This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Computation of Hecke eigenvalues (mod pp) via quaternions

Yiannis Fam
Abstract.

In a 1987 letter [SL96], Serre proves that the systems of Hecke eigenvalues arising from mod pp modular forms (of fixed level Γ(N)\Gamma(N) coprime to pp, and any weight kk) are the same as those arising from functions Ω(N)𝔽¯p\Omega(N)\to\overline{\mathbb{F}}_{p}, where Ω(N)\Omega(N) is some double quotient of D×(𝔸f)D^{\times}(\mathbb{A}_{f}) and DD is the unique quaternion algebra over \mathbb{Q} ramified at {p,}\{p,\infty\}. We present an algorithm which then computes these Hecke eigenvalues on the quaternion side in a combinatorial manner.

1. Introduction

The study of Hecke eigenvalues originated from Ramanujan’s Δ\Delta-function

Δ(q)=qn=1(1qn)24,\Delta(q)=q\prod\limits_{n=1}^{\infty}(1-q^{n})^{24},

a weight 12 and level 1 Hecke eigenform about which Ramanujan made a number of conjectures that have motivated much of the theory of modular forms over the past century. More recently, it is known [Del69] that a normalised Hecke eigenform f=anqnf=\sum a_{n}q^{n} in Sk(Γ0(N);ϵ)S_{k}(\Gamma_{0}(N);\epsilon) gives rise to a mod pp Galois representation ρ:Gal(¯/)GL2(𝔽¯p)\rho:\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\to\mathrm{GL}_{2}(\overline{\mathbb{F}}_{p}). This representation is unramified away from pNpN and is characterised by the following trace and determinant of Frobenius data (mapped appropriately into 𝔽¯p\overline{\mathbb{F}}_{p}):

tr(ρ(Frob))=a,det(ρ(Frob))=k1ϵ().\mathrm{tr}(\rho(\mathrm{Frob}_{\ell}))=a_{\ell},\hskip 28.45274pt\mathrm{det}(\rho(\mathrm{Frob}_{\ell}))=\ell^{k-1}\epsilon(\ell).

These representations play a central role in modern number theory, most notably in the conjectures of Serre. As such, the mod pp Hecke eigenvalues are objects of great interest, and so one may wish to enumerate these systems of Hecke eigenvalues as a source of examples.

At present, there already exist algorithms for computing these Hecke eigenvalues, for example using modular symbols in connection with the Eichler-Shimura theorem [Wie06]. Our approach will instead make use of the following theorem of Serre (where we have restricted his result to a fixed level Γ(N)\Gamma(N)) [SL96], that tells us that one could instead compute these Hecke eigenvalues by working with a particular quaternion algebra. The computation of the Hecke eigenvalues then becomes a combinatorial one, which is perhaps a more elementary approach.

Theorem 1.1.

Let DD be the unique quaternion algebra over \mathbb{Q} ramified at {p,}\{p,\infty\}. The systems of Hecke eigenvalues (aa_{\ell}) (with a𝔽¯pa_{\ell}\in\overline{\mathbb{F}}_{p}, pN\ell\nmid pN and fixed N3N\geq 3 coprime to pp) coming from the modular forms (mod pp) of level Γ(N)\Gamma(N), are the same as those coming from the functions

(Ω(N):=U(N)\D×(𝔸f)/D×())𝔽¯p.\left(\Omega(N):=U(N)\backslash D^{\times}(\mathbb{A}_{f})/D^{\times}(\mathbb{Q})\right)\to\overline{\mathbb{F}}_{p}.

We remark that in this theorem, we do not necessarily realise all the weight kk systems of eigenvalues from the modular form side as weight (kmodp21)(k\mod p^{2}-1) systems of eigenvalues on the quaternion side, only those arising from weight kk eigenforms not divisible by the Hasse invariant. They will still appear on the quaternion side when ranging over all weights.

Notation 1.2.

We need to explain some of this notation:

  • Let 𝒪\mathcal{O} be any maximal order of DD.

  • Let D=DD_{\ell}=D\otimes\mathbb{Q}_{\ell} and 𝒪=𝒪\mathcal{O}_{\ell}=\mathcal{O}\otimes\mathbb{Z}_{\ell} a maximal order, for any prime \ell. So 𝒪M2()\mathcal{O}_{\ell}\cong\mathrm{M}_{2}(\mathbb{Z}_{\ell}) for p\ell\neq p.

  • Let D×(𝔸f)D^{\times}(\mathbb{A}_{f}) denote the finite part of the adelic points of D×D^{\times}, in other words the restricted product D×{\prod\limits_{\ell}}^{\prime}D^{\times}_{\ell} with respect to the subgroups 𝒪×\mathcal{O}_{\ell}^{\times}.

  • Let π𝒪\pi\in\mathcal{O} be a uniformiser of 𝒪p\mathcal{O}_{p}.

  • Let 𝒪p×(1)\mathcal{O}_{p}^{\times}(1) be the kernel of reduction mod π\pi, 𝒪p×𝔽p2×\mathcal{O}_{p}^{\times}\to\mathbb{F}_{p^{2}}^{\times}.

  • For p\ell\neq p, let 𝒪×(N)\mathcal{O}_{\ell}^{\times}(N) be the subgroup of 𝒪×GL2()\mathcal{O}_{\ell}^{\times}\cong\mathrm{GL}_{2}(\mathbb{Z}_{\ell}) consisting of elements congruent to 1 mod v(N)\ell^{v_{\ell}(N)}, where v(n)\ell^{v_{\ell}(n)} is the highest power of \ell dividing NN.

  • Let U(N)=𝒪p×(1)×p𝒪×(N)U(N)=\mathcal{O}_{p}^{\times}(1)\times\prod\limits_{\ell\neq p}\mathcal{O}_{\ell}^{\times}(N), an open subgroup of D×(𝔸f)D^{\times}(\mathbb{A}_{f}).

  • For (x)D×(𝔸f)(x_{\ell})\in D^{\times}(\mathbb{A}_{f}), we will denote by [x][x_{\ell}] the image in Ω(N)\Omega(N).

  • By a weight kk function f:Ω(N)𝔽¯pf:\Omega(N)\to\overline{\mathbb{F}}_{p} we mean a function which satisfies f(μ[x])=μkf([x])f(\mu\cdot[x_{\ell}])=\mu^{-k}f([x_{\ell}]), where μ𝒪p×/𝒪p×(1)𝔽p2×\mu\in\mathcal{O}_{p}^{\times}/\mathcal{O}_{p}^{\times}(1)\cong\mathbb{F}_{p^{2}}^{\times} acts on [x][x_{\ell}] by multiplication in the pp-place.

Note that elements of Ω(N)\Omega(N) correspond to isomorphism classes of invertible left 𝒪\mathcal{O}-ideals II with πN\pi N-structure, meaning a basis for I/πNII/\pi NI as an 𝒪/πN𝒪\mathcal{O}/\pi N\mathcal{O}-module. Explicitly, an adelic point (x)(x_{\ell}) corresponds to an ideal II with I=𝒪xI_{\ell}=\mathcal{O}_{\ell}x_{\ell} for all \ell. The πN\pi N-structure is then given by the reduction modulo πNI\pi NI of any element xIx\in I satisfying the congruences

xxmodπNIx\equiv x_{\ell}\mod\pi NI_{\ell}

for all \ell (this congruence is vacuous for any pN\ell\nmid pN, so such xx exists by the Chinese remainder theorem). We then quotient D×(𝔸f)D^{\times}(\mathbb{A}_{f}) by U(N)U(N) and D×()D^{\times}(\mathbb{Q}) exactly to get the desired bijection.

For a prime 0pN\ell_{0}\nmid pN, the Hecke operator T0T_{\ell_{0}} on this space of functions Ω(N)𝔽¯p\Omega(N)\to\overline{\mathbb{F}}_{p} is given by

T0f([x])=01if(gi[x])T_{\ell_{0}}f([x_{\ell}])=\ell_{0}^{-1}\sum\limits_{i}f(g_{i}\cdot[x_{\ell}])

for GL2(0)(1000)GL2(0)=GL2(0)gi\mathrm{GL}_{2}(\mathbb{Z}_{\ell_{0}})\begin{pmatrix}1&0\\ 0&\ell_{0}\end{pmatrix}\mathrm{GL}_{2}(\mathbb{Z}_{\ell_{0}})=\bigsqcup\mathrm{GL}_{2}(\mathbb{Z}_{\ell_{0}})g_{i}. Here gi[x0]g_{i}\cdot[x_{\ell_{0}}] means we pick a representative (x)D×(𝔸f)(x_{\ell})\in D^{\times}(\mathbb{A}_{f}) of [x][x_{\ell}], multiply this in the 0\ell_{0}-place by the matrix gig_{i} (under an identification of 𝒪0M2(0)\mathcal{O}_{\ell_{0}}\cong\mathrm{M}_{2}(\mathbb{Z}_{\ell_{0}}) and hence of D0M2(0)D_{\ell_{0}}\cong\mathrm{M}_{2}(\mathbb{Q}_{\ell_{0}})), and then take the image in Ω(N)\Omega(N). Each individual gi[x]g_{i}\cdot[x_{\ell}] is not well defined in [x][x_{\ell}], but Tl0T_{l_{0}} is well defined, provided we pick the same representative (x)D×(𝔸f)(x_{\ell})\in D^{\times}(\mathbb{A}_{f}) for each multiplication. This Hecke module structure has been studied before, as in the likes of [Koh01].

The algorithm we present computes a matrix for the Hecke operator T0T_{\ell_{0}} on the space of (weight kk) functions Ω(N)𝔽¯p\Omega(N)\to\overline{\mathbb{F}}_{p}, where 0,p\ell_{0},p and NN are pairwise coprime. Note that we allow the cases N=1,2N=1,2 as the definitions on the quaternion side still make sense here. We begin by computing an illustrative example for the case p=11p=11, and then generalise this to weight k=0k=0 and level N=1N=1 for any pp. Note that in this case the matrices we compute are exactly Brandt matrices. This is then extended to higher weight and level, essentially by keeping track of the πN\pi N-structure.

We remark that a similar computation has been performed by Pizer in [Piz80]. This has since been applied in, for example, [SW05] and [CS01]. Pizer was interested in computing the subspace of cusp forms on Γ0(N)\Gamma_{0}(N) generated by theta series, and the Hecke operators on this subspace. The algorithm involves computing certain Brandt matrix series. The main difference between our approach and Pizer’s is that we incorporate level NN structure through coset representatives of 𝒪×(N)\𝒪×GL2(/v(N))\mathcal{O}_{\ell}^{\times}(N)\backslash\mathcal{O}_{\ell}^{\times}\cong\mathrm{GL}_{2}(\mathbb{Z}/\ell^{v_{\ell}(N)}\mathbb{Z}). See also [Dem05] and [Dem07] for a similar approach in the context of Hilbert modular forms (the corresponding description of Hilbert modular forms on the quaternion side is more involved than for modular forms). Pizer instead works with orders of level NN, which allows them to work purely with the quaternion algebras, without having to write down explicit isomorphisms of the form 𝒪M2()\mathcal{O}_{\ell}\cong\mathrm{M}_{2}(\mathbb{Z}_{\ell}), something that we must do (see Section 3). On the other hand, the use of matrices perhaps makes the contribution from the level structure more visible. The tradeoff is then between computing these isomorphisms with the Hensel-like argument involved, and computing orders of level NN. A related point of difference is that in Pizer’s argument one must compute the left ideal classes of an order of level NN, whereas we only need to compute these for our maximal order 𝒪\mathcal{O}, because our level structure is already captured in 𝒪×(N)\𝒪×GL2(/v(N))\mathcal{O}_{\ell}^{\times}(N)\backslash\mathcal{O}_{\ell}^{\times}\cong\mathrm{GL}_{2}(\mathbb{Z}/\ell^{v_{\ell}(N)}\mathbb{Z}), which is very concrete. Because a maximal order has minimal discriminant, the corresponding Minkowski bound is lower, and so the computation of these ideal classes in our case may be (somewhat) faster.

The author would like to thank his M.Phil. supervisors, Alex Ghitza and Chenyan Wu, for their careful reading of the script, and their valuable corrections and suggestions. Writing of this paper was partially supported by the University of Melbourne Robert George Williams Scholarship, as well as the Australian Government Research Training Program Scholarship.

2. An Example

Example 2.1.

Take pp to be 11. The quaternion algebra DD is then D=(1,11)D=\left(\frac{-1,-11}{\mathbb{Q}}\right). In this example we will work with level N=1N=1 as doing so greatly reduces the size of Ω(N)\Omega(N). We will then compute the Hecke eigenvalues on the space of functions on Ω:=U\D×(𝔸f)/D×()\Omega:=U\backslash D^{\times}(\mathbb{A}_{f})/D^{\times}(\mathbb{Q}), where U:=𝒪p××lp𝒪×U:=\mathcal{O}_{p}^{\times}\times\prod\limits_{l\neq p}\mathcal{O}_{\ell}^{\times} is not quite U(1)U(1) as we replace 𝒪p×(1)\mathcal{O}_{p}^{\times}(1) with 𝒪p×\mathcal{O}_{p}^{\times}. Note that this is the same as computing the Hecke eigenvalues on Ω(1)\Omega(1) of weight k0modp21k\equiv 0\mod p^{2}-1. Indeed, the modularity condition tells us that these are functions on Ω(1)\Omega(1) that are invariant under the action of 𝒪p×\mathcal{O}_{p}^{\times}, and so can be identified with functions on Ω\Omega. The computation in this section is based on notes of Buzzard [Buz].

Firstly, let’s understand the set Ω\Omega. By the same argument that Ω(N)\Omega(N) corresponds to (isomorphism classes of) invertible left 𝒪\mathcal{O}-ideals II with πN\pi N-structure, we see that Ω\Omega corresponds just to the invertible left 𝒪\mathcal{O}-ideals II. Running the following in MAGMA [BCP97], we compute a maximal order 𝒪\mathcal{O} of DD, and then find that its left ideal class set has order 2, whose elements we call I1I_{1} and I2I_{2}. So Ω\Omega has two elements. We can also compute integer bases for 𝒪\mathcal{O}, I1I_{1} and I2I_{2}.

>>ΨD := QuaternionAlgebra< RationalField() | -1, -11>;
>>ΨO := MaximalOrder(D);
>>ΨBasis(O);
>>ΨClasses := LeftIdealClasses(O);
>>Ψ#Classes;
>>ΨI1 := Classes[1];
>>ΨBasis(I1);
>>ΨI2 := Classes[2];
>>ΨBasis(I2);

which outputs:

[ 1, i, 1/2*i + 1/2*k, 1/2 + 1/2*j ]
2
[ 1, -i, -1/2*i - 1/2*k, 1/2 - 1/2*j ]
[ 2, -2*i, 1 - 3/2*i - 1/2*k, 1/2 - i - 1/2*j ]

We now want to rewrite I1I_{1} and I2I_{2} as adelic points in Ω\Omega. For any invertible left 𝒪\mathcal{O}-ideal II, II\otimes\mathbb{Z}_{\ell} is a principal 𝒪\mathcal{O}_{\ell}-ideal, generated by any nonzero element α\alpha_{\ell} whose reduced norm has minimal \ell-adic valuation. To see this, we refer to Corollary 16.6.12 in Voight [Voi21] that any invertible semi-order (lattice that contains 1 and has reduced norm equal to the ring R=R=\mathbb{Z}_{\ell}) is an order, so that (I)α1(I\otimes\mathbb{Z}_{\ell})\alpha_{\ell}^{-1} is an invertible semi-order, which must then by 𝒪\mathcal{O}_{\ell}. So if we are given a \mathbb{Z}-basis for II, then II\otimes\mathbb{Z}_{\ell} is generated by a basis element whose reduced norm has minimal \ell-adic valuation. Computing the reduced norms of the given basis elements of I1I_{1} and I2I_{2} we get [1,1,3,3][1,1,3,3] and [4,4,6,4][4,4,6,4] respectively. So we see that I1=𝒪I_{1}=\mathcal{O} (which was obvious anyway) and I2=𝒪I_{2}\otimes\mathbb{Z}_{\ell}=\mathcal{O}\otimes\mathbb{Z}_{\ell} for all 2\ell\neq 2. Moreover, I22=𝒪2(132i12ij)I_{2}\otimes\mathbb{Z}_{2}=\mathcal{O}\otimes\mathbb{Z}_{2}\cdot(1-\frac{3}{2}i-\frac{1}{2}ij) as 6 has minimal 2-adic valuation. Thus I1I_{1} corresponds to w1:=[1,1,]Ωw^{1}:=[1,1,\dots]\in\Omega and I2I_{2} corresponds to w2:=[132i12ij,1,1,]Ωw^{2}:=[1-\frac{3}{2}i-\frac{1}{2}ij,1,1,\dots]\in\Omega (we use superscripts here to avoid overloading the subscripts, which we want to use for the places). An obvious choice of basis for the vector space of 𝔽¯p\overline{\mathbb{F}}_{p} valued functions on Ω\Omega are the characteristic functions 𝟙w1\mathbbm{1}_{w^{1}} and 𝟙w2\mathbbm{1}_{w^{2}}.

