This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

CONFORMAL CIRCLES AND LOCAL DIFFEOMORPHISMS

Tzu-Mo Kuo Department of Mathematics, University of California, Santa Cruz, CA 95064, USA tkuo6@ucsc.edu
Abstract.

We study unparametrized conformal circles, or called conformal geodesics, study diffeomorphisms mapping conformal circles to conformal circles in pseudo-Riemannian conformal manifolds. We show that such local diffeomorphisms are conformal local diffeomorphisms. Our result extends the result of Yano and Tomonaga. We also present a holographic interpretation for our result on Poincaré-Einstein manifolds. The proofs take suitable variations of conformal circles.

1. Introduction

Riemannian geodesics, as fundamental geometric objects, are often considered when studying Riemannian structures. One classic problem concerning geodesics and Riemannian structures is the following: If there is a diffeomorphism that maps geodesics to geodesics, is it an isometry? The answer is negative due to affine transformations on Euclidean spaces. In general, one may need to further assume irreducible Riemannian manifolds for the diffeomorphism to be an isometry [13, 14]. The parallel problems for CR manifolds [5] and conformal manifolds [3, 24] are affirmative in some sense.

In the context of a pseudo-Riemannian conformal manifold (Mn,[g])(M^{n},[g]) with n2n\geq 2, a distinguished family of curves known as conformal circles or conformal geodesics emerges. These curves satisfy a third-order differential equation for non-null circles [1]. The derivation of these conformal circles is based on various perspectives of conformal manifolds, including Cartan geometry [10], the standard tractor bundle [2], and the Poincaré-Einstein manifold [9]. More detailed discussions about each viewpoint on conformal manifolds can be found in references such as [6, 8, 19, 25, 26]. Taking the unit sphere (Sn,[gSn])(S^{n},[g_{S^{n}}]) as a Riemannian conformal model, the conformal circles in the model are either straight lines or planar circles when viewed through stereographic projection onto Euclidean space [21]. In the context of the Poincaré ball Bn+1B^{n+1}, each circle on the boundary Sn=Bn+1S^{n}=\partial B^{n+1} can be orthogonally extended to form a totally geodesic surface within Bn+1B^{n+1}. Based on the case of the conformally flat model, each conformal circle in a Riemannian conformal manifold (M,[g])(M,[g]) can be formally extended to an asymptotically totally geodesic surface in the Poincaré-Einstein space (M+,g+)(M_{+},g_{+}) by holographic construction [9] where the term holography comes from physics, e.g., [22]. We will use the term "holography" to mean the geometry from Poincaré-Einstein space (M+,g+)(M_{+},g_{+}).

In this article, we consider the parallel classic problem for conformal circles with a local diffeomorphism ff between pseudo-Riemannian conformal manifolds (Mn,[g])(M^{n},[g]), (Nn,[h])(N^{n},[h]) with the same signature (p,q)(p,q) for n2n\geq 2 and the problem in holographic settings F:M+N+F\colon M_{+}\to N_{+}. The problem for conformal circles in a Riemannian conformal manifold can be traced back to Carathéodory [3]. He considered a bijection on 2\mathbb{R}^{2}, which doesn’t need to be continuous, that maps straight lines (resp. circles) to straight lines (resp. circles), and he showed the bijection is a conformal transformation. Later on, K. Yano and Y. Tomonaga [23, 24] showed that an infinitesimal transformation is a conformal killing vector field if and only if it carries unit-speed conformal circles to unit-speed conformal circles. The equivalence problem is also discussed in Cartan geometry settings in terms of distinguished curves [7]. In §2, we review conformal circles and prove Theorem 2.3 for the equivalence problem of conformal circles. Our proof is motivated by the work from Yano and Tomonaga. In §3, we review Poincaré-Einstein manifolds and extend the results from Fine and Herfray [9] to indefinite signature. In §4, we prove Theorem 4.5 in holographic settings.

The author would like to thank his advisor, Jie Qing, for all discussions and illuminating advice.

2. Conformal Circles on Conformal Manifolds

In this section, we review definitions of conformal circles on a pseudo-Riemannian conformal manifold (Mn,[g])(M^{n},[g]). As mentioned in the introduction, we prove Theorem 2.3 which extends the result of Yano and Tomonaga [23].

Let g^=e2σg\hat{g}=e^{2\sigma}g for g[g]g\in[g] and σC(M)\sigma\in C^{\infty}(M). The Levi-Civita connections ^\widehat{\nabla} and \nabla of respective g^\hat{g} and gg on sections of TMTM are related by [16]

^ivj=ivj+S\indicesvkikjll\displaystyle\widehat{\nabla}_{i}v^{j}=\nabla_{i}v^{j}+S\indices{{}_{i}{}_{k}^{j}{}^{l}}v^{k}\nabla_{l}

where the Latin indices i,i, j,j, k,k, ll follow the convention in [18]. The S\indiceslikjS\indices{{}_{i}{}_{k}^{j}{}^{l}} is a conformally invariant tensor defined by

(1) S\indices=ikjlδijδkl+δilδkjgikgjl\displaystyle S\indices{{}_{i}{}_{k}^{j}{}^{l}}=\delta^{j}_{i}\delta^{l}_{k}+\delta^{l}_{i}\delta^{j}_{k}-g_{ik}g^{jl}

where δij=gjkgki\delta^{j}_{i}=g^{jk}g_{ki}. We denote the Schouten tensor of gg and g^\hat{g} by PijP_{ij} and P^ij\hat{P}_{ij} respectively for n3.n\geq 3. Their relations are

(2) P^ij=Pijijσ+iσjσ12gijgklkσlσ.\displaystyle\hat{P}_{ij}=P_{ij}-\nabla_{i}\nabla_{j}\sigma+\nabla_{i}\sigma\nabla_{j}\sigma-\frac{1}{2}g_{ij}g^{kl}\nabla_{k}\sigma\nabla_{l}\sigma.

When n=2n=2, we assume that (2) is a part of the structure on (M,[g]).(M,[g]).

Recall that Riemannian geodesics are the projections of integral curves of constant horizontal vector fields on linear frame bundle ([14] Chapter 3 Proposition 6.3); conformal circles can be defined in a similar way from Cartan geometry [10].

Definition 2.1.

Let g[g]g\in[g] and \nabla be the corresponding Levi-Civita connection. A conformal circle with respect to gg is a curve γ:IM\gamma\colon I\to M and a 1-form bb along γ\gamma such that they satisfy

(3) γ˙γ˙i\displaystyle\nabla_{\dot{\gamma}}\dot{\gamma}^{i} =S\indicesbljkilγ˙jγ˙k,\displaystyle=-S\indices{{}_{j}{}_{k}^{i}{}^{l}}b_{l}\dot{\gamma}^{j}\dot{\gamma}^{k},
(4) γ˙bi\displaystyle\nabla_{\dot{\gamma}}b_{i} =(12bjblS\indices+kijlPki)γ˙k\displaystyle=(\textstyle\frac{1}{2}b_{j}b_{l}S\indices{{}_{k}{}_{i}^{j}{}^{l}}+P_{ki})\dot{\gamma}^{k}

where the overdot of γ\gamma denotes the derivative with respect to tIt\in I. The equations are conformally invariant for conformal change g^=Ω2g\hat{g}=\Omega^{2}g if γ^˙=γ˙\dot{\hat{\gamma}}=\dot{\gamma} and b^i=biΩ1iΩ\hat{b}_{i}=b_{i}-\Omega^{-1}\nabla_{i}\Omega.

Denote gijviwjg_{ij}v^{i}w^{j} by v,w\langle v,w\rangle for g[g]g\in[g]. We call a curve γ:IM\gamma\colon I\to M null if γ˙,γ˙=0\langle\dot{\gamma},\dot{\gamma}\rangle=0 on II and it is called non-null if it’s not null. Direct computation from (3) shows

(5) γ˙γ˙,γ˙=2γ˙,γ˙biγ˙i.\nabla_{\dot{\gamma}}\langle\dot{\gamma},\dot{\gamma}\rangle=-2\langle\dot{\gamma},\dot{\gamma}\rangle b_{i}\dot{\gamma}^{i}.

Therefore, if a conformal circle has a null velocity at some point, then it’s a null conformal circle. For completeness, we recall null pseudo-Riemannian geodesics are necessary and sufficient to be null conformal circles with some reparametrization [15, 21].

Assume a conformal circle γ\gamma is non-null. By solving bib_{i} in (3)

(6) bi=1γ˙,γ˙(γ˙γ˙i2γ˙,γ˙γ˙γ˙,γ˙γ˙i),b_{i}=\frac{1}{\langle\dot{\gamma},\dot{\gamma}\rangle}\left(\nabla_{\dot{\gamma}}\dot{\gamma}_{i}-2\frac{\langle\dot{\gamma},\nabla_{\dot{\gamma}}\dot{\gamma}\rangle}{\langle\dot{\gamma},\dot{\gamma}\rangle}\dot{\gamma}_{i}\right),

one can have a third-order differential equation from (4). The third-order differential equation is equivalent to the system of the equations (3) and (4) if one defines the one form bib_{i} back.

