This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Comparing the closed almost disjointness and dominating numbers

Dilip Raghavan Graduate school of system informatics
Kobe University
Kobe 657-8501, Japan.
raghavan@math.toronto.edu http://www.math.toronto.edu/raghavan
 and  Saharon Shelah
(Date: October 12, 2011)
Abstract.

We prove that if there is a dominating family of size 1{\aleph}_{1}, then there is are 1{\aleph}_{1} many compact subsets of ωω{\omega}^{\omega} whose union is a maximal almost disjoint family of functions that is also maximal with respect to infinite partial functions.

Key words and phrases:
maximal almost disjoint family, dominating family
2010 Mathematics Subject Classification:
03E35, 03E65, 03E17, 03E05
First author partially supported by Grants-in-Aid for Scientific Researchfor JSPS Fellows No. 23\cdot01017
Research partially supported by NSF grant DMS 1101597, and by the United States-Israel Binational Science Foundation (Grant no. 2006108). Publication 991.

1. Introduction

Recall that two infinite subsets aa and bb of ω\omega are almost disjoint or a.d. if aba\cap b is finite. A family 𝒜{\mathscr{A}} of infinite subsets of ω\omega is said to be almost disjoint or a.d. in [ω]ω{\left[\omega\right]}^{\omega} if its members are pairwise almost disjoint. A Maximal Almost Disjoint family, or MAD family in [ω]ω{\left[\omega\right]}^{\omega} is an infinite a.d. family in [ω]ω{\left[\omega\right]}^{\omega} that is not properly contained in a larger a.d. family.

Two functions ff and gg in ωω{\omega}^{\omega} are said to be almost disjoint or a.d. if they agree in only finitely many places. We say that a family 𝒜ωω{\mathscr{A}}\subset{\omega}^{\omega} is a.d. in ωω{\omega}^{\omega} if its members are pairwise a.d., and we say that an a.d. family 𝒜ωω{\mathscr{A}}\subset{\omega}^{\omega} is MAD in ωω{\omega}^{\omega} if fωωh𝒜[|fh|=0]\forall f\in{\omega}^{\omega}\exists h\in{\mathscr{A}}\left[\left|f\cap h\right|={\aleph}_{0}\right]. Identifying functions with their graphs, every a.d. family in ωω{\omega}^{\omega} is also an a.d. family in [ω×ω]ω{\left[\omega\times\omega\right]}^{\omega}; however, it is never MAD in [ω×ω]ω{\left[\omega\times\omega\right]}^{\omega} because any function is a.d. from the vertical columns of ω×ω\omega\times\omega. MAD families in ωω{\omega}^{\omega} that become MAD in [ω×ω]ω{\left[\omega\times\omega\right]}^{\omega} when the vertical columns of ω×ω\omega\times\omega are thrown in were considered by Van Douwen.

We say that pω×ωp\subset\omega\times\omega is an infinite partial function if it is a function from some infinite set AωA\subset\omega to ω\omega. An a.d. family 𝒜ωω{\mathscr{A}}\subset{\omega}^{\omega} is said to be Van Douwen if for any infinite partial function pp there is h𝒜h\in{\mathscr{A}} such that |hp|=0\left|h\cap p\right|={\aleph}_{0}. 𝒜{\mathscr{A}} is Van Douwen iff 𝒜{cn:nω}{\mathscr{A}}\cup\{{c}_{n}:n\in\omega\} is a MAD family in [ω×ω]ω{\left[\omega\times\omega\right]}^{\omega}, where cn{c}_{n} is the nnth vertical column of ω×ω\omega\times\omega. The first author showed in [3] that Van Douwen MAD families always exist.

Recall that 𝔟\mathfrak{b} is the least size of an unbounded family in ωω{\omega}^{\omega}, 𝔡\mathfrak{d} is the least size of a dominating family in ωω{\omega}^{\omega}, and 𝔞{\mathfrak{a}} is the least size of a MAD family in [ω]ω{\left[\omega\right]}^{\omega}. It is well known that 𝔟𝔞\mathfrak{b}\leq{\mathfrak{a}}. Whether 𝔞{\mathfrak{a}} could consistently be larger than 𝔡\mathfrak{d} was an open question for a long time, until Shelah achieved a breakthrough in [4] by producing a model where 𝔡=2\mathfrak{d}={\aleph}_{2} and 𝔞=3{\mathfrak{a}}={\aleph}_{3}. However, it is not known whether 𝔞{\mathfrak{a}} can be larger than 𝔡\mathfrak{d} when 𝔡=1\mathfrak{d}={\aleph}_{1}; this is one of the few major remaining open problems in the theory of cardinal invariants posed during the earliest days of the subject (see [5] and [2]). In this note we take a small step towards resolving this question by showing that if 𝔡=1\mathfrak{d}={\aleph}_{1}, then there is a MAD family in [ω]ω{\left[\omega\right]}^{\omega} which is the union of 1{\aleph}_{1} compact subsets of [ω]ω{\left[\omega\right]}^{\omega}. More precisely, we will establish the following:

Theorem 1.

Assume 𝔡=1\mathfrak{d}={\aleph}_{1}. Then there exist 1{\aleph}_{1} compact subsets of ωω{\omega}^{\omega} whose union is a Van Douwen MAD family.

The cardinal invariant 𝔞closed{\mathfrak{a}}_{closed} was recently introduced and studied by Brendle and Khomskii [1] in connection with the possible descriptive complexities of MAD families in certain forcing extensions of 𝐋{\mathbf{L}}.

Definition 2.

𝔞closed{\mathfrak{a}}_{closed} is the least κ\kappa such that there are κ\kappa closed subsets of [ω]ω{\left[\omega\right]}^{\omega} whose union is a MAD family in [ω]ω{\left[\omega\right]}^{\omega}.