To compute the Hecke operator T0T_{\ell_{0}}, we will need to work with matrices at the 0\ell_{0}-place. Let’s compute T2T_{2} and T3T_{3} with respect to the basis {𝟙w1,𝟙w2}\{\mathbbm{1}_{w^{1}},\mathbbm{1}_{w^{2}}\}. We will need isomorphisms 𝒪2M2(2)\mathcal{O}\otimes\mathbb{Z}_{2}\cong\mathrm{M}_{2}(\mathbb{Z}_{2}) and 𝒪3M2(3)\mathcal{O}\otimes\mathbb{Z}_{3}\cong\mathrm{M}_{2}(\mathbb{Z}_{3}). In general, we have an isomorphism

D\displaystyle D\otimes\mathbb{Q}_{\ell} M2()\displaystyle\cong\mathrm{M}_{2}(\mathbb{Q}_{\ell})
i\displaystyle i (0110)\displaystyle\mapsto\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}
j\displaystyle j (xyyx)\displaystyle\mapsto\begin{pmatrix}x&y\\ y&-x\end{pmatrix}

for x,yx,y\in\mathbb{Q}_{\ell} such that x2+y2=11x^{2}+y^{2}=-11, when 11\ell\neq 11. For M2(3)\mathrm{M}_{2}(\mathbb{Z}_{3}), note that 𝒪3\mathcal{O}\otimes\mathbb{Z}_{3} has 3\mathbb{Z}_{3}-basis {1,i,j,ij}\{1,i,j,ij\}, by using the basis for 𝒪\mathcal{O} computed above and noticing that 2 is invertible in 3\mathbb{Z}_{3}. So for any x,y3x,y\in\mathbb{Z}_{3} with x2+y2=11x^{2}+y^{2}=-11, the above isomorphism restricts to an injection 𝒪3M2(3)\mathcal{O}\otimes\mathbb{Z}_{3}\hookrightarrow\mathrm{M}_{2}(\mathbb{Z}_{3}), which must in fact be an isomorphism by maximality. We could take (x,y)=(11,0)(x,y)=(\sqrt{-11},0) for 11\sqrt{-11} a root of x2+11=0x^{2}+11=0 in 3\mathbb{Z}_{3}, choosing for example the root which is 1mod31\mod 3 by Hensel’s lemma.

For M2(2)\mathrm{M}_{2}(\mathbb{Z}_{2}) we need to be a little more careful because we need 1,i,12i+12ij,12+12j1,i,\frac{1}{2}i+\frac{1}{2}ij,\frac{1}{2}+\frac{1}{2}j to all map to elements in M2(2)\mathrm{M}_{2}(\mathbb{Z}_{2}), rather than just 1,i,j,ij1,i,j,ij. If we take (x,y)=(15,2)(x,y)=(\sqrt{-15},2) for 15\sqrt{-15} a root of x2+15=0x^{2}+15=0 in 2\mathbb{Z}_{2} (taking for example the root congruent to 1mod41\mod 4 by Hensel’s lemma), then we see that 12+12j\frac{1}{2}+\frac{1}{2}j maps to (1+152111152)\begin{pmatrix}\frac{1+\sqrt{-15}}{2}&1\\ 1&\frac{1-\sqrt{-15}}{2}\end{pmatrix}, which is in M2(2)\mathrm{M}_{2}(\mathbb{Z}_{2}). This gives us our desired isomorphism 𝒪2M2(2)\mathcal{O}\otimes\mathbb{Z}_{2}\cong\mathrm{M}_{2}(\mathbb{Z}_{2}). Note that if we took instead (x,y)=(2,15)(x,y)=(2,\sqrt{-15}), we would then map 12+12j\frac{1}{2}+\frac{1}{2}j to (3215215212)\begin{pmatrix}\frac{3}{2}&\frac{\sqrt{-15}}{2}\\ \frac{\sqrt{-15}}{2}&-\frac{1}{2}\end{pmatrix}, which is not in M2(2)\mathrm{M}_{2}(\mathbb{Z}_{2}).

We now begin our computation of T2T_{2}, starting with the value of T2(𝟙w1)(w1)T_{2}(\mathbbm{1}_{w^{1}})(w^{1}). By definition,

2T2(𝟙w1)(w1)=𝟙w1((1002)[1,1,])+𝟙w1((1102)[1,1,])+𝟙w1((2001)[1,1,])2T_{2}(\mathbbm{1}_{w^{1}})(w^{1})=\mathbbm{1}_{w^{1}}\left(\begin{pmatrix}1&0\\ 0&2\end{pmatrix}\cdot[1,1,\dots]\right)+\mathbbm{1}_{w^{1}}\left(\begin{pmatrix}1&1\\ 0&2\end{pmatrix}\cdot[1,1,\dots]\right)+\mathbbm{1}_{w^{1}}\left(\begin{pmatrix}2&0\\ 0&1\end{pmatrix}\cdot[1,1,\dots]\right)

so we reduce to checking, for example, whether (1002)[1,1,]=[(1002),1,1,]\begin{pmatrix}1&0\\ 0&2\end{pmatrix}\cdot[1,1,\dots]=\left[\begin{pmatrix}1&0\\ 0&2\end{pmatrix},1,1,\dots\right] is the same as w1=[1,1,]w^{1}=[1,1,\dots] or w2=[132i12ij,1,1,]w^{2}=[1-\frac{3}{2}i-\frac{1}{2}ij,1,1,\dots] as an element of Ω\Omega.

The condition that [(1002),1,1,]=[1,1,]\left[\begin{pmatrix}1&0\\ 0&2\end{pmatrix},1,1,\dots\right]=[1,1,\dots] in Ω\Omega is equivalent to saying that the 𝒪\mathcal{O}-ideal 𝒥\mathcal{J} is principal, where 𝒥\mathcal{J} is defined by 𝒥2=(𝒪2)(1002)\mathcal{J}\otimes\mathbb{Z}_{2}=(\mathcal{O}\otimes\mathbb{Z}_{2})\cdot\begin{pmatrix}1&0\\ 0&2\end{pmatrix} and 𝒥=𝒪\mathcal{J}\otimes\mathbb{Z}_{\ell}=\mathcal{O}\otimes\mathbb{Z}_{\ell} for all 2\ell\neq 2. If this was the case, then we see that 𝒥\mathcal{J} must be generated by an element α\alpha of 𝒪\mathcal{O} (since 𝒥𝒪\mathcal{J}\otimes\mathbb{Z}_{\ell}\subset\mathcal{O}\otimes\mathbb{Z}_{\ell} for all \ell) of reduced norm 2=det(1002)2=\mathrm{det}\begin{pmatrix}1&0\\ 0&2\end{pmatrix}. We have previously computed a basis [1,i,12i+12ij,12+12j][1,i,\frac{1}{2}i+\frac{1}{2}ij,\frac{1}{2}+\frac{1}{2}j] for 𝒪\mathcal{O}. Writing α=t+xi+y(12i+12ij)+z(12+12j)\alpha=t+x\cdot i+y\cdot(\frac{1}{2}i+\frac{1}{2}ij)+z\cdot(\frac{1}{2}+\frac{1}{2}j), for t,x,y,zt,x,y,z\in\mathbb{Z}, we compute

nrd(α)=(t+12z)2+(x+12y)2+114y2+114z2.\mathrm{nrd}(\alpha)=(t+\frac{1}{2}z)^{2}+(x+\frac{1}{2}y)^{2}+\frac{11}{4}y^{2}+\frac{11}{4}z^{2}.

For this to be equal to 2, we must have y=z=0y=z=0 and t2=x2=1t^{2}=x^{2}=1. So 𝒥\mathcal{J} must be 𝒪(1±i)\mathcal{O}\cdot(1\pm i). This satisfies 𝒥=𝒪\mathcal{J}\otimes\mathbb{Z}_{\ell}=\mathcal{O}\otimes\mathbb{Z}_{\ell} for 2\ell\neq 2, so we only need to check whether this works at 2. In other words, we need to check if

M2(2)(1002)=M2(2)(1111)\mathrm{M}_{2}(\mathbb{Z}_{2})\cdot\begin{pmatrix}1&0\\ 0&2\end{pmatrix}=\mathrm{M}_{2}(\mathbb{Z}_{2})\cdot\begin{pmatrix}1&-1\\ 1&1\end{pmatrix}

or

M2(2)(1002)=M2(2)(1111)\mathrm{M}_{2}(\mathbb{Z}_{2})\cdot\begin{pmatrix}1&0\\ 0&2\end{pmatrix}=\mathrm{M}_{2}(\mathbb{Z}_{2})\cdot\begin{pmatrix}1&1\\ -1&1\end{pmatrix}

where our isomorphism 𝒪2M2(2)\mathcal{O}\otimes\mathbb{Z}_{2}\cong\mathrm{M}_{2}(\mathbb{Z}_{2}) sends 1+i1+i to (1111)\begin{pmatrix}1&-1\\ 1&1\end{pmatrix}, and 1i1-i to (1111)\begin{pmatrix}1&1\\ -1&1\end{pmatrix}. Equivalently, we need to check if

(1111)(1002)1GL2(2)or(1111)(1002)1GL2(2).\begin{pmatrix}1&-1\\ 1&1\end{pmatrix}\begin{pmatrix}1&0\\ 0&2\end{pmatrix}^{-1}\in\mathrm{GL}_{2}(\mathbb{Z}_{2})\hskip 28.45274pt\text{or}\hskip 28.45274pt\begin{pmatrix}1&1\\ -1&1\end{pmatrix}\begin{pmatrix}1&0\\ 0&2\end{pmatrix}^{-1}\in\mathrm{GL}_{2}(\mathbb{Z}_{2}).

We see that neither is true. So we have computed one of the terms in T2(𝟙w1)(w1)T_{2}(\mathbbm{1}_{w^{1}})(w^{1}), namely

𝟙w1((1002)[1,1,])=0.\mathbbm{1}_{w^{1}}\left(\begin{pmatrix}1&0\\ 0&2\end{pmatrix}\cdot[1,1,\dots]\right)=0.

As a sanity check, we verify that [(1002),1,1,]=[132i12ij,1,]=w2Ω\left[\begin{pmatrix}1&0\\ 0&2\end{pmatrix},1,1,\dots\right]=[1-\frac{3}{2}i-\frac{1}{2}ij,1,\dots]=w^{2}\in\Omega, so that

𝟙w2((1002)[1,1,])=1\mathbbm{1}_{w^{2}}\left(\begin{pmatrix}1&0\\ 0&2\end{pmatrix}\cdot[1,1,\dots]\right)=1

as we would expect. The isomorphism 𝒪2M2(2)\mathcal{O}\otimes\mathbb{Z}_{2}\cong\mathrm{M}_{2}(\mathbb{Z}_{2}) sends 132i12ij1-\frac{3}{2}i-\frac{1}{2}ij to (2315231520)\begin{pmatrix}2&\frac{3-\sqrt{-15}}{2}\\ \frac{-3-\sqrt{-15}}{2}&0\end{pmatrix}. Let 𝒥\mathcal{J} be the 𝒪\mathcal{O}-ideal generated by the adelic point ((1002),1,1,)\left(\begin{pmatrix}1&0\\ 0&2\end{pmatrix},1,1,\dots\right), and =I2\mathcal{I}=I_{2} the ideal generated by (132i12ij,1,)(1-\frac{3}{2}i-\frac{1}{2}ij,1,\dots). Then the condition that they correspond to the same element of Ω\Omega is equivalent to the existence of some αD×()\alpha\in D^{\times}(\mathbb{Q}) such that 𝒥=α\mathcal{J}=\mathcal{I}\alpha. Checking this locally, this means α(𝒪)×\alpha\in(\mathcal{O}\otimes\mathbb{Z}_{\ell})^{\times} for 2\ell\neq 2, and at =2\ell=2 we have

(1) (2315231520)α(1002)1GL2(2).\begin{pmatrix}2&\frac{3-\sqrt{-15}}{2}\\ \frac{-3-\sqrt{-15}}{2}&0\end{pmatrix}\alpha\begin{pmatrix}1&0\\ 0&2\end{pmatrix}^{-1}\in\mathrm{GL}_{2}(\mathbb{Z}_{2}).

We can rewrite this as

α(2315231520)1GL2(2)(1002)\alpha\in\begin{pmatrix}2&\frac{3-\sqrt{-15}}{2}\\ \frac{-3-\sqrt{-15}}{2}&0\end{pmatrix}^{-1}\mathrm{GL}_{2}(\mathbb{Z}_{2})\begin{pmatrix}1&0\\ 0&2\end{pmatrix}

so we see that 2αM2(2)2\alpha\in\mathrm{M}_{2}(\mathbb{Z}_{2}), by inverting the matrix and clearing the denominator. It follows that if α\alpha exists, we must have 2α𝒪2\alpha\in\mathcal{O}, and nrd(α)=1\mathrm{nrd}(\alpha)=1, by checking locally. There are finitely many possibilities for 2α2\alpha, namely ±2,±2i,±i±12±12j,±1±12i±12ij\pm 2,\pm 2i,\pm i\pm\frac{1}{2}\pm\frac{1}{2}j,\pm 1\pm\frac{1}{2}i\pm\frac{1}{2}ij. We need to check if any of these satisfies (1) when we replace α\alpha with the corresponding matrix in 12M2(2)\frac{1}{2}\mathrm{M}_{2}(\mathbb{Z}_{2}). A computation shows that one can take α=12(i+12(1+j))\alpha=\frac{1}{2}(i+\frac{1}{2}(1+j)), where we need that actually 151mod8\sqrt{-15}\equiv 1\mod 8 for our choice of square root.

Returning to our computation of T2(𝟙w1)(w1)T_{2}(\mathbbm{1}_{w^{1}})(w^{1}), we need to compute the remaining terms 𝟙w1((1102)[1,1,])\mathbbm{1}_{w^{1}}\left(\begin{pmatrix}1&1\\ 0&2\end{pmatrix}\cdot[1,1,\dots]\right) and 𝟙w1((2001)[1,1,])\mathbbm{1}_{w^{1}}\left(\begin{pmatrix}2&0\\ 0&1\end{pmatrix}\cdot[1,1,\dots]\right). By the same argument as above, it suffices to check whether

(1111)(1102)1GL2(2)or(1111)(1102)1GL2(2)\begin{pmatrix}1&-1\\ 1&1\end{pmatrix}\begin{pmatrix}1&1\\ 0&2\end{pmatrix}^{-1}\in\mathrm{GL}_{2}(\mathbb{Z}_{2})\hskip 28.45274pt\text{or}\hskip 28.45274pt\begin{pmatrix}1&1\\ -1&1\end{pmatrix}\begin{pmatrix}1&1\\ 0&2\end{pmatrix}^{-1}\in\mathrm{GL}_{2}(\mathbb{Z}_{2})

for the first term, and whether

(1111)(2001)1GL2(2)or(1111)(2001)1GL2(2)\begin{pmatrix}1&-1\\ 1&1\end{pmatrix}\begin{pmatrix}2&0\\ 0&1\end{pmatrix}^{-1}\in\mathrm{GL}_{2}(\mathbb{Z}_{2})\hskip 28.45274pt\text{or}\hskip 28.45274pt\begin{pmatrix}1&1\\ -1&1\end{pmatrix}\begin{pmatrix}2&0\\ 0&1\end{pmatrix}^{-1}\in\mathrm{GL}_{2}(\mathbb{Z}_{2})

for the second. The first two are true and the last two are not. So we deduce that

𝟙w1((1102)[1,1,])=1and𝟙w1((2001)[1,1,])=0.\mathbbm{1}_{w^{1}}\left(\begin{pmatrix}1&1\\ 0&2\end{pmatrix}\cdot[1,1,\dots]\right)=1\hskip 28.45274pt\text{and}\hskip 28.45274pt\mathbbm{1}_{w^{1}}\left(\begin{pmatrix}2&0\\ 0&1\end{pmatrix}\cdot[1,1,\dots]\right)=0.

Therefore

2T2(𝟙w1)(w1)=0+1+0=1.2T_{2}(\mathbbm{1}_{w^{1}})(w^{1})=0+1+0=1.

We can also deduce that 2T2(𝟙w2)(w1)=31=22T_{2}(\mathbbm{1}_{w^{2}})(w^{1})=3-1=2.

One similarly shows that 2T2(𝟙w1)(w2)=32T_{2}(\mathbbm{1}_{w^{1}})(w^{2})=3 and so 2T2(𝟙w2)(w2)=02T_{2}(\mathbbm{1}_{w^{2}})(w^{2})=0. The required computation is to show that the 𝒪\mathcal{O}-ideals generated by (g(2315231520),1,1,)\left(g\cdot\begin{pmatrix}2&\frac{3-\sqrt{-15}}{2}\\ \frac{-3-\sqrt{-15}}{2}&0\end{pmatrix},1,1,\dots\right), for g=(1002),(1102)g=\begin{pmatrix}1&0\\ 0&2\end{pmatrix},\begin{pmatrix}1&1\\ 0&2\end{pmatrix} and (2001)\begin{pmatrix}2&0\\ 0&1\end{pmatrix}, are principal 𝒪\mathcal{O}-ideals. The generators can be taken to be α=i+1212j,i+1212j\alpha=-i+\frac{1}{2}-\frac{1}{2}j,i+\frac{1}{2}-\frac{1}{2}j and 22 respectively.

It follows that 2T2(𝟙w1)=𝟙w1+3𝟙w22T_{2}(\mathbbm{1}_{w^{1}})=\mathbbm{1}_{w^{1}}+3\mathbbm{1}_{w^{2}} and 2T2(𝟙w2)=2𝟙w12T_{2}(\mathbbm{1}_{w^{2}})=2\mathbbm{1}_{w^{1}}, so T2T_{2} has matrix 12(1230)\frac{1}{2}\begin{pmatrix}1&2\\ 3&0\end{pmatrix} with respect to the basis {𝟙w1,𝟙w2}\{\mathbbm{1}_{w^{1}},\mathbbm{1}_{w^{2}}\}. The eigenvalues are λ=22,32𝔽¯11\lambda=\frac{-2}{2},\frac{3}{2}\in\overline{\mathbb{F}}_{11}.

