\operatorname{End}(\mathbb{R}^{2n-2})), where ℝ2​nβˆ’2\mathbb{R}^{2n-2} is viewed as the last (2​nβˆ’2)(2n-2) factors of ℝ2​n\mathbb{R}^{2n}.

Given an admissible loop SS, we obtain a path of symplectic matrices B​(t)∈Symp⁑(2​nβˆ’2,ℝ)B(t)\in\operatorname{Symp}(2n-2,\mathbb{R}) that solves B˙​(t)=J0​S​(t)​B​(t)\dot{B}(t)=J_{0}S(t)B(t) and B​(0)=Id.B(0)=\operatorname{Id}. We define the Conley-Zenhder index of SS by ΞΌCZ​(S)=μ​({B​(t)}t)\mu_{\operatorname{CZ}}(S)=\mu(\{B(t)\}_{t}), where ΞΌ\mu is the Maslov index, and we grade SS over β„€2\mathbb{Z}_{2} by |S|=ΞΌCZ​(S)+(nβˆ’1)mod2.|S|=\mu_{\operatorname{CZ}}(S)+(n-1)\mod 2.

Lemma 2.4 ([BM04]).

Given an admissible loop S∈Cβˆžβ€‹(S1,End⁑(ℝ2​nβˆ’2))S\in C^{\infty}(S^{1},\operatorname{End}(\mathbb{R}^{2n-2})), the associated operator A=J0β€‹βˆ‚βˆ‚t+S:W1,p​(S1,ℝ2​nβˆ’2)β†’Lp​(S1,ℝ2​nβˆ’2)A=J_{0}\frac{\partial}{\partial t}+S:W^{1,p}(S^{1},\mathbb{R}^{2n-2})\to L^{p}(S^{1},\mathbb{R}^{2n-2}) has discrete spectrum σ​(A)βŠ‚β„βˆ’{0}.\sigma(A)\subset\mathbb{R}-\{0\}.

For an admissible loop SS, we define Ξ»S=min⁑{βˆ’Ξ»βˆ’1,Ξ»1}>0\lambda_{S}=\min\{-\lambda_{-1},\lambda_{1}\}>0, where Ξ»1\lambda_{1} is the smallest positive eigenvalue of J0β€‹βˆ‚βˆ‚t+SJ_{0}\frac{\partial}{\partial t}+S, and Ξ»βˆ’1\lambda_{-1} is the largest negative eigenvalue of J0β€‹βˆ‚βˆ‚t+SJ_{0}\frac{\partial}{\partial t}+S.

Fix kβˆˆβ„€β‰₯0k\in\mathbb{Z}^{\geq 0}, and p>1p>1 such that k​p>2.kp>2.

Definition 2.5 (Cauchy-Riemann operators).

For a CR tuple 𝒯\mathcal{T}, we define 𝔇​(𝒯)\mathfrak{D}(\mathcal{T}) to be the topological space of linear operators, called Cauchy-Riemann operators (CR operators for short):

(2.1.3) L:WΞ΄k,p​(Ξ£Λ™,E)βŠ•π’±β†’WΞ΄kβˆ’1,p​(Ξ£Λ™,∧0,1Tβˆ—β€‹Ξ£Λ™βŠ—β„‚E),L:W^{k,p}_{\delta}(\dot{\Sigma},E)\oplus\mathcal{V}\to W^{k-1,p}_{\delta}(\dot{\Sigma},\wedge^{0,1}T^{*}\dot{\Sigma}\otimes_{\mathbb{C}}E),

such that:

  1. (1)

    0<Ξ΄<mini⁑λSi0<\delta<\min_{i}\lambda_{S_{i}}, and WΞ΄k,p​(β‹…)W^{k,p}_{\delta}(\cdot) and WΞ΄kβˆ’1,p​(β‹…)W^{k-1,p}_{\delta}(\cdot) are weighted Sobolev spaces.

  2. (2)

    𝒱=(βŠ•i=1kβˆ’π’±iβˆ’)βŠ•(βŠ•i=1k+𝒱i+)\mathcal{V}=(\oplus_{i=1}^{k_{-}}\mathcal{V}_{i}^{-})\oplus(\oplus_{i=1}^{k_{+}}\mathcal{V}_{i}^{+}), where 𝒱iΒ±=span⁑{Ξ²iΒ±β‹…e1,Ξ²iΒ±β‹…e2}\mathcal{V}^{\pm}_{i}=\operatorname{span}\{\beta_{i}^{\pm}\cdot e_{1},\beta_{i}^{\pm}\cdot e_{2}\}, {e1,…,e2​n}\{e_{1},\dots,e_{2n}\} is the standard basis of ℝ2βŠ•β„2​nβˆ’2\mathbb{R}^{2}\oplus\mathbb{R}^{2n-2}, 0≀βi±≀10\leq\beta_{i}^{\pm}\leq 1 is a bump function that is supported in 𝒰piΒ±\mathcal{U}_{p_{i}^{\pm}} and satisfies Ξ²i±​(piΒ±)=1\beta_{i}^{\pm}(p_{i}^{\pm})=1, and hence Ξ²iΒ±β‹…e1\beta_{i}^{\pm}\cdot e_{1} and Ξ²iΒ±β‹…e2\beta_{i}^{\pm}\cdot e_{2} are sections of EE.

  3. (3)

    LL is a real Cauchy-Riemann operator (Appendix C.1 in [MS12]), i.e., L=L0+L1L=L_{0}+L_{1}, where L0∈Wkβˆ’1,p​(Ξ£Λ™,∧0,1Tβˆ—β€‹Ξ£Λ™βŠ—β„Endℝ⁑(E))L_{0}\in W^{k-1,p}(\dot{\Sigma},\wedge^{0,1}T^{*}\dot{\Sigma}\otimes_{\mathbb{R}}\operatorname{End}_{\mathbb{R}}(E)) is the 0-th order operator, and L1L_{1} is a complex Cauchy-Riemann operator, that is, L1L_{1} is a β„‚\mathbb{C}-linear operator that satisfies the Leibnitz rule

    L1​(f​η)=f​(L1​η)+(βˆ‚Β―β€‹f)​ηL_{1}(f\eta)=f(L_{1}\eta)+(\overline{\partial}f)\eta

    for any f∈Ccβˆžβ€‹(Ξ£Λ™)f\in C^{\infty}_{c}(\dot{\Sigma}) and η∈WΞ΄k,p​(Ξ£Λ™,E)βŠ•π’±\eta\in W^{k,p}_{\delta}(\dot{\Sigma},E)\oplus\mathcal{V}.

  4. (4)

    With respect to the coordinate hiΒ±h_{i}^{\pm} and the trivialization ψiΒ±\psi_{i}^{\pm}, we require that for any η∈WΞ΄k,p​(Ξ£Λ™,E)βŠ•π’±\eta\in W^{k,p}_{\delta}(\dot{\Sigma},E)\oplus\mathcal{V} with support in 𝒰˙piΒ±{\dot{\mathcal{U}}_{p_{i}^{\pm}}}:

    (2.1.4) L​η​(s,t)=(βˆ‚Ξ·βˆ‚s+J~i±​(s,t)β€‹βˆ‚Ξ·βˆ‚t+S~i±​(s,t)​η)βŠ—(d​sβˆ’βˆ’1​d​t),L\eta(s,t)=\left(\frac{\partial\eta}{\partial s}+\widetilde{J}_{i}^{\pm}(s,t)\frac{\partial\eta}{\partial t}+\widetilde{S}_{i}^{\pm}(s,t)\eta\right)\otimes(ds-\sqrt{-1}dt),

    where (s,t)(s,t) is the cylindrical coordinates around piΒ±p_{i}^{\pm}, J~i±​(s,t)\widetilde{J}_{i}^{\pm}(s,t) is a complex structure on ℝ2​n\mathbb{R}^{2n}, S~i±​(s,t)∈End⁑(ℝ2​n)\widetilde{S}_{i}^{\pm}(s,t)\in\operatorname{End}(\mathbb{R}^{2n}), and there exist some constants CiΒ±>0C_{i}^{\pm}>0 such that for all Ξ²=(Ξ²1,Ξ²2)βˆˆβ„€β‰₯0Γ—β„€β‰₯0\beta=(\beta_{1},\beta_{2})\in\mathbb{Z}^{\geq 0}\times\mathbb{Z}^{\geq 0} with Ξ²1+Ξ²2≀k\beta_{1}+\beta_{2}\leq k one has

    |βˆ‚Ξ²(J~i±​(s,t)βˆ’J^0)|≀Ci±​eβˆ“12​λSi±​s,|\partial^{\beta}(\widetilde{J}_{i}^{\pm}(s,t)-\widehat{J}_{0})|\leq C_{i}^{\pm}e^{\mp\frac{1}{2}\lambda_{S_{i}^{\pm}}s},
    |βˆ‚Ξ²(S~i±​(s,t)βˆ’S^i±​(t))|≀Ci±​eβˆ“12​λSi±​s,|\partial^{\beta}(\widetilde{S}_{i}^{\pm}(s,t)-\widehat{S}_{i}^{\pm}(t))|\leq C_{i}^{\pm}e^{\mp\frac{1}{2}\lambda_{S_{i}^{\pm}}s},

    where J^0\widehat{J}_{0} is the standard complex structure on ℝ2​n\mathbb{R}^{2n},

    S^iΒ±=(00SiΒ±)\widehat{S}_{i}^{\pm}=\begin{pmatrix}0&&\\ &0&&\\ &&S_{i}^{\pm}\end{pmatrix}

    and βˆ‚Ξ²=βˆ‚sΞ²1βˆ‚tΞ²2.\partial^{\beta}=\partial^{\beta_{1}}_{s}\partial^{\beta_{2}}_{t}.

Note that the third term S~i±​(s,t)β€‹Ξ·βŠ—(d​sβˆ’βˆ’1​d​t)\widetilde{S}_{i}^{\pm}(s,t)\eta\otimes(ds-\sqrt{-1}dt) on the right hand side of FormulaΒ (2.1.4) is the 0-th order operator as in (3).

Proposition 2.6 ([Bou02, BM04]).

Any Lβˆˆπ”‡β€‹(𝒯)L\in\mathfrak{D}(\mathcal{T}) is Fredholm, and its Fredholm index is given by

ind⁑L=βˆ‘i=1k+ΞΌCZ​(Si+)βˆ’βˆ‘i=1kβˆ’ΞΌCZ​(Siβˆ’)βˆ’(nβˆ’1)​(kβˆ’+k+)+2​c1​(E)+n​(2βˆ’2​g),\operatorname{ind}L=\sum_{i=1}^{k_{+}}\mu_{\operatorname{CZ}}(S^{+}_{i})-\sum_{i=1}^{k_{-}}\mu_{\operatorname{CZ}}(S^{-}_{i})-(n-1)(k_{-}+k_{+})+2c_{1}(E)+n(2-2g),

where c1​(E)c_{1}(E) is the relative 11-st Chern number of EE with respect to the trivialization 𝛙\boldsymbol{\psi}.

We define the mod⁑2\operatorname{mod}2 indices

ind±⁑𝒯:=βˆ‘i=1kΒ±|SiΒ±|mod2,\operatorname{ind}^{\pm}\mathcal{T}:=\sum_{i=1}^{k_{\pm}}|S^{\pm}_{i}|\mod 2,

and

ind⁑𝒯:=ind+⁑𝒯+indβˆ’β‘π’―=ind⁑Lmod2.\operatorname{ind}\mathcal{T}:=\operatorname{ind}^{+}\mathcal{T}+\operatorname{ind}^{-}\mathcal{T}=\operatorname{ind}L\mod 2.
Definition 2.7 (determinant line).

For a CR operator LL, we define its determinant line as

detL=∧topkerLβŠ—βˆ§top(cokerL)βˆ—.\det L=\wedge^{\operatorname{top}}\ker L\otimes\wedge^{\operatorname{top}}(\operatorname{coker}L)^{*}.
Definition 2.8 (orientation).

For a CR operator LL, we define its orientation o​(L)o(L) to be a choice of a non-zero vector in detL\det L up to positive scalar multiplication.

Example 2.9.

We call a CR tuple 𝒯\mathcal{T} trivial, if k+=kβˆ’=1k_{+}=k_{-}=1 and S1+=S1βˆ’S_{1}^{+}=S_{1}^{-}. For a trivial 𝒯\mathcal{T}, Lβˆˆπ”‡β€‹(𝒯)L\in\mathfrak{D}(\mathcal{T}) is said to be trivial, if J1+=J1βˆ’J_{1}^{+}=J_{1}^{-}, and J~1Β±\widetilde{J}^{\pm}_{1} and S~1Β±\widetilde{S}^{\pm}_{1} are independent of ss. In this case, ind⁑L=2\operatorname{ind}L=2, coker⁑L={0},\operatorname{coker}L=\{0\}, and ker⁑L\ker L is spanned by translation and rotation.

Example 2.10.

When kβˆ’=0=k+k_{-}=0=k_{+}, the operator LL is homotopic to a complex CR operator, whose ker\ker and coker\operatorname{coker} are complex vector spaces. We have the canonical orientation ocan​(L)o_{\operatorname{can}}(L) of detL\det L coming from the complex structure.

It is convenient to state the following lemma:

Lemma 2.11 ([FOOO09] p. 676).