Definition 2.2.

Given g[g]g\in[g] with corresponding Levi-Civita connection \nabla. A parametrized non-null conformal circle γ\gamma is defined to satisfy

(7) γ˙γ˙γ˙i=3γ˙,γ˙γ˙γ˙,γ˙γ˙γ˙i3γ˙γ˙,γ˙γ˙2γ˙,γ˙γ˙i+γ˙,γ˙γ˙jP\indicesji2Pjkγ˙jγ˙kγ˙i\displaystyle\nabla_{\dot{\gamma}}\nabla_{\dot{\gamma}}\dot{\gamma}^{i}=3\frac{\langle\dot{\gamma},\nabla_{\dot{\gamma}}\dot{\gamma}\rangle}{\langle\dot{\gamma},\dot{\gamma}\rangle}\nabla_{\dot{\gamma}}\dot{\gamma}^{i}-\frac{3\langle\nabla_{\dot{\gamma}}\dot{\gamma},\nabla_{\dot{\gamma}}\dot{\gamma}\rangle}{2\langle\dot{\gamma},\dot{\gamma}\rangle}\dot{\gamma}^{i}+\langle\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}^{j}P\indices{{}_{j}^{i}}-2P_{jk}\dot{\gamma}^{j}\dot{\gamma}^{k}\dot{\gamma}^{i}

with initial conditions γ(0),γ˙(0),γ˙γ˙(0)\gamma(0),\;\dot{\gamma}(0),\;\nabla_{\dot{\gamma}}\dot{\gamma}(0). The equation is invariant under conformal change g^=Ω2g\hat{g}=\Omega^{2}g.

Since the induced metric on a non-null curve γ\gamma is nondegenerate, we can consider the orthogonal decomposition of the pullback bundle of TMTM by γ\gamma [17]. We call γ\gamma satisfies the tangential (resp. normal) part of (7) if it is a solution of the equation that is the orthogonal projection of (7) to the tangent (resp. normal) bundle of γ\gamma. It is known [1] that any regular curve can be reparametrized to satisfy the tangential part of (7). The normal part of (7) is invariant under reparametrization of γ\gamma and it is only satisfied by non-null conformal circles. Since (7) is derived from (4), it’s convenient to introduce a vector field along an arbitrary curve γ\gamma

(8) Ei(γ,v,g)=γ˙vi(12vjvlS\indices+kijlP\indices)kiγ˙kE^{i}(\gamma,v,g)=\nabla_{\dot{\gamma}}v^{i}-(\textstyle\frac{1}{2}v^{j}v^{l}S\indices{{}_{k}^{i}{}_{j}{}_{l}}+P\indices{{}_{k}^{i}})\dot{\gamma}^{k}

where vv is a vector field along γ\gamma. If vv satisfies the right-hand side of (6) by descending index, then we denote the vector field Ei(γ,v,g)E^{i}(\gamma,v,g) by Ei(γ,g).E^{i}(\gamma,g).

For completeness, we recall another third-order differential equation for a non-null conformal circle γ\gamma. If γ:IM\gamma\colon I\to M is reparametrized so that it is of unit tangent velocity with respect to g[g]g\in[g], then it satisfies [21]

γ˙γ˙γ˙i\displaystyle\nabla_{\dot{\gamma}}\nabla_{\dot{\gamma}}\dot{\gamma}^{i} =(γ˙γ˙,γ˙γ˙+Pjkγ˙jγ˙k)γ˙i+Pjiγ˙jif γ˙,γ˙=1;\displaystyle=-\left(\langle\nabla_{\dot{\gamma}}\dot{\gamma},\nabla_{\dot{\gamma}}\dot{\gamma}\rangle+P_{jk}\dot{\gamma}^{j}\dot{\gamma}^{k}\right)\dot{\gamma}^{i}+P^{i}_{j}\dot{\gamma}^{j}\quad\text{if }\langle\dot{\gamma},\dot{\gamma}\rangle=1;
γ˙γ˙γ˙i\displaystyle\nabla_{\dot{\gamma}}\nabla_{\dot{\gamma}}\dot{\gamma}^{i} =(γ˙γ˙,γ˙γ˙Pikγ˙iγ˙k)γ˙j+Pijγ˙iif γ˙,γ˙=1;\displaystyle=\left(\langle\nabla_{\dot{\gamma}}\dot{\gamma},\nabla_{\dot{\gamma}}\dot{\gamma}\rangle-P_{ik}\dot{\gamma}^{i}\dot{\gamma}^{k}\right)\dot{\gamma}^{j}+P^{j}_{i}\dot{\gamma}^{i}\qquad\text{if }\langle\dot{\gamma},\dot{\gamma}\rangle=-1;

The first line is the equation introduced by Yano [23].

Given a local diffeomorphism f:MNf\colon M\to N between pseudo-Riemannian conformal manifolds (Mn,[g])(M^{n},[g]) and (Nn,[h])(N^{n},[h]). Assume both of the conformal classes have same signature (p,q)(p,q). If ff is a conformal local diffeomorphism, it’s direct to see ff maps unparametrized conformal circles to unparametrized conformal circles. The converse direction is also true if the map ff preserves some nullity condition.

Theorem 2.3.

Let (Mn,[g])(M^{n},[g]) and (Nn,[h])(N^{n},[h]) be pseudo-Riemannian conformal manifolds with same signature (p,q)(p,q). Assume a local diffeomorphism f:MNf\colon M\to N satisfying

  1. (i)

    df(v)df(v) is non-null (resp. null) \;\forallnon-null (resp. null) vTMv\in TM if pqp\neq q;

  2. (ii)

    sgnv,vg\langle v,v\rangle_{g}= sgndf(v),df(v)h\langle df(v),df(v)\rangle_{h} vTM\forall v\in TM if p=qp=q.

If ff maps unparametrized non-null conformal circles to unparametrized non-null conformal circles, then ff is a conformal local diffeomorphism.

Proof.

Given yMy\in M. Let g[g]g\in[g] and h[h]h\in[h]. Choose a normal coordinate of gg centered at yy, {xi| 1in}\{x^{i}|\,1\leq i\leq n\}. Since ff is a local diffeomorphism, we can identify the coordinate system near f(y)f(y) as {xi}i=1n\{x^{i}\}_{i=1}^{n}. Let γ(t)\gamma(t) be a parametrized non-null conformal circle satisfying (7) with initial conditions γ˙0k\dot{\gamma}^{k}_{0}, γ¨0k\ddot{\gamma}^{k}_{0} at y=γ(0)y=\gamma(0) where γ¨0k\ddot{\gamma}^{k}_{0} is the coordinate of γ˙γ˙(0)\nabla_{\dot{\gamma}}\dot{\gamma}(0) with respect to gg. Since fγf\circ\gamma is an unparametrized non-null conformal circle, it satisfies the normal part of (7) with the given parameter tt, which is the following in the coordinate we chose.

(9) Ek(γ,h)E(γ,h),γ˙hγ˙,γ˙hγ˙k=0\displaystyle E^{k}(\gamma,h)-\frac{\langle E(\gamma,h),\dot{\gamma}\rangle_{h}}{\langle\dot{\gamma},\dot{\gamma}\rangle_{h}}\dot{\gamma}^{k}=0

where E(γ,h)E(\gamma,h) is a vector field along γ\gamma defined from (8). In the following, we are considering t=0t=0 for (9). Observe that (9) is a degree-two polynomial of γ¨0k\ddot{\gamma}^{k}_{0} with coefficients depending on the derivatives of gg and hh. It is because γ(t)\gamma(t) satisfies the third order differential equation (7) with respect to gg. Now let γ˙0k=Vk\dot{\gamma}^{k}_{0}=V^{k} and γ¨0k=ϵAk\ddot{\gamma}^{k}_{0}=\epsilon A^{k} where V,AnV,A\in\mathbb{R}^{n} are fixed. The variable ϵ\epsilon\in\mathbb{R} is an arbitrary number in an open interval containing 11. Because the non-null conformal circle equation is an autonomous ODE, (9) depends smoothly on ϵ\epsilon. Based on the arguments we just made, we know (9) at t=0t=0 is a polynomial of ϵ\epsilon with degree two. Therefore, the coefficient of ϵ2\epsilon^{2} vanishes. After direct computation, the coefficient gives

(10) V,AgV,Vg(AkV,AhV,VhVk)=V,AhV,VhAkV,Ah2V,Vh2Vk.\displaystyle\frac{\langle V,A\rangle_{g}}{\langle V,V\rangle_{g}}\left(A^{k}-\frac{\langle V,A\rangle_{h}}{\langle V,V\rangle_{h}}V^{k}\right)=\frac{\langle V,A\rangle_{h}}{\langle V,V\rangle_{h}}\,A^{k}-\frac{\langle V,A\rangle^{2}_{h}}{\langle V,V\rangle^{2}_{h}}\,V^{k}.