The Hecke operator T3T_{3} can be computed in a similar way. We give one example evaluating the summand

𝟙w2((1003)[(2315231520),1,1,])=𝟙w2([(2315231520),(1003),1,1,])\mathbbm{1}_{w^{2}}\left(\begin{pmatrix}1&0\\ 0&3\end{pmatrix}\cdot\left[\begin{pmatrix}2&\frac{3-\sqrt{-15}}{2}\\ \frac{-3-\sqrt{-15}}{2}&0\end{pmatrix},1,1,\dots\right]\right)=\mathbbm{1}_{w^{2}}\left(\left[\begin{pmatrix}2&\frac{3-\sqrt{-15}}{2}\\ \frac{-3-\sqrt{-15}}{2}&0\end{pmatrix},\begin{pmatrix}1&0\\ 0&3\end{pmatrix},1,1,\dots\right]\right)

of 3T3(𝟙w2)(w2)3T_{3}(\mathbbm{1}_{w^{2}})(w^{2}). One could do this by checking whether the 𝒪\mathcal{O}-ideal 𝒥\mathcal{J} generated by the adelic point in the square brackets is principal. If it is, then this value of 𝟙w2\mathbbm{1}_{w^{2}} is 0. This only works because Ω\Omega has two elements. In general, we need to check if 𝒥\mathcal{J} is in the same left ideal class as the 𝒪\mathcal{O}-ideal =I2\mathcal{I}=I_{2} generated by the adelic point ((2315231520),1,1,)\left(\begin{pmatrix}2&\frac{3-\sqrt{-15}}{2}\\ \frac{-3-\sqrt{-15}}{2}&0\end{pmatrix},1,1,\dots\right). So we need to check if there exists αD×\alpha\in D^{\times} such that 𝒥=α\mathcal{J}=\mathcal{I}\alpha. Checking this locally, we need (for the two isomorphisms D2M2(2)D\otimes\mathbb{Q}_{2}\cong\mathrm{M}_{2}(\mathbb{Q}_{2}) and D3M2(3)D\otimes\mathbb{Q}_{3}\cong\mathrm{M}_{2}(\mathbb{Q}_{3}) specified)

(2) (2315231520)α(2315231520)1GL2(2)\begin{pmatrix}2&\frac{3-\sqrt{-15}}{2}\\ \frac{-3-\sqrt{-15}}{2}&0\end{pmatrix}\alpha\begin{pmatrix}2&\frac{3-\sqrt{-15}}{2}\\ \frac{-3-\sqrt{-15}}{2}&0\end{pmatrix}^{-1}\in\mathrm{GL}_{2}(\mathbb{Z}_{2})

and

(3) α(1003)1GL2(3)\alpha\begin{pmatrix}1&0\\ 0&3\end{pmatrix}^{-1}\in\mathrm{GL}_{2}(\mathbb{Z}_{3})

and α(𝒪)×\alpha\in(\mathcal{O}\otimes\mathbb{Z}_{\ell})^{\times} for 2,3\ell\neq 2,3. The first two conditions imply that 2α𝒪22\alpha\in\mathcal{O}\otimes\mathbb{Z}_{2} and α𝒪3\alpha\in\mathcal{O}\otimes\mathbb{Z}_{3}. So 2α𝒪2\alpha\in\mathcal{O}, and nrd(α)=3\mathrm{nrd}(\alpha)=3. There are finitely many possibilities for 2α2\alpha.

Before we go through all the possibilities for 2α2\alpha and check whether they satisfy the two equations, we remark that for equation (2) we only really need to work with 2α2\alpha and the matrix (2315231520)\begin{pmatrix}2&\frac{3-\sqrt{-15}}{2}\\ \frac{-3-\sqrt{-15}}{2}&0\end{pmatrix} modulo some power of 2 (and for equation (3) we only need 2α2\alpha modulo some power of 3). Indeed, using the fact that our choice of 15\sqrt{-15} is congruent to 1mod81\mod 8, we have

(2315231520)(2120)mod4.\begin{pmatrix}2&\frac{3-\sqrt{-15}}{2}\\ \frac{-3-\sqrt{-15}}{2}&0\end{pmatrix}\equiv\begin{pmatrix}2&1\\ 2&0\end{pmatrix}\mod 4.

Suppose 2α2\alpha has matrix (a2b2c2d2)M2(2)\begin{pmatrix}a_{2}&b_{2}\\ c_{2}&d_{2}\end{pmatrix}\in\mathrm{M}_{2}(\mathbb{Z}_{2}). Then equation (2) tells us (after inverting the matrix) that we need

(2315231520)(a2b2c2d2)(03+1523+1522)4M2(2).\begin{pmatrix}2&\frac{3-\sqrt{-15}}{2}\\ \frac{-3-\sqrt{-15}}{2}&0\end{pmatrix}\begin{pmatrix}a_{2}&b_{2}\\ c_{2}&d_{2}\end{pmatrix}\begin{pmatrix}0&\frac{-3+\sqrt{-15}}{2}\\ \frac{3+\sqrt{-15}}{2}&2\end{pmatrix}\in 4\mathrm{M}_{2}(\mathbb{Z}_{2}).

Note that the norm condition on α\alpha will then guarantee that we land in 4GL2(2)4\mathrm{GL}_{2}(\mathbb{Z}_{2}) not just 4M2(2)4\mathrm{M}_{2}(\mathbb{Z}_{2}). Working modulo 4, we need

(2120)(a2b2c2d2)(0122)0mod4.\begin{pmatrix}2&1\\ 2&0\end{pmatrix}\begin{pmatrix}a_{2}&b_{2}\\ c_{2}&d_{2}\end{pmatrix}\begin{pmatrix}0&-1\\ 2&2\end{pmatrix}\equiv 0\mod 4.

Expanding this out, this is equivalent to

(4) 2a2,4c2,2d2.2\mid a_{2},\hskip 30.00005pt4\mid c_{2},\hskip 30.00005pt2\mid d_{2}.

Similarly, if 2α2\alpha has matrix (a3b3c3d3)M2(3)\begin{pmatrix}a_{3}&b_{3}\\ c_{3}&d_{3}\end{pmatrix}\in\mathrm{M}_{2}(\mathbb{Z}_{3}), then equation (3) is equivalent to

(5) 3b3,3d3.3\mid b_{3},\hskip 30.00005pt3\mid d_{3}.

So now we look through 2α𝒪2\alpha\in\mathcal{O} of reduced norm 12. Write

2α=t1+xi+y12(i+ij)+z12(1+j)2\alpha=t\cdot 1+x\cdot i+y\cdot\frac{1}{2}(i+ij)+z\cdot\frac{1}{2}(1+j)

for t,x,y,zt,x,y,z\in\mathbb{Z}. We also compute the images of the basis elements 1,i,12(i+ij),12(1+j)1,i,\frac{1}{2}(i+ij),\frac{1}{2}(1+j) in M2(2)\mathrm{M}_{2}(\mathbb{Z}_{2}) and M2(3)\mathrm{M}_{2}(\mathbb{Z}_{3}), then reduce them modulo 4 and 3 respectively:

i(0110)mod4i(0110)mod3i\mapsto\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}\mod 4\hskip 70.0001pti\mapsto\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}\mod 3
12(i+ij)(1011)mod412(i+ij)(0010)mod3.\frac{1}{2}(i+ij)\mapsto\begin{pmatrix}-1&0\\ 1&1\end{pmatrix}\mod 4\hskip 70.0001pt\frac{1}{2}(i+ij)\mapsto\begin{pmatrix}0&0\\ 1&0\end{pmatrix}\mod 3.
12(1+j)(1110)mod412(1+j)(1000)mod3\frac{1}{2}(1+j)\mapsto\begin{pmatrix}1&1\\ 1&0\end{pmatrix}\mod 4\hskip 70.0001pt\frac{1}{2}(1+j)\mapsto\begin{pmatrix}1&0\\ 0&0\end{pmatrix}\mod 3

It follows that

2α(ty+zx+zx+y+zt+y)mod42α(t+zxx+yt)mod3.2\alpha\mapsto\begin{pmatrix}t-y+z&-x+z\\ x+y+z&t+y\end{pmatrix}\mod 4\hskip 70.0001pt2\alpha\mapsto\begin{pmatrix}t+z&-x\\ x+y&t\end{pmatrix}\mod 3.

Hence equations (4) and (5) tell us that there exists 2α𝒪2\alpha\in\mathcal{O} of reduced norm 12 satisfying equations (2) and (3), if and only if we can find t,x,y,zt,x,y,z\in\mathbb{Z} such that

2ty+z,t+y,4x+y+z,3x,t,(t+12z)2+(x+12y)2+114y2+114z2=122\mid t-y+z,t+y,\hskip 20.00003pt4\mid x+y+z,\hskip 20.00003pt3\mid x,t,\hskip 20.00003pt(t+\frac{1}{2}z)^{2}+(x+\frac{1}{2}y)^{2}+\frac{11}{4}y^{2}+\frac{11}{4}z^{2}=12

where the last equation tells us the reduced norm is 12. We can check that there are no such solutions. For example, we see that zz must be even, and then from the norm condition we see that |z|2\lvert z\rvert\leq 2. Trying z=2z=2, the norm condition tells us that we must have (t,x,y)=(0,0,0),(2,0,0)(t,x,y)=(0,0,0),(-2,0,0) or (1,±1,0)(-1,\pm 1,0), none of which satisfy the congruence conditions. For z=2z=-2 we similarly must have (t,x,y)=(0,0,0),(2,0,0)(t,x,y)=(0,0,0),(2,0,0) or (1,±1,0)(1,\pm 1,0) which also does not work. And finally for z=0z=0 we need t2+(x+12y)2+114y2=12t^{2}+(x+\frac{1}{2}y)^{2}+\frac{11}{4}y^{2}=12. Since 3t3\mid t, in one case we have t2=9t^{2}=9, and then in (x+12y)2+114y2=3(x+\frac{1}{2}y)^{2}+\frac{11}{4}y^{2}=3 there are no solutions with 4x+y4\mid x+y and 3x3\mid x. Otherwise we have t=0t=0 and (x+12y)2+114y2=12(x+\frac{1}{2}y)^{2}+\frac{11}{4}y^{2}=12 with 2y2\mid y, 4x+y4\mid x+y and 3x3\mid x, which has no solutions, checking y=0,±2y=0,\pm 2.

We deduce that

𝟙w2((1003)[(2315231520),1,1,])=0.\mathbbm{1}_{w^{2}}\left(\begin{pmatrix}1&0\\ 0&3\end{pmatrix}\cdot\left[\begin{pmatrix}2&\frac{3-\sqrt{-15}}{2}\\ \frac{-3-\sqrt{-15}}{2}&0\end{pmatrix},1,1,\dots\right]\right)=0.

Performing the remaining calculations, using the relevant mod 3 and 4 matrices we have already written down above, we find that T3T_{3} has matrix 13(2231)\frac{1}{3}\begin{pmatrix}2&2\\ 3&1\end{pmatrix} with respect to the basis {𝟙w1,𝟙w2}\{\mathbbm{1}_{w^{1}},\mathbbm{1}_{w^{2}}\}. We compute the eigenvalues to be 13,43𝔽¯11\frac{-1}{3},\frac{4}{3}\in\overline{\mathbb{F}}_{11}.

Comparing the matrices for T2T_{2} and T3T_{3}, they are simultaneously diagonalisable (as expected) with eigenvectors (23)\scriptsize\begin{pmatrix}2\\ -3\end{pmatrix} and (11)\scriptsize\begin{pmatrix}1\\ 1\end{pmatrix}. The corresponding eigenvalues are (a2,a3)=(22,13)=(1,4)(a_{2},a_{3})=\left(\frac{-2}{2},\frac{-1}{3}\right)=(-1,-4) and (a2,a3)=(32,43)=(7,5)(a_{2},a_{3})=\left(\frac{3}{2},\frac{4}{3}\right)=(7,5), viewing a2,a3a_{2},a_{3} as elements of 𝔽¯11\overline{\mathbb{F}}_{11}. In view of Serre’s Theorem 1.1, one might wonder what mod 11 modular forms give rise to these eigenvalues. The first comes from θ9(Δ)=qq24q3+mod11\theta^{9}(\Delta)=q-q^{2}-4q^{3}+\dots\mod 11, which has minimal weight filtration 120 (meaning that 120 is the lowest weight at which a mod 11 modular form has this qq-expansion), and the second from the Hasse invariant E10E_{10}.

3. Explicit isomorphisms 𝒪M2()\mathcal{O}\otimes\mathbb{Z}_{\ell}\cong\mathrm{M}_{2}(\mathbb{Z}_{\ell})

We now work with any prime pp. Let DD be the unique quaternion algebra over \mathbb{Q} ramified exactly at {p,}\{p,\infty\}. It turns out that one can take D(1,p)D\cong\left(\frac{-1,-p}{\mathbb{Q}}\right) and (2,p)\left(\frac{-2,-p}{\mathbb{Q}}\right) when respectively, p3mod4p\equiv 3\mod 4 (or p=2p=2), and p5mod8p\equiv 5\mod 8. In the remaining case p1mod8p\equiv 1\mod 8, we can take D(r,p)D\cong\left(\frac{-r,-p}{\mathbb{Q}}\right) for any prime r3mod4r\equiv 3\mod 4 with (rp)=1\left(\frac{r}{p}\right)=-1. This can be verified by computations with the Hilbert symbol as in [Voi21] Chapter 12. We will write D=(ϵ,p)D=\left(\frac{-\epsilon,-p}{\mathbb{Q}}\right) for an appropriate ϵ\epsilon.

In the example of the previous section, we wrote down explicit isomorphisms 𝒪M2()\mathcal{O}\otimes\mathbb{Z}_{\ell}\cong\mathrm{M}_{2}(\mathbb{Z}_{\ell}). In general this is tricky to do, complicated by the fact that 𝒪\mathcal{O} might properly contain the order with \mathbb{Z}-basis {1,i,j,ij}\{1,i,j,ij\} - we can have nontrivial denominators. See also [Voi13] for an algorithm for computing such isomorphisms, which arose as a byproduct of other more involved algorithms. Let 𝒪\mathcal{O} have \mathbb{Z}-basis {s1,s2,s3,s4}\{s^{1},s^{2},s^{3},s^{4}\}. What we need to do is find matrices A,BM2()A,B\in\mathrm{M}_{2}(\mathbb{Z}_{\ell}) (corresponding to i,ji,j) such that

A2=ϵ,B2=p,AB=BA,A^{2}=-\epsilon,\hskip 20.00003ptB^{2}=-p,\hskip 20.00003ptAB=-BA,

and such that the matrices corresponding to s1,s2,s3,s4s^{1},s^{2},s^{3},s^{4}, which a priori have entries in \mathbb{Q}_{\ell}, actually have entries in \mathbb{Z}_{\ell}. This latter condition just imposes some congruences on the entries of AA and BB. For example, in the case p=11p=11 using the given basis for 𝒪\mathcal{O}, we also require that

12(A+AB)M2()and12(1+B)M2()\frac{1}{2}(A+AB)\in\mathrm{M}_{2}(\mathbb{Z}_{\ell})\hskip 50.00008pt\text{and}\hskip 50.00008pt\frac{1}{2}(1+B)\in\mathrm{M}_{2}(\mathbb{Z}_{\ell})

which only imposes congruence conditions when =2\ell=2. If we can do this in the general case, then this gives us an isomorphism DM2()D\otimes\mathbb{Q}_{\ell}\cong\mathrm{M}_{2}(\mathbb{Q}_{\ell}), which restricts to an injection 𝒪M2()\mathcal{O}\otimes\mathbb{Z}_{\ell}\hookrightarrow\mathrm{M}_{2}(\mathbb{Z}_{\ell}). But 𝒪\mathcal{O}\otimes\mathbb{Z}_{\ell} is a maximal order in DD\otimes\mathbb{Q}_{\ell}, so this injection must actually be our desired isomorphism.

The main observation is that, for our purposes, we really only need the matrices corresponding to the s1,s2,s3,s4s^{1},s^{2},s^{3},s^{4} modulo some sufficiently large power of \ell. Consequently, we only need to compute AA and BB modulo some n\ell^{n_{\ell}}. This was hinted at in the computation of T3T_{3} in the example above. We will describe a formula for a sufficiently large nn_{\ell} later. So we need to search for A0A_{0} and B0B_{0} in M2(/n)\mathrm{M}_{2}(\mathbb{Z}/\ell^{n_{\ell}}\mathbb{Z}) for some nn_{\ell}, which satisfy

A02=ϵ,B02=p,A0B0=B0A0modnA_{0}^{2}=-\epsilon,\hskip 20.00003ptB_{0}^{2}=-p,\hskip 20.00003ptA_{0}B_{0}=-B_{0}A_{0}\mod\ell^{n_{\ell}}

and the congruence conditions imposed by the basis of 𝒪\mathcal{O} (we take nn_{\ell} sufficiently large so that these congruences can be viewed as congruences modulo n\ell^{n_{\ell}}). We know that such A0A_{0} and B0B_{0} exist because we know that there exists an isomorphism 𝒪M2()\mathcal{O}\otimes\mathbb{Z}_{\ell}\cong\mathrm{M}_{2}(\mathbb{Z}_{\ell}). Since i,j𝒪i,j\in\mathcal{O} have reduced trace 0, we can furthermore assume that A0A_{0} and B0B_{0} are trace-free. Then such a solution can be found by a finite enumeration of all matrices in M2(/n)\mathrm{M}_{2}(\mathbb{Z}/\ell^{n_{\ell}}\mathbb{Z}) (a more efficient method would be to use the lemma below repeatedly). The claim then is that these solutions can be lifted to our desired AA and BB (although we do not need to write down AA and BB, just know that A0A_{0} and B0B_{0} lift). Note that AA and BB will automatically satisfy the congruence conditions from the basis of 𝒪\mathcal{O} because we are lifting from A0A_{0} and B0B_{0}. This is the content of the following lemma (for 2\ell\neq 2).

Lemma 3.1.

Suppose we have trace-free matrices A0,B0M2(/m)A_{0},B_{0}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{m}\mathbb{Z}) for p\ell\neq p an odd prime and m2m\geq 2, and suppose they satisfy

A02=ϵmodm,B02=pmodm,A0B0=B0A0modm.A_{0}^{2}=-\epsilon\mod\ell^{m},\hskip 20.00003ptB_{0}^{2}=-p\mod\ell^{m},\hskip 20.00003ptA_{0}B_{0}=-B_{0}A_{0}\mod\ell^{m}.

