This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Consensus as a Nash Equilibrium of a stochastic differential game

Paramahansa Pramanik label=e1]ppramanik@southalabama.edu [ University of South Alabama Department of Mathematics and Statistics
University of South Alabama
Mobile, AL 36688 USA.
Abstract

In this paper a consensus has been constructed in a social network which is modeled by a stochastic differential game played by agents of that network. Each agent independently minimizes a cost function which represents their motives. A conditionally expected integral cost function has been considered under an agent’s opinion filtration. The dynamic cost functional is minimized subject to a stochastic differential opinion dynamics. As opinion dynamics represents an agent’s differences of opinion from the others as well as from their previous opinions, random influences and stubbornness make it more volatile. An agent uses their rate of change of opinion at certain time point as a control input. This turns out to be a non-cooperative stochastic differential game which have a feedback Nash equilibrium. A Feynman-type path integral approach has been used to determine an optimal feedback opinion and control. This is a new approach in this literature. Later in this paper an explicit solution of a feedback Nash equilibrium opinion is determined.

C73,
C61,
Opinion dynamics,
Social network,
Feynman-type path integral,
quantum game,
Feedback Nash equilibrium,
Stochastic control,
keywords:
[class=MSC]
keywords:

1 Introduction

Social networks influence a lot of behavioral activities including educational achievements (Calvó-Armengol, Patacchini and Zenou, 2009), employment (Calvo-Armengol and Jackson, 2004), technology adoption (Conley and Udry, 2010), consumption (Moretti, 2011) and smoking (Nakajima, 2007; Sheng, 2020). As social networks are the result of individual decisions, consensus takes an important role to understand the formation of networks. Although a lot of theoretical works on social networks have been done (Jackson, 2010; Goyal, 2012; Sheng, 2020), work on consensus as a Nash equilibrium under a stochastic network is very insignificant (Niazi, Özgüler and Yildiz, 2016). Sheng (2020) formalizes network as simultaneous-move game, where social links based on decisions are based on utility externalities from indirect friends. Sheng (2020) proposes a computationally feasible partial identification approach for large social networks. The statistical analysis of network formation dates back to the seminal work by Erdös and Rényi (1959) where a random graph is based on independent links with a fixed probability (Sheng, 2020). Beyond Erdös-Rényi model, many methods have been designed to simulate graphs with characteristics like degree distributions, small world, and Markov type properties (Polansky and Pramanik, 2021). A model based method is useful if this model can be fit successfully and if it is a relatively simple to simulate realizations (Pramanik, 2016; Polansky and Pramanik, 2021). The most frequently used general model for random graphs is the exponential random graph model (ERGM) (Snijders, 2002; Hua, Polansky and Pramanik, 2019; Polansky and Pramanik, 2021) because, this model fits well with the observed network statistics (Sheng, 2020). This ERGM model lacks microfoundations which are important for counterfactual analyses and furthermore, economists view network analysis as the optimal choices of agents who maximizes their utilities (Sheng, 2020). Network evolves as the result of a stochastic process is another popular framework where network may be observed, but it is the parameters of the stochastic process that are of interest, and the observed network is a single realization of the stochastic process (Polansky and Pramanik, 2021).

At birth, humans already posses different types of skills like breathing, digest foods and motor actions which make a human body to behave like an automaton (Kappen, 2007a). Furthermore, like other animals humans acquire skills through learning. Different person has different abilities to acquire a new information in order to get an idea about pleasure, danger or food (Kappen, 2007a). Humans are the most complicated species on earth because, their decisions are not linear and they can learn difficult skills through transitional signals of their complex constellations of sensory patterns. For example, if food is kept in front of a hamster, it would eat immediately. On the other hand, if a plate of food is kept in front of a human, they might not eat because, variety of factors such as the texture, smell, amount of it, their sociocultural background, religion and ethnicity take place before even they think about to tastes it. In order to make this decision, a lot of complex neural activities take place inside a person’s brain. Action of two main parts of a human brain, frontal and occipital lobes, makes them decide what they should do after seeing an object. In this case the occipital lobe sends information of an object through the synaptic systems to frontal lobe, which is known by their previous experiences and knowledge. As for humans one has to consider so many other possibilities compared to a hamster, such that they can choose any of the all available information with some probabilities and make decisions based on it.

This type of human behavior is a feedback circuit where the learning algorithm is determined by a synaptic motor command, more time with an object not only leads to get more information but also the knowledge to adapt with it in the long run and get more intelligence. For example, as humans grow older, more intelligent they become and reflects their genotype closely. On the other hand, environment influences a certain type of decision more with older ages which comes through a process called Hebbian learning (Hebb, 2005; Kappen, 2007a). Ancestors gather more information about an object or circumstance and transfer it to their off-springs in order to help them survive easily and make decisions rationally Kappen (2007a). For example, without having a prior knowledge one does not know how to get a certain type restaurant and which lead them explore their surroundings. If that person finds out a restaurant, they survive for that day. On the next day, they might not be completely sure about full availability of food in that restaurant because of sudden environmental degradation after his previous visit such as flash flood, tornado, an avalanche, landslide, earthquake, other activities like closure due to burglary, fire or some gun related activities so on. Even if that person is sure about the availability of food, they might not go because of other socioeconomic behaviors at the back of their mind. Hence, more information might not lead them react rationally. These types of activities occurs when an event is more uncertain. Consider person AA is selling their 11 million-dollar car to another person BB by just $50,000\$50,000. The rationality assumption suggests person BB to go for this offer but, BB might think why AA is giving this offer and might be suspicious about the quality of that car and rejects it.

Therefore, subjective probabilities take an important role to make these types of decisions based on individual judgments such as success in a new job, outcome of an election, state of an economy, difference in learning a new complex topic among students, spreading gossips in small communities (Kahneman and Tversky, 1972; Niazi, Özgüler and Yildiz, 2016; Tversky and Kahneman, 1971). People follow representativeness in judging the likelihood of uncertain events where the probability is defined by the similarities in essential properties to its parent population and reflect the salient features of the process by which it is generated (Kahneman and Tversky, 1972), which makes opinion dynamics of a person to follow a stochastic differential equation. Furthermore, an individual minimizes its cost of foraging for food where finding food can be termed as a reward to them and they want to find their reward with minimal cost. Assume an agent discounts more to the recent future than farther future represented as feedback motor control reinforcement learning problem Kappen (2007a). In an environment of very complex opinion dynamics each agent minimizes their integral cost function subject to a stochastic differential opinion dynamics based on all above cases. This paper considers two environments first, all the agents have same opinion power and second, agents with a leader, where the leader has more power in opinion than others and determines their opinion first based on their own cost minimization mechanism. A feedback Nash equilibrium of opinion is determined by a Feynman-type path integral approach which so far from my knowledge is new (Feynman, 1949; Pramanik and Polansky, 2021). Furthermore, this approach can be used to obtain a solution for stability of an economy after pandemic crisis (Ahamed, 2021a), determine an optimal bank profitability (Hossain and Ahamed, 2015; Ahamed, 2021b).

As each agent’s opinion in a society is assumed to be a quantum particle, I introduce an alternative method based on Feynman-type path integral to solve this stochastic opinion dynamics problem based on Feynman-type path integrals instead of traditional Pontryagin Maximum Principle. If the objective function is quadratic and the differential equations are linear, then solution is given in terms of a number of Ricatti equations which can be solved efficiently (Kappen, 2007b). But the opinion dynamics is more complicated than just an ordinary linear differential equation and non-linear stochastic feature gives the optimal solution a weighted mixture of suboptimal solutions, unlikely in the cases of deterministic or linear optimal control where a unique global optimal solution exists (Kappen, 2007b). In the presence of Wiener noise, Pontryagin Maximum Principle, a variational principle, that leads to a coupled system of stochastic differential equations with initial and terminal conditions, gives a generalized solution (Kappen, 2007b; Øksendal and Sulem, 2019). Although incorporate randomness with its Hamiltonian-Jacobi-Bellman (HJB) equation is straight forward but difficulties come due to dimensionality when a numerical solution is calculated for both of deterministic or stochastic HJB (Kappen, 2007b). General stochastic control problem is intractable to solve computationally as it requires an exponential amount of memory and computational time because, the state space needs to be discretized and hence, becomes exponentially large in the number of dimensions (Theodorou, Buchli and Schaal, 2010; Theodorou, 2011; Yang et al., 2014). Therefore, in order to calculate the expected values it is necessary to visit all states which leads to the summations of exponentially large sums (Kappen, 2007b; Yang et al., 2014). Kappen (2005a) and Kappen (2005b) say that a class of continuous non-linear stochastic finite time horizon control problems can be solved more efficiently than Pontryagin’s Maximum Principle. These control problems reduce to computation of path integrals interpreted as free energy because, of their various statistical mechanics forms such as Laplace approximations, Monte Carlo sampling, mean field approximations or belief propagation (Kappen, 2005a, b, 2007b; Van Den Broek, Wiegerinck and Kappen, 2008). According to Kappen (2007b) these approximate computations are really fast.

Furthermore, one can transform a class of non-linear HJB equations into linear equations by doing a logarithmic transformation. This transformation stems back to the early days of quantum mechanics which was first used by Schrödinger to relate HJB equation to the Schrödinger equation (Kappen, 2007b). Because of this linear feature, backward integration of HJB equation over time can be replaced by computing expectation values under a forward diffusion process which requires a stochastic integration over trajectories that can be described by a path integral (Kappen, 2007b). Furthermore, in more generalized case like Merton-Garman-Hamiltonian system, getting a solution through Pontryagin Maximum principle is impossible and Feynman path integral method gives a solution (Baaquie, 1997; Pramanik, 2020, 2021a). Previous works using Feynman path integral method has been done in motor control theory by Kappen (2005b), Theodorou, Buchli and Schaal (2010) and Theodorou (2011). Applications of Feynman path integral in finance has been discussed rigorously in Baaquie (2007). In Pramanik (2020) a Feynman-type path integral has been introduced to determine a feedback stochastic control. This methods works in both linear and non-linear stochastic differential equations and a Fourier transformation has been used to find out solution of Wick-rotated Schrödinger type equation (Pramanik, 2020; Pramanik and Polansky, 2020a, b; Pramanik, 2021a; Pramanik and Polansky, 2021; Pramanik, 2021b). A more generalized Nash equilibrium on tensor field has been discussed in Pramanik and Polansky (2019).

2 A stochastic differential game of opinion dynamics

Following Niazi, Özgüler and Yildiz (2016) consider a social network of nn agents by a weighted directed graph G=(N,E,wij)G=(N,E,w_{ij}), where N={1,,n}N=\{1,...,n\} is the set of all agents. Suppose, EN×NE\subseteq N\times N is the set of all ordered pairs of all connected agents and, wijw_{ij} is the influence of agent jj on agent ii for all (i,j)E(i,j)\in E. There are usually two types of connections, one sided or two sided. For the principle-agent problem the connection is one sided (i.e. Stackelberg model) and agent-agent problem it is two sided (i.e. Cournot model). Suppose xi(s)[0,1]x^{i}(s)\in[0,1] be the opinion of agent ithi^{th} at time s[0,t]s\in[0,t] with their initial opinion xi(0)=x0i[0,1]x^{i}(0)=x_{0}^{i}\in[0,1]. Then xi(s)x^{i}(s) has been normalized into [0,1][0,1] where xi(s)=0x^{i}(s)=0 stands for a strong disagreement and xi(s)=1x^{i}(s)=1 represents strong agreement and all other agreements stays in between. Consider 𝐱(s)=[x1(s),x2(s),,xn(s)][0,1]n\mathbf{x}(s)=\left[x^{1}(s),x^{2}(s),...,x^{n}(s)\right]^{\prime}\in[0,1]^{n} be the opinion profile vector of nn-agents at time ss where ‘prime’ represents the transpose. Following Niazi, Özgüler and Yildiz (2016) consider a cost function of agent ii as

Li(s,𝐱,x0i,ui)\displaystyle L^{i}(s,\mathbf{x},x_{0}^{i},u^{i}) =0t12{jηiwij[xi(s)xj(s)]2+ki[xi(s)x0i]2+[ui(s)]2}𝑑s,\displaystyle=\int_{0}^{t}\mbox{$\frac{1}{2}$}\bigg{\{}\sum_{j\in\eta_{i}}w_{ij}\left[x^{i}(s)-x^{j}(s)\right]^{2}+k_{i}\left[x^{i}(s)-x_{0}^{i}\right]^{2}+\left[u^{i}(s)\right]^{2}\bigg{\}}ds, (1)

where wij[0,)w_{ij}\in[0,\infty) is a parameter which weighs the susceptibility of agent jj to influence agent ii, ki[0,)k_{i}\in[0,\infty) is agent ii’s stubbornness, ui(s)u^{i}(s) is the control variable of agent ii and set of all agents with whom ii interacts is ηi\eta_{i} and defined as ηi:={jN:(i,j)E}\eta_{i}:=\{j\in N:(i,j)\in E\}. The cost function Li(s,𝐱,x0i,ui)L^{i}(s,\mathbf{x},x_{0}^{i},u^{i}) is twice differentiable with respect to time in order to satisfy Wick rotation, is continuously differentiable with respect to ithi^{th} agent’s control ui(s)u^{i}(s), non-decreasing in opinion xi(s)x^{i}(s), non-increasing in ui(s)u^{i}(s), and convex and continuous in all opinions and controls (Mas-Colell et al., 1995; Pramanik and Polansky, 2020b). The opinion dynamics of agent ii follows a stochastic differential equation

dxi(s)\displaystyle dx^{i}(s) =μi[s,xi(s),ui(s)]ds+σi[s,xi(s),ui(s)]dBi(s),\displaystyle=\mu^{i}[s,x^{i}(s),u^{i}(s)]ds+\sigma^{i}[s,x^{i}(s),u^{i}(s)]dB^{i}(s), (2)

with the initial condition x0ix_{0}^{i}, where μi\mu^{i} and σi\sigma^{i} are the drift and diffusion component of agent ii with Bi(s)B^{i}(s) is the Brownian motion. The reason behind incorporating Brownian motion in agent ii’s opinion dynamics is because of Hebbian Learning which states that, neurons increase the synaptic connection strength between them when they are active together simultaneously and this behavior in probabilistic in the sense that, resource availability from a particular place is random (Hebb, 2005; Kappen, 2007a). For example, for a given stubbornness, and influence from agent jj, agent ii’s opinion dynamics has some randomness in opinion. Suppose, from other resources agent ii knows that, the information provided by agent jj’s influence is misleading. Apart from that after considering humans as automatons, motor control and foraging for food becomes a big examples of minimization of costs (or the expected return) Kappen (2007a). As control problems like motor controls are stochastic in nature because there is a noise in the relation between the muscle contraction and the actual displacement with joints with the change of the information environment over time, we consider Feynman path integral approach to calculate the stochastic control after assuming the opinion dynamics Equation (2) (Feynman (1949),Fujiwara (2017)). The coefficient of the control term in Equation (1) is normalized to 11, without loss of generality. The cost functional represented in the Equation (1) is viewed as a model of the motive of agent ii towards a prevailing social issue Niazi, Özgüler and Yildiz (2016). In this dynamic social network problem agent ii’s objective is to minui{𝔼s(Li)|0x}\min_{u^{i}}\{\mathbb{E}_{s}(L^{i})|\mathcal{F}_{0}^{x}\} subject to the Equation (2), where 𝔼0(Li)|0x\mathbb{E}_{0}(L^{i})|\mathcal{F}_{0}^{x} represents the expectation on LiL^{i} at time 0 subject to agent ii’s opinion filtration 0x\mathcal{F}_{0}^{x} starting at the initial time 0. A solution of this problem is a feedback Nash equilibrium as the control of agent ii is updated based on the opinion at the same time ss.

3 Definitions and Assumptions

Assumption 1.

For t>0t>0 and i=1,,ni=1,...,n, let μi(s,xi,ui):[0,t]×2{{\mu^{i}}}(s,x^{i},u^{i}):[0,t]\times\mathbb{R}^{2}\rightarrow\mathbb{R} and σi(s,xi,ui):[0,t]×2{\sigma}^{i}(s,x^{i},u^{i}):[0,t]\times\mathbb{R}^{2}\rightarrow\mathbb{R} be some measurable function and, for some constant M1i>0M_{1}^{i}>0 and, for opinion xix^{i}\in\mathbb{R} the linear growth of agent ii’s control uiu^{i} as

|μi(s,xi,ui)|+|σi(s,xi,ui)|M1i(1+|xi|),|{{\mu^{i}}}(s,x^{i},u^{i})|+|{\sigma}^{i}(s,x^{i},u^{i})|\leq M_{1}^{i}(1+|x^{i}|),

such that, there exists another constant M2i>0M_{2}^{i}>0 and for a different x~i\widetilde{x}^{i}\in\mathbb{R} such that the Lipschitz conditions,

|μi(s,xi,ui)μi(s,x~i,ui)|+|σi(s,xi,ui)σi(s,u,x~)|M2i|xix~i|,|{{\mu}^{i}}(s,x^{i},u^{i})-{{\mu}^{i}}(s,\widetilde{x}^{i},u^{i})|+|{\sigma}^{i}(s,x^{i},u^{i})-{\sigma}^{i}(s,u,\widetilde{x})|\leq M_{2}^{i}|x^{i}-\widetilde{x}^{i}|,

and

|μi(s,xi,ui)|2+|σi(s,xi,ui)|2(M2i)2(1+|x~i|2),|{{\mu}^{i}}(s,x^{i},u^{i})|^{2}+|{\sigma}^{i}(s,x^{i},u^{i})|^{2}\leq(M_{2}^{i})^{2}(1+|\widetilde{x}^{i}|^{2}),

hold.

Assumption 2.

Agent ii faces a probability space (Ω,sx,𝒫)(\Omega,\mathcal{F}_{s}^{x},\mathcal{P}) with sample space Ω\Omega, uiu^{i}-adaptive filtration at time ss of opinion xix^{i} as {sx}s\{\mathcal{F}_{s}^{x}\}\subset\mathcal{F}_{s}, a probability measure 𝒫\mathcal{P} and nn-dimensional {s}\{\mathcal{F}_{s}\} Brownian motion BiB^{i} where the control of ithi^{th} agent uiu^{i} is an {sx}\{\mathcal{F}_{s}^{x}\} adapted process such that Assumption 1 holds, for the feedback control measure of agents in a society there exists a measurable function hih^{i} such that hi:[0,t]×C([0,t]):nuih^{i}:[0,t]\times C([0,t]):\mathbb{R}^{n}\rightarrow u^{i} for which ui(s)=hi[xi(s,ui)]u^{i}(s)=h^{i}[x^{i}(s,u^{i})] such that Equation (2) has a strong unique solution.

Assumption 3.

(i). 𝒵n\mathcal{Z}\subset\mathbb{R}^{n} such that agent ii cannot go beyond set 𝒵i𝒵\mathcal{Z}_{i}\subset\mathcal{Z} because of their limitations of acquiring knowledge from their society at a given time. This immediately implies set 𝒵i\mathcal{Z}_{i} is different for different agents. If the agent is young , they would have less limitation to acquire new information and make opinions on it.
(ii). The function h0i:[0,t]×nh_{0}^{i}:[0,t]\times\mathbb{R}^{n}\rightarrow\mathbb{R}. Therefore, all agents in a society at the beginning of [0,t][0,t] have the cost function h0:[0,t]×nh_{0}:[0,t]\times\mathbb{R}^{n}\rightarrow\mathbb{R} such that h0ih0h_{0}^{i}\subset h_{0} in functional spaces and both of them are concave which is equivalent to Slater condition (Marcet and Marimon, 2019). Possibility of giving a partial opinion has been omitted in this paper.
(iii). There exists an ε>0\varepsilon>0 with ε0\varepsilon\downarrow 0 for all (xi,ui)(x^{i},u^{i}) and i=1,2,,ni=1,2,...,n such that

𝔼0{0t12{jηiwij[xi(s)xj(s)]2+ki[xi(s)x0i]2+[ui(s)]2}|0x}dsε.\mathbb{E}_{0}\left\{\int_{0}^{t}\mbox{$\frac{1}{2}$}\bigg{\{}\sum_{j\in\eta_{i}}w_{ij}\left[x^{i}(s)-x^{j}(s)\right]^{2}+k_{i}\left[x^{i}(s)-x_{0}^{i}\right]^{2}+\left[u^{i}(s)\right]^{2}\bigg{\}}\bigg{|}\mathcal{F}_{0}^{x}\right\}ds\geq\varepsilon.

The opinion dynamics of ithi^{th} agent is continuous and it is mapped from an interval to a space of continuous functions with initial and terminal time points. Suppose, at time ss, g(s):[p,q]𝒞g(s):[p,q]\rightarrow\mathcal{C} represents an opinion dynamics of ithi^{th} agent with initial and terminal points g(p)g(p) and g(q)g(q) respectively, such that, the line path integral is 𝒞f(γ)𝑑s=pqf(g(s))|g(s)|𝑑s\int_{\mathcal{C}}f(\gamma)ds=\int_{p}^{q}f(g(s))|g^{\prime}(s)|ds, where g(s)g^{\prime}(s) is derivative with respect to ss. In this paper I consider functional path integrals where the domain of the integral is the space of functions (Pramanik, 2020, 2021a; Pramanik and Polansky, 2021). Functional path integrals are very popular in probability theory and quantum mechanics. In Feynman (1948) theoretical physicist Richard Feynman introduced Feynman path integral and popularized it in quantum mechanics. Furthermore, mathematicians develop the measurability of this functional integral and in recent years it has become popular in probability theory (Fujiwara, 2017). In quantum mechanics, when a particle moves from one point to another, between those points it chooses the shortest path out of infinitely many paths such that some of them touch the edge of the universe. After introducing equal length small time interval[s,s+ε][s,s+\varepsilon] with ε>0\varepsilon>0 such that ε0\varepsilon\downarrow 0 and using Riemann–Lebesgue lemma if at time ss one particle touches the end of the universe, then at a later time point it would come back and go to the opposite side of the previous direction to make the path integral a measurable function (Bochner et al., 1949). Similarly, agent ii has infinitely opinions, out of them they choose the opnion corresponding to least cost given by the constraint explained in Equation (2). Furthermore, the advantage of Feynman approach is that, it can be used in both in linear and non-linear stochastic differential equation systems where constructing an HJB equation is almost impossible (Baaquie, 2007).

Definition 1.

Suppose, for a particle ^[s,y(s),y˙(s)]=(1/2)m^y˙(s)2V^(y)\hat{\mathcal{L}}[s,y(s),\dot{y}(s)]=(1/2)\hat{m}\dot{y}(s)^{2}-\hat{V}(y) be the Lagrangian in classical sense in generalized coordinate yy with mass m^\hat{m} where (1/2)m^y˙2(1/2)\hat{m}\dot{y}^{2} and V^(y)\hat{V}(y) are kinetic and potential energies respectively. The transition function of Feynman path integral corresponding to the classical action function
Z=0t^(s,y(s),y˙(s))𝑑sZ^{*}=\int_{0}^{t}\hat{\mathcal{L}}(s,y(s),\dot{y}(s))ds is defined as Ψ(y)=exp{Z}𝒟Y\Psi(y)=\int_{\mathbb{R}}\exp\{{Z^{*}}\}\mathcal{D}_{Y}, where y˙=y/s\dot{y}=\partial y/\partial s and 𝒟Y\mathcal{D}_{Y} is an approximated Riemann measure which represents the positions of the particle at different time points ss in [0,t][0,t] (Pramanik, 2020).

Here ithi^{th} agent’s objective is to minimize Equation (1) subject to Equations (2). Following Definition 1 the quantum Lagrangian at time ss of [s,s+ε][s,s+\varepsilon] is

i=𝔼s{12{jηiwij[xi(s)xj(s)]2+ki[xi(s)x0i]2+[ui(s)]2}ds+λi[Δxi(s)μi[s,xi(s),ui(s)]dsσi[s,xi(s),ui(s)]dBi(s)]},\mathcal{L}^{i}=\mathbb{E}_{s}\biggr{\{}\mbox{$\frac{1}{2}$}\bigg{\{}\sum_{j\in\eta_{i}}w_{ij}\left[x^{i}(s)-x^{j}(s)\right]^{2}+k_{i}\left[x^{i}(s)-x_{0}^{i}\right]^{2}+\left[u^{i}(s)\right]^{2}\bigg{\}}ds\\ +\lambda^{i}\left[\Delta x^{i}(s)-\mu^{i}[s,x^{i}(s),u^{i}(s)]ds-\sigma^{i}[s,x^{i}(s),u^{i}(s)]dB^{i}(s)\right]\biggr{\}}, (3)

where λi\lambda^{i} is a time independent quantum Lagrangian multiplier (one can think of as a penalization constant of agent ii). As at the beginning of the small time interval [s,s+ε][s,s+\varepsilon], agent ii does not have any future information, they make expectations based on their opinion xix^{i}. For another normalizing constant Lεi>0L_{\varepsilon}^{i}>0 and for time interval [s,s+ε][s,s+\varepsilon] such that ε0\varepsilon\downarrow 0 define a transition function from ss to s+εs+\varepsilon as

Ψs,s+εi(xi)=1Lεinexp[ε𝒜s,s+ε(xi)]Ψsi(xi)𝑑xi(s),\Psi_{s,s+\varepsilon}^{i}(x^{i})=\frac{1}{L_{\varepsilon}^{i}}\int_{\mathbb{R}^{n}}\exp[-\varepsilon\mathcal{A}_{s,s+\varepsilon}(x^{i})]\Psi_{s}^{i}(x^{i})dx^{i}(s), (4)

where Ψsi(xi)\Psi_{s}^{i}(x^{i}) is the value of the transition function based on opinion xix^{i} at time ss with the initial condition Ψ0i(xi)=Ψ0i\Psi_{0}^{i}(x^{i})=\Psi_{0}^{i}. Therefore, the action function of agent ii is,

𝒜s,s+ε(xi)=ss+ε𝔼ν{12{jηiwij[xi(ν)xj(ν)]2+ki[xi(ν)x0i]2+[ui(ν)]2}dν+hi[ν+Δν,xi(ν)+Δxi(ν)]},\mathcal{A}_{s,s+\varepsilon}(x^{i})=\int_{s}^{s+\varepsilon}\mathbb{E}_{\nu}\biggr{\{}\mbox{$\frac{1}{2}$}\bigg{\{}\sum_{j\in\eta_{i}}w_{ij}\left[x^{i}(\nu)-x^{j}(\nu)\right]^{2}+k_{i}\left[x^{i}(\nu)-x_{0}^{i}\right]^{2}+\left[u^{i}(\nu)\right]^{2}\bigg{\}}d\nu\\ +h^{i}[\nu+\Delta\nu,x^{i}(\nu)+\Delta x^{i}(\nu)]\biggr{\}},

where hi[ν+Δν,xi(ν)+Δxi(ν)]C2([0,t]×n)h^{i}[\nu+\Delta\nu,x^{i}(\nu)+\Delta x^{i}(\nu)]\in C^{2}([0,t]\times\mathbb{R}^{n}) such that,

hi[ν+Δν,xi(ν)+Δxi(ν)]=λi[Δxi(ν)μi[ν,xi(ν),ui(ν)]dνσi[ν,xi(ν),ui(ν)]dBi(ν)].h^{i}[\nu+\Delta\nu,x^{i}(\nu)+\Delta x^{i}(\nu)]\\ =\lambda^{i}\left[\Delta x^{i}(\nu)-\mu^{i}[\nu,x^{i}(\nu),u^{i}(\nu)]d\nu-\sigma^{i}[\nu,x^{i}(\nu),u^{i}(\nu)]dB^{i}(\nu)\right].