Obviously, 𝔞closed𝔞{\mathfrak{a}}_{closed}\leq{\mathfrak{a}}. Brendle and Khomskii showed in [1] that 𝔞closed{\mathfrak{a}}_{closed} behaves differently from 𝔞{\mathfrak{a}} by producing a model where 𝔞closed=1<2=𝔟{\mathfrak{a}}_{closed}={\aleph}_{1}<{\aleph}_{2}=\mathfrak{b}. They asked whether 𝔰=1\mathfrak{s}={\aleph}_{1} implies that 𝔞closed=1{\mathfrak{a}}_{closed}={\aleph}_{1}. As 𝔰𝔡\mathfrak{s}\leq\mathfrak{d}, our result in this paper provides a partial positive answer to their question.

2. The construction

Assume 𝔡=1\mathfrak{d}=\aleph_{1} in this section. We will build 1\aleph_{1} many compact subsets of ωω{\omega}^{\omega} whose union is a Van Douwen MAD family. To this end, we will construct a sequence Tα:α<ω1\langle{T}_{\alpha}:\alpha<\omega_{1}\rangle of finitely branching subtrees of ω<ω{\omega}^{<\omega} such that α<ω1[Tα]{\bigcup}_{\alpha<\omega_{1}}{\left[{T}_{\alpha}\right]} has the required properties. Henceforth, Tω<ωT\subset{\omega}^{<\omega} will mean TT is a subtree of ω<ω{\omega}^{<\omega}.

Definition 3.

Let Tω<ωT\subset{\omega}^{<\omega}. Let A[ω]ωA\in{\left[\omega\right]}^{\omega} and p:Aωp:A\rightarrow\omega. For any ordinal ξ\xi and σT\sigma\in T define rkT,p(σ)ξ{\operatorname{rk}}_{T,p}(\sigma)\geq\xi to mean

ζ<ξτTlA[τσ|σ|l<|τ|τ(l)=p(l)rkT,p(τ)ζ].\displaystyle\forall\zeta<\xi\exists\tau\in T\exists l\in A\left[\tau\supset\sigma\wedge\left|\sigma\right|\leq l<\left|\tau\right|\wedge\tau(l)=p(l)\wedge{\operatorname{rk}}_{T,p}(\tau)\geq\zeta\right].

Note that if ηξ\eta\leq\xi and rkT,p(σ)ξ{\operatorname{rk}}_{T,p}(\sigma)\geq\xi, then rkT,p(σ)η{\operatorname{rk}}_{T,p}(\sigma)\geq\eta, and that for a limit ordinal ξ\xi, if ζ<ξ[rkT,p(σ)ζ]\forall\zeta<\xi\left[{\operatorname{rk}}_{T,p}(\sigma)\geq\zeta\right], then rkT,p(σ)ξ{\operatorname{rk}}_{T,p}(\sigma)\geq\xi. Also, for any σ,τT\sigma,\tau\in T, if στ\sigma\subset\tau and rkT,p(τ)ξ{\operatorname{rk}}_{T,p}(\tau)\geq\xi, then rkT,p(σ)ξ{\operatorname{rk}}_{T,p}(\sigma)\geq\xi. Moreover, if rkT,p(σ)ξ{\operatorname{rk}}_{T,p}(\sigma)\not\geq\xi and if τT\tau\in T and lAl\in A are such that τσ\tau\supset\sigma, |σ|l<|τ|\left|\sigma\right|\leq l<\left|\tau\right|, and p(l)=τ(l)p(l)=\tau(l), then there is ζ<ξ\zeta<\xi such that rkT,p(τ)ζ{\operatorname{rk}}_{T,p}(\tau)\not\geq\zeta. Therefore, if there is f[T]f\in\left[T\right] with |fp|=0\left|f\cap p\right|={\aleph}_{0}, and σf\sigma\subset f and there is some ordinal ξ\xi such that rkT,p(σ)ξ{\operatorname{rk}}_{T,p}(\sigma)\not\geq\xi, then is some στf\sigma\subset\tau\subset f and some ordinal ζ<ξ\zeta<\xi such that rkT,p(τ)ζ{\operatorname{rk}}_{T,p}(\tau)\not\geq\zeta, thus allowing us to construct an infinite, strictly descending sequence of ordinals. So if f[T]f\in\left[T\right] with |fp|=0\left|f\cap p\right|={\aleph}_{0}, then for any σf\sigma\subset f and any ordinal ξ\xi, rkT,p(σ)ξ{\operatorname{rk}}_{T,p}(\sigma)\geq\xi. On the other hand, suppose that σT\sigma\in T with rkT,p(σ)ω1{\operatorname{rk}}_{T,p}(\sigma)\geq{\omega}_{1}. Then there is τT\tau\in T with τσ\tau\supset\sigma and lAl\in A such that |σ|l<|τ|\left|\sigma\right|\leq l<\left|\tau\right|, p(l)=τ(l)p(l)=\tau(l), and rkT,p(τ)ω1{\operatorname{rk}}_{T,p}(\tau)\geq{\omega}_{1}, allowing us to construct f[T]f\in\left[T\right] with σf\sigma\subset f such that |fp|=0\left|f\cap p\right|={\aleph}_{0}.

Definition 4.

Suppose Tω<ωT\subset{\omega}^{<\omega}, A[ω]ωA\in{\left[\omega\right]}^{\omega}, and p:Aωp:A\rightarrow\omega. Assume that pp is a.d. from each f[T]f\in\left[T\right]. Then define HT,p:Tω1{H}_{T,p}:T\rightarrow{\omega}_{1} by HT,p(σ)=min{ξ:rkT,p(σ)ξ+1}{H}_{T,p}(\sigma)=\min\{\xi:{\operatorname{rk}}_{T,p}(\sigma)\not\geq\xi+1\}.