Then we can find trace-free matrices A1,B1M2(/m+1)A_{1},B_{1}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{m+1}\mathbb{Z}) satisfying

A12=ϵmodm+1,B12=pmodm+1,A1B1=B1A1modm+1A_{1}^{2}=-\epsilon\mod\ell^{m+1},\hskip 20.00003ptB_{1}^{2}=-p\mod\ell^{m+1},\hskip 20.00003ptA_{1}B_{1}=-B_{1}A_{1}\mod\ell^{m+1}

with A1A0modmA_{1}\equiv A_{0}\mod\ell^{m} and B1B0modmB_{1}\equiv B_{0}\mod\ell^{m}. It follows that we can lift to desired matrices A,BM2()A,B\in\mathrm{M}_{2}(\mathbb{Z}_{\ell}) by induction.

Proof.

Our proof involves writing out all the matrix entries and multiplying them together. The requirement that the matrices be trace-free simplify our calculations. Let

A0=(a1a2a3a1)modmB0=(b1b2b3b1)modm.A_{0}=\begin{pmatrix}a_{1}&a_{2}\\ a_{3}&-a_{1}\end{pmatrix}\mod\ell^{m}\hskip 50.00008ptB_{0}=\begin{pmatrix}b_{1}&b_{2}\\ b_{3}&-b_{1}\end{pmatrix}\mod\ell^{m}.

Lifting these to (trace-free) matrices modulo m+1\ell^{m+1}, we will write

A1=A0+mXmodm+1B1=B0+mYmodm+1A_{1}=A_{0}+\ell^{m}X\mod\ell^{m+1}\hskip 50.00008ptB_{1}=B_{0}+\ell^{m}Y\mod\ell^{m+1}

for trace-free matrices

X=(x1x2x3x1)modY=(y1y2y3y1)mod.X=\begin{pmatrix}x_{1}&x_{2}\\ x_{3}&-x_{1}\end{pmatrix}\mod\ell\hskip 50.00008ptY=\begin{pmatrix}y_{1}&y_{2}\\ y_{3}&-y_{1}\end{pmatrix}\mod\ell.

A useful calculation is the following: if P=(p1p2p3p1)P=\begin{pmatrix}p_{1}&p_{2}\\ p_{3}&-p_{1}\end{pmatrix} and Q=(q1q2q3q1)Q=\begin{pmatrix}q_{1}&q_{2}\\ q_{3}&-q_{1}\end{pmatrix} are trace-free matrices, then

PQ+QP=(2p1q1+p2q3+p3q2002p1q1+p2q3+p3q2).PQ+QP=\begin{pmatrix}2p_{1}q_{1}+p_{2}q_{3}+p_{3}q_{2}&0\\ 0&2p_{1}q_{1}+p_{2}q_{3}+p_{3}q_{2}\end{pmatrix}.

It follows that if we lift A0A_{0} and B0B_{0} to any trace-free matrices modulo m+1\ell^{m+1}, also denoted A0A_{0} and B0B_{0}, we have that

A02=ϵ+m()modm+1,B02=p+m()modm+1,A0B0+B0A0=m()modm+1A_{0}^{2}=-\epsilon+\ell^{m}(*)\mod\ell^{m+1},\hskip 20.00003ptB_{0}^{2}=-p+\ell^{m}(*)\mod\ell^{m+1},\hskip 20.00003ptA_{0}B_{0}+B_{0}A_{0}=\ell^{m}(*)\mod\ell^{m+1}

where the ()(*) are all scalar matrices modulo \ell. The conditions on XX and YY coming from those on A1A_{1} and B1B_{1} are the following:

2a1x1+a2x3+a3x2=()mod,2b1y1+b2y3+b3y2=()mod2a_{1}x_{1}+a_{2}x_{3}+a_{3}x_{2}=(*)\mod\ell,\hskip 20.00003pt2b_{1}y_{1}+b_{2}y_{3}+b_{3}y_{2}=(*)\mod\ell
(2a1y1+a2y3+a3y2)+(2b1x1+b2x3+b3x2)=()mod(2a_{1}y_{1}+a_{2}y_{3}+a_{3}y_{2})+(2b_{1}x_{1}+b_{2}x_{3}+b_{3}x_{2})=(*)\mod\ell

for some scalars ()mod(*)\mod\ell. We can rewrite this as

(2a1a3a20000002b1b3b22b1b3b22a1a3a2)(x1x2x3y1y2y3)=()mod\begin{pmatrix}2a_{1}&a_{3}&a_{2}&0&0&0\\ 0&0&0&2b_{1}&b_{3}&b_{2}\\ 2b_{1}&b_{3}&b_{2}&2a_{1}&a_{3}&a_{2}\end{pmatrix}\cdot\small\begin{pmatrix}x_{1}\\ x_{2}\\ x_{3}\\ y_{1}\\ y_{2}\\ y_{3}\end{pmatrix}=(*)\mod\ell

for some arbitrary vector ()𝔽3(*)\in\mathbb{F}_{\ell}^{3}. This is always possible if the vectors (2a1a3a2)mod\begin{pmatrix}2a_{1}&a_{3}&a_{2}\end{pmatrix}\mod\ell and (2b1b3b2)mod\begin{pmatrix}2b_{1}&b_{3}&b_{2}\end{pmatrix}\mod\ell are linearly independent. Since 2\ell\neq 2, linear dependence is equivalent to the existence of a nonzero scalar λ\lambda such that A0=λB0modA_{0}=\lambda B_{0}\mod\ell, or that either A0A_{0} or B0B_{0} is 0 mod \ell. The latter two cases are not possible because otherwise A02=0mod2A_{0}^{2}=0\mod\ell^{2} or B02=0mod2B_{0}^{2}=0\mod\ell^{2}. Since m2m\geq 2, this means that 2\ell^{2} divides ϵ\epsilon or pp, which does not happen (we had to use 2\ell^{2} in case ϵ=r\epsilon=r and =r\ell=r). And in the first case, A0B0+B0A0=0modA_{0}B_{0}+B_{0}A_{0}=0\mod\ell tells us that A02=B02=0modA_{0}^{2}=B_{0}^{2}=0\mod\ell, which is false since p\ell\neq p. Hence we can always lift A0,B0modmA_{0},B_{0}\mod\ell^{m} to A1,B1modm+1A_{1},B_{1}\mod\ell^{m+1}. ∎

3.1. The case =2\ell=2

When =2\ell=2, the argument of Lemma 3.1 does not work, analogous to the difficulty of using a naive Hensel’s lemma for finding square roots in 2\mathbb{Z}_{2}. We will make use of a generalised Hensel’s lemma for multiple variables, which can be found as Theorem 3.3 in Conrad’s notes [Con], specialised to the case of 2\mathbb{Q}_{2} with its usual absolute value ||\lvert\cdot\rvert.

Theorem 3.2.

Let 𝐟=(f1,f2,,fd)2[X1,X2,,Xd]d\mathbf{f}=(f_{1},f_{2},\dots,f_{d})\in\mathbb{Z}_{2}[X_{1},X_{2},\dots,X_{d}]^{d} and 𝐚=(a1,,ad)2d\mathbf{a}=(a_{1},\dots,a_{d})\in\mathbb{Z}_{2}^{d} satisfy

𝐟(𝐚)<|J𝐟(𝐚)|2\left\lVert\mathbf{f}(\mathbf{a})\right\rVert<\lvert J_{\mathbf{f}}(\mathbf{a})\rvert^{2}

where J𝐟J_{\mathbf{f}} is the Jacobian of ff - the determinant of its derivative matrix - and the norm of a vector is defined to be the maximum of the absolute values of its entries. Then there is a unique α2d\mathbf{\alpha}\in\mathbb{Z}_{2}^{d} such that 𝐟(α)=0\mathbf{f}(\mathbf{\alpha})=0 and α𝐚<|J𝐟(𝐚)|\left\lVert\mathbf{\alpha}-\mathbf{a}\right\rVert<\lvert J_{\mathbf{f}}(\mathbf{a})\rvert.

To see how to apply this, we are looking for matrices A,BM2(2)A,B\in\mathrm{M}_{2}(\mathbb{Z}_{2}) satisfying

A2=ϵ,B2=p,AB=BA,A^{2}=-\epsilon,\hskip 20.00003ptB^{2}=-p,\hskip 20.00003ptAB=-BA,

which also satisfy certain congruence conditions mod 4 (the highest power of 2 possibly dividing denominators in s1,s2,s3,s4s^{1},s^{2},s^{3},s^{4} - see Proposition 3.7 to follow). Because we know 𝒪2M2(2)\mathcal{O}\otimes\mathbb{Z}_{2}\cong\mathrm{M}_{2}(\mathbb{Z}_{2}), we know that such AA and BB exist, so we can find such a solution modulo some power of 2 bigger than 4 and try to lift to 2\mathbb{Z}_{2}. If A=(a1a2a3a1)A=\begin{pmatrix}a_{1}&a_{2}\\ a_{3}&-a_{1}\end{pmatrix} and B=(b1b2b3b1)B=\begin{pmatrix}b_{1}&b_{2}\\ b_{3}&-b_{1}\end{pmatrix} with entries in 2\mathbb{Z}_{2}, then the conditions

A2=ϵ,B2=p,AB=BA,A^{2}=-\epsilon,\hskip 20.00003ptB^{2}=-p,\hskip 20.00003ptAB=-BA,

are equivalent to

(6) a12+a2a3=ϵ,b12+b2b3=p,2a1b1+a2b3+a3b2=0.a_{1}^{2}+a_{2}a_{3}=-\epsilon,\hskip 30.00005ptb_{1}^{2}+b_{2}b_{3}=-p,\hskip 30.00005pt2a_{1}b_{1}+a_{2}b_{3}+a_{3}b_{2}=0.
Lemma 3.3.

Suppose we have a,b,c,x,y,za,b,c,x,y,z\in\mathbb{Z} satisfying

(7) a2+bc=ϵmod128,x2+yz=pmod128,2ax+bz+cy=0mod128.a^{2}+bc=-\epsilon\mod 128,\hskip 30.00005ptx^{2}+yz=-p\mod 128,\hskip 30.00005pt2ax+bz+cy=0\mod 128.

Then these are congruent to some a1,a2,a3,b1,b2,b32a_{1},a_{2},a_{3},b_{1},b_{2},b_{3}\in\mathbb{Z}_{2} modulo 128 respectively, satisfying equation (6).

Proof.

We have 3 equations and 6 variables, so to apply Theorem 3.2 we need to fix 3 variables. For example, if we fixed (b,c,x)(b,c,x) and considered the polynomials

f1(X1,X2,X3)=X12+bc+ϵ,f2(X1,X2,X3)=x2+X2X3+p,f3(X1,X2,X3)=2xX1+bX3+cX2f_{1}(X_{1},X_{2},X_{3})=X_{1}^{2}+bc+\epsilon,\hskip 20.00003ptf_{2}(X_{1},X_{2},X_{3})=x^{2}+X_{2}X_{3}+p,\hskip 20.00003ptf_{3}(X_{1},X_{2},X_{3})=2xX_{1}+bX_{3}+cX_{2}

then we know that 𝐟(a,y,z)=0mod128\mathbf{f}(a,y,z)=0\mod 128. Note 128=27128=2^{7}. The derivative matrix is

(D𝐟)(X)=(2X1000X3X22xcb).(D\mathbf{f})(X)=\begin{pmatrix}2X_{1}&0&0\\ 0&X_{3}&X_{2}\\ 2x&c&b\end{pmatrix}.

In order to lift to a solution a1,a2,a3,b1,b2,b32a_{1},a_{2},a_{3},b_{1},b_{2},b_{3}\in\mathbb{Z}_{2}, we need 16=2416=2^{4} to not divide

J𝐟(a,y,z)=2a(bzcy).J_{\mathbf{f}}(a,y,z)=2a(bz-cy).

Whether this holds depends on the a,b,c,x,y,za,b,c,x,y,z we were given. If this does not hold for our particular a,b,c,x,y,za,b,c,x,y,z, then we could instead fix some of the other variables, replacing 𝐟\mathbf{f} with some 𝐠\mathbf{g}, and check whether 16 divides the new value of J𝐠J_{\mathbf{g}}. This means that the proof reduces to an analysis of several cases depending on the parities of the a,b,c,x,y,za,b,c,x,y,z.

Notation 3.4.

Let 𝐟r,s,t\mathbf{f}_{r,s,t} denote the length 3 vector of polynomials in 3 variables obtained by fixing the variables other than r,s,t{a,b,c,x,y,z}r,s,t\in\{a,b,c,x,y,z\}. So for example we considered the case (r,s,t)=(a,y,z)(r,s,t)=(a,y,z) above.

We compute the following Jacobians:

(8) (D𝐟a,x,b)(X)=(2X10c02X202X22X1z)J𝐟a,x,b(a,x,b)=4x(azcx).(D\mathbf{f}_{a,x,b})(X)=\begin{pmatrix}2X_{1}&0&c\\ 0&2X_{2}&0\\ 2X_{2}&2X_{1}&z\end{pmatrix}\hskip 30.00005ptJ_{\mathbf{f}_{a,x,b}}(a,x,b)=4x(az-cx).
(9) (D𝐟a,x,c)(X)=(2X10b02X202X22X1y)J𝐟a,x,c(a,x,c)=4x(aybx).(D\mathbf{f}_{a,x,c})(X)=\begin{pmatrix}2X_{1}&0&b\\ 0&2X_{2}&0\\ 2X_{2}&2X_{1}&y\end{pmatrix}\hskip 30.00005ptJ_{\mathbf{f}_{a,x,c}}(a,x,c)=4x(ay-bx).
(10) (D𝐟a,x,y)(X)=(2X10002X2z2X22X1c)J𝐟a,x,y(a,x,y)=4a(cxaz).(D\mathbf{f}_{a,x,y})(X)=\begin{pmatrix}2X_{1}&0&0\\ 0&2X_{2}&z\\ 2X_{2}&2X_{1}&c\end{pmatrix}\hskip 30.00005ptJ_{\mathbf{f}_{a,x,y}}(a,x,y)=4a(cx-az).
(11) (D𝐟a,x,z)(X)=(2X10002X2y2X22X1b)J𝐟a,x,z(a,x,z)=4a(bxay).(D\mathbf{f}_{a,x,z})(X)=\begin{pmatrix}2X_{1}&0&0\\ 0&2X_{2}&y\\ 2X_{2}&2X_{1}&b\end{pmatrix}\hskip 30.00005ptJ_{\mathbf{f}_{a,x,z}}(a,x,z)=4a(bx-ay).
(12) (D𝐟b,y,z)(X)=(c000X3X2X3cX1)J𝐟b,y,z(b,y,z)=c(bzcy).(D\mathbf{f}_{b,y,z})(X)=\begin{pmatrix}c&0&0\\ 0&X_{3}&X_{2}\\ X_{3}&c&X_{1}\end{pmatrix}\hskip 30.00005ptJ_{\mathbf{f}_{b,y,z}}(b,y,z)=c(bz-cy).

Now we split into several cases. Firstly, assume p,ϵ2p,\epsilon\neq 2 are odd. We will frequently use from equation (7) that bz+cybz+cy is divisible by 2ax2ax mod 128, and in particular is even.

  1. (i)

    a,xa,x both even. From equation (7), we see that b,c,y,zb,c,y,z are all odd. But 4bz+cy4\mid bz+cy and so 4bzcy4\nmid bz-cy. So using (12), we can lift using the fact that 16c(bzcy)16\nmid c(bz-cy).

  2. (ii)

    aa odd and xx even. We see that y,zy,z are odd and bcbc is even. Then use (10) and the fact that 164a(cxaz)16\nmid 4a(cx-az).

  3. (iii)

    aa even and xx odd. We see that b,cb,c are odd and yzyz is even. Then use (8) and the fact that
    164x(azcx)16\nmid 4x(az-cx).

  4. (iv)

    a,xa,x both odd. Then a2x21mod4a^{2}\equiv x^{2}\equiv 1\mod 4. From the way we defined ϵ\epsilon, we have that pϵmod4p\equiv-\epsilon\mod 4 (when neither is equal to 2). By symmetry, suppose p1mod4p\equiv 1\mod 4. Then we see that we must have yz2mod4yz\equiv 2\mod 4. By symmetry, suppose yy is odd and zz is even but not divisible by 4. Then since bz+cybz+cy is even, we must have that cc is even. If we then have bb even, use (11), and 164a(bxay)16\nmid 4a(bx-ay). If instead bb is odd, then because 4z4\nmid z we know bz2mod4bz\equiv 2\mod 4. But aa and xx are odd, so 42ax4\nmid 2ax and therefore 4bz+cy4\nmid bz+cy. It follows that cc is divisible by 4. Then we use (10), where 4a(cxaz)4a(cx-az) is divisible by 8 but not by 16. The other cases are symmetric.

Finally we consider the case when either pp or ϵ\epsilon is 2 (we cannot have both). Firstly, consider ϵ=2\epsilon=2, so p5mod8p\equiv 5\mod 8.

  1. (i)

    a,xa,x both even. We see that y,zy,z are odd. Since a2+bc=2mod128a^{2}+bc=-2\mod 128 and aa is even, exactly one of b,cb,c is even. But then 2bz+cy2\nmid bz+cy is a contradiction.

  2. (ii)

    aa odd and xx even. We see that b,c,y,zb,c,y,z are all odd. We also have from 2axbz+cy2ax\mid bz+cy that 4bz+cy4\mid bz+cy, and therefore 4bzcy4\nmid bz-cy. Then use (12) and the fact that 16c(bzcy)16\nmid c(bz-cy).

  3. (iii)

    aa even and xx odd. We see that bcbc and yzyz are even. Because a2+bc=2mod128a^{2}+bc=-2\mod 128 and aa is even, exactly one of b,cb,c is even. Similarly, x2+yz1mod4x^{2}+yz\equiv-1\mod 4 and xx is odd, so exactly one of y,zy,z is even. We also know that bz+cybz+cy is even. Thus either b,yb,y are even and c,zc,z are odd, or b,yb,y are odd and c,zc,z are even. In the first case use (8) and in the second case use (9).

  4. (iv)

    a,xa,x both odd. We see that b,cb,c are odd and yzyz is even. Again we have that exactly one of y,zy,z is even. If yy is even use (9) and if zz is even use (8).

