This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: Funded by the Irish Research Council for Science, Engineering and Technology.

Complexifiable characteristic classes

Alexander D. Rahm Alexander.Rahm@nuigalway.ie National University of Ireland at Galway http://www.maths.nuigalway.ie/~rahm/
(July 29, 2025; July 14, 2012; July 29, 2025)
Abstract

We examine the topological characteristic cohomology classes of complexified vector bundles. In particular, all the classes coming from the real vector bundles underlying the complexification are determined.
This article is dedicated to Mark F. Feshbach (1950-2010), for his valuable work on cohomology rings of classifying spaces.

:
55R40, Homology of classifying spaces, characteristic classes.
keywords:
Characteristic classes, Classifying spaces of groups and HH-spaces, Stable classes of vector space bundles.
\published

Month Day, Year \submittedJames D. Stasheff \volumeyear2013 \volumenumber1 \issuenumber1

\startpage

1

1 Introduction and statement of the results

In the theory of characteristic classes (in the sense of Milnor and Stasheff [MilnorStasheff], whom we follow in terminology and notation in this article), it is well-known how the Chern classes are mapped to even Stiefel-Whitney classes when converting complex vector space bundles to real vector space bundles by forgetting the complex structure. In the other direction, we have the fibre-wise complexification: Given a real vector bundle FBF\rightarrow B with fibre n{\mathbb{R}}^{n}, its complexification is the complex vector bundle F:=FBF^{\mathbb{C}}:=F\otimes_{\mathbb{R}}{\mathbb{C}}\rightarrow B obtained by declaring complex multiplication on FFF\oplus F in each fibre nn{\mathbb{R}}^{n}\oplus{\mathbb{R}}^{n} by i(x,y):=(y,x)i(x,y):=(-y,x) for the imaginary unit ii. The Pontrjagin classes of a real vector bundle are (up to a sign) constructed as Chern classes of its complexification. Conversely, which classes of a real vector bundle can be attributed to its complexification? These are the complexifiable characteristic classes which we determine in this article, under the request that they are characteristic classes in the sense of [MilnorStasheff].

Consider a real vector bundle FBF\rightarrow B and a complex vector bundle EBE\rightarrow B over the same paracompact Hausdorff base space BB (we keep the latter assumption on BB throughout this article).

Definition 1.

A real vector bundle FF is called a real generator bundle of EE, if its complexification FF^{\mathbb{C}} is isomorphic to EE. In the case that such a bundle FF exists, we call EE real-generated.

Not every complex vector bundle is real-generated; as the odd degree Chern classes have the property c2k+1(E¯)=c2k+1(E)c_{2k+1}(\overline{E})=-c_{2k+1}(E) on the complex conjugate bundle E¯\overline{E}, it is an easy exercise to show that no complex vector bundle with some nonzero and non-22-torsion odd Chern class can admit a real generator bundle. This makes it seem possible that the subcategory of real-generated vector bundles could admit information additional to its Chern classes, in terms of complexifiable classes of the real generator bundles. However, we will see that the Chern classes already contain all of the relevant information.

Definition 2.

A characteristic class cc of real vector bundles is complexifiable if for all pairs (FF, GG) of real vector bundles with isomorphic complexification FGF^{\mathbb{C}}\cong G^{\mathbb{C}}, the identity c(F)=c(G)c(F)=c(G) holds.

We will now give a complete classification of the complexifiable characteristic classes. Denote by 2:=/2{\mathbb{Z}}_{2}:={\mathbb{Z}}/2{\mathbb{Z}} the group with two elements.

Theorem 1.

Let cc be a polynomial in the Stiefel-Whitney classes wiw_{i}, i{0}i\in{{\mathbb{N}}}\cup\{0\}. Then the following two conditions are equivalent:

  • (i)

    The class cc is an element of the sub-ring 2[wi2]i{0}{\mathbb{Z}}_{2}[w_{i}^{2}]_{i\in{{\mathbb{N}}}\cup\{0\}} of the polynomials in the Stiefel-Whitney classes.

  • (ii)

    The class cc is complexifiable.

The implication (i)\Rightarrow(ii) follows easily from the fact that the square of the nn-th Stiefel-Whitney class of a real vector bundle is the mod-22-reduction of the nn-th Chern class of the complexified vector bundle. The proof of the implication (ii)\Rightarrow(i) is prepared with several intermediary steps leading to it. One ingredient, Lemma 1, follows essentially from work of Cartan on fibrations of H-spaces (at Cartan’s time called Hopf spaces). But this only allows us to show that complexifiable characteristic classes in cohomology with 2{\mathbb{Z}}_{2}–coefficients are contained in the ideal generated by the squares of the Stiefel-Whitney classes. To show that they constitute exactly the subring generated by the squares of the Stiefel-Whitney classes, which is much smaller, we need the technical decomposition of Lemma 2 that we prove by induction.

By their naturality, characteristic classes are uniquely determined on the universal bundle over the classifying space (B𝒪B{\mathcal{O}} for real vector bundles). As the cohomology ring H(B𝒪,2)\operatorname{H}^{*}(B{\mathcal{O}},{\mathbb{Z}}_{2}) is generated by the Stiefel-Whitney classes of the universal bundle, all modulo 22 characteristic classes are polynomials in the Stiefel-Whitney classes, and Theorem 1 tells us which of them are complexifiable.

We build on this result to investigate which integral cohomology classes are complexifiable. To express our result, we use Feshbach’s description [Feshbach] of the cohomology ring of the classifying space B𝒪B{\mathcal{O}} with {\mathbb{Z}}–coefficients. Generators for this ring are known since Thomas [polynomialAlgebras], [realGrassmann], and all the relations between its generators are known since Brown [Brown] and Feshbach [Feshbach]. Consider the Steenrod squaring operation Sq1Sq^{1} and the mod–2–reduction homomorphism

ρ:H(B𝒪,)H(B𝒪,2).\rho:\operatorname{H}^{*}(B{\mathcal{O}},{\mathbb{Z}})\rightarrow\operatorname{H}^{*}(B{\mathcal{O}},{\mathbb{Z}}_{2}).

