This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Concentration bounds for stochastic systems with singular kernels

Joe Jackson J. Jackson, Department of Mathematics, University of Chicago,
   J. Jackson 5734 S. University Avenue, Chicago, Illinois 60637 USA
jsjackson@uchicago.edu
 and  Antonios Zitridis A. Zitridis, Department of Mathematics, University of Chicago,
   A. Zitridis 5734 S. University Avenue, Chicago, Illinois 60637 USA
zitridisa@uchicago.edu
Abstract.

This note is concerned with weakly interacting stochastic particle systems with possibly singular pairwise interactions. In this setting, we observe a connection between entropic propagation of chaos and exponential concentration bounds for the empirical measure of the system. In particular, we establish a variational upper bound for the probability of a certain rare event, and then use this upper bound to show that “controlled” entropic propagation of chaos implies an exponential concentration bound for the empirical measure. This connection allows us to infer concentration bounds for a class of singular stochastic systems through a simple adaptation of the arguments developed in [JW18].

1. Introduction

1.1. Stochastic particle systems

Let N,dN,d\in\mathbb{N} and K:𝕋ddK:\mathbb{T}^{d}\rightarrow\mathbb{R}^{d} be a vector field defined on the dd-dimensional flat torus 𝕋d\mathbb{T}^{d}. We consider the system of NN particles described by the dynamics

dXti=(F(Xti)+1NjiK(XtiXtj))dt+2dWti,t[0,T],i=1,2,,N,dX_{t}^{i}=\Big{(}F(X_{t}^{i})+\frac{1}{N}\sum_{j\neq i}K(X_{t}^{i}-X_{t}^{j})\Big{)}dt+\sqrt{2}dW_{t}^{i},\;\;t\in[0,T],\,\,i=1,2,...,N, (1.1)

where the WiW^{i} are NN independent standard Wiener processes defined on a standard filtered probability space (Ω,𝔽=(t)0tT,)\big{(}\Omega,\mathbb{F}=(\mathcal{F}_{t})_{0\leq t\leq T},\mathbb{P}). We work on a finite time horizon [0,T][0,T], and we assume that the initial positions of the particles are i.i.d., i.e.

𝑿0=(X01,,X0N)ρ0N for some ρ0𝒫(𝕋d).\displaystyle\bm{X}_{0}=(X_{0}^{1},...,X_{0}^{N})\sim\rho_{0}^{\otimes N}\text{ for some $\rho_{0}\in\mathcal{P}(\mathbb{T}^{d})$.}

Thus the data used to define our particle system consists of the time horizon T>0T>0, the maps F,K:𝕋ddF,K:\mathbb{T}^{d}\to\mathbb{R}^{d}, and the initial distribution ρ0𝒫(𝕋d)\rho_{0}\in\mathcal{P}(\mathbb{T}^{d}). Under these conditions, the law ρtN=(𝑿t)\rho^{N}_{t}=\mathcal{L}(\bm{X}_{t})111Here and throughout the note we use the notation ρtN\rho^{N}_{t} to indicate a curve [0,T]tρtN𝒫(𝕋dN)[0,T]\;\reflectbox{$\in$}\;t\mapsto\rho^{N}_{t}\in\mathcal{P}(\mathbb{T}^{dN}), and we abuse notation by writing ρN(t,)\rho^{N}(t,\cdot) for the density of ρtN\rho^{N}_{t} when it exists. of the particles is formally described by the Liouiville equation

tρN+i=1Ndivxi(ρN(F(xi)+1NjiK(xixj)))i=1NΔxiρN=0,ρ0N=ρ0N,\displaystyle\partial_{t}\rho^{N}+\sum_{i=1}^{N}\text{div}_{x^{i}}\bigg{(}\rho^{N}\Big{(}F(x^{i})+\frac{1}{N}\sum_{j\neq i}K(x^{i}-x^{j})\Big{)}\bigg{)}-\sum_{i=1}^{N}\Delta_{x_{i}}\rho^{N}=0,\qquad\rho^{N}_{0}=\rho_{0}^{\otimes N}, (1.2)

where 𝒙=(x1,,xN)𝕋dN\bm{x}=(x^{1},...,x^{N})\in\mathbb{T}^{dN}. When FF and KK are smooth (or at least Lipschitz), it is well known that the asymptotic behaviour of the particle system (1.1) is described by the non-local Fokker-Planck equation

tρ¯+div(ρ¯(F+Kρ¯))Δρ¯=0,ρ¯0=ρ0.\partial_{t}\overline{\rho}+\text{div}\big{(}\overline{\rho}\,(F+K*\overline{\rho})\big{)}-\Delta\overline{\rho}=0,\qquad\overline{\rho}_{0}=\rho_{0}. (1.3)

More precisely, it is known that in an appropriate sense we have

m𝑿tN=1Ni=1NδXtiNρ¯t,(Xt1,,Xtk)Nρ¯tk, for each fixed k.\displaystyle m_{\bm{X}_{t}}^{N}=\frac{1}{N}\sum_{i=1}^{N}\delta_{X_{t}^{i}}\xrightarrow{N\to\infty}\overline{\rho}_{t},\quad\mathcal{L}(X_{t}^{1},...,X_{t}^{k})\xrightarrow{N\to\infty}\overline{\rho}_{t}^{\otimes k},\text{ for each fixed k}.

The first statement above confirms that ρ¯t\overline{\rho}_{t} is the mean field limit of the empirical measures m𝑿tNm_{\bm{X}_{t}}^{N}, while the second statement is referred to as propagation of chaos. Quantitative versions of these statements, as well as finer results like central limit theorems, large deviations principles, and concentration bounds for the empirical measures m𝑿tNm_{\bm{X}_{t}}^{N} have also been obtained for regular KK. We do not make any attempt to summarize this literature, but refer to survey articles like [JW17, CD22] for an introduction. Extending such results to more singular kernels KK, which are often met in applications, is a very active area of research. We mention in particular the recent flurry of activity around singular kernels which derive from Riesz potentials (see e.g. [Ser20, BJW20, RS23, CdCRS23] and the references therein) and some recent efforts aimed at singular attractive kernels (see e.g. [BJW23, CdCRS23]). More relevant to the present note are the slightly less recent contributions of [JW16] and [JW18], where quantitative propagation of chaos was established by estimating the relative entropy between a solution of the Liouiville equation (1.2) and the tensor product ρ¯N=ρ¯N\overline{\rho}^{N}=\overline{\rho}^{\otimes N} of the solution of (1.3). More precisely, [JW18] established the following quantitative version of “entropic propagation of chaos”:

HN(ρTN|ρ¯TN)HN(ρ0N|ρ¯0N)+C/N,H_{N}(\rho^{N}_{T}|\overline{\rho}^{N}_{T})\leq H_{N}(\rho_{0}^{N}|\overline{\rho}_{0}^{N})+C/N, (1.4)

for some constant CC independent of NN, where HH denotes the rescaled relative entropy

HN(ρtN|ρ¯tN):=1NH(ρtN|ρ¯tN)=1N𝕋dNρN(t,𝒙)logρN(t,𝒙)ρ¯N(t,𝒙)d𝒙.H_{N}(\rho^{N}_{t}|\overline{\rho}^{N}_{t}):=\frac{1}{N}H(\rho^{N}_{t}|\overline{\rho}^{N}_{t})=\frac{1}{N}\int_{\mathbb{T}^{dN}}\rho^{N}(t,\bm{x})\log\frac{\rho^{N}(t,\bm{x})}{\overline{\rho}^{N}(t,\bm{x})}d\bm{x}.

We note that (1.4) is established under a general initial condition for (1.2), but if ρ0N=ρ¯0N\rho^{N}_{0}=\overline{\rho}_{0}^{\otimes N} then the first term on the right-hand side of (1.4) vanishes, leading to HN(ρTN|ρ¯TN)=O(1/N)H_{N}(\rho^{N}_{T}|\overline{\rho}^{N}_{T})=O(1/N), which by a classical subadditivity property of relative entropy gives H(ρTN,k|ρ¯Tk)=O(k/N)H(\rho^{N,k}_{T}|\overline{\rho}^{\otimes k}_{T})=O(k/N), where ρN,k\rho^{N,k} denotes the kk-particle marginal of ρN\rho^{N}, and in particular H(ρTN,k|ρ¯Tk)0H(\rho^{N,k}_{T}|\overline{\rho}^{\otimes k}_{T})\to 0 as NN\to\infty for each fixed kk, which is what we mean by entropic propagation of chaos. We note also that establishing (1.4) is not the only way to obtain quantitative entropic propagation of chaos - we refer to [Lac23] for a more detailed discussion and for an approach which leads to optimal bounds on H(ρTN,k|ρ¯Tk)H(\rho_{T}^{N,k}|\overline{\rho}_{T}^{\otimes k}).

1.2. Our results

Our goal in this note is to point out a connection between entropic propagation of chaos and concentration inequalities for the empirical measure of the particle system (1.1). In particular, for 1p<1\leq p<\infty, we are interested in bounds of the form

[𝐝p(m𝑿TN,ρ¯T)>ϵ]Ccon,pexp(Ccon,p1ap(ϵ)N),ap(ϵ){ϵ2pp>d/2,ϵ2p/(log(2+1/ϵp))2p=d/2,ϵdp<d/2,\displaystyle\mathbb{P}\Big{[}{\bf d}_{p}(m^{N}_{\bm{X}_{T}},\overline{\rho}_{T})>\epsilon\Big{]}\leq C_{\text{con,p}}\exp(-C_{\text{con,p}}^{-1}a_{p}(\epsilon)N),\quad a_{p}(\epsilon)\coloneqq\begin{cases}\epsilon^{2p}&p>d/2,\\ \epsilon^{2p}/\big{(}\log(2+1/\epsilon^{p})\big{)}^{2}&p=d/2,\\ \epsilon^{d}&p<d/2,\end{cases} (1.5)

where 𝐝p{\bf d}_{p} denotes the pp-Wasserstein distance. That is, we want to show that the empirical measure for the particle system admits concentration bounds of the same type available for i.i.d. samples, as established in [FG15]. When written in terms of the Liouville equations (which is often necessary for technical reasons when KK is singular), (1.5) becomes

ρTN(AN,ϵp)Ccon,pexp(Ccon,p1ap(ϵ)N), where AN,ϵp={𝒙𝕋dN|𝐝p(m𝒙N,ρ¯TN)>ϵ}.\displaystyle\rho^{N}_{T}(A^{p}_{N,\epsilon})\leq C_{\text{con,p}}\exp(-C_{\text{con,p}}^{-1}a_{p}(\epsilon)N),\text{ where }A^{p}_{N,\epsilon}=\bigg{\{}\bm{x}\in\mathbb{T}^{dN}\bigg{|}{\bf d}_{p}(m^{N}_{\bm{x}},\overline{\rho}^{N}_{T})>\epsilon\bigg{\}}. (1.6)

Such concentration inequalities were obtained for regular interactions by several authors. We highlight in particular [BGV05], where concentration inequalities for the system (1.1) were inferred from concentration inequalities for i.i.d. random variables via the so-called “synchronous coupling” method originally due to McKean [McK69] and popularized by Sznitman [Szn91], and [DLR18], where a more general concentration of measure result was obtained by exploiting certain (uniform in NN) functional inequalities for the law of 𝑿=(X1,,XN)\bm{X}=(X^{1},...,X^{N}). When KK is singular, the approaches in [BGV05] and [DLR18] break down, and the only estimate similar to (1.5) we are aware of is Proposition 5.3 of [HC23], where the structure of the repulsive Riesz interactions is leveraged to get bounds somewhat similar to (1.5).

To explain our main idea, we must introduce the “controlled Liouville equation”:

tfN+i=1Ndivxi(fN(αi(t,𝒙)+F(xi)+1NjiK(xixj)))i=1NΔxifN=0,\partial_{t}f^{N}+\sum_{i=1}^{N}\text{div}_{x^{i}}\bigg{(}f^{N}\Big{(}\alpha^{i}(t,\bm{x})+F(x^{i})+\frac{1}{N}\sum_{j\neq i}K(x^{i}-x^{j})\Big{)}\bigg{)}-\sum_{i=1}^{N}\Delta_{x^{i}}f^{N}=0, (1.7)

where 𝜶=(α1,,αN):[0,T]×(𝕋d)N(d)N\bm{\alpha}=(\alpha^{1},...,\alpha^{N}):[0,T]\times(\mathbb{T}^{d})^{N}\to(\mathbb{R}^{d})^{N} is a measurable map which we view as a control. For the so-called W1,W^{-1,\infty} kernels of [JW18], one can (as is explained in more detail in the proof of Proposition 1.6) easily generalize the original entropy estimate (1.4) of Jabin and Wang to get an estimate of the form222The factor of 1/41/4 in (1.8) is purely aesthetic, and is included to make (1.8) more consistent with Proposition 3.1 below.