Here the action function has the notation 𝒜s,s+ε(xi)\mathcal{A}_{s,s+\varepsilon}(x^{i}) which means within [s,s+ε][s,s+\varepsilon] the action of agent ii depends on their opinion xix^{i} and furthermore, I assume this system has a feedback structure. Therefore, the opinion of agent ii also depends on the strategy uiu^{i} as well as the rest of the school. Same argument goes to the transition function Ψs,s+ε(xi)\Psi_{s,s+\varepsilon}(x^{i}).

Definition 2.

For agent ii optimal opinion xi(s)x^{i*}(s) and their continuous optimal strategy ui(s)u^{i*}(s) constitute a dynamic stochastic Equilibrium such that for all s[0,t]s\in[0,t] the conditional expectation of the cost function is

𝔼0[0t12{jηiwij[xi(s)xj(s)]2+ki[xi(s)x0i]2+[ui(s)]2}𝑑s|0x]ds𝔼0[0t12{jηiwij[xi(s)xj(s)]2+ki[xi(s)x0i]2+[ui(s)]2}𝑑s|0x]ds,\mathbb{E}_{0}\left[\int_{0}^{t}\mbox{$\frac{1}{2}$}\bigg{\{}\sum_{j\in\eta_{i}}w_{ij}\left[x^{i*}(s)-x^{j*}(s)\right]^{2}+k_{i}\left[x^{i*}(s)-x_{0}^{i}\right]^{2}+\left[u^{i*}(s)\right]^{2}\bigg{\}}ds\bigg{|}\mathcal{F}_{0}^{x^{*}}\right]ds\\ \geq\mathbb{E}_{0}\left[\int_{0}^{t}\mbox{$\frac{1}{2}$}\bigg{\{}\sum_{j\in\eta_{i}}w_{ij}\left[x^{i}(s)-x^{j}(s)\right]^{2}+k_{i}\left[x^{i}(s)-x_{0}^{i}\right]^{2}+\left[u^{i}(s)\right]^{2}\bigg{\}}ds\bigg{|}\mathcal{F}_{0}^{x}\right]ds,

with the opinion dynamics explained in Equation (2), where 0x\mathcal{F}_{0}^{x^{*}} is the optimal filtration starting at time 0 such that, 0x0x\mathcal{F}_{0}^{x^{*}}\subset\mathcal{F}_{0}^{x}.

4 Main results

Suppose, for the opinion space S0={𝐱(s):s[0,t]}S_{0}=\{\mathbf{x}(s):s\in[0,t]\} and agent ii’s strategy space Γi\Gamma^{i} there exists a permissible strategy γi:[0,t]×S0Γi\gamma^{i}:[0,t]\times S_{0}\rightarrow\Gamma^{i} and for all iNi\in N define the integrand of the cost function as

gi(s,𝐱,x0i,ui)=12(jηiwij[xi(s)xj(s)]2+ki[xi(s)x0i]2+[ui(s)]2).g^{i}(s,\mathbf{x},x_{0}^{i},u^{i})=\mbox{$\frac{1}{2}$}\bigg{(}\sum_{j\in\eta_{i}}w_{ij}\left[x^{i}(s)-x^{j}(s)\right]^{2}+k_{i}\left[x^{i}(s)-x_{0}^{i}\right]^{2}+\left[u^{i}(s)\right]^{2}\bigg{)}.
Proposition 1.

For stochastic dynamic game of nn-agents of time interval [0,t][0,t], let for agent ii
(i) the feedback control ui(s,xi):[0,t]×u^{i}(s,x^{i}):[0,t]\times\mathbb{R}\rightarrow\mathbb{R} is a continuously differentiable function,
(ii) The cost integrand gi(s,𝐱,x0i,ui):[0,t]×n××g^{i}(s,\mathbf{x},x_{0}^{i},u^{i}):[0,t]\times\mathbb{R}^{n}\times\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R} is a C2C^{2} function on \mathbb{R} for all iNi\in N.

If {γi(s,x0i,xi(s))=ϕi(s,xi);iN}\big{\{}\gamma^{i*}(s,x_{0}^{i},x^{i}(s))=\phi^{i*}(s,x^{i});i\in N\big{\}} is a feedback Nash equilibrium and {𝐱(s),s[0,t]}\{\mathbf{x}(s),s\in[0,t]\} is the opinion trajectory, then there exists nn Lagrangian multipliers λi:[0,t],iN\lambda^{i}:[0,t]\rightarrow\mathbb{R},i\in N with initial condition λ0i\lambda_{0}^{i} such that, for a Lagrangian

i(s,𝐱,x0i,ui)\displaystyle\mathcal{L}^{i}(s,\mathbf{x},x_{0}^{i},u^{i}) =gi(s,𝐱,x0i,ui)+λi[dxi(s)μi(s,xi,ui)dsσi(s,xi,ui)dBi(s)]\displaystyle=g^{i}(s,\mathbf{x},x_{0}^{i},u^{i})+\lambda^{i}\big{[}dx^{i}(s)-\mu^{i}(s,x^{i},u^{i})ds-\sigma^{i}(s,x^{i},u^{i})dB^{i}(s)\big{]}

with its Euclidean action function

𝒜0,ti(x)\displaystyle\mathcal{A}_{0,t}^{i}(x) =0t𝔼s{gi(s,𝐱,x0i,ui)ds+λi[dxi(s)μi(s,xi,ui)dsσi(s,xi,ui)dBi(s)]}\displaystyle=\int_{0}^{t}\mathbb{E}_{s}\bigg{\{}g^{i}(s,\mathbf{x},x_{0}^{i},u^{i})ds+\lambda^{i}\big{[}dx^{i}(s)-\mu^{i}(s,x^{i},u^{i})ds-\sigma^{i}(s,x^{i},u^{i})dB^{i}(s)\big{]}\bigg{\}}

the following conditions hold: (a) λi=xii\lambda^{i}=\frac{\partial}{\partial x^{i}}\mathcal{L}^{i}, and (b) xi(0)=x0i[0,1]x^{i*}(0)=x_{0}^{i}\in[0,1] with iNi\in N. Under this case, the optimal feedback control will be the solution of the following equation

uifi(s,𝐱,λi,ui)[2(xi)2fi(s,𝐱,λi,ui)]2=2xifi(s,𝐱,λi,ui)2xiuifi(s,𝐱,λi,ui),\displaystyle\mbox{$\frac{\partial}{\partial u^{i}}$}f^{i}(s,\mathbf{x},\lambda^{i},u^{i})\left[\mbox{$\frac{\partial^{2}}{\partial(x^{i})^{2}}$}f^{i}(s,\mathbf{x},\lambda^{i},u^{i})\right]^{2}=2\mbox{$\frac{\partial}{\partial x^{i}}$}f^{i}(s,\mathbf{x},\lambda^{i},u^{i})\mbox{$\frac{\partial^{2}}{\partial x^{i}\partial u^{i}}$}f^{i}(s,\mathbf{x},\lambda^{i},u^{i}),

where for a function hi(s,xi)C2([0,)×)h^{i}(s,x^{i})\in C^{2}([0,\infty)\times\mathbb{R})

fi(s,𝐱,λi,ui)\displaystyle f^{i}(s,\mathbf{x},\lambda^{i},u^{i}) =gi(s,𝐱,x0i,ui)+λihi(s,xi)+[λihi(s,xi)s+λi(s)shi(s,xi)]\displaystyle=g^{i}(s,\mathbf{x},x_{0}^{i},u^{i})+\lambda^{i}h^{i}(s,x^{i})+\left[\lambda^{i}\mbox{$\frac{\partial h^{i}(s,x^{i})}{\partial s}$}+\mbox{$\frac{\partial\lambda^{i}(s)}{\partial s}$}h^{i}(s,x^{i})\right]
+λihi(s,xi)xiμi(s,xi,ui)+12λi[σi(s,xi,ui)]22hi(s,xi)(xi)2.\displaystyle\hskip 7.11317pt+\lambda^{i}\mbox{$\frac{\partial h^{i}(s,x^{i})}{\partial x^{i}}$}\mu^{i}(s,x^{i},u^{i})+\mbox{$\frac{1}{2}$}\lambda^{i}[\sigma^{i}(s,x^{i},u^{i})]^{2}\mbox{$\frac{\partial^{2}h^{i}(s,x^{i})}{\partial(x^{i})^{2}}$}.
Proof.

Equation (2) implies

xi(s+ds)xi(s)\displaystyle x^{i}(s+ds)-x^{i}(s) =μi[s,xi(s),ui(s)]ds+σi[s,xi(s),ui(s)]dBi(s).\displaystyle=\mu^{i}[s,x^{i}(s),u^{i}(s)]\ ds+\sigma^{i}[s,x^{i}(s),u^{i}(s)]\ dB^{i}(s). (5)

Following Chow (1996) we get our Euclidean action function as

𝒜0,ti(xi)\displaystyle\mathcal{A}_{0,t}^{i}(x^{i}) =0t𝔼s{gi(s,𝐱,x0i,ui)ds+λi(s)[dxi(s)μi(s,xi,ui)dsσi(s,xi,ui)dBi(s)]},\displaystyle=\int_{0}^{t}\mathbb{E}_{s}\bigg{\{}g^{i}(s,\mathbf{x},x_{0}^{i},u^{i})ds+\lambda^{i}(s)\big{[}dx^{i}(s)-\mu^{i}(s,x^{i},u^{i})ds-\sigma^{i}(s,x^{i},u^{i})dB^{i}(s)\big{]}\bigg{\}},

where EsE_{s} is the conditional expectation on opinion xi(s)x^{i}(s) at the beginning of time ss. Now, for a small change in time Δs=ε>0\Delta s=\varepsilon>0, and for agent ii’s normalizing constant Lεi>0L_{\varepsilon}^{i}>0 , define a transitional wave function in small time interval as

Ψs,s+εi(xi)\displaystyle\Psi_{s,s+\varepsilon}^{i}(x^{i}) =1Lεiexp{ε𝒜s,s+εi(x)}Ψsi(xi)dxi(s),\displaystyle=\frac{1}{L_{\varepsilon}^{i}}\int_{\mathbb{R}}\exp\biggr{\{}-\varepsilon\mathcal{A}_{s,s+\varepsilon}^{i}(x)\biggr{\}}\Psi_{s}^{i}(x^{i})dx^{i}(s), (6)

for ε0\varepsilon\downarrow 0 and Ψsi(xi)\Psi_{s}^{i}(x^{i}) is the value of the transition function at time ss and opinion xi(s)x^{i}(s) with the initial condition Ψ0i(xi)=Ψ0i\Psi_{0}^{i}(x^{i})=\Psi_{0}^{i} for all iNi\in N.

For the small time interval [s,τ][s,\tau] where τ=s+ε\tau=s+\varepsilon the Lagrangian can be represented as,

𝒜s,τi(x)\displaystyle\mathcal{A}_{s,\tau}^{i}(x) =sτ𝔼s{gi[ν,𝐱(ν),x0i,ui(ν)]dν+λi(ν)[xi(ν+dν)xi(ν)\displaystyle=\int_{s}^{\tau}\ \mathbb{E}_{s}\ \biggr{\{}g^{i}[\nu,\mathbf{x}(\nu),x_{0}^{i},u^{i}(\nu)]\ d\nu+\lambda^{i}(\nu)\ \big{[}x^{i}(\nu+d\nu)-x^{i}(\nu)
μi[ν,xi(ν),ui(ν)]dνσi[ν,xi(ν),ui(ν)]dBi(ν)]},\displaystyle\hskip 56.9055pt-\mu^{i}[\nu,x^{i}(\nu),u^{i}(\nu)]\ d\nu-\sigma^{i}[\nu,x^{i}(\nu),u^{i}(\nu)]\ dB^{i}(\nu)\big{]}\biggr{\}}, (7)

with the initial condition xi(0)=x0ix^{i}(0)=x_{0}^{i}. This conditional expectation is valid when the control ui(ν)u^{i}(\nu) of agent ii’s opinion dynamics is determined at time ν\nu and the opinions of all nn-agents 𝐱(ν)\mathbf{x}(\nu) is given (Chow, 1996). The evolution of a process takes place as if the action function is stationary. Therefore, the conditional expectation with respect to time only depends on the expectation of initial time point of interval [s,τ][s,\tau].

Define Δxi(ν)=xi(ν+dν)xi(ν)\Delta x^{i}(\nu)=x^{i}(\nu+d\nu)-x^{i}(\nu), then Fubini’s Theorem implies,

𝒜s,τi(xi)\displaystyle\mathcal{A}_{s,\tau}^{i}(x^{i}) =𝔼s{sτgi[ν,𝐱(ν),x0i,ui(ν)]dν+λi(ν)[Δxi(ν)\displaystyle=\mathbb{E}_{s}\ \bigg{\{}\int_{s}^{\tau}\ g^{i}[\nu,\mathbf{x}(\nu),x_{0}^{i},u^{i}(\nu)]\ d\nu+\lambda^{i}(\nu)\ \big{[}\Delta x^{i}(\nu)
μi[ν,xi(ν),ui(ν)]dνσi[ν,xi(ν),ui(ν)]dBi(ν)]}.\displaystyle\hskip 56.9055pt-\mu^{i}[\nu,x^{i}(\nu),u^{i}(\nu)]\ d\nu-\sigma^{i}[\nu,x^{i}(\nu),u^{i}(\nu)]\ dB^{i}(\nu)\big{]}\bigg{\}}. (8)

By Itô’s Theorem there exists a function hi[ν,xi(ν)]C2([0,)×)h^{i}[\nu,x^{i}(\nu)]\in C^{2}([0,\infty)\times\mathbb{R}) such that Yi(ν)=hi[ν,xi(ν)]Y^{i}(\nu)=h^{i}[\nu,x^{i}(\nu)] where Yi(ν)Y^{i}(\nu) is an Itô process (Øksendal, 2003). After assuming

hi[ν+Δν,xi(ν)+Δxi(ν)]=Δxi(ν)μi[ν,xi(ν),ui(ν)]dνσi[ν,xi(ν),ui(ν)]dBi(ν),h^{i}[\nu+\Delta\nu,x^{i}(\nu)+\Delta x^{i}(\nu)]=\Delta x^{i}(\nu)-\mu^{i}[\nu,x^{i}(\nu),u^{i}(\nu)]\ d\nu-\sigma^{i}[\nu,x^{i}(\nu),u^{i}(\nu)]\ dB^{i}(\nu),

Equation (4) becomes,

𝒜s,τi(xi)\displaystyle\mathcal{A}_{s,\tau}^{i}(x^{i}) =𝔼s{sτgi[ν,𝐱(ν),x0i,ui(ν)]𝑑ν+λihi[ν+Δν,xi(ν)+Δxi(ν)]}.\displaystyle=\mathbb{E}_{s}\bigg{\{}\int_{s}^{\tau}\ g^{i}[\nu,\mathbf{x}(\nu),x_{0}^{i},u^{i}(\nu)]\ d\nu+\lambda^{i}h^{i}\left[\nu+\Delta\nu,x^{i}(\nu)+\Delta x^{i}(\nu)\right]\bigg{\}}. (9)

For a very small interval around time point ss with ε0\varepsilon\downarrow 0, and Itô’s Lemma yields,

ε𝒜s,τi(xi)\displaystyle\varepsilon\mathcal{A}_{s,\tau}^{i}(x^{i}) =𝔼s{εgi[s,𝐱(s),x0i,ui(s)]+ελihi[s,xi(s)]+ελihsi[s,xi(s)]\displaystyle=\mathbb{E}_{s}\bigg{\{}\varepsilon g^{i}[s,\mathbf{x}(s),x_{0}^{i},u^{i}(s)]+\varepsilon\lambda^{i}h^{i}[s,x^{i}(s)]+\varepsilon\lambda^{i}h_{s}^{i}[s,x^{i}(s)]
+ελihxi[s,xi(s)]μi[s,xi(s),ui(s)]+ελihxi[s,xi(s)]σi[s,xi(s),ui(s)]ΔBi(s)\displaystyle\hskip 7.11317pt+\varepsilon\lambda^{i}h_{x}^{i}[s,x^{i}(s)]\mu^{i}[s,x^{i}(s),u^{i}(s)]+\varepsilon\lambda^{i}h_{x}^{i}[s,x^{i}(s)]\sigma^{i}[s,x^{i}(s),u^{i}(s)]\Delta B^{i}(s)
+12ελi(σi[s,xi(s),ui(s)])2hxxi[s,xi(s)]+o(ε)},\displaystyle\hskip 14.22636pt+\mbox{$\frac{1}{2}$}\varepsilon\lambda^{i}(\sigma^{i}[s,x^{i}(s),u^{i}(s)])^{2}h_{xx}^{i}[s,x^{i}(s)]+o(\varepsilon)\bigg{\}}, (10)

where hsi=shih_{s}^{i}=\frac{\partial}{\partial s}h^{i}, hxi=xihih_{x}^{i}=\frac{\partial}{\partial x^{i}}h^{i} and hxxi=2(xi)2hih_{xx}^{i}=\frac{\partial^{2}}{\partial(x^{i})^{2}}h^{i}, and we use the condition [Δxi(s)]2=ε[\Delta x^{i}(s)]^{2}=\varepsilon with Δxi(s)=εμi[s,xi(s),ui(s)]+σi[s,xi(s),ui(s)]ΔBi(s)\Delta x^{i}(s)=\varepsilon\mu^{i}[s,x^{i}(s),u^{i}(s)]+\sigma^{i}[s,x^{i}(s),u^{i}(s)]\Delta B^{i}(s). We use Itô’s Lemma and a similar approximation to approximate the integral. With ε0\varepsilon\downarrow 0, dividing throughout by ε\varepsilon and taking the conditional expectation we get,

ε𝒜s,τi(xi)\displaystyle\varepsilon\mathcal{A}_{s,\tau}^{i}(x^{i}) =𝔼s{εgi[s,𝐱(s),x0i,ui(s)]+ελihi[s,xi(s)]+ελihsi[s,xi(s)]\displaystyle=\mathbb{E}_{s}\bigg{\{}\varepsilon g^{i}[s,\mathbf{x}(s),x_{0}^{i},u^{i}(s)]+\varepsilon\lambda^{i}h^{i}[s,x^{i}(s)]+\varepsilon\lambda^{i}h_{s}^{i}[s,x^{i}(s)]
+ελihxi[s,xi(s)]μi[s,xi(s),ui(s)]+12ελiσ2i[s,xi(s),ui(s)]hxxi[s,xi(s)]+o(1)},\displaystyle\hskip 7.11317pt+\varepsilon\lambda^{i}h_{x}^{i}[s,x^{i}(s)]\mu^{i}[s,x^{i}(s),u^{i}(s)]+\mbox{$\frac{1}{2}$}\varepsilon\lambda^{i}\sigma^{2i}[s,x^{i}(s),u^{i}(s)]h_{xx}^{i}[s,x^{i}(s)]+o(1)\bigg{\}}, (11)

as 𝔼s[ΔBi(s)]=0\mathbb{E}_{s}[\Delta B^{i}(s)]=0 and 𝔼s[o(ε)]/ε0\mathbb{E}_{s}[o(\varepsilon)]/\varepsilon\rightarrow 0 as ε0\varepsilon\downarrow 0 with the initial condition x0ix_{0}^{i}. For ε0\varepsilon\downarrow 0 the transition function at ss is Ψsi(xi)\Psi_{s}^{i}(x^{i}) for all iNi\in N. Hence, using Equation (6), the transition function for [s,τ][s,\tau] is

Ψs,τi(xi)=1Lεiexp{ε[gi[s,𝐱(s),x0i,ui(s)]+λihi[s,xi(s)]+λihsi[s,xi(s)]+λihxi[s,xi(s)]μi[s,xi(s),ui(s)]+12λi(s)(σi[s,xi(s),ui(s)])2hxxi[s,xi(s)]]}Ψsi(x)dxi(s)+o(ε1/2).\Psi_{s,\tau}^{i}(x^{i})=\frac{1}{L_{\varepsilon}^{i}}\int_{\mathbb{R}}\exp\biggr{\{}-\varepsilon\big{[}g^{i}[s,\mathbf{x}(s),x_{0}^{i},u^{i}(s)]+\lambda^{i}h^{i}[s,x^{i}(s)]\\ +\lambda^{i}h_{s}^{i}[s,x^{i}(s)]+\lambda^{i}h_{x}^{i}[s,x^{i}(s)]\mu^{i}[s,x^{i}(s),u^{i}(s)]\\ +\mbox{$\frac{1}{2}$}\lambda^{i}(s)(\sigma^{i}[s,x^{i}(s),u^{i}(s)])^{2}h_{xx}^{i}[s,x^{i}(s)]\big{]}\biggr{\}}\Psi_{s}^{i}(x)dx^{i}(s)+o(\varepsilon^{1/2}). (12)

As ε0\varepsilon\downarrow 0, first order Taylor series expansion on the left hand side of Equation (12) gives

Ψis(xi)+εΨis(xi)s+o(ε)=1Lεiexp{ε[gi[s,𝐱(s),x0i,ui(s)]+λi(s)hi[s,xi(s)]+λihsi[s,xi(s)]+λihxi[s,xi(s)]μi[s,xi(s),ui(s)]+12λi(σi[s,xi(s),ui(s)])2hxxi[s,xi(s)]]}Ψsi(x)dxi(s)+o(ε1/2).\Psi_{is}(x^{i})+\varepsilon\frac{\partial\Psi_{is}(x^{i})}{\partial s}+o(\varepsilon)\\ =\frac{1}{L_{\varepsilon}^{i}}\int_{\mathbb{R}}\exp\biggr{\{}-\varepsilon\big{[}g^{i}[s,\mathbf{x}(s),x_{0}^{i},u^{i}(s)]+\lambda^{i}(s)h^{i}[s,x^{i}(s)]\\ +\lambda^{i}h_{s}^{i}[s,x^{i}(s)]+\lambda^{i}h_{x}^{i}[s,x^{i}(s)]\mu^{i}[s,x^{i}(s),u^{i}(s)]\\ +\mbox{$\frac{1}{2}$}\lambda^{i}(\sigma^{i}[s,x^{i}(s),u^{i}(s)])^{2}h_{xx}^{i}[s,x^{i}(s)]\big{]}\biggr{\}}\Psi_{s}^{i}(x)dx^{i}(s)+o(\varepsilon^{1/2}). (13)

For fixed ss and τ\tau let xi(s)xi(τ)=ξix^{i}(s)-x^{i}(\tau)=\xi^{i} so that xi(s)=xi(τ)+ξix^{i}(s)=x^{i}(\tau)+\xi^{i}. When ξi\xi^{i} is not around zero, for a positive number η<\eta<\infty we assume |ξi|ηεxi(s)|\xi^{i}|\leq\sqrt{\frac{\eta\varepsilon}{x^{i}(s)}} so that for ε0\varepsilon\downarrow 0, ξi\xi^{i} takes even smaller values and agent ii’s opinion 0<xi(s)ηε/(ξi)20<x^{i}(s)\leq\eta\varepsilon/(\xi^{i})^{2}. Therefore,

Ψis(xi)+εΨis(xi)s=1Lεi[Ψis(xi)+ξiΨis(xi)xi+o(ε)]×exp{ε[gi[s,𝐱(s),x0i,ui(s)]+λihi[s,xi(s)]+λihxi[s,xi(s)]μi[s,xi(s),ui(s)]+12λi(σi[s,xi(s),ui(s)])2hxxi[s,xi(s)]]}dξi+o(ε1/2).\Psi_{is}(x^{i})+\varepsilon\frac{\partial\Psi_{is}(x^{i})}{\partial s}=\frac{1}{L_{\varepsilon}^{i}}\int_{\mathbb{R}}\left[\Psi_{is}(x^{i})+\xi^{i}\frac{\partial\Psi_{is}(x^{i})}{\partial x^{i}}+o(\varepsilon)\right]\\ \times\exp\biggr{\{}-\varepsilon\big{[}g^{i}[s,\mathbf{x}(s),x_{0}^{i},u^{i}(s)]+\lambda^{i}h^{i}[s,x^{i}(s)]+\lambda^{i}h_{x}^{i}[s,x^{i}(s)]\mu^{i}[s,x^{i}(s),u^{i}(s)]\\ +\mbox{$\frac{1}{2}$}\lambda^{i}(\sigma^{i}[s,x^{i}(s),u^{i}(s)])^{2}h_{xx}^{i}[s,x^{i}(s)]\big{]}\biggr{\}}d\xi^{i}+o(\varepsilon^{1/2}).