Let VV and WW be Banach spaces, and Ο•:Vβ†’W\phi:V\to W a linear Fredholm operator. Let FβŠ‚WF\subset W be a finite-dimensional subspace of WW such that W=im⁑(Ο•)+FW=\operatorname{im}(\phi)+F. Then there is an isomorphism

detΟ•β‰ƒβˆ§top(Ο•βˆ’1(F))βŠ—βˆ§topFβˆ—,\det\phi\simeq\wedge^{\operatorname{top}}(\phi^{-1}(F))\otimes\wedge^{\operatorname{top}}F^{*},

which is natural up to a positive constant. More precisely, suppose Ο•βˆ’1​(F)=kerβ‘Ο•βŠ•HβŠ†V\phi^{-1}(F)=\ker\phi\oplus H\subseteq V, {e1,…,en}\{e_{1},\dots,e_{n}\} is a basis of ker⁑ϕ\ker\phi, {h1,…,hm}\{h_{1},\dots,h_{m}\} is a basis of HH, and {v1,…,vβ„“,ϕ​(h1),…,ϕ​(hm)}\{v_{1},\dots,v_{\ell},\phi(h_{1}),\dots,\phi(h_{m})\} is a basis of FF. Then the isomorphism is given by

e1βˆ§β‹―βˆ§enβŠ—vβ„“βˆ—βˆ§β‹―βˆ§v1βˆ—β†¦\displaystyle e_{1}\wedge\dots\wedge e_{n}\otimes v_{\ell}^{*}\wedge\dots\wedge v_{1}^{*}\mapsto e1βˆ§β‹―βˆ§en∧h1βˆ§β‹―βˆ§hm\displaystyle e_{1}\wedge\dots\wedge e_{n}\wedge h_{1}\wedge\dots\wedge h_{m}
βŠ—Ο•β€‹(hm)βˆ—βˆ§β‹―βˆ§Ο•β€‹(h1)βˆ—βˆ§vβ„“βˆ—βˆ§β‹―βˆ§v1βˆ—.\displaystyle\otimes\phi(h_{m})^{*}\wedge\dots\wedge\phi(h_{1})^{*}\wedge v_{\ell}^{*}\wedge\dots\wedge v_{1}^{*}.

Given a continuous family of Fredholm operators {ϕτ}Ο„βˆˆ[0,1]\{\phi_{\tau}\}_{\tau\in[0,1]}, we can find a finite-dimensional space FβŠ‚WF\subset W and a subspace UβŠ‚WU\subset W such that W=FβŠ•UW=F\oplus U and W=im⁑(ϕτ)+FW=\operatorname{im}(\phi_{\tau})+F. Let Ο€U:Wβ†’U\pi_{U}:W\to U be the projection map. Then the map Ο€Uβˆ˜Ο•Ο„:Vβ†’U\pi_{U}\circ\phi_{\tau}:V\to U is surjective, and ker⁑(Ο€Uβˆ˜Ο•Ο„)=Ο•Ο„βˆ’1​(F).\ker(\pi_{U}\circ\phi_{\tau})=\phi_{\tau}^{-1}(F). By LemmaΒ 2.11, we have detΟ•Ο„β‰ƒβˆ§top(Ο•Ο„βˆ’1(F))βŠ—βˆ§topFβˆ—β‰ƒβˆ§topker(Ο€Uβˆ˜Ο•Ο„)βŠ—βˆ§topFβˆ—\det\phi_{\tau}\simeq\wedge^{\operatorname{top}}(\phi_{\tau}^{-1}(F))\otimes\wedge^{\operatorname{top}}F^{*}\simeq\wedge^{\operatorname{top}}\ker(\pi_{U}\circ\phi_{\tau})\otimes\wedge^{\operatorname{top}}F^{*}. Since both ker⁑(Ο€Uβˆ˜Ο•Ο„)\ker(\pi_{U}\circ\phi_{\tau}) and Fβˆ—F^{*} form vector bundles over [0,1][0,1], detϕτ\det\phi_{\tau} forms a line bundle over [0,1][0,1]. More generally, a homotopy of CR tuples {LΟ„}0≀τ≀1\{L_{\tau}\}_{0\leq\tau\leq 1} induces an isomorphism detL0≃detL1\det L_{0}\simeq\det L_{1}.

Since the space 𝔇​(𝒯)\mathfrak{D}(\mathcal{T}) is contractible, detL\det L and detLβ€²\det L^{\prime} are canonically isomorphic for any L,Lβ€²βˆˆπ”‡β€‹(𝒯)L,L^{\prime}\in\mathfrak{D}(\mathcal{T}). For this reason, we also write det𝒯\det\mathcal{T}, o​(𝒯)o(\mathcal{T}), and ocan​(𝒯)o_{\operatorname{can}}(\mathcal{T}).

2.2. Disjoint union

The disjoint union π’―β€‹βˆπ’―β€²\mathcal{T}\coprod\mathcal{T}^{\prime} of two CR tuples 𝒯\mathcal{T} and 𝒯′\mathcal{T}^{\prime} is defined in the obvious way. The punctures of Ξ£Λ™β€‹βˆΞ£Λ™β€²\dot{\Sigma}\coprod\dot{\Sigma}^{\prime} are ordered so that the punctures of Ξ£Λ™\dot{\Sigma} come before those of Ξ£Λ™β€²\dot{\Sigma}^{\prime}, and the relative orders of the punctures of Ξ£Λ™\dot{\Sigma} and Ξ£Λ™β€²\dot{\Sigma}^{\prime} are preserved, respectively. For any Lβˆˆπ”‡β€‹(𝒯)L\in\mathfrak{D}(\mathcal{T}) and Lβ€²βˆˆπ”‡β€‹(𝒯′)L^{\prime}\in\mathfrak{D}(\mathcal{T}^{\prime}), the disjoint union map induces an isomorphism

(2.2.1) detLβŠ—detLβ€²β†’det(Lβ€‹βˆLβ€²),\det L\otimes\det L^{\prime}\to\det(L\coprod L^{\prime}),

where Lβ€‹βˆLβ€²βˆˆπ”‡β€‹(π’―β€‹βˆπ’―β€²)L\coprod L^{\prime}\in\mathfrak{D}(\mathcal{T}\coprod\mathcal{T}^{\prime}) is defined as follows: Let {e1,…,en}\{e_{1},\dots,e_{n}\} be a basis of ker⁑L\ker L, {f1,…,fm}\{f_{1},\dots,f_{m}\} be a basis of coker⁑L\operatorname{coker}L, {e1β€²,…,enβ€²β€²}\{e^{\prime}_{1},\dots,e^{\prime}_{n^{\prime}}\} be a basis of ker⁑Lβ€²\ker L^{\prime}, {f1β€²,…,fmβ€²β€²}\{f^{\prime}_{1},\dots,f^{\prime}_{m^{\prime}}\} be a basis of coker⁑Lβ€²\operatorname{coker}L^{\prime}. Then the isomorphism is given by:

(2.2.2) e1βˆ§β‹―βˆ§enβŠ—fmβˆ—βˆ§β‹―βˆ§f1βˆ—βŠ—e1β€²βˆ§β‹―βˆ§enβ€²β€²βŠ—fmβ€²β€²βˆ—βˆ§β‹―βˆ§f1β€²βˆ—β†¦(βˆ’1)ind⁑Lβ€²β‹…dim(coker⁑L)​e1βˆ§β‹―βˆ§en∧e1β€²βˆ§β‹―βˆ§enβ€²β€²βŠ—fmβ€²β€²βˆ—βˆ§β‹―βˆ§f1β€²βˆ—βˆ§fmβˆ—βˆ§β‹―βˆ§f1βˆ—.\begin{split}&e_{1}\wedge\dots\wedge e_{n}\otimes f_{m}^{*}\wedge\dots\wedge f_{1}^{*}\otimes e^{\prime}_{1}\wedge\dots\wedge e^{\prime}_{n^{\prime}}\otimes{f^{\prime}_{m^{\prime}}}^{*}\wedge\dots\wedge{f^{\prime}_{1}}^{*}\\ \mapsto&(-1)^{\operatorname{ind}L^{\prime}\cdot\dim(\operatorname{coker}L)}e_{1}\wedge\dots\wedge e_{n}\wedge e^{\prime}_{1}\wedge\dots\wedge e^{\prime}_{n^{\prime}}\\ &\otimes{f^{\prime}_{m^{\prime}}}^{*}\wedge\dots\wedge{f^{\prime}_{1}}^{*}\wedge f_{m}^{*}\wedge\dots\wedge f_{1}^{*}.\end{split}

In the case when both LL and Lβ€²L^{\prime} are surjective, Lβ€‹βˆLβ€²L\coprod L^{\prime} is also surjective, and the isomorphism simplifies to

e1βˆ§β‹―βˆ§enβŠ—e1β€²βˆ§β‹―βˆ§en′′↦e1βˆ§β‹―βˆ§en∧e1β€²βˆ§β‹―βˆ§enβ€²β€².e_{1}\wedge\dots\wedge e_{n}\otimes e^{\prime}_{1}\wedge\dots\wedge e^{\prime}_{n^{\prime}}\mapsto e_{1}\wedge\dots\wedge e_{n}\wedge e^{\prime}_{1}\wedge\dots\wedge e^{\prime}_{n^{\prime}}.
Remark 2.12.

This sign (βˆ’1)ind⁑Lβ€²β‹…dim(coker⁑L)(-1)^{\operatorname{ind}L^{\prime}\cdot\dim(\operatorname{coker}L)} is the same sign that comes from β€œpassing” the term fmβˆ—βˆ§β‹―βˆ§f1βˆ—f_{m}^{*}\wedge\dots\wedge f_{1}^{*} in the right hand side of FormulaΒ (2.2.2) across the term e1β€²βˆ§β‹―βˆ§enβ€²β€²βŠ—fmβ€²β€²βˆ—βˆ§β‹―βˆ§f1β€²βˆ—e^{\prime}_{1}\wedge\dots\wedge e^{\prime}_{n^{\prime}}\otimes{f^{\prime}_{m^{\prime}}}^{*}\wedge\dots\wedge{f^{\prime}_{1}}^{*}.

The isomorphism (2.2.1) is continuous with respect to the homotopy of CR operators LL and Lβ€²L^{\prime}, hence induces a map on CR tuples 𝒯\mathcal{T} and 𝒯′\mathcal{T}^{\prime}:

detπ’―βŠ—det𝒯′→det(π’―β€‹βˆπ’―β€²)\det\mathcal{T}\otimes\det\mathcal{T}^{\prime}\to\det(\mathcal{T}\coprod\mathcal{T}^{\prime})

and we denote the image of vβŠ—vβ€²v\otimes v^{\prime} by vβ€‹βˆvβ€²v\coprod v^{\prime}.

Note that det(π’―β€‹βˆπ’―β€²)\det(\mathcal{T}\coprod\mathcal{T}^{\prime}) can be canonically identified with det(π’―β€²β€‹βˆπ’―)\det(\mathcal{T}^{\prime}\coprod\mathcal{T}) by identifying the disconnected Riemann surface Ξ£β€‹βˆΞ£β€²\Sigma\coprod\Sigma^{\prime} with Ξ£β€²β€‹βˆΞ£\Sigma^{\prime}\coprod\Sigma, and identifying the bundles Eβ€‹βˆEβ€²E\coprod E^{\prime} with Eβ€²β€‹βˆEE^{\prime}\coprod E in the obvious way. Under such identification, for any v∈det𝒯v\in\det\mathcal{T} and vβ€²βˆˆdet𝒯′v^{\prime}\in\det\mathcal{T}^{\prime}, vβ€‹βˆvβ€²v\coprod v^{\prime} and vβ€²β€‹βˆvv^{\prime}\coprod v lie in the same vector space. The following lemma is clear from the above definition.

Lemma 2.13.
vβ€‹βˆvβ€²=(βˆ’1)ind⁑𝒯​ind⁑𝒯′​vβ€²β€‹βˆv,v\coprod v^{\prime}=(-1)^{\operatorname{ind}\mathcal{T}\operatorname{ind}\mathcal{T}^{\prime}}v^{\prime}\coprod v,

for any v∈det𝒯v\in\det\mathcal{T} and vβ€²βˆˆdet𝒯′v^{\prime}\in\det\mathcal{T}^{\prime}.

2.3. Gluing

Given two CR tuples 𝒯\mathcal{T} and 𝒯′\mathcal{T}^{\prime}, and Lβˆˆπ”‡β€‹(𝒯)L\in\mathfrak{D}(\mathcal{T}) and Lβ€²βˆˆπ”‡β€‹(𝒯′)L^{\prime}\in\mathfrak{D}(\mathcal{T}^{\prime}), a positive integer τ≀min⁑(kβˆ’,k+β€²)\tau\leq\operatorname{min}(k_{-},k_{+}^{\prime}), and a sufficiently large gluing parameter R>0R>0, if the first Ο„\tau negative ends of Ξ£Λ™\dot{\Sigma} match the last Ο„\tau positive ends of Ξ£Λ™β€²\dot{\Sigma}^{\prime}, i.e., for 1≀i≀τ1\leq i\leq\tau,

Siβˆ’=Sβ€²k+β€²βˆ’Ο„+i+,S_{i}^{-}={S^{\prime}}_{k^{\prime}_{+}-\tau+i}^{+},

then we can glue 𝒯\mathcal{T} and 𝒯′\mathcal{T}^{\prime} to obtain a new CR tuple 𝒯′′,\mathcal{T}^{\prime\prime}, and glue LL and Lβ€²L^{\prime} to obtain Lβ€²β€²βˆˆπ”‡β€‹(𝒯′′)L^{\prime\prime}\in\mathfrak{D}(\mathcal{T}^{\prime\prime}). The gluing construction is straightforward: for each 1≀i≀τ1\leq i\leq\tau we β€œchop off” the end (βˆ’βˆž,βˆ’2​R]Γ—S1(-\infty,-2R]\times S^{1} from Ξ£Λ™\dot{\Sigma} around piβˆ’p_{i}^{-}, and the end [2​R,∞)Γ—S1[2R,\infty)\times S^{1} from Ξ£Λ™β€²\dot{\Sigma}^{\prime} around pk+β€²βˆ’Ο„+i+p^{+}_{k^{\prime}_{+}-\tau+i} , identify the regions [βˆ’2​R,βˆ’R]Γ—S1βŠ‚Ξ£Λ™[-2R,-R]\times S^{1}\subset\dot{\Sigma} and [R,2​R]Γ—S1βŠ‚Ξ£Λ™β€²[R,2R]\times S^{1}\subset\dot{\Sigma}^{\prime}, and the bundles EE and Eβ€²E^{\prime} above these regions, and interpolate LL and Lβ€²L^{\prime} over the identified regions. We now explain how 𝒑′′\boldsymbol{p}^{\prime\prime} is ordered. The positive (negative) marked points of 𝒑′\boldsymbol{p}^{\prime} are ordered before the positive (negative) marked points of 𝒑\boldsymbol{p}, more precisely, 𝒑+β€²β€²=(pβ€²+1,…,pβ€²+k+β€²βˆ’Ο„,p+1,…,p+k+)\boldsymbol{p}^{\prime\prime}_{+}=({p^{\prime}}_{+}^{1},\dots,{p^{\prime}}_{+}^{k^{\prime}_{+}-\tau},{p}_{+}^{1},\dots,{p}_{+}^{k_{+}}) and π’‘βˆ’β€²β€²=(pβ€²βˆ’1,…,pβ€²βˆ’kβˆ’β€²,pβˆ’Ο„+1,…,pβˆ’kβˆ’)\boldsymbol{p}_{-}^{\prime\prime}=({p^{\prime}}_{-}^{1},\dots,{p^{\prime}}_{-}^{k^{\prime}_{-}},p_{-}^{\tau+1},\dots,p_{-}^{k_{-}}). We denote 𝒯′′=𝒯​♯τ,R​𝒯′\mathcal{T}^{\prime\prime}=\mathcal{T}\sharp_{\tau,R}\mathcal{T}^{\prime} and Lβ€²β€²=L​♯τ,R​Lβ€²L^{\prime\prime}=L\sharp_{\tau,R}L^{\prime}.