As generators for H(B𝒪,)\operatorname{H}^{*}(B{\mathcal{O}},{\mathbb{Z}}), Feshbach uses Pontrjagin classes and classes VIV_{I} with index sets II that are finite nonempty subsets of {12},\left\{\frac{1}{2}\right\}\cup{\mathbb{N}}, admitting mod–2–reductions

ρ(VI)=Sq1(iIω2i),\rho(V_{I})=Sq^{1}\left(\bigcup\limits_{i\hskip 2.84526pt\in\hskip 2.84526ptI}\omega_{2i}\right),

where ωi\omega_{i} is the ii-th Stiefel Whitney class of the universal bundle over B𝒪B{\mathcal{O}}. In particular, we have a generator V{12}V_{\{\frac{1}{2}\}}. We give the details of Feshbach’s description in the appendix. Our final result now takes the following shape.

Theorem 2.

Let CC be a polynomial in VI2V_{I}^{2}, with II arbitrary, V{12}V_{\{\frac{1}{2}\}} and the Pontrjagin classes. Then CC is complexifiable.

And conversely, we can say the following.

Theorem 3.

Let CC be a complexifiable integral characteristic class. Then for any real vector bundle ξ\xi, C(ξ)C(\xi) is completely determined by some Chern classes ck(ξ)c_{k}(\xi^{\mathbb{C}}), kk\in\mathbb{N}.

2 Classes in cohomology with 2{\mathbb{Z}}_{2}–coefficients

In this section, we shall prove Theorem 1, after developing all the tools we need to do so. For this entire section, we only consider cohomology with 2{\mathbb{Z}}_{2}–coefficients. We write {\mathbb{N}} for the natural numbers without 0.
Let FBF\rightarrow B be a real vector bundle over a paracompact Hausdorff base space. Let cc be a complexifiable polynomial in the Stiefel-Whitney classes wiw_{i}. Let 𝒪{\mathcal{O}} be the direct limit of the orthogonal groups, UU the direct limit of the unitary groups and EUEU the universal total space to the classifying space BUBU for stable complex vector bundles. Let B𝒪:=EU/𝒪B{\mathcal{O}}:=EU/{\mathcal{O}}, via the inclusion 𝒪U{\mathcal{O}}\subset U induced by the canonical inclusion {\mathbb{R}}\subset{\mathbb{C}}. Let γ()\gamma({\mathbb{R}}^{\infty}) be the universal bundle over B𝒪B{\mathcal{O}}, and denote its Stiefel-Whitney classes by ωi:=wi(γ())\omega_{i}:=w_{i}(\gamma({\mathbb{R}}^{\infty})). Let ε\varepsilon be the trivial vector bundle.

Lemma 1.

Let cc be a complexifiable class in cohomology with 2{\mathbb{Z}}_{2}–coefficients.
Then c(γ())c(ε)c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon)\hskip 2.84526pt is contained in the ideal ωi2i.\langle\omega_{i}^{2}\rangle_{i\hskip 2.84526pt\in\hskip 2.84526pt{\mathbb{N}}}.

Proof.

We use Cartan’s fibration of H-spaces [Cartan]*p. 17-22 (fibration en espaces de Hopf),

U/𝒪\textstyle{U/{\mathcal{O}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}B𝒪\textstyle{B{\mathcal{O}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}BU.\textstyle{BU.}

The cohomology ring H(B𝒪,2)\operatorname{H}^{*}(B{\mathcal{O}},{\mathbb{Z}}_{2}) is the polynomial algebra 2[ω1,ω2,]{\mathbb{Z}}_{2}[\omega_{1},\omega_{2},...] with generators the Stiefel-Whitney classes of the universal bundle. Cartan [Cartan]*p. 17-22 has shown that ff^{*} maps these generators ωi\omega_{i} to the generators νi:=wi(fγ())\nu_{i}:=w_{i}(f^{*}\gamma({\mathbb{R}}^{\infty})) of the exterior algebra

H(U/𝒪,2)=(2[ν1,ν2,]),\operatorname{H}^{*}(U/{\mathcal{O}},{\mathbb{Z}}_{2})=\bigwedge({\mathbb{Z}}_{2}[\nu_{1},\nu_{2},...]),

which is obtained by dividing out the ideal νi2i\langle\nu_{i}^{2}\rangle_{i\hskip 2.84526pt\in\hskip 2.84526pt{\mathbb{N}}} of the polynomial algebra 2[ν1,ν2,]{\mathbb{Z}}_{2}[\nu_{1},\nu_{2},...]. Hence, exactly the ideal ωi2i\langle\omega_{i}^{2}\rangle_{i\hskip 2.84526pt\in\hskip 2.84526pt{\mathbb{N}}} is mapped to zero. So,

ωi2i=kerf.\langle\omega_{i}^{2}\rangle_{i\hskip 2.84526pt\in\hskip 2.84526pt{\mathbb{N}}}=\ker f^{*}.

Composing ff with the projection p:B𝒪BUp:B{\mathcal{O}}\to BU, we obtain a constant map and therefore a trivial bundle (pf)γ()(p\circ f)^{*}\gamma({\mathbb{C}}^{\infty}). This pullback of the complex universal bundle is the complexification of fγ()f^{*}\gamma({\mathbb{R}}^{\infty}):

(pf)γ()=fpEU×U=fE𝒪×𝒪=f(E𝒪×𝒪)(p\circ f)^{*}\gamma({\mathbb{C}}^{\infty})=f^{*}p^{*}EU\times_{U}{\mathbb{C}}^{\infty}=f^{*}E{\mathbb{{\mathcal{O}}}}\times_{\mathcal{O}}{\mathbb{C}}^{\infty}=f^{*}(E{\mathcal{O}}\times_{\mathcal{O}}{\mathbb{R}}^{\infty})^{\mathbb{C}}
=fγ()=(fγ()).=f^{*}\gamma({\mathbb{R}}^{\infty})^{\mathbb{C}}=(f^{*}\gamma({\mathbb{R}}^{\infty}))\mathbb{{}^{C}}.

So, fγ()f^{*}\gamma({\mathbb{R}}^{\infty}) admits a trivial complexification, and all of the complexifiable classes cc must treat it like the trivial bundle ε\varepsilon:
c(fγ())=c(ε)c(f^{*}\gamma({\mathbb{R}}^{\infty}))=c(\varepsilon). A pullback of the trivial bundle is trivial too, so

0=c(fγ())c(fε)=f(c(γ())c(ε))0=c(f^{*}\gamma({\mathbb{R}}^{\infty}))-c(f^{*}\varepsilon)=f^{*}(c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon))

by naturality. Whence, c(γ())c(ε)c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon) is an element of the kernel of ff^{*}, which we have identified with the ideal ωi2i.\langle\omega_{i}^{2}\rangle_{i\hskip 2.84526pt\in\hskip 2.84526pt{\mathbb{N}}}.