HN(fTN|ρ¯TN)HN(f0N|ρ¯0N)+Cent(1N+14Ni=1N0T𝕋d|αi(t,𝒙)|2𝑑ftN(𝒙)𝑑t),H_{N}(f^{N}_{T}|\overline{\rho}^{N}_{T})\leq H_{N}(f^{N}_{0}|\overline{\rho}^{N}_{0})+C_{\text{ent}}\bigg{(}\frac{1}{N}+\frac{1}{4N}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{d}}|\alpha^{i}(t,\bm{x})|^{2}df^{N}_{t}(\bm{x})dt\bigg{)}, (1.8)

for any solution fNf^{N} to (1.7). We emphasize that here f0Nf^{N}_{0} may be different from ρ0N\rho_{0}^{\otimes N}. We think of (1.8) as a “controlled” or “perturbed” version of the entropic propagation of chaos estimate (1.4) of Jabin and Wang. Our main observation is that an estimate of the form (1.8) in fact implies a concentration bound of the form (1.5). For technical reasons, we first make this observation precise through the following a-priori estimate, which requires KK and ρ¯0\overline{\rho}^{0} to be bounded.

Theorem 1.1.

There are constants Cd,pC_{d,p} depending only on dd and pp such that the following holds: Suppose that KK and FF are bounded, the initial condition ρ0\rho_{0} has a bounded density, and that there exists a solution ρ¯\overline{\rho} to (1.3) and a constant Cent1C_{\text{ent}}\geq 1 such that (1.8) holds for all 𝛂\bm{\alpha} and fNf^{N} such that fNf^{N} is an entropy solution of (1.7) as in Definition 2.2 below. Then the concentration bound (1.5) holds for each pp, with Ccon,p=Cd,pCentC_{\text{con,p}}=C_{d,p}C_{\text{ent}}.

Remark 1.2.

We note that because KK and FF are bounded and there is non-degenerate idiosyncratic noise, there is no problem making sense of the SDE (1.1) or the Liouville equation (1.2).

Remark 1.3.

While KK is required to be bounded for technical reasons, the key point of the a-priori estimate is that Ccon,pC_{\text{con,p}} depends on KK only through the constant CentC_{\text{ent}} appearing in (1.8), and not on K\|K\|_{\infty}. Similarly, there is no explicit dependence of our a-priori estimate on TT, so if one establishes (1.4) with a constant CentC_{\text{ent}} independent of TT (which can be done for the 2-D stochastic vortex model with the techniques of [GBM24]) then one gets a uniform in time concentration bound.

Remark 1.4.

Notice that in Theorem 1.1, we only require (1.4) to hold for entropy solutions of (1.7), rather than for all weak solutions. This creates some technical challenges in the proof, but it is essential for the application to W1,W^{-1,\infty} kernels below.

As mentioned above, we can verify that (1.8) holds under roughly the same conditions as in [JW18]. Thus we make use of the following assumption (and refer to the notation section below for the definition of W1,W^{-1,\infty}):

Assumption 1.5.

For some β(0,1)\beta\in(0,1), C0>0C_{0}>0, we have FC1,βF\in C^{1,\beta}, ρ0C2,β\rho_{0}\in C^{2,\beta}, KK, divKW1,\text{div}\,K\in W^{-1,\infty}, and

(infxρ0(x))1+ρ0C2,β+FC1,β+K1,+KL1+divK1,C0.\displaystyle\big{(}\inf_{x}\rho_{0}(x)\big{)}^{-1}+\|\rho_{0}\|_{C^{2,\beta}}+\|F\|_{C^{1,\beta}}+\|K\|_{-1,\infty}+\|K\|_{L^{1}}+\|\text{div}\,K\|_{-1,\infty}\leq C_{0}.
Proposition 1.6.

Let Assumption 1.5 hold. Then there is a unique classical solution ρ¯\overline{\rho} to (1.3), and for each NN\in\mathbb{N} there exists an admissible entropy solution ρN\rho^{N} to (1.2) in the sense of Definition 2.4. Moreover, for each p[1,)p\in[1,\infty) there is a constant Ccon,pC_{\text{con,p}} which depends only on dd, pp, TT and C0C_{0}, such that any admissible entropy solution ρN\rho^{N} of (1.2) satisfies (1.6).

Remark 1.7.

Regarding possible extensions: one can easily extend Theorem 1.1 by replacing 𝕋d\mathbb{T}^{d} by d\mathbb{R}^{d}, but the concentration bound will then depend on the (exponential) moments of the limit ρ¯\overline{\rho}. We focus on the periodic case because in this case we can adapt the arguments of [JW18] to obtain (1.4). However, the recent preprint [FW23] shows that the program of [FW23] can be carried out in the whole space for the 2-D viscous vortex model, so the (non-periodic analogue of) our Theorem 1.1 can be combined with the argument in [FW23] to obtain an anologue of Proposition 1.6 in this setting. Likewise, one can easily adapt Theorem 1.1 to the kinetic setting, in which case the “controlled Liouiville equation” will involve a control only in the velocity (as is easily seen from an inspection of the proof of Lemma 3.1, in particular the application of Girsanov’s Theorem). By combining such a result with the techniques of [JW16], one can easily derive an anologue of Proposition 1.6 for kinetic particle systems with bounded forces, i.e. in the same setting as [JW16].

2. Notation and Preliminaries

2.1. Notation and some definitions

Throughout the paper TT is a positive real number and 𝕋d\mathbb{T}^{d} is the dd-dimensional flat torus. fgf*g is the convolution between the functions f,gf,g. If a function u:[0,T]×𝕋du:[0,T]\times\mathbb{T}^{d}\rightarrow\mathbb{R} is sufficiently regular, then we denote by tu,Dxiu\partial_{t}u,\;D_{x_{i}}u the partial derivative with respect to tt and the partial derivative with respect to xix_{i} (the ii-th coordinate) for i=1,2,,di=1,2,...,d, respectively. For p[1,+]p\in[1,+\infty], we use the symbol Lt,xpL^{p}_{t,x} (resp. Lxp)L^{p}_{x}) for the space of functions ff such that |f(t,x)|p𝑑t𝑑x<+\int|f(t,x)|^{p}dtdx<+\infty (resp. |f(x)|p𝑑x<+\int|f(x)|^{p}dx<+\infty). For k1k\geq 1, p[1,+]p\in[1,+\infty] and β(0,1)\beta\in(0,1), we denote by Wk,pW^{k,p}, Ck,βC^{k,\beta} the Sobolev (kk weak derivatives in LpL^{p}) and Hölder spaces (kk derivatives which are β\beta-Hölder continuous) on 𝕋d\mathbb{T}^{d}, respectively. Also, we write Ct,xk,βC^{k,\beta}_{t,x} for the standard parabolic Hölder spaces on [0,T]×𝕋d[0,T]\times\mathbb{T}^{d}, e.g. Ct,x2,βC^{2,\beta}_{t,x} will be the space of functions f(t,x)f(t,x) such that tf\partial_{t}f, DfDf, D2fD^{2}f exist, and are β/2\beta/2-Hölder in tt and β\beta-Hölder in xx. Similarly, we will use Wt,xk,pW^{k,p}_{t,x} for the standard parabolic Hölder spaces, e.g. Wt,x2,pW^{2,p}_{t,x} will indicate the space of functions f(t,x)f(t,x) such that tf\partial_{t}f, DfDf, D2fD^{2}f are in LpL^{p}.

𝒫(𝕋d)\mathcal{P}(\mathbb{T}^{d}) (resp. 𝒫(X)\mathcal{P}(X)) is the space of probability measures over 𝕋d\mathbb{T}^{d} (resp. a Polish space XX), and 𝒫ac(𝕋dN)𝒫(𝕋dN)\mathcal{P}_{\text{ac}}(\mathbb{T}^{dN})\subset\mathcal{P}(\mathbb{T}^{dN}) is the set of probability measures which admit a density with respect to the Lebesgue measure. For p1p\geq 1, the pp-Wasserstein space is denoted by 𝒫p(𝕋d)\mathcal{P}_{p}(\mathbb{T}^{d}) and its metric is 𝐝p{\bf d}_{p}. Given a curve [0,T]tmt𝒫(𝕋d)[0,T]\;\reflectbox{$\in$}\;t\mapsto m_{t}\in\mathcal{P}(\mathbb{T}^{d}), we write Ldtmt2([0,T]×𝕋d,d)L^{2}_{dt\otimes m_{t}}([0,T]\times\mathbb{T}^{d},\mathbb{R}^{d}) for the space of d\mathbb{R}^{d}-valued mtdtm_{t}\otimes dt-square integrable functions over [0,T]×𝕋d[0,T]\times\mathbb{T}^{d}. The space of d\mathbb{R}^{d}-values Borel measures over [0,T]×𝕋d[0,T]\times\mathbb{T}^{d} with finite total variation is denoted by ([0,T]×𝕋d,d)\mathcal{M}([0,T]\times\mathbb{T}^{d},\mathbb{R}^{d}). For any NN\in\mathbb{N}, 𝕌N\mathbb{U}_{N} is the uniform distribution on 𝕋dN\mathbb{T}^{dN}; we will write 𝕌\mathbb{U} when there is no confusion. The relative entropy H(μ|ν)H(\mu|\nu) of two probability measures μ,ν\mu,\nu is defined as follows

H(μ|ν)={𝕋ddμdνlog(dμdν)𝑑ν(x), if μν,+, otherwise.H(\mu|\nu)=\begin{cases}\int_{\mathbb{T}^{d}}\frac{d\mu}{d\nu}\log(\frac{d\mu}{d\nu})d\nu(x),&\text{ if }\mu\ll\nu,\\ +\infty,&\text{ otherwise.}\end{cases}

For simplicity, we write H(μ)=H(μ|𝕌)H(\mu)=H(\mu|\mathbb{U}). For solutions of the Liouville equation (1.2) we will be using the symbol ρtN\rho^{N}_{t} or ρN(t)\rho^{N}(t) to denote an element of 𝒫ac(𝕋d)\mathcal{P}_{\text{ac}}(\mathbb{T}^{d}) and the symbol ρN(t,x)\rho^{N}(t,x) for the corresponding density, which we can view as an element of LtLx1L^{\infty}_{t}L^{1}_{x}. We use the analogous notation for fNf^{N}, a solution of the “perturbed” Liouville equation (1.7). We will be using the notation I(ρ)=𝕋dN|D𝒙ρ|2(𝒙)ρ(𝒙)𝑑𝒙I(\rho)=\int_{\mathbb{T}^{dN}}\frac{|D_{\bm{x}}\rho|^{2}(\bm{x})}{\rho(\bm{x})}d\bm{x} for the Fisher information and, for j=1,,Nj=1,...,N, Ij(ρ)=𝕋dN|Dxjρ|2(𝒙)ρ(𝒙)𝑑𝒙I_{j}(\rho)=\int_{\mathbb{T}^{dN}}\frac{|D_{x^{j}}\rho|^{2}(\bm{x})}{\rho(\bm{x})}d\bm{x}.

We now recall the precise definition of the space W1,W^{-1,\infty}.

Definition 2.1.

(i) A function ff with 𝕋df=0\int_{\mathbb{T}^{d}}f=0 belongs to W1,(𝕋d)W^{-1,\infty}(\mathbb{T}^{d}) if and only if there exists a vector field VL(𝕋d)V\in L^{\infty}(\mathbb{T}^{d}) such that f=divVf=\text{div}\,V. We denote

f1,=infVVL, where f=divV.\|f\|_{-1,\infty}=\inf_{V}\|V\|_{L^{\infty}},\;\text{ where }f=\text{div}\,V.

(ii) A vector field KK with 𝕋dK=0\int_{\mathbb{T}^{d}}K=0 belongs to W1,(𝕋d)W^{-1,\infty}(\mathbb{T}^{d}) if and only if there exists a matrix field VL(𝕋d)V\in L^{\infty}(\mathbb{T}^{d}) such that K=divVK=\text{div}\,V in the sense that Ki=jjVijK_{i}=\sum_{j}\partial_{j}V_{ij}. We denote

K1,=infVVL, where K=divV.\|K\|_{-1,\infty}=\inf_{V}\|V\|_{L^{\infty}},\;\text{ where }K=\text{div}\,V.

As in [JW18], since KK (and possibly 𝜶\bm{\alpha}) are not smooth, in order to get controlled entropy bounds between ρN\rho^{N} and ρ¯N=ρ¯N\overline{\rho}^{N}=\overline{\rho}^{\otimes N} we must work with entropy solutions.

Definition 2.2.