We follow the complete gluing convention in [HT09] by restricting the gluing to the case when kβˆ’=k+β€²=Ο„k_{-}=k_{+}^{\prime}=\tau, i.e., all the negative punctures of Ξ£Λ™\dot{\Sigma} match with all the positive punctures of Ξ£Λ™β€²\dot{\Sigma}^{\prime} and we glue along all of them. For complete gluing we write 𝒯′′=𝒯​♯R​𝒯′\mathcal{T}^{\prime\prime}=\mathcal{T}\sharp_{R}\mathcal{T}^{\prime} and Lβ€²β€²=L​♯R​Lβ€²L^{\prime\prime}=L\sharp_{R}L^{\prime}. To get a non-complete gluing from complete gluing, one can add a few trivial CR tuples before gluing in the obvious way. See FigureΒ (1).

Figure 1. Taking disjoint union with trivial cylinders before gluing.

From now on, all gluings are assumed to be complete unless otherwise specified.

Lemma 2.14 (Corollary 7 in [BM04], Lemma 9.6 in [HT09] and Lemma A.7 in [HN22]).

The gluing map induces an isomorphism

detLβŠ—detLβ€²β†’det(L​♯R​Lβ€²),\det L\otimes\det L^{\prime}\to\det(L\sharp_{R}L^{\prime}),

which is continuous with respect to the homotopies of CR operators LL and Lβ€²L^{\prime}, as well as the gluing parameter RR.

Remark 2.15.

When both LL and Lβ€²L^{\prime} are surjective, the isomorphism detLβŠ—detLβ€²β†’det(L​♯R​Lβ€²)\det L\otimes\det L^{\prime}\to\det(L\sharp_{R}L^{\prime}) by the following steps:

(2.3.1) e1βˆ§β‹―βˆ§enβŠ—e1β€²βˆ§β‹―βˆ§en′′↦e~1βˆ§β‹―βˆ§e~n∧e~1β€²βˆ§β‹―βˆ§e~nβ€²β€²,e_{1}\wedge\dots\wedge e_{n}\otimes e_{1}^{\prime}\wedge\dots\wedge e_{n^{\prime}}^{\prime}\mapsto\tilde{e}_{1}\wedge\dots\wedge\tilde{e}_{n}\wedge\tilde{e}_{1}^{\prime}\wedge\dots\wedge\tilde{e}_{n^{\prime}}^{\prime},

where e~i\tilde{e}_{i} is obtained by:

  1. (1)

    Translating eie_{i} by RR to obtain ei,Re_{i,R}.

  2. (2)

    Multiplying ei,Re_{i,R} by a cutoff function Ξ²i\beta_{i} that is 0 near the puncture.

  3. (3)

    Identifying Ξ²i​ei,R\beta_{i}e_{i,R} as a section over Ξ£Λ™β€²β€²\dot{\Sigma}^{\prime\prime}.

  4. (4)

    Projecting Ξ²i​ei,R\beta_{i}e_{i,R} to ker⁑Lβ€²β€²\ker L^{\prime\prime}. The image of Ξ²i​ei,R\beta_{i}e_{i,R} under the projection is denoted as e~i\tilde{e}_{i}.

Similarly, e~jβ€²\tilde{e}_{j}^{\prime} is constructed.

Because of LemmaΒ 2.14, we write β™―\sharp instead of β™―R\sharp_{R}, meaning gluing with some unspecified gluing parameter. The gluing map induces an isomorphism

detπ’―βŠ—det𝒯′→det(𝒯​♯​𝒯′),\det\mathcal{T}\otimes\det\mathcal{T}^{\prime}\to\det(\mathcal{T}\sharp\mathcal{T}^{\prime}),

and we denote the image of vβŠ—vβ€²v\otimes v^{\prime} under the isomorphism as v​♯​vβ€²v\sharp v^{\prime}.

Lemma 2.16 (Lemma 9.7 in [HT09]).

The gluing operation for CR tuples is associative up to homotopy, as is the induced operation on determinants:

(v​♯​vβ€²)​♯​vβ€²β€²=v​♯​(v′​♯​vβ€²β€²)(v\sharp v^{\prime})\sharp v^{\prime\prime}=v\sharp(v^{\prime}\sharp v^{\prime\prime})

for any v∈det𝒯v\in\det\mathcal{T}, vβ€²βˆˆdet𝒯′v^{\prime}\in\det\mathcal{T}^{\prime}, and vβ€²β€²βˆˆdet𝒯′′v^{\prime\prime}\in\det\mathcal{T}^{\prime\prime}.

2.4. Construction of coherent orientation systems.

To construct a coherent orientation system for all CR tuples 𝒯\mathcal{T} with loops of admissible symmetric matrices from {S1,S2,…}\{S_{1},S_{2},\dots\}, we follow the method outlined in [BM04]. This involves the following steps:

  1. (1)

    For each loop of admissible symmetric matrices SS, we perform the following:

    1. (a)

      Choose a CR tuple 𝒯S+\mathcal{T}^{+}_{S} with one positive puncture, zero negative punctures, and the associated admissible loop SS.

    2. (b)

      Select an orientation o​(𝒯S+)o(\mathcal{T}^{+}_{S}).

    3. (c)

      Pick a CR tuple 𝒯Sβˆ’\mathcal{T}^{-}_{S} with zero positive puncture and one negative puncture and the associated admissible loop being SS.

    4. (d)

      Determine the orientation o​(𝒯Sβˆ’)o(\mathcal{T}^{-}_{S}) by gluing 𝒯S+\mathcal{T}^{+}_{S} and 𝒯Sβˆ’\mathcal{T}^{-}_{S} together. Specifically, the equation o​(𝒯S+)​♯​o​(𝒯Sβˆ’)=ocan​(𝒯S+​♯​𝒯Sβˆ’)o(\mathcal{T}^{+}_{S})\sharp o(\mathcal{T}^{-}_{S})=o_{\operatorname{can}}(\mathcal{T}^{+}_{S}\sharp\mathcal{T}^{-}_{S}) uniquely determines o​(𝒯Sβˆ’)o(\mathcal{T}^{-}_{S}).

We refer to 𝒯SΒ±\mathcal{T}_{S}^{\pm} as the positive (negative) capping CR tuple and o​(𝒯SΒ±)o(\mathcal{T}^{\pm}_{S}) as the positive (negative) capping orientation.

  1. (2)

    For an arbitrary CR tuple 𝒯\mathcal{T}, we define 𝒯𝑺±±\mathcal{T}^{\pm}_{\boldsymbol{S}^{\pm}} as the CR tuple obtained by taking the iterated disjoint union of 𝒯S1Β±Β±β€‹βˆβ€¦β€‹βˆπ’―SkΒ±Β±Β±\mathcal{T}^{\pm}_{S^{\pm}_{1}}\coprod\dots\coprod\mathcal{T}^{\pm}_{S^{\pm}_{k^{\pm}}}, where SiΒ±S^{\pm}_{i} is the admissible loop of symmetric matrices at the ii-th positive (negative) puncture. Then, the orientation o​(𝒯𝑺±±)o(\mathcal{T}^{\pm}_{\boldsymbol{S}^{\pm}}) is determined by the equation:

    (2.4.1) o​(𝒯𝑺±±)=Ο΅βˆβ‹…o​(𝒯S1Β±Β±)β€‹βˆβ€¦β€‹βˆo​(𝒯SkΒ±Β±Β±),o(\mathcal{T}^{\pm}_{\boldsymbol{S}^{\pm}})=\epsilon^{\coprod}\cdot o(\mathcal{T}^{\pm}_{S_{1}^{\pm}})\coprod\dots\coprod o(\mathcal{T}^{\pm}_{S_{k^{\pm}}^{\pm}}),

    where ϡ∐=Ο΅βˆβ€‹(𝒯S1Β±Β±,…,𝒯SkΒ±Β±Β±)∈{Β±1}\epsilon^{\coprod}=\epsilon^{\coprod}(\mathcal{T}^{\pm}_{S_{1}^{\pm}},\dots,\mathcal{T}^{\pm}_{S_{k^{\pm}}^{\pm}})\in\{\pm 1\} is to be chosen.

  2. (3)

    Finally, we glue 𝒯𝑺++\mathcal{T}^{+}_{\boldsymbol{S}^{+}}, 𝒯\mathcal{T}, and π’―π‘Ίβˆ’βˆ’\mathcal{T}^{-}_{\boldsymbol{S}^{-}} together to obtain a CR tuple with no punctures. The orientation o​(𝒯)o(\mathcal{T}) is determined by the equation:

    (2.4.2) o​(𝒯𝑺++)​♯​o​(𝒯)​♯​o​(π’―π‘Ίβˆ’βˆ’)=Ο΅β™―β‹…ocan​(𝒯𝑺++β€‹β™―β€‹π’―β€‹β™―β€‹π’―π‘Ίβˆ’βˆ’),o(\mathcal{T}_{\boldsymbol{S}^{+}}^{+})\sharp o(\mathcal{T})\sharp o(\mathcal{T}^{-}_{\boldsymbol{S}^{-}})=\epsilon^{\sharp}\cdot o_{\operatorname{can}}(\mathcal{T}_{\boldsymbol{S}^{+}}^{+}\sharp\mathcal{T}\sharp\mathcal{T}^{-}_{\boldsymbol{S}^{-}}),

    where Ο΅β™―=ϡ♯​(𝒯𝑺++,𝒯,π’―π‘Ίβˆ’βˆ’)∈{Β±1}\epsilon^{\sharp}=\epsilon^{\sharp}(\mathcal{T}^{+}_{\boldsymbol{S}^{+}},\mathcal{T},\mathcal{T}^{-}_{\boldsymbol{S}^{-}})\in\{\pm 1\} is to be chosen.

The choices of ϡ∐\epsilon^{\coprod} and Ο΅β™―\epsilon^{\sharp} in [BM04] and in [HT09] are different, resulting in different properties of the coherent orientations. We list the properties and the choices of ϡ∐\epsilon^{\coprod} and Ο΅β™―\epsilon^{\sharp} of coherent orientations ob​mo_{bm} in [BM04] and oh​to_{ht} in [HT09] below. The signs ϡ∐\epsilon^{\coprod} and Ο΅β™―\epsilon^{\sharp} in FormulasΒ (2.4.1) and (2.4.2) come from disjoint union and gluing of multiple (possibly greater than two) CR tuples, respectively. They are determined inductively by the signs that come from disjoint union and gluing two CR tuples.

Theorem 2.17 ([BM04]).

There exists a choice of orientations ob​mo_{bm} for all CR tuples such that:

  1. (1)

    The gluing map is orientation-preserving with a sign correction:

    ob​m​(𝒯)​♯​ob​m​(𝒯′)=Ο΅b​mβ™―β‹…ob​m​(𝒯​♯​𝒯′),o_{bm}(\mathcal{T})\sharp o_{bm}(\mathcal{T}^{\prime})=\epsilon^{\sharp}_{bm}\cdot o_{bm}(\mathcal{T}\sharp\mathcal{T}^{\prime}),

    where

    Ο΅b​mβ™―=(βˆ’1)βˆ‘1≀a<b≀kβˆ’|Saβˆ’|β‹…|Sbβˆ’|.\epsilon^{\sharp}_{bm}=(-1)^{\sum_{1\leq a<b\leq k_{-}}|S_{a}^{-}|\cdot|S_{b}^{-}|}.

    The sign (βˆ’1)βˆ‘1≀a<b≀kβˆ’|Saβˆ’|β‹…|Sbβˆ’|(-1)^{\sum_{1\leq a<b\leq k_{-}}|S_{a}^{-}|\cdot|S_{b}^{-}|} arises from reversing the ordering of negative ends of 𝒯\mathcal{T}.

  2. (2)

    The disjoint union map is orientation-preserving with a sign correction:

    ob​m​(𝒯)β€‹βˆob​m​(𝒯′)=Ο΅b​mβˆβ‹…ob​m​(π’―β€‹βˆπ’―β€²),o_{bm}(\mathcal{T})\coprod o_{bm}(\mathcal{T}^{\prime})=\epsilon^{\coprod}_{bm}\cdot o_{bm}(\mathcal{T}\coprod\mathcal{T}^{\prime}),

    where

    Ο΅b​m∐=(βˆ’1)indβˆ’β‘π’―β‹…ind+⁑𝒯′.\epsilon^{\coprod}_{bm}=(-1)^{\operatorname{ind}^{-}\mathcal{T}\cdot\operatorname{ind}^{+}\mathcal{T}^{\prime}}.
  3. (3)

    When kβˆ’+k+=0k_{-}+k_{+}=0, ob​m​(𝒯)=ocan​(𝒯).o_{bm}(\mathcal{T})=o_{\operatorname{can}}(\mathcal{T}).

  4. (4)

    An isomorphism between CR tuples preserves orientation.

The gluing convention in this paper is different from that of [BM04]222The matching ordering between the negative punctures of Ξ£Λ™\dot{\Sigma} and the positive punctures of Ξ£Λ™β€²\dot{\Sigma}^{\prime} is reversed in [BM04]., which is source of the extra sign Ο΅b​mβ™―\epsilon^{\sharp}_{bm}.

Theorem 2.18 ([HT09]).

There exists a choice of orientation oh​to_{ht} for all CR tuples such that:

  1. (1)

    The gluing map is orientation-preserving:

    oh​t​(𝒯)​♯​oh​t​(𝒯′)=oh​t​(𝒯​♯​𝒯′),o_{ht}(\mathcal{T})\sharp o_{ht}(\mathcal{T}^{\prime})=o_{ht}(\mathcal{T}\sharp\mathcal{T}^{\prime}),

    which in particular means Ο΅h​tβ™―=1\epsilon^{\sharp}_{ht}=1.