Before solving for Gaussian integral of the each term of the right hand side of the above Equation define a C2C^{2} function

fi[s,𝝃,λi(s),ui(s)]\displaystyle f^{i}[s,\bm{\xi},\lambda^{i}(s),u^{i}(s)]
=gi[s,𝐱(s)+𝝃,x0i,ui(s)]+λihi[s,xi(s)+ξi]+λihsi[s,xi(s)+ξi]\displaystyle=g^{i}[s,\mathbf{x}(s)+\bm{\xi},x_{0}^{i},u^{i}(s)]+\lambda^{i}h^{i}[s,x^{i}(s)+\xi^{i}]+\lambda^{i}h_{s}^{i}[s,x^{i}(s)+\xi^{i}]
+λihxi[s,xi(s)+ξi]μi[s,xi(s)+ξi,ui(s)]+12λiσ2i[s,xi(s)+ξi,ui(s)]hxxi[s,xi(s)+ξi]+o(1),\displaystyle\hskip 7.11317pt+\lambda^{i}h_{x}^{i}[s,x^{i}(s)+\xi^{i}]\mu^{i}[s,x^{i}(s)+\xi^{i},u^{i}(s)]+\mbox{$\frac{1}{2}$}\lambda^{i}\sigma^{2i}[s,x^{i}(s)+\xi^{i},u^{i}(s)]h_{xx}^{i}[s,x^{i}(s)+\xi^{i}]+o(1),

where 𝝃\bm{\xi} is a vector of all nn-agents’ ξi\xi^{i}’s. Hence,

Ψis(xi)+εΨis(xi)s\displaystyle\Psi_{is}(x^{i})+\varepsilon\frac{\partial\Psi_{is}(x^{i})}{\partial s} =Ψis(xi)1Lεiexp{εfi[s,𝝃,λi(s),ui(s)]}𝑑ξi\displaystyle=\Psi_{is}(x^{i})\frac{1}{L_{\varepsilon}^{i}}\int_{\mathbb{R}}\exp\left\{-\varepsilon f^{i}[s,\bm{\xi},\lambda^{i}(s),u^{i}(s)]\right\}d\xi^{i}
+Ψis(xi)xi1Lεiξiexp{εfi[s,𝝃,λi(s),ui(s)]}𝑑ξi+o(ε1/2).\displaystyle+\frac{\partial\Psi_{is}(x^{i})}{\partial x^{i}}\frac{1}{L_{\varepsilon}^{i}}\int_{\mathbb{R}}\xi^{i}\exp\left\{-\varepsilon f^{i}[s,\bm{\xi},\lambda^{i}(s),u^{i}(s)]\right\}d\xi^{i}+o(\varepsilon^{1/2}). (14)

After taking ε0\varepsilon\downarrow 0, Δu0\Delta u\downarrow 0 and a Taylor series expansion with respect to xix^{i} of fi[s,𝝃,λi,ui(s)]f^{i}[s,\bm{\xi},\lambda^{i},u^{i}(s)] gives,

fi[s,𝝃,λi,u(s)]\displaystyle f^{i}[s,\bm{\xi},\lambda^{i},u(s)] =fi[s,𝐱(τ),λi,ui(s)]+fxi[s,𝐱(τ),λi,ui(s)][ξixi(τ)]\displaystyle=f^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]+f_{x}^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)][\xi^{i}-x^{i}(\tau)]
+12fxxi[s,𝐱(τ),λi,ui(s)][ξixi(τ)]2+o(ε).\displaystyle\hskip 28.45274pt+\mbox{$\frac{1}{2}$}f_{xx}^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)][\xi^{i}-x^{i}(\tau)]^{2}+o(\varepsilon).

Define mi=ξixi(τ)m^{i}=\xi^{i}-x^{i}(\tau) so that dξi=dmid\xi^{i}=dm^{i}. First integral on the right hand side of Equation (4) becomes,

exp{εfi[s,𝝃,λi,ui(s)]}𝑑ξi\displaystyle\int_{\mathbb{R}}\exp\big{\{}-\varepsilon f^{i}[s,\bm{\xi},\lambda^{i},u^{i}(s)]\}d\xi^{i}
=exp{εfi[s,𝐱(τ),λi,ui(s)]}\displaystyle=\exp\big{\{}-\varepsilon f^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]\big{\}}
exp{ε[fxi[s,𝐱(τ),λi,ui(s)]mi+12fxxi[s,𝐱(τ),λi,ui(s)](mi)2]}dmi.\displaystyle\hskip 28.45274pt\int_{\mathbb{R}}\exp\biggr{\{}-\varepsilon\biggr{[}f_{x}^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]m^{i}+\mbox{$\frac{1}{2}$}f_{xx}^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)](m^{i})^{2}\biggr{]}\biggr{\}}dm^{i}. (15)

Assuming ai=12fxxi[s,𝐱(τ),λi,ui(s)]a^{i}=\frac{1}{2}f_{xx}^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)] and bi=fxi[s,𝐱(τ),λi,ui(s)]b^{i}=f_{x}^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)] the argument of the exponential function in Equation (4) becomes,

ai(mi)2+bimi\displaystyle a^{i}(m^{i})^{2}+b^{i}m^{i} =ai[(mi)2+biaimi]=ai(mi+bi2aimi)2(bi)24(ai)2.\displaystyle=a^{i}\left[(m^{i})^{2}+\frac{b^{i}}{a^{i}}m^{i}\right]=a^{i}\left(m^{i}+\frac{b^{i}}{2a^{i}}m^{i}\right)^{2}-\frac{(b^{i})^{2}}{4(a^{i})^{2}}. (16)

Therefore,

exp{εfi[s,𝐱(τ),λi,ui(s)]}exp{ε[ai(mi)2+bimi]}𝑑mi\displaystyle\exp\big{\{}-\varepsilon f^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]\big{\}}\int_{\mathbb{R}}\exp\big{\{}-\varepsilon[a^{i}(m^{i})^{2}+b^{i}m^{i}]\big{\}}dm^{i}
=exp{ε[(bi)24(ai)2fi[s,𝐱(τ),λi,ui(s)]]}exp{[εai(mi+bi2aimi)2]}𝑑mi\displaystyle=\exp\left\{\varepsilon\left[\frac{(b^{i})^{2}}{4(a^{i})^{2}}-f^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]\right]\right\}\int_{\mathbb{R}}\exp\left\{-\left[\varepsilon a^{i}\left(m^{i}+\frac{b^{i}}{2a^{i}}m^{i}\right)^{2}\right]\right\}dm^{i}
=πεaiexp{ε[(bi)24(ai)2fi[s,𝐱(τ),λi,ui(s)]]},\displaystyle=\sqrt{\frac{\pi}{\varepsilon a^{i}}}\exp\left\{\varepsilon\left[\frac{(b^{i})^{2}}{4(a^{i})^{2}}-f^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]\right]\right\}, (17)

and

Ψis(xi)1Lεiexp{εfi[s,𝝃,λi,ui(s)]}𝑑ξi\displaystyle\Psi_{is}(x^{i})\frac{1}{L_{\varepsilon}^{i}}\int_{\mathbb{R}}\exp\big{\{}-\varepsilon f^{i}[s,\bm{\xi},\lambda^{i},u^{i}(s)]\}d\xi^{i}
=Ψis(x)1Lεiπεaiexp{ε[(bi)24(ai)2fi[s,𝐱(τ),λi,ui(s)]]}.\displaystyle=\Psi_{is}(x)\frac{1}{L_{\varepsilon}^{i}}\sqrt{\frac{\pi}{\varepsilon a^{i}}}\exp\left\{\varepsilon\left[\frac{(b^{i})^{2}}{4(a^{i})^{2}}-f^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]\right]\right\}. (18)

Substituting ξi=xi(τ)+mi\xi^{i}=x^{i}(\tau)+m^{i} second integrand of the right hand side of Equation (4) yields,

ξiexp[ε{fi[s,𝝃,λi,ui(s)]}]𝑑ξi\displaystyle\int_{\mathbb{R}}\xi^{i}\exp\left[-\varepsilon\{f^{i}[s,\bm{\xi},\lambda^{i},u^{i}(s)]\}\right]d\xi^{i}
=exp{εfi[s,𝐱(τ),λi,ui(s)]}[xi(τ)+mi]exp[ε[ai(mi)2+bimi]]𝑑mi\displaystyle=\exp\{-\varepsilon f^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]\}\int_{\mathbb{R}}[x^{i}(\tau)+m^{i}]\exp\left[-\varepsilon\left[a^{i}(m^{i})^{2}+b^{i}m^{i}\right]\right]dm^{i}
=exp{ε[(bi)24(ai)2fi[s,𝐱(τ),λi,ui(s)]]}[xi(τ)πεai\displaystyle=\exp\left\{\varepsilon\left[\frac{(b^{i})^{2}}{4(a^{i})^{2}}-f^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]\right]\right\}\biggr{[}x^{i}(\tau)\sqrt{\frac{\pi}{\varepsilon a^{i}}}
+miexp{ε[ai(mi+bi2aimi)2]}dmi].\displaystyle\hskip 28.45274pt+\int_{\mathbb{R}}m^{i}\exp\left\{-\varepsilon\left[a^{i}\left(m^{i}+\frac{b^{i}}{2a^{i}}m^{i}\right)^{2}\right]\right\}dm^{i}\biggr{]}. (19)

Substituting ki=mi+bi/(2ai)k^{i}=m^{i}+b^{i}/(2a^{i}) in Equation (4) we get,

exp{ε[(bi)24(ai)2fi[s,𝐱(τ),λi,ui(s)]]}[xi(τ)πεai+(kibi2ai)exp[aiε(ki)2]dki]\displaystyle\exp\left\{\varepsilon\left[\frac{(b^{i})^{2}}{4(a^{i})^{2}}-f^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]\right]\right\}\biggr{[}x^{i}(\tau)\sqrt{\frac{\pi}{\varepsilon a^{i}}}+\int_{\mathbb{R}}\left(k^{i}-\frac{b^{i}}{2a^{i}}\right)\exp[-a^{i}\varepsilon(k^{i})^{2}]dk^{i}\biggr{]}
=exp{ε[(bi)24(ai)2fi[s,𝐱(τ),λi,ui(s)]]}[xi(τ)bi2ai]πεai.\displaystyle=\exp\left\{\varepsilon\left[\frac{(b^{i})^{2}}{4(a^{i})^{2}}-f^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]\right]\right\}\biggr{[}x^{i}(\tau)-\frac{b^{i}}{2a^{i}}\biggr{]}\sqrt{\frac{\pi}{\varepsilon a^{i}}}. (20)

Hence,

1LεiΨis(xi)xiξiexp[εf[s,𝝃,λi,ui(s)]]𝑑ξi\displaystyle\frac{1}{L_{\varepsilon}^{i}}\frac{\partial\Psi_{is}(x^{i})}{\partial x^{i}}\int_{\mathbb{R}}\xi^{i}\exp\left[-\varepsilon f[s,\bm{\xi},\lambda^{i},u^{i}(s)]\right]d\xi^{i}
=1LεiΨis(xi)xiexp{ε[(bi)24(ai)2fi[s,𝐱(τ),λi,ui(s)]]}[xi(τ)bi2ai]πεai.\displaystyle=\frac{1}{L_{\varepsilon}^{i}}\frac{\partial\Psi_{is}(x^{i})}{\partial x^{i}}\exp\left\{\varepsilon\left[\frac{(b^{i})^{2}}{4(a^{i})^{2}}-f^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]\right]\right\}\biggr{[}x^{i}(\tau)-\frac{b^{i}}{2a^{i}}\biggr{]}\sqrt{\frac{\pi}{\varepsilon a^{i}}}. (21)

Using results of Equations (4), and (4) into Equation (4) we get,

Ψis(xi)+εΨis(xi)s\displaystyle\Psi_{is}(x^{i})+\varepsilon\frac{\partial\Psi_{is}(x^{i})}{\partial s}
=1LεiπεaiΨis(xi)exp{ε[(bi)24(ai)2fi[s,𝐱(τ),λi,ui(s)]]}\displaystyle=\frac{1}{L_{\varepsilon}^{i}}\sqrt{\frac{\pi}{\varepsilon a^{i}}}\Psi_{is}(x^{i})\exp\left\{\varepsilon\left[\frac{(b^{i})^{2}}{4(a^{i})^{2}}-f^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]\right]\right\}
+1LεiΨis(xi)xiπεaiexp{ε[(bi)24(ai)2fi[s,𝐱(τ),λi,ui(s)]]}[xi(τ)bi2ai]+o(ε1/2).\displaystyle+\frac{1}{L_{\varepsilon}^{i}}\frac{\partial\Psi_{is}(x^{i})}{\partial x^{i}}\sqrt{\frac{\pi}{\varepsilon a^{i}}}\exp\left\{\varepsilon\left[\frac{(b^{i})^{2}}{4(a^{i})^{2}}-f^{i}[s,\mathbf{x}(\tau),\lambda^{i},u^{i}(s)]\right]\right\}\biggr{[}x^{i}(\tau)-\frac{b^{i}}{2a^{i}}\biggr{]}+o(\varepsilon^{1/2}). (22)

As fif^{i} is in Schwartz space, derivatives are rapidly falling and assuming 0<|bi|ηε0<|b^{i}|\leq\eta\varepsilon, 0<|ai|12[1(ξi)2]10<|a^{i}|\leq\mbox{$\frac{1}{2}$}[1-(\xi^{i})^{-2}]^{-1} and xi(s)xi(τ)=ξix^{i}(s)-x^{i}(\tau)=\xi^{i} we get,

xi(τ)bi2ai=xi(s)ξibi2ai=xi(s)bi2ai,\displaystyle x^{i}(\tau)-\frac{b^{i}}{2a^{i}}=x^{i}(s)-\xi^{i}-\frac{b^{i}}{2a^{i}}=x^{i}(s)-\frac{b^{i}}{2a^{i}},

such that

|xi(s)bi2ai|=|ηε(ξi)2ηε[11(ξi)2]|ηε.\displaystyle\bigg{|}x^{i}(s)-\frac{b^{i}}{2a^{i}}\bigg{|}=\bigg{|}\frac{\eta\varepsilon}{(\xi^{i})^{2}}-\eta\varepsilon\left[1-\frac{1}{(\xi^{i})^{2}}\right]\bigg{|}\leq\eta\varepsilon.

Therefore, Wick-rotated Schrödinger type Equation for agent ii is,

Ψis(x)s\displaystyle\frac{\partial\Psi_{is}(x)}{\partial s} =[(bi)24(ai)2fi[s,𝐱(τ),λi(s),ui(s)]]Ψis(x).\displaystyle=\left[\frac{(b^{i})^{2}}{4(a^{i})^{2}}-f^{i}[s,\mathbf{x}(\tau),\lambda^{i}(s),u^{i}(s)]\right]\Psi_{is}(x). (23)

Differentiating the Equation (23) with respect to uiu^{i} gives us optimal control of agent ii under this stochastic opinion dynamics which is

{2fxifxxi[fxxifxuifxifxxui(fxxi)2]fui}Ψis(x)=0,\displaystyle\left\{\frac{2f_{x}^{i}}{f_{xx}^{i}}\left[\frac{f_{xx}^{i}f_{xu}^{i}-f_{x}^{i}f_{xxu}^{i}}{(f_{xx}^{i})^{2}}\right]-f_{u}^{i}\right\}\Psi_{is}(x)=0, (24)

where fxi=xifif_{x}^{i}=\frac{\partial}{\partial x^{i}}f^{i}, fxxi=2(xi)2fif_{xx}^{i}=\frac{\partial^{2}}{\partial(x^{i})^{2}}f^{i}, fxui=2xiuifif_{xu}^{i}=\frac{\partial^{2}}{\partial x^{i}\partial u^{i}}f^{i} and fxxui=3(xi)2uifi=0f_{xxu}^{i}=\frac{\partial^{3}}{\partial(x^{i})^{2}\partial u^{i}}f^{i}=0. Therefore, optimal feedback control of agent ii in stochastic opinion dynamics is represented as ϕi(s,xi)\phi^{i*}(s,x^{i}) and is found by setting Equation (24) equal to zero. Hence, ϕi(s,xi)\phi^{i*}(s,x^{i}) is the solution of the following Equation

fui(fxxi)2=2fxifxui.\displaystyle f_{u}^{i}(f_{xx}^{i})^{2}=2f_{x}^{i}f_{xu}^{i}. (25)

Proposition 2.

For the initial condition Ψ0i(xi)=Ii(xi)\Psi_{0}^{i}(x^{i})=I^{i}(x^{i}) the Wick-rotated Schrödinger-type equation of agent iNi\in N

Ψis(xi)s\displaystyle\frac{\partial\Psi_{is}(x^{i})}{\partial s} =[(bi)24(ai)2fi[s,𝐱(s),λi,ui(s)]]Ψis(xi),\displaystyle=\left[\frac{(b^{i})^{2}}{4(a^{i})^{2}}-f^{i}[s,\mathbf{x}(s),\lambda^{i},u^{i}(s)]\right]\Psi_{is}(x^{i}),

where ai=122(xi)2fi[s,𝐱(s),λi,ui(s)]a^{i}=\frac{1}{2}\frac{\partial^{2}}{\partial(x^{i})^{2}}f^{i}[s,\mathbf{x}(s),\lambda^{i},u^{i}(s)] and bi=xifi[s,𝐱(s),λi,ui(s)]b^{i}=\frac{\partial}{\partial x^{i}}f^{i}[s,\mathbf{x}(s),\lambda^{i},u^{i}(s)], has a unique solution

Ψis(x)\displaystyle\Psi_{is}(x) =Ii(xi)exp{s[(bi)24(ai)2fi[s,𝐱(s),λi,ui(s)]]}.\displaystyle=I^{i}(x^{i})\exp\left\{s\left[\frac{(b^{i})^{2}}{4(a^{i})^{2}}-f^{i}[s,\mathbf{x}(s),\lambda^{i},u^{i}(s)]\right]\right\}.

The optimal opinion xix^{i*} can be found after solving the following equation,

2sxifi[s,𝐱(s),λi,ui(s)]\displaystyle\frac{\partial^{2}}{\partial s\partial x^{i}}f^{i}[s,\mathbf{x}(s),\lambda^{i},u^{i}(s)] =xifi[s,𝐱(s),λi,ui(s)],\displaystyle=\frac{\partial}{\partial x^{i}}f^{i}[s,\mathbf{x}(s),\lambda^{i},u^{i}(s)], (26)

and corresponding feedback control Nash equilibrium is ϕi(s,xi)\phi^{i*}(s,x^{i*}).

Proof.

Let for three variables vi[xi(s),ui(s)],zi[xi(s),ui(s)]v^{i}[x^{i}(s),u^{i}(s)],z^{i}[x^{i}(s),u^{i}(s)] and wi[xi(s),ui(s)]w^{i}[x^{i}(s),u^{i}(s)] generalized Wick-rotated Schrödinger type equation for agent ii is,

Ψis(xi)s=vi[xi(s),ui(s)]Ψis(xi)+zi[xi(s),ui(s)]Ψis(xi)xi+wi[xi(s),ui(s)]2Ψis(xi)(xi)2,\displaystyle\frac{\partial\Psi_{is}(x^{i})}{\partial s}=v^{i}[x^{i}(s),u^{i}(s)]\Psi_{is}(x^{i})+z^{i}[x^{i}(s),u^{i}(s)]\frac{\partial\Psi_{is}(x^{i})}{\partial x^{i}}+w^{i}[x^{i}(s),u^{i}(s)]\frac{\partial^{2}\Psi_{is}(x^{i})}{\partial(x^{i})^{2}}, (27)

with the initial condition Ψ0i(xi)=Ii(xi)\Psi_{0}^{i}(x^{i})=I^{i}(x^{i}). As agent ii’s wave function Ψis(xi)\Psi_{is}(x^{i}) is a function of opinion xi(s)x^{i}(s) for fixed control ui(s)u^{i}(s), the solution to Equation (27) is found by assuming vi,ziv^{i},z^{i} and wiw^{i} vary according to the movement of xix^{i}’s only. Define Ψis;s(xi)=sΨis(xi)\Psi_{is;s}(x^{i})=\frac{\partial}{\partial s}\Psi_{is}(x^{i}), Ψis;x(xi)=xiΨis(xi)\Psi_{is;x}(x^{i})=\frac{\partial}{\partial x^{i}}\Psi_{is}(x^{i}) and Ψis;xx(xi)=2(xi)2Ψis(xi)\Psi_{is;xx}(x^{i})=\frac{\partial^{2}}{\partial(x^{i})^{2}}\Psi_{is}(x^{i}). Hence,

Ψis;s(xi)\displaystyle\Psi_{is;s}(x^{i}) =vi(xi,ui)Ψis(xi)+zi(xi,ui)Ψis;x(xi)+wi(xi,ui)Ψis;xx(xi).\displaystyle=v^{i}(x^{i},u^{i})\Psi_{is}(x^{i})+z^{i}(x^{i},u^{i})\Psi_{is;x}(x^{i})+w^{i}(x^{i},u^{i})\Psi_{is;xx}(x^{i}). (28)

For a ξ~\tilde{\xi}\in\mathbb{R}, the Fourier transformation of Ψis(xi)\Psi_{is}(x^{i}) is,

B{Ψis(xi)}=Ψ¯s(ξ~)=Ψis(xi)exp{𝔦ξ~xi}𝑑xi.\displaystyle{B}\{\Psi_{is}(x^{i})\}=\overline{\Psi}_{s}(\tilde{\xi})=\int_{\mathbb{R}}\Psi_{is}(x^{i})\exp\big{\{}-\mathfrak{i}\tilde{\xi}x^{i}\big{\}}dx^{i}. (29)

As B{Ψis;x(xi)}=xiΨis(xi)exp{𝔦ξ~xi}𝑑xi{B}\{\Psi_{is;x}(x^{i})\}=\int_{\mathbb{R}}\frac{\partial}{\partial x^{i}}\Psi_{is}(x^{i})\exp\{-\mathfrak{i}\tilde{\xi}x^{i}\}dx^{i} then assuming Ψis(xi)0\Psi_{is}(x^{i})\downarrow 0 as xi±x^{i}\rightarrow\pm\infty, Equation (29) gives, B{Ψis;x(xi)}=𝔦ξ~B{Ψis(xi)}{B}\{\Psi_{is;x}(x^{i})\}=\mathfrak{i}\tilde{\xi}{B}\{\Psi_{is}(x^{i})\}. Therefore, B{Ψis;x(xi)}=𝔦ξ~B{Ψis(xi)}{B}\{\Psi_{is;x}(x^{i})\}=\mathfrak{i}\tilde{\xi}{B}\{\Psi_{is}(x^{i})\} and, B{Ψis;xx(xi)}=𝔦ξ~B{Ψis;x(xi)}=ξ~2B{Ψis(xi)}{B}\{\Psi_{is;xx}(x^{i})\}=\mathfrak{i}\tilde{\xi}{B}\{\Psi_{is;x}(x^{i})\}=-\tilde{\xi}^{2}{B}\{\Psi_{is}(x^{i})\}. Rearranging terms in Equation (28) and Fourier transformation with above conditions give,

Ψis;s(xi)vi(xi,ui)Ψis(xi)zi(xi,ui)Ψis;x(xi)wi(xi,ui)Ψis;xx(xi)=0\displaystyle\Psi_{is;s}(x^{i})-v^{i}(x^{i},u^{i})\Psi_{is}(x^{i})-z^{i}(x^{i},u^{i})\Psi_{is;x}(x^{i})-w^{i}(x^{i},u^{i})\Psi_{is;xx}(x^{i})=0
Ψ¯is(ξ~)s+Ψ¯is(ξ~)[wi(xi,ui)ξ~2zi(xi,ui)𝔦ξ~vi(xi,ui)]=0.\displaystyle\frac{\partial\overline{\Psi}_{is}(\tilde{\xi})}{\partial s}+\overline{\Psi}_{is}(\tilde{\xi})\big{[}w^{i}(x^{i},u^{i})\tilde{\xi}^{2}-z^{i}(x^{i},u^{i})\mathfrak{i}\tilde{\xi}-v^{i}(x^{i},u^{i})\big{]}=0. (30)

Let us assume an integrating factor exp{[wi(xi,ui)ξ~2zi(xi,ui)𝔦ξ~vi(xi,ui)]𝑑s}\exp\left\{\int[w^{i}(x^{i},u^{i})\tilde{\xi}^{2}-z^{i}(x^{i},u^{i})\mathfrak{i}\tilde{\xi}-v^{i}(x^{i},u^{i})]ds\right\} which can be written as exp{s[wi(xi,ui)ξ~2zi(xi,ui)𝔦ξ~vi(xi,ui)]}.\exp\left\{s[w^{i}(x^{i},u^{i})\tilde{\xi}^{2}-z^{i}(x^{i},u^{i})\ \mathfrak{i}\tilde{\xi}-v^{i}(x^{i},u^{i})]\right\}. Therefore,

exp{s[wiξ~2z𝔦ξ~vi]}{sΨ¯is(ξ~)+Ψ¯is(ξ~)[wiξ~2zi𝔦ξ~vi]}=0,\displaystyle\exp\left\{s\left[w^{i}\tilde{\xi}^{2}-z\mathfrak{i}\tilde{\xi}-v^{i}\right]\right\}\left\{\mbox{$\frac{\partial}{\partial s}$}\overline{\Psi}_{is}(\tilde{\xi})+\overline{\Psi}_{is}(\tilde{\xi})\big{[}w^{i}\tilde{\xi}^{2}-z^{i}\mathfrak{i}\tilde{\xi}-v^{i}\big{]}\right\}=0,

or equivalently

sΨ¯is(ξ~)exp{s[wiξ~2zi𝔦ξ~vi]}+{Ψ¯is(ξ~)[wiξ~2zi𝔦ξ~vi]}exp{s[wiξ~2zi𝔦ξ~vi]}=0,\mbox{$\frac{\partial}{\partial s}$}\overline{\Psi}_{is}(\tilde{\xi})\exp\left\{s\left[w^{i}\tilde{\xi}^{2}-z^{i}\mathfrak{i}\tilde{\xi}-v^{i}\right]\right\}+\\ \left\{\overline{\Psi}_{is}(\tilde{\xi})\big{[}w^{i}\tilde{\xi}^{2}-z^{i}\mathfrak{i}\tilde{\xi}-v^{i}\big{]}\right\}\exp\left\{s\left[w^{i}\tilde{\xi}^{2}-z^{i}\mathfrak{i}\tilde{\xi}-v^{i}\right]\right\}=0,

so that

sexp{s[wiξ~2zi𝔦ξ~vi]}Ψ¯is(ξ~)=0.\displaystyle\mbox{$\frac{\partial}{\partial s}$}\exp\left\{s\left[w^{i}\tilde{\xi}^{2}-z^{i}\mathfrak{i}\tilde{\xi}-v^{i}\right]\right\}\overline{\Psi}_{is}(\tilde{\xi})=0. (31)