Suppose that KW1,K\in W^{-1,\infty} and divKW1,\text{div}\,K\in W^{-1,\infty}, so that there exists a vector field VL(𝕋d)V\in L^{\infty}(\mathbb{T}^{d}) such that divK=divV\text{div}\,K=\text{div}\,V. A continuous map [0,T]tftN𝒫ac(𝕋dN)[0,T]\;\reflectbox{$\in$}\;t\mapsto f_{t}^{N}\in\mathcal{P}_{\text{ac}}(\mathbb{T}^{dN}) is an entropy solution to (1.7) on the time interval [0,T][0,T] if fNf^{N} solves (1.7) in the sense of distributions, D𝒙fN(t,)D_{\bm{x}}f^{N}(t,\cdot) exists in the weak sense for a.e tTt\leq T and for each 0tT0\leq t\leq T,

H(ftN)+i=1N0t𝕋dN|DxifN(s,𝒙)|2fN(s,𝒙)𝑑𝒙𝑑s\displaystyle H(f_{t}^{N})+\sum_{i=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\frac{|D_{x^{i}}f^{N}(s,\bm{x})|^{2}}{f^{N}(s,\bm{x})}d\bm{x}ds
H(f0N)+1Ni,j=1N0t𝕋dN(αi(s,𝒙)+F(xi)+V(xixj))DxifsN𝑑𝒙𝑑s.\displaystyle\qquad\leq H(f_{0}^{N})+\frac{1}{N}\sum_{i,j=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}(\alpha^{i}(s,\bm{x})+F(x^{i})+V(x^{i}-x^{j}))\cdot D_{x^{i}}f^{N}_{s}d\bm{x}ds. (2.1)

To indicate the dependence on 𝜶,F\bm{\alpha},\;F and KK we call such a solution an (𝜶,F,K)(\bm{\alpha},F,K)-entropy solution. When 𝜶=0\bm{\alpha}=0 and f0N=ρ0Nf_{0}^{N}=\rho_{0}^{\otimes N}, we simply say that fNf^{N} is an entropy solution of (1.2).

Remark 2.3.

(i) If α=0\alpha=0, then we have the definition of entropy solution introduced in [JW18].
(ii) If fNf^{N} satisfies (1.7) in the classical sense, then it is also an entropy solution.
(iii) It follows that any (α,F,K)(\alpha,F,K)-entropy solution is also an (α+β~,F,Kβ)(\alpha+\tilde{\beta},F,K-\beta)-entropy solution, for any bounded vector field β\beta, where β~\tilde{\beta} is a vector field such that β~i(𝒙)=1Njiβ(xixj)\tilde{\beta}^{i}(\bm{x})=\frac{1}{N}\sum_{j\neq i}\beta(x^{i}-x^{j}).
(iv) By virtue of Proposition 1 from [JW18]333Actually, regularity in time is not addressed in Proposition 1 of [JW18], but it is straightforward to check using the assumptions on KK that any entropy solution in the sense of Jabin and Wang admits a version in C([0,T];𝒫ac(𝕋dN))C([0,T];\mathcal{P}_{\text{ac}}(\mathbb{T}^{dN}))., if FF and divF\text{div}F are bounded and K,divKW1,K,\text{div}K\in W^{-1,\infty}, then there exists a (0,F,K)(0,F,K)-entropy solution.

For technical reasons, we at times need to work specifically with entropy solutions of (1.2) which arise via a suitable mollification procedure. In particular, we fix throughout the paper a standard mollifier (ρδ)δ>0(\rho_{\delta})_{\delta>0} on 𝕋d\mathbb{T}^{d}, and we define Kδ=KρδK_{\delta}=K*\rho_{\delta}, Fδ=FρδF_{\delta}=F*\rho_{\delta}. Then we make the following definition.

Definition 2.4.

We say that ρN\rho^{N} is an admissible entropy solution of (1.2) if it is an entropy solution, and for some δk0\delta_{k}\downarrow 0, we have ρtN,δkkρtN\rho^{N,\delta_{k}}_{t}\xrightarrow{k\to\infty}\rho^{N}_{t} weakly for each fixed tt, where ρN,δ\rho^{N,\delta} denotes the unique classical solution of (1.2) with FF replaced by FδF_{\delta} and KK replaced by KδK_{\delta}.

2.2. Preliminary Results

In this subsection we state and prove some results that will be useful in the paper. The first is a refinement of a compactness result borrowed from [Dau23, Proposition 1.2] for solutions (m,α)(m,\alpha) to the Fokker-Planck equation:

tm+div(αm)Δm=0,\partial_{t}m+\text{div}(\alpha m)-\Delta m=0, (2.2)

where m𝒞([0,T],𝒫2(𝕋d))m\in\mathcal{C}([0,T],\mathcal{P}_{2}(\mathbb{T}^{d})) and αLdtm(t)2([0,T]×𝕋d,d)\alpha\in L^{2}_{dt\otimes m(t)}\left([0,T]\times\mathbb{T}^{d},\mathbb{R}^{d}\right).

Proposition 2.5.

Assume that, for all k1k\geq 1, (mk,αk)(m_{k},\alpha_{k}) solves the Fokker-Planck equation (2.2) starting from m0m_{0} and satisfies the uniform energy estimate

0T𝕋d|αk(t,x)|2𝑑mk(t)(x)𝑑tC,\int_{0}^{T}\int_{\mathbb{T}^{d}}|\alpha_{k}(t,x)|^{2}dm_{k}(t)(x)dt\leq C, (2.3)

for some constant C>0C>0 independent of kk. Then, for any δ(0,1)\delta\in(0,1), up to taking a subsequence, (mk,αkmk)(m_{k},\alpha_{k}m_{k}) converges in 𝒞1δ2([0,T];𝒫2δ(𝕋d))×([0,T]×𝕋d,d)\mathcal{C}^{\frac{1-\delta}{2}}\left([0,T];\mathcal{P}_{2-\delta}(\mathbb{T}^{d})\right)\times\mathcal{M}([0,T]\times\mathbb{T}^{d},\mathbb{R}^{d}) to some (m,w)(m,w). The curve mm is in 𝒞1/2([0,T],𝒫2(𝕋d))\mathcal{C}^{1/2}\left([0,T],\mathcal{P}_{2}(\mathbb{T}^{d})\right), ww is absolutely continuous with respect to m(t)dtm(t)\otimes dt, for any t1,t2[0,T]t_{1},t_{2}\in[0,T] such that t1<t2t_{1}<t_{2} it holds that

t1t2𝕋d|dwdm(t)dt(t,x)|2𝑑m(t)(x)𝑑tlim infk+t1t2𝕋d|αk(t,x)|2𝑑mk(t)(x)𝑑t\int_{t_{1}}^{t_{2}}\int_{\mathbb{T}^{d}}\bigg{|}\frac{dw}{dm(t)\otimes dt}(t,x)\bigg{|}^{2}dm(t)(x)dt\leq\liminf_{k\rightarrow+\infty}\int_{t_{1}}^{t_{2}}\int_{\mathbb{T}^{d}}|\alpha_{k}(t,x)|^{2}dm_{k}(t)(x)dt (2.4)

and (m,dwdm(t)dt)(m,\frac{dw}{dm(t)\otimes dt}) solves (2.2) starting from m0m_{0}.

Proof.

Let wn=αnmnw_{n}=\alpha_{n}m_{n}. For the total variation |wn||w_{n}| we have

|wn|0T𝕋d|dwndmn(t)dt(t,x)|𝑑mn(t)(x)𝑑tT(0T𝕋d|dwndmn(t)dt(t,x)|2𝑑mn(t)(x)𝑑t)1/2,|w_{n}|\leq\int_{0}^{T}\int_{\mathbb{T}^{d}}\bigg{|}\frac{dw_{n}}{dm_{n}(t)\otimes dt}(t,x)\bigg{|}dm_{n}(t)(x)dt\leq\sqrt{T}\bigg{(}\int_{0}^{T}\int_{\mathbb{T}^{d}}\bigg{|}\frac{dw_{n}}{dm_{n}(t)\otimes dt}(t,x)\bigg{|}^{2}dm_{n}(t)(x)dt\bigg{)}^{1/2},

therefore |wn|CT|w_{n}|\leq\sqrt{CT}. We can therefore use Banach-Alaoglu theorem and, due to standard estimates for the Fokker-Planck equation, we can deduce that, for any r(1,2)r\in(1,2), (mn,wn)(m_{n},w_{n}) converges in 𝒞([0,T],𝒫r(𝕋d))×([0,T]×𝕋d,d)\mathcal{C}([0,T],\mathcal{P}_{r}(\mathbb{T}^{d}))\times\mathcal{M}([0,T]\times\mathbb{T}^{d},\mathbb{R}^{d}) to some element (m,w)(m,w). In fact, elementary arguments yield that the convergence also holds also in 𝒞([t1,t2],𝒫r(𝕋d))×([t1,t2]×𝕋d,d)\mathcal{C}([t_{1},t_{2}],\mathcal{P}_{r}(\mathbb{T}^{d}))\times\mathcal{M}([t_{1},t_{2}]\times\mathbb{T}^{d},\mathbb{R}^{d}).

It is straightforward, because of the convergence, that (m,w)(m,w) satisfies the Fokker-Planck equation starting from m0m_{0}. By Theorem 2.34 of [AFP00] we discover that ww is absolutely continuous with respect to m(t)dtm(t)\otimes dt and that (2.4) holds. The bound that (2.4) provides (when t1=0t_{1}=0 and t2=Tt_{2}=T), yields m𝒞1/2([0,T],𝒫2(𝕋d))m\in\mathcal{C}^{1/2}\left([0,T],\mathcal{P}_{2}(\mathbb{T}^{d})\right), due to standard estimates for the Fokker-Planck equation. ∎

Remark 2.6.

As an artifact of the proof of the above proposition, we get that if (mk,αk)(m_{k},\alpha_{k}) satisfies (2.3) and the sequence (mk)k(m_{k})_{k\in\mathbb{N}} is known to converge in 𝒞1δ2([0,T];𝒫2δ(𝕋d))\mathcal{C}^{\frac{1-\delta}{2}}([0,T];\mathcal{P}_{2-\delta}(\mathbb{T}^{d})), then wk=αkmkw_{k}=\alpha_{k}m_{k} converges in ([0,T]×𝕋d;d)\mathcal{M}([0,T]\times\mathbb{T}^{d};\mathbb{R}^{d}) and (2.4) holds as well.

We are also going to need the following two elementary lemmas, the first of which can be inferred [DE11, Proposition 2.4.2] (notice that the boundness assumption on ff there is not necessary) and the second of which is standard.

Lemma 2.7.

Let XX be a Polish space, μ𝒫(X)\mu\in\mathcal{P}(X) and a function f:X{,+}f:X\rightarrow\mathbb{R}\cup\{-\infty,+\infty\} such that efL1(μ)e^{f}\in L^{1}(\mu). Then, the following equality holds

infν𝒫(X){H(ν|μ)Xf(x)𝑑ν(x)}=log(Xef(x)𝑑μ(x)).\inf_{\nu\in\mathcal{P}(X)}\bigg{\{}H(\nu|\mu)-\int_{X}f(x)d\nu(x)\bigg{\}}=-\log\bigg{(}\int_{X}e^{f(x)}d\mu(x)\bigg{)}. (2.5)

In particular, if AXA\subset X is any Borel set, then

logμ(A)=infν𝒫(X),ν(A)=1H(ν|μ).\displaystyle-\log\mu(A)=\inf_{\nu\in\mathcal{P}(X),\,\nu(A)=1}H(\nu|\mu). (2.6)
Lemma 2.8.

Let (μn)n(\mu_{n})_{n\in\mathbb{N}} be a sequence of probability measures over 𝕋dN\mathbb{T}^{dN} with densities converging weakly in L1L^{1} to the probability measure μ\mu. We also suppose that (An)n(A_{n})_{n\in\mathbb{N}} is an increasing sequence of subsets of 𝕋dN\mathbb{T}^{dN} converging to a set AA. Then, limnμn(An)=μ(A)\lim_{n}\mu_{n}(A_{n})=\mu(A).

3. Proofs of the main results

3.1. Proof of Theorem 1.1

To prove Theorem 1.1, we are going to need the following variational lower bound for (0,K)(0,K)-entropy solutions.

Proposition 3.1.

Let the hypotheses of Theorem 1.1 hold. Let ρN\rho^{N} be an entropy solution of (1.2) in the sense of Definition 2.2 and AA an open subset of 𝕋dN\mathbb{T}^{dN}. Then, the following inequality holds

1NlogρTN(A)inf𝜶,f:fT(A)=1{1NH(f0|ρ0N)+14Ni=1N0T𝕋d|αi(t,𝒙)|2𝑑ft(𝒙)𝑑t},-\frac{1}{N}\log\rho^{N}_{T}(A)\geq\inf_{\bm{\alpha},f:f_{T}(A)=1}\bigg{\{}\frac{1}{N}H(f_{0}|\rho_{0}^{N})+\frac{1}{4N}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{d}}|\alpha^{i}(t,\bm{x})|^{2}df_{t}(\bm{x})dt\bigg{\}}, (3.1)

where the infimum is taken over all fC([0,T];𝒫(𝕋d))f\in C([0,T];\mathcal{P}(\mathbb{T}^{d})) and 𝛂=(α1,,αN):[0,T]×𝕋dNdN\bm{\alpha}=(\alpha^{1},...,\alpha^{N}):[0,T]\times\mathbb{T}^{dN}\rightarrow\mathbb{R}^{dN} such that ff is a (𝛂,K)(\bm{\alpha},K)-entropy solutions in the sene of Definition 2.2.