  2. (2)

    The disjoint union map is orientation-preserving with a sign correction:

    oh​t​(𝒯)β€‹βˆoh​t​(𝒯′)=Ο΅h​tβˆβ‹…oh​t​(π’―β€‹βˆπ’―β€²),o_{ht}(\mathcal{T})\coprod o_{ht}(\mathcal{T}^{\prime})=\epsilon^{\coprod}_{ht}\cdot o_{ht}(\mathcal{T}\coprod\mathcal{T}^{\prime}),

    where

    Ο΅h​t∐=(βˆ’1)indβˆ’β‘π’―β‹…ind⁑𝒯′.\epsilon^{\coprod}_{ht}=(-1)^{\operatorname{ind}^{-}\mathcal{T}\cdot\operatorname{ind}\mathcal{T}^{\prime}}.
  3. (3)

    When kβˆ’+k+=0k_{-}+k_{+}=0, oh​t​(𝒯)=ocan​(𝒯).o_{ht}(\mathcal{T})=o_{\operatorname{can}}(\mathcal{T}).

  4. (4)

    An isomorphism between CR tuples preserves orientation.

Let 𝒯′\mathcal{T}^{\prime} be the same CR tuple as 𝒯\mathcal{T} except that the ii-th and the (i+1)(i+1)-th positive (or negative) punctures are swapped. Note that det𝒯\det\mathcal{T} does not depend on the ordering of the punctures of 𝒯\mathcal{T}, so det𝒯=det𝒯′\det\mathcal{T}=\det\mathcal{T}^{\prime}. On the other hand, the coherent orientation depends on the ordering of the punctures. Indeed,

Corollary 2.19.

Let o=ob​mo=o_{bm} or oh​to_{ht}. Then

o​(𝒯)=(βˆ’1)|SiΒ±|β‹…|Si+1Β±|​o​(𝒯′).o(\mathcal{T})=(-1)^{|S^{\pm}_{i}|\cdot|S^{\pm}_{i+1}|}o(\mathcal{T}^{\prime}).
Proof.

The case when o=ob​mo=o_{bm} can be found in [BM04], and we do not repeat it here. We provide a proof for the case when o=oh​to=o_{ht} and when 𝒯\mathcal{T} has two positive punctures and zero negative punctures. The general case can be proved similarly, and we skip it here.

Let 𝒯Si++\mathcal{T}_{S_{i}^{+}}^{+} for i=1,2i=1,2 be the positive capping CR tuple. Then the two gluings (𝒯S1++β€‹βˆπ’―S2++)​♯​𝒯(\mathcal{T}_{S_{1}^{+}}^{+}\coprod\mathcal{T}_{S_{2}^{+}}^{+})\sharp\mathcal{T} and (𝒯S2++β€‹βˆπ’―S1++)​♯​𝒯′(\mathcal{T}_{S_{2}^{+}}^{+}\coprod\mathcal{T}_{S_{1}^{+}}^{+})\sharp\mathcal{T}^{\prime} give the same CR tuple 𝒯′′\mathcal{T}^{\prime\prime} with no punctures. Hence, we have

(βˆ’1)|S1+|β‹…|S2+|​(o​(𝒯S1++)β€‹βˆo​(𝒯S2++))​♯​o​(𝒯)\displaystyle(-1)^{|S_{1}^{+}|\cdot|S_{2}^{+}|}\left(o(\mathcal{T}_{S_{1}^{+}}^{+})\coprod o(\mathcal{T}_{S_{2}^{+}}^{+})\right)\sharp o(\mathcal{T})
=\displaystyle= o​(𝒯′′)=(βˆ’1)|S1+|β‹…|S2+|​(o​(𝒯S2++)β€‹βˆo​(𝒯S1++))​♯​o​(𝒯′).\displaystyle o(\mathcal{T}^{\prime\prime})=(-1)^{|S_{1}^{+}|\cdot|S_{2}^{+}|}\left(o(\mathcal{T}_{S_{2}^{+}}^{+})\coprod o(\mathcal{T}_{S_{1}^{+}}^{+})\right)\sharp o(\mathcal{T}^{\prime}).

By LemmaΒ 2.13, we have

o​(𝒯S1++)β€‹βˆo​(𝒯S2++)=(βˆ’1)|S1+|β‹…|S2+|​o​(𝒯S2++)β€‹βˆo​(𝒯S1++),o(\mathcal{T}_{S_{1}^{+}}^{+})\coprod o(\mathcal{T}_{S_{2}^{+}}^{+})=(-1)^{|S^{+}_{1}|\cdot|S^{+}_{2}|}o(\mathcal{T}_{S_{2}^{+}}^{+})\coprod o(\mathcal{T}_{S_{1}^{+}}^{+}),

which implies the statement.

∎

3. Coherent orientation of the moduli spaces

Let (M,ΞΎ)(M,\xi) be a contact manifold of dimension 2​nβˆ’12n-1 and Ξ±\alpha be a contact 11-form such that ΞΎ=ker⁑α\xi=\ker\alpha. Denote by RΞ±R_{\alpha} the Reeb vector field of Ξ±\alpha. We define a Reeb orbit is non-degenerate if the PoincarΓ© return map restricted to ΞΎ\xi along the Reeb orbit does not have 11 as an eigenvalue. We make the assumption that all Reeb orbits are non-degenerate.

For each simple (i.e., not multiply covered) Reeb orbit Ξ³\gamma, we choose a trivialization Ο„\tau of the symplectic vector bundle (ΞΎ,d​α|ΞΎ)(\xi,d\alpha|_{\xi}) restricted to Ξ³\gamma. Then the linearized flow of RΞ±R_{\alpha} along Ξ³\gamma gives a path of symplectic matrices, and its Maslov index is called the Conley-Zenhnder index of Ξ³\gamma, denoted by ΞΌCZ,τ​(Ξ³)\mu_{\operatorname{CZ},\tau}(\gamma). We assign to Ξ³\gamma the β„€2\mathbb{Z}_{2}-grading |Ξ³|=ΞΌCZ,τ​(Ξ³)+nβˆ’1mod2|\gamma|=\mu_{\operatorname{CZ},\tau}(\gamma)+n-1\mod 2, which is independent of the choice of Ο„\tau.

On each simple Reeb orbit Ξ³\gamma, we choose a fixed point xΞ³x_{\gamma}, which we call an asymptotic marker.

Consider an (ℝ\mathbb{R}-invariant) Ξ±\alpha-tame almost complex structure JJ on W:=ℝ×MW:=\mathbb{R}\times M, where the definition of Ξ±\alpha-tame can be found in [BH18] (Definition 3.1.1). We recall the definition of moduli spaces of JJ-holomorphic curves.

Definition 3.1 (moduli space of JJ-holomorphic curves).

Consider integers k+β‰₯1k_{+}\geq 1 and kβˆ’β‰₯0k_{-}\geq 0, let 𝜸±=(Ξ³Β±,1,…,Ξ³Β±,kΒ±)\boldsymbol{\gamma}_{\pm}=(\gamma_{\pm,1},\dots,\gamma_{\pm,{k_{\pm}}}) denote an ordered tuple of Reeb orbits. For any gβˆˆβ„€β‰₯0g\in\mathbb{Z}^{\geq 0}, A∈H2​(M;β„€)A\in H_{2}(M;\mathbb{Z}), we define the moduli space of JJ-holomorphic curves β„³~g​(𝜸+;πœΈβˆ’;A)\widetilde{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A) consisting of equivalence classes [Ξ£,j,𝒑,𝒓,u][\Sigma,j,\boldsymbol{p},\boldsymbol{r},u] of tuples satisfying the following conditions:

  1. (1)

    (Ξ£,j,𝒑,𝒓)(\Sigma,j,\boldsymbol{p},\boldsymbol{r}) is a connected, decorated Riemann surface of genus gg with k+k_{+} positive and kβˆ’k_{-} negative marked points.

Let Ο•iΒ±:DβŠ‚β„‚β†’π’°piΒ±βŠ‚Ξ£\phi_{i}^{\pm}:D\subset\mathbb{C}\to\mathcal{U}_{p_{i}^{\pm}}\subset\Sigma be a biholomorphic map from the unit disc DD to a neighborhood 𝒰piΒ±\mathcal{U}_{p_{i}^{\pm}} of piΒ±p^{\pm}_{i}. We require Ο•i±​(o)=piΒ±\phi_{i}^{\pm}(o)=p_{i}^{\pm} and d​ϕi±​(βˆ‚βˆ‚x)=riΒ±,d\phi_{i}^{\pm}(\frac{\partial}{\partial x})=r^{\pm}_{i}, where βˆ‚βˆ‚x∈To​D.\frac{\partial}{\partial x}\in T_{o}D. Additionally, let hiΒ±:ℝβ‰₯0(≀0)Γ—S1→𝒰˙piΒ±h_{i}^{\pm}:\mathbb{R}^{\geq 0(\leq 0)}\times S^{1}\to\dot{\mathcal{U}}_{p_{i}^{\pm}} be the biholomorphic map defined by hi±​(s,t)=(Ο•iΒ±)βˆ’1​(eβˆ“sβˆ“βˆ’1​t)h_{i}^{\pm}(s,t)=(\phi^{\pm}_{i})^{-1}(e^{\mp s\mp\sqrt{-1}t}).

  1. (2)

    u:Ξ£βˆ’π’‘β†’Wu:\Sigma-\boldsymbol{p}\to W is a proper map satisfying:

    1. (a)

      βˆ‚Β―J​u=12​(d​u+J∘d​u∘j)=0\overline{\partial}_{J}u=\frac{1}{2}(du+J\circ du\circ j)=0.

    2. (b)

      limsβ†’Β±βˆžu∘(Ο•iΒ±)βˆ’1​(eβˆ“sβˆ“βˆ’1​t)=Ξ³Β±,i​(T​t),\lim_{s\to\pm\infty}u\circ(\phi^{\pm}_{i})^{-1}(e^{\mp s\mp\sqrt{-1}t})=\gamma_{\pm,i}(Tt), where T>0T>0 is the period of Ξ³Β±,i\gamma_{\pm,i} and Ξ³Β±,i\gamma_{\pm,i} is parametrized such that Ξ³Β±,i​(0)=riΒ±\gamma_{\pm,i}(0)=r_{i}^{\pm}.

  2. (3)

    The homology class obtained by β€œcapping off” the punctures of uu is AA. Refer to SectionΒ 9.1.2 in [BH15] or [BM04] for the β€œcapping off” construction.

  3. (4)

    (Ξ£,j,𝒑,𝒓,u)(\Sigma,j,\boldsymbol{p},\boldsymbol{r},u) is equivalent to (Ξ£β€²,jβ€²,𝒑′,𝒓′,uβ€²)(\Sigma^{\prime},j^{\prime},\boldsymbol{p}^{\prime},\boldsymbol{r}^{\prime},u^{\prime}) if there exists a biholomorphic map f:(Ξ£,j)β†’(Ξ£β€²,jβ€²)f:(\Sigma,j)\to(\Sigma^{\prime},j^{\prime}) such that ff also maps (𝒑,𝒓)(\boldsymbol{p},\boldsymbol{r}) to (𝒑′,𝒓′)(\boldsymbol{p}^{\prime},\boldsymbol{r}^{\prime}) and uβ€²=u∘f.u^{\prime}=u\circ f.

We define the quotient space as

β„³g​(𝜸+;πœΈβˆ’;A)=β„³~g​(𝜸+;πœΈβˆ’;A)/ℝ,{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A)=\widetilde{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A)/\mathbb{R},

where ℝ\mathbb{R} acts by composing the map uu with the translation in the ℝ\mathbb{R}-direction in WW.

It is convenient to have the following lemma.

Lemma 3.2.

Let UU and WW be Banach spaces, and let Ο•:Uβ†’W\phi:U\to W be a linear Fredholm operator. Let VV be a finite-dimensional vector space and ψ:Vβ†’W\psi:V\to W be a linear map. If the map Ο•βŠ•Οˆ:UβŠ•Vβ†’W\phi\oplus\psi:U\oplus V\to W defined as Ο•βŠ•Οˆβ€‹(u,v)=ϕ​(u)+Οˆβ€‹(v)\phi\oplus\psi(u,v)=\phi(u)+\psi(v) is surjective, then there exists an isomorphism

detϕ≃det(Ο•βŠ•Οˆ)βŠ—βˆ§topVβˆ—,\det\phi\simeq\det(\phi\oplus\psi)\otimes\wedge^{\operatorname{top}}V^{*},

which is natural up to a positive constant.

Proof.

See Exercise A.23 in [MS12] for the case when ψ\psi is injective. Let I=ϕ​(U)βˆ©Οˆβ€‹(V)βŠ‚WI=\phi(U)\cap\psi(V)\subset W. Suppose Ο•βˆ’1​(I)=HβŠ•ker⁑ϕ\phi^{-1}(I)=H\oplus\ker\phi and let {u1,…,uk}\{u_{1},\dots,u_{k}\} be a basis of HH, and {uk+1,…,uk+β„“}\{u_{k+1},\dots,u_{k+\ell}\} be a basis of ker⁑ϕ\ker\phi. Then {ϕ​(u1),…,ϕ​(uk)}\{\phi(u_{1}),\dots,\phi(u_{k})\} forms a basis of II. Suppose V=GβŠ•Οˆβˆ’1​(I)V=G\oplus\psi^{-1}(I) and Οˆβˆ’1​(I)=FβŠ•ker⁑ψ\psi^{-1}(I)=F\oplus\ker\psi. Let

{v1,…​vm,vm+1,…,vm+k,vm+k+1,…,vm+k+n}\{v_{1},\dots v_{m},v_{m+1},\dots,v_{m+k},v_{m+k+1},\dots,v_{m+k+n}\}

be a basis of VV such that

  1. (1)

    {v1,…,vm}\{v_{1},\dots,v_{m}\} is a basis of GG,

  2. (2)

    {vm+1,…,vm+k}\{v_{m+1},\dots,v_{m+k}\} is a basis of FF and Οˆβ€‹(vm+i)=ϕ​(ui)\psi(v_{m+i})=\phi(u_{i}) for i=1,…,ki=1,\dots,k, and

  3. (3)

    {vm+k+1,…,vm+k+n}\{v_{m+k+1},\dots,v_{m+k+n}\} is a basis of ker⁑ψ\ker\psi.