Note the following features of this definition

  1. (1{\ast}_{1})

    σ,τT[στHT,p(σ)HT,p(τ)]\forall\sigma,\tau\in T\left[\sigma\subset\tau\implies{H}_{T,p}(\sigma)\geq{H}_{T,p}(\tau)\right]

  2. (2{\ast}_{2})

    for all σ,τT\sigma,\tau\in T with στ\sigma\subset\tau, if there exists lAl\in A such that |σ|l<|τ|\left|\sigma\right|\leq l<\left|\tau\right| and p(l)=τ(l)p(l)=\tau(l), then HT,p(τ)<HT,p(σ){H}_{T,p}(\tau)<{H}_{T,p}(\sigma).

On the other hand, notice that if there is a function H:Tω1H:T\rightarrow{\omega}_{1} such that (1{\ast}_{1}) and (2{\ast}_{2}) hold when HT,p{H}_{T,p} is replaced with HH, then pp must be a.d. from [T][T].

Definition 5.

II is said to be an interval partition if I=in:nωI=\langle{i}_{n}:n\in\omega\rangle, where i0=0{i}_{0}=0, and nω[in<in+1]\forall n\in\omega\left[{i}_{n}<{i}_{n+1}\right]. For nωn\in\omega, In{I}_{n} denotes the interval [in,in+1)[{i}_{n},{i}_{n+1}).

Given two interval partitions II and JJ, we say that II dominates JJ and write JIJ{\leq}^{\ast}I if nωkω[JkIn]{\forall}^{\infty}n\in\omega\exists k\in\omega\left[{J}_{k}\subset{I}_{n}\right].

It is well known that 𝔡\mathfrak{d} is also the size of the smallest family of interval partitions dominating any interval partition. So fix a sequence Iα:α<ω1\langle{I}^{\alpha}:\alpha<{\omega}_{1}\rangle of interval partitions such that

  1. (1)

    αβ<ω1[IαIβ]\forall\alpha\leq\beta<{\omega}_{1}\left[{I}^{\alpha}{\leq}^{\ast}{I}^{\beta}\right]

  2. (2)

    for any interval partition JJ, there exists α<ω1\alpha<{\omega}_{1} such that JIαJ{\leq}^{\ast}{I}^{\alpha}.

Fix an ω1\omega_{1}-scale fα:α<ω1\langle{f}_{\alpha}:\alpha<\omega_{1}\rangle such that α<ω1nω[fα(n)<fα(n+1)]\forall\alpha<\omega_{1}\forall n\in\omega\left[f_{\alpha}(n)<f_{\alpha}(n+1)\right]. For each α1\alpha\geq 1, define eα{e}_{\alpha} and gαg_{\alpha} by induction on α\alpha as follows. If α\alpha is a successor, then eα:ωαe_{\alpha}:\omega\rightarrow\alpha is any onto function, and gα=fα{g}_{\alpha}=f_{\alpha}. If α\alpha is a limit, then let {en:nω}\{e_{n}:n\in\omega\} enumerate {eξ:ξ<α}\{{e}_{\xi}:\xi<\alpha\}. Now, define eα:ωα{e}_{\alpha}:\omega\rightarrow\alpha and gαωωg_{\alpha}\in{\omega}^{\omega} such that

  1. (3)

    nω[gα(n)gα(n+1)]\forall n\in\omega\left[g_{\alpha}(n)\leq g_{\alpha}(n+1)\right]

  2. (4)

    nωinjfα(n)k<gα(n)[eα(k)=ei(j)]\forall n\in\omega\forall i\leq n\forall j\leq f_{\alpha}(n)\exists k<g_{\alpha}(n)\left[e_{\alpha}(k)=e_{i}(j)\right].

Observe that such an eαe_{\alpha} must be a surjection. For each nωn\in\omega, put wα(n)={eα(i):igα(n)}{w}_{\alpha}(n)=\{{e}_{\alpha}(i):i\leq{g}_{\alpha}(n)\}.

Now fix α<ω1\alpha<\omega_{1} and assume that Tϵω<ω{T}_{\epsilon}\subset{\omega}^{<\omega} has been defined for each ϵ<α\epsilon<\alpha such that each Tϵ{T}_{\epsilon} is finitely branching and ϵ<α[Tϵ]{\bigcup}_{\epsilon<\alpha}{\left[{T}_{\epsilon}\right]} is an a.d. family in ωω{\omega}^{\omega}. Let ϵn:nω\langle{\epsilon}_{n}:n\in\omega\rangle enumerate α\alpha, possibly with repetitions. For a tree Tω<ωT\subset{\omega}^{<\omega} and lωl\in\omega, TlT\upharpoonright l denotes {σT:|σ|l}\{\sigma\in T:\left|\sigma\right|\leq l\}, and T(l)T(l) denotes {σT:|σ|=l}\{\sigma\in T:\left|\sigma\right|=l\}. We will define a sequence of natural numbers 0=l0<l1<0={l}_{0}<{l}_{1}<\dotsb and determine Tαln{T}_{\alpha}\upharpoonright{l}_{n} by induction on nn. Tαl0={0}{T}_{\alpha}\upharpoonright{l}_{0}=\{0\}. Assume that ln{l}_{n} and Tαln{T}_{\alpha}\upharpoonright{l}_{n} are given. Suppose also that we are given a sequence of natural numbers ki:i<n\langle{k}_{i}:i<n\rangle such that

  1. (5)

    i<i+1<n[ki<ki+1]\forall i<i+1<n\left[{k}_{i}<{k}_{i+1}\right]

  2. (6)

    Ikiα[0,ln){I}^{\alpha}_{{k}_{i}}\subset[0,{l}_{n}).