The only property of pp that we use is that p1mod4p\equiv 1\mod 4. If we took p=2p=2, then ϵ=1\epsilon=1 is also 1 mod 4. So this case is symmetric to the above. ∎

The upshot of all this work is the following:

Corollary 3.5.

Let \ell be any prime, and let nn_{\ell} be any integer at least 2, where we also ask that n27n_{2}\geq 7. Suppose we can find trace-free matrices A0,B0M2(/n)A_{0},B_{0}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{n_{\ell}}\mathbb{Z}) satisfying

A02=ϵ,B02=p,A0B0=B0A0modn.A_{0}^{2}=-\epsilon,\hskip 20.00003ptB_{0}^{2}=-p,\hskip 20.00003ptA_{0}B_{0}=-B_{0}A_{0}\mod\ell^{n_{\ell}}.

Then these lift to matrices A,BM2()A,B\in\mathrm{M}_{2}(\mathbb{Z}_{\ell}) with AA0modnA\equiv A_{0}\mod\ell^{n_{\ell}} and BB0modnB\equiv B_{0}\mod\ell^{n_{\ell}} such that

A2=ϵ,B2=p,AB=BA.A^{2}=-\epsilon,\hskip 20.00003ptB^{2}=-p,\hskip 20.00003ptAB=-BA.

So suppose we can find for n2n_{\ell}\geq 2, or n27n_{2}\geq 7 (for example by exhaustion of finitely many matrices in M2(/n)\mathrm{M}_{2}(\mathbb{Z}/\ell^{n_{\ell}}\mathbb{Z}), or working through the Hensel argument for 2\ell\neq 2) such matrices A0A_{0} and B0B_{0} which satisfy the congruence conditions determined by the basis of 𝒪\mathcal{O}. In other words, if we mapped iA0i\mapsto A_{0} and jB0j\mapsto B_{0}, then the induced map on s1,s2,s3,s4s^{1},s^{2},s^{3},s^{4} sends them to well defined matrices modulo n2\ell^{n_{\ell}-2} (the 2 accounts for denominators when writing the s1,s2,s3,s4s^{1},s^{2},s^{3},s^{4} in terms of i,ji,j - see below). Then A0A_{0} and B0B_{0} lift to A,BM2()A,B\in\mathrm{M}_{2}(\mathbb{Z}_{\ell}) such that the map determined by iAi\mapsto A and jBj\mapsto B gives an isomorphism 𝒪M2()\mathcal{O}\otimes\mathbb{Z}_{\ell}\cong\mathrm{M}_{2}(\mathbb{Z}_{\ell}).

Remark 3.6.

The following Proposition in Pizer’s paper [Piz80] (Proposition 5.2) gives explicit \mathbb{Z}-bases for a maximal order of our quaternion algebra DD. We see in particular that the only primes dividing a denominator are 2 and rr (when p1mod8p\equiv 1\mod 8 and ϵ=r\epsilon=r), with power at most 222^{2} and rr.

Proposition 3.7.

A maximal order of DD is given by the \mathbb{Z}-basis:

12(1+i+j+ij),i,j,ij\displaystyle\frac{1}{2}(1+i+j+ij),i,j,ij if p=2\displaystyle\text{ if }p=2
12(1+j),12(i+ij),j,ij\displaystyle\frac{1}{2}(1+j),\frac{1}{2}(i+ij),j,ij if p3mod4\displaystyle\text{ if }p\equiv 3\mod 4
12(1+j+ij),14(i+2j+ij),j,ij\displaystyle\frac{1}{2}(1+j+ij),\frac{1}{4}(i+2j+ij),j,ij if p5mod8\displaystyle\text{ if }p\equiv 5\mod 8
12(1+j),12(i+ij),1r(j+aij),ij\displaystyle\frac{1}{2}(1+j),\frac{1}{2}(i+ij),\frac{1}{r}(j+a\cdot ij),ij if p1mod8\displaystyle\text{ if }p\equiv 1\mod 8

where aa is some integer such that ra2p+1r\mid a^{2}p+1.

This means we can explicitly write down the congruences we want our matrices A0A_{0} and B0B_{0} in the above Corollary to satisfy. We know that these matrices exist for p\ell\neq p by the ramification properties of the quaternion algebra DD.

Condition 3.8.

We want to find matrices A0,B0M2(/n)A_{0},B_{0}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{n_{\ell}}\mathbb{Z}), for n2n_{\ell}\geq 2 and n27n_{2}\geq 7 satisfying

A02=ϵ,B02=p,A0B0=B0A0modn,A_{0}^{2}=-\epsilon,\hskip 20.00003ptB_{0}^{2}=-p,\hskip 20.00003ptA_{0}B_{0}=-B_{0}A_{0}\mod\ell^{n_{\ell}},

and also

21+A0+B0+A0B0\displaystyle 2\mid 1+A_{0}+B_{0}+A_{0}B_{0} if p=2\displaystyle\text{ if }p=2
21+B0,2A0+A0B0\displaystyle 2\mid 1+B_{0},\hskip 10.00002pt2\mid A_{0}+A_{0}B_{0} if p3mod4\displaystyle\text{ if }p\equiv 3\mod 4
21+B0+A0B0,4A0+2B0+A0B0\displaystyle 2\mid 1+B_{0}+A_{0}B_{0},\hskip 10.00002pt4\mid A_{0}+2B_{0}+A_{0}B_{0} if p5mod8\displaystyle\text{ if }p\equiv 5\mod 8
21+B0,2A0+A0B0,rB0+aA0B0\displaystyle 2\mid 1+B_{0},\hskip 10.00002pt2\mid A_{0}+A_{0}B_{0},\hskip 10.00002ptr\mid B_{0}+a\cdot A_{0}B_{0} if p1mod8\displaystyle\text{ if }p\equiv 1\mod 8

where we remind ourselves that when p1mod8p\equiv 1\mod 8, we need ϵ=r\epsilon=r is a prime congruent to 3mod43\mod 4 with (rp)=1\left(\frac{r}{p}\right)=-1, and aa is some integer such that ra2p+1r\mid a^{2}p+1, which we choose in writing down the basis in Proposition 3.7. Note that these last four congruences are vacuous unless =2\ell=2 or rr.

4. Weight 0 mod p21p^{2}-1 and level 1, for general pp

We now work with any prime pp. Let DD be the unique quaternion algebra over \mathbb{Q} ramified exactly at {p,}\{p,\infty\}, 𝒪\mathcal{O} a maximal order, and let Ω:=U\D×(𝔸f)/D×()\Omega:=U\backslash D^{\times}(\mathbb{A}_{f})/D^{\times}(\mathbb{Q}), where U:=𝒪p××lp𝒪×U:=\mathcal{O}_{p}^{\times}\times\prod\limits_{l\neq p}\mathcal{O}_{\ell}^{\times}. We will compute the Hecke operator T0T_{\ell_{0}} on Ω\Omega, which will give us the weight 0modp210\mod p^{2}-1 eigenvalues on Ω(1)\Omega(1). The argument in the example above largely generalises to this case. Recall the definition of T0T_{\ell_{0}}.

Definition 4.1.

For a prime 0p\ell_{0}\neq p, the Hecke operator T0T_{\ell_{0}} on the space of functions Ω𝔽¯p\Omega\to\overline{\mathbb{F}}_{p} is given by

T0f([x])=01if(gi[x])T_{\ell_{0}}f([x_{\ell}])=\ell_{0}^{-1}\sum\limits_{i}f(g_{i}\cdot[x_{\ell}])

for GL2(0)(1000)GL2(0)=GL2(0)gi\mathrm{GL}_{2}(\mathbb{Z}_{\ell_{0}})\begin{pmatrix}1&0\\ 0&\ell_{0}\end{pmatrix}\mathrm{GL}_{2}(\mathbb{Z}_{\ell_{0}})=\bigsqcup\mathrm{GL}_{2}(\mathbb{Z}_{\ell_{0}})g_{i}. Recall that gi[x0]g_{i}\cdot[x_{\ell_{0}}] means we pick a representative (x)D×(𝔸f)(x_{\ell})\in D^{\times}(\mathbb{A}_{f}) of [x][x_{\ell}], multiply this in the 0\ell_{0}-place by the matrix gig_{i} (under an identification of 𝒪0M2(0)\mathcal{O}_{\ell_{0}}\cong\mathrm{M}_{2}(\mathbb{Z}_{\ell_{0}}) and hence of D0M2(0)D_{\ell_{0}}\cong\mathrm{M}_{2}(\mathbb{Q}_{\ell_{0}})), and then take the image in Ω\Omega.

We explain part of this using the matrices of the previous section. Suppose we had some wi=[w2i,w3i,]Ωw^{i}=[w_{2}^{i},w_{3}^{i},\dots]\in\Omega and wj=[w2j,w3j,]Ωw^{j}=[w_{2}^{j},w_{3}^{j},\dots]\in\Omega corresponding to left ideal classes of 𝒪\mathcal{O} (so almost all wi,wjw_{\ell}^{i},w_{\ell}^{j} can be taken to be 1), and we wanted to know if gkwj=wiΩg_{k}\cdot w^{j}=w^{i}\in\Omega, for some gkg_{k} appearing in T0T_{\ell_{0}}. Denote by 𝒥\mathcal{J} the left 𝒪\mathcal{O}-ideal with local generators {w2j,w3j,,gkw0j,}\{w_{2}^{j},w_{3}^{j},\dots,g_{k}\cdot w_{\ell_{0}}^{j},\dots\}, where we view gkM2(0)g_{k}\in\mathrm{M}_{2}(\mathbb{Z}_{\ell_{0}}) as an element of 𝒪0\mathcal{O}_{\ell_{0}}. Denote by \mathcal{I} the left 𝒪\mathcal{O}-ideal with local generators {w2i,w3i,}\{w_{2}^{i},w_{3}^{i},\dots\}. Then we need to check whether there exists αD×()\alpha\in D^{\times}(\mathbb{Q}) such that 𝒥=α\mathcal{J}=\mathcal{I}\alpha (the question of determining when two 𝒪\mathcal{O}-ideals are in the same ideal class, for 𝒪\mathcal{O} an Eichler order, has been studied in [KV12], but in our case we have local generators for the ideals, meaning that a basis for an ideal is not obvious). This means that for all 0\ell\neq\ell_{0}, we require

(13) wiα(wj)1𝒪×w_{\ell}^{i}\alpha(w_{\ell}^{j})^{-1}\in\mathcal{O}_{\ell}^{\times}

and also

(14) w0iα(w0j)1gk1𝒪0×.w_{\ell_{0}}^{i}\alpha(w_{\ell_{0}}^{j})^{-1}g_{k}^{-1}\in\mathcal{O}_{\ell_{0}}^{\times}.

We deduce the following conditions on α\alpha: let 𝒱i,j\mathcal{V}_{i,j} be the set of primes \ell at which at least one of wiw_{\ell}^{i} and wjw_{\ell}^{j} is not 1, throwing out pp and 0\ell_{0}. For all \ell, we temporarily define m=max(nrd(wi),nrd(wj))m_{\ell}=\mathrm{max}(\mathrm{nrd}(w_{\ell}^{i}),\mathrm{nrd}(w_{\ell}^{j})). Then for all 𝒱i,j{p,0}\ell\not\in\mathcal{V}_{i,j}\cup\{p,\ell_{0}\}, equation (13) is equivalent to

(15) α𝒪×𝒱i,j{p,0}.\alpha\in\mathcal{O}_{\ell}^{\times}\hskip 20.00003pt\ell\not\in\mathcal{V}_{i,j}\cup\{p,\ell_{0}\}.

For =p\ell=p, because DD is ramified at pp, equation (13) is equivalent to

(16) vp(nrd(α))=vp(nrd(wj))vp(nrd(wi)),v_{p}(\mathrm{nrd}(\alpha))=v_{p}(\mathrm{nrd}(w_{\ell}^{j}))-v_{p}(\mathrm{nrd}(w_{\ell}^{i})),

where vpv_{p} denotes the usual pp-adic valuation on \mathbb{Z}. For 𝒱i,j\ell\in\mathcal{V}_{i,j}, equation (13) tells us that

(17) v(nrd(α))=v(nrd(wj))v(nrd(wi))𝒱i,j.v_{\ell}(\mathrm{nrd}(\alpha))=v_{\ell}(\mathrm{nrd}(w_{\ell}^{j}))-v_{\ell}(\mathrm{nrd}(w_{\ell}^{i}))\hskip 20.00003pt\ell\in\mathcal{V}_{i,j}.

Additionally, since α(wi)1𝒪×wj\alpha\in(w_{\ell}^{i})^{-1}\cdot\mathcal{O}_{\ell}^{\times}\cdot w_{\ell}^{j}, and because nrd(wi)\mathrm{nrd}(w_{\ell}^{i}) has \ell-adic valuation at most mm_{\ell} by definition, we see that

(18) mα𝒪M2()𝒱i,j.\ell^{m_{\ell}}\alpha\in\mathcal{O}_{\ell}\cong\mathrm{M}_{2}(\mathbb{Z}_{\ell})\hskip 20.00003pt\ell\in\mathcal{V}_{i,j}.

A similar argument using equation (14) shows that

(19) v0(nrd(α))=v0(nrd(w0j))v(nrd(w0i))+1v_{\ell_{0}}(\mathrm{nrd}(\alpha))=v_{\ell_{0}}(\mathrm{nrd}(w_{\ell_{0}}^{j}))-v_{\ell}(\mathrm{nrd}(w_{\ell_{0}}^{i}))+1

and

(20) 0m0+1α𝒪0M2(0).\ell_{0}^{m_{\ell_{0}}+1}\alpha\in\mathcal{O}_{\ell_{0}}\cong\mathrm{M}_{2}(\mathbb{Z}_{\ell_{0}}).

Combining equations (15) to (20), we see that we can compute rational numbers

M=0𝒱i,j{p,0}mM=\ell_{0}\prod\limits_{\ell\in\mathcal{V}_{i,j}\cup\{p,\ell_{0}\}}\ell^{m_{\ell}}

and

K=0𝒱i,j{p,0}v(nrd(wj))v(nrd(wi))K=\ell_{0}\prod\limits_{\ell\in\mathcal{V}_{i,j}\cup\{p,\ell_{0}\}}\ell^{v_{\ell}(\mathrm{nrd}(w_{\ell}^{j}))-v_{\ell}(\mathrm{nrd}(w_{\ell}^{i}))}

such that

Mα𝒪andnrd(α)=K.M\alpha\in\mathcal{O}\hskip 20.00003pt\text{and}\hskip 20.00003pt\mathrm{nrd}(\alpha)=K.

Note that we can rewrite, for p,0\ell\neq p,\ell_{0}, the condition wiα(wj)1𝒪w_{\ell}^{i}\alpha(w_{\ell}^{j})^{-1}\in\mathcal{O}_{\ell} (being a unit is then guaranteed by the norm condition) as saying

wiMαwj¯m+v(nrd(wj))𝒪,w_{\ell}^{i}\cdot M\alpha\cdot\overline{w_{\ell}^{j}}\in\ell^{m_{\ell}+v_{\ell}(\mathrm{nrd}(w_{\ell}^{j}))}\mathcal{O}_{\ell},

where wj¯\overline{w_{\ell}^{j}} denotes the standard involution in DD\otimes\mathbb{Q}_{\ell}. We can do the same for 0\ell_{0}, using gk¯=adj(gk)\overline{g_{k}}=\mathrm{adj}(g_{k}) the adjugate matrix of gkg_{k}, which gives an extra factor of 0\ell_{0}. Since m+v(nrd(wj))2mm_{\ell}+v_{\ell}(\mathrm{nrd}(w_{\ell}^{j}))\leq 2m_{\ell}, to check this condition we only really need wiw_{\ell}^{i}, MαM\alpha and wjw_{\ell}^{j} modulo 2m\ell^{2m_{\ell}}. Similarly, we only really need w0iw_{\ell_{0}}^{i}, MαM\alpha and w0jw_{\ell_{0}}^{j} modulo 02m0+2\ell_{0}^{2m_{\ell_{0}}+2}. This means we can make use of the matrices computed in the previous section to rephrase our conditions on α\alpha. Let s1,s2,s3,s4s^{1},s^{2},s^{3},s^{4} be an integer basis for 𝒪\mathcal{O}, taking for instance the basis of Proposition 3.7. Since Mα𝒪M\alpha\in\mathcal{O}, we can write

Mα=ts1+xs2+ys3+zs4M\alpha=t\cdot s^{1}+x\cdot s^{2}+y\cdot s^{3}+z\cdot s^{4}

for variables t,x,y,zt,x,y,z which are to take values in \mathbb{Z}. Let \ell be a prime in 𝒱i,j{0}\mathcal{V}_{i,j}\cup\{\ell_{0}\}. We can identify Mαmod2m+2M\alpha\mod\ell^{2m_{\ell}+2} with a matrix (abca)M2(/2m+2)\begin{pmatrix}a_{\ell}&b_{\ell}\\ c_{\ell}&-a_{\ell}\end{pmatrix}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}+2}\mathbb{Z}), where a,b,ca_{\ell},b_{\ell},c_{\ell} are (/2m+2)(\mathbb{Z}/\ell^{2m_{\ell}+2}\mathbb{Z})-linear functions in t,x,y,zt,x,y,z which can be computed. We can also, for any p\ell\neq p, identify wiw_{\ell}^{i} and wjw_{\ell}^{j} with matrices Wi,WjM2(/2m+2)W_{\ell}^{i},W_{\ell}^{j}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}+2}\mathbb{Z}).