Proof.

We give the proof only when F=0F=0 for simplicity, because the proof with F0F\neq 0 is the same but more notationally cumbersome.

Step 1 (KK is smooth and terminal condition is mollified). Assume that KK is smooth. We consider the function GG with G(x)=0G(x)=0 if xAx\in A and G(x)=+G(x)=+\infty if xAcx\in A^{c}, and, for δ(0,1)\delta\in(0,1), let GδG_{\delta} be a smooth function such that Gδ(x)=0G_{\delta}(x)=0 on AA and 2δGδ(x)>1/δ\frac{2}{\delta}\geq G_{\delta}(x)>1/\delta if dist(A)>δ\text{dist}(A)>\delta.

Since KK is assumed to be smooth, (1.1) is strongly uniquely solvable, therefore we can consider its solution 𝐗N{\bf X}_{\cdot}^{N} and its law (under \mathbb{P}) (𝐗N)\mathcal{L}({\bf X}_{\cdot}^{N}) in the path space 𝒞([0,T];𝕋dN)\mathcal{C}([0,T];\mathbb{T}^{dN}). By using Lemma 2.7 and Girsanov’s Theorem as in the proof of Theorem 4.1 of [BD98]444The only difference is that we have a random initial condition, which leads to the additional term in the right-hand side of (3.1), and the fact that we work on the torus, which is no problem because a version of (3.1) on the torus easily follows from the corresponding version on d\mathbb{R}^{d}. , we have

1Nlog𝔼[eGδ(XT)]\displaystyle-\frac{1}{N}\log\mathbb{E}\bigg{[}e^{-G_{\delta}(X_{T})}\bigg{]} =1NinfQ(𝐗){H(Q|(𝐗))+𝒞([0,T];𝕋dN)Gδ(ωT)𝑑Q(ω)}\displaystyle=\frac{1}{N}\inf_{Q\ll\mathcal{L}({\bf X}_{\cdot})}\bigg{\{}H(Q|\mathcal{L}({\bf X}_{\cdot}))+\int_{\mathcal{C}([0,T];\mathbb{T}^{dN})}G_{\delta}(\omega_{T})dQ(\omega)\bigg{\}}
=1Ninf𝜶,𝒀{H((𝒀0)|(𝑿0))+𝔼[14i=1N0T|αti|2𝑑t+Gδ(𝒀T)]},\displaystyle=\frac{1}{N}\inf_{\bm{\alpha},\bm{Y}}\bigg{\{}H\big{(}\mathcal{L}(\bm{Y}_{0})|\mathcal{L}(\bm{X}_{0})\big{)}+\mathbb{E}\Big{[}\frac{1}{4}\sum_{i=1}^{N}\int_{0}^{T}|\alpha_{t}^{i}|^{2}dt+G_{\delta}(\bm{Y}_{T})\Big{]}\bigg{\}}, (3.2)

where the second infimum is taken over all pairs consisting of a square-integrable adapted dN\mathbb{R}^{dN}-valued process 𝜶=(α1,,αN)\bm{\alpha}=(\alpha^{1},...,\alpha^{N}) and a continuous process 𝒀\bm{Y} satisfying

dYti=(αti+1NkiK(YtiYtj))dt+2dWti,i=1,,N.\displaystyle dY_{t}^{i}=\bigg{(}\alpha_{t}^{i}+\frac{1}{N}\sum_{k\neq i}K(Y_{t}^{i}-Y_{t}^{j})\bigg{)}dt+\sqrt{2}dW_{t}^{i},\quad i=1,...,N.

Furthermore, by the mimicking theorem [BS13, Corollary 3.7], for any such (𝜶,𝒀)(\bm{\alpha},\bm{Y}), there exists a measurable function 𝜶=(α1,,αN):[0,T]×𝕋dNdN\bm{\alpha}=(\alpha^{1},...,\alpha^{N}):[0,T]\times\mathbb{T}^{dN}\rightarrow\mathbb{R}^{dN} and a process 𝒀~\tilde{\bm{Y}} such that 𝒀~\tilde{\bm{Y}} is a weak solution of

dY~ti=(αi(t,𝒀~t)+1NjiK(Y~tiY~tj))dt+2dWti,i=1,,N,\displaystyle d\tilde{Y}_{t}^{i}=\bigg{(}\alpha^{i}(t,\tilde{\bm{Y}}_{t})+\frac{1}{N}\sum_{j\neq i}K(\tilde{Y}_{t}^{i}-\tilde{Y}_{t}^{j})\bigg{)}dt+\sqrt{2}dW_{t}^{i},\quad i=1,...,N,

𝔼[0T|αi(t,𝒀~t)|2𝑑t]𝔼[0T|αti|2𝑑t]\mathbb{E}\Big{[}\int_{0}^{T}|\alpha^{i}(t,\tilde{\bm{Y}}_{t})|^{2}dt\Big{]}\leq\mathbb{E}\Big{[}\int_{0}^{T}|\alpha_{t}^{i}|^{2}dt\Big{]}, and for any t[0,T]t\in[0,T], (Y~t)=(Yt)\mathcal{L}(\tilde{Y}_{t})=\mathcal{L}(Y_{t}). Moreover, it is clear that for any such 𝒀~\tilde{\bm{Y}}, its law ft=(𝒀~t)f_{t}=\mathcal{L}(\tilde{\bm{Y}}_{t}) must be a weak solution of (1.2). Combining the last observations, we deduce that

1Nlog𝔼[eGδ(𝐗T)]1Ninf𝜶,f{H(f0|ρ0N)+14i=1N0T𝕋dN|αi(t,𝒙)|2𝑑ft(𝒙)𝑑t+𝕋dNGδ(𝒙)𝑑fT(𝒙)}\displaystyle-\frac{1}{N}\log\mathbb{E}\bigg{[}e^{-G_{\delta}({\bf X}_{T})}\bigg{]}\geq\frac{1}{N}\inf_{\bm{\alpha},f}\bigg{\{}H(f_{0}|\rho^{N}_{0})+\frac{1}{4}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i}(t,\bm{x})|^{2}df_{t}(\bm{x})dt+\int_{\mathbb{T}^{dN}}G_{\delta}(\bm{x})df_{T}(\bm{x})\bigg{\}} (3.3)

where the infimum is over pairs (𝜶,f)(\bm{\alpha},f) such that ff is a weak solution of (1.7).

Our next goal is to argue that we can restrict the infimum in (3.3) to smooth solutions of (1.7). For this, we note that by considering the infimum in (3.3) first with respect to f0f_{0} and then with respect to 𝜶\bm{\alpha}, we see that we have

1Nlog𝔼[eGδ(𝐗T)]=1Ninff0ρ0N{H(f0|ρ0N)+𝕋dNVδ(𝒙)𝑑f0(𝒙)},\displaystyle-\frac{1}{N}\log\mathbb{E}\bigg{[}e^{-G_{\delta}({\bf X}_{T})}\bigg{]}=\frac{1}{N}\inf_{f_{0}\ll\rho_{0}^{N}}\bigg{\{}H(f_{0}|\rho^{N}_{0})+\int_{\mathbb{T}^{dN}}V^{\delta}(\bm{x})df_{0}(\bm{x})\bigg{\}}, (3.4)

with Vδ(𝒙)V^{\delta}(\bm{x}) being the value function of a standard stochastic control problem, and in particular Vδ(𝒙)=uδ(0,𝒙)V^{\delta}(\bm{x})=u^{\delta}(0,\bm{x}), where uδu^{\delta} solves

uδΔuδ+|D𝒙uδ|2+1Ni=1NjiK(xixj)Dxiuδ=0,(t,𝒙)[0,T)×𝕋dN-\partial u^{\delta}-\Delta u^{\delta}+|D_{\bm{x}}u^{\delta}|^{2}+\frac{1}{N}\sum_{i=1}^{N}\sum_{j\neq i}K(x^{i}-x^{j})\cdot D_{x^{i}}u^{\delta}=0,\quad(t,\bm{x})\in[0,T)\times\mathbb{T}^{dN} (3.5)

with terminal conditions uδ(T,𝒙)=Gδ(𝒙)u^{\delta}(T,\bm{x})=G_{\delta}(\bm{x}). Moreover, the theory of stochastic control also tells us that the optimal feedback 𝜶\bm{\alpha} in (3.3) is independent of ff, and takes the form αδ,i(t,𝒙)=2Dxiuδ(t,𝒙)\alpha^{\delta,i}(t,\bm{x})=-2D_{x^{i}}u^{\delta}(t,\bm{x}). By parabolic regularity and the smoothness of KK and GδG_{\delta}, VδV^{\delta} and αδ,i\alpha^{\delta,i} are smooth. In particular, f0Vδ(𝒙)𝑑f0(𝒙)f_{0}\mapsto\int V^{\delta}(\bm{x})df_{0}(\bm{x}) is continuous, so for any ϵ>0\epsilon>0, the minimization problem (3.4) admits a smooth ϵ\epsilon-minimizer f0ϵf_{0}^{\epsilon}. If fϵf^{\epsilon} is the weak solution of (1.7) driven by KK and 𝜶δ\bm{\alpha}^{\delta} and starting from f0ϵf_{0}^{\epsilon}, we deduce that (𝜶δ,fϵ)(\bm{\alpha}^{\delta},f^{\epsilon}) is a smooth ϵ\epsilon-minimizer for the infimum in (3.3). In particular, this shows that (3.3) remains true when the infimum in the right-hand side is restricted to pairs (𝜶,f)(\bm{\alpha},f) such that 𝜶\bm{\alpha} is smooth and ff is a classical (hence entropy) solution of (1.7).

Step 2 (KK is smooth): The goal in this step is to take δ0\delta\to 0 in (3.3). By the previous step, we can find for each δ>0\delta>0 a pair (𝜶δ,fδ)(\bm{\alpha}^{\delta},f^{\delta}) such that 𝜶δ\bm{\alpha}^{\delta} is smooth, fδf^{\delta} is a classical solution of (1.7) and

1Nlog𝔼[eGδ(𝐗T)]1NH(f0δ|ρ0N)+14Ni=1N0T𝕋dN|αi,δ(t,𝒙)|2𝑑ftδ(𝒙)𝑑t+1N𝕋dNGδ(𝐱)𝑑fTδ(𝒙)δ.\displaystyle-\frac{1}{N}\log\mathbb{E}\bigg{[}e^{-G_{\delta}({\bf X}_{T})}\bigg{]}\geq\frac{1}{N}H(f_{0}^{\delta}|\rho^{N}_{0})+\frac{1}{4N}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i,\delta}(t,\bm{x})|^{2}df^{\delta}_{t}(\bm{x})dt+\frac{1}{N}\int_{\mathbb{T}^{dN}}G_{\delta}({\bf x})df_{T}^{\delta}(\bm{x})-\delta. (3.6)

Using (2.1) and applying Cauchy-Schwartz, it follows that

H(ftδ)+\displaystyle H(f^{\delta}_{t})+ 0tI(fsδ)𝑑si,j=1N1N(0t𝕋dN|Dxifδ|2fδ𝑑𝒙𝑑s)1/2(0t𝕋dN|V(xixj)|2𝑑fδ(𝒙)𝑑s)1/2\displaystyle\int_{0}^{t}I(f^{\delta}_{s})ds\leq\sum_{i,j=1}^{N}\frac{1}{N}\bigg{(}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\frac{|D_{x^{i}}f^{\delta}|^{2}}{f^{\delta}}d\bm{x}ds\bigg{)}^{1/2}\bigg{(}\int_{0}^{t}\int_{\mathbb{T}^{dN}}|V(x^{i}-x^{j})|^{2}df^{\delta}(\bm{x})ds\bigg{)}^{1/2}
+H(f0δ)+i=1N(0t𝕋dN|Dxifδ|2fδ𝑑𝒙𝑑s)1/2(0t𝕋dN|αi,δ(t,𝒙)|2𝑑ftδ(𝒙)𝑑t)1/2.\displaystyle+H(f_{0}^{\delta})+\sum_{i=1}^{N}\bigg{(}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\frac{|D_{x^{i}}f^{\delta}|^{2}}{f^{\delta}}d\bm{x}ds\bigg{)}^{1/2}\bigg{(}\int_{0}^{t}\int_{\mathbb{T}^{dN}}|\alpha^{i,\delta}(t,\bm{x})|^{2}df_{t}^{\delta}(\bm{x})dt\bigg{)}^{1/2}. (3.7)

However, GδG_{\delta} converges to GG, so by the bounded convergence theorem, the left hand side of (3.6) converges and it is, therefore, bounded. Since H(f0δ|ρ0N)H(f_{0}^{\delta}|\rho_{0}^{N}), GδG_{\delta} and 1Ni=1N0t𝕋dN|αi,δ(t,𝒙)|2𝑑ftδ(𝒙)𝑑t\frac{1}{N}\sum_{i=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}|\alpha^{i,\delta}(t,\bm{x})|^{2}df_{t}^{\delta}(\bm{x})dt are nonnegative, this implies that the terms on the right hand side of (3.6) are also uniformly bounded (independently of δ\delta). Since H(f0δ|ρ0N)H(f_{0}^{\delta}|\rho^{N}_{0}) is uniformly bounded, due to the upper bound of ρ0N\rho^{N}_{0}, we also get that H(f0δ)H(f_{0}^{\delta}) is uniformly bounded. Combining these facts with VLV\in L^{\infty}, we find that there exist constants C1,C2C_{1},C_{2} with C2>0C_{2}>0, which are independent of δ\delta, such that (3.1) becomes

C1+0t𝕋dN|Dxifδ|2fδ𝑑𝒙𝑑sC2(0t𝕋dN|Dxifδ|2fδ𝑑𝒙𝑑s)1/2.C_{1}+\int_{0}^{t}\int_{\mathbb{T}^{dN}}\frac{|D_{x^{i}}f^{\delta}|^{2}}{f^{\delta}}d\bm{x}ds\leq C_{2}\bigg{(}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\frac{|D_{x^{i}}f^{\delta}|^{2}}{f^{\delta}}d\bm{x}ds\bigg{)}^{1/2}.