The isomorphism is given by:

uk+1βˆ§β‹―βˆ§uk+β„“βŠ—Οˆβ€‹(vm)βˆ—βˆ§β‹―βˆ§Οˆβ€‹(v1)βˆ—\displaystyle u_{k+1}\wedge\dots\wedge u_{k+\ell}\otimes\psi(v_{m})^{*}\wedge\dots\wedge\psi(v_{1})^{*}
↦\displaystyle\mapsto (uk+1,0)βˆ§β‹―βˆ§(uk+β„“,0)∧(u1,βˆ’vm+1)βˆ§β‹―βˆ§(uk,βˆ’vm+k)\displaystyle(u_{k+1},0)\wedge\dots\wedge(u_{k+\ell},0)\wedge(u_{1},-v_{m+1})\wedge\dots\wedge(u_{k},-v_{m+k})
∧(0,vm+k+1)βˆ§β‹―βˆ§(0,vm+k+n)βŠ—vm+k+nβˆ—βˆ§β‹―βˆ§v1βˆ—.\displaystyle\wedge(0,v_{m+k+1})\wedge\dots\wedge(0,v_{m+k+n})\otimes v_{m+k+n}^{*}\wedge\dots\wedge v_{1}^{*}.

∎

For any

[Ξ£,j,𝒑,𝒓,u]βˆˆβ„³g​(𝜸+;πœΈβˆ’;A),[\Sigma,j,\boldsymbol{p},\boldsymbol{r},u]\in{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A),

consider the complex vector bundle E:=uβˆ—β€‹T​WE:=u^{*}TW over Ξ£Λ™\dot{\Sigma} where the complex structure is given by uβˆ—β€‹J.u^{*}J. Around each Reeb orbit Ξ³Β±,i∈𝜸±\gamma_{\pm,i}\in\boldsymbol{\gamma}_{\pm}, a trivialization Ο„\tau of (ΞΎ,d​α|ΞΎ,J)(\xi,d\alpha|_{\xi},J) restricted to Ξ³Β±,i\gamma_{\pm,i} (induced from the trivialization over the underlying simple Reeb orbit) extends to a trivialization of (E,J)|𝒰˙piΒ±(E,J)|_{\dot{\mathcal{U}}_{p_{i}^{\pm}}} as in FormulaΒ (2.1.2). This gives a CR tuple denoted by 𝒯u\mathcal{T}_{u}. A different representative of [Ξ£,j,𝒑,𝒓,u][\Sigma,j,\boldsymbol{p},\boldsymbol{r},u] gives an isomorphic CR tuple. Let

Du:Cβˆžβ€‹(Ξ£Λ™,E)β†’Cβˆžβ€‹(Ξ£Λ™,∧0,1Ξ£Λ™βŠ—β„‚E)D_{u}:C^{\infty}(\dot{\Sigma},E)\to C^{\infty}(\dot{\Sigma},\wedge^{0,1}\dot{\Sigma}\otimes_{\mathbb{C}}E)

be the linearized βˆ‚Β―J\overline{\partial}_{J} operator. It extends to a Fredholm operator as in FormulaΒ (2.1.3). Hence, we get a CR operator denoted by Duβˆˆπ”‡β€‹(𝒯u)D_{u}\in\mathfrak{D}(\mathcal{T}_{u}).

Fix any [u]βˆˆβ„³~g​(𝜸+;πœΈβˆ’;A)[u]\in\widetilde{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A). If 6​gβˆ’6+2​(k++kβˆ’)>06g-6+2(k_{+}+k_{-})>0, we have the full linearized βˆ‚Β―J\overline{\partial}_{J} operator at [u][u]

π’Ÿ:TeichβŠ•Cβˆžβ€‹(Ξ£Λ™,E)β†’Cβˆžβ€‹(Ξ£Λ™,∧0,1Ξ£Λ™βŠ—β„‚E),\mathcal{D}:\textit{Teich}\oplus C^{\infty}(\dot{\Sigma},E)\to C^{\infty}(\dot{\Sigma},\wedge^{0,1}\dot{\Sigma}\otimes_{\mathbb{C}}E),

where Teich is the tangent space of complex structures of (Ξ£,𝒑)(\Sigma,\boldsymbol{p}) at jj, which has dimension equal to 6​gβˆ’6+2​(k++kβˆ’)6g-6+2(k_{+}+k_{-}) and π’Ÿ|Cβˆžβ€‹(Ξ£Λ™,E)=Du\mathcal{D}|_{C^{\infty}(\dot{\Sigma},E)}=D_{u}. Suppose that [u][u] is transversely cut out, i.e., cokerβ‘π’Ÿ={0}\operatorname{coker}\mathcal{D}=\{0\}. Then

∧top(T[u]β„³~g(𝜸+;πœΈβˆ’;A))β‰ƒβˆ§topkerπ’Ÿβ‰ƒdetDuβŠ—βˆ§topTeichβˆ—,\wedge^{\operatorname{top}}\left(T_{[u]}\widetilde{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A)\right)\simeq\wedge^{\operatorname{top}}\ker\mathcal{D}\simeq\det D_{u}\otimes\wedge^{\operatorname{top}}\textit{Teich}^{*},

where the last isomorphism is given by LemmaΒ 3.2.

If 6​gβˆ’6+2​(k++kβˆ’)<06g-6+2(k_{+}+k_{-})<0 and [u][u] is transversely cut out, i.e., coker⁑Du={0}\operatorname{coker}D_{u}=\{0\}, then:

ker⁑Du=T[u]​ℳ~g​(𝜸+;πœΈβˆ’;A)βŠ•Aut,\ker D_{u}=T_{[u]}\widetilde{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A)\oplus\textit{Aut},

where Aut is the group of the biholomorphism of (Ξ£Λ™,j)(\dot{\Sigma},j) with dimension βˆ’(6​gβˆ’6+2​(k++kβˆ’))-(6g-6+2(k_{+}+k_{-})).

In either case, the virtual dimension of the moduli space is given by:

virdim⁑ℳ~g​(𝜸+;πœΈβˆ’;A)\displaystyle\operatorname{virdim}\widetilde{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A)
=\displaystyle= dimℝker⁑Du+6​gβˆ’6+2​(k++kβˆ’)\displaystyle\dim_{\mathbb{R}}\ker D_{u}+6g-6+2(k_{+}+k_{-})
=\displaystyle= βˆ‘i=1k+ΞΌCZ,τ​(Ξ³+,i)βˆ’βˆ‘i=1kβˆ’ΞΌCZ,τ​(Ξ³βˆ’,i)+2​c1​(E;Ο„)+(nβˆ’3)​(2βˆ’2​gβˆ’kβˆ’βˆ’k+),\displaystyle\sum_{i=1}^{k_{+}}\mu_{\operatorname{CZ},\tau}(\gamma_{+,i})-\sum_{i=1}^{k_{-}}\mu_{\operatorname{CZ},\tau}(\gamma_{-,i})+2c_{1}(E;\tau)+(n-3)(2-2g-k_{-}-k_{+}),

where c1​(E;Ο„)c_{1}(E;\tau) is the relative first Chern number. Moreover, we have the canonical isomorphism:

(3.0.1) det𝒯uβ‰ƒβˆ§top(T[u]​ℳ~g​(𝜸+;πœΈβˆ’;A))\det\mathcal{T}_{u}\simeq\wedge^{\operatorname{top}}(T_{[u]}\widetilde{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A))

as the portions Teich and Aut are complex and hence canonically oriented. Let o=oh​to=o_{ht} or ob​mo_{bm}. Note that:

(3.0.2) T[u]​ℳ~g​(𝜸+;πœΈβˆ’;A)β‰ƒβ„β€‹βŸ¨βˆ‚s([u])βŸ©βŠ•T[u]​ℳg​(𝜸+;πœΈβˆ’;A),T_{[u]}\widetilde{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A)\simeq\mathbb{R}\langle\partial_{s}([u])\rangle\oplus T_{[u]}{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A),

where βˆ‚s\partial_{s} is the vector field on β„³~g​(𝜸+;πœΈβˆ’;A)\widetilde{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A) that is generated by the ℝ\mathbb{R}-translation, and βˆ‚s([u])\partial_{s}([u]) is βˆ‚s\partial_{s} evaluated at [u][u]. We define the orientation o~​(u)\tilde{o}(u) of T[u]​ℳg​(𝜸+;πœΈβˆ’;A)T_{[u]}{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A) by the equation:

(3.0.3) o​(𝒯u)β‰ƒβˆ‚s([u])∧o~​(u),o(\mathcal{T}_{u})\simeq\partial_{s}([u])\wedge\tilde{o}(u),

where the isomorphism is given by FormulaΒ (3.0.1). In the case when

virdim⁑ℳ~g​(𝜸+;πœΈβˆ’;A)=1,\operatorname{virdim}\widetilde{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A)=1,

o~​(u)∈{Β±1}\tilde{o}(u)\in\{\pm 1\}.

For any [u]βˆˆβ„³~1=β„³~g​(𝜸+;πœΈβˆ’;A)[u]\in\widetilde{\mathcal{M}}_{1}=\widetilde{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A) and [v]βˆˆβ„³~2=β„³~g′​(𝜸+β€²;πœΈβˆ’β€²;Aβ€²)[v]\in\widetilde{\mathcal{M}}_{2}=\widetilde{\mathcal{M}}^{g^{\prime}}(\boldsymbol{\gamma}_{+}^{\prime};\boldsymbol{\gamma}_{-}^{\prime};A^{\prime}) that are transversely cut out and the first Ο„\tau Reeb orbits of πœΈβˆ’\boldsymbol{\gamma}_{-} match the last Ο„\tau Reeb orbits in 𝜸+β€²\boldsymbol{\gamma}_{+}^{\prime}, we can glue uu and vv with some fixed large gluing parameter along the Ο„\tau punctures to [w]βˆˆβ„³~3=β„³~g′′​(𝜸+β€²β€²;πœΈβˆ’β€²β€²;Aβ€²β€²)[w]\in\widetilde{\mathcal{M}}_{3}=\widetilde{\mathcal{M}}^{g^{\prime\prime}}(\boldsymbol{\gamma}_{+}^{\prime\prime};\boldsymbol{\gamma}_{-}^{\prime\prime};A^{\prime\prime}), where gβ€²β€²=g+gβ€²+(Ο„βˆ’1)g^{\prime\prime}=g+g^{\prime}+(\tau-1),

𝜸+β€²β€²=(Ξ³+,1β€²,…,Ξ³+,k+β€²βˆ’rβ€²,Ξ³+,1,…,Ξ³+,k+),\boldsymbol{\gamma}_{+}^{\prime\prime}=(\gamma_{+,1}^{\prime},\dots,\gamma^{\prime}_{+,k^{\prime}_{+}-r},\gamma_{+,1},\dots,\gamma_{+,k_{+}}),
πœΈβˆ’β€²β€²=(Ξ³βˆ’,1β€²,…,Ξ³βˆ’,kβˆ’β€²,Ξ³βˆ’,kβˆ’βˆ’Ο„+1,…,Ξ³βˆ’,kβˆ’),\boldsymbol{\gamma}_{-}^{\prime\prime}=(\gamma_{-,1}^{\prime},\dots,\gamma_{-,k_{-}}^{\prime},\gamma_{-,k_{-}-\tau+1},\dots,\gamma_{-,k_{-}}),

and Aβ€²β€²=A+Aβ€²A^{\prime\prime}=A+A^{\prime}. The construction of the gluing map on the moduli spaces is standard (see for example Section 10 in [MS12] or Section 6 in [BH15]). The gluing of the CR tuples in SectionΒ 2.3 is the linearized version of this, and indeed, we have the commutative diagram:

(3.0.4) det𝒯uβŠ—det𝒯v{\det\mathcal{T}_{u}\otimes\det\mathcal{T}_{v}}det𝒯w{\det\mathcal{T}_{w}}∧top(T[u]β„³~1)βŠ—βˆ§top(T[v]β„³~2){\wedge^{\operatorname{top}}(T_{[u]}\widetilde{\mathcal{M}}_{1})\otimes\wedge^{\operatorname{top}}(T_{[v]}\widetilde{\mathcal{M}}_{2})}∧top(T[w]​ℳ~3),{\wedge^{\operatorname{top}}(T_{[w]}\widetilde{\mathcal{M}}_{3}),}β™―Ο„\scriptstyle{\sharp_{\tau}}≃\scriptstyle{\simeq}≃\scriptstyle{\simeq}

where the lower horizontal map is induced by gluing. Let β„³i=β„³~i/ℝ\mathcal{M}_{i}=\widetilde{\mathcal{M}}_{i}/\mathbb{R} for i=1,2,3i=1,2,3. The curve [w][w] is transversely cut out and can be viewed as in a codimension one boundary component of (a retract of) β„³3\mathcal{M}_{3}. Thus, we have the boundary orientation o~b​(w)∈{Β±1}\tilde{o}^{b}(w)\in\{\pm 1\} defined by:

(3.0.5) o~​(w)=n∧o~b​(w),\tilde{o}(w)=n\wedge\tilde{o}^{b}(w),

where nn is the outward-pointing normal (pointing in the gluing parameter increasing direction).