We have that gkwj=wiΩg_{k}\cdot w^{j}=w^{i}\in\Omega if and only if we can find some t,x,y,zt,x,y,z\in\mathbb{Z} such that the following conditions hold:

(21) {nrd(Mα)=KM2Wi(abca)adj(Wj)m+v(det(Wj))M2(/2m+2) for 𝒱i,jW0i(a0b0c0a0)adj(W0j)adj(gk)0m0+v0(det(W0j))+2M2(/02m0+2).\begin{dcases*}\mathrm{nrd}(M\alpha)=KM^{2}\\ W_{\ell}^{i}\cdot\begin{pmatrix}a_{\ell}&b_{\ell}\\ c_{\ell}&-a_{\ell}\end{pmatrix}\cdot\mathrm{adj}(W_{\ell}^{j})\in\ell^{m_{\ell}+v_{\ell}(\det(W_{\ell}^{j}))}\cdot\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}+2}\mathbb{Z})\hskip 30.00005pt\text{ for $\ell\in\mathcal{V}_{i,j}$}\\ W_{\ell_{0}}^{i}\cdot\begin{pmatrix}a_{\ell_{0}}&b_{\ell_{0}}\\ c_{\ell_{0}}&-a_{\ell_{0}}\end{pmatrix}\cdot\mathrm{adj}(W_{\ell_{0}}^{j})\cdot\mathrm{adj}(g_{k})\in\ell_{0}^{m_{\ell_{0}}+v_{\ell_{0}}(\det(W_{\ell_{0}}^{j}))+2}\cdot\mathrm{M}_{2}(\mathbb{Z}/\ell_{0}^{2m_{\ell_{0}}+2}\mathbb{Z}).\end{dcases*}

The first condition tells us that t,x,y,zt,x,y,z\in\mathbb{Z} satisfy some quadratic equation. Because the reduced norm is a positive definite quadratic form in the t,x,y,zt,x,y,z (due to ramification at \infty), this means that there are only finitely many solutions to the quadratic equation. We can then enumerate them (for example, diagonalising the quadratic form, computing the finitely many solutions with the new basis, and then solving for t,x,y,zt,x,y,z). Once we do so, it remains to check whether they satisfy the last two conditions of (21). By expanding them out, these conditions can be interpreted as congruence conditions on t,x,y,zt,x,y,z modulo 2m+2\ell^{2m_{\ell}+2} for 𝒱i,j{0}\ell\in\mathcal{V}_{i,j}\cup\{\ell_{0}\}, or more precisely modulo m+v(det(Wj))\ell^{m_{\ell}+v_{\ell}(\det(W_{\ell}^{j}))} and 0m0+v0(det(W0j))+2\ell_{0}^{m_{\ell_{0}}+v_{\ell_{0}}(\det(W_{\ell_{0}}^{j}))+2}. This allows us to determine whether gkwj=wiΩg_{k}\cdot w^{j}=w^{i}\in\Omega, and hence compute a matrix representative for the Hecke operator T0T_{\ell_{0}}. We are now ready to present the algorithm. This should be read in conjunction with the following Table of Notation. The column for ’Corresponding Matrices’ refers to matrices generated using the methods of Section 3.

Table of Notation

Notation Definition Corresponding Matrices
D=(ϵ,p)D=\left(\frac{-\epsilon,-p}{\mathbb{Q}}\right) Quaternion algebra ramified at {p,}\{p,\infty\}.
𝒪\mathcal{O} A maximal order of DD.
I1,,IhI_{1},\dots,I_{h} Representatives of the left ideal classes of 𝒪\mathcal{O}.
1,,h\mathcal{B}_{1},\dots,\mathcal{B}_{h} \mathbb{Z}-bases for I1,,IhI_{1},\dots,I_{h}.
𝒱\mathcal{V} The set of primes \ell for which in some j\mathcal{B}_{j} all elements have reduced norm divisible by \ell, excluding pp and including 0\ell_{0}. These are the primes at which we need to compute matrices.
i,ji,j Generators for DD. A,BM2(/n)A_{\ell},B_{\ell}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{n_{\ell}}\mathbb{Z}) for each 𝒱\ell\in\mathcal{V}.
{s1,s2,s3,s4}\{s^{1},s^{2},s^{3},s^{4}\} A \mathbb{Z}-basis for 𝒪\mathcal{O}. S1,S2,S3,S4M2(/2m+2)S^{1}_{\ell},S_{\ell}^{2},S_{\ell}^{3},S_{\ell}^{4}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}+2}\mathbb{Z}) for each 𝒱\ell\in\mathcal{V}.
wj=[w2j,w3j,w5j,]Ωw^{j}=[w_{2}^{j},w_{3}^{j},w_{5}^{j},\dots]\in\Omega The elements of Ω\Omega corresponding to the IjI_{j}. The square brackets means the double coset represented by the adelic point (w2j,w3j,)(w_{2}^{j},w_{3}^{j},\dots). From the way we compute this, almost all wjw_{\ell}^{j} will be 1. WjM2(/2m+2)W_{\ell}^{j}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}+2}\mathbb{Z}) corresponding to the wjw_{\ell}^{j} for each 𝒱\ell\in\mathcal{V}.
mm_{\ell}, n=2m+4n_{\ell}=2m_{\ell}+4 for 2\ell\neq 2, and n2=max(7,2m2+4)n_{2}=\max(7,2m_{2}+4) m:=maxj(v(nrd(wj)))m_{\ell}:=\max\limits_{j}(v_{\ell}(\mathrm{nrd}(w_{\ell}^{j}))).
g0,,g0M2(0)g_{0},\dots,g_{\ell_{0}}\in\mathrm{M}_{2}(\mathbb{Z}_{\ell_{0}}) The matrices (1000),(1100),,\begin{pmatrix}1&0\\ 0&\ell_{0}\end{pmatrix},\begin{pmatrix}1&1\\ 0&\ell_{0}\end{pmatrix},\dots, (10100),(0001)\begin{pmatrix}1&\ell_{0}-1\\ 0&\ell_{0}\end{pmatrix},\begin{pmatrix}\ell_{0}&0\\ 0&1\end{pmatrix}.
𝟙wj\mathbbm{1}_{w^{j}} The characteristic function Ω𝔽¯p\Omega\to\overline{\mathbb{F}}_{p} of the point wjΩw^{j}\in\Omega.
ei,j,k{0,1}e_{i,j,k}\in\{0,1\} ei,j,k=𝟙wi(gkwj)e_{i,j,k}=\mathbbm{1}_{w^{i}}(g_{k}\cdot w^{j}) for 1i,jh1\leq i,j\leq h and 0k00\leq k\leq\ell_{0}. The multiplication gkwjg_{k}\cdot w^{j} means [w2j,w3j,,gkw0j,][w_{2}^{j},w_{3}^{j},\dots,g_{k}\cdot w_{\ell_{0}}^{j},\dots], with multiplication occuring only in the 0\ell_{0}-th place.
𝒱i,j𝒱\mathcal{V}_{i,j}\subset\mathcal{V} The set of primes \ell such that at least one of wiw_{\ell}^{i} and wjw_{\ell}^{j} is not 1, excluding pp and 0\ell_{0}.
Algorithm 4.2.

Input: distinct primes pp and 0\ell_{0}.

Output: a matrix representing the action of the Hecke operator T0T_{\ell_{0}} on the space of all functions Ω𝔽¯p\Omega\to\overline{\mathbb{F}}_{p}.

  1. (i)

    Define a quaternion algebra D=(ϵ,p)D=\left(\frac{-\epsilon,-p}{\mathbb{Q}}\right) over \mathbb{Q}, ramified exactly at {p,}\{p,\infty\}. Define a maximal order 𝒪\mathcal{O} with integer basis given as in Proposition 3.7, for which we denote the basis elements {s1,s2,s3,s4}\{s^{1},s^{2},s^{3},s^{4}\}. Compute the left ideal classes I1,,IhI_{1},\dots,I_{h} of 𝒪\mathcal{O}, and bases 1,,h\mathcal{B}_{1},\dots,\mathcal{B}_{h} for them.

  2. (ii)

    Compute the points wj=[w2j,w3j,w5j,]Ωw^{j}=[w_{2}^{j},w_{3}^{j},w_{5}^{j},\dots]\in\Omega corresponding to IjI_{j} for each jj as follows. We take wjw_{\ell}^{j} to be any generator of IjI_{j}\otimes\mathbb{Z}_{\ell} (which we know is principal). To do this, for our basis j\mathcal{B}_{j}, compute the reduced norm of each of the four elements and set wjw_{\ell}^{j} to be any of these elements whose reduced norm has minimal \ell-adic valuation. Note that for almost all \ell this valuation is zero, so we can instead take wj=1w_{\ell}^{j}=1, and do so when possible.

  3. (iii)

    Determine the set 𝒱\mathcal{V}, defined in the Table of Notation. For each 𝒱{p}\ell\in\mathcal{V}\cup\{p\}, compute mm_{\ell} and nn_{\ell}. For each 𝒱\ell\in\mathcal{V}, compute matrices A,BM2(/n)A_{\ell},B_{\ell}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{n_{\ell}}\mathbb{Z}) satisfying Condition 3.8. Using these, compute matrices corresponding to the s1,s2,s3,s4s^{1},s^{2},s^{3},s^{4}, which in any case are well defined modulo 2m+2\ell^{2m_{\ell}+2}. Denote these by SiM2(/2m+2)S_{\ell}^{i}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}+2}\mathbb{Z}) for each 𝒱\ell\in\mathcal{V}. By expressing each wjjw_{\ell}^{j}\in\mathcal{B}_{j} as a \mathbb{Z}-linear combination of s1,s2,s3,s4s^{1},s^{2},s^{3},s^{4}, we can compute matrices WjM2(/2m+2)W_{\ell}^{j}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}+2}\mathbb{Z}) corresponding to the wjw_{\ell}^{j}.

    Remark 4.3.

    So far we have only mentioned 0\ell_{0} as that it needed to be added to 𝒱\mathcal{V}. If one wanted to compute several Hecke operators at once, they could add all the primes for the operators into 𝒱\mathcal{V}. Then in the above steps we computed all the relevant matrices, to save us repeating the calculations if we were to compute the Hecke operators one by one.

  4. (iv)

    Let 𝟙w1,,𝟙wh\mathbbm{1}_{w^{1}},\dots,\mathbbm{1}_{w^{h}} be the characteristic functions of the points w1,,whΩw^{1},\dots,w^{h}\in\Omega. This is a basis for the vector space of 𝔽¯p\overline{\mathbb{F}}_{p}-valued functions on Ω\Omega. Let g0,,g01,g0M2(0)g_{0},\dots,g_{\ell_{0}-1},g_{\ell_{0}}\in\mathrm{M}_{2}(\mathbb{Z}_{\ell_{0}}) be the matrices
    (1000),(1100),,(10100),(0001)\begin{pmatrix}1&0\\ 0&\ell_{0}\end{pmatrix},\begin{pmatrix}1&1\\ 0&\ell_{0}\end{pmatrix},\dots,\begin{pmatrix}1&\ell_{0}-1\\ 0&\ell_{0}\end{pmatrix},\begin{pmatrix}\ell_{0}&0\\ 0&1\end{pmatrix}. Define the quantity ei,j,ke_{i,j,k} for 1i,jh1\leq i,j\leq h and 0k00\leq k\leq\ell_{0} by

    ei,j,k=𝟙wi(gkwj).e_{i,j,k}=\mathbbm{1}_{w^{i}}(g_{k}\cdot w^{j}).

    Then by definition we have the formula

    T0(𝟙wi)(wj)=10k=00ei,j,k.T_{\ell_{0}}(\mathbbm{1}_{w^{i}})(w^{j})=\frac{1}{\ell_{0}}\cdot\sum\limits_{k=0}^{\ell_{0}}e_{i,j,k}.

    This is then the (j,i)(j,i)-th entry of the matrix for T0T_{\ell_{0}} with respect to the basis {𝟙w1,,𝟙wh}\{\mathbbm{1}_{w^{1}},\dots,\mathbbm{1}_{w^{h}}\}. Hence it remains to compute this quantity ei,j,ke_{i,j,k}.

  5. (v)

    Fix i,ji,j. Determine the set 𝒱i,j\mathcal{V}_{i,j}. Compute the quantities

    M=0𝒱i,j{p,0}mM=\ell_{0}\prod\limits_{\ell\in\mathcal{V}_{i,j}\cup\{p,\ell_{0}\}}\ell^{m_{\ell}}

    and

    K=0𝒱i,j{p,0}v(nrd(wj))v(nrd(wi)).K=\ell_{0}\prod\limits_{\ell\in\mathcal{V}_{i,j}\cup\{p,\ell_{0}\}}\ell^{v_{\ell}(\mathrm{nrd}(w_{\ell}^{j}))-v_{\ell}(\mathrm{nrd}(w_{\ell}^{i}))}.
  6. (vi)

    Check if there exist integers t,x,y,zt,x,y,z\in\mathbb{Z} such that the following conditions hold:

    {nrd(ts1+xs2+ys3+zs4)=KM2Wi(abca)adj(Wj)m+v(det(Wj))M2(/2m+2) for 𝒱i,jW0i(a0b0c0a0)adj(W0j)adj(gk)0m0+v0(det(W0j))+2M2(/02m0+2).\begin{dcases*}\mathrm{nrd}(t\cdot s^{1}+x\cdot s^{2}+y\cdot s^{3}+z\cdot s^{4})=KM^{2}\\ W_{\ell}^{i}\cdot\begin{pmatrix}a_{\ell}&b_{\ell}\\ c_{\ell}&-a_{\ell}\end{pmatrix}\cdot\mathrm{adj}(W_{\ell}^{j})\in\ell^{m_{\ell}+v_{\ell}(\det(W_{\ell}^{j}))}\cdot\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}+2}\mathbb{Z})\hskip 30.00005pt\text{ for $\ell\in\mathcal{V}_{i,j}$}\\ W_{\ell_{0}}^{i}\cdot\begin{pmatrix}a_{\ell_{0}}&b_{\ell_{0}}\\ c_{\ell_{0}}&-a_{\ell_{0}}\end{pmatrix}\cdot\mathrm{adj}(W_{\ell_{0}}^{j})\cdot\mathrm{adj}(g_{k})\in\ell_{0}^{m_{\ell_{0}}+v_{\ell_{0}}(\det(W_{\ell_{0}}^{j}))+2}\cdot\mathrm{M}_{2}(\mathbb{Z}/\ell_{0}^{2m_{\ell_{0}}+2}\mathbb{Z}).\end{dcases*}

    where (abca)M2(/2m+2)\begin{pmatrix}a_{\ell}&b_{\ell}\\ c_{\ell}&-a_{\ell}\end{pmatrix}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}+2}\mathbb{Z}) is the matrix tS1+xS2+yS3+zS4t\cdot S_{\ell}^{1}+x\cdot S_{\ell}^{2}+y\cdot S_{\ell}^{3}+z\cdot S_{\ell}^{4}. If such t,x,y,zt,x,y,z exist, set ei,j,ke_{i,j,k} to be 1, and otherwise 0. Note that the only dependence on kk is in the last condition.

5. Introducing weight and level

We now discuss what modifications must be done when computing the Hecke eigenvalues mod pp of general weight and level on the quaternion side. In the previous section we checked whether two elements of Ω\Omega are the same by checking if they determine isomorphic invertible left 𝒪\mathcal{O}-ideals. The point is that if we now attach πN\pi N-structure to our ideals, we need to determine whether this isomorphism sends one πN\pi N-structure to the other. Our aim is to compute the Hecke operators T0T_{\ell_{0}}, for 0pN\ell_{0}\nmid pN, on the space of functions Ω(N)=U(N)\D×(𝔸f)/D×()𝔽¯p\Omega(N)=U(N)\backslash D^{\times}(\mathbb{A}_{f})/D^{\times}(\mathbb{Q})\to\overline{\mathbb{F}}_{p}. Recall this was given by

T0f([x])=01if(gi[x])T_{\ell_{0}}f([x_{\ell}])=\ell_{0}^{-1}\sum\limits_{i}f(g_{i}\cdot[x_{\ell}])

for GL2(0)(1000)GL2(0)=GL2(0)gi\mathrm{GL}_{2}(\mathbb{Z}_{\ell_{0}})\begin{pmatrix}1&0\\ 0&\ell_{0}\end{pmatrix}\mathrm{GL}_{2}(\mathbb{Z}_{\ell_{0}})=\bigsqcup\mathrm{GL}_{2}(\mathbb{Z}_{\ell_{0}})g_{i}. If we wanted to isolate the Hecke eigenvalues arising from weight kmodp21k\mod p^{2}-1, then we need to restrict to the functions which satisfy f(μ[x])=μkf([x])f(\mu\cdot[x_{\ell}])=\mu^{-k}f([x_{\ell}]), where μ𝒪p×/𝒪p×(1)𝔽p2×\mu\in\mathcal{O}_{p}^{\times}/\mathcal{O}_{p}^{\times}(1)\cong\mathbb{F}_{p^{2}}^{\times} acts on [x][x_{\ell}] by multiplication in the pp-place. In our case, we can identify 𝒪p×/𝒪p×(1)𝔽p2×\mathcal{O}_{p}^{\times}/\mathcal{O}_{p}^{\times}(1)\cong\mathbb{F}_{p^{2}}^{\times} with {s+tis,t𝔽p not both zero}\{s+ti\mid s,t\in\mathbb{F}_{p}\text{ not both zero}\}, which is closed under multiplication, where ii and jj are the generators of DD (jj can be viewed as a uniformiser π\pi of 𝒪p×\mathcal{O}_{p}^{\times}).

Firstly, we write down the elements of Ω(N)\Omega(N). For UU defined as 𝒪p××p𝒪×\mathcal{O}_{p}^{\times}\times\prod\limits_{\ell\neq p}\mathcal{O}_{\ell}^{\times} previously, we have

U(N)\U𝔽p2××pGL2(/v(N))𝔽p2××GL2(/N).U(N)\backslash U\cong\mathbb{F}_{p^{2}}^{\times}\times\prod\limits_{\ell\neq p}\mathrm{GL}_{2}(\mathbb{Z}/\ell^{v_{\ell}(N)}\mathbb{Z})\cong\mathbb{F}_{p^{2}}^{\times}\times\mathrm{GL}_{2}(\mathbb{Z}/N\mathbb{Z}).