This clearly implies that 0t𝕋dN|Dxifδ|2fδ𝑑𝒙𝑑s\int_{0}^{t}\int_{\mathbb{T}^{dN}}\frac{|D_{x^{i}}f^{\delta}|^{2}}{f^{\delta}}d\bm{x}ds, i=1,,Ni=1,...,N, are also uniformly bounded.

We can, now, apply Proposition 2.5 in various ways. By virtue of the uniform boundness of 0T𝕋dN|Dxifδ|2fδ𝑑𝒙𝑑s\int_{0}^{T}\int_{\mathbb{T}^{dN}}\frac{|D_{x^{i}}f^{\delta}|^{2}}{f^{\delta}}d\bm{x}ds, 0T𝕋dN|αi,δ(t,𝒙)|2𝑑ftδ(𝒙)𝑑t\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i,\delta}(t,\bm{x})|^{2}df_{t}^{\delta}(\bm{x})dt, we get that as δ0\delta\rightarrow 0, up to subsequences

fδf\displaystyle f^{\delta}\rightarrow f\;\; in 𝒞([0,T];𝒫(𝕋dN)),\displaystyle\text{ in }\mathcal{C}([0,T];\mathcal{P}(\mathbb{T}^{dN})), (3.8)
αi,δfδαif,DxifδDxif\displaystyle\alpha^{i,\delta}f^{\delta}\rightarrow\alpha^{i}f,\,\,D_{x^{i}}f^{\delta}\rightarrow D_{x^{i}}f\;\; in ([0,t]×𝕋dN;dN),i=1,,N,t(0,T]\displaystyle\text{ in }\mathcal{M}([0,t]\times\mathbb{T}^{dN};\mathbb{R}^{dN}),\;i=1,...,N,\;\;t\in(0,T] (3.9)

In addition, by (3.1), we derive that H(ftδ)H(f^{\delta}_{t}) is uniformly bounded independently of tt, so 0TH(fδ(t))𝑑t\int_{0}^{T}H(f^{\delta}(t))dt is uniformly bounded. The Vallée–Poussin theorem [BR07, Theorem 4.5.9] implies that fδf^{\delta} is uniformly integrable over [0,T]×𝕋dN[0,T]\times\mathbb{T}^{dN}, hence by the Dunford-Pettis theorem [BR07, Theorem 4.7.18], the convergence in (3.8) also holds weakly (again up to subsequences):

fδf\displaystyle f^{\delta}\rightarrow f in 𝒞([0,T];𝒫(𝕋dN)) and weakly in L1([0,T]×𝕋dN),\displaystyle\text{ in }\mathcal{C}([0,T];\mathcal{P}(\mathbb{T}^{dN}))\text{ and weakly in }L^{1}([0,T]\times\mathbb{T}^{dN}), (3.10)
f0δf0 and fTδfT weakly in L1(𝕋dN).\displaystyle f_{0}^{\delta}\rightarrow f_{0}\text{ and }f_{T}^{\delta}\rightarrow f_{T}\text{ weakly in }L^{1}(\mathbb{T}^{dN}). (3.11)

We now pass to the limit δ0\delta\rightarrow 0 in (3.6). By the weak convergence of f0δf_{0}^{\delta}, the weak lower semicontinuity of the relative entropy, Proposition 2.5 and the nonnegativity of GδG_{\delta} we deduce

1NlogρTN(A)=1Nlog𝔼[eG(XT)]H(f0|ρ0N)+14Ni=1N0T𝕋dN|αi(t,𝒙)|2𝑑ft(𝒙)𝑑t,-\frac{1}{N}\log\rho^{N}_{T}(A)=-\frac{1}{N}\log\mathbb{E}\bigg{[}e^{-G(X_{T})}\bigg{]}\geq H(f_{0}|\rho^{N}_{0})+\frac{1}{4N}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i}(t,\bm{x})|^{2}df_{t}(\bm{x})dt, (3.12)

hence in order to prove (3.1), it suffices to show that (f,α)(f,\alpha) is an admissible candidate for the infimum on its right hand side.

We will start by showing that fT(A)=1f_{T}(A)=1 or, equivalently, fT(Ac)=0f_{T}(A^{c})=0. Indeed, the family of sets Aδ={x𝕋dN:Gδ(x)2δ}A_{\delta}=\{x\in\mathbb{T}^{dN}:G_{\delta}(x)\geq\frac{2}{\delta}\} is increasing and converges to AcA^{c} as δ0\delta\rightarrow 0. We have by Markov’s inequality fTδ(Aδ)δ2𝕋dNGδ(𝒙)𝑑fTδ(𝒙)f_{T}^{\delta}(A_{\delta})\leq\frac{\delta}{2}\int_{\mathbb{T}^{dN}}G_{\delta}(\bm{x})df_{T}^{\delta}(\bm{x}), thus limδ0fTδ(Aδ)0,\lim_{\delta\rightarrow 0}f_{T}^{\delta}(A_{\delta})\leq 0, because 𝕋dNGδ(𝒙)𝑑fTδ(𝒙)\int_{\mathbb{T}^{dN}}G_{\delta}(\bm{x})df_{T}^{\delta}(\bm{x}) is uniformly bounded. But since AδA_{\delta} is increasing and fTδf_{T}^{\delta} converges weakly in L1L^{1} to fTf_{T}, Lemma 2.8 and the last inequality imply fT(Ac)=0f_{T}(A^{c})=0, which is what we wanted.

We now prove that ff is an (𝜶,0,K)(\bm{\alpha},0,K)-entropy solution. It is straightforward to check that the limit (f,𝜶)(f,\bm{\alpha}) satisfies (1.7) in the weak sense. Thus, it is an admissible candidate for the first infimum in (3.3), hence

H(f0|ρ0N)+14i=1N0T𝕋dN\displaystyle H(f_{0}|\rho^{N}_{0})+\frac{1}{4}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}} |αi(t,𝒙)|2dft(𝒙)dt+𝕋dNGδ(𝒙)𝑑fT(𝒙)+δ\displaystyle|\alpha^{i}(t,\bm{x})|^{2}df_{t}(\bm{x})dt+\int_{\mathbb{T}^{dN}}G_{\delta}(\bm{x})df_{T}(\bm{x})+\delta
H(f0δ|ρ0N)+14i=1N0T𝕋dN|αi,δ(t,𝒙)|2𝑑ftδ(𝒙)𝑑t+𝕋dNGδ(𝒙)𝑑fTδ(𝒙)\displaystyle\geq H(f_{0}^{\delta}|\rho^{N}_{0})+\frac{1}{4}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i,\delta}(t,\bm{x})|^{2}df^{\delta}_{t}(\bm{x})dt+\int_{\mathbb{T}^{dN}}G_{\delta}(\bm{x})df^{\delta}_{T}(\bm{x})

We pass to the limit as δ0\delta\rightarrow 0 and by the weak lower semi-continuity of the entropy, Proposition 2.5 and the fact that fTf_{T} is supported on AA, we get

H(f0|ρ0N)+14i=1N0T\displaystyle H(f_{0}|\rho^{N}_{0})+\frac{1}{4}\sum_{i=1}^{N}\int_{0}^{T} 𝕋dN|αi(t,𝒙)|2𝑑ft(𝒙)𝑑tlim infδ0(H(f0δ|ρ0N)+14i=1N0T𝕋dN|αi,δ(t,𝒙)|2𝑑ftδ(𝒙)𝑑t)\displaystyle\int_{\mathbb{T}^{dN}}|\alpha^{i}(t,\bm{x})|^{2}df_{t}(\bm{x})dt\geq\liminf_{\delta\rightarrow 0}\bigg{(}H(f_{0}^{\delta}|\rho^{N}_{0})+\frac{1}{4}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i,\delta}(t,\bm{x})|^{2}df^{\delta}_{t}(\bm{x})dt\bigg{)}
lim infδ0H(f0δ|ρ0N)+lim infδ014i=1N0T𝕋dN|αi,δ(t,𝒙)|2𝑑ftδ(𝒙)𝑑t\displaystyle\geq\liminf_{\delta\rightarrow 0}H(f_{0}^{\delta}|\rho^{N}_{0})+\liminf_{\delta\rightarrow 0}\frac{1}{4}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i,\delta}(t,\bm{x})|^{2}df^{\delta}_{t}(\bm{x})dt
H(f0|ρ0N)+14i=1N0T𝕋dN|αi(t,𝒙)|2𝑑ft(𝒙)𝑑t.\displaystyle\geq H(f_{0}|\rho^{N}_{0})+\frac{1}{4}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i}(t,\bm{x})|^{2}df_{t}(\bm{x})dt.

We deduce that

lim infδ0H(f0δ|ρ0N)\displaystyle\liminf_{\delta\rightarrow 0}H(f_{0}^{\delta}|\rho^{N}_{0}) =H(f0|ρ0N)\displaystyle=H(f_{0}|\rho^{N}_{0}) (3.13)
lim infδ014i=1N0T𝕋dN|αi,δ(t,𝒙)|2𝑑ftδ(𝒙)𝑑t\displaystyle\liminf_{\delta\rightarrow 0}\frac{1}{4}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i,\delta}(t,\bm{x})|^{2}df^{\delta}_{t}(\bm{x})dt =14i=1N0T𝕋dN|αi(t,𝒙)|2𝑑ft(𝒙)𝑑t.\displaystyle=\frac{1}{4}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i}(t,\bm{x})|^{2}df_{t}(\bm{x})dt. (3.14)

Since fδf^{\delta} is a smooth (𝜶δ,K)(\bm{\alpha}^{\delta},K)-entropy solution, (2.1) holds for every t[0,T]t\in[0,T] and can be rewritten as

H(f0δ)+12i=1N\displaystyle H(f_{0}^{\delta})+\frac{1}{2}\sum_{i=1}^{N} 0T𝕋dN|αi,δ(s,𝒙)|2𝑑fsδ(𝒙)𝑑s+1Ni,j=1N0t𝕋dNV(xixj)Dxifδ(s,𝒙)𝑑𝒙𝑑s\displaystyle\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i,\delta}(s,\bm{x})|^{2}df_{s}^{\delta}(\bm{x})ds+\frac{1}{N}\sum_{i,j=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}V(x^{i}-x^{j})\cdot D_{x^{i}}f^{\delta}(s,\bm{x})d\bm{x}ds
12i=1NtT𝕋dN|αi,δ(s,𝒙)|2𝑑fsδ(𝒙)𝑑s+12i=1N0t𝕋dN|αi,δ(s,𝒙)Dxifδfδ|2𝑑fsδ(𝒙)𝑑s\displaystyle\geq\frac{1}{2}\sum_{i=1}^{N}\int_{t}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i,\delta}(s,\bm{x})|^{2}df_{s}^{\delta}(\bm{x})ds+\frac{1}{2}\sum_{i=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\bigg{|}\alpha^{i,\delta}(s,\bm{x})-\frac{D_{x^{i}}f^{\delta}}{f^{\delta}}\bigg{|}^{2}df^{\delta}_{s}(\bm{x})ds
+H(ftδ)+12i=1N0t𝕋dN|Dxifδ|2fδ𝑑𝒙𝑑s.\displaystyle\quad+H(f^{\delta}_{t})+\frac{1}{2}\sum_{i=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\frac{|D_{x^{i}}f^{\delta}|^{2}}{f^{\delta}}d\bm{x}ds. (3.15)

We observe that since H(ftδ)H(f_{t}^{\delta}) is uniformly bounded, by passing to a further subsequence if necessary, we get ftδftf_{t}^{\delta}\rightarrow f_{t} weakly in L1(𝕋dN)L^{1}(\mathbb{T}^{dN}). Due to the lower semi-continuity of the entropy, Proposition 2.5 and the remark after Proposition 2.5, we get that the lim infδ0\liminf_{\delta\rightarrow 0} of the right hand side of (3.15) is at least

H(ft)+\displaystyle H(f_{t})+ 12i=1N0t𝕋dN|αi(s,𝒙)Dxiff|2𝑑fs(𝒙)𝑑s\displaystyle\frac{1}{2}\sum_{i=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\bigg{|}\alpha^{i}(s,\bm{x})-\frac{D_{x^{i}}f}{f}\bigg{|}^{2}df_{s}(\bm{x})ds
+12i=1NtT𝕋dN|αi(s,𝒙)|2𝑑fs(𝒙)𝑑s+12i=1N0t𝕋dN|Dxif|2f𝑑𝒙𝑑s.\displaystyle+\frac{1}{2}\sum_{i=1}^{N}\int_{t}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i}(s,\bm{x})|^{2}df_{s}(\bm{x})ds+\frac{1}{2}\sum_{i=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\frac{|D_{x^{i}}f|^{2}}{f}d\bm{x}ds. (3.16)

On the other hand, because of the convergences (3.9), (3.13) and (3.14), the left hand side of (3.15) converges to

H(f0)+12i=1N0T𝕋dN|αi(s,𝒙)|2𝑑fs(𝒙)𝑑s+1Ni,j=1N0t𝕋dNV(xixj)Dxif(s,𝒙)𝑑𝒙𝑑s,H(f_{0})+\frac{1}{2}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i}(s,\bm{x})|^{2}df_{s}(\bm{x})ds+\frac{1}{N}\sum_{i,j=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}V(x^{i}-x^{j})\cdot D_{x^{i}}f(s,\bm{x})d\bm{x}ds, (3.17)

so that (f,𝜶)(f,\bm{\alpha}) satisfies (2.1) for each t[0,T]t\in[0,T].