Denote o​(𝒯u)β‰ƒβˆ‚s([u])∧o~​(u)o(\mathcal{T}_{u})\simeq\partial_{s}([u])\wedge\tilde{o}(u), o​(𝒯v)β‰ƒβˆ‚s([v])∧o~​(v)o(\mathcal{T}_{v})\simeq\partial_{s}([v])\wedge\tilde{o}(v), and o​(𝒯w)β‰ƒβˆ‚s([w])∧o~​(w)o(\mathcal{T}_{w})\simeq\partial_{s}([w])\wedge\tilde{o}(w). Then we have

o​(𝒯u)​♯τ​o​(𝒯v)=Ο΅β™―β‹…Ο΅βˆβ‹…o​(𝒯u​♯τ​𝒯v)=Ο΅β™―β‹…Ο΅βˆβ‹…o​(𝒯w),o(\mathcal{T}_{u})\sharp_{\tau}o(\mathcal{T}_{v})=\epsilon^{\sharp}\cdot\epsilon^{\coprod}\cdot o(\mathcal{T}_{u}\sharp_{\tau}\mathcal{T}_{v})=\epsilon^{\sharp}\cdot\epsilon^{\coprod}\cdot o(\mathcal{T}_{w}),

where the formula for partial gluing follows from taking disjoint unions with trivial tuples before gluing, and more precisely

  1. (1)

    if o=oh​to=o_{ht}, then

    1. (a)

      Ο΅β™―=1\epsilon^{\sharp}=1, and

    2. (b)

      ϡ∐=(βˆ’1)(βˆ‘i=1kβˆ’βˆ’Ο„|S+,iβ€²|)β‹…ind⁑𝒯u\epsilon^{\coprod}=(-1)^{(\sum_{i=1}^{k_{-}-\tau}|S^{\prime}_{+,i}|)\cdot\operatorname{ind}\mathcal{T}_{u}};

  2. (2)

    if o=ob​mo=o_{bm}, then

    1. (a)

      Ο΅β™―=Ο΅b​mβ™―\epsilon^{\sharp}=\epsilon_{bm}^{\sharp}, and

    2. (b)

      ϡ∐=(βˆ’1)C\epsilon^{\coprod}=(-1)^{C} with

      C=\displaystyle C= βˆ‘1≀i<j≀τ|S+,iβ€²|β‹…|S+,jβ€²|+(βˆ‘i=1Ο„|S+,iβ€²|)​(βˆ‘i=1k+|S+,i|)\displaystyle\sum_{1\leq i<j\leq\tau}|S^{\prime}_{+,i}|\cdot|S^{\prime}_{+,j}|+(\sum_{i=1}^{\tau}|S^{\prime}_{+,i}|)(\sum_{i=1}^{k_{+}}|S_{+,i}|)
      +βˆ‘Ο„+1≀i<j≀kβˆ’|Sβˆ’,i|β‹…|Sβˆ’,j|+(βˆ‘i=1kβˆ’β€²|Sβˆ’,iβ€²|)​(βˆ‘i=Ο„+1kβˆ’|Sβˆ’,i|).\displaystyle+\sum_{\tau+1\leq i<j\leq k_{-}}|S_{-,i}|\cdot|S_{-,j}|+(\sum_{i=1}^{k^{\prime}_{-}}|S^{\prime}_{-,i}|)(\sum_{i=\tau+1}^{k_{-}}|S_{-,i}|).

Tracking the images of o​(𝒯u)βŠ—o​(𝒯v)∈det𝒯uβŠ—det𝒯vo(\mathcal{T}_{u})\otimes o(\mathcal{T}_{v})\in\det\mathcal{T}_{u}\otimes\det\mathcal{T}_{v} in the commutative diagramΒ (3.0.4), we have

Ο΅β™―β‹…Ο΅βˆβ‹…βˆ‚s([w])∧n∧o~b​(w)\displaystyle\epsilon^{\sharp}\cdot\epsilon^{\coprod}\cdot\partial_{s}([w])\wedge n\wedge\tilde{o}^{b}(w) =βˆ‚s([u])^∧o~​(u)^βˆ§βˆ‚s([v])^∧o~​(v)^\displaystyle=\widehat{\partial_{s}([u])}\wedge\widehat{\tilde{o}(u)}\wedge\widehat{\partial_{s}([v])}\wedge\widehat{\tilde{o}(v)}
=(βˆ’1)ind⁑𝒯uβˆ’1β€‹βˆ‚s([u])^βˆ§βˆ‚s([v])^∧o~​(u)^∧o~​(v)^\displaystyle=(-1)^{\operatorname{ind}\mathcal{T}_{u}-1}\widehat{\partial_{s}([u])}\wedge\widehat{\partial_{s}([v])}\wedge\widehat{\tilde{o}(u)}\wedge\widehat{\tilde{o}(v)}
=(βˆ’1)ind⁑𝒯uβ€‹βˆ‚s([w])∧n∧o~​(u)^∧o~​(v)^,\displaystyle=(-1)^{\operatorname{ind}\mathcal{T}_{u}}\partial_{s}([w])\wedge n\wedge\widehat{\tilde{o}(u)}\wedge\widehat{\tilde{o}(v)},

where:

  1. (1)

    βˆ‚s([u])^∈ker⁑Dw\widehat{\partial_{s}([u])}\in\ker D_{w} is defined as follows (see, for example, Section 9.12 in [BH18] for details in the case when the domains are cylinders):

    1. (a)

      Translate Ξ·=βˆ‚s([u])\eta=\partial_{s}([u]) in the ℝ\mathbb{R}-direction by the gluing parameter RR, yielding Ξ·R\eta_{R}.

    2. (b)

      Choose a cutoff function 0≀β≀10\leq\beta\leq 1 that is equal to 0 in a small neighborhood of punctures and is equal to 11 outside a small neighborhood of punctures.

    3. (c)

      Multiply Ξ·R\eta_{R} with Ξ²\beta to damp it out near punctures.

    4. (d)

      View β​ηR\beta\eta_{R} as an element in the domain of DwD_{w}, the linearized βˆ‚Β―\overline{\partial} operator at [w][w].

    5. (e)

      Project β​ηR\beta\eta_{R} to ker⁑Dw\ker D_{w} with respect to the L2L^{2} inner product.

  2. (2)

    βˆ‚s([v])^\widehat{\partial_{s}([v])} is defined similarly, except that in step (1), it is translated by βˆ’R-R.

  3. (3)

    Supposing o~​(u)=v1βˆ§β‹―βˆ§vk\tilde{o}(u)=v_{1}\wedge\dots\wedge v_{k} with k=ind⁑𝒯uβˆ’1β‰₯1k=\operatorname{ind}\mathcal{T}_{u}-1\geq 1, vi∈T[u]​ℳ1v_{i}\in T_{[u]}\mathcal{M}_{1} for i=1,…,ki=1,\dots,k, the term o~​(u)^\widehat{\tilde{o}(u)} is defined as v^1βˆ§β‹―βˆ§v^k\widehat{v}_{1}\wedge\dots\wedge\widehat{v}_{k}, where v^i\widehat{v}_{i} is defined in the same way as in (1). If ind⁑𝒯u=1\operatorname{ind}\mathcal{T}_{u}=1, we define o~​(u)^=o~​(u)∈{Β±1}\widehat{\tilde{o}(u)}={\tilde{o}(u)}\in\{\pm 1\}.

  4. (4)

    The last equality follows from the fact that, up to multiplication by a positive number, βˆ‚s([w])\partial_{s}([w]) is approximately βˆ‚s([u])^+βˆ‚s([v])^\widehat{\partial_{s}([u])}+\widehat{\partial_{s}([v])} and nn is approximately βˆ‚s([u])^βˆ’βˆ‚s([v])^\widehat{\partial_{s}([u])}-\widehat{\partial_{s}([v])}, and hence βˆ‚s([w])∧n\partial_{s}([w])\wedge n is approximately βˆ’βˆ‚s([u])^βˆ§βˆ‚s([v])^-\widehat{\partial_{s}([u])}\wedge\widehat{\partial_{s}([v])}.

In summary, we have the following lemma.

Lemma 3.3.

The gluing map β„³1Γ—β„³2β†’βˆ‚β„³3\mathcal{M}_{1}\times\mathcal{M}_{2}\to\partial\mathcal{M}_{3} changes the orientation by the sign Ο΅β™―β€‹Ο΅βˆβ‹…(βˆ’1)virdim⁑ℳ1+1=Ο΅β™―β€‹Ο΅βˆβ‹…(βˆ’1)ind⁑𝒯u.\epsilon^{\sharp}\epsilon^{\coprod}\cdot(-1)^{\operatorname{virdim}\mathcal{M}_{1}+1}=\epsilon^{\sharp}\epsilon^{\coprod}\cdot(-1)^{\operatorname{ind}\mathcal{T}_{u}}.

In particular, if we use the orientation oh​to_{ht}, in the proof of 𝐇⋅𝐇=0\mathbf{H}\cdot\mathbf{H}=0 (See SectionΒ 4), where virdim⁑ℳ1=0\operatorname{virdim}\mathcal{M}_{1}=0, we have the gluing map reverses the boundary orientation.

4. Signs in symplectic field theory

For each Reeb orbit Ξ³\gamma, we assign two formal variables pΞ³p_{\gamma} and qΞ³q_{\gamma}, graded over β„€2\mathbb{Z}_{2} by |Ξ³||\gamma|. For any A∈H2​(M;β„€)A\in H_{2}(M;\mathbb{Z}), we represent it multiplicatively as eAe^{A} and grade it by 0. Let ℏ\hbar be a formal variable graded by 0 to keep track of the genus gg. Consider the Weyl super-algebra

π”š=β„š[{qΞ³}Ξ³,ℏ,{eA}A∈H2​(M;β„€)]⟦{pΞ³}γ⟧,\mathfrak{W}=\mathbb{Q}[\{q_{\gamma}\}_{\gamma},\hbar,\{e^{A}\}_{A\in H_{2}(M;\mathbb{Z})}]\llbracket\{p_{\gamma}\}_{\gamma}\rrbracket,

which is the space of all formal power series in {pΞ³}Ξ³\{p_{\gamma}\}_{\gamma} over the polynomial ring

β„šβ€‹[{qΞ³}Ξ³,{eA}A∈H2​(M;β„€),ℏ].\mathbb{Q}[\{q_{\gamma}\}_{\gamma},\{e^{A}\}_{A\in H_{2}(M;\mathbb{Z})},\hbar].

We require that all formal variables are graded commutative except

(4.0.1) [pΞ³,qΞ³]=pγ​qΞ³βˆ’(βˆ’1)|Ξ³|​qγ​pΞ³=ℏm​(Ξ³),[p_{\gamma},q_{\gamma}]=p_{\gamma}q_{\gamma}-(-1)^{|\gamma|}q_{\gamma}p_{\gamma}=\frac{\hbar}{m(\gamma)},

where m​(Ξ³)m(\gamma) is the multiplicity of Ξ³\gamma over the underlying simple Reeb orbit. In [EGH00], a potential function 𝐇\mathbf{H} is constructed by counting JJ-holomorphic curves. We recall and modify the definition as follows:

(4.0.2) 𝐇=βˆ‘gβ‰₯0βˆ‘[𝜸+],[πœΈβˆ’]βˆ‘A∈H2​(M)|β„³g​(𝜸+;πœΈβˆ’;A)|​qπœΈβˆ’β€‹p𝜸+†​eA​ℏgβˆ’1,\mathbf{H}=\sum_{g\geq 0}\sum_{[\boldsymbol{\gamma}_{+}],[\boldsymbol{\gamma}_{-}]}\sum_{A\in H_{2}(M)}|{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A)|\ q_{\boldsymbol{\gamma}_{-}}p_{\boldsymbol{\gamma}_{+}^{\dagger}}e^{A}\hbar^{g-1},

where

  1. (1)

    the second summation is over pairs of unordered tuples [𝜸±][\boldsymbol{\gamma}_{\pm}] of Reeb orbits,

  2. (2)

    𝜸±=(Ξ³Β±,i1,…,Ξ³Β±,ikΒ±)\boldsymbol{\gamma}_{\pm}=(\gamma_{\pm,i_{1}},\dots,\gamma_{\pm,i_{k_{\pm}}}) is an ordered tuple of Reeb orbits representing the equivalence class [𝜸±][\boldsymbol{\gamma}_{\pm}],

  3. (3)

    𝜸+†=(Ξ³+,ik+,…,Ξ³+,i1)\boldsymbol{\gamma}_{+}^{\dagger}=(\gamma_{+,i_{k_{+}}},\dots,\gamma_{+,i_{1}}) is the ordered tuple obtained from 𝜸+\boldsymbol{\gamma}_{+} by reversing the ordering,

  4. (4)

    p𝜸+†p_{\boldsymbol{\gamma}_{+}^{\dagger}} (resp. qπœΈβˆ’q_{\boldsymbol{\gamma}_{-}}) is the monomial of pΞ³p_{\gamma} (resp. qΞ³q_{\gamma}) that is associated to the ordered tuple 𝜸+†\boldsymbol{\gamma}_{+}^{\dagger} (resp. πœΈβˆ’\boldsymbol{\gamma}_{-}),

  5. (5)

    m​(πœΈβˆ’)=m​(Ξ³βˆ’,i1)​…​m​(Ξ³βˆ’,ikβˆ’)m(\boldsymbol{\gamma}_{-})=m(\gamma_{-,i_{1}})\dots m(\gamma_{-,i_{k_{-}}}) , and

  6. (6)

    |β„³g​(𝜸+;πœΈβˆ’;A)||{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A)| is the signed count of elements in the moduli space based on the coherent orientation oh​to_{ht} and is set to be 0 when the virtual dimension is not 0.

Note that Formula (4.0.2) does not depend on the choice of representatives 𝜸±\boldsymbol{\gamma}_{\pm} of [𝜸±][\boldsymbol{\gamma}_{\pm}] by Corollary 2.19.

Remark 4.1.

The sign correction of 𝐇\mathbf{H} as mentioned in the abstract is the usage of p𝜸+†p_{\boldsymbol{\gamma}_{+}^{\dagger}} over p𝜸+p_{\boldsymbol{\gamma}_{+}}.

To ensure that 𝐇\mathbf{H} is well-defined, one needs to perturb the moduli space because the multiply covered curves are not transversely cut out in general. Several versions of perturbation theories fit or can be generalized to fit this setting, including but not limited to [Par19, BH15, Ish18, HWZ07]. Transversality is far beyond the scope of this paper.

Theorem 4.2.

Suppose that the moduli spaces are transversely cut out after some perturbation. We have the product

𝐇⋅𝐇=0.\mathbf{H}\cdot\mathbf{H}=0.

We define the differential D:π”šβ†’π”šD:\mathfrak{W}\to\mathfrak{W} by D​f=[𝐇,f]Df=[\mathbf{H},f] for all fβˆˆπ”šf\in\mathfrak{W}, and the homology algebra Hβˆ—β€‹(π”š,D)H_{*}(\mathfrak{W},D) to be the homology of (π”š,D)(\mathfrak{W},D). Before proving the theorem, we first revisit the example in Figure 4 of [EGH00] with some modifications.

Example 4.3.