Let σ{\sigma}^{\ast} denote the member of Tα(ln){T}_{\alpha}({l}_{n}) that is right most with respect to the lexicographical ordering on ωln{\omega}^{{l}_{n}}. Suppose we are also given Ln:Tα(ln){σ}Wn{L}_{n}:{T}_{\alpha}({l}_{n})\setminus\{{\sigma}^{\ast}\}\rightarrow{W}_{n}, an injection. Here Wn{W}_{n} is the set of all pairs p0,h¯\langle{p}_{0},\bar{h}\rangle such that

  1. (7)

    there are s[ω]<ωs\in{{\left[\omega\right]}^{<\omega}}, and numbers i0<j0n{i}_{0}<{j}_{0}\leq n such that

    1. (a)

      si[i0,j0)Ikiαs\subset{\bigcup}_{i\in[{i}_{0},{j}_{0})}{{I}^{\alpha}_{{k}_{i}}}

    2. (b)

      for each i[i0,j0)i\in[{i}_{0},{j}_{0}), |sIkiα|=1\left|s\cap{I}^{\alpha}_{{k}_{i}}\right|=1

    3. (c)

      p0:sω{p}_{0}:s\rightarrow\omega such that ms[p0(m)fα(m)]\forall m\in s\left[{p}_{0}(m)\leq{f}_{\alpha}(m)\right]

  2. (8)

    There is j1<n{j}_{1}<n such that h¯=hϵi:ij1\bar{h}=\langle{h}_{{\epsilon}_{i}}:i\leq{j}_{1}\rangle (if α=0\alpha=0, this means that h¯=0\bar{h}=0). For each ij1i\leq{j}_{1}, hϵi:Tϵimax(s)+1wα(max(s)+1){h}_{{\epsilon}_{i}}:{T}_{{\epsilon}_{i}}\upharpoonright\max{(s)}+1\rightarrow{w}_{\alpha}(\max{(s)}+1) such that (1{\ast}_{1}) and (2{\ast}_{2}) hold when TT is replaced there with Tϵimax(s)+1{T}_{{\epsilon}_{i}}\upharpoonright\max{(s)}+1, HT,p{H}_{T,p} is replaced with hϵi{h}_{{\epsilon}_{i}}, AA with ss, and pp with p0{p}_{0}.

Assume that for each i<ni<n, we are also given σiTα(li){\sigma}_{i}\in{T}_{\alpha}({l}_{i}), which we will call the active node at stage ii. Note that Tα(l0)={0}{T}_{\alpha}({l}_{0})=\{0\}, and so σ0=0{\sigma}_{0}=0. For each σTα(ln)\sigma\in{T}_{\alpha}({l}_{n}), let Δ(σ)=max({0}{i<n:σi=σli})\Delta(\sigma)=\max\left(\{0\}\cup\{i<n:{\sigma}_{i}=\sigma\upharpoonright{l}_{i}\}\right). For, σ,τTα(ln)\sigma,\tau\in{T}_{\alpha}({l}_{n}), say στ\sigma\vartriangleleft\tau if either Δ(σ)<Δ(τ)\Delta(\sigma)<\Delta(\tau) or Δ(σ)=Δ(τ)\Delta(\sigma)=\Delta(\tau) and σ\sigma is to the left of τ\tau in the lexicographic ordering on ωln{\omega}^{{l}_{n}}. Let σn{\sigma}_{n} be the \vartriangleleft-minimal member of Tα(ln){T}_{\alpha}({l}_{n}). σn{\sigma}_{n} will be active at stage nn. The meaning of this is that none of the other nodes in Tα(ln){T}_{\alpha}({l}_{n}) will be allowed to branch at stage nn. Choose kn{k}_{n} greater than all ki{k}_{i} for i<ni<n such that Iknα[ln,){I}^{\alpha}_{{k}_{n}}\subset[{l}_{n},\infty). Let Vn{V}_{n} be the set of all pairs p1,𝐡¯\langle{p}_{1},\bar{\mathbf{h}}\rangle such that

  1. (9)

    there exist ss and a natural number i1n{i}_{1}\leq n such that

    1. (a)

      si[i1,n+1)Ikiαs\subset{\bigcup}_{i\in[{i}_{1},n+1)}{{I}^{\alpha}_{{k}_{i}}}

    2. (b)

      for each i[i1,n+1)i\in[{i}_{1},n+1), |sIkiα|=1\left|s\cap{I}^{\alpha}_{{k}_{i}}\right|=1

    3. (c)

      p1:sω{p}_{1}:s\rightarrow\omega such that ms[p1(m)fα(m)]\forall m\in s\left[{p}_{1}(m)\leq{f}_{\alpha}(m)\right]

  2. (10)

    There is j2n{j}_{2}\leq n such that 𝐡¯=𝐡ϵi:ij2\bar{\mathbf{h}}=\langle{\mathbf{h}}_{{\epsilon}_{i}}:i\leq{j}_{2}\rangle. For each ij2i\leq{j}_{2}, 𝐡ϵi:Tϵimax(s)+1wα(max(s)+1){\mathbf{h}}_{{\epsilon}_{i}}:{T}_{{\epsilon}_{i}}\upharpoonright\max{(s)}+1\rightarrow{w}_{\alpha}(\max{(s)}+1) such that (1{\ast}_{1}) and (2{\ast}_{2}) are satisfied when TT is replaced with Tϵimax(s)+1{T}_{{\epsilon}_{i}}\upharpoonright\max{(s)}+1, HT,p{H}_{T,p} is replaced with 𝐡ϵi{\mathbf{h}}_{{\epsilon}_{i}}, AA with ss, and pp with p1{p}_{1}.