The above lemma allows us to write the characteristic class cc under investigation as a sum over products with squares of Stiefel-Whitney classes,

c(γ())c(ε)=j=1mωij2rj(γ()),c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon)=\sum\limits_{j=1}^{m}\omega_{i_{j}}^{2}\cup r_{j}(\gamma({\mathbb{R}}^{\infty})),

with rjr_{j} some polynomials in the Stiefel-Whitney classes. We must inductively identify squares of Stiefel-Whitney classes as factors of the remainders rjr_{j}, until we achieve the decomposition claimed in the following lemma.

Notation.

For indices j1,,jsj_{1},...,j_{s}\in{\mathbb{N}} and ij1,,i(j1,,js)i_{j_{1}},...,i_{(j_{1},...,j_{s})}\in{\mathbb{N}}, we shall write js:=(j1,,js)\vec{j}_{s}:=(j_{1},...,j_{s}) and I(js):={ij1,,ijs}I(\vec{j}_{s}):=\{i_{\vec{j}_{1}},...,i_{\vec{j}_{s}}\}. We set j0:=0\vec{j}_{0}:=0.

Note that the classes c(ε),c(\varepsilon), rj(ε)r_{\vec{j}}(\varepsilon) of the trivial bundle ε\varepsilon that we are going to use now, are just coefficients in H0(B𝒪,2){0,1}\operatorname{H}^{0}(B{\mathcal{O}},{\mathbb{Z}}_{2})\cong\{0,1\}.

Lemma 2.

Any complexifiable characteristic class cc admits a decomposition

c(γ())c(ε)=(jk=1mjk1ωijk2rjk(γ()))(n=1k1jn=1mjn1ωijn2)+s=1k1n=1sjn=1mjn1ωijn2rjn(ε)c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon)=\left(\sum\limits_{j_{k}=1}^{m_{\vec{j}_{k-1}}}\omega_{i_{\vec{j}_{k}}}^{2}r_{\vec{j}_{k}}(\gamma({\mathbb{R}}^{\infty}))\right)\cup\left(\bigcup\limits_{n=1}^{k-1}\sum\limits_{j_{n}=1}^{m_{\vec{j}_{n-1}}}\omega_{i_{\vec{j}_{n}}}^{2}\right)+\sum\limits_{s=1}^{k-1}\bigcup\limits_{n=1}^{s}\sum\limits_{j_{n}=1}^{m_{\vec{j}_{n-1}}}\omega_{i_{\vec{j}_{n}}}^{2}r_{\vec{j}_{n}}(\varepsilon)


for some k,mj0,,mjk1k,m_{\vec{j}_{0}},...,m_{\vec{j}_{k-1}} \in {0}{\mathbb{N}}\cup\{0\}, some ij1,,ijki_{\vec{j}_{1}},...,i_{\vec{j}_{k}} \in {\mathbb{N}},

some rjk(γ())r_{\vec{j}_{k}}(\gamma({\mathbb{R}}^{\infty})) \in H(B𝒪,2)\operatorname{H}^{*}(B{\mathcal{O}},{\mathbb{Z}}_{2}), and some coefficients rj1(ε),,rjk1(ε)r_{\vec{j}_{1}}(\varepsilon),...,r_{\vec{j}_{k-1}}(\varepsilon) \in {0,1}\{0,1\},

such that the following inequality holds: 2pI(jk)p>degc.2\sum\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI({\vec{j}_{k}})}p>\deg c.

Remark A.

Once that this lemma is established, we use that the degree must be the same on both sides in order to deduce that the sum over all terms containing a factor pI(jk)ωp2\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j}_{k})}\omega_{p}^{2} exceeding the degree of cc via the requested inequality must already be zero. So in fact, the decomposition is of the form

c(γ())c(ε)=s=1k1n=1sjn=1mjn1ωijn2rjn(ε),c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon)=\sum\limits_{s=1}^{k-1}\bigcup\limits_{n=1}^{s}\sum\limits_{j_{n}=1}^{m_{\vec{j}_{n-1}}}\omega_{i_{\vec{j}_{n}}}^{2}\cup r_{\vec{j}_{n}}(\varepsilon),

meaning that c(γ())c(\gamma({\mathbb{R}}^{\infty})) is a polynomial in some squares ωp2\omega_{p}^{2} , pp \in {0}{\mathbb{N}}\cup\{0\}, which implies Theorem 1, (ii)\Rightarrow(i).

Before giving the proof of Lemma 2, we shall introduce two notations just to make that proof more readable.

Definition 3.

An index vector j\vec{j} appears in a given decomposition of
c(γ())c(ε)c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon) if both (2pI(j)p)degc\left(2\sum\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}p\right)\leq\deg c
and this decomposition admits a summand of the form rj(γ())pI(j)ωp2r_{\vec{j}}(\gamma({\mathbb{R}}^{\infty}))\cup\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}\omega_{p}^{2}.

Note that the terms (rj(γ())pI(j)ωp2)\left(r_{\vec{j}}(\gamma({\mathbb{R}}^{\infty}))\cup\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}\omega_{p}^{2}\right) with   (2pI(j)p>degc)\left(2\sum\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}p>\deg c\right) must vanish in any decomposition of c(γ())c(ε)c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon). That is why we do not let them contribute in the last definition.

Definition 4.

Set :=minjappearsmaxI(j).\ell:=\min\limits_{\vec{j}\hskip 2.84526pt\mathrm{appears}}\max I(\vec{j}). Consider an index vector j\vec{j} appearing in a given decomposition of c(γ())c(ε)c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon).
If maxI(j)=\max I(\vec{j})=\ell, then we call rj(γ())rj(ε)r_{\vec{j}}(\gamma({\mathbb{R}}^{\infty}))-r_{\vec{j}}(\varepsilon) a lower degree remainder.