Hence, for our points w1,,whw^{1},\dots,w^{h} of Ω\Omega, we need to multiply on the left by representatives of 𝔽p2×\mathbb{F}_{p^{2}}^{\times} and GL2(/N)\mathrm{GL}_{2}(\mathbb{Z}/N\mathbb{Z}) at the appropriate places, in order to determine all the elements of Ω(N)\Omega(N). Ranging over each choice of μ𝔽p2×\mu\in\mathbb{F}_{p^{2}}^{\times} and γGL2(/N)\gamma\in\mathrm{GL}_{2}(\mathbb{Z}/N\mathbb{Z}), the corresponding (U(N),D×())(U(N),D^{\times}(\mathbb{Q}))-double cosets cover D×(𝔸f)D^{\times}(\mathbb{A}_{f}), but need not be distinct. For example, for any triple

j=(j,μ,γ){1,,h}×𝔽p2××GL2(/N),\vec{j}=(j,\mu,\gamma)\in\{1,\dots,h\}\times\mathbb{F}_{p^{2}}^{\times}\times\mathrm{GL}_{2}(\mathbb{Z}/N\mathbb{Z}),

if we define vjv^{\vec{j}} as in the Updated Table of Notation below, then j=(j,μ,γ)\vec{j}=(j,\mu,\gamma) and j=(j,μ,γ)\vec{j}^{\prime}=(j,-\mu,-\gamma) define the same element vj=vjv^{\vec{j}}=v^{\vec{j}^{\prime}} of Ω(N)\Omega(N). This example comes from the fact that 1D×()-1\in D^{\times}(\mathbb{Q}) and 1𝒪×-1\in\mathcal{O}_{\ell}^{\times} (but 1𝒪p×(1)-1\not\in\mathcal{O}_{p}^{\times}(1) and 1𝒪×(N)-1\not\in\mathcal{O}_{\ell}^{\times}(N) for N\ell\mid N), so that

[w2j,w3j,,μwpj,,γwj,]\displaystyle[w_{2}^{j},w_{3}^{j},\dots,\mu\cdot w_{p}^{j},\dots,\gamma_{\ell}\cdot w_{\ell}^{j},\dots] =[w2j,w3j,,μwpj,,γwj,]\displaystyle=[-w_{2}^{j},-w_{3}^{j},\dots,-\mu\cdot w_{p}^{j},\dots,-\gamma_{\ell}\cdot w_{\ell}^{j},\dots]
=[w2j,w3j,,μwpj,,γwj,].\displaystyle=[w_{2}^{j},w_{3}^{j},\dots,-\mu\cdot w_{p}^{j},\dots,-\gamma_{\ell}\cdot w_{\ell}^{j},\dots].

When interpreting elements of Ω(N)\Omega(N) in terms of isomorphism classes of invertible left 𝒪\mathcal{O}-ideals with πN\pi N-structure, this phenomenon is due to automorphisms of the left 𝒪\mathcal{O}-ideals, which then shift around the πN\pi N-structure; in our example we always have the automorphism given by multiplication by 1-1, which sends μμ\mu\mapsto-\mu, γγ\gamma\mapsto-\gamma. It is possible to determine these automorphisms. Recall that the points w1,,whΩw^{1},\dots,w^{h}\in\Omega give local generators for representatives I1,,IhI_{1},\dots,I_{h} of the left ideal classes of 𝒪\mathcal{O}. The automorphisms of IjI_{j} as a left 𝒪\mathcal{O}-ideal are precisely given by right multiplication by the units of the right order OR(Ij)O_{R}(I_{j}) of IjI_{j}, where we define this as in [Voi21] to be:

OR(Ij):={αDIjαIj}.O_{R}(I_{j}):=\{\alpha\in D\mid I_{j}\alpha\subset I_{j}\}.

Note that OR(Ij)×O_{R}(I_{j})^{\times} will always be a finite set, once again because the quaternion algebra DD is ramified at infinity.

Remark 5.1.

In Serre’s letter [SL96], the relationship between Hecke eigenvalues on the modular form and quaternion sides arises as a result of some generalisation of the Deuring correspondence. Classically, this establishes an equivalence of categories between supersingular elliptic curves mod pp under isogenies, and invertible left 𝒪\mathcal{O}-ideals under nonzero left 𝒪\mathcal{O}-module homomorphisms (for a maximal order 𝒪\mathcal{O} of the quaternion algebra DD ramified at {p,}\{p,\infty\}). See Theorem 42.3.2 of [Voi21] for a reference. Then, if a supersingular elliptic curve EE corresponds to an invertible left 𝒪\mathcal{O}-ideal II, we see that OR(I)×Aut(E)O_{R}(I)^{\times}\cong\mathrm{Aut}(E). But the automorphism group of an elliptic curve is well understood. As in Theorem III.10.1 of [Sil09], the automorphism group of EE has order dividing 24, and if j(E)0,1728j(E)\neq 0,1728, then Aut(E)\mathrm{Aut}(E) has order 2 and is just given by ±1\pm 1.

We have seen that in listing the elements of Ω(N)\Omega(N), we need to identify, for example, vjv^{\vec{j}} and vjv^{\vec{j}^{\prime}} when j=(j,μ,γ)\vec{j}=(j,\mu,\gamma) and j=(j,μ,γ)\vec{j}^{\prime}=(j,-\mu,-\gamma), because 1OR(Ij)×-1\in O_{R}(I_{j})^{\times}. In general, if ζOR(Ij)×\zeta\in O_{R}(I_{j})^{\times}, we know

[w2j,w3j,,μwpj,,γwj,]\displaystyle[w_{2}^{j},w_{3}^{j},\dots,\mu\cdot w_{p}^{j},\dots,\gamma_{\ell}\cdot w_{\ell}^{j},\dots] =[w2jζ,w3jζ,,μwpjζ,,γwjζ,]\displaystyle=[w_{2}^{j}\zeta,w_{3}^{j}\zeta,\dots,\mu\cdot w_{p}^{j}\zeta,\dots,\gamma_{\ell}\cdot w_{\ell}^{j}\zeta,\dots]
=[w2j,w3j,,μϕj(ζ)wpj,,γψj(ζ;)wj,]\displaystyle=[w_{2}^{j},w_{3}^{j},\dots,\mu\phi_{j}(\zeta)\cdot w_{p}^{j},\dots,\gamma_{\ell}\psi_{j}(\zeta;\ell)\cdot w_{\ell}^{j},\dots]

for ϕj(ζ)\phi_{j}(\zeta) and ψj(ζ;)\psi_{j}(\zeta;\ell) as defined in the Updated Table of Notation. To define this, we use the fact that because Ijζ=IjI_{j}\zeta=I_{j}, we have for any \ell, 𝒪wjζ=𝒪wj\mathcal{O}_{\ell}w_{\ell}^{j}\zeta=\mathcal{O}_{\ell}w_{\ell}^{j}, and so wjζ(wj)1𝒪×w_{\ell}^{j}\zeta(w_{\ell}^{j})^{-1}\in\mathcal{O}_{\ell}^{\times}. Let ψj(ζ)GL2(/N)\psi_{j}(\zeta)\in\mathrm{GL}_{2}(\mathbb{Z}/N\mathbb{Z}) be the matrix congruent to ψj(ζ;)\psi_{j}(\zeta;\ell) mod v(N)\ell^{v_{\ell}(N)} for each N\ell\mid N.

From this, we are motivated to define the set

𝒮=({1,,h}×𝔽p2××GL2(/N))/,\mathcal{S}=\left(\{1,\dots,h\}\times\mathbb{F}_{p^{2}}^{\times}\times\mathrm{GL}_{2}(\mathbb{Z}/N\mathbb{Z})\right)/\sim,

where we identify (j,μ,γ)(j,μϕj(ζ),γψj(ζ)){(j,\mu,\gamma)\sim(j,\mu\phi_{j}(\zeta),\gamma\psi_{j}(\zeta))} for any ζOR(Ij)×\zeta\in O_{R}(I_{j})^{\times}. Then we can enumerate the elements of Ω(N)\Omega(N) as {vjj𝒮}\{v^{\vec{j}}\mid\vec{j}\in\mathcal{S}\}. Note that vjv^{\vec{j}} reduces to wjw^{j} when we quotient by UU in Ω=U\Ω(N)\Omega=U\backslash\Omega(N). Once again, an obvious choice of basis for functions Ω(N)𝔽¯p\Omega(N)\to\overline{\mathbb{F}}_{p} is given by the characteristic functions 𝟙vj\mathbbm{1}_{v^{\vec{j}}}. One is then led to computing the following quantity:

ei,j,k=𝟙vi(gkvj){0,1}e_{\vec{i},\vec{j},k}=\mathbbm{1}_{v^{\vec{i}}}(g_{k}\cdot v^{\vec{j}})\in\{0,1\}

for i,j𝒮\vec{i},\vec{j}\in\mathcal{S}. Then we have the formula

T0(𝟙vi)(vj)=10k=00ei,j,k.T_{\ell_{0}}(\mathbbm{1}_{v^{\vec{i}}})(v^{\vec{j}})=\frac{1}{\ell_{0}}\cdot\sum\limits_{k=0}^{\ell_{0}}e_{\vec{i},\vec{j},k}.

If we index the rows and columns of the matrix for T0T_{\ell_{0}}, with respect to this basis, by i𝒮\vec{i}\in\mathcal{S}, then the (j,i)(\vec{j},\vec{i})-th entry is this value above. We observe that ei,j,k=0e_{\vec{i},\vec{j},k}=0 if ei,j,k=0e_{i,j,k}=0, for ei,j,ke_{i,j,k} as defined in step (iv) in Algorithm 4.2. This is because if vi=gkvjΩ(N)v^{\vec{i}}=g_{k}\cdot v^{\vec{j}}\in\Omega(N), then they generate left 𝒪\mathcal{O}-ideals with πN\pi N-structure that are isomorphic; in particular the ideals are isomorphic, and so wi=gkwjw^{i}=g_{k}\cdot w^{j}. One can think of this as replacing ei,j,ke_{i,j,k} in Algorithm 4.2 with a permutation matrix, depending on i,j,ki,j,k, keeping track of the πN\pi N-structure.

So now we see how to compute ei,j,ke_{\vec{i},\vec{j},k}. It is 0 if ei,j,k=0e_{i,j,k}=0. If ei,j,k=1e_{i,j,k}=1, then from Algorithm 4.2 we compute some αD×()\alpha\in D^{\times}(\mathbb{Q}) such that for all 0\ell\neq\ell_{0},

wiα(wj)1𝒪×,w_{\ell}^{i}\alpha(w_{\ell}^{j})^{-1}\in\mathcal{O}_{\ell}^{\times},

and also

w0iα(w0j)1gk1𝒪0×.w_{\ell_{0}}^{i}\alpha(w_{\ell_{0}}^{j})^{-1}g_{k}^{-1}\in\mathcal{O}_{\ell_{0}}^{\times}.

Pick representatives (i,μ,γ)(i,\mu,\gamma) and (j,μ,γ)(j,\mu^{\prime},\gamma^{\prime}) for i,j\vec{i},\vec{j}. What we need to check now is whether we also have

(22) (μϕi(ζi))wpiα(wpj)1(μϕj(ζj))1𝒪p×(1)(\mu\phi_{i}(\zeta_{i}))\cdot w_{p}^{i}\cdot\alpha\cdot(w_{p}^{j})^{-1}\cdot(\mu^{\prime}\phi_{j}(\zeta_{j}))^{-1}\in\mathcal{O}_{p}^{\times}(1)

and for N\ell\mid N

(23) (γψi(ζi;))wiα(wj)1(γψj(ζj;))1𝒪×(N)(\gamma_{\ell}\psi_{i}(\zeta_{i};\ell))\cdot w_{\ell}^{i}\cdot\alpha\cdot(w_{\ell}^{j})^{-1}\cdot(\gamma^{\prime}_{\ell}\psi_{j}(\zeta_{j};\ell))^{-1}\in\mathcal{O}_{\ell}^{\times}(N)

for some ζiOR(Ii)×\zeta_{i}\in O_{R}(I_{i})^{\times} and ζjOR(Ij)×\zeta_{j}\in O_{R}(I_{j})^{\times}. In other words, we need to compute wpiα(wpj)1w_{p}^{i}\cdot\alpha\cdot(w_{p}^{j})^{-1}, which we know is in 𝒪p×\mathcal{O}_{p}^{\times} by definition of α\alpha, and then check if this reduces to (μϕi(ζi))1(μϕj(ζj))𝔽p2×(\mu\phi_{i}(\zeta_{i}))^{-1}(\mu^{\prime}\phi_{j}(\zeta_{j}))\in\mathbb{F}_{p^{2}}^{\times} modulo the uniformiser π\pi, for some ζiOR(Ii)×\zeta_{i}\in O_{R}(I_{i})^{\times} and ζjOR(Ij)×\zeta_{j}\in O_{R}(I_{j})^{\times}. We also need to compute for each N\ell\mid N the terms wiα(wj)1w_{\ell}^{i}\cdot\alpha\cdot(w_{\ell}^{j})^{-1}, which we know are in 𝒪×\mathcal{O}_{\ell}^{\times}, and then check whether they reduce to (γψi(ζi;))1(γψj(ζj;))GL2(/v(N))(\gamma_{\ell}\psi_{i}(\zeta_{i};\ell))^{-1}(\gamma^{\prime}_{\ell}\psi_{j}(\zeta_{j};\ell))\in\mathrm{GL}_{2}(\mathbb{Z}/\ell^{v_{\ell}(N)}\mathbb{Z}) modulo v(N)\ell^{v_{\ell}(N)}, for the same ζiOR(Ii)×\zeta_{i}\in O_{R}(I_{i})^{\times} and ζjOR(Ij)×\zeta_{j}\in O_{R}(I_{j})^{\times}. To make sense of this, we need to write down matrices at the primes dividing NN as well, so we extend our set 𝒱\mathcal{V} in the Updated Table of Notation (changes from the previous table in bold).

We are now ready to write out the algorithm for the general case.