Step 3 (KLK\in L^{\infty}). Assume now that KLK\in L^{\infty}. We consider KrK^{r} to be a family of mollifications of KK. For any r>0r>0, by step 2, (3.1) holds when K=KrK=K^{r}. We denote by VrV_{r} the right-hand side of (3.1) with KK replaced by KrK^{r}; so that 1NlogρTN,r(A)Vr-\frac{1}{N}\log\rho_{T}^{N,r}(A)\geq V_{r}. We wish to show that 1NlogρTN(A)V0-\frac{1}{N}\log\rho_{T}^{N}(A)\geq V_{0}. Of course if ρTN(A)=0\rho_{T}^{N}(A)=0, this is trivial, so we may assume that ρTN(A)>0\rho_{T}^{N}(A)>0.

Note that since lim infr0ρTN,r(A)ρTN(A)>0\liminf_{r\rightarrow 0}\rho_{T}^{N,r}(A)\geq\rho_{T}^{N}(A)>0, the set {Vr|r(0,1)}\{V_{r}|r\in(0,1)\} is bounded. Set

K~i,r(𝒙)=1NjiNKr(xixj) and K~i(𝒙)=1NjiNK(xixj).\tilde{K}^{i,r}(\bm{x})=\frac{1}{N}\sum_{j\neq i}^{N}K^{r}(x^{i}-x^{j})\text{ and }\tilde{K}^{i}(\bm{x})=\frac{1}{N}\sum_{j\neq i}^{N}K(x^{i}-x^{j}).

Then, for (𝜶r,fr)(\bm{\alpha}^{r},f^{r}) an rr-minimizer for VrV_{r} we have

Vr\displaystyle V_{r} HN(f0r|ρ0N)+14Ni=1N0T𝕋dN|αi,r(t,𝒙)|2𝑑ftr(𝒙)𝑑tr\displaystyle\geq H_{N}(f_{0}^{r}|\rho_{0}^{N})+\frac{1}{4N}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i,r}(t,\bm{x})|^{2}df_{t}^{r}(\bm{x})dt-r
=HN(f0r|ρ0N)+14Ni=1N0T𝕋dN|αi,r(t,𝒙)+K~i,r(𝒙)K~i(𝒙)|2𝑑ftr(𝒙)𝑑t\displaystyle=H_{N}(f_{0}^{r}|\rho_{0}^{N})+\frac{1}{4N}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i,r}(t,\bm{x})+\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x})|^{2}df_{t}^{r}(\bm{x})dt
14Ni=1N0T𝕋dN|K~i,r(𝒙)K~i(𝒙)|2𝑑ftr(𝒙)𝑑t12Ni=1N0T𝕋dNαi,r(t,𝒙)(K~i,r(𝒙)K~i(𝒙))𝑑ftr(𝒙)𝑑t.\displaystyle\hbox{}\;-\frac{1}{4N}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x})|^{2}df_{t}^{r}(\bm{x})dt-\frac{1}{2N}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{dN}}\alpha^{i,r}(t,\bm{x})\cdot(\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x}))df_{t}^{r}(\bm{x})dt.

On the one hand, since VrV_{r} is uniformly bounded, this implies

supr(0,1)HN(f0r|ρ0N)+14Ni=1Nsupr(0,1)0T𝕋dN|αi,r(t,𝒙)|2𝑑ftr(𝒙)𝑑t<.\sup_{r\in(0,1)}H_{N}(f_{0}^{r}|\rho_{0}^{N})+\frac{1}{4N}\sum_{i=1}^{N}\sup_{r\in(0,1)}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i,r}(t,\bm{x})|^{2}df_{t}^{r}(\bm{x})dt<\infty. (3.18)

We note that due to the fact that frf^{r} is an (𝜶r,Kr)(\bm{\alpha}^{r},K^{r})-entropy solution, KrLKL\|K^{r}\|_{L^{\infty}}\leq\|K\|_{L^{\infty}} and (3.18), an argument as in Step 1 yields

supt[0,T]supr(0,1)H(ftr)<.\sup_{t\in[0,T]}\sup_{r\in(0,1)}H(f^{r}_{t})<\infty. (3.19)

On the other hand, by Remark 2.3, frf^{r} is an (𝜶r+K~rK~,K)(\bm{\alpha}^{r}+\tilde{K}^{r}-\tilde{K},K)-entropy solution, therefore

VrV0+14Ni=1N(0T𝕋dN|K~i,r(𝒙)K~i(𝒙)|2𝑑ftr(𝒙)𝑑t20T𝕋dNαi,r(t,𝒙)(K~i,r(𝒙)K~i(𝒙))𝑑ftr(𝒙)𝑑t).\displaystyle V_{r}\geq V_{0}+\frac{1}{4N}\sum_{i=1}^{N}\bigg{(}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x})|^{2}df_{t}^{r}(\bm{x})dt-2\int_{0}^{T}\int_{\mathbb{T}^{dN}}\alpha^{i,r}(t,\bm{x})\cdot(\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x}))df_{t}^{r}(\bm{x})dt\bigg{)}. (3.20)

To finish the proof, we will show that the integral terms in (3.20) converge to 0 as r0r\rightarrow 0. Indeed, for any M>0M>0 and i{1,..,N}i\in\{1,..,N\} we have

0T𝕋dN|K~i,r(𝒙)K~i(𝒙)|2𝑑ftr(𝒙)𝑑t=\displaystyle\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x})|^{2}df_{t}^{r}(\bm{x})dt=
0T{ftr>M}|K~i,r(𝒙)K~i(𝒙)|2𝑑ftr(𝒙)𝑑t+0T{ftrM}|K~i,r(𝒙)K~i(𝒙)|2𝑑ftr(𝒙)𝑑t\displaystyle\hskip 85.35826pt\int_{0}^{T}\int_{\{f_{t}^{r}>M\}}|\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x})|^{2}df_{t}^{r}(\bm{x})dt+\int_{0}^{T}\int_{\{f_{t}^{r}\leq M\}}|\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x})|^{2}df_{t}^{r}(\bm{x})dt
(0T{ftr>M}|K~i,r(𝒙)K~i(𝒙)|4logftr𝑑ftr(𝒙)𝑑t)1/2(0TH(ftr)𝑑t)1/2+M0T𝕋dN|K~i,r(𝒙)K~i(𝒙)|2𝑑𝒙𝑑t.\displaystyle\leq\bigg{(}\int_{0}^{T}\int_{\{f_{t}^{r}>M\}}\frac{|\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x})|^{4}}{\log f_{t}^{r}}df_{t}^{r}(\bm{x})dt\bigg{)}^{1/2}\left(\int_{0}^{T}H(f^{r}_{t})dt\right)^{1/2}+M\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x})|^{2}d\bm{x}dt.

Therefore, there exists a constant C>0C>0 depending on the bound provided by (3.19) and KL\|K\|_{L^{\infty}} such that

0T𝕋dN|K~i,r(𝒙)\displaystyle\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\tilde{K}^{i,r}(\bm{x})- K~i(𝒙)|2dftr(𝒙)dtClogM+MT𝕋dN|K~i,r(𝒙)K~i(𝒙)|2d𝒙\displaystyle\tilde{K}^{i}(\bm{x})|^{2}df_{t}^{r}(\bm{x})dt\leq\frac{C}{\sqrt{\log M}}+MT\int_{\mathbb{T}^{dN}}|\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x})|^{2}d\bm{x}

Now KLK\in L^{\infty}, so K~i,rr0K~i\tilde{K}^{i,r}\xrightarrow{r\rightarrow 0}\tilde{K}^{i} in L2L^{2}, hence by passing to the limit we discover

0lim supr00T𝕋dN|K~i,r(𝒙)K~i(𝒙)|2𝑑ftr(𝒙)𝑑tClogM0\leq\limsup_{r\rightarrow 0}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x})|^{2}df_{t}^{r}(\bm{x})dt\leq\frac{C}{\sqrt{\log M}}

and since MM was arbitrary, we get

limr00T𝕋dN|K~i,r(𝒙)K~i(𝒙)|2𝑑ftr(𝒙)𝑑t=0.\lim_{r\rightarrow 0}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x})|^{2}df_{t}^{r}(\bm{x})dt=0. (3.21)

We also have by Cauchy-Schwartz

|0T𝕋dNαi,r\displaystyle\bigg{|}\int_{0}^{T}\int_{\mathbb{T}^{dN}}\alpha^{i,r} (t,𝒙)(K~i,r(𝒙)K~i(𝒙))dftr(𝒙)dt|\displaystyle(t,\bm{x})\cdot(\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x}))df_{t}^{r}(\bm{x})dt\bigg{|}
(0T𝕋dN|αi,r(t,𝒙)|2𝑑ftr(𝒙)𝑑t)1/2(0T𝕋dN|K~i,r(𝒙)K~i(𝒙)|2𝑑ftr(𝒙)𝑑t)1/2.\displaystyle\leq\bigg{(}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\alpha^{i,r}(t,\bm{x})|^{2}df_{t}^{r}(\bm{x})dt\bigg{)}^{1/2}\bigg{(}\int_{0}^{T}\int_{\mathbb{T}^{dN}}|\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x})|^{2}df_{t}^{r}(\bm{x})dt\bigg{)}^{1/2}.

By (3.18) and (3.21) we get

limr00T𝕋dNαi,r(t,𝒙)(K~i,r(𝒙)K~i(𝒙))𝑑ftr(𝒙)𝑑t=0.\lim_{r\rightarrow 0}\int_{0}^{T}\int_{\mathbb{T}^{dN}}\alpha^{i,r}(t,\bm{x})\cdot(\tilde{K}^{i,r}(\bm{x})-\tilde{K}^{i}(\bm{x}))df_{t}^{r}(\bm{x})dt=0. (3.22)

Now we send rr to 0 in (3.20) and use (3.21), (3.22) to to conclude that

1NlogρTN(A)1Nlim supr0logρTN,r(A)lim supr0VrV0.\displaystyle-\frac{1}{N}\log\rho^{N}_{T}(A)\geq-\frac{1}{N}\limsup_{r\rightarrow 0}\log\rho_{T}^{N,r}(A)\geq\limsup_{r\rightarrow 0}V_{r}\geq V_{0}.

Proof of Theorem 1.1.

The first step will be to reinterpret [FG15, Theorem 2] in a convenient way. If we specialize this result to the torus, we find that for each pp there is a constant C1C\geq 1 depending only on pp and dd such that whenever X1,X2,X^{1},X^{2},... are i.i.d. 𝕋d\mathbb{T}^{d}-valued random variables with common law mm, we have [𝐝p(m𝑿N,m)>ϵ]Cexp(ap(ϵ)NC).\mathbb{P}\Big{[}{\bf d}_{p}(m_{\bm{X}}^{N},m)>\epsilon\Big{]}\leq C\exp(-\frac{a_{p}(\epsilon)N}{C}). In other words,

1Nlog[𝐝p(m𝑿N,m)>ϵ]ap(x)Clog(C)/N.\displaystyle-\frac{1}{N}\log\mathbb{P}\Big{[}{\bf d}_{p}(m_{\bm{X}}^{N},m)>\epsilon\Big{]}\geq\frac{a_{p}(x)}{C}-\log(C)/N.