Suppose

𝐇=a​q1​q2​p4β€‹β„βˆ’1+b​p3​p2​p1β€‹β„βˆ’1,\mathbf{H}=aq_{1}q_{2}p_{4}\hbar^{-1}+bp_{3}p_{2}p_{1}\hbar^{-1},

where:

  • β€’

    a=|β„³0​(Ξ³4;Ξ³1​γ2)|a=|\mathcal{M}^{0}(\gamma_{4};\gamma_{1}\gamma_{2})| with |Ξ³4|+|Ξ³1|+|Ξ³2|=1mod2|\gamma_{4}|+|\gamma_{1}|+|\gamma_{2}|=1\mod 2.

  • β€’

    b=|β„³0​(Ξ³1​γ2​γ3;βˆ…)|b=|\mathcal{M}^{0}(\gamma_{1}\gamma_{2}\gamma_{3};\emptyset)| with |Ξ³1|+|Ξ³2|+|Ξ³3|=1mod2|\gamma_{1}|+|\gamma_{2}|+|\gamma_{3}|=1\mod 2.

  • β€’

    We assume m​(Ξ³i)=1m(\gamma_{i})=1, for all i∈{1,2,3,4}i\in\{1,2,3,4\}.

  • β€’

    We write qiq_{i} and pip_{i} for qΞ³iq_{\gamma_{i}} and pΞ³ip_{\gamma_{i}} respectively.

  • β€’

    We drop the variable eAe^{A} for A∈H2​(M;Z)A\in H_{2}(M;Z).

An explicit calculation yields

𝐇⋅𝐇=\displaystyle\mathbf{H}\cdot\mathbf{H}= (βˆ’1)d2+d2​d3+d2​d4+d3​d4​a​b​q2​p4​p3​p2β€‹β„βˆ’1\displaystyle(-1)^{d_{2}+d_{2}d_{3}+d_{2}d_{4}+d_{3}d_{4}}abq_{2}p_{4}p_{3}p_{2}\hbar^{-1}
+(βˆ’1)d1+d1​d2+d1​d4+d3​d4​a​b​q1​p4​p3​p1β€‹β„βˆ’1\displaystyle+(-1)^{d_{1}+d_{1}d_{2}+d_{1}d_{4}+d_{3}d_{4}}abq_{1}p_{4}p_{3}p_{1}\hbar^{-1}
+(βˆ’1)d3​d4​a​b​p4​p3,\displaystyle+(-1)^{d_{3}d_{4}}abp_{4}p_{3},

where di=|Ξ³i|d_{i}=|\gamma_{i}|, and two monomials that are multiples of q1​q2​p4​p3​p2​p1q_{1}q_{2}p_{4}p_{3}p_{2}p_{1} cancel out. The three terms that appear in 𝐇⋅𝐇\mathbf{H}\cdot\mathbf{H} correspond to the three gluings of the moduli spaces β„³I=β„³0​(Ξ³4;Ξ³1​γ2)\mathcal{M}_{I}=\mathcal{M}^{0}(\gamma_{4};\gamma_{1}\gamma_{2}) and β„³II=β„³0​(Ξ³1​γ2​γ3;βˆ…)\mathcal{M}_{\textit{II}}=\mathcal{M}^{0}(\gamma_{1}\gamma_{2}\gamma_{3};\emptyset) with signs (see FigureΒ 2).

We verify the signs of the first term, leaving the other two terms to the reader. Consider the moduli space β„³III=β„³0​(Ξ³2​γ3​γ4;Ξ³2)\mathcal{M}_{\textit{III}}=\mathcal{M}^{0}(\gamma_{2}\gamma_{3}\gamma_{4};\gamma_{2}). We check that the number of elements in βˆ‚I,IIβ„³III\partial_{\textit{I,II}}\mathcal{M}_{\textit{III}}, the part of the boundary of β„³III\mathcal{M}_{\textit{III}} that corresponds to the gluing of the moduli spaces β„³I\mathcal{M}_{\textit{I}} and β„³II\mathcal{M}_{\textit{II}} along Ξ³1\gamma_{1}, equals (βˆ’1)d2+d2​d3+d2​d4+d3​d4+1​a​b(-1)^{d_{2}+d_{2}d_{3}+d_{2}d_{4}+d_{3}d_{4}+1}ab, which is (βˆ’1)(-1) times the coefficient of q2​p4​p3​p2β€‹β„βˆ’1q_{2}p_{4}p_{3}p_{2}\hbar^{-1}.

|βˆ‚I,IIβ„³III|\displaystyle|\partial_{\textit{I,II}}\mathcal{M}_{\textit{III}}| =βˆ‘[w]βˆˆβˆ‚I,IIβ„³IIIo~b​(w)\displaystyle=\sum_{[w]\in\partial_{\textit{I,II}}\mathcal{M}_{\textit{III}}}\tilde{o}^{b}(w)
=βˆ‘[v]βˆˆβ„³β€‹(231;βˆ…)βˆ‘[u]βˆˆβ„³β€‹(4;12)(βˆ’1)d2+d3+1​o~​(u)​o~​(v)\displaystyle=\sum_{[v]\in\mathcal{M}(231;\emptyset)}\sum_{[u]\in\mathcal{M}(4;12)}(-1)^{d_{2}+d_{3}+1}\tilde{o}(u)\tilde{o}(v)
=βˆ‘[v]βˆˆβ„³β€‹(123;βˆ…)βˆ‘[u]βˆˆβ„³β€‹(4;12)(βˆ’1)d2+d3+1+d1​(d2+d3)​o~​(u)​o~​(v)\displaystyle=\sum_{[v]\in\mathcal{M}(123;\emptyset)}\sum_{[u]\in\mathcal{M}(4;12)}(-1)^{d_{2}+d_{3}+1+d_{1}(d_{2}+d_{3})}\tilde{o}(u)\tilde{o}(v)
=(βˆ’1)d2+d2​d3+d2​d4+d3​d4+1​(βˆ‘[v]βˆˆβ„³β€‹(123;βˆ…)o~​(v))​(βˆ‘[u]βˆˆβ„³β€‹(4;12)o~​(u))\displaystyle=(-1)^{d_{2}+d_{2}d_{3}+d_{2}d_{4}+d_{3}d_{4}+1}\left(\sum_{[v]\in\mathcal{M}(123;\emptyset)}\tilde{o}(v)\right)\left(\sum_{[u]\in\mathcal{M}(4;12)}\tilde{o}(u)\right)
=(βˆ’1)d2+d2​d3+d2​d4+d3​d4+1​a​b,\displaystyle=(-1)^{d_{2}+d_{2}d_{3}+d_{2}d_{4}+d_{3}d_{4}+1}ab,

where we omit Ξ³β€²\gamma^{\prime}s in the notation for the moduli spaces; the second equality follows from LemmaΒ 3.3 with Ο΅β™―=1,ϡ∐=(βˆ’1)(d2+d3)β‹…1,\epsilon^{\sharp}=1,\epsilon^{\coprod}=(-1)^{(d_{2}+d_{3})\cdot 1}, and (βˆ’1)virdim⁑ℳI=βˆ’1(-1)^{\operatorname{virdim}\mathcal{M}_{I}}=-1, noting that the last positive end of ℳ​(231;βˆ…)\mathcal{M}(231;\emptyset) matches the first negative end of ℳ​(4;12)\mathcal{M}(4;12); the fourth equality follows from the fact that (βˆ’1)d2+d3+1+d1​(d2+d3)=(βˆ’1)d2+d2​d3+d2​d4+d3​d4+1(-1)^{d_{2}+d_{3}+1+d_{1}(d_{2}+d_{3})}=(-1)^{d_{2}+d_{2}d_{3}+d_{2}d_{4}+d_{3}d_{4}+1}, since d4+d1+d2=1mod2d_{4}+d_{1}+d_{2}=1\mod 2 and d1+d2+d3=1mod2d_{1}+d_{2}+d_{3}=1\mod 2. We leave the computation of the other two terms for the reader.

Ξ³4\gamma_{4}Ξ³1\gamma_{1}Ξ³2\gamma_{2}Ξ³3\gamma_{3}
Figure 2. There are three gluings that correspond to three terms in 𝐇⋅𝐇\mathbf{H}\cdot\mathbf{H}: gluing along Ξ³1\gamma_{1}, gluing along Ξ³2\gamma_{2}, and simultaneously gluing along Ξ³1\gamma_{1} and Ξ³2\gamma_{2}.
Proof of TheoremΒ 4.2.

Note that

𝐇=βˆ‘gβ‰₯0βˆ‘[𝜸+],[πœΈβˆ’]βˆ‘A∈H2​(M)βˆ‘[u]βˆˆβ„³g​(𝜸+;πœΈβˆ’;A)o~​(u)​qπœΈβˆ’β€‹p𝜸+†​eA​ℏgβˆ’1,\mathbf{H}=\sum_{g\geq 0}\sum_{[\boldsymbol{\gamma}_{+}],[\boldsymbol{\gamma}_{-}]}\sum_{A\in H_{2}(M)}\sum_{[u]\in{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A)}\tilde{o}(u)\ q_{\boldsymbol{\gamma}_{-}}p_{\boldsymbol{\gamma}_{+}^{\dagger}}e^{A}\hbar^{g-1},

and hence,

(4.0.3) 𝐇⋅𝐇=βˆ‘o~​(uβ€²)​o~​(u)​qπœΈβˆ’β€²β€‹pπœΈβ€²+†​qπœΈβˆ’β€‹p𝜸+†​eAβ€²+A​ℏgβ€²+gβˆ’2,\mathbf{H}\cdot\mathbf{H}=\sum\tilde{o}(u^{\prime})\tilde{o}(u)q_{\boldsymbol{\gamma}^{\prime}_{-}}p_{\boldsymbol{\gamma^{\prime}}_{+}^{\dagger}}q_{\boldsymbol{\gamma}_{-}}p_{\boldsymbol{\gamma}_{+}^{\dagger}}e^{A^{\prime}+A}\hbar^{g^{\prime}+g-2},

where o~​(u),o~​(uβ€²)∈{Β±1}\tilde{o}(u),\tilde{o}(u^{\prime})\in\{\pm 1\}, and the summation is over g,gβ€²β‰₯0g,g^{\prime}\geq 0, unordered tuples of good Reeb orbits [𝜸+],[πœΈβˆ’],[𝜸+β€²],[πœΈβˆ’β€²][\boldsymbol{\gamma}_{+}],[\boldsymbol{\gamma}_{-}],[\boldsymbol{\gamma}^{\prime}_{+}],[\boldsymbol{\gamma}^{\prime}_{-}], homology classes A,Aβ€²βˆˆH2​(M)A,A^{\prime}\in H_{2}(M), and [u]βˆˆβ„³g​(𝜸+;πœΈβˆ’;A)[u]\in{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A) and [uβ€²]βˆˆβ„³g′​(𝜸+β€²;πœΈβˆ’β€²;Aβ€²).[u^{\prime}]\in{\mathcal{M}}^{g^{\prime}}(\boldsymbol{\gamma}_{+}^{\prime};\boldsymbol{\gamma}_{-}^{\prime};A^{\prime}).

It is convenient to choose an ordering for all Reeb orbits. Then, EquationΒ (4.0.3) can be simplified by moving qπœΈβˆ’β€²q_{\boldsymbol{\gamma}^{\prime}_{-}} to the left of p𝜸+†p_{\boldsymbol{\gamma}_{+}^{\dagger}} using EquationΒ (4.0.1) and subsequently sorting the qq terms and the pp terms based on the ordering of Reeb orbits.

For any sorted tuples πœΈβˆ’β€²β€²\boldsymbol{\gamma}^{\prime\prime}_{-} and πœΈβ€²β€²+{\boldsymbol{\gamma}^{\prime\prime}}_{+}, Aβ€²β€²βˆˆH2​(M)A^{\prime\prime}\in H_{2}(M), and gβ€²β€²β‰₯0g^{\prime\prime}\geq 0, the coefficient in front of qπœΈβˆ’β€²β€²β€‹pπœΈβ€²β€²+†​eA′′​ℏgβ€²β€²βˆ’1q_{\boldsymbol{\gamma}^{\prime\prime}_{-}}p_{{\boldsymbol{\gamma}^{\prime\prime}}_{+}^{\dagger}}e^{A^{\prime\prime}}\hbar^{g^{\prime\prime}-1} within 𝐇⋅𝐇\mathbf{H}\cdot\mathbf{H} is given by:

(4.0.4) βˆ‘Ο΅β€‹(uβ€²,u)​o~​(uβ€²)​o~​(u)\sum\epsilon(u^{\prime},u)\tilde{o}(u^{\prime})\tilde{o}(u)

where:

  1. (1)

    The sum is taken over all triples ([u],[uβ€²],Ο‘)([u],[u^{\prime}],\vartheta) satisfying:

    1. (a)

      [u]βˆˆβ„³g​(𝜸+;πœΈβˆ’;A)[u]\in{\mathcal{M}}^{g}(\boldsymbol{\gamma}_{+};\boldsymbol{\gamma}_{-};A) for some g,𝜸+,πœΈβˆ’,Ag,\boldsymbol{\gamma}_{+},\boldsymbol{\gamma}_{-},A.

    2. (b)

      [uβ€²]βˆˆβ„³g′​(𝜸+β€²;πœΈβˆ’β€²;Aβ€²)[u^{\prime}]\in{\mathcal{M}}^{g^{\prime}}(\boldsymbol{\gamma}^{\prime}_{+};\boldsymbol{\gamma}^{\prime}_{-};A^{\prime}) for some gβ€²,𝜸+β€²,πœΈβˆ’β€²,Aβ€²g^{\prime},\boldsymbol{\gamma}^{\prime}_{+},\boldsymbol{\gamma}^{\prime}_{-},A^{\prime}.

    3. (c)

      Ο‘\vartheta is a bijective map from a subset Gβˆ’βŠ‚{1,…,kβˆ’}G_{-}\subset\{1,\dots,k_{-}\} to a subset G+β€²βŠ‚{1,…,k+β€²}G_{+}^{\prime}\subset\{1,\dots,k_{+}^{\prime}\} such that the ii-th element of πœΈβˆ’\boldsymbol{\gamma}_{-} is equal to the ϑ​(i)\vartheta(i)-th element of 𝜸+β€²\boldsymbol{\gamma}_{+}^{\prime}, for all i∈Gβˆ’i\in G_{-}, where kβˆ’k_{-} is the length of the tuple πœΈβˆ’\boldsymbol{\gamma}_{-} and k+β€²k_{+}^{\prime} is the length of the tuple 𝜸+β€²\boldsymbol{\gamma}^{\prime}_{+}.