As seen in Lemma 1, c(γ())c(ε)c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon) lies in kerf=ωi2i\ker f^{*}=\langle\omega_{i}^{2}\rangle_{i\in{\mathbb{N}}}, so there is a decomposition

c(γ())c(ε)=j1=1mωij12rj1(γ()),c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon)=\sum\limits_{j_{1}=1}^{m}\omega_{i_{\vec{j}_{1}}}^{2}\cup r_{\vec{j}_{1}}(\gamma({\mathbb{R}}^{\infty})),

for some mm \in {0}{\mathbb{N}}\cup\{0\}, some ij1i_{\vec{j}_{1}} \in {\mathbb{N}}, and some rj1(γ())r_{\vec{j}_{1}}(\gamma({\mathbb{R}}^{\infty})) \in H(B𝒪,2)\operatorname{H}^{*}(B{\mathcal{O}},{\mathbb{Z}}_{2}). We will show that there is a lower degree remainder rj1(γ())rj1(ε)r_{\vec{j}_{1}}(\gamma({\mathbb{R}}^{\infty}))-r_{\vec{j}_{1}}(\varepsilon) in this decomposition that lies in kerf\ker f^{*}. Then, that lower degree remainder admits a decomposition as a linear combination of squares ωij22\omega_{i_{\vec{j}_{2}}}^{2} with coefficients rj2(γ())r_{\vec{j}_{2}}(\gamma({\mathbb{R}}^{\infty})) in H(B𝒪,2)\operatorname{H}^{*}(B{\mathcal{O}},{\mathbb{Z}}_{2}), leading to a new decomposition of c(γ())c(ε)c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon). So, inductively, we will replace a lower degree remainder in any given decomposition of c(γ())c(ε)c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon) by a linear combination the coefficients of which are remainders with longer index vectors. That is why after a finite number of these steps, the index vectors j\vec{j} will no longer appear, because the sums (2pI(j)p)\left(2\sum\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}p\right) will exceed the degree of cc. This is the moment when all lower degree remainders are eliminated and the decomposition described in Lemma 2 is achieved.

To carry out this strategy, we first need to introduce the following truncation procedure.

Truncated stable invariance

With Lemma 3, we shall give a sense to “the truncation of the equation c(FG)=c(G)c(F\oplus G)=c(G) at the dimension \ell”. Define the bundles

F:=pr1fγ()U/𝒪×B𝒪F:=pr_{1}^{*}f^{*}\gamma({\mathbb{R}}^{\infty})\longrightarrow U/{\mathcal{O}}\times B{\mathcal{O}}

and

G:=pr2γ()U/𝒪×B𝒪,G:=pr_{2}^{*}\gamma({\mathbb{R}}^{\infty})\longrightarrow U/{\mathcal{O}}\times B{\mathcal{O}},

where pripr_{i} is the projection on the ii-th factor of the base space U/𝒪×B𝒪U/{\mathcal{O}}\times B{\mathcal{O}}. Let \ell\in{\mathbb{N}}. Consider the map

(id,embl):(U/𝒪×B𝒪)(U/𝒪×B𝒪)(id,emb_{l}):(U/{\mathcal{O}}\times B{\mathcal{O}}_{\ell})\hookrightarrow(U/{\mathcal{O}}\times B{\mathcal{O}})

where embl:B𝒪B𝒪emb_{l}:B{\mathcal{O}}_{\ell}\hookrightarrow B{\mathcal{O}} is the natural embedding into the direct limit. Then the bundle Gl:=(id,embl)GG_{l}:=(id,emb_{l})^{*}G admits Stiefel-Whitney classes that are in bijective correspondence with those of the \ell-dimensional universal bundle γl()B𝒪\gamma_{l}({\mathbb{R}}^{\infty})\rightarrow B{\mathcal{O}}_{\ell}.

To be precise, GlprB𝒪γl()G_{l}\cong{pr_{B{\mathcal{O}}_{\ell}}}^{*}\gamma_{l}({\mathbb{R}}^{\infty}) and the situation is

γl()\textstyle{\gamma_{l}({\mathbb{R}}^{\infty})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}GlprB𝒪γl()\textstyle{G_{l}\cong{pr_{B{\mathcal{O}}_{\ell}}}^{*}\gamma_{l}({\mathbb{R}}^{\infty})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G:=pr2γ()\textstyle{G:=pr_{2}^{*}\gamma({\mathbb{R}}^{\infty})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γ()\textstyle{\gamma({\mathbb{R}}^{\infty})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B𝒪\textstyle{B{\mathcal{O}}_{\ell}}(U/𝒪×B𝒪)\textstyle{(U/{\mathcal{O}}\times B{\mathcal{O}}_{\ell})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}prB𝒪\scriptstyle{pr_{B{\mathcal{O}}_{\ell}}}(id,embl)\scriptstyle{(id,emb_{l})}(U/𝒪×B𝒪)\textstyle{(U/{\mathcal{O}}\times B{\mathcal{O}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pr2\scriptstyle{pr_{2}}B𝒪.\textstyle{B{\mathcal{O}}.}

Especially, wp(Gl)w_{p}(G_{l}) vanishes for p>p>\ell. Compare the latter statements with [MilnorStasheff].

Lemma 3.

Under the above assumptions, the following equation holds:

jappearsmaxI(j)rj(FGl)pI(j)wp2(Gl)=jappearsmaxI(j)rj(Gl)pI(j)wp2(Gl).\sum\limits_{\vec{j}\hskip 2.84526pt{\mathrm{appears}}}^{\max I(\vec{j})\hskip 2.84526pt\leq\hskip 2.84526pt\ell}r_{\vec{j}}(F\oplus G_{l})\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}w_{p}^{2}(G_{l})=\sum\limits_{\vec{j}\hskip 2.84526pt{\mathrm{appears}}}^{\max I(\vec{j})\hskip 2.84526pt\leq\hskip 2.84526pt\ell}r_{\vec{j}}(G_{l})\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}w_{p}^{2}(G_{l}).

We will call it the equation c(FG)=c(G)c(F\oplus G)=c(G) truncated at dimension \ell.

Proof.

The bundle FF inherits from fγ()f^{*}\gamma({\mathbb{R}}^{\infty}) the property of admitting a trivial complexification. As cc is complexifiable, we have c(FG)=c(G).c(F\oplus G)=c(G). Applying the induced cohomology map (id,embl)(id,emb_{l})^{*} to this equation, we obtain

c(idFemblG)=c(emblG)c(id^{*}F\oplus emb_{l}^{*}G)=c(emb_{l}^{*}G)

and hence

c(FGl)=c(Gl).c(F\oplus G_{l})=c(G_{l}).