If V,Ag=0\langle V,A\rangle_{g}=0, we get

(11) 0=V,AhV,VhAkV,Ah2V,Vh2Vk.\displaystyle 0=\frac{\langle V,A\rangle_{h}}{\langle V,V\rangle_{h}}\,A^{k}-\frac{\langle V,A\rangle^{2}_{h}}{\langle V,V\rangle^{2}_{h}}\,V^{k}.

Assume the normal coordinate we chose is gii(y)>0g_{ii}(y)>0 for 1ip1\leq i\leq p and gii(y)<0g_{ii}(y)<0 for p+1ip+qp+1\leq i\leq p+q. If Vk=δikV^{k}=\delta^{ik} and Ak=δjkA^{k}=\delta^{jk} for iji\neq j, then hij(y)=0h_{ij}(y)=0 from (11). If gii=gjjg_{ii}=g_{jj} for iji\neq j, we then let Vk=δik+δjkV^{k}=\delta^{ik}+\delta^{jk} and Ak=δikδjkA^{k}=\delta^{ik}-\delta^{jk}; so, we have hii=hjjh_{ii}=h_{jj} from (11). Therefore, the pullback metric (fh)ij(f^{*}h)_{ij} is of the form

(B𝕀pC𝕀q)\begin{pmatrix}B\mathbb{I}_{p}&{}\\ {}&-C\mathbb{I}_{q}\end{pmatrix}

for some B,C0B,\,C\neq 0. If pqp\neq q, then BB and CC are positive because hh is of the signature (p,q)(p,q). If p=qp=q, then BB and CC can be both positive or both negative. Recalling that the ff preserves the nullity of null vectors, we know (i+j)(\partial_{i}+\partial_{j}) is null at yy with respect to fhf^{*}h when giigjjg_{ii}\neq g_{jj} which implies B=CB=C. The sign of BB and CC is positive for p=qp=q since the sign of hiih_{ii} is the same as the sign of giig_{ii}. ∎

Remark 2.4.

Note that if (M,[g])(M,[g]) is Riemannian, that is p=np=n and q=0q=0, then any local diffeomorphism f:MNf\colon M\to N automatically satisfies (i) and (ii) in Theorem 2.3.

Remark 2.5.

The particular case for Theorem 2.3 has been studied in the literature if one assumes the ff to be a bijection (no need to be continuous) and M=N=nM=N=\mathbb{R}^{n} with the standard Riemannian conformal structure [4, 12]. Note that the proof in [4, 12] needs the global property of conformal circles; that is, ff maps straight lines (resp. circles) to straight lines (resp. circles). However, by assuming additional regularity of ff in this paper, we only need the local condition of conformal circles, namely the conformal circle equation, to establish Theorem 2.3.

Remark 2.6.

One can give a different proof from ([20], Chapter 6, Addendum 1) for the parallel problem of parametrized Riemannian geodesics by following the proof idea of Theorem 2.3.

Remark 2.7.

Though the initial condition γ¨0k=ϵAk\ddot{\gamma}^{k}_{0}=\epsilon A^{k} in the proof gives an ϵ\epsilon-family of conformal circles which induce a Jacobi field, we do not need the Jacobi field equation introduced by [11, 16] to prove the theorem.

We follow similar arguments of Theorem 2.3 to prove Theorem 4.5 in §4.

3. Holography Interpretation for Conformal Circles

In this section, we review Poincaré-Einstein manifolds and extend the results from Fine and Herfray [9] to indefinite signature.

Poincaré-Einstein manifold

Let (Mn,[g])(M^{n},[g]) be a pseudo-Riemannian conformal manifold with signature (p,q)(p,q) and n2n\geq 2. There exists a pseudo-Riemannian manifold (M+n+1,g+)(M^{n+1}_{+},g_{+}) with boundary M+=M\partial M_{+}=M [8]. The signature of g+g_{+} is (p+1,q)(p+1,q). Let rC(M+)r\in C^{\infty}(M_{+}) be a defining function for MM, that is r>0r>0 on the interior M+0M^{0}_{+}, r=0r=0 on MM and dr0dr\neq 0 on MM. Then, g+g_{+} and rr satisfy

  1. (i)

    r2g+r^{2}g_{+} can be smoothly extended to be a metric on M+M_{+} so that

    g¯|Mr2g+|M[g];\bar{g}|_{M}\triangleq r^{2}g_{+}|_{M}\in[g];
  2. (ii)

    Ric(g+)+ng+=O(r)Ric(g_{+})+ng_{+}=O(r).

The pair (M+,g+)(M_{+},g_{+}) is called a Poincaré-Einstein manifold for (M,[g])(M,[g]) and the pair (M,[g])(M,[g]) is called the conformal infinity to (M+,g+)(M_{+},g_{+}).

Let g[g]g\in[g]. There exists a unique defining function rr, called geodesic defining function, such that |dr|g¯2=1|dr|^{2}_{\bar{g}}=1 near MM+M\subset M_{+}. The function rr makes an identification between a neighborhood UU of MM in M+M_{+} and a neighborhood 𝒰\mathcal{U} of M×{0}M\times\{0\} in M×[0,)M\times[0,\infty). By the identification, g+g_{+} is in normal form relative to gg; that is, g+=dr2+grr2g_{+}=\frac{dr^{2}+g_{r}}{r^{2}} on 𝒰\mathcal{U} where gr=gr2P+O(r3)g_{r}=g-r^{2}P+O(r^{3}). The tensor PP is the Schouten tensor of gg for n3n\geq 3. When n=2n=2, PP is a symmetric two-tensor on MM satisfying P\indices=ii12RP\indices{{}_{i}^{i}}=\frac{1}{2}R and P\indices=ij,j12R,iP\indices{{}_{i}{}_{j}{}_{,}^{j}}=\frac{1}{2}R_{,i} where RR is the scalar curvature of gg. By the pulling back of an even diffeomorphism between neighborhoods of M×{0}M×[0,)M\times\{0\}\subset M\times[0,\infty) which restricts to the identity map on M×{0}M\times\{0\}, the normal forms g+g_{+} relative to conformal related metrics are identical modulo O(r)O(r).

Remark 3.1.

Note that the orders of rr above in the Ricci condition and in grg_{r} can be further refined to higher orders depending on dimension nn. See details in [8].

Remark 3.2.

For n=2n=2, the trace and the divergence conditions of PP are conformally invariant. ( [8], arguments after Theorem 3.7)

Surfaces in the Poincaré-Einstein Manifold

Let (M+n+1,g+)(M^{n+1}_{+},g_{+}) be a Poincaré-Einstein manifold in normal form relative to g[g]g\in[g] where rr is its corresponding geodesic defining function. Let γ:IM\gamma\colon I\to M be a non-null curve. The interval II can be shrunk if necessary. Choose a local coordinate {xi| 1in}\{x^{i}|\,1\leq i\leq n\} on an open set 𝒲\mathcal{W} in MM containing γ(t)\gamma(t) for tIt\in I. The coordinate of γ(t)\gamma(t) is denoted by γi(t)\gamma^{i}(t). If ΣM+¯\Sigma\subset\overline{M_{+}} is an embedded surface orthogonal to MM with ΣM=γ\Sigma\cap M=\gamma, then one can have an asymptotic isothermal coordinate of Σ\Sigma near γ\gamma; that is, there is a diffeomorphism σ:(t,λ)(xi(t,λ),r(t,λ))\sigma\colon(t,\lambda)\mapsto(x^{i}(t,\lambda),r(t,\lambda)) from I×II\times I to ΣM+¯\Sigma\subset\overline{M_{+}} such that

(12) {σ(t,0)=γi(t)σg¯=((1)ε001)c(t,λ)+O(λ3),\begin{cases}\sigma(t,0)=\gamma^{i}(t)\\ \sigma^{*}\bar{g}=\begin{pmatrix}(-1)^{\varepsilon}&0\\ 0&1\end{pmatrix}c(t,\lambda)+O(\lambda^{3})\end{cases},

where c(t,0)0c(t,0)\neq 0 and ε=0\varepsilon=0 if γ˙,γ˙>0\langle\dot{\gamma},\dot{\gamma}\rangle>0 and ε=1\varepsilon=1 otherwise. In fact, to satisfy (12) for Σ\Sigma orthogonal to MM, the expansions of xix^{i}, rr and σg+\sigma^{*}g_{+} with respect to λ\lambda are in the following forms.