Note that Vn{V}_{n} is always finite. Now, the construction splits into two cases.

Case I: σnσ{\sigma}_{n}\neq{\sigma}^{\ast}. Put p0,h¯=Ln(σn)\langle{p}_{0},\bar{h}\rangle={L}_{n}({\sigma}_{n}). Let i0<n{i}_{0}<n be as in (7) above, and let j1<n{j}_{1}<n be as in (8). Let

Un={p1,𝐡¯Vn:p0p1i0=i1j1<j2ij1[𝐡ϵidom(hϵi)=hϵi]}.\displaystyle{U}_{n}=\left\{\langle{p}_{1},\bar{\mathbf{h}}\rangle\in{V}_{n}:{p}_{0}\subset{p}_{1}\wedge{i}_{0}={i}_{1}\wedge{j}_{1}<{j}_{2}\wedge\forall i\leq{j}_{1}\left[{\mathbf{h}}_{{\epsilon}_{i}}\upharpoonright\operatorname{dom}({h}_{{\epsilon}_{i}})={h}_{{\epsilon}_{i}}\right]\right\}.

Here i1{i}_{1} is as in (9), and j2{j}_{2} is as in (10) with respect to p1,𝐡¯\langle{p}_{1},\bar{\mathbf{h}}\rangle. Now choose ln+1>ln{l}_{n+1}>{l}_{n} large enough so that Iknα[ln,ln+1){I}^{\alpha}_{{k}_{n}}\subset[{l}_{n},{l}_{n+1}) and so that it is possible to pick {τx:xUn}ωln+1\{{\tau}_{x}:x\in{U}_{n}\}\subset{\omega}^{{l}_{n+1}} and {τσ:σTα(ln)}ωln+1\{{\tau}_{\sigma}:\sigma\in{T}_{\alpha}({l}_{n})\}\subset{\omega}^{{l}_{n+1}} such that the following conditions are satisfied.

  1. (11)

    for each xUnx\in{U}_{n}, τxσn{\tau}_{x}\supset{\sigma}_{n}, and for each σTα(ln)\sigma\in{T}_{\alpha}({l}_{n}), τσσ{\tau}_{\sigma}\supset\sigma

  2. (12)

    for each x,yUnx,y\in{U}_{n}, if xyx\neq y, then there exists m[ln,ln+1)m\in[{l}_{n},{l}_{n+1}) such that τx(m)τy(m){\tau}_{x}(m)\neq{\tau}_{y}(m). For each xUnx\in{U}_{n}, there exists m[ln,ln+1)m\in[{l}_{n},{l}_{n+1}) such that τx(m)τσn(m){\tau}_{x}(m)\neq{\tau}_{{\sigma}_{n}}(m). For x=p1,𝐡¯Unx=\langle{p}_{1},\bar{\mathbf{h}}\rangle\in{U}_{n}, if {i}=dom(p1)Iknα\{{i}^{\ast}\}=\operatorname{dom}{({p}_{1})}\cap{I}^{\alpha}_{{k}_{n}}, then p1(i)=τx(i){p}_{1}({i}^{\ast})={\tau}_{x}({i}^{\ast}).

  3. (13)

    for each xUnx\in{U}_{n} and σTα(ln)\sigma\in{T}_{\alpha}({l}_{n}), m[ln,ln+1)[τx(m)τσ(m)]\forall m\in[{l}_{n},{l}_{n+1})\left[{\tau}_{x}(m)\neq{\tau}_{\sigma}(m)\right]. For σ,ηTα(ln)\sigma,\eta\in{T}_{\alpha}({l}_{n}), if ση\sigma\neq\eta, then m[ln,ln+1)[τσ(m)τη(m)]\forall m\in[{l}_{n},{l}_{n+1})\left[{\tau}_{\sigma}(m)\neq{\tau}_{\eta}(m)\right].

  4. (14)

    for each ini\leq n, τTϵi(ln+1)\tau\in{T}_{{\epsilon}_{i}}({l}_{n+1}), σTα(ln)\sigma\in{T}_{\alpha}({l}_{n}) and m[ln,ln+1)m\in[{l}_{n},{l}_{n+1}), τ(m)τσ(m)\tau(m)\neq{\tau}_{\sigma}(m). For each xUnx\in{U}_{n}, ij2i\leq{j}_{2}, τTϵi(ln+1)\tau\in{T}_{{\epsilon}_{i}}({l}_{n+1}) and m[ln,ln+1)m\in[{l}_{n},{l}_{n+1}), if τx(m)=τ(m){\tau}_{x}(m)=\tau(m), then mdom(p1)m\in\operatorname{dom}{({p}_{1})} and p1(m)=τx(m){p}_{1}(m)={\tau}_{x}(m).

Define Ln+1{L}_{n+1} as follows. For any xUnx\in{U}_{n}, Ln+1(τx)=x{L}_{n+1}({\tau}_{x})=x. For any σTα(ln){σ}\sigma\in{T}_{\alpha}({l}_{n})\setminus\{{\sigma}^{\ast}\}, Ln+1(τσ)=Ln(σ){L}_{n+1}({\tau}_{\sigma})={L}_{n}(\sigma). This finishes case 1.