By the universality of γ()\gamma({\mathbb{R}}^{\infty}), and the naturality of all characteristic classes with respect to the classifying maps of GlG_{l} and FGlF\oplus G_{l}, any given decomposition

c(γ())c(ε)=jrj(γ())pI(j)ωp2c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon)=\sum\limits_{\vec{j}}r_{\vec{j}}(\gamma({\mathbb{R}}^{\infty}))\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}\omega_{p}^{2}

gives analogous decompositions

c(Gl)c(ε)=jrj(Gl)pI(j)wp2(Gl)c(G_{l})-c(\varepsilon)=\sum\limits_{\vec{j}}r_{\vec{j}}(G_{l})\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}w_{p}^{2}(G_{l})

and

c(FGl)c(ε)=jrj(FGl)pI(j)wp2(FGl).c(F\oplus G_{l})-c(\varepsilon)=\sum\limits_{\vec{j}}r_{\vec{j}}(F\oplus G_{l})\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}w_{p}^{2}(F\oplus G_{l}).

By Theorem 1, (i)\Rightarrow(ii) the square wp2w_{p}^{2} is complexifiable and hence invariant under adding the bundle FF of trivial complexification :

wp2(FGl)=wp2(Gl).w_{p}^{2}(F\oplus G_{l})=w_{p}^{2}(G_{l}).

Thus, the equation c(FGl)=c(Gl)c(F\oplus G_{l})=c(G_{l}) can be rewritten using that all summands containing a factor wp(Gl)w_{p}(G_{l}) with p>p>\ell vanish:

jmaxI(j)rj(FGl)pI(j)wp2(Gl)=jmaxI(j)rj(Gl)pI(j)wp2(Gl).\sum\limits_{\vec{j}}^{\max I(\vec{j})\hskip 2.84526pt\leq\hskip 2.84526pt\ell}r_{\vec{j}}(F\oplus G_{l})\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}w_{p}^{2}(G_{l})=\sum\limits_{\vec{j}}^{\max I(\vec{j})\hskip 2.84526pt\leq\hskip 2.84526pt\ell}r_{\vec{j}}(G_{l})\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}w_{p}^{2}(G_{l}).

In order not to exceed the degree of cc, also all terms with 2pI(j)p>degc2\sum\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}p>\deg c must vanish:

jappearsmaxI(j)rj(FGl)pI(j)wp2(Gl)=jappearsmaxI(j)rj(Gl)pI(j)wp2(Gl).\sum\limits_{\vec{j}\hskip 2.84526pt{\mathrm{appears}}}^{\max I(\vec{j})\hskip 2.84526pt\leq\hskip 2.84526pt\ell}r_{\vec{j}}(F\oplus G_{l})\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}w_{p}^{2}(G_{l})=\sum\limits_{\vec{j}\hskip 2.84526pt{\mathrm{appears}}}^{\max I(\vec{j})\hskip 2.84526pt\leq\hskip 2.84526pt\ell}r_{\vec{j}}(G_{l})\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})}w_{p}^{2}(G_{l}).

So, this last equation is the equation c(FG)=c(G)c(F\oplus G)=c(G) truncated at the dimension \ell. ∎

Proof of Lemma 2. We carry out the proof by induction over the index vector identifying a lower degree remainder.
Base case. Lemma 1 implies c(γ())c(ε)c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon) =j1=1mωij12rj1(γ())=\sum\limits_{j_{1}=1}^{m}\omega_{i_{\vec{j}_{1}}}^{2}\cup r_{\vec{j}_{1}}(\gamma({\mathbb{R}}^{\infty})),
with rj1r_{\vec{j}_{1}} some polynomials in the Stiefel-Whitney classes.
Rename i1,,imi_{1},...,i_{m} such that i1<i2<<imi_{1}<i_{2}<...<i_{m}.
We truncate the equation c(FG)=c(G)c(F\oplus G)=c(G) at the dimension i1i_{1}, and obtain

j1appearsij1i1rj1(FGi1)wij12(Gi1)=j1appearsij1i1rj1(Gi1)wij12(Gi1).\sum\limits_{\vec{j}_{1}\hskip 2.84526pt{\mathrm{appears}}}^{i_{j_{1}}\hskip 2.84526pt\leq\hskip 2.84526pti_{1}}r_{\vec{j}_{1}}(F\oplus G_{i_{1}})\cup w_{i_{\vec{j}_{1}}}^{2}(G_{i_{1}})=\sum\limits_{\vec{j}_{1}\hskip 2.84526pt{\mathrm{appears}}}^{i_{j_{1}}\hskip 2.84526pt\leq\hskip 2.84526pti_{1}}r_{\vec{j}_{1}}(G_{i_{1}})\cup w_{i_{\vec{j}_{1}}}^{2}(G_{i_{1}}).

As i1<i2<<imi_{1}<i_{2}<...<i_{m}, this is just r1(FGi1)wi12(Gi1)r_{1}(F\oplus G_{i_{1}})\cup w_{i_{1}}^{2}(G_{i_{1}}) =r1(Gi1)wi12(Gi1)=r_{1}(G_{i_{1}})\cup w_{i_{1}}^{2}(G_{i_{1}}).

Injectivity of the multiplication map wi12(Gi1)\cup w_{i_{1}}^{2}(G_{i_{1}}) in H(U/𝒪×B𝒪i1,2)\operatorname{H}^{*}(U/{\mathcal{O}}\times B{\mathcal{O}}_{i_{1}},{\mathbb{Z}}_{2}) then holds
r1(FGi1)=r1(Gi1)r_{1}(F\oplus G_{i_{1}})=r_{1}(G_{i_{1}}). Then we pull this back with

(id×const):U/𝒪(U/𝒪×B𝒪i1),(id\times const):U/{\mathcal{O}}\rightarrow(U/{\mathcal{O}}\times B{\mathcal{O}}_{i_{1}}),

(where the map constconst takes just one, arbitrary, value), to obtain

r1(fγ()ε)=r1(ε).r_{1}(f^{*}\gamma({\mathbb{R}}^{\infty})\oplus\varepsilon)=r_{1}(\varepsilon).