Proposition 3.3.

[9] Let g+g_{+} be a Poincaré-Einstein metric and ΣM+¯\Sigma\subset\overline{M_{+}} a surface as above. Then, the asymptotic isothermal coordinate in (12) satisfies

(13) xi(t,λ)γi(t)+0+|γ˙|2vi2λ2+ui3λ3r(t,λ)0+|γ˙|λ+0+(1)ε|γ˙|6[κ(γ,v,g)32γ˙,γ˙v,v]λ3\displaystyle\small\begin{matrix}[c]x^{i}(t,\lambda)&\equiv&\gamma^{i}(t)&+&0&+&\frac{|\dot{\gamma}|^{2}v^{i}}{2}\lambda^{2}&+&\frac{u^{i}}{3}\lambda^{3}\\ r(t,\lambda)&\equiv&0&+&|\dot{\gamma}|\lambda&+&0&+&\frac{(-1)^{\varepsilon}|\dot{\gamma}|}{6}\left[\kappa(\gamma,v,g)-\frac{3}{2}\langle\dot{\gamma},\dot{\gamma}\rangle\langle v,v\rangle\right]\lambda^{3}\end{matrix}

and

(14) σg+=1λ2((1)ε001)(1+(1)ε 23κ(γ,v,g)λ2)+O(λ),\sigma^{*}g_{+}=\frac{1}{\lambda^{2}}\begin{pmatrix}(-1)^{\varepsilon}&0\\ 0&1\end{pmatrix}\left(1+\frac{(-1)^{\varepsilon}\;2}{3}\kappa(\gamma,v,g)\lambda^{2}\right)+O(\lambda),

where the expansions of xix^{i} and rr are modulo O(λ4)O(\lambda^{4}), the |γ˙||\dot{\gamma}| denotes the square root of |γ˙,γ˙||\langle\dot{\gamma},\dot{\gamma}\rangle|, the viv^{i} satisfies γ˙,v=γ˙,γ˙(γ˙γ˙,γ˙)\langle\dot{\gamma},v\rangle=\left\langle\dot{\gamma},\nabla_{\dot{\gamma}}\left(\frac{\dot{\gamma}}{\langle\dot{\gamma},\dot{\gamma}\rangle}\right)\right\rangle, the uiu^{i} satisfies γ˙,u=0\langle\dot{\gamma},u\rangle=0 and κ(γ,v,g)=E(γ,v,g),γ˙\kappa(\gamma,v,g)=\langle E(\gamma,v,g),\dot{\gamma}\rangle which is the tangential part of (8). Note that γ˙(γ˙γ˙,γ˙)\nabla_{\dot{\gamma}}\left(\frac{\dot{\gamma}}{\langle\dot{\gamma},\dot{\gamma}\rangle}\right) is equal to the right-hand side of the bb-form in (6) by lowering index.

Since σg¯\sigma^{*}\bar{g} is pseudo-Riemannian for small λ\lambda, the tangent bundle TM+TM_{+} has the orthogonal decomposition along TΣT\Sigma near MM [17]. Let (eα)(e_{\alpha^{\prime}}) be a local orthonormal frame of the normal bundle of Σ\Sigma with respect to g¯\bar{g} near ΣM\Sigma\cap M. After direct computation, the Taylor expansions of eαe_{\alpha^{\prime}} with respect to λ\lambda are [9]

(15) eα(t,λ)=\displaystyle e_{\alpha^{\prime}}(t,\lambda)= ϕα(λ)(1)ελ22[ϕα(λ),tvg+(viig2Pg)(ϕα(λ),γ˙)]γ˙\displaystyle\phi_{\alpha^{\prime}}(\lambda)-\frac{(-1)^{\varepsilon}\lambda^{2}}{2}\left[\langle\phi_{\alpha^{\prime}}(\lambda),\partial_{t}v\rangle_{g}+\left(v^{i}\partial_{i}g-2P^{g}\right)(\phi_{\alpha^{\prime}}(\lambda),\dot{\gamma})\right]\dot{\gamma}
ϕα(λ),|γ˙|vgλr+O(λ3),\displaystyle-\langle\phi_{\alpha^{\prime}}(\lambda),|\dot{\gamma}|v\rangle_{g}\;\lambda\;\partial_{r}+O(\lambda^{3}),

where ϕα(λ)\phi_{\alpha^{\prime}}(\lambda) is a family of sections of the normal bundle of γ\gamma in MM.

Proposition 3.4.

[9] Considering the projection of the second fundamental form of Σ\Sigma on eαe_{\alpha^{\prime}} with respect to g+g_{+}, then, its asymptotic expansion is

(16) 1λ2((1)εγ˙(γ˙γ˙,γ˙)v,ϕα(λ)u,ϕα(λ)γ˙,γ˙λE(γ,v,g),ϕα(λ)λ(1)εu,ϕα(λ)γ˙,γ˙λ)+O(1).\frac{1}{\lambda^{2}}\begin{pmatrix}(-1)^{\varepsilon}\left\langle\nabla_{\dot{\gamma}}\left(\frac{\dot{\gamma}}{\langle\dot{\gamma},\dot{\gamma}\rangle}\right)-v,\phi_{\alpha^{\prime}}(\lambda)\right\rangle-\frac{\langle u,\phi_{\alpha^{\prime}}(\lambda)\rangle}{\langle\dot{\gamma},\dot{\gamma}\rangle}\lambda&\qquad*\\ \langle E(\gamma,v,g),\phi_{\alpha^{\prime}}(\lambda)\rangle\lambda&\qquad(-1)^{\varepsilon}\frac{\langle u,\phi_{\alpha^{\prime}}(\lambda)\rangle}{\langle\dot{\gamma},\dot{\gamma}\rangle}\lambda\end{pmatrix}+O(1).

Due to Proposition 3.3, the asymptotic minimal condition H=O(r2)H=O(r^{2}) of Σ\Sigma is equivalent to v=γ˙(γ˙γ˙,γ˙)v=\nabla_{\dot{\gamma}}\left(\frac{\dot{\gamma}}{\langle\dot{\gamma},\dot{\gamma}\rangle}\right) which is exactly the same as the bb-form in (6). The asymptotic totally geodesic condition K=O(r2)K=O(r^{2}) is equivalently satisfied when v=γ˙(γ˙γ˙,γ˙)v=\nabla_{\dot{\gamma}}\left(\frac{\dot{\gamma}}{\langle\dot{\gamma},\dot{\gamma}\rangle}\right), u=0u=0 and γ\gamma being an unparametrized conformal circle.

Definition 3.5.

Let ΣM+¯\Sigma\subset\overline{M_{+}} be an embedded surface orthogonal to MM so that ΣM\Sigma\cap M is a non-null curve. It is called a proper surface if it is asymptotic totally geodesic K=O(r2)K=O(r^{2}) where KK is the second fundamental form of Σ\Sigma with respect to g+g_{+}.

4. Proof of Theorem

In this section, we consider a local diffeomorphism F:M+N+F\colon M_{+}\to N_{+} which smoothly extends a local diffeomorphism f:MNf\colon M\to N. We introduce the definition of asymptotic local isometry and cosider its local conditions. We also introduce an adapted coordinate Σ\Sigma for the proof of Theorem 4.5.

Let (Nn,[h])(N^{n},[h]) be a pseudo-Riemannian conformal manifold with same signature (p,q)(p,q) as (M,[g])(M,[g]) and with a Poincaré-Einstein space (N+,h+)(N_{+},h_{+}). We keep {xi}i=1n\{x^{i}\}_{i=1}^{n} as a coordinate system on an open set 𝒲\mathcal{W} in MM.

Definition 4.1.

A local diffeomorphism F:M+N+F\colon M_{+}\to N_{+} is called an asymptotic local isometry if

(17) Fh+g+=O(r).\displaystyle F^{*}h_{+}-g_{+}=O(r).