Updated Table of Notation

Notation Definition Corresponding Matrices
D=(ϵ,p)D=\left(\frac{-\epsilon,-p}{\mathbb{Q}}\right) Quaternion algebra ramified at {p,}\{p,\infty\}.
𝒪\mathcal{O} A maximal order of DD.
I1,,IhI_{1},\dots,I_{h} Representatives of the left ideal classes of 𝒪\mathcal{O}.
1,,h\mathcal{B}_{1},\dots,\mathcal{B}_{h} \mathbb{Z}-bases for I1,,IhI_{1},\dots,I_{h}.
OR(I1)×,,OR(Ih)×O_{R}(I_{1})^{\times},\dots,O_{R}(I_{h})^{\times} The units of the right orders of I1,,IhI_{1},\dots,I_{h}.
𝒱\mathcal{V} The set of primes \ell for which in some j\mathcal{B}_{j} all elements have reduced norm divisible by \ell, excluding pp, and including 0\ell_{0} and all primes dividing NN. These are the primes at which we need to compute matrices.
i,ji,j A,BM2(/n)A_{\ell},B_{\ell}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{n_{\ell}}\mathbb{Z}) for each 𝒱\ell\in\mathcal{V}.
{s1,s2,s3,s4}\{s^{1},s^{2},s^{3},s^{4}\} S1,S2,S3,S4M2(/2m+𝐯(𝐍)+2)S^{1}_{\ell},S_{\ell}^{2},S_{\ell}^{3},S_{\ell}^{4}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}\mathbf{+v_{\ell}(N)}+2}\mathbb{Z}) for each 𝒱\ell\in\mathcal{V}.
wj=[w2j,w3j,w5j,]Ωw^{j}=[w_{2}^{j},w_{3}^{j},w_{5}^{j},\dots]\in\Omega The elements of Ω\Omega corresponding to the IjI_{j}. The square brackets means the double coset represented by the adelic point (w2j,w3j,)(w_{2}^{j},w_{3}^{j},\dots). From the way we compute this, almost all wjw_{\ell}^{j} will be 1. WjM2(/2m+𝐯(𝐍)+2)W_{\ell}^{j}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}\mathbf{+v_{\ell}(N)}+2}\mathbb{Z}) corresponding to the wjw_{\ell}^{j} for each 𝒱\ell\in\mathcal{V}.
v(N)v_{\ell}(N) The \ell-adic valuation of NN.
mm_{\ell}, n=2m+𝐯(𝐍)+4n_{\ell}=2m_{\ell}\mathbf{+v_{\ell}(N)}+4 for 2\ell\neq 2, and n2=max(7,2m2+𝐯𝟐(𝐍)+4)n_{2}=\max(7,2m_{2}+\mathbf{v_{2}(N)}+4) m:=maxj(v(nrd(wj)))m_{\ell}:=\max\limits_{j}(v_{\ell}(\mathrm{nrd}(w_{\ell}^{j}))).
g0,,g0M2(0)g_{0},\dots,g_{\ell_{0}}\in\mathrm{M}_{2}(\mathbb{Z}_{\ell_{0}}) The matrices (1000),(1100),,\begin{pmatrix}1&0\\ 0&\ell_{0}\end{pmatrix},\begin{pmatrix}1&1\\ 0&\ell_{0}\end{pmatrix},\dots, (10100),(0001)\begin{pmatrix}1&\ell_{0}-1\\ 0&\ell_{0}\end{pmatrix},\begin{pmatrix}\ell_{0}&0\\ 0&1\end{pmatrix}.
𝒪p×/𝒪p×(1)𝔽p2×\mathcal{O}_{p}^{\times}/\mathcal{O}_{p}^{\times}(1)\cong\mathbb{F}_{p^{2}}^{\times} Identified with {s+tis,t𝔽p not both zero}{\{s+ti\mid s,t\in\mathbb{F}_{p}\text{ not both zero}\}}.
Notation Definition Corresponding Matrices
ϕj(ζ)𝔽p2×\phi_{j}(\zeta)\in\mathbb{F}_{p^{2}}^{\times} For ζOR(Ij)×\zeta\in O_{R}(I_{j})^{\times}, let ϕj(ζ)\phi_{j}(\zeta) be the image of wpjζ(wpj)1𝒪p×{w_{p}^{j}\cdot\zeta\cdot(w_{p}^{j})^{-1}\in\mathcal{O}_{p}^{\times}} in 𝔽p2×\mathbb{F}_{p^{2}}^{\times}.
ψj(ζ;)GL2(/v(N))\psi_{j}(\zeta;\ell)\in\mathrm{GL}_{2}(\mathbb{Z}/\ell^{v_{\ell}(N)}\mathbb{Z}) for N\ell\mid N,
ψj(ζ)GL2(/N)\psi_{j}(\zeta)\in\mathrm{GL}_{2}(\mathbb{Z}/N\mathbb{Z})
For ζOR(Ij)×\zeta\in O_{R}(I_{j})^{\times}, consider wjζ(wj)1𝒪×D{w_{\ell}^{j}\cdot\zeta\cdot(w_{\ell}^{j})^{-1}\in\mathcal{O}_{\ell}^{\times}\cap D} for all N\ell\mid N. This lives in 𝒪\mathcal{O}, so we can compute the corresponding matrix in GL2(/n)\mathrm{GL}_{2}(\mathbb{Z}/\ell^{n_{\ell}}\mathbb{Z}), and consider the reduction ψj(ζ;)GL2(/v(N))\psi_{j}(\zeta;\ell)\in\mathrm{GL}_{2}(\mathbb{Z}/\ell^{v_{\ell}(N)}\mathbb{Z}). Let ψj(ζ)GL2(/N)\psi_{j}(\zeta)\in\mathrm{GL}_{2}(\mathbb{Z}/N\mathbb{Z}) be the matrix congruent to ψj(ζ;)\psi_{j}(\zeta;\ell) mod v(N)\ell^{v_{\ell}(N)} for each N\ell\mid N.
𝒮=({1,,h}×𝔽p2××GL2(/N))/\mathcal{S}=\left(\{1,\dots,h\}\times\mathbb{F}_{p^{2}}^{\times}\times\mathrm{GL}_{2}(\mathbb{Z}/N\mathbb{Z})\right)/\sim Here we identify (j,μ,γ)(j,μϕj(ζ),γψj(ζ)){(j,\mu,\gamma)\sim(j,\mu\phi_{j}(\zeta),\gamma\psi_{j}(\zeta))} for any ζOR(Ij)×\zeta\in O_{R}(I_{j})^{\times}.
vj=[v2j,v3j,]Ω(N)v^{\vec{j}}=[v_{2}^{\vec{j}},v_{3}^{\vec{j}},\dots]\in\Omega(N) for j=[(j,μ,γ)]𝒮\vec{j}=[(j,\mu,\gamma)]\in\mathcal{S} Here vj={wjif p and Nμwpjif =pγwjif Nv_{\ell}^{\vec{j}}=\begin{dcases*}w_{\ell}^{j}&if $\ell\neq p\text{ and }\ell\nmid N$\\ \mu\cdot w_{p}^{j}&if $\ell=p$\\ \gamma_{\ell}\cdot w_{\ell}^{j}&if $\ell\mid N$\end{dcases*} for μ𝔽p2×\mu\in\mathbb{F}_{p^{2}}^{\times} and γGL2(/N)\gamma\in\mathrm{GL}_{2}(\mathbb{Z}/N\mathbb{Z}) with reduction γ\gamma_{\ell} mod v(N)\ell^{v_{\ell}(N)}. To be precise, we should choose lifts of μ\mu to 𝒪p×\mathcal{O}_{p}^{\times} and γ\gamma_{\ell} to 𝒪×GL2()\mathcal{O}_{\ell}^{\times}\cong\mathrm{GL}_{2}(\mathbb{Z}_{\ell}). By construction, vjΩ(N)v^{\vec{j}}\in\Omega(N) is well defined for any choice of representative (j,μ,γ)(j,\mu,\gamma) of j𝒮\vec{j}\in\mathcal{S}.
𝟙vj\mathbbm{1}_{v^{\vec{j}}} The characteristic function Ω(N)𝔽¯p\Omega(N)\to\overline{\mathbb{F}}_{p} of the point vjΩ(N)v^{\vec{j}}\in\Omega(N).
ei,j,k{0,1}e_{\vec{i},\vec{j},k}\in\{0,1\} ei,j,k=𝟙vi(gkvj)e_{\vec{i},\vec{j},k}=\mathbbm{1}_{v^{\vec{i}}}(g_{k}\cdot v^{\vec{j}}) for i,j𝒮\vec{i},\vec{j}\in\mathcal{S}.
𝒱i,j𝒱\mathcal{V}_{i,j}\subset\mathcal{V} The set of primes \ell such that at least one of wiw_{\ell}^{i} and wjw_{\ell}^{j} is not 1, excluding pp and 0\ell_{0}, and including all primes dividing NN.
Algorithm 5.2.

Input: a prime pp and level NN coprime to pp, together with a prime 0\ell_{0} coprime to pNpN.

Output: a matrix representing the action of the Hecke operator T0T_{\ell_{0}} on the space of all functions Ω(N)𝔽¯p\Omega(N)\to\overline{\mathbb{F}}_{p}.

  1. (i)

    Define a quaternion algebra D=(ϵ,p)D=\left(\frac{-\epsilon,-p}{\mathbb{Q}}\right) over \mathbb{Q}, ramified exactly at {p,}\{p,\infty\}. Define a maximal order 𝒪\mathcal{O} with integer basis given as in Proposition 3.7, for which we denote the basis elements {s1,s2,s3,s4}\{s^{1},s^{2},s^{3},s^{4}\}. Compute the left ideal classes I1,,IhI_{1},\dots,I_{h} of 𝒪\mathcal{O}, and bases 1,,h\mathcal{B}_{1},\dots,\mathcal{B}_{h} for them.

  2. (ii)

    Compute the points wj=[w2j,w3j,w5j,]Ωw^{j}=[w_{2}^{j},w_{3}^{j},w_{5}^{j},\dots]\in\Omega corresponding to IjI_{j} for each jj as follows. We take wjw_{\ell}^{j} to be any generator of IjI_{j}\otimes\mathbb{Z}_{\ell} (which we know is principal). To do this, for our basis j\mathcal{B}_{j}, compute the reduced norm of each of the four elements and set wjw_{\ell}^{j} to be any of these elements whose reduced norm has minimal \ell-adic valuation. Note that for almost all \ell this valuation is zero, so we can instead take wj=1w_{\ell}^{j}=1, and do so when possible.

  3. (iii)

    Determine the set 𝒱\mathcal{V}, defined in the Updated Table of Notation. For each 𝒱{p}\ell\in\mathcal{V}\cup\{p\}, compute mm_{\ell} and nn_{\ell}. For each 𝒱\ell\in\mathcal{V}, compute matrices A,BM2(/n)A_{\ell},B_{\ell}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{n_{\ell}}\mathbb{Z}) satisfying Condition 3.8. Using these, compute matrices corresponding to the s1,s2,s3,s4s^{1},s^{2},s^{3},s^{4}, which in any case are well defined modulo 2m+v(N)+2\ell^{2m_{\ell}+v_{\ell}(N)+2}. Denote these by SiM2(/2m+v(N)+2)S_{\ell}^{i}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}+v_{\ell}(N)+2}\mathbb{Z}) for each 𝒱\ell\in\mathcal{V}. By expressing each wjjw_{\ell}^{j}\in\mathcal{B}_{j} as a \mathbb{Z}-linear combination of s1,s2,s3,s4s^{1},s^{2},s^{3},s^{4}, we can compute matrices WjM2(/2m+v(N)+2)W_{\ell}^{j}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}+v_{\ell}(N)+2}\mathbb{Z}) corresponding to the wjw_{\ell}^{j}.

  4. (iv)

    Compute each OR(Ij)×O_{R}(I_{j})^{\times}, and for each ζOR(Ij)×\zeta\in O_{R}(I_{j})^{\times}, compute ϕj(ζ)𝔽p2×\phi_{j}(\zeta)\in\mathbb{F}_{p^{2}}^{\times} and ψj(ζ;)GL2(/v(N))\psi_{j}(\zeta;\ell)\in\mathrm{GL}_{2}(\mathbb{Z}/\ell^{v_{\ell}(N)}\mathbb{Z}) for N\ell\mid N. Determine representatives for 𝒮\mathcal{S}. Fix i,ji,j. We will compute ei,j,ke_{\vec{i},\vec{j},k} for 0k0\leq k\leq\ell and i=(i,,),j=(j,,)𝒮\vec{i}=(i,\cdot,\cdot),\hskip 5.0pt\vec{j}=(j,\cdot,\cdot)\in\mathcal{S} among these representatives. Determine the set 𝒱i,j\mathcal{V}_{i,j}. Compute

    M=0𝒱i,j{p,0}mM=\ell_{0}\prod\limits_{\ell\in\mathcal{V}_{i,j}\cup\{p,\ell_{0}\}}\ell^{m_{\ell}}

    and

    K=0𝒱i,j{p,0}v(nrd(wi))v(nrd(wj)).K=\ell_{0}\prod\limits_{\ell\in\mathcal{V}_{i,j}\cup\{p,\ell_{0}\}}\ell^{v_{\ell}(\mathrm{nrd}(w_{\ell}^{i}))-v_{\ell}(\mathrm{nrd}(w_{\ell}^{j}))}.
  5. (v)

    We firstly compute ei,j,ke_{i,j,k} as in Algorithm 4.2. Check if there exist integers t,x,y,zt,x,y,z\in\mathbb{Z} such that the following conditions hold:

    {nrd(ts1+xs2+ys3+zs4)=KM2Wi(abca)adj(Wj)m+v(det(Wj))M2(/2m+v(N)+2) for 𝒱i,jW0i(a0b0c0a0)adj(W0j)adj(gk)0m0+v0(det(W0j))+2M2(/02m0+2).\begin{dcases*}\mathrm{nrd}(t\cdot s^{1}+x\cdot s^{2}+y\cdot s^{3}+z\cdot s^{4})=KM^{2}\\ W_{\ell}^{i}\cdot\begin{pmatrix}a_{\ell}&b_{\ell}\\ c_{\ell}&-a_{\ell}\end{pmatrix}\cdot\mathrm{adj}(W_{\ell}^{j})\in\ell^{m_{\ell}+v_{\ell}(\det(W_{\ell}^{j}))}\cdot\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}+v_{\ell}(N)+2}\mathbb{Z})\hskip 30.00005pt\text{ for $\ell\in\mathcal{V}_{i,j}$}\\ W_{\ell_{0}}^{i}\cdot\begin{pmatrix}a_{\ell_{0}}&b_{\ell_{0}}\\ c_{\ell_{0}}&-a_{\ell_{0}}\end{pmatrix}\cdot\mathrm{adj}(W_{\ell_{0}}^{j})\cdot\mathrm{adj}(g_{k})\in\ell_{0}^{m_{\ell_{0}}+v_{\ell_{0}}(\det(W_{\ell_{0}}^{j}))+2}\cdot\mathrm{M}_{2}(\mathbb{Z}/\ell_{0}^{2m_{\ell_{0}}+2}\mathbb{Z}).\end{dcases*}

    where (abca)M2(/2m+v(N)+2)\begin{pmatrix}a_{\ell}&b_{\ell}\\ c_{\ell}&-a_{\ell}\end{pmatrix}\in\mathrm{M}_{2}(\mathbb{Z}/\ell^{2m_{\ell}+v_{\ell}(N)+2}\mathbb{Z}) is the matrix tS1+xS2+yS3+zS4t\cdot S_{\ell}^{1}+x\cdot S_{\ell}^{2}+y\cdot S_{\ell}^{3}+z\cdot S_{\ell}^{4}. If such t,x,y,zt,x,y,z exist, set ei,j,ke_{i,j,k} to be 1, and otherwise 0. Note that the only dependence on kk is in the last condition.

  6. (vi)

    If ei,j,k=0e_{i,j,k}=0, set ei,j,k=0e_{\vec{i},\vec{j},k}=0 for all i=(i,,)\vec{i}=(i,\cdot,\cdot), j=(j,,)\vec{j}=(j,\cdot,\cdot). Otherwise, taking our solution (t,x,y,z)(t,x,y,z) from the above step, compute the matrices

    Q¯:=Wi1M(abca)(Wj)1modv(N)GL2(/v(N))\overline{Q_{\ell}}:=W_{\ell}^{i}\cdot\frac{1}{M}\begin{pmatrix}a_{\ell}&b_{\ell}\\ c_{\ell}&-a_{\ell}\end{pmatrix}\cdot(W_{\ell}^{j})^{-1}\mod\ell^{v_{\ell}(N)}\in\mathrm{GL}_{2}(\mathbb{Z}/\ell^{v_{\ell}(N)}\mathbb{Z})

    for N\ell\mid N, and

    Qp:=wpi1M(ts1+xs2+ys3+zs4)(wpj)1𝒪p×.Q_{p}:=w_{p}^{i}\cdot\frac{1}{M}(t\cdot s^{1}+x\cdot s^{2}+y\cdot s^{3}+z\cdot s^{4})\cdot(w_{p}^{j})^{-1}\in\mathcal{O}_{p}^{\times}.

    Writing QpQ_{p} in terms of the generators ii and jj of the quaternion algebra DD, let Qp¯𝔽p2×\overline{Q_{p}}\in\mathbb{F}_{p^{2}}^{\times} be the reduction modulo jj, where we view the elements of 𝔽p2×\mathbb{F}_{p^{2}}^{\times} as {s+tis,t𝔽p not both zero}\{s+ti\mid s,t\in\mathbb{F}_{p}\text{ not both zero}\}, which is a group under multiplication.

    Then, for representatives i=(i,μ,γ)\vec{i}=(i,\mu,\gamma) and j=(j,μ,γ)\vec{j}=(j,\mu^{\prime},\gamma^{\prime}) of 𝒮\mathcal{S}, define

    (24) ei,j,k={1if there exists ζiOR(Ii)× and ζjOR(Ij)× such that (μϕi(ζi))1(μϕj(ζj))=Qp¯𝔽p2× and (γψi(ζi;))1(γψj(ζj;))=Q¯GL2(/v(N)) for all N0otherwisee_{\vec{i},\vec{j},k}=\begin{dcases*}1&\parbox{380.00058pt}{if there exists $\zeta_{i}\in O_{R}(I_{i})^{\times}$ and $\zeta_{j}\in O_{R}(I_{j})^{\times}$ such that $(\mu\phi_{i}(\zeta_{i}))^{-1}(\mu^{\prime}\phi_{j}(\zeta_{j}))=\overline{Q_{p}}\in\mathbb{F}_{p^{2}}^{\times}$ and $(\gamma_{\ell}\psi_{i}(\zeta_{i};\ell))^{-1}(\gamma^{\prime}_{\ell}\psi_{j}(\zeta_{j};\ell))=\overline{Q_{\ell}}\in\mathrm{GL}_{2}(\mathbb{Z}/\ell^{v_{\ell}(N)}\mathbb{Z})$ for all $\ell\mid N$}\\ 0&otherwise\end{dcases*}
  7. (vii)

    If we index the rows and columns of the matrix for T0T_{\ell_{0}}, with respect to the basis consisting of 𝟙vi\mathbbm{1}_{v^{\vec{i}}}, by i𝒮\vec{i}\in\mathcal{S}, then the (j,i)(\vec{j},\vec{i})-th entry is

    10k=00ei,j,k.\frac{1}{\ell_{0}}\cdot\sum\limits_{k=0}^{\ell_{0}}e_{\vec{i},\vec{j},k}.

    This gives us the matrix for T0T_{\ell_{0}}.

References

  • [BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, Computational algebra and number theory (London, 1993). MR MR1484478
  • [Buz] Kevin Buzzard, Computing modular forms on definite quaternion algebras, available at https://www.ma.imperial.ac.uk/ buzzard/maths/research/notes/.
  • [Con] Keith Conrad, A multivariable Hensel’s lemma, available at https://kconrad.math.uconn.edu/blurbs/.
  • [CS01] Caterina Consani and Jasper Scholten, Arithmetic on a quintic threefold, Internat. J. Math. 12 (2001), no. 8, 943–972. MR 1863287
  • [Del69] Pierre Deligne, Formes modulaires et représentations ll-adiques, Séminaire Bourbaki 11 (1968-1969), 139–172 (fre).
  • [Dem05] Lassina Dembélé, Explicit computations of Hilbert modular forms on (5){\mathbb{Q}}(\sqrt{5}), Experiment. Math. 14 (2005), no. 4, 457–466. MR 2193808
  • [Dem07] by same author, Quaternionic Manin symbols, Brandt matrices, and Hilbert modular forms, Math. Comp. 76 (2007), no. 258, 1039–1057. MR 2291849
  • [Koh01] David R. Kohel, Hecke module structure of quaternions, Class field theory—its centenary and prospect (Tokyo, 1998), Adv. Stud. Pure Math., vol. 30, Math. Soc. Japan, Tokyo, 2001, pp. 177–195. MR 1846458
  • [KV12] Markus Kirschmer and John Voight, Corrigendum: Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput. 41 (2012), no. 3, 714. MR 2967473
  • [Piz80] Arnold Pizer, An algorithm for computing modular forms on Γ0(N)\Gamma_{0}(N), Journal of Algebra 64 (1980), no. 2, 340–390.
  • [Sil09] Joseph H Silverman, The Arithmetic of Elliptic Curves, Graduate texts in mathematics, Springer, Dordrecht, 2009.
  • [SL96] J-P. Serre and Ron Livne, Two letters on quaternions and modular forms (mod pp), Israel Journal of Mathematics 95 (1996), 281–299.
  • [SW05] Jude Socrates and David Whitehouse, Unramified Hilbert modular forms, with examples relating to elliptic curves, Pacific J. Math. 219 (2005), no. 2, 333–364. MR 2175121
  • [Voi13] John Voight, Identifying the matrix ring: algorithms for quaternion algebras and quadratic forms, Quadratic and higher degree forms, Dev. Math., vol. 31, Springer, New York, 2013, pp. 255–298. MR 3156561
  • [Voi21] John Voight, Quaternion algebras, Graduate Texts in Mathematics, Springer Cham, 2021.
  • [Wie06] Gabor Wiese, Mod pp modular forms, available at https://wstein.org/msri06/wiese/, 2006.