Recalling the variational formula (2.6) from Lemma 2.7, we find that the implication

1NH(Q|mN)<ap(ϵ)Clog(C)/NQ(AN,ϵm,p)<1\displaystyle\frac{1}{N}H(Q|m^{\otimes N})<\frac{a_{p}(\epsilon)}{C}-\log(C)/N\implies Q(A^{m,p}_{N,\epsilon})<1 (3.23)

holds for Q𝒫(𝕋dN)Q\in\mathcal{P}(\mathbb{T}^{dN}), where AN,ϵm,p={𝒙(𝕋d)N|𝐝p(m𝒙N,m)>ϵ}A^{m,p}_{N,\epsilon}=\Big{\{}\bm{x}\in(\mathbb{T}^{d})^{N}\Big{|}{\bf d}_{p}(m_{\bm{x}}^{N},m)>\epsilon\Big{\}}.

We are now going to combine (3.23) with Proposition 3.1 to complete the proof. Suppose that we have a pair fNf^{N} and 𝜶\bm{\alpha} such that fNf^{N} is an entropy solution of (1.7). Suppose further that

HN(f0N|ρ¯0N)+14Ni=1N0T𝕋d|αi(t,𝒙)|2𝑑ftN(𝒙)𝑑t<ap(ϵ)Ccon,plogCcon,pN.\displaystyle H_{N}(f^{N}_{0}|\overline{\rho}^{N}_{0})+\frac{1}{4N}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{d}}|\alpha^{i}(t,\bm{x})|^{2}df^{N}_{t}(\bm{x})dt<\frac{a_{p}(\epsilon)}{C_{\text{con,p}}}-\frac{\log{C_{\text{con,p}}}}{N}.

holds for some Ccon,p>0C_{\text{con,p}}>0. By assumption, it follows that

HN(fTN|ρ¯TN)Cent(1N+ap(ϵ)/Ccon,plogCcon,p/N)=CentCcon,pap(ϵ)CentlogCcon,pCentN.\displaystyle H_{N}(f^{N}_{T}|\overline{\rho}^{N}_{T})\leq C_{\text{ent}}\bigg{(}\frac{1}{N}+a_{p}(\epsilon)/C_{\text{con,p}}-\log C_{\text{con,p}}/N\bigg{)}=\frac{C_{\text{ent}}}{C_{\text{con,p}}}a_{p}(\epsilon)-\frac{C_{\text{ent}}\log C_{\text{con,p}}-C_{\text{ent}}}{N}.

Some simple algebra shows that if Ccon,p>max{CCent,eC}C_{\text{con,p}}>\max\{CC_{\text{ent}},eC\}, then (here we use Cent1C_{\text{ent}}\geq 1)

CentCcon,pap(ϵ)CentlogCcon,pCentNCap(ϵ)log(C)/N.\displaystyle\frac{C_{\text{ent}}}{C_{\text{con,p}}}a_{p}(\epsilon)-\frac{C_{\text{ent}}\log C_{\text{con,p}}-C_{\text{ent}}}{N}\leq Ca_{p}(\epsilon)-\log(C)/N.

In particular, setting Ccon,p=eCCentC_{\text{con,p}}=eCC_{\text{ent}} (i.e. Ccon,p=CdCentC_{\text{con,p}}=C_{d}C_{\text{ent}} with Ccon,p=eC)C_{\text{con,p}}=eC), and applying (3.23), we find that we have the implication

HN(f0N\displaystyle H_{N}(f^{N}_{0} |ρ¯0N)+14Ni=1N0T𝕋d|αi(t,𝒙)|2dfNt(𝒙)dt<ap(ϵ)Ccon,plogCcon,p/N\displaystyle|\overline{\rho}^{N}_{0})+\frac{1}{4N}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{d}}|\alpha^{i}(t,\bm{x})|^{2}df^{N}_{t}(\bm{x})dt<\frac{a_{p}(\epsilon)}{C_{\text{con,p}}}-\log{C_{\text{con,p}}}/N
HN(fTN|ρ¯TN)ap(ϵ)Clog(C)/NfTN(AN,ϵ)<1.\displaystyle\implies H_{N}(f^{N}_{T}|\overline{\rho}^{N}_{T})\leq\frac{a_{p}(\epsilon)}{C}-\log(C)/N\implies f^{N}_{T}(A_{N,\epsilon})<1.

In light of Proposition 3.1, this implies 1NlogρTN(AN,ϵ)ap(ϵ)/Ccon,plog(Ccon,p)/N-\frac{1}{N}\log\rho_{T}^{N}(A_{N,\epsilon})\geq a_{p}(\epsilon)/C_{\text{con,p}}-\log(C_{\text{con,p}})/N, or in other words ρTN(AN,ϵ)Ccon,pexp(ϵdNCcon,p).\rho_{T}^{N}(A_{N,\epsilon})\leq C_{\text{con,p}}\exp(-\frac{\epsilon^{d}N}{C_{\text{con,p}}}).

3.2. Proof of Proposition 1.6

We begin by establishing the well-posedness of (1.3).

Proposition 3.2.

Suppose Assumption 1.5 holds. Then (1.3) admits a unique classical solution, which satisfies

ρ¯Ct,x2,βC,inft,xρ¯(t,x)C1,\displaystyle\|\overline{\rho}\|_{C^{2,\beta}_{t,x}}\leq C,\quad\inf_{t,x}\overline{\rho}(t,x)\geq C^{-1},

with CC depending only TT, dd, and the constants C0C_{0} and β\beta appearing in Assumption 1.5.

Proof.

The main challenge is to obtain appropriate a-priori estimates, so we explain this point in detail and then quickly sketch the existence and uniqueness part. Thus we assume for the moment that in addition to Assumption 1.5, KK is smooth, so that we have a unique classical solution ρ¯\overline{\rho}. In what follows, CC can increase from line to line but can depend freely on the constants indicated in the statement of the proposition, and dependence on other parameters will be clearly indicated, e.g. C(p)C(p) indicates a constant which can depend on pp as well as the constants appearing in the statement of the proposition. Moreover, we let ϕ\phi be a vector field with divϕ=divK\text{div}\phi=\text{div}K and ϕ=divK1,\|\phi\|_{\infty}=\|\text{div}K\|_{-1,\infty}. First, we have by integration parts and Young’s inequality

ddtH(ρ¯t)\displaystyle\frac{d}{dt}H(\overline{\rho}_{t}) =I(ρ¯t)+𝕋dDρ¯(F+ϕρ¯)𝑑x\displaystyle=-I(\overline{\rho}_{t})+\int_{\mathbb{T}^{d}}D\overline{\rho}\cdot\big{(}F+\phi*\overline{\rho}\big{)}dx
12I(ρ¯t)+12𝕋d|F+ϕρ¯|2ρ𝑑xC(F2+divK1,2),\displaystyle\leq-\frac{1}{2}I(\overline{\rho}_{t})+\frac{1}{2}\int_{\mathbb{T}^{d}}|F+\phi*\overline{\rho}|^{2}\rho dx\leq C(\|F\|^{2}_{\infty}+\|\text{div}K\|^{2}_{-1,\infty}),

and so in particular 0TI(ρ¯t)𝑑tC\int_{0}^{T}I(\overline{\rho}_{t})dt\leq C, from which, by Cauchy-Schwartz, it follows that DρLt,x1C\|D\rho\|_{L^{1}_{t,x}}\leq C. Rewriting (1.3) in non-divergence form as

tρ¯=Δρ¯Dρ¯(Kρ)ρ¯ϕDρ¯,\displaystyle\partial_{t}\overline{\rho}=\Delta\overline{\rho}-D\overline{\rho}\cdot\big{(}K*\rho\big{)}-\overline{\rho}\phi*D\overline{\rho}, (3.24)

a standard argument using the maximum principle shows that for each (t,x)(t,x), we have

ρ¯(t,x)ρ0exp(0tϕDρ¯Lx𝑑s)ρ0exp(0tϕLDρ¯sLx1𝑑s)C,\displaystyle\overline{\rho}(t,x)\leq\|\rho_{0}\|_{\infty}\exp\Big{(}\int_{0}^{t}\|\phi*D\overline{\rho}\|_{L_{x}^{\infty}}ds\Big{)}\leq\|\rho_{0}\|_{\infty}\exp\Big{(}\int_{0}^{t}\|\phi\|_{L^{\infty}}\|D\overline{\rho}_{s}\|_{L_{x}^{1}}ds\Big{)}\leq C,

and likewise

ρ¯(t,x)infxρ0(x)exp(0tϕDρ¯Lx𝑑s)infxρ0(x)exp(0tϕLDρ¯sLx1𝑑s)C1.\displaystyle\overline{\rho}(t,x)\geq\inf_{x}\rho_{0}(x)\exp\Big{(}-\int_{0}^{t}\|\phi*D\overline{\rho}\|_{L_{x}^{\infty}}ds\Big{)}\geq\inf_{x}\rho_{0}(x)\exp\Big{(}-\int_{0}^{t}\|\phi\|_{L^{\infty}}\|D\overline{\rho}_{s}\|_{L_{x}^{1}}ds\Big{)}\geq C^{-1}.

Thus we have ρ¯LC\|\overline{\rho}\|_{L^{\infty}}\leq C, and inft,xρ¯C1\inf_{t,x}\overline{\rho}\geq C^{-1}. From here, we view (3.24) as a perturbation of the heat equation, applying the standard Calderon-Zygmund estimates and then the Gagliardo-Nirenberg interpolation inequality to get for any p<p<\infty,

ρ¯Wt,x2,p\displaystyle\left\|\overline{\rho}\right\|_{W_{t,x}^{2,p}} C(p)(ρ¯0Wx2,p+ϕDρ¯Lt,xp)C(p)(1+Dρ¯Lt,xp)\displaystyle\leq C(p)\Big{(}\|\overline{\rho}_{0}\|_{W_{x}^{2,p}}+\|\phi*D\overline{\rho}\|_{L^{p}_{t,x}}\Big{)}\leq C(p)\Big{(}1+\|D\overline{\rho}\|_{L^{p}_{t,x}}\Big{)}
C(p)(1+ρ¯Lt,xp1/2ρ¯Wt,x2,p1/2)C(p)+12ρ¯Wt,x2,p.\displaystyle\leq C(p)\Big{(}1+\|\overline{\rho}\|_{L_{t,x}^{p}}^{1/2}\|\overline{\rho}\|_{W_{t,x}^{2,p}}^{1/2}\Big{)}\leq C(p)+\frac{1}{2}\left\|\overline{\rho}\right\|_{W_{t,x}^{2,p}}.

Thus for any p<p<\infty, ρ¯Wt,x2,pC(p)\left\|\overline{\rho}\right\|_{W_{t,x}^{2,p}}\leq C(p). Choosing a large enough pp, we get by Sobolev embeddings ρ¯Ct,x2,βC\left\|\overline{\rho}\right\|_{C_{t,x}^{2,\beta}}\leq C, and then by again viewing (3.24) as a perturbation of the heat equation, we get by the Schauder estimates

ρ¯Ct,x2,βC(ρ0C2,β+Dρ¯Ct,xβKρCt,xβ+ρCt,xβϕDρ¯Ct,xβ)C(1+ρ¯Ct,x1,β2)C.\displaystyle\left\|\overline{\rho}\right\|_{C_{t,x}^{2,\beta}}\leq C\Big{(}\left\|\rho_{0}\right\|_{C^{2,\beta}}+\left\|D\overline{\rho}\right\|_{C_{t,x}^{\beta}}\left\|K*\rho\right\|_{C_{t,x}^{\beta}}+\|\rho\|_{C^{\beta}_{t,x}}\|\phi*D\overline{\rho}\|_{C_{t,x}^{\beta}}\Big{)}\leq C\Big{(}1+\|\overline{\rho}\|_{C_{t,x}^{1,\beta}}^{2}\Big{)}\leq C.

Thus we have established that when KK is smooth, the unique classical solution of (1.3) satisfies the estimates stated in the proposition. From this a-priori estimate, a standard mollification and compactness argument can be used to obtain the existence of a solution satisfying the desired bounds when KK is not smooth but Assumption 1.5 is in force. Uniqueness of classical solutions, meanwhile, can be easily proved in a number of ways, e.g. given two smooth solutions ρ¯t1\overline{\rho}_{t}^{1} and ρ¯t2\overline{\rho}_{t}^{2} one can compute ddtH(ρ¯t1|ρ¯t2)\frac{d}{dt}H(\overline{\rho}_{t}^{1}|\overline{\rho}_{t}^{2}) and conclude via Grownall’s inequality. We omit the details. ∎

The proof of Proposition 1.6 also requires the following lemma, which is an easy extension of the main quantitative estimate of [JW18] to the “controlled” Liouivlle equation (1.7).

Lemma 3.3.