Case II: σn=σ{\sigma}_{n}={\sigma}^{\ast}. For each σTα(ln){σn}\sigma\in{T}_{\alpha}({l}_{n})\setminus\{{\sigma}_{n}\}, let p0(σ),h¯(σ)=Ln(σ)\langle{p}_{0}(\sigma),\bar{h}(\sigma)\rangle={L}_{n}(\sigma). Let i0(σ)<n{i}_{0}(\sigma)<n witness (7) for Ln(σ){L}_{n}(\sigma) and let j1(σ)<n{j}_{1}(\sigma)<n witness (8) for Ln(σ){L}_{n}(\sigma). Let Un{U}_{n} be the set of all p1,𝐡¯Vn\langle{p}_{1},\bar{\mathbf{h}}\rangle\in{V}_{n} such that there is no σTα(ln){σn}\sigma\in{T}_{\alpha}({l}_{n})\setminus\{{\sigma}_{n}\} so that

p0(σ)p1i0(σ)=i1j1(σ)<j2ij1(σ)[𝐡ϵidom(hϵi)=hϵi].\displaystyle{p}_{0}(\sigma)\subset{p}_{1}\wedge{i}_{0}(\sigma)={i}_{1}\wedge{j}_{1}(\sigma)<{j}_{2}\wedge\forall i\leq{j}_{1}(\sigma)\left[{\mathbf{h}}_{{\epsilon}_{i}}\upharpoonright\operatorname{dom}{({h}_{{\epsilon}_{i}})}={h}_{{\epsilon}_{i}}\right].

Here i1n{i}_{1}\leq n and j2n{j}_{2}\leq n witness (9) and (10) respectively with respect to p1,𝐡¯\langle{p}_{1},\bar{\mathbf{h}}\rangle. Choose ln+1>ln{l}_{n+1}>{l}_{n} large enough so that Iknα[ln,ln+1){I}^{\alpha}_{{k}_{n}}\subset[{l}_{n},{l}_{n+1}) and so that it is possible to choose {τ}\{{\tau}^{\ast}\}, {τx:xUn}\{{\tau}_{x}:x\in{U}_{n}\}, and {τσ:σTα(ln){σn}}\{{\tau}_{\sigma}:\sigma\in{T}_{\alpha}({l}_{n})\setminus\{{\sigma}_{n}\}\}, subsets of ωln+1{\omega}^{{l}_{n+1}}, satisfying the following conditions.

  1. (15)

    τσn{\tau}^{\ast}\supset{\sigma}_{n}. For each xUnx\in{U}_{n}, τxσn{\tau}_{x}\supset{\sigma}_{n}. For each σTα(ln){σn}\sigma\in{T}_{\alpha}({l}_{n})\setminus\{{\sigma}_{n}\}, τσσ{\tau}_{\sigma}\supset\sigma.

  2. (16)

    τ{\tau}^{\ast} is the right most branch of Tα(ln+1){T}_{\alpha}({l}_{n+1}). For each xUnx\in{U}_{n}, there exists m[ln,ln+1)m\in[{l}_{n},{l}_{n+1}) such that τ(m)τx(m){\tau}^{\ast}(m)\neq{\tau}_{x}(m). For each x,yUnx,y\in{U}_{n}, if xyx\neq y, then there is m[ln,ln+1)m\in[{l}_{n},{l}_{n+1}) so that τx(m)τy(m){\tau}_{x}(m)\neq{\tau}_{y}(m). For each x=p1,𝐡¯Unx=\langle{p}_{1},\bar{\mathbf{h}}\rangle\in{U}_{n}, if {i}=Iknαdom(p1)\{{i}^{\ast}\}={I}^{\alpha}_{{k}_{n}}\cap\operatorname{dom}{({p}_{1})}, then p1(i)=τx(i){p}_{1}({i}^{\ast})={\tau}_{x}({i}^{\ast}).

  3. (17)

    For each xUnx\in{U}_{n} and m[ln,ln+1)m\in[{l}_{n},{l}_{n+1}), τx(m)τ(m){\tau}_{x}(m)\neq{\tau}^{\ast}(m). For each σTα(ln){σn}\sigma\in{T}_{\alpha}({l}_{n})\setminus\{{\sigma}_{n}\} and for each m[ln,ln+1)m\in[{l}_{n},{l}_{n+1}), τ(m)τσ(m){\tau}^{\ast}(m)\neq{\tau}_{\sigma}(m), and for each xUnx\in{U}_{n}, τσ(m)τx(m){\tau}_{\sigma}(m)\neq{\tau}_{x}(m). For each σ,ηTα(ln){σn}\sigma,\eta\in{T}_{\alpha}({l}_{n})\setminus\{{\sigma}_{n}\}, if ση\sigma\neq\eta, then for all m[ln,ln+1)m\in[{l}_{n},{l}_{n+1}), τσ(m)τη(m){\tau}_{\sigma}(m)\neq{\tau}_{\eta}(m).

  4. (18)

    For each ini\leq n, τTϵi(ln+1)\tau\in{T}_{{\epsilon}_{i}}({l}_{n+1}), m[ln,ln+1)m\in[{l}_{n},{l}_{n+1}), and σTα(ln){σn}\sigma\in{T}_{\alpha}({l}_{n})\setminus\{{\sigma}_{n}\}, τ(m)τ(m){\tau}^{\ast}(m)\neq\tau(m) and τσ(m)τ(m){\tau}_{\sigma}(m)\neq\tau(m). For each x=p1,𝐡¯Unx=\langle{p}_{1},\bar{\mathbf{h}}\rangle\in{U}_{n}, ij2i\leq{j}_{2}, ττϵi(ln+1)\tau\in{\tau}_{{\epsilon}_{i}}({l}_{n+1}) and m[ln,ln+1)m\in[{l}_{n},{l}_{n+1}), if τx(m)=τ(m){\tau}_{x}(m)=\tau(m), then mdom(p1)m\in\operatorname{dom}{({p}_{1})} and p1(m)=τx(m){p}_{1}(m)={\tau}_{x}(m).