    4. (d)

      If we glue uu and uβ€²u^{\prime} along Ο‘\vartheta and reorder the punctures, if necessary, we obtain a curve w=u​♯ϑ​uβ€²w=u\sharp_{\vartheta}u^{\prime} that satisfies [w]βˆˆβ„³g′′​(𝜸+β€²β€²;πœΈβˆ’β€²β€²;Aβ€²β€²)[w]\in{\mathcal{M}}^{g^{\prime\prime}}(\boldsymbol{\gamma}_{+}^{\prime\prime};\boldsymbol{\gamma}_{-}^{\prime\prime};A^{\prime\prime}).

  2. (2)

    The number ϡ​(uβ€²,u)βˆˆβ„š\epsilon(u^{\prime},u)\in\mathbb{Q} arises from the algebraic operation of moving qπœΈβˆ’β€²q_{\boldsymbol{\gamma}^{\prime}_{-}} to the left of p𝜸+†p_{\boldsymbol{\gamma}_{+}^{\dagger}} using EquationΒ (4.0.1) and subsequently sorting the qq terms and the pp terms.

We state the following claim:

Claim 4.4.

The equation βˆ‘Ο΅β€‹(uβ€²,u)​o~​(uβ€²)​o~​(u)=βˆ’βˆ‘o~b​(w)\sum\epsilon(u^{\prime},u)\tilde{o}(u^{\prime})\tilde{o}(u)=-\sum\tilde{o}^{b}(w) holds, where the left-hand side represents the term in FormulaΒ (4.0.4), and the summation on the right-hand side is taken over all [w]βˆˆβˆ‚β„³g′′​(𝛄+β€²β€²;π›„βˆ’β€²β€²;Aβ€²β€²)[w]\in\partial{\mathcal{M}}^{g^{\prime\prime}}(\boldsymbol{\gamma}^{\prime\prime}_{+};\boldsymbol{\gamma}^{\prime\prime}_{-};A^{\prime\prime}).

Assuming this claim, we can establish the theorem, as βˆ‘o~b​(w)=0\sum\tilde{o}^{b}(w)=0. ∎

Proof of the Claim:.

This is a straightforward calculation. To initiate the proof, we introduce some notations. We define the index set {1,…,kβˆ’}\{1,\dots,k_{-}\} as Gβˆ’βŠ”Nβˆ’G_{-}\sqcup N_{-}, where Gβˆ’G_{-} represents the set of punctures involved in gluing, and Nβˆ’N_{-} denotes the set of non-gluing punctures. Similarly, we denote {1,…,k+β€²}\{1,\dots,k_{+}^{\prime}\} as G+β€²βŠ”N+β€²G_{+}^{\prime}\sqcup N_{+}^{\prime}. Consider the term qπœΈβˆ’β€²β€‹pπœΈβ€²+†​qπœΈβˆ’β€‹p𝜸+†q_{\boldsymbol{\gamma}^{\prime}_{-}}p_{\boldsymbol{\gamma^{\prime}}_{+}^{\dagger}}q_{\boldsymbol{\gamma}_{-}}p_{\boldsymbol{\gamma}_{+}^{\dagger}}. We move the qπœΈβˆ’q_{\boldsymbol{\gamma}_{-}} term across the pπœΈβ€²+†p_{\boldsymbol{\gamma^{\prime}}_{+}^{\dagger}} in steps. Through this process, the monomial becomes a polynomial by FormulaΒ (4.0.1), and we only focus on the term that is prescribed by Ο‘\vartheta, meaning when a pp is next to a qq term and they are matched in ΞΈ\theta, we cancel them; otherwise, they are graded commutative.

We now analyze the sign ϡ​(uβ€²,u)\epsilon(u^{\prime},u) in several steps:

  1. (1)

    We move the qq terms labeled by Nβˆ’N_{-} to the end of qπœΈβˆ’q_{\boldsymbol{\gamma}_{-}}, resulting in a sign denoted by Ο΅1\epsilon_{1}.

  2. (2)

    Similarly, we move the pp terms labeled by N+β€²N^{\prime}_{+} to the end of pπœΈβ€²+†p_{\boldsymbol{\gamma^{\prime}}_{+}^{\dagger}}, obtaining a sign Ο΅2\epsilon_{2}.

  3. (3)

    Next, we sort the pp terms labeled by G+β€²G^{\prime}_{+} in reverse order according to Ο‘\vartheta, yielding a sign Ο΅3\epsilon_{3}.

  4. (4)

    We further move the pp terms labeled by N+β€²N^{\prime}_{+} to the end of the monomial, resulting in a sign Ο΅4=(βˆ’1)βˆ‘i∈N+β€²|Ξ³βˆ’,iβ€²|\epsilon_{4}=(-1)^{\sum_{i\in N^{\prime}_{+}}|\gamma^{\prime}_{-,i}|}.

  5. (5)

    We cancel out the pp terms labeled by G+β€²G_{+}^{\prime} with the corresponding qq terms labeled by Gβˆ’G_{-} and get a monomial with qq terms before the pp terms together with a positive factor Ο΅5βˆˆβ„š>0\epsilon_{5}\in\mathbb{Q}^{>0} due to the multiplicity of the Reeb orbits.

  6. (6)

    Finally, we sort the pp terms and qq terms respectively, and get a sign Ο΅6\epsilon_{6}.

In summary, we have ϡ​(uβ€²,u)=Ο΅1​ϡ2​ϡ3​ϡ4​ϡ5​ϡ6\epsilon(u^{\prime},u)=\epsilon_{1}\epsilon_{2}\epsilon_{3}\epsilon_{4}\epsilon_{5}\epsilon_{6}. Next, we calculate the sign that arises from gluing uu and uβ€²u^{\prime} according to Ο‘\vartheta using LemmaΒ 3.3:

  1. (1)

    We reorder the negative ends of uu by moving the punctures labeled by Nβˆ’N_{-} to the end, while still denoting the curve as uu. This results in a sign denoted by Ξ΅1\varepsilon_{1}.

  2. (2)

    Similarly, we reorder the positive ends of uβ€²u^{\prime} by moving the punctures labeled by N+β€²N_{+}^{\prime} to the front, while still denoting the curve as uβ€²u^{\prime}. This results in a sign Ξ΅2\varepsilon_{2}.

  3. (3)

    We sort the positive punctures of uβ€²u^{\prime} labeled by G+β€²G^{\prime}_{+} according to Ο‘\vartheta, while still denoting the curve as uβ€²u^{\prime}. This results in a sign Ξ΅3\varepsilon_{3}.

  4. (4)

    We glue the two curves uu and uβ€²u^{\prime} using LemmaΒ 3.3, and obtain a sign Ξ΅4\varepsilon_{4}.

  5. (5)

    Finally, we sort the positive punctures and negative punctures of the glued curve respectively, getting a sign denoted by Ξ΅6\varepsilon_{6}.

It is evident that Ο΅1=Ξ΅1\epsilon_{1}=\varepsilon_{1}, Ο΅2=Ξ΅2\epsilon_{2}=\varepsilon_{2}, Ο΅3=Ξ΅3\epsilon_{3}=\varepsilon_{3}, Ο΅4=βˆ’Ξ΅4\epsilon_{4}=-\varepsilon_{4}, and Ο΅6=Ξ΅6\epsilon_{6}=\varepsilon_{6}. The factor Ο΅5\epsilon_{5} deals with the over-counting due to simultaneously rotating the asymptotic markers of uu and uβ€²u^{\prime}. This completes the proof of the claim. ∎

Corollary 4.5 (Contact homology [Par19, BH15, Ish18]).

Let 𝔄\mathfrak{A} be the differential graded commutative algebra generated freely by all good Reeb orbits over β„šβ€‹[H2​(M)]\mathbb{Q}[H_{2}(M)]. Let βˆ‚:𝔄→𝔄\partial:\mathfrak{A}\to\mathfrak{A} be the differential defined over generators by

(4.0.5) βˆ‚Ξ³+=βˆ‘[πœΈβˆ’]βˆ‘A∈H2​(M;β„€)1m​(πœΈβˆ’)​|β„³0​(Ξ³+;πœΈβˆ’;A)|β‹…eAβ€‹Ξ³βˆ’,1β€‹β€¦β€‹Ξ³βˆ’,k,\partial\gamma_{+}=\sum_{[\boldsymbol{\gamma}_{-}]}\sum_{A\in H_{2}(M;\mathbb{Z})}\frac{1}{m(\boldsymbol{\gamma}_{-})}|\mathcal{M}^{0}(\gamma_{+};\boldsymbol{\gamma}_{-};A)|\cdot e^{A}\gamma_{-,1}\dots\gamma_{-,k},

where π›„βˆ’=Ξ³βˆ’,1β€‹β€¦β€‹Ξ³βˆ’,k\boldsymbol{\gamma}_{-}=\gamma_{-,1}\dots\gamma_{-,k}, and m​(π›„βˆ’)=m​(Ξ³βˆ’,1)​…​m​(Ξ³βˆ’,k)m(\boldsymbol{\gamma}_{-})=m(\gamma_{-,1})\dots m(\gamma_{-,k}). Then βˆ‚2=0\partial^{2}=0.

Proof.

This follows from TheoremΒ 4.2 by restricting to the term g=0g=0 and linear p𝜸+†p_{\boldsymbol{\gamma}_{+}^{\dagger}}. ∎

Remark 4.6.

If one uses ob​mo_{bm}, then βˆ‚\partial should be defined as

(4.0.6) βˆ‚Ξ³+=βˆ‘[πœΈβˆ’]βˆ‘A∈H2​(M;β„€)1m​(πœΈβˆ’)​|β„³0​(Ξ³+;πœΈβˆ’;A)|β‹…eAβ€‹Ξ³βˆ’,kβ€‹β€¦β€‹Ξ³βˆ’,1\partial\gamma_{+}=\sum_{[\boldsymbol{\gamma}_{-}]}\sum_{A\in H_{2}(M;\mathbb{Z})}\frac{1}{m(\boldsymbol{\gamma}_{-})}|\mathcal{M}^{0}(\gamma_{+};\boldsymbol{\gamma}_{-};A)|\cdot e^{A}\gamma_{-,k}\dots\gamma_{-,1}

as in [BH15].

Lastly, we mention the follow result:

Proposition 4.7.

Different choices of capping CR tuples 𝒯SΒ±\mathcal{T}^{\pm}_{S} and the capping orientations o​(𝒯SΒ±)o(\mathcal{T}^{\pm}_{S}) produce isomorphic SFT.

Proof.

Let 𝒯Sβ€²Β±{\mathcal{T}^{\prime}_{S}}^{\pm} and o′​(𝒯Sβ€²Β±)o^{\prime}({\mathcal{T}^{\prime}_{S}}^{\pm}) be a different choices of capping CR tuples and their capping orientation. Let Ο΅S∈{Β±1}\epsilon_{S}\in\{\pm 1\} be defined by Ο΅S​o​(𝒯S+)​♯​o′​(𝒯Sβ€²βˆ’)=ocan​(𝒯S+​♯​𝒯Sβ€²βˆ’)\epsilon_{S}o(\mathcal{T}^{+}_{S})\sharp o^{\prime}({\mathcal{T}^{\prime}_{S}}^{-})=o_{\operatorname{can}}(\mathcal{T}^{+}_{S}\sharp{\mathcal{T}^{\prime}_{S}}^{-}). Then the isomorphism from (π”š,D)β†’(π”š,Dβ€²)(\mathfrak{W},D)\to(\mathfrak{W},D^{\prime}) is defined by sending generators pΞ³,qγ↦ϡS​pΞ³,Ο΅S​qΞ³p_{\gamma},q_{\gamma}\mapsto\epsilon_{S}p_{\gamma},\epsilon_{S}q_{\gamma} for all Ξ³\gamma, where SS is the loop of symmetric matrices associated to Ξ³\gamma. ∎

Acknowlegements

We thank Ko Honda, Russell Avdek, and Fan Zheng for helpful discussions.

References

  • [BH15] Erkao Bao and Ko Honda β€œSemi-global Kuranishi charts and the definition of contact homology” In arXiv preprint arXiv:1512.00580, 2015
  • [BH18] Erkao Bao and Ko Honda β€œDefinition of cylindrical contact homology in dimension three” In Journal of Topology 11.4 Wiley Online Library, 2018, pp. 1002–1053
  • [Bou02] FrΓ©dΓ©ric Bourgeois β€œA Morse-Bott approach to contact homology”, 2002
  • [BM04] FrΓ©dΓ©ric Bourgeois and Klaus Mohnke β€œCoherent orientations in symplectic field theory” In Mathematische Zeitschrift 248.1 Springer, 2004, pp. 123–146
  • [EGH00] Y. Eliashberg, A. Givental and H. Hofer β€œIntroduction to symplectic field theory” GAFA 2000 (Tel Aviv, 1999) In Geom. Funct. Anal., 2000, pp. 560–673
  • [FOOO09] K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono β€œLagrangian Intersection Floer Theory: Anomaly and Obstruction. Parts I and II.” 46.1 and 46.2, AMS/IP Studies in Advanced Mathematics Providence, RI: American Mathematical Society, 2009
  • [HWZ07] Helmut W Hofer, Kris Wysocki and Eduard Zehnder β€œA general Fredholm theory I: A splicing-based differential geometry” In Journal of the European Mathematical Society 9.4, 2007, pp. 841–876
  • [HN22] Michael Hutchings and Jo Nelson β€œS1S^{1}-equivariant contact homology for hypertight contact forms”, 2022 arXiv:1906.03457 [math.SG]
  • [HT09] Michael Hutchings and Clifford Henry Taubes β€œGluing pseudoholomorphic curves along branched covered cylinders II” In Journal of Symplectic Geometry 7.1 International Press of Boston, 2009, pp. 29–133
  • [Ish18] Suguru Ishikawa β€œConstruction of general symplectic field theory” In arXiv preprint arXiv:1807.09455, 2018
  • [MS12] Dusa McDuff and Dietmar Salamon β€œJ-holomorphic curves and symplectic topology” American Mathematical Soc., 2012
  • [Par19] John Pardon β€œContact homology and virtual fundamental cycles” In Journal of the American Mathematical Society 32.3, 2019, pp. 825–919
  • [Sch95] Matthias Schwarz β€œCohomology operations from S1S^{1}-cobordisms in Floer homology”, 1995