It’s useful to realize Definition 4.1 in terms of local coordinates. Let rr and ss be geodesic defining functions for g[g]g\in[g] and h[h]h\in[h] respectively. Identifying some neighborhoods of MM+¯M\subset\overline{M_{+}} and NN+¯N\subset\overline{N_{+}} to neighborhoods 𝒰\mathcal{U} of M×{0}M×[0,)M\times\{0\}\subset M\times[0,\infty) and 𝒱\mathcal{V} of N×{0}N×[0,)N\times\{0\}\subset N\times[0,\infty) respectively, a local diffeomorphism F:M+N+F\colon M_{+}\to N_{+} can be identified near MM+¯M\subset\overline{M_{+}} and NN+¯N\subset\overline{N_{+}} as a local diffeomorphism from 𝒰\mathcal{U} to 𝒱\mathcal{V}

(18) (x,r)((x,r),Fs(x,r))\left(x,r\right)\mapsto\left(\mathscr{F}(x,r),F^{s}(x,r)\right)

where (x,0)=f(x)\mathscr{F}(x,0)=f(x), sF=Fss\circ F=F^{s} on 𝒰\mathcal{U} and Fs(x,0)=0F^{s}(x,0)=0. Then, (17) is equivalent to

(19) Fh¯(Fs/r)2g¯=O(r3),\displaystyle F^{*}\bar{h}-\left(F^{s}/r\right)^{2}\bar{g}=O(r^{3}),

where g¯=dr2+gr\bar{g}=dr^{2}+g_{r} and h¯=ds2+hs\bar{h}=ds^{2}+h_{s}. Since ff is a local diffeomorphism, we denote the coordinate of (x,r)\mathscr{F}(x,r) by Fi(x,r)F^{i}(x,r) with Fi(x,0)=xiF^{i}(x,0)=x^{i}. In terms of the coordinates (xi,r)(x^{i},r) on M+M_{+} and (xi,s)(x^{i},s) on N+N_{+}, (19) is given by

(20) O(r3)\displaystyle O(r^{3}) =F,isF,js+F,ikF,jl(hsF)kl(Fs/r)2(gr)ij,\displaystyle=F^{s}_{,i}F^{s}_{,j}+F^{k}_{,i}F^{l}_{,j}(h_{s}\circ F)_{kl}-\left(F^{s}/r\right)^{2}(g_{r})_{ij},
(21) O(r3)\displaystyle O(r^{3}) =F,rsF,rs+F,rkF,rl(hsF)kl(Fs/r)2,\displaystyle=F^{s}_{,r}F^{s}_{,r}+F^{k}_{,r}F^{l}_{,r}\,(h_{s}\circ F)_{kl}-\left(F^{s}/r\right)^{2},
(22) O(r3)\displaystyle O(r^{3}) =F,rsF,is+F,rkF,il(hsF)kl\displaystyle=F^{s}_{,r}F^{s}_{,i}+F^{k}_{,r}F^{l}_{,i}(h_{s}\circ F)_{kl}

where we have used commas to express partial derivatives with respect to the coordinates (xi,r)(x^{i},r) on M+M_{+}. At r=0r=0, (20) and (22) give

(23) fh=e2σg,F,rs=eσfor some σC(M),F,ri=0for 1in,\begin{split}&f^{*}h=e^{2\sigma}g,\quad F^{s}_{,r}=e^{\sigma}\quad\text{for some }\sigma\in C^{\infty}(M),\\ &F^{i}_{,r}=0\quad\text{for }1\leq i\leq n,\end{split}

If we choose g[g]g\in[g] and h[h]h\in[h] suitably such that ff is homothetic, that is σ\sigma constant, then (20)-(22) further imply at r=0r=0

(24) F,rri=F,rrri=0for 1in,F,rrs=0,\displaystyle\begin{split}&F^{i}_{,rr}=F^{i}_{,rrr}=0\quad\text{for }1\leq i\leq n,\\ &F^{s}_{,rr}=0,\end{split}

and at r=0r=0

(25) F,rrrs=0.\displaystyle F^{s}_{,rrr}=0.

Conversely, if FF satisfies (23)-(25), then FF is an asymptotic local isometry.

Let ΣM+\Sigma\subset M_{+} be a surface orthogonal MM and (t,λ)(t,\lambda) its asymptotic isothermal coordinate (13). Since we are considering (23) to (25), it’s better to introduce a change of variables on Σ\Sigma, (t,λ)(t,r¯(t,λ))(t,\lambda)\mapsto(t,\underaccent{\bar}{r}(t,\lambda)), where r¯(t,λ)\underaccent{\bar}{r}(t,\lambda) is equal to the right-hand side of r(t,λ)r(t,\lambda) in (13) modulo O(λ4)O(\lambda^{4}). Then, the expansions of xix^{i} and rr in terms of r¯\underaccent{\bar}{r} are

(26) xi(t,r¯)=γi(t)+0+vi2r¯2+ui3|γ˙|3r¯3+O(r¯4),r(t,r¯)=r¯+O(r¯4)\displaystyle\begin{matrix}[l]x^{i}(t,\underaccent{\bar}{r})&=&\gamma^{i}(t)+0+\frac{v^{i}}{2}\underaccent{\bar}{r}^{2}+\frac{u^{i}}{3|\dot{\gamma}|^{3}}\underaccent{\bar}{r}^{3}+O(\underaccent{\bar}{r}^{4}),\\ r(t,\underaccent{\bar}{r})&=&\underaccent{\bar}{r}+O(\underaccent{\bar}{r}^{4})\end{matrix}

where viv^{i} and uiu^{i} remain the same conditions as in Proposition 3.3 and in Proposition 3.4. We call (t,r¯)(t,\underaccent{\bar}{r}) the adapted coordinate of Σ\Sigma.

Proposition 4.2.

Let F:M+N+F\colon M_{+}\to N_{+} be a local diffeomorphism in terms of (18). Assume FF maps non-null vectors in TMTM to non-null vectors in TNTN. Then, r=0\partial_{r}\mathscr{F}=0 at r=0r=0 if and only if F(Σ)F(\Sigma) is orthogonal to NN for any surface Σ\Sigma in M+¯\overline{M_{+}} that is orthogonal to MM and intersects MM along a non-null curve. In addition, if FF maps proper surfaces in M+¯\overline{M_{+}} to proper surfaces in N+¯\overline{N_{+}}, then r=0\partial_{r}\mathscr{F}=0 at r=0r=0.

Proof.

Let γ(t)\gamma(t) be a non-null curve in a coordinate open set 𝒲M\mathcal{W}\subset M with the coordinate γi(t)\gamma^{i}(t). Then, the adapted coordinate (t,r¯)(t,\underaccent{\bar}{r}) in (26) locally defines a surface ΣM+¯\Sigma\subset\overline{M_{+}} orthogonal to MM with ΣM=γ\Sigma\cap M=\gamma. Since F(Σ)F(\Sigma) is orthogonal to NN, then

(27) dF(Xr¯)dF(Xr¯),dF(Xt)h¯dF(Xt),dF(Xt)h¯dF(Xt)\displaystyle dF(X_{\underaccent{\bar}{r}})-\frac{\langle dF(X_{\underaccent{\bar}{r}}),dF(X_{t})\rangle_{\bar{h}}}{\langle dF(X_{t}),dF(X_{t})\rangle_{\bar{h}}}dF(X_{t})

is orthogonal to TNTM+TN\subset TM_{+} where {Xt,Xr¯}\{X_{t},X_{\underaccent{\bar}{r}}\} is the coordinate basis for the adapted coordinate (t,r¯)(t,\underaccent{\bar}{r}). The orthogonal condition gives at r=0r=0

(28) 0=F,rkF,riγ˙jhijγ˙,γ˙hγ˙k.\displaystyle 0=F^{k}_{,r}-\frac{F^{i}_{,r}\dot{\gamma}^{j}h_{ij}}{\langle\dot{\gamma},\dot{\gamma}\rangle_{h}}\dot{\gamma}^{k}.

Since γ˙\dot{\gamma} is an arbitrary non-null vector at t=0t=0, we get F,rk=0F^{k}_{,r}=0 at r=0r=0. Conversely, let (t,r¯)(t,\underaccent{\bar}{r}) be the adapted coordinate of Σ\Sigma. Projecting (27) to TNTN+¯TN\subset T\overline{N_{+}} orthogonally, it gives the right-hand side of (28) which turns to be 0 due to F,ri=0F^{i}_{,r}=0 at r=0r=0.

If γ(t)\gamma(t) is a non-null conformal circle, then the formula of the adapted coordinate locally extends γ(t)\gamma(t) to a proper surface in M+¯\overline{M_{+}}. One can follow the same arguments just made to get r=0\partial_{r}\mathscr{F}=0 at r=0r=0. ∎

As mentioned at the end of §2, the idea for proving Theorem 4.5 is to consider a suitable family of proper surfaces Σϵ\Sigma_{\epsilon}. Then, the dependence of ϵ\epsilon in the second fundamental forms of proper surfaces F(Σϵ)F(\Sigma_{\epsilon}) may imply FF is an asymptotic local isometry where its local conditions are (23)-(25). However, recalling Proposition 3.3, Proposition 3.4 and the adapted coordinate (26), a proper surface Σ\Sigma is characterized by viv^{i}, uiu^{i} and γ\gamma being an unparametrized conformal circle. Therefore, we can utilize the adapted coordinate of F(Σϵ)F(\Sigma_{\epsilon}) to avoid the tedious computation of the second fundamental forms. The following Lemma 4.3 and Proposition 4.4 respectively give the coordinate change of F(Σ)F(\Sigma) to its adapted coordinate and provide that FF satisfies (23) and (24), except for (25), for FF preserving proper surfaces.