Let Assumption 1.5 hold, let ρ¯\overline{\rho} be the unique classical solution of (1.3) provided by Proposition 3.2, and let ff be an entropy solution of (1.7) in the sense of Definition 2.2. There exists a constant CentC_{\text{ent}} depending only on TT, dd, and the constants β\beta and C0C_{0} in Assumption 1.5 such that

HN(fT|ρ¯TN)HN(f0|ρ¯0N)+Cent(1N+14Ni=1N0T𝕋d|αi(t,𝒙)|2𝑑ft(𝒙)𝑑t).H_{N}(f_{T}|\overline{\rho}^{N}_{T})\leq H_{N}(f_{0}|\overline{\rho}^{N}_{0})+C_{\text{ent}}\bigg{(}\frac{1}{N}+\frac{1}{4N}\sum_{i=1}^{N}\int_{0}^{T}\int_{\mathbb{T}^{d}}|\alpha^{i}(t,\bm{x})|^{2}df_{t}(\bm{x})dt\bigg{)}. (3.25)
Proof.

The proof follows closely the proof of [JW18, Theorem 1], and so we report only the main difference. The first step is to mimic [JW18, Lemma 2] (here it is crucial that we work with an entropy solution ff) to get

HN(ft|ρ¯tN)\displaystyle H_{N}(f_{t}|\overline{\rho}^{N}_{t}) HN(f0|ρ¯0N)1N2i,j=1N0t𝕋dN(K(xixj)Kρ¯(xi))Dxilogρ¯Ndfs(𝒙)𝑑s\displaystyle\leq H_{N}(f_{0}|\overline{\rho}^{N}_{0})-\frac{1}{N^{2}}\sum_{i,j=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\big{(}K(x^{i}-x^{j})-K*\overline{\rho}(x^{i})\big{)}\cdot D_{x^{i}}\log\overline{\rho}^{N}df_{s}(\bm{x})ds
1N2i,j=1N0t𝕋dN(divxiK(xixj)divxiKρ¯(xi))𝑑fs(𝒙)𝑑s\displaystyle\qquad-\frac{1}{N^{2}}\sum_{i,j=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\bigg{(}\text{div}_{x^{i}}K(x^{i}-x^{j})-\text{div}_{x^{i}}K*\overline{\rho}(x^{i})\bigg{)}df_{s}(\bm{x})ds
+1Ni=1N0t𝕋dNαiDxilogfρ¯Ndfs(𝒙)𝑑s1Ni=1N0t𝕋dN|Dxilogfρ¯N|2𝑑fs(𝒙)𝑑s.\displaystyle\qquad+\frac{1}{N}\sum_{i=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\alpha^{i}\cdot D_{x^{i}}\log\frac{f}{\overline{\rho}^{N}}df_{s}(\bm{x})ds-\frac{1}{N}\sum_{i=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\Big{|}D_{x^{i}}\log\frac{f}{\overline{\rho}^{N}}\Big{|}^{2}df_{s}(\bm{x})ds.

Young’s inequality immediately gives

HN(ft|ρ¯tN)\displaystyle H_{N}(f_{t}|\overline{\rho}^{N}_{t}) HN(f0|ρ¯0N)1N2i,j=1N0t𝕋dN(K(xixj)Kρ¯(xi))Dxilogρ¯Ndfs(𝒙)𝑑s\displaystyle\leq H_{N}(f_{0}|\overline{\rho}^{N}_{0})-\frac{1}{N^{2}}\sum_{i,j=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\bigg{(}K(x^{i}-x^{j})-K*\overline{\rho}(x^{i})\bigg{)}\cdot D_{x^{i}}\log\overline{\rho}^{N}df_{s}(\bm{x})ds
1N2i,j=1N0t𝕋dN(divxiK(xixj)divxiKρ¯(xi))𝑑fs(𝒙)𝑑s\displaystyle-\frac{1}{N^{2}}\sum_{i,j=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\bigg{(}\text{div}_{x^{i}}K(x^{i}-x^{j})-\text{div}_{x^{i}}K*\overline{\rho}(x^{i})\bigg{)}df_{s}(\bm{x})ds
12Ni=1N0t𝕋dN|Dxilogfρ¯N|2𝑑fs(𝒙)𝑑s+12Ni=1N0t𝕋dN|αi(t,𝒙)|2𝑑fs(𝒙)𝑑s.\displaystyle-\frac{1}{2N}\sum_{i=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\Big{|}D_{x^{i}}\log\frac{f}{\overline{\rho}^{N}}\Big{|}^{2}df_{s}(\bm{x})ds+\frac{1}{2N}\sum_{i=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\big{|}\alpha^{i}(t,\bm{x})\big{|}^{2}df_{s}(\bm{x})ds. (3.26)

Notice that up to the last term and the factor 1/21/2 appearing in the penultimate term, this is the same inequality appearing in [JW18, Lemma 2]. We now follow exactly the proof of [JW18, Theorem 1], applying Lemmas 3 and 4 of [JW18] (which are easily seen to apply here despite the fact that ff satisfies the “perturbed” Liouville equation (1.7) rather than the original Liouville equation (1.2)) to bound the second and third terms appearing on the right-hand side of (3.2). This results in the bound

HN(ft|ρ¯tN)HN(f0|ρ¯0N)+C0t(HN(fs|ρ¯sN)+1N)𝑑s+1Ni=1N0t𝕋dN|αi(s,𝒙)|2𝑑fs(𝒙)𝑑s,\displaystyle H_{N}(f_{t}|\overline{\rho}^{N}_{t})\leq H_{N}(f_{0}|\overline{\rho}^{N}_{0})+C\int_{0}^{t}\bigg{(}H_{N}(f_{s}|\overline{\rho}^{N}_{s})+\frac{1}{N}\bigg{)}ds+\frac{1}{N}\sum_{i=1}^{N}\int_{0}^{t}\int_{\mathbb{T}^{dN}}\big{|}\alpha^{i}(s,\bm{x})\big{|}^{2}df_{s}(\bm{x})ds,

with CC depending only on the constants indicated in the lemma. An application of Gronwall’s inequality completes the proof. ∎

Proof of Proposition 1.6.

The existence of an admissible entropy solution is proved already in [JW18, Proposition 1]. Let ρN,δ\rho^{N,\delta} be the unique classical solutions of (1.2) with KδK_{\delta} replacing KK, and ρ¯δ\overline{\rho}^{\delta} be the unique classical solution of (1.3) with KδK_{\delta} replacing KK. By Theorem 1.1 and Lemma 3.3, we have

ρtN,δ(AN,ϵp,δ)Ccon,pexp(Ccon,p1ap(ϵ)N), where AN,ϵp,δ={x𝕋dN|𝐝p(m𝒙N,(ρ¯δ)tN)>ϵ},\displaystyle\rho^{N,\delta}_{t}(A^{p,\delta}_{N,\epsilon})\leq C_{\text{con,p}}\exp(-C_{\text{con,p}}^{-1}a_{p}(\epsilon)N),\text{ where }A^{p,\delta}_{N,\epsilon}=\bigg{\{}x\in\mathbb{T}^{dN}\bigg{|}{\bf d}_{p}(m^{N}_{\bm{x}},(\overline{\rho}^{\delta})^{\otimes N}_{t})>\epsilon\bigg{\}}, (3.27)

with Ccon,pC_{\text{con,p}} depending only on the constants stated in the proposition (here we use the fact that KδW1,KW1,\|K_{\delta}\|_{W^{-1,\infty}}\leq\|K\|_{W^{-1,\infty}} and divKδW1,divKW1,\|\text{div}\,K_{\delta}\|_{W^{-1,\infty}}\leq\|\text{div}\,K\|_{W^{-1,\infty}}). Let δk\delta_{k} be the sequence appearing in the definition of admissible entropy solution. Notice that by the uniqueness part of Proposition 3.2, we must have ρ¯tδkρ¯t\overline{\rho}^{\delta_{k}}_{t}\to\overline{\rho}_{t} for each fixed tt. Notice also that for kk large enough, we will have AN,ϵp,δkAN,2ϵpA_{N,\epsilon}^{p,\delta_{k}}\supset A^{p}_{N,2\epsilon}, so that

ρTN(AN,2ϵp)lim infkρTN,δk(AN,2ϵp)lim infkρTN,δk(AN,ϵp,δk)Ccon,pexp(Ccon,p1ap(ϵ)N),\displaystyle\rho^{N}_{T}(A^{p}_{N,2\epsilon})\leq\liminf_{k\to\infty}\rho^{N,\delta_{k}}_{T}(A^{p}_{N,2\epsilon})\leq\liminf_{k\to\infty}\rho^{N,\delta_{k}}_{T}(A_{N,\epsilon}^{p,\delta_{k}})\leq C_{\text{con,p}}\exp(-C_{\text{con,p}}^{-1}a_{p}(\epsilon)N),

which, after replacing Ccon,pC_{\text{con,p}} by 2Ccon,p2C_{\text{con,p}}, completes the proof. ∎

References

  • [AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free discontinuity problems. Oxford university press, 2000.
  • [BD98] Michelle Boué and Paul Dupuis. A variational representation for certain functionals of brownian motion. The Annals of Probability, 26(4):1641–1659, 1998.
  • [BGV05] François Bolley, Arnaud Guillin, and Cédric Villani. Quantitative concentration inequalities for empirical measures on non-compact spaces. Probability Theory and Related Fields, 137:541–593, 2005.
  • [BJW20] Didier Bresch, Pierre-Emmanuel Jabin, and Zhenfu Wang. Modulated free energy and mean field limit. Séminaire Laurent Schwartz — EDP et applications, pages 1–22, 2019-2020. talk:2.
  • [BJW23] Didier Bresch, Pierre-Emmanuel Jabin, and Zhenfu Wang. Mean field limit and quantitative estimates with singular attractive kernels. Duke Mathematical Journal, 172(13):2591 – 2641, 2023.
  • [BR07] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.
  • [BS13] Gerard Brunick and Steven Shreve. Mimicking an itô process by a solution of a stochastic differential equation. 2013.
  • [CD22] Louis-Pierre Chaintron and Antoine Diez. Propagation of chaos: A review of models, methods and applications. i. models and methods, 2022.
  • [CdCRS23] Antonin Chodron de Courcel, Matthew Rosenzweig, and Sylvia Serfaty. The attractive log gas: stability, uniqueness, and propagation of chaos, 2023.
  • [CdCRS23] Antonin Chodron de Courcel, Matthew Rosenzweig, and Sylvia Serfaty. Sharp uniform-in-time mean-field convergence for singular periodic riesz flows. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 223.
  • [Dau23] Samuel Daudin. Optimal control of the fokker-planck equation under state constraints in the wasserstein space. Journal de Mathématiques Pures et Appliquées, 175:37–75, 2023.
  • [DE11] Paul Dupuis and Richard S Ellis. A weak convergence approach to the theory of large deviations. John Wiley & Sons, 2011.
  • [DLR18] François Delarue, Daniel Lacker, and Kavita Ramanan. From the master equation to mean field game limit theory: Large deviations and concentration of measure. The Annals of Probability, 2018.
  • [FG15] Nicolas Fournier and Arnaud Guillin. On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields, 162(3-4):707–738, 2015.
  • [FW23] Xuanrui Feng and Zhenfu Wang. uantitative propagation of chaos for 2d viscous vortex model on the whole space, 2023.
  • [GBM24] Arnaud Guillin, Pierre Bris, and Pierre Monmarché. Uniform in time propagation of chaos for the 2d vortex model and other singular stochastic systems. Journal of the European Mathematical Society, pages 1–28, 01 2024.
  • [HC23] Elias Hess-Childs. Large deviation principles for singular Riesz-type diffusive flows, 2023.
  • [JW16] Pierre-Emmanuel Jabin and Zhenfu Wang. Mean field limit and propagation of chaos for vlasov systems with bounded forces. Journal of Functional Analysis, 271(12):3588–3627, 2016.
  • [JW17] Pierre-Emmanuel Jabin and Zhenfu Wang. Mean Field Limit for Stochastic Particle Systems, volume 1. 04 2017.
  • [JW18] Pierre-Emmanuel Jabin and Zhenfu Wang. Quantitative estimates of propagation of chaos for stochastic systems with w1,w^{-1,\infty} kernels. Inventiones mathematicae, 214:523–591, 2018.
  • [Lac23] Daniel Lacker. Hierarchies, entropy, and quantitative propagation of chaos for mean field diffusions. Probability and Mathematical Physics, 4(2):377––432, 2023.
  • [McK69] Henry P. McKean. Propagation of chaos for a class of non-linear parabolic equations. In A. K. Aziz, editor, Lecture Series in Differential Equations, Volume 2, pages 177––194, Berlin, Heidelberg, 1969. Van Nostrand Reinhold Company.
  • [RS23] Matthew Rosenzweig and Sylvia Serfaty. Global-in-time mean-field convergence for singular Riesz-type diffusive flows. The Annals of Applied Probability, 33(2):954 – 998, 2023.
  • [Ser20] Sylvia Serfaty. Mean field limit for Coulomb-type flows. Duke Mathematical Journal, 169(15):2887 – 2935, 2020.
  • [Szn91] Alain-Sol Sznitman. Topics in propagation of chaos. In Paul-Louis Hennequin, editor, Ecole d’Eté de Probabilités de Saint-Flour XIX — 1989, pages 165–251, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.