Due to the Whitney sum formula, the Stiefel-Whitney classes in which r1r_{1} is a polynomial are stable under adding a trivial bundle; and the above left hand term equals r1(fγ()).r_{1}(f^{*}\gamma({\mathbb{R}}^{\infty})).
Using naturality of characteristic classes with respect to pullbacks, this shows that
r1(γ())r1(ε)r_{1}(\gamma({\mathbb{R}}^{\infty}))-r_{1}(\varepsilon) lies in kerf\ker f^{*}. So we can replace it with a linear (over the field with 2 elements) combination of strictly quadratic terms, providing a new decomposition,

c(γ())c(ε)=ωi12j2=1m1ωi(1,j2)2r(1,j1)(γ())+ωi12r1(ε)+j1=2mωij12rj1(γ()).c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon)=\omega_{i_{1}}^{2}\sum\limits_{j_{2}=1}^{m_{1}}\omega_{i_{(1,j_{2})}}^{2}r_{(1,j_{1})}(\gamma({\mathbb{R}}^{\infty}))+\omega_{i_{1}}^{2}r_{1}(\varepsilon)+\sum\limits_{j_{1}=2}^{m}\omega_{i_{j_{1}}}^{2}r_{j_{1}}(\gamma({\mathbb{R}}^{\infty})).

Induction hypothesis. Consider a given decomposition

c(γ())c(ε)=(jkrjk(γ())pI(jk)ωp2)+s=1k1n=1sjn=1mjn1ωijn2rjn(ε).c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon)=\left(\sum\limits_{\vec{j}_{k}}r_{\vec{j}_{k}}(\gamma({\mathbb{R}}^{\infty}))\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j}_{k})}\omega_{p}^{2}\right)+\sum\limits_{s=1}^{k-1}\bigcup\limits_{n=1}^{s}\sum\limits_{j_{n}=1}^{m_{\vec{j}_{n-1}}}\omega_{i_{\vec{j}_{n}}}^{2}\cup r_{\vec{j}_{n}}(\varepsilon).

Inductive claim. The decomposition of the induction hypothesis admits a lower degree remainder that lies in kerf\ker f^{*}. We show this in the inductive step.

Inductive step. We truncate the equation c(FG)=c(G)c(F\oplus G)=c(G) at the dimension

:=minjappearsmaxI(j).\ell:=\min\limits_{\vec{j}\hskip 2.84526pt{\mathrm{appears}}}\max I(\vec{j}).

Then the remaining terms of c(Gl)c(ε)c(G_{l})-c(\varepsilon) do all have the common factor wl2(Gl)w_{l}^{2}(G_{l}). This is not a zero divisor in H(U/𝒪×B𝒪,2)\operatorname{H}^{*}(U/{\mathcal{O}}\times B{\mathcal{O}}_{\ell},{\mathbb{Z}}_{2}) and furthermore its multiplication map wl2(Gl)\cup w_{l}^{2}(G_{l}) is injective. Now, in c(FGl)=c(Gl)c(F\oplus G_{l})=c(G_{l}), this injectivity implies

jappearsmaxI(j)rj(FGl)pI(j){}wp2(Gl)=jappearsmaxI(j)rj(Gl)pI(j){}wp2(Gl).\sum\limits_{\vec{j}\hskip 2.84526pt{\mathrm{appears}}}^{\max I(\vec{j})\hskip 2.84526pt\leq\hskip 2.84526pt\ell}r_{\vec{j}}(F\oplus G_{l})\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})\setminus\{\ell\}}w_{p}^{2}(G_{l})=\sum\limits_{\vec{j}\hskip 2.84526pt{\mathrm{appears}}}^{\max I(\vec{j})\hskip 2.84526pt\leq\hskip 2.84526pt\ell}r_{\vec{j}}(G_{l})\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})\setminus\{\ell\}}w_{p}^{2}(G_{l}).

\diamondsuit If there is just one lower degree remainder rj(γ())rj(ε)r_{\vec{j}}(\gamma({\mathbb{R}}^{\infty}))-r_{\vec{j}}(\varepsilon), then we use the injectivity of the multiplication map

(pI(j){}wp2(Gl))\cup\left(\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526ptI(\vec{j})\setminus\{\ell\}}w_{p}^{2}(G_{l})\right) on H(U/𝒪×B𝒪,2)\operatorname{H}^{*}(U/{\mathcal{O}}\times B{\mathcal{O}}_{\ell},{\mathbb{Z}}_{2})

to obtain rj(FGl)=rj(Gl)r_{\vec{j}}(F\oplus G_{l})=r_{\vec{j}}(G_{l}). Then we pull this back with

(id×const):U/𝒪(U/𝒪×B𝒪)(id\times const):U/{\mathcal{O}}\rightarrow(U/{\mathcal{O}}\times B{\mathcal{O}}_{\ell})

to obtain rj(fγ()ε)=rj(ε)r_{\vec{j}}(f^{*}\gamma({\mathbb{R}}^{\infty})\oplus\varepsilon)=r_{\vec{j}}(\varepsilon). Using naturality, we see now that the lower degree remainder rj(γ())rj(ε)r_{\vec{j}}(\gamma({\mathbb{R}}^{\infty}))-r_{\vec{j}}(\varepsilon) lies in kerf\ker f^{*}.


\diamondsuit Otherwise, we truncate the remaining equation again at the dimension

:=minjappearsmaxI(j)=max(I(j){}),\ell^{\prime}:={\min\limits_{\vec{j}\hskip 2.84526pt{\mathrm{appears}}}^{\max I(\vec{j})=\ell}}\max(I(\vec{j})\setminus\{\ell\}),

so as to obtain

jappearsmax(I(j){})rj(FG)p(I(j){})wp2(G)\sum\limits_{\vec{j}\hskip 2.84526pt{\mathrm{appears}}}^{\max(I(\vec{j})\setminus\{\ell\})\hskip 2.84526pt\leq\hskip 2.84526pt\ell^{\prime}}r_{\vec{j}}(F\oplus G_{\ell^{\prime}})\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526pt(I(\vec{j})\setminus\{\ell\})}w_{p}^{2}(G_{\ell^{\prime}})
=jappearsmax(I(j){})rj(G)p(I(j){})wp2(G).=\sum\limits_{\vec{j}\hskip 2.84526pt{\mathrm{appears}}}^{\max(I(\vec{j})\setminus\{\ell\})\hskip 2.84526pt\leq\hskip 2.84526pt\ell^{\prime}}r_{\vec{j}}(G_{\ell^{\prime}})\bigcup\limits_{p\hskip 2.84526pt\in\hskip 2.84526pt(I(\vec{j})\setminus\{\ell\})}w_{p}^{2}(G_{\ell^{\prime}}).