For each σTα(ln){σn}\sigma\in{T}_{\alpha}({l}_{n})\setminus\{{\sigma}_{n}\}, define Ln+1(τσ)=Ln(σ){L}_{n+1}({\tau}_{\sigma})={L}_{n}(\sigma). For each xUnx\in{U}_{n}, set Ln+1(τx)=x{L}_{n+1}({\tau}_{x})=x. This completes the construction. We now check that it is as required.

Lemma 6.

For each f[Tα]f\in\left[{T}_{\alpha}\right], there are infinitely many nωn\in\omega such that σn=fln{\sigma}_{n}=f\upharpoonright{l}_{n}.

Proof.

For each nωn\in\omega put Θ(n)=min{Δ(σ):σTα(ln)}\Theta(n)=\min{\{\Delta(\sigma):\sigma\in{T}_{\alpha}({l}_{n})\}}. It is clear from the construction that Θ(n+1)Θ(n)\Theta(n+1)\geq\Theta(n). If the lemma fails, then there are mm and τTα(lm+1)\tau\in{T}_{\alpha}({l}_{m+1}) with the property that for infinitely many n>m+1n>m+1, there is a σTα(ln)\sigma\in{T}_{\alpha}({l}_{n}) such that Θ(n)=Δ(σ)=m\Theta(n)=\Delta(\sigma)=m and σlm+1=τ\sigma\upharpoonright{l}_{m+1}=\tau. Let τ\tau be the left most node in Tα(lm+1){T}_{\alpha}({l}_{m+1}) with this property. Choose n1>n0>m+1{n}_{1}>{n}_{0}>m+1 and σTα(ln1)\sigma\in{T}_{\alpha}({l}_{{n}_{1}}) such that Θ(n1)=Θ(n0)=Δ(σ)=m\Theta({n}_{1})=\Theta({n}_{0})=\Delta(\sigma)=m, σlm+1=τ\sigma\upharpoonright{l}_{m+1}=\tau, and there is no ηTα(ln0)\eta\in{T}_{\alpha}({l}_{{n}_{0}}) such that Δ(η)=m\Delta(\eta)=m and ηlm+1\eta\upharpoonright{l}_{m+1} is to the left of τ\tau. Note that Δ(σln0)=m\Delta(\sigma\upharpoonright{l}_{{n}_{0}})=m. So σn0{\sigma}_{{n}_{0}} is to the left of σln0\sigma\upharpoonright{l}_{{n}_{0}}, and σn0lm+1{\sigma}_{{n}_{0}}\upharpoonright{l}_{m+1} is not to the left of τ\tau, whence σn0lm+1=τ{\sigma}_{{n}_{0}}\upharpoonright{l}_{m+1}=\tau. But then there is some n[m+1,n0)n\in[m+1,{n}_{0}) where σln\sigma\upharpoonright{l}_{n} was active, a contradiction. ∎

Note that Lemma 6 implies that for any σTα\sigma\in{T}_{\alpha}, there is a unique minimal extension of σ\sigma which is active.

Lemma 7.

Tα{T}_{\alpha} is finitely branching and ϵα[Tϵ]{\bigcup}_{\epsilon\leq\alpha}{[{T}_{\epsilon}]} is a.d. in ωω{\omega}^{\omega}.

Proof.

It is clear from the construction that Tα{T}_{\alpha} is finitely branching. Fix f,g[Tα]f,g\in[{T}_{\alpha}], with fgf\neq g. Let n=max{iω:fli=gli}n=\max\{i\in\omega:f\upharpoonright{l}_{i}=g\upharpoonright{l}_{i}\}. It is clear from the construction that mln+1[f(m)g(m)]\forall m\geq{l}_{n+1}\left[f(m)\neq g(m)\right].

Next, fix ϵ<α\epsilon<\alpha. Suppose ϵ=ϵi\epsilon={\epsilon}_{i}. Let h[Tϵi]h\in\left[{T}_{{\epsilon}_{i}}\right] and f[Tα]f\in\left[{T}_{\alpha}\right], and suppose for a contradiction that |hf|=0\left|h\cap f\right|={\aleph}_{0}. So there are infinitely many nωn\in\omega such that f[ln,ln+1)h[ln,ln+1)=0f\upharpoonright[{l}_{n},{l}_{n+1})\cap h\upharpoonright[{l}_{n},{l}_{n+1})\neq=0. For any nin\geq i, this can only happen if fln=σnf\upharpoonright{l}_{n}={\sigma}_{n} and fln+1=τxnf\upharpoonright{l}_{n+1}={\tau}_{{x}_{n}} for some xnUn{x}_{n}\in{U}_{n}. Put xn=p1,n,𝐡¯n{x}_{n}=\langle{p}_{1,n},{\bar{\mathbf{h}}}_{n}\rangle. Note that in this case Ln+1(fln+1)=xn{L}_{n+1}(f\upharpoonright{l}_{n+1})={x}_{n}. For such nn, let j2(n){j}_{2}(n) be as in (10) with respect to xn{x}_{n}. So for infinitely many such nn, j2(n)i{j}_{2}(n)\geq i. But then for infinitely many such nn, 𝐡ϵi,n(hmax(dom(p1,n))+1)<𝐡ϵi,n(hln){\mathbf{h}}_{{\epsilon}_{i},n}(h\upharpoonright\max{(\operatorname{dom}{({p}_{1,n})})}+1)<{\mathbf{h}}_{{\epsilon}_{i},n}(h\upharpoonright{l}_{n}), producing an infinite strictly descending sequence of ordinals. ∎

Lemma 8.

For each A[ω]ωA\in{\left[\omega\right]}^{\omega} and p:Aωp:A\rightarrow\omega, there are α<ω1\alpha<{\omega}_{1} and f[Tα]f\in\left[{T}_{\alpha}\right] such that |pf|=0\left|p\cap f\right|={\aleph}_{0}.