Integrating both sides of Equation (31) yields,

exp{s[wiξ~2zi𝔦ξ~vi]}Ψ¯is(ξ~)=ci(ξ~)and,\displaystyle\exp\left\{s\left[w^{i}\tilde{\xi}^{2}-z^{i}\mathfrak{i}\tilde{\xi}-v^{i}\right]\right\}\overline{\Psi}_{is}(\tilde{\xi})=c^{i}(\tilde{\xi})\ \text{and,}
Ψ¯is(ξ~)=ci(ξ~)exp{s[wiξ~2zi𝔦ξ~vi]}.\displaystyle\overline{\Psi}_{is}(\tilde{\xi})=c^{i}(\tilde{\xi})\ \exp\left\{-s\left[w^{i}\tilde{\xi}^{2}-z^{i}\mathfrak{i}\tilde{\xi}-v^{i}\right]\right\}. (32)

Applying the Fourier transformation on the initial condition yields, Ψ¯0i(ξ~)=I¯i(ξ~)\overline{\Psi}_{0}^{i}(\tilde{\xi})=\overline{I}^{i}(\tilde{\xi}) which implies ci(ξ~)I¯i(ξ~)c^{i}(\tilde{\xi})\equiv\overline{I}^{i}{(\tilde{\xi})}. Using this condition Equation (4) gives,

Ψ¯is(ξ~)\displaystyle\overline{\Psi}_{is}(\tilde{\xi}) =I¯i(ξ~)exp{s[wiξ~2zi𝔦ξ~vi]}=I¯i(ξ~)Φ¯i(s,ξ~),\displaystyle=\overline{I}^{i}(\tilde{\xi})\exp\left\{-s\left[w^{i}\tilde{\xi}^{2}-z^{i}\mathfrak{i}\tilde{\xi}-v^{i}\right]\right\}=\overline{I}^{i}(\tilde{\xi})\overline{\Phi}^{i}(s,\tilde{\xi}), (33)

where Φ¯i(s,ξ~)=exp{s[wiξ~2zi𝔦ξ~vi]}\overline{\Phi}^{i}(s,\tilde{\xi})=\exp\left\{-s\left[w^{i}\tilde{\xi}^{2}-z^{i}\mathfrak{i}\tilde{\xi}-v^{i}\right]\right\} for all iNi\in N. Fourier Inversion Theorem yields,

Φi(s,xi)\displaystyle\Phi^{i}(s,x^{i}) =12πexp[(szixi)24s2(wi)2+svi]πswi,iN.\displaystyle=\frac{1}{2\pi}\exp\left[\frac{(sz^{i}-x^{i})^{2}}{4s^{2}(w^{i})^{2}}+sv^{i}\right]\sqrt{\frac{\pi}{sw^{i}}},\ \forall i\in N. (34)

As the Fourier transformation Ψ¯is(ξ~)=I¯i(ξ~)Φ¯i(s,ξ~)\overline{\Psi}_{is}(\tilde{\xi})=\overline{I}^{i}(\tilde{\xi})\overline{\Phi}^{i}(s,\tilde{\xi}) is the product of two Fourier transformations, therefore the Convolution Theorem implies that for Ii(xi)I^{i}(x^{i}) and Φi[s,xi(s)]\Phi^{i}[s,x^{i}(s)],

Ψ¯is(ξ~)=B{Ii[xi(s)]Φi[s,xi(s)]},\overline{\Psi}_{is}(\tilde{\xi})={B}\left\{I^{i}[x^{i}(s)]*\Phi^{i}[s,x^{i}(s)]\right\},

and

Ψis(xi)=(IiΦi)[s,xi(s)]=Φi(s,xiyi)Ii(yi)𝑑yi,\Psi_{is}(x^{i})=(I^{i}*\Phi^{i})[s,x^{i}(s)]=\int_{\mathbb{R}}\Phi^{i}(s,x^{i}-y^{i})I^{i}(y^{i})dy^{i},

for all yiy^{i}\in\mathbb{R}. Hence, a solution to the Equation (27) is,

Ψis(xi)=12πexp{[szi(xiyi,ui)(xiyi)]24s2(wi)2(xiyi,ui)+svi(xiyi,ui)}×πswi(xiyi,ui)Ii(yi)dyi.\Psi_{is}(x^{i})=\int_{\mathbb{R}}\frac{1}{2\pi}\ \exp\left\{\frac{[sz^{i}(x^{i}-y^{i},u^{i})-(x^{i}-y^{i})]^{2}}{4s^{2}(w^{i})^{2}(x^{i}-y^{i},u^{i})}+sv^{i}(x^{i}-y^{i},u^{i})\right\}\\ \times\sqrt{\frac{\pi}{sw^{i}(x^{i}-y^{i},u^{i})}}I^{i}(y^{i})dy^{i}. (35)

If one compares Wick-rotated Schrödinger type Equation (23) with (27) we find out vi(xi,ui)=(bi)2/[4(ai)2]fi(s,xi,ui)v^{i}(x^{i},u^{i})=(b^{i})^{2}/[4(a^{i})^{2}]-f^{i}(s,x^{i},u^{i}) and other terms vanishes. Therefore, Equation (34) becomes

Φi(s,xi)\displaystyle\Phi^{i}(s,x^{i}) =12πexp(svi)exp(𝔦ξ~xi)𝑑ξ~=exp(svi)δ(xi),\displaystyle=\frac{1}{2\pi}\int_{\mathbb{R}}\exp(sv^{i})\exp\left(\mathfrak{i}\tilde{\xi}x^{i}\right)d\tilde{\xi}=\exp(sv^{i})\delta(x^{i}), (36)

where δ(xi)=12πexp(𝔦ξ~xi)𝑑ξ~\delta(x^{i})=\frac{1}{2\pi}\int_{\mathbb{R}}\exp\left(\mathfrak{i}\tilde{\xi}x^{i}\right)d\tilde{\xi} is the Dirac δ\delta-function of the opinion of agent ii. Now,

Ψ¯is(ξ~)=exp(𝔦ξ~xi)Ii(yi)Φ(xiyi)𝑑xi𝑑yi=Ii(yi)[exp(𝔦ξ~xi)Φ(xiyi)𝑑xi]𝑑yi.\overline{\Psi}_{is}(\tilde{\xi})=\int_{\mathbb{R}}\int_{\mathbb{R}}\exp(-\mathfrak{i}\tilde{\xi}x^{i})I^{i}(y^{i})*\Phi(x^{i}-y^{i})dx^{i}dy^{i}\\ =\int_{\mathbb{R}}I^{i}(y^{i})\left[\int_{\mathbb{R}}\exp(-\mathfrak{i}\tilde{\xi}x^{i})\Phi(x^{i}-y^{i})dx^{i}\right]dy^{i}.

Suppose, ui=xiyiu^{i}=x^{i}-y^{i} such that dui=dxidu^{i}=dx^{i} for all iNi\in N. Then

Ψ¯is(ξ~)\displaystyle\overline{\Psi}_{is}(\tilde{\xi}) =Ii(yi)[exp(𝔦ξ~ui)exp(𝔦ξ~yi)Φ(ui)𝑑ui]𝑑yi\displaystyle=\int_{\mathbb{R}}I^{i}(y^{i})\left[\int_{\mathbb{R}}\exp(-\mathfrak{i}\tilde{\xi}u^{i})\exp(-\mathfrak{i}\tilde{\xi}y^{i})\Phi(u^{i})du^{i}\right]dy^{i}
=[Ii(yi)exp(𝔦ξ~yi)𝑑yi][Φ(ui)exp(𝔦ξ~ui)𝑑ui]=B(Ii)B(Φi).\displaystyle=\left[\int_{\mathbb{R}}I^{i}(y^{i})\exp(-\mathfrak{i}\tilde{\xi}y^{i})dy^{i}\right]\left[\int_{\mathbb{R}}\Phi(u^{i})\exp(-\mathfrak{i}\tilde{\xi}u^{i})du^{i}\right]=B(I^{i})*B(\Phi^{i}).

Therefore, the solution to Equation (23) is Ψis(xi)=Ii(xi)exp[svi(xi,ui)]\Psi_{is}(x^{i})=I^{i}(x^{i})\exp[sv^{i}(x^{i},u^{i})] where vi(xi,ui)=(bi)2/[4(ai)2]fi(s,xi,ui)v^{i}(x^{i},u^{i})=(b^{i})^{2}/[4(a^{i})^{2}]-f^{i}(s,x^{i},u^{i}). After using this solution to the wave function Ψis(xi)\Psi_{is}(x^{i}) into Wick-rotated Schrödinger type Equation (23) we get,

sfi[s,𝐱(s),λi,ui(s)]\displaystyle\mbox{$\frac{\partial}{\partial s}$}f^{i}[s,\mathbf{x}(s),\lambda^{i},u^{i}(s)] =xifi[s,𝐱(s),λi,ui(s)],\displaystyle=\mbox{$\frac{\partial}{\partial x^{i}}$}f^{i}[s,\mathbf{x}(s),\lambda^{i},u^{i}(s)],

and differentiating with respect to xix^{i} gives

xi{sfi[s,𝐱(s),λi,ui(s)]}\displaystyle\mbox{$\frac{\partial}{\partial x^{i}}$}\left\{\mbox{$\frac{\partial}{\partial s}$}f^{i}[s,\mathbf{x}(s),\lambda^{i},u^{i}(s)]\right\} =xifi[s,𝐱(s),λi,ui(s)].\displaystyle=\mbox{$\frac{\partial}{\partial x^{i}}$}f^{i}[s,\mathbf{x}(s),\lambda^{i},u^{i}(s)]. (37)

Optimal opinion of agent ii, xix^{i*} can be found after solving the Equation (37) and an optimal feedback control ϕi(s,xi)\phi^{i*}(s,x^{i*}) is obtained. ∎

Corollary 1.

Define 𝐱=[x1,x2,,xn]T\mathbf{x}^{*}=[x^{1*},x^{2*},...,x^{n*}]^{T} for all iNi\in N. As each player has an optimal opinion xix^{i*}, 𝐱\mathbf{x}^{*} is an optimal opinion vector. Furthermore,

ϕ(s,𝐱)=[ϕ1(s,x1),ϕ2(s,x2),,ϕn(s,xn)]T\phi^{*}(s,\mathbf{x}^{*})=\left[\phi^{1*}(s,x^{1*}),\phi^{2*}(s,x^{2*}),...,\phi^{n*}(s,x^{n*})\right]^{T}

is an optimal control vector of feedback Nash equilibrium.

After combining the opinion state variables and the Lagrangian multipliers, the following equation is obtained

[d𝐱(s)d𝝀(𝒔)]=𝐊^[𝐱0𝝀0]ds+𝐀[𝐱(s)𝝀(s)]ds+[𝝈𝟎][d𝐁(s)d𝐁𝝀(s)]\begin{bmatrix}d\mathbf{x}(s)\\ d\bm{\lambda(s)}\end{bmatrix}=\hat{\mathbf{K}}\begin{bmatrix}\mathbf{x}_{0}\\ \bm{\lambda}_{0}\end{bmatrix}ds+\mathbf{A}\begin{bmatrix}\mathbf{x}(s)\\ \bm{\lambda}(s)\end{bmatrix}ds+\begin{bmatrix}\bm{\sigma}\\ \bm{0}\end{bmatrix}\begin{bmatrix}d\mathbf{B}(s)\\ d\mathbf{B}_{\bm{\lambda}}(s)\end{bmatrix}

where

𝐀=[𝝁𝐈𝐖 0],𝐊^=[0 0𝐊 0]\mathbf{A}=\begin{bmatrix}\bm{\mu}\ \ -\mathbf{I}\\ -\mathbf{W}\ \ \bm{0}\end{bmatrix},\ \hat{\mathbf{K}}=\begin{bmatrix}\bm{0}\ \ \bm{0}\\ \mathbf{K}\ \ \bm{0}\end{bmatrix}

where 𝐈\mathbf{I} is the identity matrix of size nn, 𝝀(s)=[λ1(s),λ2(s),,λn(s)]T\bm{\lambda}(s)=[\lambda^{1}(s),\lambda^{2}(s),...,\lambda^{n}(s)]^{T},
𝐊=diag[k1,k2,,kn]\mathbf{K}=\text{diag}[k_{1},k_{2},...,k_{n}], 𝝁\bm{\mu} is an n×1n\times 1 vector, 𝝈\bm{\sigma} is an n×mn\times m-dimensional matrix d𝐁(s)d\mathbf{B}(s) is an m×1m\times 1-dimensional Brownian motion corresponding to opinion and d𝐁𝝀(s)d\mathbf{B}_{\bm{\lambda}}(s) is an m×1m\times 1 dimensional Brownian motion of the Lagrangian multiplier. Following Niazi, Özgüler and Yildiz (2016)

𝐖=[q1w12w1nw21q2w2nwn1wn2qn]\mathbf{W}=\begin{bmatrix}q_{1}&-w_{12}&\dots&-w_{1n}\\ -w_{21}&q_{2}&\dots&-w_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ -w_{n1}&-w_{n2}&\dots&q_{n}\end{bmatrix}

with qi=jηiwij+kiq_{i}=\sum_{j\in\eta_{i}}w_{ij}+k_{i}. 𝐖\mathbf{W} is a Laplacian-like matrix of a weighted directed gaph GG (Niazi, Özgüler and Yildiz, 2016) where ijthij^{th} element in the off-diagonal shows the weight of the edge directed from ii to jj. Define d𝐗(s)=[d𝐱(s),d𝝀(s)]Td\mathbf{X}(s)=[d\mathbf{x}(s),d\bm{\lambda}(s)]^{T}, 𝐗0=[𝐱0,𝝀0]T\mathbf{X}_{0}=[\mathbf{x}_{0},\bm{\lambda}_{0}]^{T}, 𝐗(s)=[𝐱(s),𝝀(s)]T\mathbf{X}(s)=[\mathbf{x}(s),\bm{\lambda}(s)]^{T}, 𝝈^=[𝝈,𝟎]T\hat{\bm{\sigma}}=[\bm{\sigma},\bm{0}]^{T} and d𝐁^(s)=[d𝐁(s),d𝐁𝝀(s)]Td\hat{\mathbf{B}}(s)=[d\mathbf{B}(s),d\mathbf{B}_{\bm{\lambda}}(s)]^{T}. Then we get the following equation

d𝐗(s)=𝐊^𝐗0ds+𝐀𝐗(s)ds+𝝈^d𝐁^(s).\displaystyle d\mathbf{X}(s)=\hat{\mathbf{K}}\mathbf{X}_{0}ds+\mathbf{A}\mathbf{X}(s)ds+\hat{\bm{\sigma}}d\hat{\mathbf{B}}(s). (38)

Following Øksendal (2003) we get a unique solution of the stochastic differential equation expressed in Equation (38) as

𝐗(s)=exp(𝐀s)[𝐊^𝐗0+exp(𝐀s)𝝈^𝐁^(s)+0texp(𝐀s)𝐀𝝈^𝐁^(s)𝑑s].\displaystyle\mathbf{X}(s)=\exp(\mathbf{A}s)\left[\hat{\mathbf{K}}\mathbf{X}_{0}+\exp(-\mathbf{A}s)\hat{\bm{\sigma}}\hat{\mathbf{B}}(s)+\int_{0}^{t}\exp(-\mathbf{A}s)\mathbf{A}\hat{\bm{\sigma}}\hat{\mathbf{B}}(s)ds\right]. (39)

5 Stochastic differential games with an explicit feedback Nash equilibrium

Propositions 1 and 2 states that, for agent ii and given hi(s,xi)h^{i}(s,x^{i}) one can get a optimal Nash feedback control ϕi(s,xi)\phi^{i*}(s,x^{i}) and for a unique solution of the transition wave function the unique opinion dynamics is xix^{i*}. In this section I am considering two main consensus: full consensus or complete information and consensus under a leader who can influence other agents’ opinions.

First, consider the consensus under complete information. Let there be a network where all agents are connected with each other or ηi=N{i}\eta_{i}=N\setminus\{i\}. As every agent has equal power to influence others, in the long run a consensus will be eventually reached. As some agents are stubborn, their opinions might not be influenced by others and a full consensus is not reached. Following Niazi, Özgüler and Yildiz (2016) assume all the parameters of agent ii’s cost function are equal or ki=kk_{i}=k, wij=wji=ww_{ij}=w_{ji}=w for all iNi\in N and (i,j)E(i,j)\in E where agent ii’s stochastic opinion dynamics is represented by

dxi(s)=[1nj=1nxj+γ(s)(xi(s)1nj=1nxj)ui(s)]ds+2σdBi(s),\displaystyle dx^{i}(s)=\left[\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}+\gamma(s)\left(x^{i}(s)-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)-u^{i}(s)\right]ds+\sqrt{2\sigma}dB^{i}(s), (40)

where γ(s)=kλ1+(nwλ1)cosh[λ1(ts)]cosh(λ1t)\gamma(s)=\frac{k}{\lambda_{1}}+\left(\frac{nw}{\lambda_{1}}\right)\frac{cosh\left[\sqrt{\lambda_{1}}(t-s)\right]}{cosh\left(\sqrt{\lambda_{1}}t\right)}, λ1=k+nw\lambda_{1}=k+nw and σ\sigma is a constant diffusion component. In Equation (40) xjx^{j*} is the optimal opinion of jthj^{th} agent according to agent ii because, under complete information agent ii has the information of all possible reaction functions of agent jj but does not know what reaction function agent jj will play. Therefore, agent ii assumes agent jj is rational and calculates optimal opinion xjx^{j*}. Opinion trajectory explained in Equation (40) has drift part and a diffusion part. The drift part has three components, the first component is the average of optimal opinions of all the agents in the network, the second term depends on the difference between the opinion of agent ii at time ss and the average and the third component is the control of agent ii. As control is the cost of agent ii in the opinion dynamics, it comes with a negative sign at the front. I do not consider other agents’ controls in Equation (40) because, I assume all of the agents’ control in this network are independent to each other.

Proposition 3.

Suppose agent ii minimizes the objective cost function

0t𝔼0{12nw[xi(s)xj(s)]2+12k[xi(s)x0i]2+12[ui(s)]2|0x}𝑑s,\int_{0}^{t}\mathbb{E}_{0}\ \bigg{\{}\mbox{$\frac{1}{2}$}nw\left[x^{i}(s)-x^{j}(s)\right]^{2}+\mbox{$\frac{1}{2}$}k\left[x^{i}(s)-x_{0}^{i}\right]^{2}+\mbox{$\frac{1}{2}$}\left[u^{i}(s)\right]^{2}\bigg{|}\mathcal{F}_{0}^{x}\bigg{\}}ds,

subject to the stochastic opinion dynamics expressed in Equation (40). For b,d>0b,d>0, define hi(s,xi)=exp(sbxi+d)h^{i}(s,x^{i})=\exp(sbx^{i}+d).

(i) Then for

fi(s,𝐱,λi,ui)\displaystyle f^{i}(s,\mathbf{x},\lambda^{i},u^{i}) =12nw(xixj)2+12k(xix0i)2+12(ui)2+bλixihi(s,xi)+λishi(s,xi)\displaystyle=\mbox{$\frac{1}{2}$}nw\left(x^{i}-x^{j}\right)^{2}+\mbox{$\frac{1}{2}$}k\left(x^{i}-x_{0}^{i}\right)^{2}+\mbox{$\frac{1}{2}$}\left(u^{i}\right)^{2}+b\lambda^{i}x^{i}h^{i}(s,x^{i})+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}h^{i}(s,x^{i})
+sbλihi(s,xi)[1nj=1nxj+γ(xi1nj=1nxj)ui]+s2b2σλihi(s,xi),\displaystyle\hskip 14.22636pt+sb\lambda^{i}h^{i}(s,x^{i})\left[\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}+\gamma\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)-u^{i}\right]+s^{2}b^{2}\sigma\lambda^{i}h^{i}(s,x^{i}),

a feedback Nash Equilibrium control of opinion dynamics

ϕi(s,xi)=p+{q+[q2+(rp2)3]12}13+{q[q2+(rp2)3]12}13,\displaystyle\phi^{i*}(s,x^{i})=p+\left\{q+\left[q^{2}+(r-p^{2})^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}+\left\{q-\left[q^{2}+(r-p^{2})^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}, (41)

where

p\displaystyle p =B2(s,γ,xi,xj,λi)3B1(s,xi,λi),\displaystyle=-\frac{B_{2}(s,\gamma,x^{i},x^{j},\lambda^{i})}{3B_{1}(s,x^{i},\lambda^{i})},
q\displaystyle q =[p(s,γ,xi,xj,λi)]3+B2(s,γ,xi,xj,λi)B3(s,γ,xi,xj,λi)3B1(s,xi,λi)B4(s,γ,xi,xj,λi)6[B1(s,xi,λi)]2,\displaystyle=[p(s,\gamma,x^{i},x^{j},\lambda^{i})]^{3}+\frac{B_{2}(s,\gamma,x^{i},x^{j},\lambda^{i})B_{3}(s,\gamma,x^{i},x^{j},\lambda^{i})-3B_{1}(s,x^{i},\lambda^{i})B_{4}(s,\gamma,x^{i},x^{j},\lambda^{i})}{6[B_{1}(s,x^{i},\lambda^{i})]^{2}},
r\displaystyle r =B3(s,γ,xi,xj,λi)3B1(s,xi,λi),\displaystyle=\frac{B_{3}(s,\gamma,x^{i},x^{j},\lambda^{i})}{3B_{1}(s,x^{i},\lambda^{i})},

B1=(C2)2B_{1}=(C_{2})^{2}, B2=C2(2A2+C1)B_{2}=-C_{2}(2A_{2}+C_{1}), B3=(A2)22A2C1C2(C3)2B_{3}=(A_{2})^{2}-2A_{2}C_{1}C_{2}-(C_{3})^{2}, B4=A1C3C1(A2)2B_{4}=A_{1}C_{3}-C_{1}(A_{2})^{2}, C1=sbλihi(s,xi)C_{1}=sb\lambda^{i}h^{i}(s,x^{i}), C2=(sb)3λihi(s,xi)C_{2}=(sb)^{3}\lambda^{i}h^{i}(s,x^{i}), and C3=(sb)2λihi(s,xi)C_{3}=(sb)^{2}\lambda^{i}h^{i}(s,x^{i}).

(ii) For a unique solution of the wave function Ψis(xi)\Psi_{is}(x^{i}) as expressed in Proposition 2 and λi\lambda^{i} is a C2C^{2} function with respect to ss, an optimal opinion xi{x}^{i*} is obtained by solving following equation

hi(s,xi){2bλixi+sb3λi(xi)2+sb2λis2+b(1+sbxi)λis+[[(sb)2+b(1+b+sb)]λis]\displaystyle h^{i}(s,x^{i})\biggr{\{}2b\lambda^{i}x^{i}+sb^{3}\lambda^{i}(x^{i})^{2}+sb\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+b(1+sbx^{i})\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\left[[(sb)^{2}+b(1+b+sb)]\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\right]
[1nj=1nxj+γ(xi1nj=1nxj)ui]+γ[sbλis+bλi(1+sxi)]\displaystyle\hskip 28.45274pt\left[\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}+\gamma\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)-u^{i}\right]+\gamma\left[sb\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+b\lambda^{i}(1+sx^{i})\right]
+sbλi[1+sb(xi1nj=1nxj)]γs+σs2b2[λi(3+sbxi)+λis]}\displaystyle\hskip 56.9055pt+sb\lambda^{i}\left[1+sb\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)\right]\mbox{$\frac{\partial\gamma}{\partial s}$}+\sigma s^{2}b^{2}\bigg{[}\lambda^{i}(3+sbx^{i})+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\bigg{]}\biggr{\}}
=xi(k+nw)(nwxj+kx0i)+bhi(s,xi){sbλixi(1+sγ)+λi+sλis\displaystyle=x^{i}(k+nw)-(nwx^{j}+kx_{0}^{i})+bh^{i}(s,x^{i})\biggr{\{}sb\lambda^{i}x^{i}(1+s\gamma)+\lambda^{i}+s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}
+s2bλi((1γ)1nj=1nxjui)+sλi(γ+s2bσ)},\displaystyle\hskip 28.45274pt+s^{2}b\lambda^{i}\left((1-\gamma)\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}-u^{i}\right)+s\lambda^{i}(\gamma+s^{2}b\sigma)\biggr{\}}, (42)

which is

xi\displaystyle x^{i*} =A11+{A12+[(A12)2+[A13(A11)2]3]12}13+{A12[(A12)2+[A13(A11)2]3]12}13,\displaystyle=A_{11}+\left\{A_{12}+\left[(A_{12})^{2}+[A_{13}-(A_{11})^{2}]^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}+\left\{A_{12}-\left[(A_{12})^{2}+[A_{13}-(A_{11})^{2}]^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}, (43)

where

A13=A9(s,σ,γ,λi,ui,xj)3A7(s,λi)\displaystyle A_{13}=\frac{A_{9}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})}{3A_{7}(s,\lambda^{i})}
A12=(A11)3+A8(s,σ,γ,λi,ui,xj)A9(s,σ,γ,λi,ui,xj)3A7(s,λi)A10(s,σ,γ,λi,ui,xj)6[A7(s,λi)]2,\displaystyle A_{12}=(A_{11})^{3}+\frac{A_{8}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})A_{9}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})-3A_{7}(s,\lambda^{i})A_{10}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})}{6[A_{7}(s,\lambda^{i})]^{2}},
A11=A8(s,σ,γ,λi,ui,xj)3A7(s,λi),\displaystyle A_{11}=-\ \frac{A_{8}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})}{3A_{7}(s,\lambda^{i})},
A10(s,σ,γ,λi,ui,xj)=A3(s,σ,γ,λi,ui,xj)+beA5(s,σ,γ,λi,ui,xj),\displaystyle A_{10}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})=A_{3}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})+beA_{5}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j}),
A9(s,σ,γ,λi,ui,xj)=beA6(s,σ,γ,λi,ui,xj)+sb2A5(s,σ,γ,λi,ui,xj)(k+nw),\displaystyle A_{9}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})=beA_{6}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})+sb^{2}A_{5}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})-(k+nw),
A8(s,σ,γ,λi,ui,xj)=sb2[eλi+A6(s,σ,γ,λi,ui,xj)],\displaystyle A_{8}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})=sb^{2}[e\lambda^{i}+A_{6}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})],
A7(s,λi)=s2b4λi,\displaystyle A_{7}(s,\lambda^{i})=s^{2}b^{4}\lambda^{i},
A6(s,σ,γ,λi,ui,xj)=[2+γs+s2bsγ+σ(sb)2sb(1+sγ)]λi+[sb+γ(1+b+sb+s2b)]λis,\displaystyle A_{6}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})=[2+\gamma s+s^{2}b\mbox{$\frac{\partial}{\partial s}$}\gamma+\sigma(sb)^{2}-sb(1+s\gamma)]\lambda^{i}+[sb+\gamma(1+b+sb+s^{2}b)]\mbox{$\frac{\partial\lambda^{i}}{\partial s}$},

and

A5(s,σ,γ,λi,ui,xj)\displaystyle A_{5}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})
=s2λis2+λis+[(1+b+sb+s2b)λis][(1γ)1nj=1nxjui]+γλi(1+sλis)\displaystyle=s\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\left[(1+b+sb+s^{2}b)\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\right]\left[(1-\gamma)\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}-u^{i}\right]+\gamma\lambda^{i}\left(1+s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\right)
+sλi[1sb1nj=1nxj]γs+σs2b2(3λi+λis)A4(s,σ,γ,λi,ui,xj).\displaystyle\hskip 14.22636pt+s\lambda^{i}\left[1-sb\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right]\mbox{$\frac{\partial\gamma}{\partial s}$}+\sigma s^{2}b^{2}\big{(}3\lambda^{i}+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\big{)}-A_{4}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j}).