Lemma 4.3.

Let (M+,g+)(M_{+},g_{+}) be a Poincaré-Einstein space in the normal form relative to g[g]g\in[g] and Σ~M+\tilde{\Sigma}\subset M_{+} be a surface orthogonal to MM with Σ~M=γ\tilde{\Sigma}\cap M=\gamma being a non-null curve. Assume it has a parametrization (t,r¯)(x~i(t,r¯),r~(t,r¯))(t,\underaccent{\bar}{r})\mapsto(\tilde{x}^{i}(t,\underaccent{\bar}{r}),\tilde{r}(t,\underaccent{\bar}{r})) from I×II\times I to Σ~M+\tilde{\Sigma}\subset M_{+} where x~,r¯i=0\tilde{x}^{i}_{,\underaccent{\bar}{r}}=0 and r~=0\tilde{r}=0 both at r¯=0\underaccent{\bar}{r}=0. The existence of the adapted coordinate (η,ρ)(\eta,\rho) of Σ~\tilde{\Sigma} implies there is a coordinate change t=t(η,ρ)t=t(\eta,\rho), r¯=r¯(η,ρ)\underaccent{\bar}{r}=\underaccent{\bar}{r}(\eta,\rho) with t(η,0)=ηt(\eta,0)=\eta. The coordinate change is in the following modular higher orders.

(29) t(η,ρ)=η+t(2)ρ2+t(3)ρ3,r¯(η,ρ)=r(1)ρ+r(2)ρ2+r(3)ρ3\displaystyle\begin{matrix}[l]t(\eta,\rho)&=&\eta+t_{(2)}\rho^{2}+t_{(3)}\rho^{3},\\ \underaccent{\bar}{r}(\eta,\rho)&=&r_{(1)}\rho+r_{(2)}\rho^{2}+r_{(3)}\rho^{3}\end{matrix}

where

r(1)\displaystyle\small r_{(1)} =1r~,r¯,r(2)=r~,r¯r¯2(r~,r¯)3,r(3)=16r,r¯(2r~,tr¯r(1)t(2)+r~,r¯r¯r¯(r(1))3+6r~,r¯r¯r(1)r(2)),\displaystyle=\frac{1}{\tilde{r}_{,\underaccent{\bar}{r}}},\;r_{(2)}=-\frac{\tilde{r}_{,\underaccent{\bar}{r}\underaccent{\bar}{r}}}{2(\tilde{r}_{,\underaccent{\bar}{r}})^{3}},\;r_{(3)}=-\frac{1}{6r_{,\underaccent{\bar}{r}}}\left(2\tilde{r}_{,t\underaccent{\bar}{r}}\,r_{(1)}t_{(2)}+\tilde{r}_{,\underaccent{\bar}{r}\underaccent{\bar}{r}\underaccent{\bar}{r}}(r_{(1)})^{3}+6\tilde{r}_{,\underaccent{\bar}{r}\underaccent{\bar}{r}}r_{(1)}r_{(2)}\right),
t(2)\displaystyle t_{(2)} =12γ˙,γ˙(viγ˙ix~,r¯r¯iγ˙i(r(1))2),t(3)=16γ˙,γ˙((r(1)3)x~,r¯r¯r¯iγ˙i+6r(1)r(2)x~,r¯r¯iγ˙i).\displaystyle=\frac{1}{2\langle\dot{\gamma},\dot{\gamma}\rangle}\left(v^{i}\dot{\gamma}_{i}-\tilde{x}^{i}_{,\underaccent{\bar}{r}\underaccent{\bar}{r}}\dot{\gamma}_{i}(r_{(1)})^{2}\right),\;t_{(3)}=\frac{1}{6\langle\dot{\gamma},\dot{\gamma}\rangle}\left((r_{(1)}^{3})\tilde{x}^{i}_{,\underaccent{\bar}{r}\underaccent{\bar}{r}\underaccent{\bar}{r}}\dot{\gamma}_{i}+6r_{(1)}r_{(2)}\tilde{x}^{i}_{,\underaccent{\bar}{r}\underaccent{\bar}{r}}\dot{\gamma}_{i}\right).

The partial derivatives of x~i\tilde{x}^{i} and r~\tilde{r} above are at r¯=0\underaccent{\bar}{r}=0. The term vv in t(2)t_{(2)} is γ˙(γ˙γ˙,γ˙)\nabla_{\dot{\gamma}}\left(\frac{\dot{\gamma}}{\langle\dot{\gamma},\dot{\gamma}\rangle}\right). Note that γ˙i=x~,ti(t,0)=x~,ηi(η,0)\dot{\gamma}^{i}=\tilde{x}^{i}_{,t}(t,0)=\tilde{x}^{i}_{,\eta}(\eta,0) and x~,tti(t,0)=x~,ηηi(η,0)\tilde{x}^{i}_{,tt}(t,0)=\tilde{x}^{i}_{,\eta\eta}(\eta,0).

Proposition 4.4.

Let F:M+N+F\colon M_{+}\to N_{+} be a local diffeomorphism such that

  1. (i)

    dF(v)dF(v) is non-null (resp. null) \;\forallnon-null (resp. null) vTMv\in TM if pqp\neq q;

  2. (ii)

    sgnv,vg\langle v,v\rangle_{g}= sgndF(v),dF(v)h\langle dF(v),dF(v)\rangle_{h} vTM\forall v\in TM if p=qp=q.

The FF satisfies (23) and (24) if and only if FF maps proper surfaces in M+¯\overline{M_{+}} to proper surfaces in N+¯\overline{N_{+}}.

Proof.

Let γ(t)\gamma(t) be a non-null conformal circle in a coordinate open set of MM with the initial conditions γ˙0k\dot{\gamma}^{k}_{0} and γ¨0k\ddot{\gamma}^{k}_{0} at γ(0)=p\gamma(0)=p. Let ΣM+¯\Sigma\subset\overline{M_{+}} be its extended proper surface defined by the adapted coordinate (t,r¯)(t,\underaccent{\bar}{r}) in (26). Since F(Σ)NF(\Sigma)\cap N is still an unparametrized conformal circle from Proposition 3.4, we know f:MNf\colon M\to N is a conformal local diffeomorphism due to Theorem 2.3. Without loss of generality, we assume that ff is the identity map on (M,g)(M,g) where g[g]g\in[g] and that the local coordinate of its extended local diffeomorphism is F:(xi,r)(Fi(x,r),Fr(x,r))F\colon(x^{i},r)\mapsto(F^{i}(x,r),F^{r}(x,r)) where rr is the geodesic defining function of gg. From Proposition 4.2 and Lemma 4.3, we let (η(t,r¯),ρ(t,r¯))(\eta(t,\underaccent{\bar}{r}),\rho(t,\underaccent{\bar}{r})) be the coordinate change of F(Σ)F(\Sigma) to its adapted coordinate.

Let γ˙0k=Vk\dot{\gamma}^{k}_{0}=V^{k}, γ¨0k=ϵAk\ddot{\gamma}^{k}_{0}=\epsilon A^{k} with |V|=1|V|=1 and V,A=0\langle V,A\rangle=0 where ϵ\epsilon\in\mathbb{R} is arbitrary near 11. The variable ϵ\epsilon gives an ϵ\epsilon-family of non-null conformal circles γϵ(t)\gamma_{\epsilon}(t). The extended proper surfaces Σϵ\Sigma_{\epsilon} is defined by the formula of the adapted coordinate (26) where the coefficients in the expansion of xi(t,r¯)x^{i}(t,\underaccent{\bar}{r}) depend on γϵ(t)\gamma_{\epsilon}(t). Because Σϵ\Sigma_{\epsilon} depends smoothly on ϵ\epsilon, we know the adapted coordinate for F(Σϵ)F(\Sigma_{\epsilon}) defined from Lemma 4.3 depends smoothly on ϵ\epsilon. Since F(Σϵ)F(\Sigma_{\epsilon}) are proper surfaces, we have

(30) γ˙ϵ(γ˙ϵγ˙ϵ,γ˙ϵ)i=F,ρρiat ρ=0\displaystyle\nabla_{\dot{\gamma}_{\epsilon}}\left(\frac{\dot{\gamma}_{\epsilon}}{\langle\dot{\gamma}_{\epsilon},\dot{\gamma}_{\epsilon}\rangle}\right)^{i}=F^{i}_{,\rho\rho}\qquad\text{at }\rho=0

and

(31) 0=F,ρρρiat ρ=0.\displaystyle 0=F^{i}_{,\rho\rho\rho}\qquad\text{at }\rho=0.