Proof.

Suppose for a contradiction that there are A[ω]ωA\in{\left[\omega\right]}^{\omega} and p:Aωp:A\rightarrow\omega such that pp is a.d. from [Tα]\left[{T}_{\alpha}\right], for each α<ω1\alpha<{\omega}_{1}. Let MH(θ)M\prec H(\theta) be a countable elementary submodel containing everything relevant. Put α=Mω1\alpha=M\cap{\omega}_{1}. For each ϵ<α\epsilon<\alpha, let Hϵ{H}_{\epsilon} denote HTϵ,p{H}_{{T}_{\epsilon},p}, and note that Hϵ{H}_{\epsilon} and ran(Hϵ)\operatorname{ran}{({H}_{\epsilon})} are members of MM. Let ξϵ=sup(ran(Hϵ))+1<α{\xi}_{\epsilon}=\sup{(\operatorname{ran}{({H}_{\epsilon})})}+1<\alpha. Find gMωωg\in M\cap{\omega}^{\omega} such that for nωn\in\omega, Hϵ′′Tϵn{eξϵ(j):jg(n)}{H}_{\epsilon}^{\prime\prime}{{T}_{\epsilon}\upharpoonright n}\subset\{{e}_{{\xi}_{\epsilon}}(j):j\leq g(n)\}. Since nω[g(n)fα(n)]{\forall}^{\infty}n\in\omega\left[g(n)\leq{f}_{\alpha}(n)\right], it follows from (4) that for all but finitely many nωn\in\omega, for all σTϵn\sigma\in{T}_{\epsilon}\upharpoonright n, Hϵ(σ)wα(n){H}_{\epsilon}(\sigma)\in{w}_{\alpha}(n). Now, find qpq\subset p such that mdom(q)[q(m)fα(m)]\forall m\in\operatorname{dom}{(q)}\left[q(m)\leq{f}_{\alpha}(m)\right] and nω[|dom(q)Inα|=1]{\forall}^{\infty}n\in\omega\left[\left|\operatorname{dom}(q)\cap{I}^{\alpha}_{n}\right|=1\right]. Note that for any ϵ<α\epsilon<\alpha, (1{\ast}_{1}) and (2{\ast}_{2}) are satisfied when TT is replaced there with Tϵ{T}_{\epsilon}, HT,p{H}_{T,p} is replaced with Hϵ{H}_{\epsilon}, AA with dom(q)\operatorname{dom}{(q)}, and pp with qq. But now, it follows from the construction that there is f[Tα]f\in\left[{T}_{\alpha}\right] such that for infinitely many nωn\in\omega, there is m[ln,ln+1)dom(q)m\in[{l}_{n},{l}_{n+1})\cap\operatorname{dom}{(q)} such that q(m)=f(m)q(m)=f(m). ∎

3. Remarks and Questions

The construction in this paper is very specific to ω1{\omega}_{1}; indeed, it is possible to show that 𝔡\mathfrak{d} is not always an upper bound for 𝔞closed{\mathfrak{a}}_{closed}. A modification of the methods of Section 4 of [4] shows that if κ\kappa is a measurable cardinal and if λ=cf(λ)=λκ>μ=cf(μ)>κ\lambda=\operatorname{cf}{(\lambda)}={\lambda}^{\kappa}>\mu=\operatorname{cf}{(\mu)}>\kappa, then there is a c.c.c. poset \mathbb{P} such that ||=λ\left|\mathbb{P}\right|=\lambda, and \mathbb{P} forces that 𝔟=𝔡=μ\mathfrak{b}=\mathfrak{d}=\mu and 𝔞=𝔞closed=𝔠=λ{\mathfrak{a}}={\mathfrak{a}}_{closed}=\mathfrak{c}=\lambda.

As mentioned in Section 1, we see the result in this paper as providing a weak positive answer to the following basic question, which has remained open for long.

Question 9.

If 𝔡=1\mathfrak{d}={\aleph}_{1}, then is 𝔞=1{\mathfrak{a}}={\aleph}_{1}?

There are also several open questions about upper and lower bounds for 𝔞closed{\mathfrak{a}}_{closed}.

Question 10 (Brendle and Khomskii [1]).

If 𝔰=1\mathfrak{s}={\aleph}_{1}, then is 𝔞closed=1{\mathfrak{a}}_{closed}={\aleph}_{1}?

Question 11.

Is 𝔥𝔞closed\mathfrak{h}\leq{\mathfrak{a}}_{closed}?

Regarding Question 10, it is proved in Brendle and Khomskii [1] that if 𝐕{\mathbf{V}} is any ground model satisfying CH\mathrm{CH} and \mathbb{P} is any poset forcing that all splitting families in 𝐕{\mathbf{V}} remain splitting families in 𝐕[G]{{\mathbf{V}}[G]}, then \mathbb{P} also forces that 𝔞closed=1{\mathfrak{a}}_{closed}={\aleph}_{1}. This result suggests that Question 10 should have a positive answer, and showing this would be an improvement of the result in this paper.

References

  • [1] J. Brendle and Y. Khomskii, 1{\aleph}_{1}-perfect MAD families, In Preparation.
  • [2] E. Pearl (ed.), Open problems in topology. II, Elsevier B. V., Amsterdam, 2007.
  • [3] D. Raghavan, There is a Van Douwen MAD family, Trans. Amer. Math. Soc. 362 (2010), no. 11, 5879–5891.
  • [4] S. Shelah, Two cardinal invariants of the continuum (𝔡<𝔞)(\mathfrak{d}<\mathfrak{a}) and FS linearly ordered iterated forcing, Acta Math. 192 (2004), no. 2, 187–223.
  • [5] E. K. van Douwen, The integers and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167.