(iii) The opinion difference between agents ii and jj at time s[0,t]s\in[0,t] is

|Δxij(s)||Δx0ij|+|0t[γ(s)Δxij(s)Δuij(s)]𝑑s|+|2σ||0t[dBi(s)dBj(s)]|,\displaystyle|\Delta x^{ij}(s)|\leq|\Delta x_{0}^{ij}|+\left|\int_{0}^{t}\left[\gamma(s)\Delta x^{ij}(s)-\Delta u^{ij}(s)\right]ds\right|+\left|\sqrt{2\sigma}\right|\left|\int_{0}^{t}[dB^{i}(s)-dB^{j}(s)]\right|,

where Δxij(s)=xi(s)xj(s)\Delta x^{ij}(s)=x^{i}(s)-x^{j}(s), Δx0ij=x0ix0j\Delta x_{0}^{ij}=x_{0}^{i}-x_{0}^{j} and Δuij(s)=ui(s)uj(s)\Delta u^{ij}(s)=u^{i}(s)-u^{j}(s).

Proof.

(i). Let hi(s,xi)=exp(sbxi+d)h^{i}(s,x^{i})=\exp(sbx^{i}+d), for a finite b>0b>0 and d>0d>0 with shi(s,xi)=bxihi(s,xi)\frac{\partial}{\partial s}h^{i}(s,x^{i})=bx^{i}h^{i}(s,x^{i}), xihi(s,xi)=sbhi(s,xi)\frac{\partial}{\partial x^{i}}h^{i}(s,x^{i})=sbh^{i}(s,x^{i}) and 2(xi)2hi(s,xi)=s2b2hi(s,xi)\frac{\partial^{2}}{\partial(x^{i})^{2}}h^{i}(s,x^{i})=s^{2}b^{2}h^{i}(s,x^{i}). Hence, Proposition 1 implies,

fi(s,𝐱,λi,ui)\displaystyle f^{i}(s,\mathbf{x},\lambda^{i},u^{i}) =12nw(xixj)2+12k(xix0i)2+12(ui)2+bλixihi(s,xi)+sλihi(s,xi)\displaystyle=\mbox{$\frac{1}{2}$}nw\left(x^{i}-x^{j}\right)^{2}+\mbox{$\frac{1}{2}$}k\left(x^{i}-x_{0}^{i}\right)^{2}+\mbox{$\frac{1}{2}$}\left(u^{i}\right)^{2}+b\lambda^{i}x^{i}h^{i}(s,x^{i})+\mbox{$\frac{\partial}{\partial s}$}\lambda^{i}h^{i}(s,x^{i})
+sbλihi(s,xi)[1nj=1nxj+γ(xi1nj=1nxj)ui]+s2b2σλihi(s,xi).\displaystyle\hskip 14.22636pt+sb\lambda^{i}h^{i}(s,x^{i})\left[\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}+\gamma\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)-u^{i}\right]+s^{2}b^{2}\sigma\lambda^{i}h^{i}(s,x^{i}). (44)

Now

xifi(s,𝐱,λi,ui)\displaystyle\mbox{$\frac{\partial}{\partial x^{i}}$}f^{i}(s,\mathbf{x},\lambda^{i},u^{i}) =nw(xixj)+k(xix0i)+bhi(s,xi){sλis\displaystyle=nw(x^{i}-x^{j})+k(x^{i}-x_{0}^{i})+bh^{i}(s,x^{i})\biggr{\{}s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}
+λi[1+bsxi+s2b[1nj=1nxj+γ(xi1nj=1nxj)ui]+sγ+σs3b2]}\displaystyle\hskip 14.22636pt+\lambda^{i}\left[1+bsx^{i}+s^{2}b\left[\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}+\gamma\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)-u^{i}\right]+s\gamma+\sigma s^{3}b^{2}\right]\biggr{\}}
=A1(s,γ,xi,xj,λi)s2b2λihi(s,xi)ui,\displaystyle=A_{1}(s,\gamma,x^{i},x^{j},\lambda^{i})-s^{2}b^{2}\lambda^{i}h^{i}(s,x^{i})u^{i},
2(xi)2fi(s,𝐱,λi,ui)\displaystyle\mbox{$\frac{\partial^{2}}{\partial(x^{i})^{2}}$}f^{i}(s,\mathbf{x},\lambda^{i},u^{i}) =nw+k+sb2hi(s,xi){sλis+λi[1+sbxi+sγ+σs3b2\displaystyle=nw+k+sb^{2}h^{i}(s,x^{i})\biggr{\{}s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\lambda^{i}\biggr{[}1+sbx^{i}+s\gamma+\sigma s^{3}b^{2}
+s2b[1nj=1nxj+γ(xi1nj=1nxj)ui]]}+sb2λi(1+sγ)hi(s,xi)\displaystyle\hskip 14.22636pt+s^{2}b\bigg{[}\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}+\gamma\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)-u^{i}\bigg{]}\biggr{]}\biggr{\}}+sb^{2}\lambda^{i}(1+s\gamma)h^{i}(s,x^{i})
=A2(s,γ,xi,xj,λi)s3b3λihi(s,xi)ui,\displaystyle=A_{2}(s,\gamma,x^{i},x^{j},\lambda^{i})-s^{3}b^{3}\lambda^{i}h^{i}(s,x^{i})u^{i},
uifi(s,𝐱,λi,ui)\displaystyle\mbox{$\frac{\partial}{\partial u^{i}}$}f^{i}(s,\mathbf{x},\lambda^{i},u^{i}) =uisbλihi(s,xi),\displaystyle=u^{i}-sb\lambda^{i}h^{i}(s,x^{i}), (45)

and,

2xiuifi(s,𝐱,λi,ui)\displaystyle\mbox{$\frac{\partial^{2}}{\partial x^{i}\partial u^{i}}$}f^{i}(s,\mathbf{x},\lambda^{i},u^{i}) =s2b2λihi(s,xi).\displaystyle=-s^{2}b^{2}\lambda^{i}h^{i}(s,x^{i}). (46)

Therefore, Equation (25) implies

[uisbλihi(s,xi)][A2(s,γ,xi,xj,λi)s3b3uiλihi(s,xi)]2\displaystyle\left[u^{i}-sb\lambda^{i}h^{i}(s,x^{i})\right]\left[A_{2}(s,\gamma,x^{i},x^{j},\lambda^{i})-s^{3}b^{3}u^{i}\lambda^{i}h^{i}(s,x^{i})\right]^{2}
=2s2b2λihi(s,xi)[s2b2uiλihi(s,xi)A1(s,γ,xi,xj,λi)],\displaystyle=2s^{2}b^{2}\lambda^{i}h^{i}(s,x^{i})\left[s^{2}b^{2}u^{i}\lambda^{i}h^{i}(s,x^{i})-A_{1}(s,\gamma,x^{i},x^{j},\lambda^{i})\right],

and we get a cubic polynomial with respect to control

B1(s,xi,λi)(ui)3+B2(s,γ,xi,xj,λi)(ui)2+B3(s,γ,xi,xj,λi)ui+B4(s,γ,xi,xj,λi)=0,\displaystyle B_{1}(s,x^{i},\lambda^{i})(u^{i})^{3}+B_{2}(s,\gamma,x^{i},x^{j},\lambda^{i})(u^{i})^{2}+B_{3}(s,\gamma,x^{i},x^{j},\lambda^{i})u^{i}+B_{4}(s,\gamma,x^{i},x^{j},\lambda^{i})=0, (47)

where B1=(C2)2B_{1}=(C_{2})^{2}, B2=C2(2A2+C1)B_{2}=-C_{2}(2A_{2}+C_{1}), B3=(A2)22A2C1C2(C3)2B_{3}=(A_{2})^{2}-2A_{2}C_{1}C_{2}-(C_{3})^{2}, B4=A1C3C1(A2)2B_{4}=A_{1}C_{3}-C_{1}(A_{2})^{2}, C1(s,xi,λi)=sbλihi(s,xi)C_{1}(s,x^{i},\lambda^{i})=sb\lambda^{i}h^{i}(s,x^{i}), C2(s,xi,λi)=(sb)3λihi(s,xi)C_{2}(s,x^{i},\lambda^{i})=(sb)^{3}\lambda^{i}h^{i}(s,x^{i}), and C3(s,xi,λi)=(sb)2λihi(s,xi)C_{3}(s,x^{i},\lambda^{i})=(sb)^{2}\lambda^{i}h^{i}(s,x^{i}). Therefore, Equation (47) gives feedback Nash equilibrium of control

ϕi=p+{q+[q2+(rp2)3]12}13+{q[q2+(rp2)3]12}13,\displaystyle\phi^{i*}=p+\left\{q+\left[q^{2}+(r-p^{2})^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}+\left\{q-\left[q^{2}+(r-p^{2})^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}, (48)

where

p=B2(s,γ,xi,xj,λi)3B1(s,xi,λi),\displaystyle p=-\frac{B_{2}(s,\gamma,x^{i},x^{j},\lambda^{i})}{3B_{1}(s,x^{i},\lambda^{i})},
q=p3+B2(s,γ,xi,xj,λi)B3(s,γ,xi,xj,λi)3B1(s,xi,λi)B4(s,γ,xi,xj,λi)6[B1(s,xi,λi)]2,\displaystyle q=p^{3}+\frac{B_{2}(s,\gamma,x^{i},x^{j},\lambda^{i})B_{3}(s,\gamma,x^{i},x^{j},\lambda^{i})-3B_{1}(s,x^{i},\lambda^{i})B_{4}(s,\gamma,x^{i},x^{j},\lambda^{i})}{6[B_{1}(s,x^{i},\lambda^{i})]^{2}},

and

r=B3(s,γ,xi,xj,λi)3B1(s,xi,λi).\displaystyle r=\frac{B_{3}(s,\gamma,x^{i},x^{j},\lambda^{i})}{3B_{1}(s,x^{i},\lambda^{i})}.

(ii). In order to prove the second part let us use Proposition 2. The right hand side of Equation (26) becomes,

xifi[s,𝐱(s),λi(s),ui(s)]\displaystyle\mbox{$\frac{\partial}{\partial x^{i}}$}f^{i}[s,\mathbf{x}(s),\lambda^{i}(s),u^{i}(s)]
=xi(k+nw)(nwxj+kx0i)+bhi(s,xi){sbλixi(1+sγ)+λi+sλis\displaystyle=x^{i}(k+nw)-(nwx^{j}+kx_{0}^{i})+bh^{i}(s,x^{i})\biggr{\{}sb\lambda^{i}x^{i}(1+s\gamma)+\lambda^{i}+s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}
+s2bλi((1γ)1nj=1nxjui)+sλi(γ+s2bσ)}\displaystyle\hskip 28.45274pt+s^{2}b\lambda^{i}\left((1-\gamma)\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}-u^{i}\right)+s\lambda^{i}(\gamma+s^{2}b\sigma)\biggr{\}}
=xi(k+nw)A3(w,k,xj)+bhi(s,xi)[A4(s,σ,γ,λi,ui,xj)+sbλixi(1+sγ)],\displaystyle=x^{i}(k+nw)-A_{3}(w,k,x^{j})+bh^{i}(s,x^{i})\left[A_{4}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})+sb\lambda^{i}x^{i}(1+s\gamma)\right], (49)

the left hand side implies

sfi[s,𝐱(s),λi(s),ui(s)]\displaystyle\mbox{$\frac{\partial}{\partial s}$}f^{i}[s,\mathbf{x}(s),\lambda^{i}(s),u^{i}(s)]
=hi(s,xi){λi(bxi)2+2λis2+bxiλis\displaystyle=h^{i}(s,x^{i})\biggr{\{}\lambda^{i}(bx^{i})^{2}+\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+bx^{i}\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}
+b[sλis+λi(1+sxi)][1nj=1xj+γ(xi1nj=1xj)ui]\displaystyle\hskip 7.11317pt+b\left[s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\lambda^{i}(1+sx^{i})\right]\left[\mbox{$\frac{1}{n}$}\sum_{j=1}x^{j*}+\gamma\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}x^{j*}\right)-u^{i}\right]
+sbλi(xi1nj=1xj)γs+sb2σλi(2b+sb2xi)+s2b2σλis},\displaystyle\hskip 14.22636pt+sb\lambda^{i}\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}x^{j*}\right)\mbox{$\frac{\partial\gamma}{\partial s}$}+sb^{2}\sigma\lambda^{i}(2b+sb^{2}x^{i})+s^{2}b^{2}\sigma\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\biggr{\}},

and

2sxifi[s,𝐱(s),λi(s),ui(s)]\displaystyle\mbox{$\frac{\partial^{2}}{\partial s\partial x^{i}}$}f^{i}[s,\mathbf{x}(s),\lambda^{i}(s),u^{i}(s)]
=hi(s,xi){2bλixi+sb3λi(xi)2+sb2λis2+b(1+sbxi)λis+[[(sb)2+b(1+b+sb)]λis]×\displaystyle=h^{i}(s,x^{i})\biggr{\{}2b\lambda^{i}x^{i}+sb^{3}\lambda^{i}(x^{i})^{2}+sb\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+b(1+sbx^{i})\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\left[[(sb)^{2}+b(1+b+sb)]\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\right]\times
[1nj=1nxj+γ(xi1nj=1nxj)ui]+γ[sbλis+bλi(1+sxi)]\displaystyle\hskip 28.45274pt\left[\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}+\gamma\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)-u^{i}\right]+\gamma\left[sb\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+b\lambda^{i}(1+sx^{i})\right]
+sbλi[1+sb(xi1nj=1nxj)]γs+σs2b3[λi(3+sbxi)+λis]}.\displaystyle\hskip 56.9055pt+sb\lambda^{i}\left[1+sb\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)\right]\mbox{$\frac{\partial\gamma}{\partial s}$}+\sigma s^{2}b^{3}\bigg{[}\lambda^{i}(3+sbx^{i})+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\bigg{]}\biggr{\}}. (50)

Matching Equations (5) and (5) we get,

hi(s,xi){2bλixi+sb3λi(xi)2+sb2λis2+b(1+sbxi)λis+[[(sb)2+b(1+b+sb)]λis]\displaystyle h^{i}(s,x^{i})\biggr{\{}2b\lambda^{i}x^{i}+sb^{3}\lambda^{i}(x^{i})^{2}+sb\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+b(1+sbx^{i})\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\left[[(sb)^{2}+b(1+b+sb)]\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\right]
[1nj=1nxj+γ(xi1nj=1nxj)ui]+γ[sbλis+bλi(1+sxi)]\displaystyle\hskip 7.11317pt\left[\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}+\gamma\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)-u^{i}\right]+\gamma\left[sb\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+b\lambda^{i}(1+sx^{i})\right]
+sbλi[1+sb(xi1nj=1nxj)]γs+σs2b3[λi(3+sbxi)+λis]}\displaystyle\hskip 14.22636pt+sb\lambda^{i}\left[1+sb\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)\right]\mbox{$\frac{\partial\gamma}{\partial s}$}+\sigma s^{2}b^{3}\bigg{[}\lambda^{i}(3+sbx^{i})+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\bigg{]}\biggr{\}}
=xi(k+nw)(nwxj+kx0i)+bhi(s,xi){sbλixi(1+sγ)+λi+sλis\displaystyle=x^{i}(k+nw)-(nwx^{j}+kx_{0}^{i})+bh^{i}(s,x^{i})\biggr{\{}sb\lambda^{i}x^{i}(1+s\gamma)+\lambda^{i}+s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}
+s2bλi((1γ)1nj=1nxjui)+sλi(γ+s2bσ)},\displaystyle\hskip 28.45274pt+s^{2}b\lambda^{i}\left((1-\gamma)\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}-u^{i}\right)+s\lambda^{i}(\gamma+s^{2}b\sigma)\biggr{\}},

or,

bhi(s,xi){2λixi+sb2λi(xi)2+s2λis2+(1+sbxi)λis+[(1+s2b+b+sb)λis]×\displaystyle bh^{i}(s,x^{i})\biggr{\{}2\lambda^{i}x^{i}+sb^{2}\lambda^{i}(x^{i})^{2}+s\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+(1+sbx^{i})\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\left[(1+s^{2}b+b+sb)\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\right]\times
[1nj=1nxj+γ(xi1nj=1nxj)ui]+γ[sλis+λi(1+sxi)]\displaystyle\hskip 7.11317pt\left[\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}+\gamma\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)-u^{i}\right]+\gamma\left[s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\lambda^{i}(1+sx^{i})\right]
+sλi[1+sb(xi1nj=1nxj)]γs+σs2b2[λi(3+sbxi)+λis]\displaystyle\hskip 14.22636pt+s\lambda^{i}\left[1+sb\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)\right]\mbox{$\frac{\partial\gamma}{\partial s}$}+\sigma s^{2}b^{2}\bigg{[}\lambda^{i}(3+sbx^{i})+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\bigg{]}
[sbλixi(1+sγ)+λi+ssλi+s2bλi((1γ)1nj=1nxjui)+sλi(γ+s2bσ)]}\displaystyle\hskip 28.45274pt-\bigg{[}sb\lambda^{i}x^{i}(1+s\gamma)+\lambda^{i}+s\mbox{$\frac{\partial}{\partial s}$}\lambda^{i}+s^{2}b\lambda^{i}\left((1-\gamma)\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}-u^{i}\right)+s\lambda^{i}(\gamma+s^{2}b\sigma)\bigg{]}\biggr{\}}
=xi(k+nw)A3(w,k,xj).\displaystyle=x^{i}(k+nw)-A_{3}(w,k,x^{j}). (51)

As hi(s,xi)=exp(sbxi+d)h^{i}(s,x^{i})=\exp(sbx^{i}+d), for b>0b>0, d>0d>0 fixed and a very small value of xix^{i} it can be approximated as hi(s,xi)=1+(sbxi+d)+o([sbxi+d]2)1+d+sbxi=e+sbxih^{i}(s,x^{i})=1+(sbx^{i}+d)+o([sbx^{i}+d]^{2})\approx 1+d+sbx^{i}=e+sbx^{i} where assume e=1+de=1+d.

Therefore,

(be+sb2xi){2λixi+sb2λi(xi)2+s2λis2+(1+sbxi)λis+[(1+s2b+b+sb)λis]×\displaystyle(be+sb^{2}x^{i})\biggr{\{}2\lambda^{i}x^{i}+sb^{2}\lambda^{i}(x^{i})^{2}+s\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+(1+sbx^{i})\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\left[(1+s^{2}b+b+sb)\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\right]\times
[1nj=1nxj+γ(xi1nj=1nxj)ui]+γ[sλis+λi(1+sxi)]\displaystyle\hskip 7.11317pt\left[\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}+\gamma\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)-u^{i}\right]+\gamma\left[s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\lambda^{i}(1+sx^{i})\right]
+sλi[1+sb(xi1nj=1nxj)]γs+σs2b2[λi(3+sbxi)+λis]\displaystyle\hskip 14.22636pt+s\lambda^{i}\left[1+sb\left(x^{i}-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)\right]\mbox{$\frac{\partial\gamma}{\partial s}$}+\sigma s^{2}b^{2}\bigg{[}\lambda^{i}(3+sbx^{i})+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\bigg{]}
[sbλixi(1+sγ)+λi+sλis+s2bλi((1γ)1nj=1nxjui)+sλi(γ+s2bσ)]}\displaystyle\hskip 28.45274pt-\bigg{[}sb\lambda^{i}x^{i}(1+s\gamma)+\lambda^{i}+s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+s^{2}b\lambda^{i}\left((1-\gamma)\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}-u^{i}\right)+s\lambda^{i}(\gamma+s^{2}b\sigma)\bigg{]}\biggr{\}}
=xi(k+nw)A3(w,k,xj).\displaystyle=x^{i}(k+nw)-A_{3}(w,k,x^{j}). (52)

After rearranging terms of Equation (5) we get a cubic polynomial opinion of agent ii

A7(s,λi)(xi)3+A8(s,σ,γ,λi,ui,xj)(xi)2+A9(s,σ,γ,λi,ui,xj)xi+A10(s,σ,γ,λi,ui,xj)=0,\displaystyle A_{7}(s,\lambda^{i})(x^{i})^{3}+A_{8}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})(x^{i})^{2}+A_{9}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})x^{i}+A_{10}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})=0, (53)

where

A10(s,σ,γ,λi,ui,xj)=A3(s,σ,γ,λi,ui,xj)+beA5(s,σ,γ,λi,ui,xj),\displaystyle A_{10}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})=A_{3}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})+beA_{5}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j}),
A9(s,σ,γ,λi,ui,xj)=beA6(s,σ,γ,λi,ui,xj)+sb2A5(s,σ,γ,λi,ui,xj)(k+nw),\displaystyle A_{9}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})=beA_{6}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})+sb^{2}A_{5}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})-(k+nw),
A8(s,σ,γ,λi,ui,xj)=sb2[eλi+A6(s,σ,γ,λi,ui,xj)],\displaystyle A_{8}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})=sb^{2}[e\lambda^{i}+A_{6}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})],
A7(s,λi)=s2b4λi,\displaystyle A_{7}(s,\lambda^{i})=s^{2}b^{4}\lambda^{i},
A6(s,σ,γ,λi,ui,xj)=[2+γs+s2bγs+σ(sb)2sb(1+sγ)]λi+[sb+γ(1+b+sb+s2b)]λis,\displaystyle A_{6}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})=[2+\gamma s+s^{2}b\mbox{$\frac{\partial\gamma}{\partial s}$}+\sigma(sb)^{2}-sb(1+s\gamma)]\lambda^{i}+[sb+\gamma(1+b+sb+s^{2}b)]\mbox{$\frac{\partial\lambda^{i}}{\partial s}$},

and

A5(s,σ,γ,λi,ui,xj)\displaystyle A_{5}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})
=s2λis2+λis+[(1+b+sb+s2b)λis][(1γ)1nj=1nxjui]+γλi(1+sλis)\displaystyle=s\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\left[(1+b+sb+s^{2}b)\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\right]\left[(1-\gamma)\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}-u^{i}\right]+\gamma\lambda^{i}\left(1+s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\right)
+sλi[1sb1nj=1nxj]γs+σs2b2(3λi+λis)A4(s,σ,γ,λi,ui,xj).\displaystyle\hskip 14.22636pt+s\lambda^{i}\left[1-sb\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right]\mbox{$\frac{\partial\gamma}{\partial s}$}+\sigma s^{2}b^{2}\big{(}3\lambda^{i}+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}\big{)}-A_{4}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j}).

After solving Equation (53) we get a set of optimal opinions for agent ii

xi\displaystyle x^{i*} =A11+{A12+[(A12)2+[A13(A11)2]3]12}13+{A12[(A12)2+[A13(A11)2]3]12}13,\displaystyle=A_{11}+\left\{A_{12}+\left[(A_{12})^{2}+[A_{13}-(A_{11})^{2}]^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}+\left\{A_{12}-\left[(A_{12})^{2}+[A_{13}-(A_{11})^{2}]^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}, (54)

where

A11=A8(s,σ,γ,λi,ui,xj)3A7(s,λi),\displaystyle A_{11}=-\ \frac{A_{8}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})}{3A_{7}(s,\lambda^{i})},
A12=(A11)3+A8(s,σ,γ,λi,ui,xj)A9(s,σ,γ,λi,ui,xj)3A7(s,λi)A10(s,σ,γ,λi,ui,xj)6[A7(s,λi)]2,\displaystyle A_{12}=(A_{11})^{3}+\frac{A_{8}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})A_{9}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})-3A_{7}(s,\lambda^{i})A_{10}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})}{6[A_{7}(s,\lambda^{i})]^{2}},

and

A13=A9(s,σ,γ,λi,ui,xj)3A7(s,λi).\displaystyle A_{13}=\frac{A_{9}(s,\sigma,\gamma,\lambda^{i},u^{i},x^{j})}{3A_{7}(s,\lambda^{i})}.

(iii). The integral forms of opinions of agents ii and jj obtained from the Equation (40) are

xi(s)=x0i+0t[1nj=1nxj+γ(s)(xi(s)1nj=1nxj)ui(s)]𝑑s+2σ0t𝑑Bi(s),\displaystyle x^{i}(s)=x_{0}^{i}+\int_{0}^{t}\left[\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}+\gamma(s)\left(x^{i}(s)-\mbox{$\frac{1}{n}$}\sum_{j=1}^{n}x^{j*}\right)-u^{i}(s)\right]ds+\sqrt{2\sigma}\int_{0}^{t}dB^{i}(s),

and

xj(s)=x0j+0t[1ni=1nxi+γ(s)(xj(s)1ni=1nxi)uj(s)]𝑑s+2σ0t𝑑Bj(s),\displaystyle x^{j}(s)=x_{0}^{j}+\int_{0}^{t}\left[\mbox{$\frac{1}{n}$}\sum_{i=1}^{n}x^{i*}+\gamma(s)\left(x^{j}(s)-\mbox{$\frac{1}{n}$}\sum_{i=1}^{n}x^{i*}\right)-u^{j}(s)\right]ds+\sqrt{2\sigma}\int_{0}^{t}dB^{j}(s),

where x0ix_{0}^{i} and x0jx_{0}^{j} are the initial opinions of agents ii and jj. As agents ii and jj comes from the same population hence, 1ni=1nxi=1nj=1nxj\frac{1}{n}\sum_{i=1}^{n}x^{i*}=\frac{1}{n}\sum_{j=1}^{n}x^{j*}. Subtracting xj(s)x^{j}(s) from xi(s)x^{i}(s) gives,

xi(s)xj(s)\displaystyle x^{i}(s)-x^{j}(s)
=(x0ix0j)+0t[γ(s)[xi(s)xj(s)][ui(s)uj(s)]ds+2σ0t[dBi(s)dBj(s)]\displaystyle=(x_{0}^{i}-x_{0}^{j})+\int_{0}^{t}\left[\gamma(s)[x^{i}(s)-x^{j}(s)]-[u^{i}(s)-u^{j}(s)\right]ds+\sqrt{2\sigma}\int_{0}^{t}\left[dB^{i}(s)-dB^{j}(s)\right]

and taking absolute value on both sides and using triangle inequality we get,

|Δxij(s)||Δx0ij|+|0t[γ(s)Δxij(s)Δuij(s)]𝑑s|+|2σ||0t[dBi(s)dBj(s)]|,\displaystyle|\Delta x^{ij}(s)|\leq|\Delta x_{0}^{ij}|+\left|\int_{0}^{t}\left[\gamma(s)\Delta x^{ij}(s)-\Delta u^{ij}(s)\right]ds\right|+\left|\sqrt{2\sigma}\right|\left|\int_{0}^{t}[dB^{i}(s)-dB^{j}(s)]\right|,

where Δxij(s)=xi(s)xj(s)\Delta x^{ij}(s)=x^{i}(s)-x^{j}(s), Δx0ij=x0ix0j\Delta x_{0}^{ij}=x_{0}^{i}-x_{0}^{j} and Δuij(s)=ui(s)uj(s)\Delta u^{ij}(s)=u^{i}(s)-u^{j}(s). ∎

Consider the consensus with a leader (agent 11) under complete information. It might be a network where agent 11, the political analyst who can influence the decision of the rest of the agents but not the other way. Furthermore, I also assume that, before a game starts the leader makes their optimal opinion based on the history of the network and their perspective of opinion performance of other agents. Once agent 11 optimizes their opinion at the beginning of the game, they never change their mind and influences in other agents’ decisions. Therefore, leader’s cost functional is defined as,

L1(s,𝐱,x01,u1)\displaystyle L^{1}(s,\mathbf{x},x_{0}^{1},u^{1}) =0t12(nw¯[x1(s)x~j(s)]2+k1[x1(s)x01]2+[u1(s)]2)𝑑s,\displaystyle=\int_{0}^{t}\mbox{$\frac{1}{2}$}\bigg{(}n\bar{w}\left[x^{1}(s)-\tilde{x}^{j}(s)\right]^{2}+k_{1}\left[x^{1}(s)-x_{0}^{1}\right]^{2}+\left[u^{1}(s)\right]^{2}\bigg{)}\ ds, (55)

where w¯[0,)\bar{w}\in[0,\infty) is a parameter assigned by agent 11 to weight the susceptibility of agent jj to influence them before the game starts, k1k_{1} is a finite positive constant which measures the stubbornness of the leader, u1u^{1} is the opinion control and x~j<xj\tilde{x}^{j}<x^{j*} be the fixed opinion values of the other agents according to agent 11. The reason behind the assumption x~j<xj\tilde{x}^{j}<x^{j*} is that, the leader is a rational person and they want to get more return out of this network than any other agent and assigns an opinion x~j\tilde{x}^{j} which is less than agent jj’s optimal opinion before a game starts. Opinion dynamics of the leader (agent 11) is

dx1(s)=[1n1j=2nx~j+γ^(s)(x1(s)1n1j=2nx~j)u1(s)]ds+2σ1dB1(s),\displaystyle dx^{1}(s)=\left[\mbox{$\frac{1}{n-1}$}\sum_{j=2}^{n}\tilde{x}^{j}+\hat{\gamma}(s)\left(x^{1}(s)-\mbox{$\frac{1}{n-1}$}\sum_{j=2}^{n}\tilde{x}^{j}\right)-u^{1}(s)\right]ds+\sqrt{2\sigma^{1}}dB^{1}(s), (56)

where γ^(s)=k1λ^1+(nw¯λ^1)cosh[λ^1(ts)]cosh(λ^1t)\hat{\gamma}(s)=\frac{k_{1}}{\hat{\lambda}_{1}}+\left(\frac{n\bar{w}}{\hat{\lambda}_{1}}\right)\frac{cosh\left[\sqrt{\hat{\lambda}_{1}}(t-s)\right]}{cosh\left(\sqrt{\hat{\lambda}_{1}}t\right)}, λ^1=k1+nw¯\hat{\lambda}_{1}=k_{1}+n\bar{w} and σ1\sigma^{1} is a constant diffusion component of the leader. Therefore a leader’s problem is to minimize the expected cost functional 𝔼(L1)\mathbb{E}(L^{1}) with respect to their control u1u^{1} and opinion x1x^{1} subject to the Equation (56). Proposition 3 implies,

Corollary 2.

Suppose the leader (agent 11) has the objective cost function

𝔼{12nw¯[x1(s)x~j(s)]2+12k1[x1(s)x01]2+12[u1(s)]2}\mathbb{E}\ \bigg{\{}\mbox{$\frac{1}{2}$}n\bar{w}\left[x^{1}(s)-\tilde{x}^{j}(s)\right]^{2}+\mbox{$\frac{1}{2}$}k_{1}\left[x^{1}(s)-x_{0}^{1}\right]^{2}+\mbox{$\frac{1}{2}$}\left[u^{1}(s)\right]^{2}\bigg{\}}

subject to the stochastic opinion dynamics expressed in Equation (56). For b,d>0b,d>0, define h1(s,x1)=exp(sbx1+d)h^{1}(s,x^{1})=\exp(sbx^{1}+d).

(i) Then for

f1(s,𝐱,λ1,u1)=12nw¯(x1x~j)2+12k1(x1x01)2+12(u1)2+bλ1x1h1(s,x1)+λ1sh1(s,x1)\displaystyle f^{1}(s,\mathbf{x},\lambda^{1},u^{1})=\mbox{$\frac{1}{2}$}n\bar{w}\left(x^{1}-\tilde{x}^{j}\right)^{2}+\mbox{$\frac{1}{2}$}k_{1}\left(x^{1}-x_{0}^{1}\right)^{2}+\mbox{$\frac{1}{2}$}\left(u^{1}\right)^{2}+b\lambda^{1}x^{1}h^{1}(s,x^{1})+\mbox{$\frac{\partial\lambda^{1}}{\partial s}$}h^{1}(s,x^{1})
+sbλ1h1(s,x1)[1n1j=2nx~j+γ^(x11n1j=2nx~j)u1]+s2b2σ1λ1h1(s,x1),\displaystyle\hskip 14.22636pt+sb\lambda^{1}h^{1}(s,x^{1})\left[\mbox{$\frac{1}{n-1}$}\sum_{j=2}^{n}\tilde{x}^{j}+\hat{\gamma}\left(x^{1}-\mbox{$\frac{1}{n-1}$}\sum_{j=2}^{n}\tilde{x}^{j}\right)-u^{1}\right]+s^{2}b^{2}\sigma^{1}\lambda^{1}h^{1}(s,x^{1}),

an optimal control of the leader

ϕ^1(s,x1)=p^+{q^+[q^2+(r^p^2)3]12}13+{q^[q^2+(r^p^2)3]12}13,\displaystyle\hat{\phi}^{1*}(s,x^{1})=\hat{p}+\left\{\hat{q}+\left[{\hat{q}}^{2}+(\hat{r}-{\hat{p}}^{2})^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}+\left\{\hat{q}-\left[{\hat{q}}^{2}+(\hat{r}-{\hat{p}}^{2})^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}, (57)

where

p^\displaystyle\hat{p} =B^2(s,γ^,x1,x~j,λ1)3B^1(s,x1,λ1),\displaystyle=-\frac{\hat{B}_{2}(s,\hat{\gamma},x^{1},\tilde{x}^{j},\lambda^{1})}{3\hat{B}_{1}(s,x^{1},\lambda^{1})},
q^\displaystyle\hat{q} =(p^)3+B^2(s,γ^,x1,x~j,λ1)B^3(s,γ^,x1,x~j,λ1)3B^1(s,x1,λ1)B^4(s,γ^,x1,x~j,λ1)6[B^1(s,x1,λ1)]2,\displaystyle=(\hat{p})^{3}+\frac{\hat{B}_{2}(s,\hat{\gamma},x^{1},\tilde{x}^{j},\lambda^{1})\hat{B}_{3}(s,\hat{\gamma},x^{1},\tilde{x}^{j},\lambda^{1})-3\hat{B}_{1}(s,x^{1},\lambda^{1})\hat{B}_{4}(s,\hat{\gamma},x^{1},\tilde{x}^{j},\lambda^{1})}{6[\hat{B}_{1}(s,x^{1},\lambda^{1})]^{2}},
r^\displaystyle\hat{r} =B^3(s,γ^,x1,x~j,λ1)3B^1(s,x1,λ^1),\displaystyle=\frac{\hat{B}_{3}(s,\hat{\gamma},x^{1},\tilde{x}^{j},\lambda^{1})}{3\hat{B}_{1}(s,x^{1},\hat{\lambda}^{1})},

B^1=(C^2)2\hat{B}_{1}=(\hat{C}_{2})^{2}, B^2=C^2(2A^2+C^1)\hat{B}_{2}=-\hat{C}_{2}(2\hat{A}_{2}+\hat{C}_{1}), B^3=(A^2)22A^2C^1C^2(C^3)2\hat{B}_{3}=(\hat{A}_{2})^{2}-2\hat{A}_{2}\hat{C}_{1}\hat{C}_{2}-(\hat{C}_{3})^{2}, B^4=A^1C^3C^1(A^2)2\hat{B}_{4}=\hat{A}_{1}\hat{C}_{3}-\hat{C}_{1}(\hat{A}_{2})^{2}, C^1=sbλ1h1(s,x1)\hat{C}_{1}=sb\lambda^{1}h^{1}(s,x^{1}), C^2=(sb)3λ1h1(s,x1)\hat{C}_{2}=(sb)^{3}\lambda^{1}h^{1}(s,x^{1}), and C^3=(sb)2λ1h1(s,x1)\hat{C}_{3}=(sb)^{2}\lambda^{1}h^{1}(s,x^{1}).

(ii) For a unique solution of the leader’s wave function Ψ1s(x)\Psi_{1s}(x) and λ1\lambda^{1} is a C2C^{2} function with respect to ss, a leader’s optimal opinion x1{x}^{1*} is obtained by solving following equation

h1(s,x1){2bλ1x1+sb3λ1(x1)2+sb2λ1s2+b(1+sbx1)λ1s+[[(sb)2+b(1+b+sb)]λ1s]\displaystyle h^{1}(s,x^{1})\biggr{\{}2b\lambda^{1}x^{1}+sb^{3}\lambda^{1}(x^{1})^{2}+sb\mbox{$\frac{\partial^{2}\lambda^{1}}{\partial s^{2}}$}+b(1+sbx^{1})\mbox{$\frac{\partial\lambda^{1}}{\partial s}$}+\left[[(sb)^{2}+b(1+b+sb)]\mbox{$\frac{\partial\lambda^{1}}{\partial s}$}\right]
[1n1j=2nx~j+γ^(x11n1j=2nx~j)u1]+γ^[sbλ1s+bλ1(1+sx1)]\displaystyle\hskip 28.45274pt\left[\mbox{$\frac{1}{n-1}$}\sum_{j=2}^{n}\tilde{x}^{j}+\hat{\gamma}\left(x^{1}-\mbox{$\frac{1}{n-1}$}\sum_{j=2}^{n}\tilde{x}^{j}\right)-u^{1}\right]+\hat{\gamma}\left[sb\mbox{$\frac{\partial\lambda^{1}}{\partial s}$}+b\lambda^{1}(1+sx^{1})\right]
+sbλ1[1+sb(x11n1j=2nx~j)]γ^s+σ1s2b3[λ1(3+sbx1)+λ1s]}\displaystyle\hskip 56.9055pt+sb\lambda^{1}\left[1+sb\left(x^{1}-\mbox{$\frac{1}{n-1}$}\sum_{j=2}^{n}\tilde{x}^{j}\right)\right]\mbox{$\frac{\partial\hat{\gamma}}{\partial s}$}+\sigma^{1}s^{2}b^{3}\bigg{[}\lambda^{1}(3+sbx^{1})+\mbox{$\frac{\partial\lambda^{1}}{\partial s}$}\bigg{]}\biggr{\}}
=x1(k1+nw¯)(nw¯x~j+k1x01)+bh1(s,x1){sbλ1x1(1+sγ^)+λ1+sλ1s\displaystyle=x^{1}(k_{1}+n\bar{w})-(n\bar{w}\tilde{x}^{j}+k_{1}x_{0}^{1})+bh^{1}(s,x^{1})\biggr{\{}sb\lambda^{1}x^{1}(1+s\hat{\gamma})+\lambda^{1}+s\mbox{$\frac{\partial\lambda^{1}}{\partial s}$}
+s2bλ1((1γ^)1n1j=2nx~ju1)+sλ1(γ^+s2bσ1)},\displaystyle\hskip 28.45274pt+s^{2}b\lambda^{1}\left((1-\hat{\gamma})\mbox{$\frac{1}{n-1}$}\sum_{j=2}^{n}\tilde{x}^{j}-u^{1}\right)+s\lambda^{1}(\hat{\gamma}+s^{2}b\sigma^{1})\biggr{\}},

which is

x1\displaystyle x^{1*} =A^11+{A^12+[(A^12)2+[A^13(A^11)2]3]12}13+{A^12[(A^12)2+[A^13(A^11)2]3]12}13,\displaystyle=\hat{A}_{11}+\left\{\hat{A}_{12}+\left[(\hat{A}_{12})^{2}+[\hat{A}_{13}-(\hat{A}_{11})^{2}]^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}+\left\{\hat{A}_{12}-\left[(\hat{A}_{12})^{2}+[\hat{A}_{13}-(\hat{A}_{11})^{2}]^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}, (58)

where

A^13=A^9(s,σ1,γ^,λ1,u1,x~j)3A^7(s,λ1)\displaystyle\hat{A}_{13}=\frac{\hat{A}_{9}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j})}{3\hat{A}_{7}(s,\lambda^{1})}
A^12=(A^11)3+A^8(s,σ1,γ^,λ1,u1,x~j)A^9(s,σ1,γ^,λ1,u1,x~j)3A^7(s,λ1)A^10(s,σ1,γ^,λ1,u1,x~j)6[A^7(s,λ1)]2,\displaystyle\hat{A}_{12}=(\hat{A}_{11})^{3}+\frac{\hat{A}_{8}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j})\hat{A}_{9}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j})-3\hat{A}_{7}(s,\lambda^{1})\hat{A}_{10}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j})}{6[\hat{A}_{7}(s,\lambda^{1})]^{2}},
A^11=A^8(s,σ1,γ^,λ1,u1,x~j)3A^7(s,λ1),\displaystyle\hat{A}_{11}=-\ \frac{\hat{A}_{8}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j})}{3\hat{A}_{7}(s,\lambda^{1})},
A^10(s,σ1,γ^,λ1,u1,x~j)=A^3(s,σ1,γ^,λ1,u1,x~j)+beA^5(s,σ1,γ^,λ1,u1,x~j),\displaystyle\hat{A}_{10}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j})=\hat{A}_{3}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j})+be\hat{A}_{5}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j}),
A^9(s,σ1,γ^,λ1,u1,x~j)=beA^6(s,σ1,γ^,λ1,u1,x~j)+sb2A^5(s,σ1,γ^,λ1,u1,x~j)(k1+nw¯),\displaystyle\hat{A}_{9}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j})=be\hat{A}_{6}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j})+sb^{2}\hat{A}_{5}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j})-(k_{1}+n\bar{w}),
A^8(s,σ1,γ^,λ1,u1,x~j)=sb2[eλ1+A^6(s,σ1,γ^,λ1,u1,x~j)],\displaystyle\hat{A}_{8}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j})=sb^{2}[e\lambda^{1}+\hat{A}_{6}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j})],
A^7(s,λ1)=s2b4λ1,\displaystyle\hat{A}_{7}(s,\lambda^{1})=s^{2}b^{4}\lambda^{1},
A^6(s,σ1,γ1,λ1,u1,x~j)=[2+γ^s+s2bγ^s+σ1(sb)2sb(1+sγ^)]λ1+[sb+γ^(1+b+sb+s2b)]λ1s,\displaystyle\hat{A}_{6}(s,\sigma^{1},\gamma^{1},\lambda^{1},u^{1},\tilde{x}^{j})=[2+\hat{\gamma}s+s^{2}b\mbox{$\frac{\partial\hat{\gamma}}{\partial s}$}+\sigma^{1}(sb)^{2}-sb(1+s\hat{\gamma})]\lambda^{1}+[sb+\hat{\gamma}(1+b+sb+s^{2}b)]\mbox{$\frac{\partial\lambda^{1}}{\partial s}$},

and

A^5(s,σ1,γ^,λ1,u1,x~j)\displaystyle\hat{A}_{5}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j})
=s2λ1s2+λ1s+[(1+b+sb+s2b)λ1s][(1γ^)1n1j=2nx~ju1]+γ^λ1(1+sλ1s)\displaystyle=s\mbox{$\frac{\partial^{2}\lambda^{1}}{\partial s^{2}}$}+\mbox{$\frac{\partial\lambda^{1}}{\partial s}$}+\left[(1+b+sb+s^{2}b)\mbox{$\frac{\partial\lambda^{1}}{\partial s}$}\right]\left[(1-\hat{\gamma})\mbox{$\frac{1}{n-1}$}\sum_{j=2}^{n}\tilde{x}^{j}-u^{1}\right]+\hat{\gamma}\lambda^{1}\left(1+s\mbox{$\frac{\partial\lambda^{1}}{\partial s}$}\right)
+sλ1[1sb1n1j=2nx~j]γ^s+σ1(sb)2(3λ1+λ1s)A^4(s,σ1,γ^,λ1,u1,x~j).\displaystyle\hskip 14.22636pt+s\lambda^{1}\left[1-sb\mbox{$\frac{1}{n-1}$}\sum_{j=2}^{n}\tilde{x}^{j}\right]\mbox{$\frac{\partial\hat{\gamma}}{\partial s}$}+\sigma^{1}(sb)^{2}\big{(}3\lambda^{1}+\mbox{$\frac{\partial\lambda^{1}}{\partial s}$}\big{)}-\hat{A}_{4}(s,\sigma^{1},\hat{\gamma},\lambda^{1},u^{1},\tilde{x}^{j}).

As in Corollary 2 optimal opinion of agent 11 is a solution of a cubic equation x1x^{1*} takes three values and because of rationality he chooses that x1x^{1*} which has the maximum value. If x1={x11,x21,x31}x^{1*}=\{x_{1}^{1*},x_{2}^{1*},x_{3}^{1*}\} then optimal opinion of the leader is x¯1=max{x11,x21,x31}\bar{x}^{1*}=\max\{x_{1}^{1*},x_{2}^{1*},x_{3}^{1*}\}. Under complete information all the other agents has the information about x¯1\bar{x}^{1*} before a game starts and adjusts their opinions on it. The network is represented by a direct graph with edges directed from all the agents towards the leader. Thus η1=\eta_{1}=\emptyset, ηi={1},iN{1}\eta_{i}=\{1\},\forall i\in N\setminus\{1\} (Niazi, Özgüler and Yildiz, 2016). Each of other agents represented by iN{1}i\in N\setminus\{1\} minimizes the expectation of his cost functional expressed in Equation (1) where wij0w_{ij}\neq 0 if j=1j=1, subject to his stochastic opinion dynamics

dxi(s)=[1λ~i(kixi(s)+wi1x¯1)+ξ^i(s)(xi(s)x¯1)ui(s)]ds+2σBi(s),\displaystyle dx^{i}(s)=\left[\mbox{$\frac{1}{\tilde{\lambda}_{i}}$}\left(k_{i}x^{i}(s)+w_{i1}\bar{x}^{1*}\right)+\hat{\xi}_{i}(s)\left(x^{i}(s)-\bar{x}^{1*}\right)-u^{i}(s)\right]ds+\sqrt{2\sigma}B^{i}(s), (59)

where for all iN{1}i\in N\setminus\{1\}, ξ^i(s)=wi1cosh(λ~i(ts))λ~icosh(λ~it)\hat{\xi}_{i}(s)=\frac{w_{i1}\cosh\left(\sqrt{\tilde{\lambda}_{i}}(t-s)\right)}{\tilde{\lambda}_{i}\cosh\left(\sqrt{\tilde{\lambda}_{i}}t\right)}, λ~i=ki+wi1\tilde{\lambda}_{i}=k_{i}+w_{i1}, ui(s)u^{i}(s) is the control of opinion, σ>0\sigma>0 is a constant diffusion component and Bi(s)B^{i}(s) the Brownian motion of agent ii. In this framework we assume that, apart from the leader other agents have very small influence in ithi^{th} agent’s opinion.

Proposition 4.

Suppose, there is a network where all agents are unilaterally connected to their leader. Let agent ii minimizes his objective cost function

𝔼{12i=1n1wi1[xi(s)xj(s)]2+12ki[xi(s)x0i]2+12[ui(s)]2},\displaystyle\mathbb{E}\left\{\mbox{$\frac{1}{2}$}\sum_{i=1}^{n-1}w_{i1}\left[x^{i}(s)-x^{j}(s)\right]^{2}+\mbox{$\frac{1}{2}$}k_{i}\left[x^{i}(s)-x_{0}^{i}\right]^{2}+\mbox{$\frac{1}{2}$}\left[u^{i}(s)\right]^{2}\right\}, (60)

subject to the stochastic opinion dynamics expressed in Equation (59). For b,d>0b,d>0, define hi(s,xi)=exp(sbxi+d)h^{i}(s,x^{i})=\exp(sbx^{i}+d).

(i) Then for

fi(s,𝐱,λi,ui)\displaystyle f^{i}(s,\mathbf{x},\lambda^{i},u^{i})
=12i=1n1wi1(xixj)2+12ki(xix0i)2+12(ui)2+bλixihi(s,xi)+λishi(s,xi)\displaystyle=\mbox{$\frac{1}{2}$}\sum_{i=1}^{n-1}w_{i1}\left(x^{i}-x^{j}\right)^{2}+\mbox{$\frac{1}{2}$}k_{i}\left(x^{i}-x_{0}^{i}\right)^{2}+\mbox{$\frac{1}{2}$}\left(u^{i}\right)^{2}+b\lambda^{i}x^{i}h^{i}(s,x^{i})+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}h^{i}(s,x^{i})
+sbλihi(s,xi)[1λ~i(kixi+wi1x¯1)+ξ^i(xix¯1)ui]+s2b2σλihi(s,xi),\displaystyle\hskip 14.22636pt+sb\lambda^{i}h^{i}(s,x^{i})\left[\mbox{$\frac{1}{\tilde{\lambda}_{i}}$}\left(k_{i}x^{i}+w_{i1}\bar{x}^{1*}\right)+\hat{\xi}_{i}\left(x^{i}-\bar{x}^{1*}\right)-u^{i}\right]+s^{2}b^{2}\sigma\lambda^{i}h^{i}(s,x^{i}),

we have a feedback Nash Equilibrium control of opinion dynamics

ϕ0i(s,xi)=p~+{q~+[q~2+(r~p~2)3]12}13+{q~[q~2+(r~p~2)3]12}13,\displaystyle\phi_{0}^{i*}(s,x^{i})=\tilde{p}+\left\{\tilde{q}+\left[\tilde{q}^{2}+(\tilde{r}-\tilde{p}^{2})^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}+\left\{\tilde{q}-\left[\tilde{q}^{2}+(\tilde{r}-\tilde{p}^{2})^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}, (61)

where

p~\displaystyle\tilde{p} =B~2(s,ξ^i,xi,xj,λi)3B1(s,xi,λi),\displaystyle=-\frac{\tilde{B}_{2}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})}{3B_{1}(s,x^{i},\lambda^{i})},
q~\displaystyle\tilde{q} =p~3+B~2(s,ξ^i,xi,xj,λi)B~3(s,ξ^i,xi,xj,λi)3B~1(s,xi,λi)B~4(s,ξ^i,xi,xj,λi)6[B~1(s,xi,λi)]2,\displaystyle=\tilde{p}^{3}+\frac{\tilde{B}_{2}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})\tilde{B}_{3}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})-3\tilde{B}_{1}(s,x^{i},\lambda^{i})\tilde{B}_{4}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})}{6[\tilde{B}_{1}(s,x^{i},\lambda^{i})]^{2}},
r~\displaystyle\tilde{r} =B~3(s,ξ^i,xi,xj,λi)3B~1(s,xi,λi),\displaystyle=\frac{\tilde{B}_{3}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})}{3\tilde{B}_{1}(s,x^{i},\lambda^{i})},

B~1=(C~2)2\tilde{B}_{1}=(\tilde{C}_{2})^{2}, B~2=C~2(2A~2+C~1)\tilde{B}_{2}=-\tilde{C}_{2}(2\tilde{A}_{2}+\tilde{C}_{1}), B~3=(A~2)22A~2C~1C~2(C~3)2\tilde{B}_{3}=(\tilde{A}_{2})^{2}-2\tilde{A}_{2}\tilde{C}_{1}\tilde{C}_{2}-(\tilde{C}_{3})^{2}, B~4=A~1C~3C~1(A~2)2\tilde{B}_{4}=\tilde{A}_{1}\tilde{C}_{3}-\tilde{C}_{1}(\tilde{A}_{2})^{2}, C~1=sbλihi(s,xi)\tilde{C}_{1}=sb\lambda^{i}h^{i}(s,x^{i}), C~2=(sb)3λihi(s,xi)\tilde{C}_{2}=(sb)^{3}\lambda^{i}h^{i}(s,x^{i}), and C~3=(sb)2λihi(s,xi)\tilde{C}_{3}=(sb)^{2}\lambda^{i}h^{i}(s,x^{i}).

(ii) For a unique solution of the wave function Ψis(x)\Psi_{is}(x) as expressed in Proposition 2 and λi(s)\lambda^{i}(s) is a C2C^{2} function with respect to ss, an optimal opinion xi{x}^{i*} is obtained by solving following equation

sb3λihi(s,xi)(xi)2+hi(s,xi){2bλi+sb2λis+s[1+sb2λis+bλi(1+b+sb)](ξ^i+kiλ~i)\displaystyle sb^{3}\lambda^{i}h^{i}(s,x^{i})(x^{i})^{2}+h^{i}(s,x^{i})\biggr{\{}2b\lambda^{i}+sb^{2}\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+s[1+sb^{2}\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+b\lambda^{i}(1+b+sb)]\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)
+s2b2ξ^is+s3b4σλisb2λi[1+s(ξ^i+kiλ~i)]}xi(ki+wi1)xi+hi(s,xi)×\displaystyle\hskip 7.11317pt+s^{2}b^{2}\mbox{$\frac{\partial\hat{\xi}_{i}}{\partial s}$}+s^{3}b^{4}\sigma\lambda^{i}-sb^{2}\lambda^{i}\bigg{[}1+s\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)\bigg{]}\biggr{\}}x^{i}-(k_{i}+w_{i1})x^{i}+h^{i}(s,x^{i})\times
{sb2λis2+bλissb[sbλis+λi(1+b+sb)][(ξ^i+wi1λ~i)x¯1+ui]+(ξ^i+kiλ~i)×\displaystyle\hskip 14.22636pt\biggr{\{}sb\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+b\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}-sb[sb\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\lambda^{i}(1+b+sb)]\bigg{[}\biggr{(}\hat{\xi}_{i}+\frac{w_{i1}}{\tilde{\lambda}_{i}}\bigg{)}\bar{x}^{1*}+u^{i}\bigg{]}+\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)\times
b(λi+λis)+sbλi(1sbx¯1)ξ^is+s2b3σλi(1+2s+sλis)bA~4(s,σ,ξ^i,λi,ui,xj)}\displaystyle\hskip 28.45274ptb(\lambda^{i}+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$})+sb\lambda^{i}(1-sb\bar{x}^{1*})\mbox{$\frac{\partial\hat{\xi}_{i}}{\partial s}$}+s^{2}b^{3}\sigma\lambda^{i}(1+2s+s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$})-b\tilde{A}_{4}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i},x^{j})\biggr{\}}
+A~3(wi1,ki,xj)=0,\displaystyle\hskip 35.56593pt+\tilde{A}_{3}(w_{i1},k_{i},x^{j})=0,

which is

xi\displaystyle x^{i*} =A~12+{A~13+[(A~13)2+[A~14(A~12)2]3]12}13+{A~13[(A~13)2+[A~14(A~12)2]3]12}13,\displaystyle=\tilde{A}_{12}+\left\{\tilde{A}_{13}+\left[(\tilde{A}_{13})^{2}+[\tilde{A}_{14}-(\tilde{A}_{12})^{2}]^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}+\left\{\tilde{A}_{13}-\left[(\tilde{A}_{13})^{2}+[\tilde{A}_{14}-(\tilde{A}_{12})^{2}]^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}, (62)

where

A~14=A~10(s,σ,ξ^i,λi,ui)3A~8(s,λi),\displaystyle\tilde{A}_{14}=\frac{\tilde{A}_{10}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})}{3\tilde{A}_{8}(s,\lambda^{i})},
A~13=(A~12)3+A~9(s,σ,ξ^i,λi,ui)A~10(s,σ,ξ^i,λi,ui)3A~8(s,λi)A~11(s,σ,ξ^i,wi1,ki,λi,ui,xj)6[A~8(s,λi)]2,\displaystyle\tilde{A}_{13}=(\tilde{A}_{12})^{3}+\frac{\tilde{A}_{9}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})\tilde{A}_{10}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})-3\tilde{A}_{8}(s,\lambda^{i})\tilde{A}_{11}(s,\sigma,\hat{\xi}_{i},w_{i1},k_{i},\lambda^{i},u^{i},x^{j})}{6[\tilde{A}_{8}(s,\lambda^{i})]^{2}},
A~12=A~9(s,σ,ξ^i,λi,ui)3A~8(s,λi),\displaystyle\tilde{A}_{12}=-\ \frac{\tilde{A}_{9}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})}{3\tilde{A}_{8}(s,\lambda^{i})},
A~11(s,σ,wi1,ki,ξ^i,λi,ui,xj)=A~3(wi1,ki,xj)+eA~7(s,σ,ξ^i,λi,ui),\displaystyle\tilde{A}_{11}(s,\sigma,w_{i1},k_{i},\hat{\xi}_{i},\lambda^{i},u^{i},x^{j})=\tilde{A}_{3}(w_{i1},k_{i},x^{j})+e\tilde{A}_{7}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i}),
A~10(s,σ,wi1,ki,ξ^i,λi,ui)=ki+wi1+eA~6(s,σ,ξ^i,λi,ui)+sbA~7(s,σ,ξ^i,λi,ui),\displaystyle\tilde{A}_{10}(s,\sigma,w_{i1},k_{i},\hat{\xi}_{i},\lambda^{i},u^{i})=k_{i}+w_{i1}+e\tilde{A}_{6}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})+sb\tilde{A}_{7}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i}),
A~9(s,σ,ξ^i,λi,ui)=e+A~5(s,λi)+sbA~6(s,σ,ξ^i,λi,ui),\displaystyle\tilde{A}_{9}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})=e+\tilde{A}_{5}(s,\lambda^{i})+sb\tilde{A}_{6}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i}),
A~8(s,λi)=sbA~5(s,λi),\displaystyle\tilde{A}_{8}(s,\lambda^{i})=sb\tilde{A}_{5}(s,\lambda^{i}),
A~7(s,σ,ξ^i,λi,ui)=sb2λis2+bλissb[sbλis+λi(1+b+sb)][(ξ^i+wi1λ~i)x¯1+ui]+(ξ^i+kiλ~i)\displaystyle\tilde{A}_{7}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})=sb\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+b\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}-sb[sb\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\lambda^{i}(1+b+sb)]\bigg{[}\biggr{(}\hat{\xi}_{i}+\frac{w_{i1}}{\tilde{\lambda}_{i}}\bigg{)}\bar{x}^{1*}+u^{i}\bigg{]}+\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)
×b(λi+λis)+sbλi(1sbx¯1)ξ^is+s2b3σλi(1+2s+sλis)bA~4(s,σ,ξ^i,λi,ui),\displaystyle\hskip 28.45274pt\times b(\lambda^{i}+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$})+sb\lambda^{i}(1-sb\bar{x}^{1*})\mbox{$\frac{\partial\hat{\xi}_{i}}{\partial s}$}+s^{2}b^{3}\sigma\lambda^{i}(1+2s+s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$})-b\tilde{A}_{4}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i}),
A~6(s,σ,ξ^i,λi,ui)=2bλi+sb2λis+s[1+sb2λis+bλi(1+b+sb)](ξ^i+kiλ~i)\displaystyle\tilde{A}_{6}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})=2b\lambda^{i}+sb^{2}\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+s[1+sb^{2}\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+b\lambda^{i}(1+b+sb)]\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)
+s2b2ξ^is+s3b4σλisb2λi[1+s(ξ^i+kiλ~i)],\displaystyle\hskip 113.81102pt+s^{2}b^{2}\mbox{$\frac{\partial\hat{\xi}_{i}}{\partial s}$}+s^{3}b^{4}\sigma\lambda^{i}-sb^{2}\lambda^{i}\bigg{[}1+s\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)\bigg{]},
A~5(s,λi)=sb3λi,\displaystyle\tilde{A}_{5}(s,\lambda^{i})=sb^{3}\lambda^{i},
A~4(s,σ,ξ^i,λi,ui)=λi+sλis+s2bλi(wi1λ~ix¯1ξ^ix¯1ui)+sλi[ξ^i+kiλ~i+s2b3σ],\displaystyle\tilde{A}_{4}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})=\lambda^{i}+s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+s^{2}b\lambda^{i}\left(\frac{w_{i1}}{\tilde{\lambda}_{i}}\bar{x}^{1*}-\hat{\xi}_{i}\bar{x}^{1*}-u^{i}\right)+s\lambda^{i}\bigg{[}\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}+s^{2}b^{3}\sigma\bigg{]},

and

A~3(wi1,ki,xj)=wi1xj+kix0i.\displaystyle\tilde{A}_{3}(w_{i1},k_{i},x^{j})=w_{i1}x^{j}+k_{i}x_{0}^{i}.
Proof.

(i). For b>0b>0, d>0d>0 let hi(s,xi)=exp(sbxi+d)h^{i}(s,x^{i})=\exp(sbx^{i}+d), shi(s,xi)=bxihi(s,xi)\frac{\partial}{\partial s}h^{i}(s,x^{i})=bx^{i}h^{i}(s,x^{i}), xihi(s,xi)=sbhi(s,xi)\frac{\partial}{\partial x^{i}}h^{i}(s,x^{i})=sbh^{i}(s,x^{i}) and 2(xi)2hi(s,xi)=s2b2hi(s,xi)\frac{\partial^{2}}{\partial(x^{i})^{2}}h^{i}(s,x^{i})=s^{2}b^{2}h^{i}(s,x^{i}). Hence, Proposition 1 implies,

fi(s,𝐱,λi,ui)\displaystyle f^{i}(s,\mathbf{x},\lambda^{i},u^{i}) =12i=1n1wi1(xixj)2+12ki(xix0i)2+12(ui)2+bλixihi(s,xi)+λishi(s,xi)\displaystyle=\mbox{$\frac{1}{2}$}\sum_{i=1}^{n-1}w_{i1}\left(x^{i}-x^{j}\right)^{2}+\mbox{$\frac{1}{2}$}k_{i}\left(x^{i}-x_{0}^{i}\right)^{2}+\mbox{$\frac{1}{2}$}\left(u^{i}\right)^{2}+b\lambda^{i}x^{i}h^{i}(s,x^{i})+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}h^{i}(s,x^{i})
+sbλihi(s,xi)[1λ~i(kixi+wi1x¯1)+ξ^i(xix¯1)ui]+s2b2σλihi(s,xi).\displaystyle\hskip 14.22636pt+sb\lambda^{i}h^{i}(s,x^{i})\left[\mbox{$\frac{1}{\tilde{\lambda}_{i}}$}\left(k_{i}x^{i}+w_{i1}\bar{x}^{1*}\right)+\hat{\xi}_{i}\left(x^{i}-\bar{x}^{1*}\right)-u^{i}\right]+s^{2}b^{2}\sigma\lambda^{i}h^{i}(s,x^{i}).

Now

xifi(s,𝐱,λi,ui)\displaystyle\mbox{$\frac{\partial}{\partial x^{i}}$}f^{i}(s,\mathbf{x},\lambda^{i},u^{i}) =wi1(xixj)+ki(xix0i)+bhi(s,xi){sλis\displaystyle=w_{i1}(x^{i}-x^{j})+k_{i}(x^{i}-x_{0}^{i})+bh^{i}(s,x^{i})\biggr{\{}s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}
+λi[1+bsxi+s2b[1λ~i(kixi+wi1x¯1)+ξ^i(xix¯1)ui]\displaystyle\hskip 14.22636pt+\lambda^{i}\bigg{[}1+bsx^{i}+s^{2}b\left[\mbox{$\frac{1}{\tilde{\lambda}_{i}}$}\left(k_{i}x^{i}+w_{i1}\bar{x}^{1*}\right)+\hat{\xi}_{i}\left(x^{i}-\bar{x}^{1*}\right)-u^{i}\right]
+s(ξi^+kiλ~i)+σs3b2]}\displaystyle\hskip 28.45274pt+s\left(\hat{\xi_{i}}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)+\sigma s^{3}b^{2}\bigg{]}\biggr{\}}
=A~1(s,ξ^i,xi,xj,λi)s2b2λihi(s,xi)ui,\displaystyle=\tilde{A}_{1}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})-s^{2}b^{2}\lambda^{i}h^{i}(s,x^{i})u^{i},
2(xi)2fi(s,𝐱,λi,ui)\displaystyle\mbox{$\frac{\partial^{2}}{\partial(x^{i})^{2}}$}f^{i}(s,\mathbf{x},\lambda^{i},u^{i}) =wi1+ki+sb2hi(s,xi){sλis+λi[1+sbxi+s(ξ^i+kiλ~i)+σs3b2\displaystyle=w_{i1}+k_{i}+sb^{2}h^{i}(s,x^{i})\biggr{\{}s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\lambda^{i}\biggr{[}1+sbx^{i}+s\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)+\sigma s^{3}b^{2}
+s2b[1λ~i(kixi+wi1x¯1)+ξ^i(xix¯1)ui]]}+sb2λi(ξ^i+kiλ~i)hi(s,xi)\displaystyle\hskip 14.22636pt+s^{2}b\left[\mbox{$\frac{1}{\tilde{\lambda}_{i}}$}\left(k_{i}x^{i}+w_{i1}\bar{x}^{1*}\right)+\hat{\xi}_{i}\left(x^{i}-\bar{x}^{1*}\right)-u^{i}\right]\biggr{]}\biggr{\}}+sb^{2}\lambda^{i}\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)h^{i}(s,x^{i})
=A~2(s,ξ^i,xi,xj,λi)s3b3λihi(s,xi)ui,\displaystyle=\tilde{A}_{2}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})-s^{3}b^{3}\lambda^{i}h^{i}(s,x^{i})u^{i},
uifi(s,𝐱,λi,ui)\displaystyle\mbox{$\frac{\partial}{\partial u^{i}}$}f^{i}(s,\mathbf{x},\lambda^{i},u^{i}) =uisbλihi(s,xi),\displaystyle=u^{i}-sb\lambda^{i}h^{i}(s,x^{i}),

and,

2xiuifi(s,𝐱,λi,ui)\displaystyle\mbox{$\frac{\partial^{2}}{\partial x^{i}\partial u^{i}}$}f^{i}(s,\mathbf{x},\lambda^{i},u^{i}) =s2b2λihi(s,xi).\displaystyle=-s^{2}b^{2}\lambda^{i}h^{i}(s,x^{i}).

Therefore, Equation (25) implies

[uisbλihi(s,xi)][A~2(s,ξ^i,xi,xj,λi)s3b3uiλihi(s,xi)]2\displaystyle\left[u^{i}-sb\lambda^{i}h^{i}(s,x^{i})\right]\left[\tilde{A}_{2}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})-s^{3}b^{3}u^{i}\lambda^{i}h^{i}(s,x^{i})\right]^{2}
=2s2b2λihi(s,xi)[s2b2uiλihi(s,xi)A~1(s,ξ^i,xi,xj,λi)],\displaystyle=2s^{2}b^{2}\lambda^{i}h^{i}(s,x^{i})\left[s^{2}b^{2}u^{i}\lambda^{i}h^{i}(s,x^{i})-\tilde{A}_{1}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})\right],

and the cubic polynomial of agent ii with respect to control under the presence of a leader is

B~1(s,xi,λi)(ui)3+B~2(s,ξ^i,xi,xj,λi)(ui)2+B~3(s,ξ^i,xi,xj,λi)ui+B~4(s,ξ^i,xi,xj,λi)=0,\displaystyle\tilde{B}_{1}(s,x^{i},\lambda^{i})(u^{i})^{3}+\tilde{B}_{2}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})(u^{i})^{2}+\tilde{B}_{3}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})u^{i}+\tilde{B}_{4}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})=0,

where B~1=(C~2)2\tilde{B}_{1}=(\tilde{C}_{2})^{2}, B~2=C~2(2A~2+C~1)\tilde{B}_{2}=-\tilde{C}_{2}(2\tilde{A}_{2}+\tilde{C}_{1}), B~3=(A~2)22A~2C~1C~2(C~3)2\tilde{B}_{3}=(\tilde{A}_{2})^{2}-2\tilde{A}_{2}\tilde{C}_{1}\tilde{C}_{2}-(\tilde{C}_{3})^{2}, B~4=A~1C~3C~1(A~2)2\tilde{B}_{4}=\tilde{A}_{1}\tilde{C}_{3}-\tilde{C}_{1}(\tilde{A}_{2})^{2}, C~1(s,xi,λi)=sbλihi(s,xi)\tilde{C}_{1}(s,x^{i},\lambda^{i})=sb\lambda^{i}h^{i}(s,x^{i}), C~2(s,xi,λi)=(sb)3λihi(s,xi)\tilde{C}_{2}(s,x^{i},\lambda^{i})=(sb)^{3}\lambda^{i}h^{i}(s,x^{i}), and C~3(s,xi,λi)=(sb)2λihi(s,xi)\tilde{C}_{3}(s,x^{i},\lambda^{i})=(sb)^{2}\lambda^{i}h^{i}(s,x^{i}). Therefore, feedback Nash equilibrium control under the presence of a leader is

ϕ0i(s,xi)=p~+{q~+[q~2+(r~p~2)3]12}13+{q~[q~2+(r~p~2)3]12}13,\displaystyle\phi_{0}^{i*}(s,x^{i})=\tilde{p}+\left\{\tilde{q}+\left[\tilde{q}^{2}+(\tilde{r}-\tilde{p}^{2})^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}+\left\{\tilde{q}-\left[\tilde{q}^{2}+(\tilde{r}-\tilde{p}^{2})^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}},

where

p~\displaystyle\tilde{p} =B~2(s,ξ^i,xi,xj,λi)3B1(s,xi,λi),\displaystyle=-\frac{\tilde{B}_{2}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})}{3B_{1}(s,x^{i},\lambda^{i})},
q~\displaystyle\tilde{q} =p~3+B~2(s,ξ^i,xi,xj,λi)B~3(s,ξ^i,xi,xj,λi)3B~1(s,xi,λi)B~4(s,ξ^i,xi,xj,λi)6[B~1(s,xi,λi)]2,\displaystyle=\tilde{p}^{3}+\frac{\tilde{B}_{2}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})\tilde{B}_{3}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})-3\tilde{B}_{1}(s,x^{i},\lambda^{i})\tilde{B}_{4}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})}{6[\tilde{B}_{1}(s,x^{i},\lambda^{i})]^{2}},
r~\displaystyle\tilde{r} =B~3(s,ξ^i,xi,xj,λi)3B~1(s,xi,λi).\displaystyle=\frac{\tilde{B}_{3}(s,\hat{\xi}_{i},x^{i},x^{j},\lambda^{i})}{3\tilde{B}_{1}(s,x^{i},\lambda^{i})}.

(ii). Using Proposition 2 the right hand side of Equation (26) becomes,

xifi[s,𝐱(s),λi(s),ui(s)]\displaystyle\mbox{$\frac{\partial}{\partial x^{i}}$}f^{i}[s,\mathbf{x}(s),\lambda^{i}(s),u^{i}(s)]
=xi(ki+wi1)(wi1xj+kix0i)+bhi(s,xi){sbλixi[1+s(ξ^i+kiλ~i)]+λi+sλis\displaystyle=x^{i}(k_{i}+w_{i1})-(w_{i1}x^{j}+k_{i}x_{0}^{i})+bh^{i}(s,x^{i})\biggr{\{}sb\lambda^{i}x^{i}\bigg{[}1+s(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}})\bigg{]}+\lambda^{i}+s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}
+s2bλi[(wi1λ~iξ^i)x¯1ui]+sλi[ξ^i+kiλ~i+s2b3σ]}\displaystyle\hskip 28.45274pt+s^{2}b\lambda^{i}\left[\left(\frac{w_{i1}}{\tilde{\lambda}_{i}}-\hat{\xi}_{i}\right)\bar{x}^{1*}-u^{i}\right]+s\lambda^{i}\bigg{[}\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}+s^{2}b^{3}\sigma\bigg{]}\biggr{\}}
=xi(ki+wi1)A~3(wi1,ki,xj)+bhi(s,xi)[A~4(s,σ,ξ^i,λi,ui)+sbλixi[1+s(ξ^i+kiλ~i)]],\displaystyle=x^{i}(k_{i}+w_{i1})-\tilde{A}_{3}(w_{i1},k_{i},x^{j})+bh^{i}(s,x^{i})\left[\tilde{A}_{4}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})+sb\lambda^{i}x^{i}\bigg{[}1+s\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)\bigg{]}\right], (63)

the left hand side implies

sfi[s,𝐱(s),λi(s),ui(s)]\displaystyle\mbox{$\frac{\partial}{\partial s}$}f^{i}[s,\mathbf{x}(s),\lambda^{i}(s),u^{i}(s)]
=hi(s,xi){λi(bxi)2+2λis2+bxiλis\displaystyle=h^{i}(s,x^{i})\biggr{\{}\lambda^{i}(bx^{i})^{2}+\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+bx^{i}\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}
+b[sλis+λi(1+sxi)][1λ~i(kixi+wi1x¯1)+ξ^i(xix¯1)ui]\displaystyle\hskip 7.11317pt+b\left[s\mbox{$\frac{\partial\lambda_{i}}{\partial s}$}+\lambda^{i}(1+sx^{i})\right]\left[\frac{1}{\tilde{\lambda}_{i}}(k_{i}x^{i}+w_{i1}\bar{x}^{1*})+\hat{\xi}_{i}(x^{i}-\bar{x}^{1*})-u^{i}\right]
+sbλi(xix¯1)ξ^is+s2b2σλis+sb2σλi[2+sbxi]},\displaystyle\hskip 14.22636pt+sb\lambda^{i}\left(x^{i}-\bar{x}^{1*}\right)\mbox{$\frac{\partial\hat{\xi}_{i}}{\partial s}$}+s^{2}b^{2}\sigma\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+sb^{2}\sigma\lambda_{i}[2+sbx^{i}]\biggr{\}},

and

2sxifi[s,𝐱(s),λi(s),ui(s)]\displaystyle\mbox{$\frac{\partial^{2}}{\partial s\partial x^{i}}$}f^{i}[s,\mathbf{x}(s),\lambda^{i}(s),u^{i}(s)]
=hi(s,xi){2bλixi+sb3λi(xi)2+sb2λis2+b(1+sbxi)λis+[(sb)2λis+sbλi(1+b+sb)]×\displaystyle=h^{i}(s,x^{i})\biggr{\{}2b\lambda^{i}x^{i}+sb^{3}\lambda^{i}(x^{i})^{2}+sb\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+b(1+sbx^{i})\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\left[(sb)^{2}\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+sb\lambda^{i}(1+b+sb)\right]\times
[1λ~i(kixiwi1x¯1)+ξ^i(xix¯1)ui]+(ξ^i+kiλ~i)[sbλis+bλi(1+sxi)]\displaystyle\hskip 28.45274pt\left[\frac{1}{\tilde{\lambda}_{i}}(k_{i}x^{i}-w_{i1}\bar{x}^{1*})+\hat{\xi}_{i}(x^{i}-\bar{x}^{1*})-u^{i}\right]+\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)\left[sb\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+b\lambda^{i}(1+sx^{i})\right]
+sbλi[1+sb(xix¯1)]ξ^is+s2b3σλi[1+2s+sbxi+sλis]}.\displaystyle\hskip 56.9055pt+sb\lambda^{i}\left[1+sb\left(x^{i}-\bar{x}^{1*}\right)\right]\mbox{$\frac{\partial\hat{\xi}_{i}}{\partial s}$}+s^{2}b^{3}\sigma\lambda^{i}[1+2s+sbx^{i}+s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}]\biggr{\}}. (64)

Comparing Equations (5) and 5 we get,

hi(s,xi){2bλixi+sb3λi(xi)2+sb2λis2+b(1+sbxi)λis+[(sb)2λis+sbλi(1+b+sb)]×\displaystyle h^{i}(s,x^{i})\biggr{\{}2b\lambda^{i}x^{i}+sb^{3}\lambda^{i}(x^{i})^{2}+sb\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+b(1+sbx^{i})\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\left[(sb)^{2}\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+sb\lambda^{i}(1+b+sb)\right]\times
[1λ~i(kixiwi1x¯1)+ξ^i(xix¯1)ui]+(ξ^i+kiλ~i)[sbλis+bλi(1+sxi)]\displaystyle\hskip 28.45274pt\left[\frac{1}{\tilde{\lambda}_{i}}(k_{i}x^{i}-w_{i1}\bar{x}^{1*})+\hat{\xi}_{i}(x^{i}-\bar{x}^{1*})-u^{i}\right]+\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)\left[sb\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+b\lambda^{i}(1+sx^{i})\right]
+sbλi[1+sb(xix¯1)]ξ^is+s2b3σλi[1+2s+sbxi+sλis]}\displaystyle\hskip 56.9055pt+sb\lambda^{i}\left[1+sb\left(x^{i}-\bar{x}^{1*}\right)\right]\mbox{$\frac{\partial\hat{\xi}_{i}}{\partial s}$}+s^{2}b^{3}\sigma\lambda^{i}[1+2s+sbx^{i}+s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}]\biggr{\}}
=xi(ki+wi1)A~3(wi1,ki,xj)+bhi(s,xi)[A~4(s,σ,ξ^i,λi,ui)+sbλixi[1+s(ξ^i+kiλ~i)]].\displaystyle=x^{i}(k_{i}+w_{i1})-\tilde{A}_{3}(w_{i1},k_{i},x^{j})+bh^{i}(s,x^{i})\left[\tilde{A}_{4}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})+sb\lambda^{i}x^{i}\bigg{[}1+s\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)\bigg{]}\right].

The polynomial of the opinion dynamics is

sb3λihi(s,xi)(xi)2+hi(s,xi){2bλi+sb2λis+s[1+sb2λis+bλi(1+b+sb)](ξ^i+kiλ~i)\displaystyle sb^{3}\lambda^{i}h^{i}(s,x^{i})(x^{i})^{2}+h^{i}(s,x^{i})\biggr{\{}2b\lambda^{i}+sb^{2}\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+s[1+sb^{2}\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+b\lambda^{i}(1+b+sb)]\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)
+s2b2ξ^is+s3b4σλisb2λi[1+s(ξ^i+kiλ~i)]}xi(ki+wi1)xi+hi(s,xi)×\displaystyle\hskip 7.11317pt+s^{2}b^{2}\mbox{$\frac{\partial\hat{\xi}_{i}}{\partial s}$}+s^{3}b^{4}\sigma\lambda^{i}-sb^{2}\lambda^{i}\bigg{[}1+s\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)\bigg{]}\biggr{\}}x^{i}-(k_{i}+w_{i1})x^{i}+h^{i}(s,x^{i})\times
{sb2λis2+bλissb[sbλis+λi(1+b+sb)][(ξ^i+wi1λ~i)x¯1+ui]+(ξ^i+kiλ~i)×\displaystyle\hskip 14.22636pt\biggr{\{}sb\mbox{$\frac{\partial^{2}\lambda^{i}}{\partial s^{2}}$}+b\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}-sb[sb\mbox{$\frac{\partial\lambda^{i}}{\partial s}$}+\lambda^{i}(1+b+sb)]\bigg{[}\biggr{(}\hat{\xi}_{i}+\frac{w_{i1}}{\tilde{\lambda}_{i}}\bigg{)}\bar{x}^{1*}+u^{i}\bigg{]}+\left(\hat{\xi}_{i}+\frac{k_{i}}{\tilde{\lambda}_{i}}\right)\times
b(λi+λis)+sbλi(1sbx¯1)ξ^is+s2b3σλi(1+2s+sλis)bA~4(s,σ,ξ^i,λi,ui)}\displaystyle\hskip 28.45274ptb(\lambda^{i}+\mbox{$\frac{\partial\lambda^{i}}{\partial s}$})+sb\lambda^{i}(1-sb\bar{x}^{1*})\mbox{$\frac{\partial\hat{\xi}_{i}}{\partial s}$}+s^{2}b^{3}\sigma\lambda^{i}(1+2s+s\mbox{$\frac{\partial\lambda^{i}}{\partial s}$})-b\tilde{A}_{4}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})\biggr{\}}
+A~3(wi1,ki,xj)=0,\displaystyle\hskip 35.56593pt+\tilde{A}_{3}(w_{i1},k_{i},x^{j})=0,

or,

A~5(s,λi)hi(s,xi)(xi)2+A~6(s,σ,ξ^i,λi,ui)hi(s,xi)xi+(ki+wi1)xi\displaystyle\tilde{A}_{5}(s,\lambda^{i})h^{i}(s,x^{i})(x^{i})^{2}+\tilde{A}_{6}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})h^{i}(s,x^{i})x^{i}+(k_{i}+w_{i1})x^{i}
+A~7(s,σ,ξ^i,λi,ui)hi(s,xi)+A~3(wi1,ki,xj)=0.\displaystyle\hskip 14.22636pt+\tilde{A}_{7}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})h^{i}(s,x^{i})+\tilde{A}_{3}(w_{i1},k_{i},x^{j})=0. (65)

As in Equation (5) hi(s,xi)=exp(sbxi+d)h^{i}(s,x^{i})=\exp(sbx^{i}+d), for b>0b>0, d>0d>0 fixed and a very small value of xix^{i} it can be approximated as hi(s,xi)=1+(sbxi+d)+o([sbxi+d]2)1+d+sbxi=e+sbxih^{i}(s,x^{i})=1+(sbx^{i}+d)+o([sbx^{i}+d]^{2})\approx 1+d+sbx^{i}=e+sbx^{i} where assume e=1+de=1+d.

Therefore, we get a cubic equation expressed as,

A~8(s,λi)(xi)3+A~9(s,σ,ξ^i,λi,ui)(xi)2\displaystyle\tilde{A}_{8}(s,\lambda^{i})(x^{i})^{3}+\tilde{A}_{9}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})(x^{i})^{2}
+A~10(s,σ,wi1,ki,ξ^i,λi,ui,xj)xi+A~11(s,σ,wi1,ki,ξ^i,λi,ui,xj)=0,\displaystyle+\tilde{A}_{10}(s,\sigma,w_{i1},k_{i},\hat{\xi}_{i},\lambda^{i},u^{i},x^{j})x^{i}+\tilde{A}_{11}(s,\sigma,w_{i1},k_{i},\hat{\xi}_{i},\lambda^{i},u^{i},x^{j})=0, (66)

where

A~8(s,λi)=sbA~5(s,λi),\displaystyle\tilde{A}_{8}(s,\lambda^{i})=sb\tilde{A}_{5}(s,\lambda^{i}),
A~9(s,σ,ξ^i,λi,ui)=e+A~5(s,λi)+sbA~6(s,σ,ξ^i,λi,ui),\displaystyle\tilde{A}_{9}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})=e+\tilde{A}_{5}(s,\lambda^{i})+sb\tilde{A}_{6}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i}),
A~10(s,σ,wi1,ki,ξ^i,λi,ui,xj)=ki+wi1+eA~6(s,σ,ξ^i,λi,ui)+sbA~7(s,σ,ξ^i,λi,ui),\displaystyle\tilde{A}_{10}(s,\sigma,w_{i1},k_{i},\hat{\xi}_{i},\lambda^{i},u^{i},x^{j})=k_{i}+w_{i1}+e\tilde{A}_{6}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})+sb\tilde{A}_{7}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i}),

and

A~11(s,σ,ξ^i,λi,ui,xj)=A~3(wi1,ki,xj)+eA~7(s,σ,ξ^i,λi,ui).\displaystyle\tilde{A}_{11}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i},x^{j})=\tilde{A}_{3}(w_{i1},k_{i},x^{j})+e\tilde{A}_{7}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i}).

Solving Equation (5) gives agent ii’s optimal opinion

xi\displaystyle x^{i*} =A~12+{A~13+[(A~13)2+[A~14(A~12)2]3]12}13+{A~13[(A~13)2+[A~14(A~12)2]3]12}13,\displaystyle=\tilde{A}_{12}+\left\{\tilde{A}_{13}+\left[(\tilde{A}_{13})^{2}+[\tilde{A}_{14}-(\tilde{A}_{12})^{2}]^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}+\left\{\tilde{A}_{13}-\left[(\tilde{A}_{13})^{2}+[\tilde{A}_{14}-(\tilde{A}_{12})^{2}]^{3}\right]^{\frac{1}{2}}\right\}^{\frac{1}{3}}, (67)

where

A~12=A~9(s,σ,ξ^i,λi,ui)3A~8(s,λi),\displaystyle\tilde{A}_{12}=-\ \frac{\tilde{A}_{9}(s,\sigma,\hat{\xi}_{i},\lambda^{i},u^{i})}{3\tilde{A}_{8}(s,\lambda^{i})},
A~13=(A~12)3+A~9(s,ξ^i,γ,λi,ui)A~10(s,σ,wi1,ki,ξ^i,λi,ui,xj)3A~8(s,λi)A~11(s,σ,wi1,ki,ξ^i,λi,ui,xj)6[A~8(s,λi)]2,\displaystyle\tilde{A}_{13}=(\tilde{A}_{12})^{3}+\frac{\tilde{A}_{9}(s,\hat{\xi}_{i},\gamma,\lambda^{i},u^{i})\tilde{A}_{10}(s,\sigma,w_{i1},k_{i},\hat{\xi}_{i},\lambda^{i},u^{i},x^{j})-3\tilde{A}_{8}(s,\lambda^{i})\tilde{A}_{11}(s,\sigma,w_{i1},k_{i},\hat{\xi}_{i},\lambda^{i},u^{i},x^{j})}{6[\tilde{A}_{8}(s,\lambda^{i})]^{2}},

and

A~14=A~10(s,σ,wi1,ki,ξ^i,λi,ui,xj)3A~8(s,λi).\displaystyle\tilde{A}_{14}=\frac{\tilde{A}_{10}(s,\sigma,w_{i1},k_{i},\hat{\xi}_{i},\lambda^{i},u^{i},x^{j})}{3\tilde{A}_{8}(s,\lambda^{i})}.

6 Discussion

This paper shows consensus as a feedback Nash equilibrium from a stochastic differential game. The same integral cost function has been used as in Niazi, Özgüler and Yildiz (2016) subject to a stochastic opinion dynamics. A Feynman-type path integral approach has been used to construct a Wick-rotated Schrödinger type equation (i.e a Fokker-Plank diffusion equation). Finally, optimal opinion xix^{i*} and control uiu^{i*} have been determined after solving the first order condition of the Wick-rotated Schrödinger equation. So far from my knowledge, this is a new approach. As different people have different opinions, an opinion changes over time and stubbornness and influence from others have some effects on individual decisions under the assumption that human body is a automaton. The fundamental assumption of this paper is opinion dynamics is stochastic in nature which is another contribution of this paper. Furthermore, results of this paper give more generalized solution of opinion dynamics than (Niazi, Özgüler and Yildiz, 2016).

References

  • Ahamed (2021a) {barticle}[author] \bauthor\bsnmAhamed, \bfnmFaruque\binitsF. (\byear2021a). \btitleMacroeconomic Impact of Covid-19: A case study on Bangladesh. \bjournalIOSR Journal of Economics and Finance (IOSR-JEF) \bvolume12 \bpages2021. \endbibitem
  • Ahamed (2021b) {barticle}[author] \bauthor\bsnmAhamed, \bfnmFaruque\binitsF. (\byear2021b). \btitleDeterminants of Liquidity Risk in the Commercial Banks in Bangladesh. \bjournalEuropean Journal of Business and Management Research \bvolume6 \bpages164–169. \endbibitem
  • Baaquie (1997) {barticle}[author] \bauthor\bsnmBaaquie, \bfnmBelal E\binitsB. E. (\byear1997). \btitleA path integral approach to option pricing with stochastic volatility: some exact results. \bjournalJournal de Physique I \bvolume7 \bpages1733–1753. \endbibitem
  • Baaquie (2007) {bbook}[author] \bauthor\bsnmBaaquie, \bfnmBelal E\binitsB. E. (\byear2007). \btitleQuantum finance: Path integrals and Hamiltonians for options and interest rates. \bpublisherCambridge University Press. \endbibitem
  • Bochner et al. (1949) {bbook}[author] \bauthor\bsnmBochner, \bfnmSalomon\binitsS., \bauthor\bsnmChandrasekharan, \bfnmKomaravolu\binitsK. \betalet al. (\byear1949). \btitleFourier transforms \bvolume19. \bpublisherPrinceton University Press. \endbibitem
  • Calvo-Armengol and Jackson (2004) {barticle}[author] \bauthor\bsnmCalvo-Armengol, \bfnmAntoni\binitsA. and \bauthor\bsnmJackson, \bfnmMatthew O\binitsM. O. (\byear2004). \btitleThe effects of social networks on employment and inequality. \bjournalAmerican economic review \bvolume94 \bpages426–454. \endbibitem
  • Calvó-Armengol, Patacchini and Zenou (2009) {barticle}[author] \bauthor\bsnmCalvó-Armengol, \bfnmAntoni\binitsA., \bauthor\bsnmPatacchini, \bfnmEleonora\binitsE. and \bauthor\bsnmZenou, \bfnmYves\binitsY. (\byear2009). \btitlePeer effects and social networks in education. \bjournalThe Review of Economic Studies \bvolume76 \bpages1239–1267. \endbibitem
  • Chow (1996) {barticle}[author] \bauthor\bsnmChow, \bfnmGregory C\binitsG. C. (\byear1996). \btitleThe Lagrange method of optimization with applications to portfolio and investment decisions. \bjournalJournal of Economic Dynamics and Control \bvolume20 \bpages1–18. \endbibitem
  • Conley and Udry (2010) {barticle}[author] \bauthor\bsnmConley, \bfnmTimothy G\binitsT. G. and \bauthor\bsnmUdry, \bfnmChristopher R\binitsC. R. (\byear2010). \btitleLearning about a new technology: Pineapple in Ghana. \bjournalAmerican economic review \bvolume100 \bpages35–69. \endbibitem
  • Erdös and Rényi (1959) {barticle}[author] \bauthor\bsnmErdös, \bfnmPaul\binitsP. and \bauthor\bsnmRényi, \bfnmA\binitsA. (\byear1959). \btitle“On random graphs,”. \bjournalPublicationes Mathematicae \bvolume6 \bpages290–297. \endbibitem
  • Feynman (1948) {barticle}[author] \bauthor\bsnmFeynman, \bfnmRichard Phillips\binitsR. P. (\byear1948). \btitleSpace-time approach to non-relativistic quantum mechanics. \bjournalReviews of Modern Physics \bvolume20 \bpages367. \endbibitem
  • Feynman (1949) {barticle}[author] \bauthor\bsnmFeynman, \bfnmRichard Phillips\binitsR. P. (\byear1949). \btitleSpace-time approach to quantum electrodynamics. \bjournalPhysical Review \bvolume76 \bpages769. \endbibitem
  • Fujiwara (2017) {bbook}[author] \bauthor\bsnmFujiwara, \bfnmDaisuke\binitsD. (\byear2017). \btitleRigorous time slicing approach to Feynman path integrals. \bpublisherSpringer. \endbibitem
  • Goyal (2012) {bbook}[author] \bauthor\bsnmGoyal, \bfnmSanjeev\binitsS. (\byear2012). \btitleConnections: an introduction to the economics of networks. \bpublisherPrinceton University Press. \endbibitem
  • Hebb (2005) {bbook}[author] \bauthor\bsnmHebb, \bfnmDonald Olding\binitsD. O. (\byear2005). \btitleThe organization of behavior: A neuropsychological theory. \bpublisherPsychology Press. \endbibitem
  • Hossain and Ahamed (2015) {barticle}[author] \bauthor\bsnmHossain, \bfnmMd Saimum\binitsM. S. and \bauthor\bsnmAhamed, \bfnmFaruque\binitsF. (\byear2015). \btitleDeterminants of bank profitability: A study on the banking sector of Bangladesh. \bjournalJournal of Finance and Banking \bvolume13 \bpages43–57. \endbibitem
  • Hua, Polansky and Pramanik (2019) {barticle}[author] \bauthor\bsnmHua, \bfnmLei\binitsL., \bauthor\bsnmPolansky, \bfnmAlan\binitsA. and \bauthor\bsnmPramanik, \bfnmParamahansa\binitsP. (\byear2019). \btitleAssessing bivariate tail non-exchangeable dependence. \bjournalStatistics & Probability Letters \bpages108556. \endbibitem
  • Jackson (2010) {bbook}[author] \bauthor\bsnmJackson, \bfnmMatthew O\binitsM. O. (\byear2010). \btitleSocial and economic networks. \bpublisherPrinceton university press. \endbibitem
  • Kahneman and Tversky (1972) {barticle}[author] \bauthor\bsnmKahneman, \bfnmDaniel\binitsD. and \bauthor\bsnmTversky, \bfnmAmos\binitsA. (\byear1972). \btitleSubjective probability: A judgment of representativeness. \bjournalCognitive psychology \bvolume3 \bpages430–454. \endbibitem
  • Kappen (2005a) {barticle}[author] \bauthor\bsnmKappen, \bfnmHilbert J\binitsH. J. (\byear2005a). \btitleLinear theory for control of nonlinear stochastic systems. \bjournalPhysical review letters \bvolume95 \bpages200201. \endbibitem
  • Kappen (2005b) {barticle}[author] \bauthor\bsnmKappen, \bfnmHilbert J\binitsH. J. (\byear2005b). \btitlePath integrals and symmetry breaking for optimal control theory. \bjournalJournal of statistical mechanics: theory and experiment \bvolume2005 \bpagesP11011. \endbibitem
  • Kappen (2007a) {binproceedings}[author] \bauthor\bsnmKappen, \bfnmHilbert J\binitsH. J. (\byear2007a). \btitleAn introduction to stochastic control theory, path integrals and reinforcement learning. In \bbooktitleAIP conference proceedings \bvolume887 \bpages149–181. \bpublisherAIP. \endbibitem
  • Kappen (2007b) {binproceedings}[author] \bauthor\bsnmKappen, \bfnmHilbert J\binitsH. J. (\byear2007b). \btitleAn introduction to stochastic control theory, path integrals and reinforcement learning. In \bbooktitleAIP conference proceedings \bvolume887 \bpages149–181. \bpublisherAmerican Institute of Physics. \endbibitem
  • Marcet and Marimon (2019) {barticle}[author] \bauthor\bsnmMarcet, \bfnmAlbert\binitsA. and \bauthor\bsnmMarimon, \bfnmRamon\binitsR. (\byear2019). \btitleRecursive contracts. \bjournalEconometrica \bvolume87 \bpages1589–1631. \endbibitem
  • Mas-Colell et al. (1995) {bbook}[author] \bauthor\bsnmMas-Colell, \bfnmAndreu\binitsA., \bauthor\bsnmWhinston, \bfnmMichael Dennis\binitsM. D., \bauthor\bsnmGreen, \bfnmJerry R\binitsJ. R. \betalet al. (\byear1995). \btitleMicroeconomic theory \bvolume1. \bpublisherOxford university press New York. \endbibitem
  • Moretti (2011) {barticle}[author] \bauthor\bsnmMoretti, \bfnmEnrico\binitsE. (\byear2011). \btitleSocial learning and peer effects in consumption: Evidence from movie sales. \bjournalThe Review of Economic Studies \bvolume78 \bpages356–393. \endbibitem
  • Nakajima (2007) {barticle}[author] \bauthor\bsnmNakajima, \bfnmRyo\binitsR. (\byear2007). \btitleMeasuring peer effects on youth smoking behaviour. \bjournalThe Review of Economic Studies \bvolume74 \bpages897–935. \endbibitem
  • Niazi, Özgüler and Yildiz (2016) {binproceedings}[author] \bauthor\bsnmNiazi, \bfnmMuhammad Umar B\binitsM. U. B., \bauthor\bsnmÖzgüler, \bfnmArif Bülent\binitsA. B. and \bauthor\bsnmYildiz, \bfnmAykut\binitsA. (\byear2016). \btitleConsensus as a Nash equilibrium of a dynamic game. In \bbooktitle2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS) \bpages365–372. \bpublisherIEEE. \endbibitem
  • Øksendal (2003) {bincollection}[author] \bauthor\bsnmØksendal, \bfnmBernt\binitsB. (\byear2003). \btitleStochastic differential equations. In \bbooktitleStochastic differential equations \bpages65–84. \bpublisherSpringer. \endbibitem
  • Øksendal and Sulem (2019) {bmisc}[author] \bauthor\bsnmØksendal, \bfnmBernt\binitsB. and \bauthor\bsnmSulem, \bfnmAgnès\binitsA. (\byear2019). \btitleApplied Stochastic Control of Jump Diffusions. \endbibitem
  • Polansky and Pramanik (2021) {barticle}[author] \bauthor\bsnmPolansky, \bfnmAlan M\binitsA. M. and \bauthor\bsnmPramanik, \bfnmParamahansa\binitsP. (\byear2021). \btitleA motif building process for simulating random networks. \bjournalComputational Statistics & Data Analysis \bpages107263. \endbibitem
  • Pramanik (2016) {bbook}[author] \bauthor\bsnmPramanik, \bfnmParamahansa\binitsP. (\byear2016). \btitleTail non-exchangeability. \bpublisherNorthern Illinois University. \endbibitem
  • Pramanik (2020) {binproceedings}[author] \bauthor\bsnmPramanik, \bfnmParamahansa\binitsP. (\byear2020). \btitleOptimization of Market Stochastic Dynamics. In \bbooktitleSN Operations Research Forum \bvolume1 \bpages1–17. \bpublisherSpringer. \endbibitem
  • Pramanik (2021a) {barticle}[author] \bauthor\bsnmPramanik, \bfnmParamahansa\binitsP. (\byear2021a). \btitleEffects of water currents on fish migration through a Feynman-type path integral approach under 8/3\sqrt{8/3} Liouville-like quantum gravity surfaces. \bjournalTheory in Biosciences \bvolume140 \bpages205-223. \endbibitem
  • Pramanik (2021b) {barticle}[author] \bauthor\bsnmPramanik, \bfnmParamahansa\binitsP. (\byear2021b). \btitleEffects of water currents on fish migration through a Feynman-type path integral approach under 8/3\sqrt{8/3} 8/3 Liouville-like quantum gravity surfaces. \bjournalTheory in Biosciences \bvolume140 \bpages205-223. \endbibitem
  • Pramanik and Polansky (2019) {barticle}[author] \bauthor\bsnmPramanik, \bfnmParamahansa\binitsP. and \bauthor\bsnmPolansky, \bfnmAlan M\binitsA. M. (\byear2019). \btitleSemicooperation under curved strategy spacetime. \bjournalarXiv preprint arXiv:1912.12146. \endbibitem
  • Pramanik and Polansky (2020a) {barticle}[author] \bauthor\bsnmPramanik, \bfnmParamahansa\binitsP. and \bauthor\bsnmPolansky, \bfnmAlan M\binitsA. M. (\byear2020a). \btitleMotivation to Run in One-Day Cricket. \bjournalarXiv preprint arXiv:2001.11099. \endbibitem
  • Pramanik and Polansky (2020b) {barticle}[author] \bauthor\bsnmPramanik, \bfnmParamahansa\binitsP. and \bauthor\bsnmPolansky, \bfnmAlan M\binitsA. M. (\byear2020b). \btitleOptimization of a Dynamic Profit Function using Euclidean Path Integral. \bjournalarXiv preprint arXiv:2002.09394. \endbibitem
  • Pramanik and Polansky (2021) {barticle}[author] \bauthor\bsnmPramanik, \bfnmParamahansa\binitsP. and \bauthor\bsnmPolansky, \bfnmAlan M\binitsA. M. (\byear2021). \btitleOptimal Estimation of Brownian Penalized Regression Coefficients. \bjournalarXiv preprint arXiv:2107.02291. \endbibitem
  • Sheng (2020) {barticle}[author] \bauthor\bsnmSheng, \bfnmShuyang\binitsS. (\byear2020). \btitleA structural econometric analysis of network formation games through subnetworks. \bjournalEconometrica \bvolume88 \bpages1829–1858. \endbibitem
  • Snijders (2002) {barticle}[author] \bauthor\bsnmSnijders, \bfnmTom AB\binitsT. A. (\byear2002). \btitleMarkov chain Monte Carlo estimation of exponential random graph models. \bjournalJournal of Social Structure \bvolume3 \bpages1–40. \endbibitem
  • Theodorou (2011) {bbook}[author] \bauthor\bsnmTheodorou, \bfnmEvangelos A\binitsE. A. (\byear2011). \btitleIterative path integral stochastic optimal control: Theory and applications to motor control. \bpublisherUniversity of Southern California. \endbibitem
  • Theodorou, Buchli and Schaal (2010) {binproceedings}[author] \bauthor\bsnmTheodorou, \bfnmEvangelos\binitsE., \bauthor\bsnmBuchli, \bfnmJonas\binitsJ. and \bauthor\bsnmSchaal, \bfnmStefan\binitsS. (\byear2010). \btitleReinforcement learning of motor skills in high dimensions: A path integral approach. In \bbooktitleRobotics and Automation (ICRA), 2010 IEEE International Conference on \bpages2397–2403. \bpublisherIEEE. \endbibitem
  • Tversky and Kahneman (1971) {barticle}[author] \bauthor\bsnmTversky, \bfnmAmos\binitsA. and \bauthor\bsnmKahneman, \bfnmDaniel\binitsD. (\byear1971). \btitleBelief in the law of small numbers. \bjournalPsychological bulletin \bvolume76 \bpages105. \endbibitem
  • Van Den Broek, Wiegerinck and Kappen (2008) {barticle}[author] \bauthor\bsnmVan Den Broek, \bfnmBart\binitsB., \bauthor\bsnmWiegerinck, \bfnmWim\binitsW. and \bauthor\bsnmKappen, \bfnmBert\binitsB. (\byear2008). \btitleGraphical model inference in optimal control of stochastic multi-agent systems. \bjournalJournal of Artificial Intelligence Research \bvolume32 \bpages95–122. \endbibitem
  • Yang et al. (2014) {barticle}[author] \bauthor\bsnmYang, \bfnmInsoon\binitsI., \bauthor\bsnmMorzfeld, \bfnmMatthias\binitsM., \bauthor\bsnmTomlin, \bfnmClaire J\binitsC. J. and \bauthor\bsnmChorin, \bfnmAlexandre J\binitsA. J. (\byear2014). \btitlePath integral formulation of stochastic optimal control with generalized costs. \bjournalIFAC Proceedings Volumes \bvolume47 \bpages6994–7000. \endbibitem