Following the formulas and the conventions from (29), we know t(2)=VjF,rrj(F,rr)2t_{(2)}=-\frac{V_{j}F^{j}_{,rr}}{(F^{r}_{,r})^{2}} at the point pp. Using chain rule on F,ρρiF^{i}_{,\rho\rho} for (t(η,ρ),r¯(η,ρ))(t(\eta,\rho),\underaccent{\bar}{r}(\eta,\rho)), the straightforward computation for (30) at pp is

(32) ϵAi=1(F,rr)2(ϵAi+F,rriVjF,rrjVi).\displaystyle\epsilon A^{i}=\frac{1}{(F^{r}_{,r})^{2}}\left(\epsilon A^{i}+F^{i}_{,rr}-V_{j}F^{j}_{,rr}\,V^{i}\right).

Therefore, F,rr=1F^{r}_{,r}=1 and F,rri=0F^{i}_{,rr}=0 at r=0r=0. The results we got imply r(2)=F,rrrr_{(2)}=-F^{r}_{,rr} at r=0r=0 and t(3)=16F,rrrjVjt_{(3)}=\frac{1}{6}F^{j}_{,rrr}V_{j} at pp from (29). Doing chain rule again, (31) is equal to the following at pp.

(33) 0=3ϵF,rrrAi+F,rrri+F,rrrjVjVi.\displaystyle 0=-3\epsilon\,F^{r}_{,rr}\,A^{i}+F^{i}_{,rrr}+F^{j}_{,rrr}V_{j}\,V^{i}.

So, F,rrr=0F^{r}_{,rr}=0 and F,rrri=0F^{i}_{,rrr}=0 at r=0r=0.

Conversely, assume (Fi(x,r),Fr(x,r))=(xi+O(r4),r+O(r3))(F^{i}(x,r),F^{r}(x,r))=(x^{i}+O(r^{4}),r+O(r^{3})) where we assume ff is the identity map on (M,g)(M,g). Let ΣM+¯\Sigma\subset\overline{M_{+}} be a proper surface and (t,r¯)(t,\underaccent{\bar}{r}) be its adapted coordinate. From Proposition 4.2, we know F(Σ)F(\Sigma) orthogonal to NN. Considering the coordinate change (η(t,r¯),ρ(t,r¯))(\eta(t,\underaccent{\bar}{r}),\rho(t,\underaccent{\bar}{r})) of F(Σ)F(\Sigma) to its adapted coordinate and following the formula from (29), we have

r(1)=1,r(2)=0,t(2)=0,t(3)=0.\displaystyle r_{(1)}=1,\;r_{(2)}=0,\;t_{(2)}=0,\;t_{(3)}=0.

Computing F,ρρiF^{i}_{,\rho\rho} and F,ρρρiF^{i}_{,\rho\rho\rho} directly from chain rule, we have at ρ=0\rho=0

F,ρρi=γ˙(γ˙γ˙,γ˙)i,F,ρρρi=0\displaystyle F^{i}_{,\rho\rho}=\nabla_{\dot{\gamma}}\left(\frac{\dot{\gamma}}{\langle\dot{\gamma},\dot{\gamma}\rangle}\right)^{i},\;F^{i}_{,\rho\rho\rho}=0

which implies F(Σ)F(\Sigma) is proper by (26) and Proposition 3.4. ∎

Theorem 4.5.

Let (M+,g+)(M_{+},g_{+}) and (N+,h+)(N_{+},h_{+}) be Poincaré-Einstein manifolds for (M,[g])(M,[g]) and (N,[h])(N,[h]) respectively with same signature (p+1,q)(p+1,q). Given a local diffeomorphism F:M+N+F\colon M_{+}\to N_{+} such that it smoothly extends a local diffeomorphism f:MNf\colon M\to N. Assume FF satisfies

  1. (i)

    dF(v)dF(v) is non-null (resp. null) \;\forallnon-null (resp. null) vTMv\in TM if pqp\neq q,

  2. (ii)

    sgnv,vg\langle v,v\rangle_{g}= sgndF(v),dF(v)h\langle dF(v),dF(v)\rangle_{h} vTM\forall v\in TM if p=qp=q.

If the FF maps proper surfaces in M+M_{+} to proper surfaces in N+N_{+}, then there is a local diffeomorphism GG on an open neighborhood WW of MM+¯M\subset\overline{M_{+}},

G:WM+,G\colon W\to M_{+},

where GG smoothly extends the identity map on MM, such that F~=FG\tilde{F}=F\circ G is an asymptotic local isometry.

Proof.

From Proposition 4.4, we can choose g[g]g\in[g] and h[h]h\in[h] suitably to let ff be a local isometry. Consider the identification of FF in (18)

F:𝒰𝒱,(x,r)((x,r),Fs(x,r)).\displaystyle F\colon\mathcal{U}\to\mathcal{V},\quad(x,r)\mapsto(\mathscr{F}(x,r),F^{s}(x,r)).

We aim to find out an open set 𝒲𝒰\mathcal{W}\subset\mathcal{U} such that it contains M×{0}M\times\{0\} and the following map is well-defined

(34) G:𝒲𝒰(x,r)(x,r(x)r3)=(x,px(r))\displaystyle\begin{matrix}[l]G\colon&\quad\mathcal{W}&\to&\quad\mathcal{U}\\ &(x,r)&\mapsto&(x,r-\mathscr{R}(x)r^{3})=(x,p_{x}(r))\end{matrix}

where (x)=r3Fs(x,0)/6\mathscr{R}(x)=\partial^{3}_{r}F^{s}(x,0)/6 and px(r)=r(x)r3p_{x}(r)=r-\mathscr{R}(x)r^{3}.

For any xMx\in M, it has open neighborhoods x,𝒩x\mathcal{B}_{x},\,\mathcal{N}_{x} in MM such that

xx𝒩xand 𝒩x×[0,ϵ)𝒰ϵ>0x\in\mathcal{B}_{x}\subset\subset\mathcal{N}_{x}\quad\text{and }\mathcal{N}_{x}\times[0,\epsilon)\subset\mathcal{U}\quad\exists\,\epsilon>0

where x𝒩x\mathcal{B}_{x}\subset\subset\mathcal{N}_{x} means its closure x¯\overline{\mathcal{B}_{x}} is compact in 𝒩x\mathcal{N}_{x}. Here we choose ϵ\epsilon small enough such that the polynomial py(r)p_{y}(r) of rr on [0,ϵ)[0,\epsilon) is strictly increasing for all yx¯y\in\overline{\mathcal{B}_{x}}. Hence, there exists 0<ϵx<ϵ0<\epsilon^{\prime}_{x}<\epsilon so that

x×[0,ϵx)\displaystyle\mathcal{B}_{x}\times[0,\epsilon^{\prime}_{x}) x×[0,ϵ)𝒰\displaystyle\to\mathcal{B}_{x}\times[0,\epsilon)\subset\mathcal{U}
(y,r)\displaystyle(y,r) (y,py(r)).\displaystyle\mapsto(y,p_{y}(r)).

Let 𝒲=xMx×[0,ϵx)\mathcal{W}=\bigcup_{x\in M}\mathcal{B}_{x}\times[0,\epsilon^{\prime}_{x}). Since we know the asymptotic expansion of FF from Proposition 4.4, we get F~=FG:𝒲𝒱\tilde{F}=F\circ G\colon\mathcal{W}\to\mathcal{V} is an asymptotic local isometry. ∎

Corollary 4.6.

Let F:M+N+F\colon M_{+}\to N_{+} and G:WM+G\colon W\to M_{+} be local diffeomorphisms as stated in Theorem 4.5. Assume there is a geodesic defining function rr for some g[g]g\in[g] and C0C\geq 0 such that

(35) |r3(sF)(p)|CpMM+,|\partial^{3}_{r}(s\circ F)(p)|\leq C\quad\forall p\in M\subset M_{+},

where r=g¯r\partial_{r}={}^{\bar{g}}\nabla r is the gradient of rr with respect to g¯=r2g+\bar{g}=r^{2}g_{+} and ss is the geodesic defining function of h[h]h\in[h] to make f:MNf\colon M\to N be a local isometry.

  1. (i)

    If C>0C>0, then GG can be chosen as an embedding with its image while WW is small enough.

  2. (ii)

    If C=0C=0, then GG can be chosen to be the identity map on WW. Particularly, FF is an asymptotic local isometry.

Proof.

Recall the definition of GG in (34),

G:𝒲𝒰(x,r)(x,r(x)r3)=(x,px(r)).\displaystyle\begin{matrix}[l]G\colon&\quad\mathcal{W}&\to&\quad\mathcal{U}\\ &(x,r)&\mapsto&(x,r-\mathscr{R}(x)r^{3})=(x,p_{x}(r)).\end{matrix}

Let 𝒲\mathcal{W} be small enough so that 𝒲M×[0,ϵ)\mathcal{W}\subset M\times[0,\epsilon) for some ϵ>0\epsilon>0. If ϵ\epsilon is small enough, then px(r)p_{x}(r) is strictly increasing because for r[0,ϵ)r\in[0,\epsilon)

rpx(r)=13(x)r2>13Cr2.\displaystyle\partial_{r}p_{x}(r)=1-3\mathscr{R}(x)r^{2}>1-3Cr^{2}.