Now we proceed analogously with the choice marked with the “\diamondsuit” signs and, after finitely many steps, find a lower degree remainder in kerf\ker f^{*}. This lower degree remainder can be replaced by a linear combination of squares, holding a new decomposition of c(γ())c(ε)c(\gamma({\mathbb{R}}^{\infty}))-c(\varepsilon). This completes the induction. \Box

Proof of Theorem 1, (ii)\Rightarrow(i).

Let cc be a complexifiable characteristic class. By Remark A and the universality of γ()\gamma({\mathbb{R}}^{\infty}), the decomposition of Lemma 2 yields the decomposition

c=c(ε)+s=1k1n=1sjn=1mjn1wijn2rjn(ε).c=c(\varepsilon)+\sum\limits_{s=1}^{k-1}\bigcup\limits_{n=1}^{s}\sum\limits_{j_{n}=1}^{m_{\vec{j}_{n-1}}}w_{i_{\vec{j}_{n}}}^{2}\cup r_{\vec{j}_{n}}(\varepsilon).

As c(ε),rj1(ε),,rjk1(ε)c(\varepsilon),r_{\vec{j}_{1}}(\varepsilon),...,r_{\vec{j}_{k-1}}(\varepsilon) are elements of {0,1=w0=w02},\{0,1=w_{0}=w_{0}^{2}\}, the class cc is in the sub-ring 2[wi2]i{0}{\mathbb{Z}}_{2}[w_{i}^{2}]_{i\hskip 2.84526pt\in\hskip 2.84526pt{{\mathbb{N}}}\cup\{0\}} of the polynomial ring of Stiefel-Whitney classes. ∎

This completes the proof of Theorem 1.

3 Classes in cohomology with integral coefficients

We will build on our results obtained for 2{\mathbb{Z}}_{2}–coefficients and use the mod–2–reduction homomorphism

ρ:H(,)H(,2)\rho:\operatorname{H}^{*}(-,{\mathbb{Z}})\rightarrow\operatorname{H}^{*}(-,{\mathbb{Z}}_{2})

to prove the theorems with {\mathbb{Z}}–coefficients stated in the introduction. Define the element VIH(B𝒪,)V_{I}\in\operatorname{H}^{*}(B{\mathcal{O}},{\mathbb{Z}}) as in the appendix, and let vIv_{I} be the characteristic class that is VIV_{I} on the universal bundle.


Lemma 4.

For any real bundle ξ\xi, the mod–22–reduced class ρ(vI2(ξ))\rho(v_{I}^{2}(\xi)) equals

(iI{12}w12jI{i}w4j+iI{12}(w4i+2+w2w4i)jI{i}w4j)(ξξ).\left(\sum\limits_{i\hskip 2.84526pt\in\hskip 2.84526ptI\cap\{\frac{1}{2}\}}w_{1}^{2}\cup\bigcup\limits_{j\hskip 2.84526pt\in\hskip 2.84526ptI\setminus\{i\}}w_{4j}+\sum\limits_{i\hskip 2.84526pt\in\hskip 2.84526ptI\setminus\{\frac{1}{2}\}}(w_{4i+2}+w_{2}\cup w_{4i})\cup\bigcup\limits_{j\hskip 2.84526pt\in\hskip 2.84526ptI\setminus\{i\}}w_{4j}\right)(\xi\oplus\xi).
Proof.

By Feshbach’s description (in the appendix), the mod–2–reduction is

ρ(vI2(ξ))=(Sq1(iIw2i(ξ)))2.\rho\left(v_{I}^{2}(\xi)\right)=\left(Sq^{1}\left(\bigcup\limits_{i\hskip 2.84526pt\in\hskip 2.84526ptI}w_{2i}(\xi)\right)\right)^{2}.

We expand this expression until it is a polynomial in the Stiefel-Whitney classes. Then we rearrange the expression using the Whitney sum formula and the symmetry of the terms. ∎

Proof of Theorem 2.

For v{12}v_{\{\frac{1}{2}\}} and the Pontrjagin classes, the result is obvious. Now let FBF\rightarrow B, GBG\rightarrow B be real bundles with FGF^{\mathbb{C}}\cong G^{\mathbb{C}}. Forgetting the complex structure, this is FFGGF\oplus F\cong G\oplus G. By naturality of the Stiefel-Whitney classes, for any finite nonempty index set II \subset ({12})(\{\frac{1}{2}\}\cup{\mathbb{N}}), the polynomial given in Lemma 4 is the same for the arguments (FF)(F\oplus F) and (GG)(G\oplus G). Applying Lemma 4, this means that ρ(vI2(F))=ρ(vI2(G))\rho(v_{I}^{2}(F))=\rho(v_{I}^{2}(G)). As VI2V_{I}^{2} is in the torsion of H(B𝒪,)\operatorname{H}^{*}(B{\mathcal{O}},{\mathbb{Z}}), restricted on which ρ\rho is injective [Feshbach]p. 513, this proves the theorem: vI2(F)=vI2(G)v_{I}^{2}(F)=v_{I}^{2}(G). ∎

Proof of Theorem 3.

Feshbach [Feshbach]p. 513 shows that

H(B𝒪,)=[πi]i\operatorname{H}^{*}(B{\mathcal{O}},{\mathbb{Z}})={\mathbb{Z}}[\pi_{i}]_{i\hskip 2.84526pt\in\hskip 2.84526pt{{\mathbb{N}}}}\oplus {2–torsion},

where πi\pi_{i} is the ii-th Pontrjagin class of the universal bundle. Then C=P(pi)+TC=P(p_{i})+T with PP a polynomial in the Pontrjagin classes pip_{i} and TT some 2-torsion class. So for every real bundle ξ\xi,

ρ(C)(ξ)=P(ρ(pi(ξ)))+ρ(T)(ξ).\rho(C)(\xi)=P\left(\rho\left(p_{i}(\xi)\right)\right)+\rho(T)(\xi).