Hence, GG is an open injective immersion for C>0C>0. The case for C=0C=0 is straightforward due to the definition of GG. ∎

The following proposition gives geometric conditions to satisfy the presumptions of Corollary 4.6.

Proposition 4.7.

Let F:M+N+F\colon M_{+}\to N_{+} and G:WM+G\colon W\to M_{+} be local diffeomorphisms as stated in Theorem 4.5. Assume there is a geodesic defining function rr for some g[g]g\in[g] and a0a\geq 0 such that

(36) (Fh+g+)(g¯r,g¯r)=O(ra).(F^{*}h_{+}-g_{+})({}^{\bar{g}}\nabla r,{}^{\bar{g}}\nabla r)=O(r^{a}).

Let ss be a geodesic defining function of h[h]h\in[h] to make ff be a local isometry.

  1. (i)

    If a=0a=0, there exists C>0C>0 such that |r3(sF)|C|\partial^{3}_{r}(s\circ F)|\leq C on MM.

  2. (ii)

    If a=1a=1, we have r3(sF)=0\partial^{3}_{r}(s\circ F)=0 on MM.

Proof.

Consider the identification of FF near MM+¯M\subset\overline{M_{+}} and NN+¯N\subset\overline{N_{+}} in (18), 𝒰𝒱,(x,r)((x,r),Fs(x,r))\mathcal{U}\to\mathcal{V},\;(x,r)\mapsto(\mathscr{F}(x,r),F^{s}(x,r)). Then, (36) is equivalent to

O(ra+2)=F,rsF,rs+F,riF,rj(hsF)ij(Fs/r)2,\displaystyle O(r^{a+2})=F^{s}_{,r}F^{s}_{,r}+F^{i}_{,r}F^{j}_{,r}(h_{s}\circ F)_{ij}-(F^{s}/r)^{2},

where the right-hand side above is exactly from (21) while considering local conditions of an asymptotic local isometry. Then, the Taylor expansion for the right-hand side gives the following.

O(ra+2)=\displaystyle O(r^{a+2})= c=02{cb0(b+1)(cb+1)(b+1)!(cb+1)!F(b+1)sF(cb+1)s\displaystyle\sum^{2}_{c=0}\left\{\sum_{c\geq b\geq 0}\frac{(b+1)(c-b+1)}{(b+1)!\,(c-b+1)!}F^{s}_{(b+1)}F^{s}_{(c-b+1)}\right.
+cb+d0(b+1)(cbd+1)(b+1)!(cbd+1)!d!F(b+1)iF(cbd+1)j(h(d))ij\displaystyle+\sum_{c\geq b+d\geq 0}\frac{(b+1)(c-b-d+1)}{(b+1)!\,(c-b-d+1)!\,d!}F^{i}_{(b+1)}F^{j}_{(c-b-d+1)}(h_{(d)})_{ij}
cb01(b+1)!(cb+1)!F(b+1)sF(cb+1)s}rc,\displaystyle\left.-\sum_{c\geq b\geq 0}\frac{1}{(b+1)!\,(c-b+1)!}F^{s}_{(b+1)}F^{s}_{(c-b+1)}\right\}r^{c},

where F(b)sF^{s}_{(b)}, F(b)iF^{i}_{(b)} and h(b)h_{(b)} mean the bbth-order partial derivative of rr at r=0r=0 of FsF^{s}, FiF^{i} and hsFh_{s}\circ F respectively. So, we have from above

(37) 0=F,riF,rjhij,0=F,rsF,rrs+3F,riF,rrjhij,O(ra)=23F,rsF,rrrs+34(F,rrs)2+F,rriF,rrjhij,\begin{split}0&=F^{i}_{,r}F^{j}_{,r}h_{ij}\;,\\ 0&=F^{s}_{,r}F^{s}_{,rr}+3F^{i}_{,r}F^{j}_{,rr}h_{ij}\;,\\ O(r^{a})&=\frac{2}{3}F^{s}_{,r}F^{s}_{,rrr}+\frac{3}{4}(F^{s}_{,rr})^{2}+F^{i}_{,rr}F^{j}_{,rr}h_{ij},\end{split}

where the third equality above is when F,ri=0F^{i}_{,r}=0 at r=0r=0. We know F,rs=1F^{s}_{,r}=1, F,rrs=0F^{s}_{,rr}=0 and F,rri=0F^{i}_{,rr}=0 at r=0r=0 from Proposition 4.4. This completes the proof. ∎

Remark 4.8.

It is straightforward to observe F,ri=0F^{i}_{,r}=0 and F,rrs=0F^{s}_{,rr}=0 at r=0r=0 from (37) when considering Riemannian conformal classes [g][g] and [h][h]. However, (37) alone still can’t simply imply F,rrrs=0F^{s}_{,rrr}=0 at r=0r=0.

References

  • [1] T. N. Bailey and M. G. Eastwood. Conformal circles and parametrizations of curves in conformal manifolds. American Mathematical Society, 108(1):215–221, Jan. 1990.
  • [2] T. N. Bailey, M. G. Eastwood, and A. R. Gover. Thomas’s structure bundle for conformal, projective and related structures. The Rocky Mountain Journal of Mathematics, 24(4):1191–1217, 1994.
  • [3] Constantin Carathéodory. The most general transformations of plane regions which transform circles into circles. Bulletin of the American Mathematical Society, 43:573–579, 1937.
  • [4] Constantin Carathéodory. The most general transformations of plane regions which transform circles into circles. Bulletin of the American Mathematical Society, 43:573–579, 1937.
  • [5] Jih-Hsin Cheng. Chain-preserving diffeomorphisms and cr equivalence. American Mathematical Society, 103(1):75–80, 1988.
  • [6] Sean Curry and A. Rod Gover. An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, 2014.
  • [7] Boris Doubrov and Vojtěch Žádník. Equations and symmetries of generalized geodesics. 2005.
  • [8] Charles Fefferman and C. Robin Graham. The Ambient Metric (AM-178). Annals of Mathematics Studies. Princeton University Press, 2011.
  • [9] J. Fine and Y. Herfray. An ambient approach to conformal geodesics. Communications in Contemporary Mathematics, 24:2150009, 2022.
  • [10] H. Friedrich and B. G. Schmidt. Conformal geodesics in general relativity. Royal Society, 414(1846):171–195, Nov. 9, 1987.
  • [11] Helmut Friedrich. Conformal geodesics on vacuum space-times. Communications in Mathematical Physics, 235:513–543, 2003-04-01.
  • [12] Jason Jeffers. Lost theorems of geometry. The American Mathematical Monthly, 107(9):800–812, 2000.
  • [13] S. Kobayashi. A theorem on the affine transformation group of a riemannian manifold. Nagoya Mathematical Journal, 9:39–41, 1955.
  • [14] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, volume 1. Interscience Publishers, 1963.
  • [15] Christian Lübbe. A conformal extension theorem based on null conformal geodesics. Journal of Mathematical Physics, 50:112502, 2009.
  • [16] Christian Lübbe and Paul Tod. An extension theorem for conformal gauge singularities. Journal of Mathematical Physics, 50(112501), 2009.
  • [17] B O’Neill. Semi-Riemannian Geometry: With Applications to Relativity. Pure and applied mathematics. Academic Press, 1983.
  • [18] R. Penrose and W. Rindler. Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1984.
  • [19] R. W. Sharpe. Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Springer, 1997.
  • [20] Michael Spivak. A Comprehensive Introduction to Differential Geometry, volume II. Publish or Perish, Inc., 3rd edition, 1999.
  • [21] Paul Tod. Some examples of the behaviour of conformal geodesics. Journal of Geometry and Physics, 62(8):1778–1792, 2012.
  • [22] Edward Witten. Anti-de sitter space and holography. Advances in Theoretical and Mathematical Physics, 2:253–291, 1998.
  • [23] Kentaro Yano. The Theory of Lie Derivatives and Its Applications. North-Holland Publishing Company, 1957.
  • [24] Kentaro Yano and Yasuro Tomonaga. Quelques remarques sur les groupes de transformations dans les espaces à connexion linéaires, iv. Proceedings of the Japan Academy, 22:173–183, 1946.
  • [25] Andreas Čap and A. Rod Gover. Standard tractors and the conformal ambient metric construction. Annals of Global Analysis and Geometry, 24:231–259, 2003-10-01.
  • [26] Andreas Čap and Jan Slovák. Parabolic Geometries I: Background and General Theory. American Mathematical Society, 2009.