By definition of the Pontrjagin classes, pi(ξ)=(1)ic2i(ξ)p_{i}(\xi)=(-1)^{i}c_{2i}(\xi^{\mathbb{C}}) ; and using the reduction ρ(c2i(ξ))=w4i(ξξ)\rho\left(c_{2i}(\xi^{\mathbb{C}})\right)=w_{4i}(\xi\oplus\xi) from Chern classes to Stiefel-Whitney classes, further the Whitney sum formula and the symmetry of the summands, we deduce

ρ(C)(ξ)=P(w2i2(ξ))+ρ(T)(ξ).\rho(C)(\xi)=P(w_{2i}^{2}(\xi))+\rho(T)(\xi).

It follows from Theorem 1 that the mod-22-reduction ρ(C)(ξ)\rho(C)(\xi) is a polynomial in the squares of Stiefel-Whitney classes; and hence also ρ(T)(ξ)\rho(T)(\xi) is a polynomial Q(wj2(ξ))Q(w_{j}^{2}(\xi)) in the squares of Stiefel-Whitney classes. As according to [Feshbach]p. 513, ρ\rho is injective on the torsion elements, there is an inverse for the restricted map ρ|{2torsion}{\rho|_{\{2\mathrm{-torsion}\}}}, lifting ρ(T)\rho(T) back to TT. So, from

T(ξ)=ρ|{2torsion}1(Q(wj2(ξ))),T(\xi)={\rho|_{\{2\mathrm{-torsion}\}}}^{-1}\left(Q(w_{j}^{2}(\xi))\right),

we obtain

C(ξ)=P((1)ic2i(ξ))+ρ|{2torsion}1(Q(ρ(cj(ξ)))).C(\xi)=P\left((-1)^{i}c_{2i}(\xi^{\mathbb{C}})\right)+{\rho|_{\{2\mathrm{-torsion}\}}}^{-1}\left(Q\left(\rho(c_{j}(\xi^{\mathbb{C}}))\right)\right).

The author would like to thank Graham Ellis and Thomas Schick for support and encouragement, the latter also for posing the questions treated in this article and giving advice on them.





Appendix. The cohomology ring of B𝒪B{\mathcal{O}} with {\mathbb{Z}}–coefficients

The cohomology ring of B𝒪B{\mathcal{O}} with {\mathbb{Z}}–coefficients is known since Thomas [polynomialAlgebras], [realGrassmann] and with all relations between its generators since Brown [Brown] and Feshbach [Feshbach]. It can be derived as follows. Define the set of generators of H(B𝒪n,)\operatorname{H}^{*}(B{\mathcal{O}}_{n},{\mathbb{Z}}) as in [Feshbach]*definition 1:
It consists of the Pontrjagin classes pip_{i} of the universal bundle over B𝒪nB{\mathcal{O}}_{n}, and classes VIV_{I} with II ranging over all finite nonempty subsets of

{12}{k|0<k<n+12}\left\{\frac{1}{2}\right\}\cup\left\{k\hskip 2.84526pt\in\hskip 2.84526pt{\mathbb{N}}\hskip 2.84526pt\left|\hskip 2.84526pt0<k<\frac{n+1}{2}\right.\right\}

with the proviso that II does not contain both 12\frac{1}{2} and n2\frac{n}{2}, for n>1n>1.
According to [Feshbach]*theorem 2, H(B𝒪n,)\operatorname{H}^{*}(B{\mathcal{O}}_{n},{\mathbb{Z}}) is for all nn\leq\infty isomorphic to the polynomial ring over {\mathbb{Z}} generated by the above specified elements modulo the ideal generated by the following six types of relations.
In all relations except the first, the cardinality of II is less than or equal to that of JJ and greater than one. On the index sets II and JJ, we perform set-theoretic unions (\cup), intersections (\cap) and differences (\setminus). By convention, p12p_{\frac{1}{2}} where it occurs means V{12}V_{\left\{\frac{1}{2}\right\}}. Also, if {n2,12}IJ\left\{\frac{n}{2},\frac{1}{2}\right\}\subset\hskip 2.84526ptI\cup J, then VIJV_{I\cup J} shall mean V{n2}V(IJ){n2,12}V_{\left\{\frac{n}{2}\right\}}V_{(I\cup J)\setminus\left\{\frac{n}{2},\frac{1}{2}\right\}}. As Feshbach remarks, most of the restrictions on II and JJ are to avoid repeating relations.

1)2VI=01)\hskip 8.53581pt2V_{I}=0.

2)VIVJ+VIJVIJ+VIJVJIiIJpi=02)\hskip 8.53581ptV_{I}V_{J}+V_{I\cup J}V_{I\cap J}+V_{I\setminus J}V_{J\setminus I}\prod\limits_{i\hskip 2.84526pt\in\hskip 2.84526ptI\cap J}p_{i}=0    (for IJ,IJ)I\cap J\neq\emptyset,\hskip 5.69054ptI\nsubseteq J).

3)VIVJ+iIV{i}V(JI){i}jI{i}pj=03)\hskip 8.53581ptV_{I}V_{J}+\sum\limits_{i\hskip 2.84526pt\in\hskip 2.84526ptI}V_{\{i\}}V_{(J\setminus I)\cup\{i\}}\prod\limits_{j\hskip 2.84526pt\in\hskip 2.84526ptI\setminus\{i\}}p_{j}=0    (for IJI\subset J).

4)VIVJ+iIV{i}V(IJ){i}=04)\hskip 8.53581ptV_{I}V_{J}+\sum\limits_{i\hskip 2.84526pt\in\hskip 2.84526ptI}V_{\{i\}}V_{(I\cup J)\setminus\{i\}}=0   (for IJ=I\cap J=\emptyset; if II and JJ have the

same cardinality, then the smallest element of II is to be less than that of JJ).

5)iIV{i}VI{i}=05)\hskip 8.53581pt\sum\limits_{i\hskip 2.84526pt\in\hskip 2.84526ptI}V_{\{i\}}V_{I\setminus\{i\}}=0.

6)V{12}pn2+V{n2}2=06)\hskip 8.53581ptV_{\{\frac{1}{2}\}}p_{\frac{n}{2}}+V_{\{\frac{n}{2}\}}^{2}=0, if nn is even.


Then ρ(VI)=Sq1(iIw2i)\rho(V_{I})=Sq^{1}(\bigcup\limits_{i\hskip 2.84526pt\in\hskip 2.84526ptI}w_{2i}).


References

  • \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry