This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Construction of blow-up solution for 5 dimentional critical fujita type equation with different blow-up speed

Liqun Zhang Hua Loo-Keng Key Laboratory of Mathematics, Institute of Mathematics, AMSS, and School of Mathematical Sciences, UCAS, Beijing 100190, China 123 lqzhang@math.ac.cn  and  Jianfeng Zhao Institute of Mathematics, AMSS, UCAS, Beijing 100190, China 123 zhaojianfeng@amss.ac.cn
Abstract.

We are concerned with blow-up solutions of the 5-dimensional energy critical heat equation ut=Δu+|u|43uu_{t}=\Delta u+|u|^{\frac{4}{3}}u. Our main result is to show that the existence of type II solutions blows up at 2 points with 2 different blow-up rates. The inner-outer gluing method has been employed.

1. Introduction

We consider the equation

(1.1) ut=Δu+|u|p1uinΩ×(0,T).u_{t}=\Delta u+|u|^{p-1}u\ \ \ \ in\in\Omega\times(0,T).

Early in 1966, Fujita [11] started the research about equation (1.1). If we only consider the time variable, (1.1) becomes an ordinary differential equations g˙=|g|p1g\dot{g}=|g|^{p-1}g. It’s solution

g(t)=(p1)1p1(Tt)1p1g(t)=(p-1)^{-\frac{1}{p-1}}(T-t)^{-\frac{1}{p-1}}

blows up at time T, which is so called the type I blow-up. And if a blow-up solution does not satisfies this blow-up rate is called type II blow-up. It’s known type II blow-up is faster than type I blow-up. The more result about type I blow-up can be seen in [14, 13, 22, 29, 25].

Let pS=n+2n2p_{S}=\frac{n+2}{n-2} denote the critical Sobolev exponent. In subcritical case, Giga and Kohn [12] first prove in convex domain, only type I blow-up occurs. In super critical case, let pJLp_{JL} denote the Joseph-Lundgreen exponent

pJL={, 3n10,1+4n42n1,n11.p_{JL}=\begin{cases}\infty,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3\leq n\leq 10,\\ 1+\frac{4}{n-4-2\sqrt{n-1}},\ \ \ \ \ \ \ \ \ \ n\geq 11.\end{cases}

The first example of type II solution is given by M.A. Herrero and Velázquez [19, 20], where they constructed a positive radial solution in the case p>pJLp>p_{JL}. Collot [1] constructed a type II solution with the same profile later. In the case pS<p<pJLp_{S}<p<p_{JL}, Matano and Merle [21] excluded type II blow-up in the radial case. For the case p=pJLp=p_{JL}, Seki constructed a blow-up solution in [27]. For the case p=pSp=p_{S}, Filippas, Herrero and Velázquez [10] proved that the radial positive solution can only be a type I blow-up solution. By using the asymptotic matching method, they obtained formally the possible blow-up solution with the blow-up rates given by (after a slightly modify):

(1.2) u(,t)={(Tt)k,n=3,(Tt)k|ln(Tt)|2k2k1,n=4,(Tt)3k,n=5,(Tt)52|ln(Tt)|154,n=6,\|u(\cdot,t)\|_{\infty}=\begin{cases}(T-t)^{-k},\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n=3,\\ (T-t)^{-k}|\ln(T-t)|^{\frac{2k}{2k-1}},\ \ \ \ \ \ n=4,\\ (T-t)^{-3k},\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n=5,\\ (T-t)^{\frac{5}{2}}|\ln(T-t)|^{\frac{15}{4}},\ \ \ \ \ \ \ \ \ \ n=6,\end{cases}

where k=1,2,k=1,2,\cdots. When n7n\geq 7, Collot, Merle and Raphaël [2] proved the type II blow-up solution can’t be around the ground state. For n=4 type II solutions has been constructed by Schweyer [26] in 2012, In the case 3n63\leq n\leq 6, type II solutions has been constructed by Del Pino, Musso, Wei and Zhou [9], they have construct a multi point blow-up in 2019. The case n=5 is first construct by Del Pino, Musso, Wei [6] in 2018, with the blow up rate of k=1 in (1.2). Junichi Harada [17] finished the construction of higher blow-up rate for n=5 in 2019. And Junichi Harada [18] also proved the case of n=6. Very recently Del Pino, Musso, Wei, Zhang and Zhou [8] finished the proof of n=3.

In the above mentioned construction of the critical case, except the construction of Schweyer, they all employed the so called inner-outer gluing method. This technique is not only applied to the construction of finite time blow-up solution for the critical case, but also to super critical case and infinity time blow-up [3, 7]. Beside Fujita equation, Dávila, Del Pino and Wei also construct a blow-up solution for harmonic map equation [4].

1.1. Main result

For 5 dimensional energy critical equation, our main result is

Theorem 1.1.

Let Ω=n\Omega=\mathbb{R}^{n}, n = 5, p=73p=\frac{7}{3} be the critical exponent. For any given two points 0, q in 5\mathbb{R}^{5}, then for any sufficiently small T>0T>0, there exists an initial data u0u_{0}, such that the solution of equation (1.1) blows up at time T, where the blow-up points are at the given 0 and q with different blow-up rate. Moreover, the main order of the solution is as

u(x,t)=j=1,2Uλj(t),ξj(t)(x)Z1η1Z2+θ(x,t),u(x,t)=\sum_{j=1,2}U_{\lambda_{j}(t),\xi_{j}(t)}(x)-Z_{1}\eta_{1}-Z_{2}+\theta(x,t),

when tTt\rightarrow T

λj(t)0,ξ1(t)0,ξ2(t)q,\lambda_{j}(t)\rightarrow 0,\ \ \ \ \xi_{1}(t)\rightarrow 0,\ \ \ \ \xi_{2}(t)\rightarrow q,

and λ1(t)C1(Tt)4\lambda_{1}(t)\sim C_{1}(T-t)^{4}, λ2(t)C2(Tt)2\lambda_{2}(t)\sim C_{2}(T-t)^{2}, with

θ(x,t)L(5×(0,T)),\theta(x,t)\in L^{\infty}(\mathbb{R}^{5}\times(0,T)),

The definition of Z1Z_{1}, Z2Z_{2} and η1\eta_{1} are left to section 2.

Remark 1.2.

In our construction, actually we can construction any k points blow-up with one point has blow-up rate (Tt)6(T-t)^{-6} and the others have blow-up rate (Tt)3(T-t)^{-3}.

2. Basic facts in the construction

As we all known, in critical case, the steady solution of equation (1.1) is unique, up to scalings and translations.

(2.1) U(x)=αn(11+|x|2)n22,αn=(n(n2))n24,U(x)=\alpha_{n}({\frac{1}{1+|x|^{2}}})^{\frac{n-2}{2}},\alpha_{n}=(n(n-2))^{\frac{n-2}{4}},

which is called Talenti-Aubin steady state [28].

2.1. The Construction of the approximated solutions

Fixed a point q5q\in\mathbb{R}^{5}, we hope to find a solution of this form:

(2.2) u(x,t)=j=1,2Uλj(t),ξj(t)Z1η1Z2+θ(x,t),u(x,t)=\sum_{j=1,2}U_{\lambda_{j}(t),\xi_{j}(t)}-Z_{1}\eta_{1}-Z_{2}+\theta(x,t),

where

Uλj(t),ξj(t)=λj(t)n22U(xξj(t)λj(t)).U_{\lambda_{j}(t),\xi_{j}(t)}={\lambda_{j}(t)}^{-\frac{n-2}{2}}U(\frac{x-\xi_{j}(t)}{\lambda_{j}(t)}).

λj(t)\lambda_{j}(t) are the scaling parameters, ξj(t)\xi_{j}(t) are the translation parameters, translation is small compare with scaling, that is, ξj(t)=o(λj(t))\xi_{j}(t)=o(\lambda_{j}(t)) .
Z1:=M(Tt)e1Z_{1}:=M(T-t)e_{1}, where MM is a small constant, e1=1|z|210e_{1}=1-\frac{|z|^{2}}{10}, z=xTtz=\frac{x}{\sqrt{T-t}} is the self similar variable. Here Z1Z_{1} is actually a solution of heat equation. Since the solution does not decay at the infinity, we need to cut it off by multiplying the cut off function η1=η(x(Tt)18)\eta_{1}=\eta(\frac{x}{(T-t)^{\frac{1}{8}}}), where η(x)=1\eta(x)=1 if x1x\leq 1, and η(x)=0\eta(x)=0 if x2x\geq 2 and it’s smooth in the interval (1,2)(1,2).
We let Z2Z_{2} be the unique solution of

(2.3) {tZ2=ΔZ2(x,t)5×(0,),Z2(,0)=Z2,0x5.\begin{cases}\partial_{t}Z_{2}=\Delta Z_{2}\ \ \ \ (x,t)\in\mathbb{R}^{5}\times(0,\infty),\\ Z_{2}(\cdot,0)=Z_{2,0}\ \ \ \ x\in\mathbb{R}^{5}.\end{cases}

where Z2,0Z_{2,0} is an odd function with compact support. Z2,0Z_{2,0} has a small LL^{\infty} norm. It satisfies Z2,0(q)>Z22Z_{2,0}(q)>\frac{\|Z_{2}\|_{\infty}}{2} in the interval [0,T]. We can obtain it by use the continue property of heat equation. By uniqueness, it is easy to see Z2Z_{2} is an odd function.

2.2. Inner-outer gluing

We write the remainder in the form

(2.4) θ(x,t)=λ1n22ϕ1(y1,t)ηR(y1)+λ2n22ϕ2(y1,t)ηR(y1)+ψ(x,t),\theta(x,t)=\lambda_{1}^{-\frac{n-2}{2}}\phi_{1}(y_{1},t)\eta_{R}(y_{1})+\lambda_{2}^{-\frac{n-2}{2}}\phi_{2}(y_{1},t)\eta_{R}(y_{1})+\psi(x,t),

where y1=xξ1λ1y_{1}=\frac{x-\xi_{1}}{\lambda_{1}}. We denote ηR(y1)=ηR,1\eta_{R}(y_{1})=\eta_{R,1}, and also ηR(y2)=ηR,2\eta_{R}(y_{2})=\eta_{R,2} later.
We require ψ\psi be a continuous function and has the following estimate

(2.5) |ψ|{δ0(Tt)(1+|z|4)|z|(Tt)14,δ01+|x|2|z|>(Tt)14,\begin{split}|\psi|\leq\begin{cases}\delta_{0}(T-t)(1+|z|^{4})\ &\ |z|\leq(T-t)^{-\frac{1}{4}},\\ \frac{\delta_{0}}{1+|x|^{2}}\ &\ |z|>(T-t)^{-\frac{1}{4}},\end{cases}\end{split}

where

δ0=Z210.\delta_{0}=\frac{\|Z_{2}\|_{\infty}}{10}.

Let us set the error function

S(u)=ut+Δu+|u|p1u.S(u)=-u_{t}+\Delta u+|u|^{p-1}u.

Denote

yi=xξiλi,y_{i}=\frac{x-\xi_{i}}{\lambda_{i}},
(2.6) Ei(yi,t)=λiλ˙i[(32U(yi)+yiU(yi))]+λiξ˙iU(yi).E_{i}(y_{i},t)=\lambda_{i}\dot{\lambda}_{i}[(\frac{3}{2}U(y_{i})+y_{i}\cdot\nabla U(y_{i}))]+\lambda_{i}\dot{\xi}_{i}\cdot\nabla U(y_{i}).

We compute S(u)S(u)

S(i=1,2Uλi(t),ξi(t)Z1η1Z2+θ(x,t))=θt+Δθ+i=1,2pUλi,ξip1(θ(x,t)Z1η1Z2)+i=1,2λi72Ei+N=i=1,2ηR,iλi72(λi2tϕi+Δyϕi+pUp1[ϕi+λi32(Z1η1Z2+ψ)]+Ei)ψt+Δxψ+i=1,2pλi2(1ηR,i)Up1(Z1η1Z2+ψ)+i=1,2A[ϕi]+i=1,2B[ϕi]+i=1,2λi72Ei(1ηR,i)+N.\begin{split}&S(\sum_{i=1,2}U_{\lambda_{i}(t),\xi_{i}(t)}-Z_{1}\eta_{1}-Z_{2}+\theta(x,t))\\ &=-\theta_{t}+\Delta\theta+\sum_{i=1,2}pU_{\lambda_{i},\xi_{i}}^{p-1}(\theta(x,t)-Z_{1}\eta_{1}-Z_{2})+\sum_{i=1,2}\lambda_{i}^{-\frac{7}{2}}E_{i}+N\\ &=\sum_{i=1,2}\eta_{R,i}\lambda_{i}^{-\frac{7}{2}}(-\lambda_{i}^{2}\partial_{t}\phi_{i}+\Delta_{y}\phi_{i}+pU^{p-1}[\phi_{i}+\lambda_{i}^{\frac{3}{2}}(-Z_{1}\eta_{1}-Z_{2}+\psi)]+E_{i})\\ &-\psi_{t}+\Delta_{x}\psi+\sum_{i=1,2}p\lambda_{i}^{-2}(1-\eta_{R,i})U^{p-1}(-Z_{1}\eta_{1}-Z_{2}+\psi)+\sum_{i=1,2}A[\phi_{i}]+\sum_{i=1,2}B[\phi_{i}]\\ &+\sum_{i=1,2}\lambda_{i}^{-\frac{7}{2}}E_{i}(1-\eta_{R,i})+N.\end{split}

Where

A[ϕi]:=λi72[ΔyiηR,iϕi+2yiηR,iyiϕi],A[\phi_{i}]:=\lambda_{i}^{-\frac{7}{2}}[\Delta_{y_{i}}\eta_{R,i}\phi_{i}+2\nabla_{y_{i}}\eta_{R,i}\nabla_{y_{i}}\phi_{i}],
B[ϕi]:=λi52[λ˙i(yiyiϕi+32ϕi)ηR,i+ξ˙iyiϕiηR,i+(λ˙iyiyiηR,i+ξ˙iyiηR,i)ϕi],N:=|Uλ1,ξ1+Uλ2,ξ2+θZ1η1Z2|p1(Uλ1,ξ1+Uλ2,ξ2+θZ1η1Z2)Uλ1,ξ1pUλ2,ξ2ppUλ1,ξ1p1(θZ1η1Z2)pUλ2,ξ2p1(θZ1η1Z2)+η1tZ1+xZ1η1Δη1Z1.\begin{split}B[\phi_{i}]:=&\lambda_{i}^{-\frac{5}{2}}[\dot{\lambda}_{i}({y_{i}}\cdot\nabla_{y_{i}}\phi_{i}+\frac{3}{2}\phi_{i})\eta_{R,i}+\dot{\xi}_{i}\cdot\nabla_{y_{i}}\phi_{i}\eta_{R,i}+(\dot{\lambda}_{i}{y_{i}}\cdot\nabla_{y_{i}}\eta_{R,i}+\dot{\xi}_{i}\cdot\nabla_{y_{i}}\eta_{R,i})\phi_{i}],\\ N:=&|U_{\lambda_{1},\xi_{1}}+U_{\lambda_{2},\xi_{2}}+\theta-Z_{1}\eta_{1}-Z_{2}|^{p-1}(U_{\lambda_{1},\xi_{1}}+U_{\lambda_{2},\xi_{2}}+\theta-Z_{1}\eta_{1}\\ &-Z_{2})-U_{\lambda_{1},\xi_{1}}^{p}-U_{\lambda_{2},\xi_{2}}^{p}-pU_{\lambda_{1},\xi_{1}}^{p-1}(\theta-Z_{1}\eta_{1}-Z_{2})-pU_{\lambda_{2},\xi_{2}}^{p-1}(\theta-Z_{1}\eta_{1}-Z_{2})\\ &+\frac{\partial\eta_{1}}{\partial t}Z_{1}+\nabla_{x}Z_{1}\nabla\eta_{1}-\Delta\eta_{1}Z_{1}.\end{split}

We shall find a solution of (1.1) if we find a pair (ϕ1(y,t),ϕ2(y,t),ψ(x,t))(\phi_{1}(y,t),\phi_{2}(y,t),\psi(x,t)) solves the following system of equations

(2.7) {λ12tϕ1=Δy1ϕ1+pUp1(y1)+H1(ψ,λ1,λ2,ξ1,ξ2)(y1,t)B2R(0)×(0,T),ϕ1(y,0)=ϕ1,0y1B2R.\begin{cases}\lambda_{1}^{2}\partial_{t}\phi_{1}=\Delta_{y_{1}}\phi_{1}+pU^{p-1}(y_{1})+H_{1}(\psi,\lambda_{1},\lambda_{2},\xi_{1},\xi_{2})\ \ \ (y_{1},t)\in\ B_{2R}(0)\times(0,T),\\ \phi_{1}(y,0)=\phi_{1,0}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y_{1}\in B_{2R}.\end{cases}
(2.8) {λ22tϕ2=Δy2ϕ2+pUp1(y2)+H2(ψ,λ1,λ2,ξ1,ξ2)(y2,t)B2R(0)×(0,T),ϕ2(y,0)=ϕ2,0y2B2R.\begin{cases}\lambda_{2}^{2}\partial_{t}\phi_{2}=\Delta_{y_{2}}\phi_{2}+pU^{p-1}(y_{2})+H_{2}(\psi,\lambda_{1},\lambda_{2},\xi_{1},\xi_{2})\ \ \ (y_{2},t)\in\ B_{2R}(0)\times(0,T),\\ \phi_{2}(y,0)=\phi_{2,0}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y_{2}\in B_{2R}.\end{cases}
(2.9) {ψt=Δxψ+G(ϕ,ψ,λ1,λ2,ξ1,ξ2)(x,t)5×(0,T),ψ(,0)=ψ0x5.\begin{cases}\psi_{t}=\Delta_{x}\psi+G(\phi,\psi,\lambda_{1},\lambda_{2},\xi_{1},\xi_{2})\quad(x,t)\in\mathbb{R}^{5}\times(0,T),\\ \psi(\cdot,0)=\psi_{0}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x\in\mathbb{R}^{5}.\end{cases}

Where for i=1,2i=1,2

(2.10) Hi(ψ,λi,ξi):=λi32pU(yi)p1(Z1(ξi+λiyi)Z2(ξi+λiyi)+ψ(ξi+λiyi))+Ei(yi,t),H_{i}(\psi,\lambda_{i},\xi_{i}):=\lambda_{i}^{\frac{3}{2}}pU(y_{i})^{p-1}(-Z_{1}(\xi_{i}+\lambda_{i}y_{i})-Z_{2}(\xi_{i}+\lambda_{i}y_{i})+\psi(\xi_{i}+\lambda_{i}y_{i}))+E_{i}(y_{i},t),

and

(2.11) G(ϕ1,ϕ2,ψ,λ1,λ2,ξ1,ξ2):=i=1,2pλi2(1ηR,i)U(yi)p1(Z1η1Z2+ψ)+i=1,2A[ϕi]+i=1,2B[ϕi]+i=1,2λi72Ei(1ηR,i)+N.\begin{split}G(\phi_{1},\phi_{2},\psi,\lambda_{1},\lambda_{2},\xi_{1},\xi_{2}):=&\sum_{i=1,2}p\lambda_{i}^{-2}(1-\eta_{R,i})U(y_{i})^{p-1}(-Z_{1}\eta_{1}-Z_{2}+\psi)\\ &+\sum_{i=1,2}A[\phi_{i}]+\sum_{i=1,2}B[\phi_{i}]+\sum_{i=1,2}\lambda_{i}^{-\frac{7}{2}}E_{i}(1-\eta_{R,i})+N.\end{split}

2.3. A result about the linearized equation

To deal with the inner problemma, we consider the corresponding linear problem of (1.1).

(2.12) {λ2ϕt=Δyϕ+pU(y)p1ϕ+h(y,t)(y,t)B2R×[0,T),ϕ(y,0)=lW0(y)yB2R,\begin{split}\begin{cases}\lambda^{2}\phi_{t}&=\Delta_{y}\phi+pU(y)^{p-1}\phi+h(y,t)\ \ \ \ (y,t)\in\ B_{2R}\times[0,T),\\ \phi(y,0)&=lW_{0}(y)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y\in B_{2R},\end{cases}\end{split}

where ll is a constant be choosing later, W0W_{0} is the eigenfunction of L0=Δ+pUp1L_{0}=\Delta+pU^{p-1} with the negative eigenvalue.
It is known that

W0(y)|y|2eλ0|y|,asy,W_{0}(y)\sim|y|^{-2}e^{-\sqrt{\lambda_{0}}|y|},\ \ \ \ as\ y\rightarrow\infty,

where λ0\lambda_{0} is the only negative eigenvalue of L0L_{0}.
And h(y,t)h(y,t) satisfies the orthogonal condition

(2.13) B2Rh(y,t)Wi(y)𝑑y=0i=1,,n+1,t[0,T).\int_{B_{2R}}h(y,t)W_{i}(y)dy=0\ \ \ \ i=1,\cdots,n+1,\ \ \ \ t\in\ [0,T).

We define

ha,ν:=supyB2R,t[0,T)λ0ν(1+|y|a)|h(y,t)|,\|h\|_{a,\nu}:=\sup_{y\in B_{2}R,t\in[0,T)}\lambda_{0}^{\nu}(1+|y|^{a})|h(y,t)|,

and

ϕa,ν:=supyB2R,t[0,T)λ0ν(1+|y|6)R6a|ϕ(y,t)|.\|\phi\|_{*a,\nu}:=\sup_{y\in B_{2}R,t\in[0,T)}\lambda_{0}^{\nu}\frac{(1+|y|^{6})}{R^{6-a}}|\phi(y,t)|.

Actually we expect solution ϕ\phi in the space where the a,ν\|\cdot\|_{a,\nu} is finite. However, we can only know the estimate due to Del Pino, Musso and Wei, there they proved ϕ\phi is in a,ν\|\cdot\|_{*a,\nu}. We copy the lemma of Del Pino, Musso and Wei here

Lemma 2.1.

There exists constant C3>0C_{3}>0, for all sufficient large R>0R>0, if h2+a,ν<+\|h\|_{2+a,\nu}<+\infty, and h satisfies orthogonal condition, then there exists linear operator L satisfies

ϕ=Lin[h],l=l[h],\phi=L^{in}[h],\ \ \ \ l=l[h],

fulfill the equation, and l[h] satisfies

|l[h]|+(1+y)yϕa,ν+ϕa,νC3h2+a,ν.|l[h]|+\|(1+y)\nabla_{y}\phi\|_{*a,\nu}+\|\phi\|_{*a,\nu}\leq C_{3}\|h\|_{2+a,\nu}.

2.4. Local properties of the heat equation

In order to solve the outer problem, we shall first list some known results for the completeness of the paper. We will not restrict in dimension n=5n=5. Consider the heat equation

ut=Δu(x,t)n×(0,).\begin{split}u_{t}=\Delta u\ \ \ \ (x,t)\in\mathbb{R}^{n}\times(0,\infty).\end{split}

We make use of self-similar variables

(2.14) w(z,τ)=u(x,t),z=xTt,Tt=eτ.w(z,\tau)=u(x,t),\ \ \ z=\frac{x}{\sqrt{T-t}},\ \ \ T-t=e^{-\tau}.

The function w(z,τ)w(z,\tau) solves

wτ=Azw(z,τ)n×(0,),\begin{split}w_{\tau}=A_{z}w\ \ \ \ (z,\tau)\in\mathbb{R}^{n}\times(0,\infty),\end{split}

where Az=Δzz2A_{z}=\Delta_{z}-\frac{z}{2}\cdot\nabla. We define the weighted L2L^{2} space

Lρ2(n):={fLloc2(Rn),fρ<},fρ2=Rnf2(z)ρ(z)𝑑z,L_{\rho}^{2}(\mathbb{R}^{n}):=\{f\in L_{loc}^{2}(R^{n}),\|f\|_{\rho}<\infty\},\ \|f\|_{\rho}^{2}=\int_{R^{n}}f^{2}(z)\rho(z)dz,\

where ρ(z)=e|z|24\rho(z)=e^{-\frac{|z|^{2}}{4}}. And inner product is denoted by

(f1,f2)ρ:=Rnf1(z)f2(z)ρ(z)𝑑z.(f_{1},f_{2})_{\rho}:=\int_{R^{n}}f_{1}(z)f_{2}(z)\rho(z)dz.

Consider the eigenvalue problem of AzA_{z} in Lρ2(n)L_{\rho}^{2}(\mathbb{R}^{n}). Let eαe_{\alpha} be the eigenfunction

Azeα=λαeα,-A_{z}e_{\alpha}=\lambda_{\alpha}e_{\alpha},

where α\alpha is multi-index, α=(α1,,αn)n\alpha=(\alpha_{1},\cdots,\alpha_{n})\in\ \mathbb{Z}^{n}, corresponding eigenvalue is

(2.15) λα=|α|2,|α|=α1++αn.\lambda_{\alpha}=\frac{|\alpha|}{2},\ \ \ \ |\alpha|=\alpha_{1}+\cdots+\alpha_{n}.

The eigenfunction

eα=eαi,eαi=Hαi,e_{\alpha}=\prod e_{\alpha_{i}},\ \ \ \ e_{\alpha_{i}}=H_{\alpha_{i}},

where HαiH_{\alpha_{i}} is the αi\alpha_{i}-th Hermite polynomial. Then (Tt)λαeα(T-t)^{\lambda_{\alpha}}e_{\alpha} is a solution of heat equation. We denote eAzf0e^{A_{z}}f_{0} to be the solution with initial data f0f_{0}, by Duhamel’s principle

(2.16) eAzf0=cn(Teτ)n2Rne|eτ2zζ|24(Teτ)f0(ζ)𝑑ζ.e^{A_{z}}f_{0}=\frac{c_{n}}{(T-e^{-\tau})^{\frac{n}{2}}}\int_{R^{n}}e^{-\frac{|e^{-\frac{\tau}{2}}z-\zeta|^{2}}{4(T-e^{-\tau})}}f_{0}(\zeta)d\zeta.

By using this formula, It is easy to obtain the following estimate.

Lemma 2.2.

There exists a constant C=Cn>0C=C_{n}>0, such that

(2.17) |eAz(ττ0)f0|Cnee(ττ0)|z|24(2T+eτ)(Teτ)n4f0ρ.(z,τ)n×(0,)|e^{A_{z}(\tau-\tau_{0})}f_{0}|\leq C_{n}\frac{e^{\frac{e^{-(\tau-\tau_{0})|z|^{2}}}{4(2-T+e^{-\tau})}}}{(T-e^{-\tau})^{\frac{n}{4}}}\|f_{0}\|_{\rho}.\ \ \ \ \ \ \ (z,\tau)\in\mathbb{R}^{n}\times(0,\infty)

The proof of this lemma can be seen in [16].

Lemma 2.3.

For any l+l\in\mathbb{Z}^{+}, it has

(2.18) |eAz(ττ0)|z|2l|Cl(1+el(ττ0)|z|2l).(z,τ)n×(0,)|e^{A_{z}(\tau-\tau_{0})}|z|^{2l}|\leq C_{l}(1+e^{-l(\tau-\tau_{0})}|z|^{2l}).\ \ \ \ \ \ \ (z,\tau)\in\mathbb{R}^{n}\times(0,\infty)

The proof of this lemma can be seen in [15].
The last one is an estimate of heat equation in different scaling variable.

Lemma 2.4.

Consider nonhomogeneous heat equation

(2.19) {tΦΔΦ=g(x,t)n×(0,T),Φt=0=0xn.\begin{cases}\partial_{t}\Phi-\Delta\Phi=g\ \ \ \ \ (x,t)\in\mathbb{R}^{n}\times(0,T),\\ \Phi\mid_{t=0}=0\ \ \ \ \ \ \ \ \ \ \ x\in\mathbb{R}^{n}.\end{cases}

Suppose

|g|1λ2(1+|y|2+a),|g|\leq\frac{1}{\lambda^{2}(1+|y|^{2+a})},

then there exist constants C1C_{1}, γ>0{\gamma}>0 such that

|Φ|C1(Tγ+11+|y|a).|\Phi|\leq C_{1}(T^{\gamma}+\frac{1}{1+|y|^{a}}).

The proof of this lemma can be seen the lemma 4.2 in [6].

3. The parameters λi\lambda_{i} and ξi\xi_{i}

In this section we shall solve the scaling parameter λi\lambda_{i} and translation parameter ξi\xi_{i}. They essentially determine the blow up rates.

3.1. Formal derivation of λi\lambda_{i} and ξi\xi_{i}

We formally drive approximate equation of λi\lambda_{i} and ξi\xi_{i}, and determine the first order of the parameter.

Recall the inner problem

λi2tϕi=Δyiϕi+pUp1(yi)+Hi(ψ,λi,ξi)(yi,t)B2R×(0,T),\begin{split}\lambda_{i}^{2}\partial_{t}\phi_{i}=\Delta_{y_{i}}\phi_{i}+pU^{p-1}(y_{i})+H_{i}(\psi,\lambda_{i},\xi_{i})\ \ \ (y_{i},t)\in B_{2R}\times(0,T),\end{split}

and the notation

yi=xξiλi,y_{i}=\frac{x-\xi_{i}}{\lambda_{i}},

where i=1,2i=1,2 and

Hi(ψ,λ,ξ):=λi32pU(yi)p1(Z1(ξi+λiyi)Z2(ξi+λiyi)+ψ(ξi+λyi))+Ei(yi,t).H_{i}(\psi,\lambda,\xi):=\lambda_{i}^{\frac{3}{2}}pU(y_{i})^{p-1}(-Z_{1}(\xi_{i}+\lambda_{i}y_{i})-Z_{2}(\xi_{i}+\lambda_{i}y_{i})+\psi(\xi_{i}+\lambda y_{i}))+E_{i}(y_{i},t).

Because it is a type II blow-up, then

|λi|<<Tt.|\lambda_{i}|<<\sqrt{T-t}.

Therefore it is reasonable for us to ignore λi2tϕi\lambda_{i}^{2}\partial_{t}\phi_{i}, the equation becomes an elliptic equation

(3.1) Δyiϕi+pUp1(yi)+Hi(ψ,λi,ξi)=0.\Delta_{y_{i}}\phi_{i}+pU^{p-1}(y_{i})+H_{i}(\psi,\lambda_{i},\xi_{i})=0.

From Fredholm theorem, the solvability condition of this equation is the nonhomogeneous term orthogonal to the kernel of the operator.
We let

L0u=Δu+pUp1u.L_{0}u=\Delta u+pU^{p-1}u.

The kernels of L0L_{0} are

(3.2) Wj(x)=U(x)xj=1,2,3,4,5,W_{j}(x)=\frac{\partial U(x)}{\partial x}\ \ \ \ j=1,2,3,4,5,

and

(3.3) W6(x)=Uλ(x)λλ=1=(32U(x)+xU(x)).W_{6}(x)=\frac{\partial U_{\lambda}(x)}{\partial\lambda}\mid_{\lambda=1}=(\frac{3}{2}U(x)+x\cdot\nabla U(x)).

The orthogonal conditions are approximate as

(3.4) R5Hi(yi,t)Wj(yi)𝑑y=0j=1,,6,i=1,2.\int_{R^{5}}H_{i}(y_{i},t)W_{j}(y_{i})dy=0\ \ \ \ j=1,\ldots,6,\quad i=1,2.

Because Z2Z_{2} is an odd function, then Z2(0,t)=0Z_{2}(0,t)=0. In y1B2Ry_{1}\in B_{2R}, by the mean value theorem, |Z2(λ1y1,t)|2R|λ1||Z_{2}(\lambda_{1}y_{1},t)|\leq 2R|\lambda_{1}| is a higher order term which could be omitted. We require remainder ψ\psi can not make a big influence and also be omitted. Notice that

Z1=M(Tt)(1|z|210),Z_{1}=M(T-t)(1-\frac{|z|^{2}}{10}),

in the region B2RB_{2R} it is approximate as M(Tt)M(T-t).
And from (2.5)

Ei(yi,t)=λiλ˙i[(32U(yi)+yiU(yi))]+λiξ˙iU(yi).E_{i}(y_{i},t)=\lambda_{i}\dot{\lambda}_{i}[(\frac{3}{2}U(y_{i})+y_{i}\cdot\nabla U(y_{i}))]+\lambda_{i}\dot{\xi}_{i}\cdot\nabla U(y_{i}).

Also

W6(yi)=(32U(yi)+yiU(yi))W_{6}(y_{i})=(\frac{3}{2}U(y_{i})+y_{i}\cdot\nabla U(y_{i}))

is an even function, while Wj(yi)=U(yi)yiW_{j}(y_{i})=\frac{\partial U(y_{i})}{\partial y_{i}} is odd in variable yiy_{i}.
So

R5H1(y1,t)W6(y1)𝑑y=0\int_{R^{5}}H_{1}(y_{1},t)W_{6}(y_{1})dy=0

can approximately be written as

λ˙1λ1R5W62M(Tt)λ132R5pU(y1)p1W6(y1)𝑑y1=0.\dot{\lambda}_{1}\lambda_{1}\int_{R^{5}}W_{6}^{2}-M(T-t)\lambda_{1}^{\frac{3}{2}}\int_{R^{5}}pU(y_{1})^{p-1}W_{6}(y_{1})dy_{1}=0.

Let

MR5pU(y1)p1W6(y1)𝑑y1R5W62=3M2R5U(y1)p𝑑y1R5W62:=κ1.M\frac{\int_{R^{5}}pU(y_{1})^{p-1}W_{6}(y_{1})dy_{1}}{\int_{R^{5}}W_{6}^{2}}=-\frac{3M}{2}\frac{\int_{R^{5}}U(y_{1})^{p}dy_{1}}{\int_{R^{5}}W_{6}^{2}}:=-\kappa_{1}.

Then the main order of λ1\lambda_{1} is

λ1,0=κ12(Tt)416.\lambda_{1,0}=\frac{\kappa_{1}^{2}(T-t)^{4}}{16}.

Next we deal with λ2\lambda_{2}, because Z1η1Z_{1}\eta_{1} is supported around 0, but the integration region is around q, so we can omit Z1η1Z_{1}\eta_{1}. And we also omit the remainder ψ\psi. Z2Z_{2} can be approximated as Z2,0(q)Z_{2,0}(q) around qq, then

R5H2(y2,t)W6(y2)𝑑y=0\int_{R^{5}}H_{2}(y_{2},t)W_{6}(y_{2})dy=0

can be approximated by

λ˙2λ2R5W62λ232R5pU(y2)p1W6(y2)Z2,0(q)𝑑y2=0.\dot{\lambda}_{2}\lambda_{2}\int_{R^{5}}W_{6}^{2}-\lambda_{2}^{\frac{3}{2}}\int_{R^{5}}pU(y_{2})^{p-1}W_{6}(y_{2})Z_{2,0}(q)dy_{2}=0.

Let

R5pU(y2)p1W6(y2)Z2,0(q)𝑑y2R5W62=Z2,0(q)R5U(y2)p𝑑y2R5W62=κ2.\frac{\int_{R^{5}}pU(y_{2})^{p-1}W_{6}(y_{2})Z_{2,0}(q)dy_{2}}{\int_{R^{5}}W_{6}^{2}}=-Z_{2,0}(q)\frac{\int_{R^{5}}U(y_{2})^{p}dy_{2}}{\int_{R^{5}}W_{6}^{2}}=-\kappa_{2}.

Then the main order of λ2\lambda_{2} is

λ2=κ22(Tt)24.\lambda_{2}=\frac{\kappa_{2}^{2}(T-t)^{2}}{4}.

Similarly about

R5Hi(yi,t)Wj(y2)𝑑y=0,i=1,2,j=1,2,3,4,5,\int_{R^{5}}H_{i}(y_{i},t)W_{j}(y_{2})dy=0,\quad i=1,2,\quad j=1,2,3,4,5,

we obtain

|ξ1|=O(λ132),|\xi_{1}|=O(\lambda_{1}^{\frac{3}{2}}),

and

|ξ2|=q+O(λ232).|\xi_{2}|=q+O(\lambda_{2}^{\frac{3}{2}}).

3.2. The selection of λi\lambda_{i} and ξi\xi_{i}

Recall the orthogonal condition

B2RHiZj=0i=1,2j=1,2,3,4,5,6,\begin{split}\int_{B_{2R}}H_{i}Z_{j}=0\ \ \ \ i=1,2\ \ \ \ j=1,2,3,4,5,6,\\ \end{split}

For given ψ\psi, define λi\lambda_{i}, ξi\xi_{i} as the unique solution of the above orthogonal condition. We require

(3.5) λi(T)=0,ξ1(T)=0,ξ2(T)=q.\lambda_{i}(T)=0,\ \ \ \ \xi_{1}(T)=0,\ \ \ \ \xi_{2}(T)=q.

Divide λi\lambda_{i} into

λi=λi,0+λi,1.\lambda_{i}=\lambda_{i,0}+\lambda_{i,1}.

For λ1\lambda_{1}

(3.6) (λ˙1,0+λ˙1,1)B2RW62λ112B2RpU(y1)p1W6(y1)(Z1+Z2ψ)𝑑y1=0.\begin{split}(\dot{\lambda}_{1,0}+\dot{\lambda}_{1,1})\int_{B_{2R}}W_{6}^{2}-\lambda_{1}^{\frac{1}{2}}\int_{B_{2R}}pU(y_{1})^{p-1}W_{6}(y_{1})(Z_{1}+Z_{2}-\psi)dy_{1}=0.\end{split}

Then by the choosing of λ1,0\lambda_{1,0}, we have

λ˙1,0+κ1(Tt)λ1,012=0.\dot{\lambda}_{1,0}+\kappa_{1}(T-t)\lambda_{1,0}^{\frac{1}{2}}=0.

Substitute it into equation (3.6)

(3.7) λ˙1,1R5W62λ112R5pUp1W6M(Tt)𝑑y1+λ1,012R5pUp1W6M(Tt)𝑑y1R5/B2RZ62(λ˙1,0+λ˙1,1)𝑑y1λ112B2RpU(y1)p1W6(y1)[M(Tt)(|z|210)+Z2ψ]𝑑y1=0.\begin{split}&\dot{\lambda}_{1,1}\int_{R^{5}}W_{6}^{2}-\lambda_{1}^{\frac{1}{2}}\int_{R^{5}}pU^{p-1}W_{6}M(T-t)dy_{1}\\ &+\lambda_{1,0}^{\frac{1}{2}}\int_{R^{5}}pU^{p-1}W_{6}M(T-t)dy_{1}-\int_{R^{5}/B_{2R}}Z_{6}^{2}(\dot{\lambda}_{1,0}+\dot{\lambda}_{1,1})dy_{1}\\ &-\lambda_{1}^{\frac{1}{2}}\int_{B_{2R}}pU(y_{1})^{p-1}W_{6}(y_{1})[M(T-t)(-\frac{|z|^{2}}{10})+Z_{2}-\psi]dy_{1}=0.\end{split}

That is

(3.8) λ˙1,1R5W62+M(Tt)λ1,1(λ112+λ1,012)R5pUp1W6𝑑y1R5/B2RW62(λ˙1,0+λ˙1,1)𝑑y1λ112B2RpU(y1)p1W6(y1)[M(Tt)(|z|210)+Z2ψ]𝑑y1=0.\begin{split}&\dot{\lambda}_{1,1}\int_{R^{5}}W_{6}^{2}+\frac{M(T-t)\lambda_{1,1}}{(\lambda_{1}^{\frac{1}{2}}+\lambda_{1,0}^{\frac{1}{2}})}\int_{R^{5}}pU^{p-1}W_{6}dy_{1}-\int_{R^{5}/B_{2R}}W_{6}^{2}(\dot{\lambda}_{1,0}+\dot{\lambda}_{1,1})dy_{1}\\ &-\lambda_{1}^{\frac{1}{2}}\int_{B_{2R}}pU(y_{1})^{p-1}W_{6}(y_{1})[M(T-t)(-\frac{|z|^{2}}{10})+Z_{2}-\psi]dy_{1}=0.\end{split}

Because in y1B2Ry_{1}\in B_{2R}, |z|2R(Tt)72|z|\leq 2R(T-t)^{\frac{7}{2}}, then

(3.9) λ112B2RpU(y1)p1W6(y1)[M(Tt)(|z|210)]λ112(Tt)8.\lambda_{1}^{\frac{1}{2}}\int_{B_{2R}}pU(y_{1})^{p-1}W_{6}(y_{1})[M(T-t)(-\frac{|z|^{2}}{10})]\leq\lambda_{1}^{\frac{1}{2}}(T-t)^{8}.

Since Z2Z_{2} is odd, thus

B2RpU(y1)p1W6(y1)Z2(x+ξ1)𝑑y1=B2RpU(y1)p1W6(y1)Z2(y1λ1)𝑑y1=0.\begin{split}&\int_{B_{2R}}pU(y_{1})^{p-1}W_{6}(y_{1})Z_{2}(x+\xi_{1})dy_{1}=\int_{B_{2R}}pU(y_{1})^{p-1}W_{6}(y_{1})Z_{2}(y_{1}\lambda_{1})dy_{1}=0.\end{split}

Therefore

(3.10) |λ112B2RpU(y1)p1W6(y1)Z2𝑑y1|=|λ112B2RpU(y1)p1W6(y1)[Z2(x)Z2(y1λ1)]𝑑y1||ξ1λ112B2RpU(y1)p1W6(y1)Z2(s)𝑑y1||ξ1λ112B2RpU(y1)p1W6(y1)𝑑y1|.\begin{split}&|\lambda_{1}^{\frac{1}{2}}\int_{B_{2R}}pU(y_{1})^{p-1}W_{6}(y_{1})Z_{2}dy_{1}|\\ &=|\lambda_{1}^{\frac{1}{2}}\int_{B_{2R}}pU(y_{1})^{p-1}W_{6}(y_{1})[Z_{2}(x)-Z_{2}(y_{1}\lambda_{1})]dy_{1}|\\ &\lesssim|\xi_{1}\lambda_{1}^{\frac{1}{2}}\int_{B_{2R}}pU(y_{1})^{p-1}W_{6}(y_{1})\nabla Z_{2}(s)dy_{1}|\\ &\lesssim|\xi_{1}\lambda_{1}^{\frac{1}{2}}\int_{B_{2R}}pU(y_{1})^{p-1}W_{6}(y_{1})dy_{1}|.\end{split}

By (3.9)-(3.10) and the definition of ψ\psi in (2.5), equation (3.8) can be written as

(3.11) λ˙1,1R5W62+R5Up𝑑y1M(Tt)λ1,12λ1,012+δR,T,δ0(λ˙1,0+λ˙1,1+(Tt)λ112)R5U(y1)p𝑑y1M(Tt)λ1,122λ1,012(λ112+λ1,012)2=0,\begin{split}&\dot{\lambda}_{1,1}\int_{R^{5}}W_{6}^{2}+\int_{R^{5}}U^{p}dy_{1}M(T-t)\frac{\lambda_{1,1}}{2\lambda_{1,0}^{\frac{1}{2}}}+\delta_{R,T,\delta_{0}}(\dot{\lambda}_{1,0}+\dot{\lambda}_{1,1}+(T-t)\lambda_{1}^{\frac{1}{2}})\\ &-\int_{R^{5}}U(y_{1})^{p}dy_{1}M(T-t)\frac{\lambda_{1,1}^{2}}{2\lambda_{1,0}^{\frac{1}{2}}(\lambda_{1}^{\frac{1}{2}}+\lambda_{1,0}^{\frac{1}{2}})^{2}}=0,\end{split}

where when RR\rightarrow\infty, T0T\rightarrow 0, δ00\delta_{0}\rightarrow 0, δR,T,δ00\delta_{R,T,\delta_{0}}\rightarrow 0. To solve λ1,1\lambda_{1,1}, we need the following lemma.

Lemma 3.1.

For sufficient small ϵ>0\epsilon>0, consider

(3.12) {λ˙+ϵλTt=(Tt)3h,λ(T)=0.\begin{cases}\dot{\lambda}+\epsilon\frac{\lambda}{T-t}=(T-t)^{3}h,\\ \lambda(T)=0.\end{cases}

If h0,α<\|h\|_{0,\alpha}<\infty, (3.13) has a solution λ\lambda, which can be write as

(3.13) λ=(Tt)ϵtT(Ts)3ϵh(s)𝑑s,\lambda=-(T-t)^{\epsilon}\int_{t}^{T}(T-s)^{3-\epsilon}h(s)ds,

and there exists constant C2C_{2} satisfies

(3.14) λ1,αC2h0,α.\|\lambda\|_{1,\alpha}\leq C_{2}\|h\|_{0,\alpha}.

Proof: In fact, if ϵ\epsilon is small enough, tT(Ts)3ϵh(s)𝑑s\int_{t}^{T}(T-s)^{3-\epsilon}h(s)ds is integrable, then

(Tt)ϵtT(Ts)3ϵh(s)𝑑s(T-t)^{\epsilon}\int_{t}^{T}(T-s)^{3-\epsilon}h(s)ds

is well defined. One can check directly that (3.13) satisfies (3.12).
Then we check (3.14). By equation (3.12),

λ˙=ϵλTt+(Tt)3h,\dot{\lambda}=-\epsilon\frac{\lambda}{T-t}+(T-t)^{3}h,

where (Tt)3h(T-t)^{3}h is in CαC^{\alpha}. By (3.13)

ϵλTt=ϵ(Tt)ϵ1tT(Ts)3ϵh(s)𝑑s,-\epsilon\frac{\lambda}{T-t}=\epsilon(T-t)^{\epsilon-1}\int_{t}^{T}(T-s)^{3-\epsilon}h(s)ds,

it’s easy to check it is in C1C^{1} and

|d(Tt)ϵ1tT(Ts)3ϵh(s)𝑑sdt|h,|\frac{d(T-t)^{\epsilon-1}\int_{t}^{T}(T-s)^{3-\epsilon}h(s)ds}{dt}|\leq\|h\|_{\infty},

then Lemma 3.1 follows immediately.

After finished the proof of Lemma 3.1. We may rewrite (3.11) as a linear equation about λ1,1¯\overline{\lambda_{1,1}}

(3.15) λ¯˙1,1R5W62+2MR5Up𝑑y1κ1(Tt)λ1,1¯+δR,T,δ0(λ˙1,0+λ˙1,1+(Tt)λ112)R5U(y1)p𝑑y1M(Tt)λ1,122λ1,012(λ112+λ1,012)2=0.\begin{split}&\dot{\overline{\lambda}}_{1,1}\int_{R^{5}}W_{6}^{2}+\frac{2M\int_{R^{5}}U^{p}dy_{1}}{\kappa_{1}(T-t)}\overline{\lambda_{1,1}}+\delta_{R,T,\delta_{0}}(\dot{\lambda}_{1,0}+\dot{\lambda}_{1,1}+(T-t)\lambda_{1}^{\frac{1}{2}})\\ &-\int_{R^{5}}U(y_{1})^{p}dy_{1}M(T-t)\frac{\lambda_{1,1}^{2}}{2\lambda_{1,0}^{\frac{1}{2}}(\lambda_{1}^{\frac{1}{2}}+\lambda_{1,0}^{\frac{1}{2}})^{2}}=0.\end{split}

If M sufficient small, then for given λ1,1C1,α\lambda_{1,1}\in C^{1,\alpha} with |λ1,1|δλ1,0,|λ˙1,1|δ|λ˙1,0||\lambda_{1,1}|\leq\delta\lambda_{1,0},|\dot{\lambda}_{1,1}|\leq\delta|\dot{\lambda}_{1,0}|, δ\delta small enough. By Lemma 3.1, we can solve λ1,1¯\overline{\lambda_{1,1}} with the following estimate

λ1,1¯1,αC1(δR,T,δ0+λ1,11,α2)λ1,0.\|\overline{\lambda_{1,1}}\|_{1,\alpha}\leq C_{1}(\delta_{R,T,\delta_{0}}+\|\lambda_{1,1}\|_{1,\alpha}^{2})\lambda_{1,0}.

Due to our choice of R sufficiently large, T sufficiently small, δ0\delta_{0} sufficiently small and δ\delta small, by the fixed point theorem we can solve λ1\lambda_{1}.

Similarly, we can solve λ2\lambda_{2} in a same way. As for ξi=(ξi,1,,ξi,5)\xi_{i}=(\xi_{i,1},\cdots,\xi_{i,5}), and ξi,j\xi_{i,j}, defined by following equation

B2RHi(yi,t)Wj(yi)𝑑yi=0.\int_{B_{2R}}H_{i}(y_{i},t)W_{j}(y_{i})dy_{i}=0.

That is, for j=1,,5j=1,\cdots,5,

B2Rλiξ˙i(jU(yi))2𝑑yi+B2Rλi32pU(yi)p1(Z1Z2+ψ(ξi+λyi))𝑑yi=0.\int_{B_{2R}}\lambda_{i}\dot{\xi}_{i}(\partial_{j}U(y_{i}))^{2}dy_{i}+\int_{B_{2R}}\lambda_{i}^{\frac{3}{2}}pU(y_{i})^{p-1}(-Z_{1}-Z_{2}+\psi(\xi_{i}+\lambda y_{i}))dy_{i}=0.

Because Z1Z_{1}, Z2Z_{2} are given, then for fixed ψ\psi, after solve λi(ψ)\lambda_{i}(\psi) we can obtain ξi,j\xi_{i,j} from the above equations.

4. The inner problem

In this section, we use Lemma 2.1 to obtain an estimate of ψ1\psi_{1} and ψ2\psi_{2}. Recall the inner problem

{λ12tϕ1=Δy1ϕ1+pUp1(y1)+H1(ψ,λ1,λ2,ξ1,ξ2)(y1,t)B2R(0)×(0,T),ϕ1(y,0)=ϕ1,0y1B2R.\begin{cases}\lambda_{1}^{2}\partial_{t}\phi_{1}=\Delta_{y_{1}}\phi_{1}+pU^{p-1}(y_{1})+H_{1}(\psi,\lambda_{1},\lambda_{2},\xi_{1},\xi_{2})\ \ \ (y_{1},t)\in\ B_{2R}(0)\times(0,T),\\ \phi_{1}(y,0)=\phi_{1,0}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y_{1}\in B_{2R}.\end{cases}
{λ22tϕ2=Δy2ϕ2+pUp1(y2)+H2(ψ,λ1,λ2,ξ1,ξ2)(y2,t)B2R(0)×(0,T),ϕ2(y,0)=ϕ2,0y2B2R.\begin{cases}\lambda_{2}^{2}\partial_{t}\phi_{2}=\Delta_{y_{2}}\phi_{2}+pU^{p-1}(y_{2})+H_{2}(\psi,\lambda_{1},\lambda_{2},\xi_{1},\xi_{2})\ \ \ (y_{2},t)\in\ B_{2R}(0)\times(0,T),\\ \phi_{2}(y,0)=\phi_{2,0}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y_{2}\in B_{2R}.\end{cases}

Where

Hi(ψ,λi,ξi):=λi32pU(yi)p1(Z1(ξi+λiyi)Z2(ξi+λiyi)+ψ(ξi+λiyi))+Ei(yi,t),H_{i}(\psi,\lambda_{i},\xi_{i}):=\lambda_{i}^{\frac{3}{2}}pU(y_{i})^{p-1}(-Z_{1}(\xi_{i}+\lambda_{i}y_{i})-Z_{2}(\xi_{i}+\lambda_{i}y_{i})+\psi(\xi_{i}+\lambda_{i}y_{i}))+E_{i}(y_{i},t),

For given ψ\psi satisfies (2.5), then

H1(ψ)λ17411+|y1|3.H_{1}(\psi)\leq\lambda_{1}^{\frac{7}{4}}\frac{1}{1+|y_{1}|^{3}}.
H2(ψ)λ23211+|y2|3.H_{2}(\psi)\leq\lambda_{2}^{\frac{3}{2}}\frac{1}{1+|y_{2}|^{3}}.

Notice that for any a(0,1)a\in(0,1), the decay rate of Hi(yi,t)H_{i}(y_{i},t) is 2+a. Also due to the choice of λi\lambda_{i} and ξi\xi_{i}, HiH_{i} satisfies the orthogonality condition. Then by Lemma 2.1 we obtain

Proposition 4.1.

For any a(0,1)a\in(0,1)

ϕ1(y1,t)a,74C3H1(y1,t)2+a,74.\|\phi_{1}(y_{1},t)\|_{*a,\frac{7}{4}}\leq C_{3}\|H_{1}(y_{1},t)\|_{2+a,\frac{7}{4}}.
ϕ2(y2,t)a,32C3H2(y1,t)2+a,32.\|\phi_{2}(y_{2},t)\|_{*a,\frac{3}{2}}\leq C_{3}\|H_{2}(y_{1},t)\|_{2+a,\frac{3}{2}}.

The norm here means in the corresponding variable, that is

(4.1) |ϕ1(y1,t)|λ174R6a1+|y1|6,|ϕ2(y2,t)|λ232R6a1+|y2|6.|\phi_{1}(y_{1},t)|\leq\lambda_{1}^{\frac{7}{4}}\frac{R^{6-a}}{1+|y_{1}|^{6}},\ \ \ \ |\phi_{2}(y_{2},t)|\leq\lambda_{2}^{\frac{3}{2}}\frac{R^{6-a}}{1+|y_{2}|^{6}}.

5. The outer problem

To solve outer problem, we also need to treat it as a linear problem

(5.1) {tψ=Δxψ+g(ψ)(x,t)5×(0,T),ψ(,0)=ψ0x5\begin{cases}\partial_{t}\psi_{*}&=\Delta_{x}\psi_{*}+g(\psi)\ \ \ \ (x,t)\in\ \mathbb{R}^{5}\times(0,T),\\ \psi_{*}(\cdot,0)&=\psi_{0}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x\in\ \mathbb{R}^{5}\end{cases}

Our goal of this section is to prove ψ\psi has the following estimates

|ψ|{δ0(Tt)(1+|z|4)|z|(Tt)14,δ01+|x|2|z|>(Tt)14,\begin{split}|\psi|\leq\begin{cases}\delta_{0}(T-t)(1+|z|^{4})\ &\ |z|\leq(T-t)^{-\frac{1}{4}},\\ \frac{\delta_{0}}{1+|x|^{2}}\ &\ |z|>(T-t)^{-\frac{1}{4}},\end{cases}\end{split}

where

δ0=Z210.\delta_{0}=\frac{\|Z_{2}\|_{\infty}}{10}.

Define space BB with the norm

ψB:=supxR5,t[0,T)|ψ(x,t)|(Tt)1(1+|z|4),z=xTt,x5.\|\psi\|_{B}:=\sup_{x\in R^{5},t\in[0,T)}|\psi(x,t)|(T-t)^{-1}(1+|z|^{4}),\ \ \ \ z=\frac{x}{T-t},\ \ \ \ x\in\mathbb{R}^{5}.

From classic parabolic theorem, for given ψ\psi satisfies ψB<\|\psi\|_{B}<\infty, equation (5.1) has a unique solution ψ\psi_{*}. Define

ψ=T[ψ].\psi_{*}=T[\psi].

5.1. Choosing of the parameters

We choose initial data of this form

(5.2) ψ0=(𝒅𝒆)η(xe38τ),\psi_{0}=(\boldsymbol{d}\cdot\boldsymbol{e})\eta(\frac{x}{e^{\frac{3}{8}\tau}}),

where 𝒅=(dα0,dα1,dαm)\boldsymbol{d}=(d_{\alpha_{0}},d_{\alpha_{1}}\cdots,d_{\alpha_{m}}) is a parameter and 𝒆=(eα0,eα1,eαm)\boldsymbol{e}=(e_{\alpha_{0}},e_{\alpha_{1}}\cdots,e_{\alpha_{m}}) is chosen such that 𝒆=(eα0,eα1,eαm)\boldsymbol{e}=(e_{\alpha_{0}},e_{\alpha_{1}}\cdots,e_{\alpha_{m}}) are the eigenfunctions of Az-A_{z} with eigenvalue less than or equal 2.
We use the self-similar variable

φ(z,τ)=ψ(x,t),Tt=eτ.\varphi(z,\tau)=\psi_{*}(x,t),\ \ \ \ T-t=e^{-\tau}.\\

The function φ(z,τ)\varphi(z,\tau) solves

(5.3) {φτ=Aφ+eτG(ϕ,ψ,λ1,λ2,ξ1,ξ2)(z,τ)5×(τ0,)φτ=τ0=(𝒅𝒆)η(ze38τ).\begin{split}\begin{cases}\varphi_{\tau}=\textit{A}\varphi+e^{-\tau}G(\phi,\psi,\lambda_{1},\lambda_{2},\xi_{1},\xi_{2})\ \ \ \ \ \ \ \ \ (z,\tau)\in\ \mathbb{R}^{5}\times(\tau_{0},\infty)\\ \varphi\mid_{\tau=\tau_{0}}=(\boldsymbol{d}\cdot\boldsymbol{e})\eta(\frac{z}{e^{\frac{3}{8}\tau}}).\end{cases}\end{split}

We decompose the initial data in the eigenspace of AA, into two parts, Ym=span{eα0,eα1,eαm}Y_{m}=span\{e_{\alpha_{0}},e_{\alpha_{1}}\cdots,e_{\alpha_{m}}\} and it’s orthogonal complement,

(𝒅𝒆)η(ze38τ)=dj(ejη(ze38τ),ek)ek+{(𝒅𝒆)η(ze38τ)},(\boldsymbol{d}\cdot\boldsymbol{e})\eta(\frac{z}{e^{\frac{3}{8}\tau}})=\sum d_{j}(e_{j}\eta(\frac{z}{e^{\frac{3}{8}\tau}}),e_{k})e_{k}+\{(\boldsymbol{d}\cdot\boldsymbol{e})\eta(\frac{z}{e^{\frac{3}{8}\tau}})\}^{\perp},

especially

({(𝒅𝒆)η(ze38τ)},ei)=0,i=1,,m,τ=τ0.(\{(\boldsymbol{d}\cdot\boldsymbol{e})\eta(\frac{z}{e^{\frac{3}{8}\tau}})\}^{\perp},e_{i})=0,\ \ \ \ i=1,\cdots,m,\ \ \ \tau=\tau_{0}.

We define Φ\Phi as

φ=𝒃(τ)𝒆+Φ.\varphi=\boldsymbol{b}(\tau)\cdot\boldsymbol{e}+\Phi.

where 𝒃(τ)=(bα1(τ),,bαm(τ))\boldsymbol{b}(\tau)=(b_{\alpha_{1}}(\tau),\cdots,b_{\alpha_{m}}(\tau)). Choose bτb_{\tau} as

(5.4) bαi(τ)=eλαiττe(λαi1)τ(G,eαi)ρ𝑑τ.b_{\alpha_{i}}(\tau)=-e^{-\lambda_{\alpha_{i}}\tau}\int_{\tau}^{\infty}e^{(\lambda_{\alpha_{i}}-1)\tau^{\prime}}(G,e_{\alpha_{i}})_{\rho}d\tau^{\prime}.

Then Φ\Phi satisfies

(5.5) Φτ=AzΦ+eτGi=1mλαibαieαii=1mdbαidτeαi:=AzΦ+eτG.\Phi_{\tau}=\textit{A}_{z}\Phi+e^{-\tau}G-\sum_{i=1}^{m}\lambda_{\alpha_{i}}b_{\alpha_{i}}e_{\alpha_{i}}-\sum_{i=1}^{m}\frac{db_{\alpha_{i}}}{d\tau}e_{\alpha_{i}}:=\textit{A}_{z}\Phi+e^{-\tau}G^{\perp}.

By Lemma 5.1, it’s easy to see

(5.6) |(G,eαi)|e76τ.|(G,e_{\alpha_{i}})|\lesssim e^{-\frac{7}{6}\tau}.

From the definition of 𝒅\boldsymbol{d} we have

(5.7) (I+D)𝒅=𝒃(τ0),(I+D)\boldsymbol{d}=\boldsymbol{b}(\tau_{0}),

where DD is a (m+1)×(m+1)(m+1)\times(m+1) matrix

(5.8) Dij=(eαi,(1η(ze38τ)τ=τ0eαj).D_{ij}=(e_{\alpha_{i}},(1-\eta(\frac{z}{e^{\frac{3}{8}\tau}})\mid_{\tau=\tau_{0}}e_{\alpha_{j}}).

For τ0\tau_{0} sufficient large, |Dij|<<1|D_{ij}|<<1, then

(5.9) |𝒅||𝒃(τ)|e136τ0.|\boldsymbol{d}|\lesssim|\boldsymbol{b}(\tau)|\lesssim e^{-\frac{13}{6}\tau_{0}}.

Because eαe_{\alpha} are given functions with eigenvalues less than or equal to 2, so

(5.10) |bαeα|e136τ(1+|z|4).\begin{split}|b_{\alpha}e_{\alpha}|\lesssim e^{-\frac{13}{6}\tau}(1+|z|^{4}).\end{split}

5.2. The estimate of G

We give an estimate of G in this subsection. Let R=eτ02R=e^{\frac{\tau_{0}}{2}}. Recall (2.11) GG could be written as

G=i=1,2pλi2(1ηR,i)U(yi)p1(Z1ηZ2+ψ)+i=1,2A[ϕi]+i=1,2B[ϕi]+i=1,2λi72Ei(1ηR,i)+N.\begin{split}G=&\sum_{i=1,2}p\lambda_{i}^{-2}(1-\eta_{R,i})U(y_{i})^{p-1}(-Z_{1}\eta-Z_{2}+\psi)+\sum_{i=1,2}A[\phi_{i}]\\ &+\sum_{i=1,2}B[\phi_{i}]+\sum_{i=1,2}\lambda_{i}^{-\frac{7}{2}}E_{i}(1-\eta_{R,i})+N.\end{split}

Let 1zΩ(z)\textbf{1}_{z\in\Omega}(z) be a function on 5\mathbb{R}^{5} defined by 1zΩ(z)=1\textbf{1}_{z\in\Omega}(z)=1 if zΩz\in\Omega and 1zΩ(z)=0\textbf{1}_{z\in\Omega}(z)=0 if zΩz\notin\Omega.

Lemma 5.1.

Under the above notation, we have

|G|λ121+|y1|2+aeτR121|x|1+λ221+|y2|2+aR121|xq|1+e34τ|z|41e38τ|z|2e38τ+e7τ6|z|41|z|2eτ2+e7τ3|z|101|z|2eτ4+e7τ3|z|61|z|2e38τ+e73τ1|z|1+δ0731+|x|41|z|eτ4+Z2p1+|x|41|z|eτ2+e2τ1+|x|31|x|1λ1211+|y1|2+aeτR121|x|1+e5τ|z|18+e34τ|z|41e38τ|z|2e38τ+e7τ6|z|41|z|2eτ2+e7τ3|z|101|z|2eτ4+e7τ3|z|61|z|2e38τ+e73τ1|z|1+δ0731+|x|41|z|eτ4+Z2p1+|x|41|z|eτ2+e2τ1+|x|31|x|1.\begin{split}&|G|\\ &\lesssim\frac{\lambda_{1}^{-2}}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-\frac{1}{2}}\textbf{1}_{{|x|}\leq 1}+\frac{\lambda_{2}^{-2}}{1+|y_{2}|^{2+a}}R^{-\frac{1}{2}}\textbf{1}_{{|x-q|}\leq 1}+e^{-\frac{3}{4}\tau}|z|^{4}\textbf{1}_{e^{\frac{3}{8}\tau}\leq{|z|}\leq 2e^{\frac{3}{8}\tau}}\\ &+e^{-\frac{7\tau}{6}}|z|^{4}\textbf{1}_{{|z|}\leq 2e^{\frac{\tau}{2}}}+e^{-\frac{7\tau}{3}}|z|^{10}\textbf{1}_{{|z|}\leq 2e^{\frac{\tau}{4}}}+e^{-\frac{7\tau}{3}}|z|^{6}\textbf{1}_{{|z|}\leq 2e^{\frac{3}{8}\tau}}+e^{-\frac{7}{3}\tau}\textbf{1}_{{|z|}\leq 1}\\ &+\frac{\delta_{0}^{\frac{7}{3}}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{4}}}+\frac{\|Z_{2}\|_{\infty}^{p}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{2}}}+\frac{e^{-2\tau}}{1+|x|^{3}}\textbf{1}_{{|x|}\geq 1}\\ &\lesssim\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-\frac{1}{2}}\textbf{1}_{{|x|}\leq 1}+e^{-5\tau}|z|^{18}+e^{-\frac{3}{4}\tau}|z|^{4}\textbf{1}_{e^{\frac{3}{8}\tau}\leq{|z|}\leq 2e^{\frac{3}{8}\tau}}\\ &+e^{-\frac{7\tau}{6}}|z|^{4}\textbf{1}_{{|z|}\leq 2e^{\frac{\tau}{2}}}+e^{-\frac{7\tau}{3}}|z|^{10}\textbf{1}_{{|z|}\leq 2e^{\frac{\tau}{4}}}+e^{-\frac{7\tau}{3}}|z|^{6}\textbf{1}_{{|z|}\leq 2e^{\frac{3}{8}\tau}}\\ &+e^{-\frac{7}{3}\tau}\textbf{1}_{{|z|}\leq 1}+\frac{\delta_{0}^{\frac{7}{3}}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{4}}}+\frac{\|Z_{2}\|_{\infty}^{p}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{2}}}+\frac{e^{-2\tau}}{1+|x|^{3}}\textbf{1}_{{|x|}\geq 1}.\end{split}

Proof: We can estimate the terms of G one by one.
For |z|eτ2|z|\leq e^{\frac{\tau}{2}}, then

λ12(1ηR,1)U(y1)p1(Z1ηZ2+ψ)λ12(1ηR,1)1y14(eτ+eτ2|z|)1|z|1+λ12(1ηR,1)1y13e7τ211|z|eτ2λ121y14(1ηR,1)eτ1|z|1+λ121y13(1ηR,1)eτ2e7τ21|z|1+λ12(1ηR,1)1y13e7τ211|z|eτ2λ1211+|y1|2+aeτR11|z|1+λ1211+|y1|2+aeτR11|x|111|z|eτ2.\begin{split}&\lambda_{1}^{-2}(1-\eta_{R,1})U(y_{1})^{p-1}(-Z_{1}\eta-Z_{2}+\psi)\\ &\lesssim\lambda_{1}^{-2}(1-\eta_{R,1})\frac{1}{y_{1}^{4}}(e^{-\tau}+e^{-\frac{\tau}{2}}|z|)\textbf{1}_{{|z|}\leq 1}+\lambda_{1}^{2}(1-\eta_{R,1})\frac{1}{y_{1}^{3}}e^{-\frac{7\tau}{2}}\textbf{1}_{1\leq|z|\leq e^{\frac{\tau}{2}}}\\ &\lesssim\lambda_{1}^{-2}\frac{1}{y_{1}^{4}}(1-\eta_{R,1})e^{-\tau}\textbf{1}_{{|z|}\leq 1}+\lambda_{1}^{-2}\frac{1}{y_{1}^{3}}(1-\eta_{R,1})e^{-\frac{\tau}{2}}e^{-\frac{7\tau}{2}}\textbf{1}_{{|z|}\leq 1}+\lambda_{1}^{2}(1-\eta_{R,1})\frac{1}{y_{1}^{3}}e^{-\frac{7\tau}{2}}\textbf{1}_{1\leq|z|\leq e^{\frac{\tau}{2}}}\\ &\lesssim\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-1}\textbf{1}_{{|z|}\leq 1}+\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-1}\textbf{1}_{{|x|}\leq 1}\textbf{1}_{1\leq|z|\leq e^{\frac{\tau}{2}}}.\end{split}

If |z|eτ2|z|\geq e^{\frac{\tau}{2}}, then

λ12(1ηR,1)U(y1)p1(Z1η1Z2+ψ)e2τ1+|x|31|x|1.\begin{split}\lambda_{1}^{-2}(1-\eta_{R,1})U(y_{1})^{p-1}(-Z_{1}\eta_{1}-Z_{2}+\psi)&\lesssim\frac{e^{-2\tau}}{1+|x|^{3}}\textbf{1}_{{|x|}\geq 1}.\end{split}

Because the control of Z1Z_{1}, Z2Z_{2} and ψ\psi, we deduce

λ22(1ηR,2)U(y2)p1(Z1η1Z2+ψ)λ22(1ηR,2)1y24(eτ+eτ2|z|)1|xq|1+e2τ1+|x|31|xq|1λ22(1ηR,2)1y241|xq|1+e2τ1+|x|31|xq|1λ2211+|y2|2+aR11|xq|1+e2τ1+|x|31|xq|1.\begin{split}&\lambda_{2}^{-2}(1-\eta_{R,2})U(y_{2})^{p-1}(-Z_{1}\eta_{1}-Z_{2}+\psi)\\ &\lesssim\lambda_{2}^{2}(1-\eta_{R,2})\frac{1}{y_{2}^{4}}(e^{-\tau}+e^{-\frac{\tau}{2}}|z|)\textbf{1}_{{|x-q|}\leq 1}+\frac{e^{-2\tau}}{1+|x|^{3}}\textbf{1}_{{|x-q|}\geq 1}\\ &\lesssim\lambda_{2}^{-2}(1-\eta_{R,2})\frac{1}{y_{2}^{4}}\textbf{1}_{{|x-q|}\leq 1}+\frac{e^{-2\tau}}{1+|x|^{3}}\textbf{1}_{{|x-q|}\geq 1}\\ &\lesssim\lambda_{2}^{-2}\frac{1}{1+|y_{2}|^{2+a}}R^{-1}\textbf{1}_{{|x-q|}\leq 1}+\frac{e^{-2\tau}}{1+|x|^{3}}\textbf{1}_{{|x-q|}\geq 1}.\\ \end{split}

In the self-similar variable

λ22(1ηR,2)1y241|xq|1e4τ+e5τ|z|18.\lambda_{2}^{-2}(1-\eta_{R,2})\frac{1}{y_{2}^{4}}\textbf{1}_{{|x-q|}\leq 1}\lesssim e^{-4\tau}+e^{-5\tau}|z|^{18}.

From Proposition 4.1

|ϕ1(y1,t)|C1λ174R6a1+|y1|6,|ϕ2(y2,t)|C2λ232R6a1+|y2|6,|\phi_{1}(y_{1},t)|\leq C_{1}\lambda_{1}^{\frac{7}{4}}\frac{R^{6-a}}{1+|y_{1}|^{6}},\quad|\phi_{2}(y_{2},t)|\leq C_{2}\lambda_{2}^{\frac{3}{2}}\frac{R^{6-a}}{1+|y_{2}|^{6}},

therefore

A[ϕ1]+B[ϕ1]=λ172[Δy1ηR,1ϕ1+2y1ηR,1y1ϕ1]λ12eτR2a1R|y1|2R+e8τR6aλ12(1+|y1|6)1|y1|2Rλ1211+|y1|2+a12eτR121R|y1|2R+λ1211+|y1|2+aeτR11|y1|2R.\begin{split}A[\phi_{1}]+B[\phi_{1}]&=\lambda_{1}^{-\frac{7}{2}}[\Delta_{y_{1}}\eta_{R,1}\phi_{1}+2\nabla_{y_{1}}\eta_{R,1}\nabla_{y_{1}}\phi_{1}]\\ &\lesssim\lambda_{1}^{-2}e^{-\tau}R^{-2-a}\textbf{1}_{R\leq{|y_{1}|}\leq 2R}+\frac{e^{-8\tau}R^{6-a}}{\lambda_{1}^{2}(1+|y_{1}|^{6})}\textbf{1}_{{|y_{1}|}\leq 2R}\\ &\lesssim\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a-\frac{1}{2}}}e^{-\tau}R^{-\frac{1}{2}}\textbf{1}_{R\leq{|y_{1}|}\leq 2R}+\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-1}\textbf{1}_{{|y_{1}|}\leq 2R}.\end{split}

Similarly

A[ϕ2]+B[ϕ2]λ22R2a1R|y2|2R+λ1211+|y1|2+aeτR121|y2|2Rλ2211+|y2|2+a12R121R|y2|2R+λ1211+|y1|2+aeτR121|y2|2Re4τ+e5τ|z|18.\begin{split}A[\phi_{2}]+B[\phi_{2}]&\lesssim\lambda_{2}^{-2}R^{-2-a}\textbf{1}_{R\leq{|y_{2}|}\leq 2R}+\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-\frac{1}{2}}\textbf{1}_{{|y_{2}|}\leq 2R}\\ &\lesssim\lambda_{2}^{-2}\frac{1}{1+|y_{2}|^{2+a-\frac{1}{2}}}R^{-\frac{1}{2}}\textbf{1}_{R\leq{|y_{2}|}\leq 2R}+\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-\frac{1}{2}}\textbf{1}_{{|y_{2}|}\leq 2R}\\ &\lesssim e^{-4\tau}+e^{-5\tau}|z|^{18}.\end{split}

Use the definition of E1E_{1}, we have

λ172E1(1ηR,1)λ12λ112eτ1|y1|3(1ηR,1)1|x|1+λ12λ112eτ1|y1|3(1ηR,1)1|x|1λ1211+|y1|2+aeτR11|x|1+e5τ1+|x|31|x|1.\begin{split}\lambda_{1}^{-\frac{7}{2}}E_{1}(1-\eta_{R,1})&\lesssim\lambda_{1}^{-2}\lambda_{1}^{\frac{1}{2}}e^{\tau}\frac{1}{|y_{1}|^{3}}(1-\eta_{R,1})\textbf{1}_{|x|\leq 1}+\lambda_{1}^{-2}\lambda_{1}^{\frac{1}{2}}e^{\tau}\frac{1}{|y_{1}|^{3}}(1-\eta_{R,1})\textbf{1}_{|x|\geq 1}\\ &\lesssim\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-1}\textbf{1}_{|x|\leq 1}+\frac{e^{-5\tau}}{1+|x|^{3}}\textbf{1}_{|x|\geq 1}.\end{split}

Similarly

λ272E2(1ηR,2)λ22λ212eτ|y2|3(1ηR,2)1|xq|1+λ22λ212eτ1|y2|3(1ηR,2)1|xq|1λ221+|y2|2+aR11|x|1+e2τ1+|x|31|xq|1e4τ+e5τ|z|18+e2τ1+|x|3.\begin{split}\lambda_{2}^{-\frac{7}{2}}E_{2}(1-\eta_{R,2})&\leq\frac{\lambda_{2}^{-2}\lambda_{2}^{\frac{1}{2}}e^{\tau}}{|y_{2}|^{3}}(1-\eta_{R,2})\textbf{1}_{|x-q|\leq 1}+\lambda_{2}^{-2}\lambda_{2}^{\frac{1}{2}}e^{\tau}\frac{1}{|y_{2}|^{3}}(1-\eta_{R,2})\textbf{1}_{|x-q|\geq 1}\\ &\leq\frac{\lambda_{2}^{-2}}{1+|y_{2}|^{2+a}}R^{-1}\textbf{1}_{|x|\geq 1}+\frac{e^{-2\tau}}{1+|x|^{3}}\textbf{1}_{|x-q|\geq 1}\\ &\leq e^{-4\tau}+e^{-5\tau}|z|^{18}+\frac{e^{-2\tau}}{1+|x|^{3}}.\end{split}

From the definition of Z1Z_{1} and η1\eta_{1}, it’s easy to estimate the last part of NN

|η1tZ1+xZ1η1Δη1Z1|e34τ1e38τ|z|2e38τe34τ|z|41e38τ|z|2e38τ.\begin{split}|\frac{\partial\eta_{1}}{\partial t}Z_{1}+\nabla_{x}Z_{1}\nabla\eta_{1}-\Delta\eta_{1}Z_{1}|\lesssim e^{\frac{3}{4}\tau}\textbf{1}_{e^{\frac{3}{8}\tau}\leq{|z|}\leq 2e^{\frac{3}{8}\tau}}\lesssim e^{-\frac{3}{4}\tau}|z|^{4}\textbf{1}_{e^{\frac{3}{8}\tau}\leq{|z|}\leq 2e^{\frac{3}{8}\tau}}.\end{split}

Then we deal with another part of NN. If xx is away from q,

|Uλ1,ξ1+Uλ2,ξ2+θZ1η1Z2|p1(Uλ1,ξ1+Uλ2,ξ2+θZ1η1Z2)Uλ1,ξ1pUλ2,ξ2ppUλ1,ξ1p1(θZ1η1Z2)pUλ2,ξ2p1(θZ1η1Z2)Uλ1ξ1p2(Uλ2,ξ2+θZ1η1Z2)2+Uλ2ξ2p+(Uλ2,ξ2+θZ1η1Z2)p+Uλ1ξ1p1Uλ2ξ2.\begin{split}&|U_{\lambda_{1},\xi_{1}}+U_{\lambda_{2},\xi_{2}}+\theta-Z_{1}\eta_{1}-Z_{2}|^{p-1}(U_{\lambda_{1},\xi_{1}}+U_{\lambda_{2},\xi_{2}}+\theta-Z_{1}\eta_{1}-Z_{2})\\ &\quad-U_{\lambda_{1},\xi_{1}}^{p}-U_{\lambda_{2},\xi_{2}}^{p}-pU_{\lambda_{1},\xi_{1}}^{p-1}(\theta-Z_{1}\eta_{1}-Z_{2})-pU_{\lambda_{2},\xi_{2}}^{p-1}(\theta-Z_{1}\eta_{1}-Z_{2})\\ &\lesssim U_{\lambda_{1}\xi_{1}}^{p-2}(U_{\lambda_{2},\xi_{2}}+\theta-Z_{1}\eta_{1}-Z_{2})^{2}+U_{\lambda_{2}\xi_{2}}^{p}+(U_{\lambda_{2},\xi_{2}}+\theta-Z_{1}\eta_{1}-Z_{2})^{p}\\ &\quad+U_{\lambda_{1}\xi_{1}}^{p-1}U_{\lambda_{2}\xi_{2}}.\end{split}

Because ϕ1a,74\|\phi_{1}\|_{*a,\frac{7}{4}} is bounded

Uλ1ξ1p2(λ132ϕ1(y1,t)ηR(y1))2λ11211+|y1|e2τR122a1+|y1|12λ1211+|y1|13e8τR122aλ1211+|y1|2+aeτR11|x|1+e2τ1+|x|31|x|1.\begin{split}U_{\lambda_{1}\xi_{1}}^{p-2}(\lambda_{1}^{-\frac{3}{2}}\phi_{1}(y_{1},t)\eta_{R}(y_{1}))^{2}&\lesssim\lambda_{1}^{-\frac{1}{2}}\frac{1}{1+|y_{1}|}\frac{e^{-2\tau}R^{12-2a}}{1+|y_{1}|^{12}}\\ &\lesssim\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{13}}e^{-8\tau}R^{12-2a}\\ &\lesssim\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-1}\textbf{1}_{{|x|}\leq 1}+\frac{e^{-2\tau}}{1+|x|^{3}}\textbf{1}_{{|x|}\geq 1}.\end{split}

And we have

Uλ1ξ1p2Z12η12λ12λ132e2τ(1+|y1|1+a)1+|y1|2+a1|z|1+e2τη11|z|1λ12e52τ1+|y1|2+a1|z|1+e2τη11|z|1λ1211+|y1|2+aeτR11|z|1+e2τη11|z|1.\begin{split}U_{\lambda_{1}\xi_{1}}^{p-2}Z_{1}^{2}\eta_{1}^{2}&\lesssim\lambda_{1}^{-2}\frac{\lambda_{1}^{\frac{3}{2}}e^{-2\tau}(1+|y_{1}|^{1+a})}{1+|y_{1}|^{2+a}}\textbf{1}_{{|z|}\leq 1}+e^{-2\tau}\eta_{1}\textbf{1}_{{|z|}\geq 1}\\ &\lesssim\lambda_{1}^{-2}\frac{e^{-\frac{5}{2}\tau}}{1+|y_{1}|^{2+a}}\textbf{1}_{{|z|}\leq 1}+e^{-2\tau}\eta_{1}\textbf{1}_{{|z|}\geq 1}\\ &\lesssim\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-1}\textbf{1}_{{|z|}\leq 1}+e^{-2\tau}\eta_{1}\textbf{1}_{{|z|}\geq 1}.\end{split}
Uλ1ξ1p2Ψ2λ12λ132e2τ(1+|y1|1+a)1+|y1|2+a1|z|eτ4+e198τ1+|x|41|z|eτ4λ1211+|y1|2+aeτR11|z|eτ4+e198τ1+|x|41|z|eτ4.\begin{split}U_{\lambda_{1}\xi_{1}}^{p-2}\Psi^{2}\lesssim\lambda_{1}^{-2}\frac{\lambda_{1}^{\frac{3}{2}}e^{-2\tau}(1+|y_{1}|^{1+a})}{1+|y_{1}|^{2+a}}\textbf{1}_{|z|\leq e^{\frac{\tau}{4}}}+\frac{e^{-\frac{19}{8}\tau}}{1+|x|^{4}}\textbf{1}_{|z|\geq e^{\frac{\tau}{4}}}\\ \lesssim\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-1}\textbf{1}_{|z|\leq e^{\frac{\tau}{4}}}+\frac{e^{-\frac{19}{8}\tau}}{1+|x|^{4}}\textbf{1}_{|z|\geq e^{\frac{\tau}{4}}}.\end{split}

Similarly for |z|1|z|\leq 1,

Uλ1ξ1p2Z22λ1211+|y1|eτλ12e32τ1+|y1|2+aλ1211+|y1|2+aeτR1.\begin{split}U_{\lambda_{1}\xi_{1}}^{p-2}Z_{2}^{2}\lesssim\lambda^{-\frac{1}{2}}\frac{1}{1+|y_{1}|}e^{-\tau}&\lesssim\lambda_{1}^{-2}\frac{e^{-\frac{3}{2}\tau}}{1+|y_{1}|^{2+a}}\lesssim\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-1}.\end{split}

For |z|1|z|\geq 1, and since Z2Z_{2} is a fast decay function,

Uλ1ξ1p2Z22e32τ1+|x|4.\begin{split}U_{\lambda_{1}\xi_{1}}^{p-2}Z_{2}^{2}\lesssim\frac{e^{-\frac{3}{2}\tau}}{1+|x|^{4}}.\end{split}

And Uλ1ξ1p2Uλ2ξ22U_{\lambda_{1}\xi_{1}}^{p-2}U_{\lambda_{2}\xi_{2}}^{2} can be control by Uλ1ξ1p1Uλ2ξ2U_{\lambda_{1}\xi_{1}}^{p-1}U_{\lambda_{2}\xi_{2}} and Uλ2ξ2pU_{\lambda_{2}\xi_{2}}^{p}.

Moreover, for |x|1|x|\leq 1

Uλ1ξ1p1Uλ2ξ2λ12e3τ1+|y1|41|x|1.\begin{split}U_{\lambda_{1}\xi_{1}}^{p-1}U_{\lambda_{2}\xi_{2}}\lesssim\lambda_{1}^{-2}\frac{e^{-3\tau}}{1+|y_{1}|^{4}}\textbf{1}_{|x|\leq 1}.\end{split}

For |x|1|x|\geq 1, |xq|1|x-q|\geq 1, we have

Uλ1ξ1p1Uλ2ξ2e17τ1+|x|4.\begin{split}U_{\lambda_{1}\xi_{1}}^{p-1}U_{\lambda_{2}\xi_{2}}\lesssim\frac{e^{-17\tau}}{1+|x|^{4}}.\end{split}
(λ132ϕ1(y1,t)ηR(y1))pλ12e8τe73τR121+|y1|12e2τ1+|x|31|x|1.\begin{split}(\lambda_{1}^{-\frac{3}{2}}\phi_{1}(y_{1},t)\eta_{R}(y_{1}))^{p}&\lesssim\lambda_{1}^{-2}\frac{e^{-8\tau}e^{-\frac{7}{3}\tau}R^{12}}{1+|y_{1}|^{12}}\lesssim\frac{e^{-2\tau}}{1+|x|^{3}}\textbf{1}_{{|x|}\geq 1}.\end{split}
(λ232ϕ2(y2,t)ηR(y2))pλ22e4τR121+|y2|12.\begin{split}(\lambda_{2}^{-\frac{3}{2}}\phi_{2}(y_{2},t)\eta_{R}(y_{2}))^{p}\lesssim\lambda_{2}^{-2}\frac{e^{-4\tau}R^{12}}{1+|y_{2}|^{12}}.\end{split}

As before

|Ψ|p+|Z1η1|pe7τ3(1+|z|283)1|z|eτ4+δ0731+|x|1431|z|eτ4+e7τ3(1+|z|143)η1e7τ3(1+|z|10)1|z|eτ4+δ0731+|x|41|z|eτ4+e7τ3(1+|z|6)η1.\begin{split}|\Psi|^{p}+|Z_{1}\eta_{1}|^{p}&\lesssim e^{-\frac{7\tau}{3}}(1+|z|^{\frac{28}{3}})\textbf{1}_{|z|\leq e^{\frac{\tau}{4}}}+\frac{\delta_{0}^{\frac{7}{3}}}{1+|x|^{\frac{14}{3}}}\textbf{1}_{|z|\geq e^{\frac{\tau}{4}}}+e^{-\frac{7\tau}{3}}(1+|z|^{\frac{14}{3}})\eta_{1}\\ &\lesssim e^{-\frac{7\tau}{3}}(1+|z|^{10})\textbf{1}_{|z|\leq e^{\frac{\tau}{4}}}+\frac{\delta_{0}^{\frac{7}{3}}}{1+|x|^{4}}\textbf{1}_{|z|\geq e^{\frac{\tau}{4}}}+e^{-\frac{7\tau}{3}}(1+|z|^{6})\eta_{1}.\end{split}

Moreover

|Z2|pe7τ6|z|731|z|eτ2+Z2p1+|x|41|z|eτ2e7τ6|z|41|z|eτ2+Z2p1+|x|41|z|eτ2.\begin{split}|Z_{2}|^{p}&\leq e^{-\frac{7\tau}{6}}|z|^{\frac{7}{3}}\textbf{1}_{|z|\leq e^{\frac{\tau}{2}}}+\frac{\|Z_{2}\|_{\infty}^{p}}{1+|x|^{4}}\textbf{1}_{|z|\geq e^{\frac{\tau}{2}}}\leq e^{-\frac{7\tau}{6}}|z|^{4}\textbf{1}_{|z|\leq e^{\frac{\tau}{2}}}+\frac{\|Z_{2}\|_{\infty}^{p}}{1+|x|^{4}}\textbf{1}_{|z|\geq e^{\frac{\tau}{2}}}.\end{split}

If |xq|1|x-q|\leq 1

|Uλ1,ξ1+Uλ2,ξ2+θZ1η1Z2|p1(Uλ1,ξ1+Uλ2,ξ2+θZ1η1Z2)Uλ1,ξ1pUλ2,ξ2ppUλ1,ξ1p1(θZ1η1Z2)pUλ2,ξ2p1(θZ1η1Z2)Uλ2,ξ2p2(Uλ1,ξ1+θZ1η1Z2)2+Uλ1,ξ1p+(Uλ1,ξ1+θZ1η1Z2)p+Uλ2,ξ2p1Uλ1,ξ1.\begin{split}&|U_{\lambda_{1},\xi_{1}}+U_{\lambda_{2},\xi_{2}}+\theta-Z_{1}\eta_{1}-Z_{2}|^{p-1}(U_{\lambda_{1},\xi_{1}}+U_{\lambda_{2},\xi_{2}}+\theta-Z_{1}\eta_{1}-Z_{2})\\ &\quad-U_{\lambda_{1},\xi_{1}}^{p}-U_{\lambda_{2},\xi_{2}}^{p}-pU_{\lambda_{1},\xi_{1}}^{p-1}(\theta-Z_{1}\eta_{1}-Z_{2})-pU_{\lambda_{2},\xi_{2}}^{p-1}(\theta-Z_{1}\eta_{1}-Z_{2})\\ &\leq U_{\lambda_{2},\xi_{2}}^{p-2}(U_{\lambda_{1},\xi_{1}}+\theta-Z_{1}\eta_{1}-Z_{2})^{2}+U_{\lambda_{1},\xi_{1}}^{p}+(U_{\lambda_{1},\xi_{1}}+\theta-Z_{1}\eta_{1}-Z_{2})^{p}\\ &\quad+U_{\lambda_{2},\xi_{2}}^{p-1}U_{\lambda_{1},\xi_{1}}.\end{split}

And

Uλ2,ξ2p2(Uλ1,ξ1+θZ1η1Z2)21λ212(1+|y2|)eτ2λ22(1+|y2|2+a)1λ22(1+|y2|2+a)R12.\begin{split}U_{\lambda_{2},\xi_{2}}^{p-2}(U_{\lambda_{1},\xi_{1}}+\theta-Z_{1}\eta_{1}-Z_{2})^{2}\lesssim\frac{1}{\lambda_{2}^{\frac{1}{2}}(1+|y_{2}|)}\lesssim\frac{e^{-\frac{\tau}{2}}}{\lambda_{2}^{2}(1+|y_{2}|^{2+a})}\lesssim\frac{1}{\lambda_{2}^{2}(1+|y_{2}|^{2+a})}R^{-\frac{1}{2}}.\end{split}

Also

Uλ1,ξ1p+Uλ2,ξ2p1Uλ1,ξ1e14τ+e6τλ22(1+|y|24)e14τ+λ2211+|y2|2+aR12.\begin{split}U_{\lambda_{1},\xi_{1}}^{p}+U_{\lambda_{2},\xi_{2}}^{p-1}U_{\lambda_{1},\xi_{1}}\lesssim e^{-14\tau}+\frac{e^{-6\tau}}{\lambda_{2}^{2}(1+|y|_{2}^{4})}\lesssim e^{-14\tau}+\lambda_{2}^{-2}\frac{1}{1+|y_{2}|^{2+a}}R^{-\frac{1}{2}}.\end{split}

In conclusion, we complete the proof.

By using Lemma 5.1, we can easily deduce that

Proposition 5.2.

The function GG given by (2.11) satisfies

(5.11) Gρe76τ.\|G\|_{\rho}\lesssim e^{-\frac{7}{6}\tau}.

Proof: Recall y1=xξ1λ1y_{1}=\frac{x-\xi_{1}}{\lambda_{1}}, z=xTtz=\frac{x}{\sqrt{T-t}} , that is

z=(y1λ1+ξ1)Tt,z=\frac{(y_{1}\lambda_{1}+\xi_{1})}{\sqrt{T-t}},

then we have

|R5(λ1211+|y1|2+aeτR121|x|1)2e|z|24𝑑z|=R5(λ1211+|y1|2+aeτR12)2e|z|24(λ1Tt)5𝑑y1λ1e2τe52τe72τ.\begin{split}&|\int_{R^{5}}(\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-\frac{1}{2}}\textbf{1}_{|x|\leq 1})^{2}e^{-\frac{|z|^{2}}{4}}dz|\\ &=\int_{R^{5}}(\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-\frac{1}{2}})^{2}e^{-\frac{|z|^{2}}{4}}(\frac{\lambda_{1}}{\sqrt{T-t}})^{5}dy_{1}\\ &\lesssim\lambda_{1}e^{-2\tau}e^{-\frac{5}{2}\tau}\\ &\lesssim e^{-\frac{7}{2}\tau}.\end{split}

And

|R5(e5τ|z|18)2e|z|24𝑑z|e10τ.|\int_{R^{5}}(e^{-5\tau}|z|^{18})^{2}e^{-\frac{|z|^{2}}{4}}dz|\lesssim e^{-10\tau}.

For ττ0\tau\geq\tau_{0} sufficient large, we have

|R5(e34τ|z|41e38τ|z|2e38τ)2e|z|24𝑑z|e32τee34τ4e5τ.\begin{split}|\int_{R^{5}}(e^{-\frac{3}{4}\tau}|z|^{4}\textbf{1}_{e^{\frac{3}{8}\tau}\leq{|z|}\lesssim 2e^{\frac{3}{8}\tau}})^{2}e^{-\frac{|z|^{2}}{4}}dz|&\lesssim e^{\frac{3}{2}\tau}e^{-\frac{e^{\frac{3}{4}\tau}}{4}}\leq e^{-5\tau}.\end{split}
|R5(e7τ6|z|41|z|eτ2)2e|z|24𝑑z|e7τ3.|\int_{R^{5}}(e^{-\frac{7\tau}{6}}|z|^{4}\textbf{1}_{{|z|}\lesssim e^{\frac{\tau}{2}}})^{2}e^{-\frac{|z|^{2}}{4}}dz|\leq e^{-\frac{7\tau}{3}}.
|R5(e7τ3|z|101|z|eτ4)2e|z|24𝑑z|e14τ3.|\int_{R^{5}}(e^{-\frac{7\tau}{3}}|z|^{10}\textbf{1}_{{|z|}\lesssim e^{\frac{\tau}{4}}})^{2}e^{-\frac{|z|^{2}}{4}}dz|\leq e^{-\frac{14\tau}{3}}.
|R5(e7τ3|z|61|z|e38τ)2e|z|24𝑑z|e14τ3.|\int_{R^{5}}(e^{-\frac{7\tau}{3}}|z|^{6}\textbf{1}_{{|z|}\lesssim e^{\frac{3}{8}\tau}})^{2}e^{-\frac{|z|^{2}}{4}}dz|\leq e^{-\frac{14\tau}{3}}.
|R5(e73τ1|z|1)2e|z|24𝑑z|e14τ3.|\int_{R^{5}}(e^{-\frac{7}{3}\tau}\textbf{1}_{{|z|}\leq 1})^{2}e^{-\frac{|z|^{2}}{4}}dz|\lesssim e^{-\frac{14\tau}{3}}.

Since the function s3es28s^{3}e^{-\frac{s^{2}}{8}} is bounded and for ττ0\tau\geq\tau_{0} sufficient large, we have

|R5(δ0731+|x|41|z|eτ2)2e|z|24𝑑z|eτ2s4es24𝑑seτ2s3es28ses28𝑑seeτ8e5τ.\begin{split}|\int_{R^{5}}(\frac{\delta_{0}^{\frac{7}{3}}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{2}}})^{2}e^{-\frac{|z|^{2}}{4}}dz|&\lesssim\int_{e^{\frac{\tau}{2}}}^{\infty}s^{4}e^{-\frac{s^{2}}{4}}ds\\ &\lesssim\int_{e^{\frac{\tau}{2}}}^{\infty}s^{3}e^{-\frac{s^{2}}{8}}se^{-\frac{s^{2}}{8}}ds\\ &\lesssim e^{-\frac{e^{\tau}}{8}}\\ &\lesssim e^{-5\tau}.\end{split}

Similarly

|R5(e2τ1+|x|31|x|1+Z2p1+|x|41|z|eτ2)2e|z|24𝑑z|e5τ.\begin{split}|\int_{R^{5}}(\frac{e^{-2\tau}}{1+|x|^{3}}\textbf{1}_{{|x|}\geq 1}+\frac{\|Z_{2}\|_{\infty}^{p}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{2}}})^{2}e^{-\frac{|z|^{2}}{4}}dz|\lesssim e^{-5\tau}.\end{split}

Therefore

Gρe76τ.\|G\|_{\rho}\lesssim e^{-\frac{7}{6}\tau}.

5.3. The solving of Φ1\Phi_{1}

We divide Φ\Phi into two parts, one part comes from the initial data, another comes from nonhomogeneous term, consider

(5.12) {τΦ1=AzΦ1(z,τ)5×[τ0,),Φ1τ=τ0={(𝒅𝒆)η(ze38τ)}.\begin{split}\begin{cases}\partial_{\tau}\Phi_{1}=A_{z}\Phi_{1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (z,\tau)\in\mathbb{R}^{5}\times[\tau_{0},\infty),\\ \Phi_{1}\mid_{\tau=\tau_{0}}=\{{(\boldsymbol{d}\cdot\boldsymbol{e})\eta(\frac{z}{e^{\frac{3}{8}\tau}})}\}^{\perp}.\end{cases}\end{split}
Lemma 5.3.

There exists constant K1K_{1}, such that

(5.13) |Φ1(z,τ)|K1e2τ(1+|z|4),τ>τ0+1.|\Phi_{1}(z,\tau)|\leq K_{1}e^{-2\tau}(1+|z|^{4}),\ \ \ \ \tau>\tau_{0}+1.

Proof: First we estimate the initial data

{(𝒅𝒆)η(ze38τ)}=(𝒅𝒆)η(ze38τ)dαj(eαjη(ze38τ),eαk)ρeαk,\{{(\boldsymbol{d}\cdot\boldsymbol{e})\eta(\frac{z}{e^{\frac{3}{8}\tau}})}\}^{\perp}={(\boldsymbol{d}\cdot\boldsymbol{e})\eta(\frac{z}{e^{\frac{3}{8}\tau}})}-\sum d_{\alpha_{j}}(e_{\alpha_{j}}\eta(\frac{z}{e^{\frac{3}{8}\tau}}),e_{\alpha_{k}})_{\rho}e_{\alpha_{k}},

As in the discuss of last section, we can deduce that

|{(𝒅𝒆)η(ze38τ)}|e136τ0+e136τ0|z|4,|\{{(\boldsymbol{d}\cdot\boldsymbol{e})\eta(\frac{z}{e^{-\frac{3}{8}\tau}})}\}^{\perp}|\lesssim e^{-\frac{13}{6}\tau_{0}}+e^{-\frac{13}{6}\tau_{0}}|z|^{4},

and

{(𝒅𝒆)η(ze38τ)}ρe136τ0.\begin{split}\|\{{(\boldsymbol{d}\cdot\boldsymbol{e})\eta(\frac{z}{e^{\frac{3}{8}\tau}})}\}^{\perp}\|_{\rho}\lesssim e^{-\frac{13}{6}\tau_{0}}.\\ \end{split}

We easily deduced that

12τΦ1ρ2=(AzΦ1,Φ1)52Φ1ρ2.\begin{split}\frac{1}{2}\partial_{\tau}\|\Phi_{1}\|_{\rho}^{2}=(A_{z}\Phi_{1},\Phi_{1})\leq-\frac{5}{2}\|\Phi_{1}\|_{\rho}^{2}.\end{split}

witch is

τ(Φ1ρ2e5τ)0.\partial_{\tau}(\|\Phi_{1}\|_{\rho}^{2}e^{5\tau})\leq 0.

Integrating it from τ0\tau_{0} to τ\tau

Φ1ρ(𝒅𝒆)η(ze38τ)ρe52(ττ0)e2τ.\begin{split}\|\Phi_{1}\|_{\rho}\leq\|{(\boldsymbol{d}\cdot\boldsymbol{e})\eta(\frac{z}{e^{\frac{3}{8}\tau}})}^{\perp}\|_{\rho}e^{-\frac{5}{2}(\tau-\tau_{0})}\lesssim e^{-2\tau}.\end{split}

Let r0r_{0} be the constant such that in |z|r0|z|\geq r_{0}, e2>0e_{2}>0. From the classical L2L^{2} estimate of parabolic equation and the definition of ρ\rho we have, for τ>τ0+1,|z|<r0\tau>\tau_{0}+1,|z|<r_{0}

|Φ1|Φ12,B2r0e2τ.|\Phi_{1}|\lesssim\|\Phi_{1}\|_{2,B_{2r_{0}}}\lesssim e^{-2\tau}.

Now we construct a comparison function K1e2τe2(z)K_{1}e^{-2\tau}e_{2}(z). In fact, KK sufficient large, we prove it is a super solution. When |z|=r0|z|=r_{0}

|Φ1|<K1e2τe2(z).|\Phi_{1}|<K_{1}e^{-2\tau}e_{2}(z).\ \

For τ0ττ0+1\tau_{0}\leq\tau\leq\tau_{0}+1, by Lemma 2.3,

|Φ1|e136τ0+e136τ0e2(ττ0)|z|4.|\Phi_{1}|\lesssim e^{-\frac{13}{6}\tau_{0}}+e^{-\frac{13}{6}\tau_{0}}e^{-2(\tau-\tau_{0})}|z|^{4}.

Therefore when τ=τ0+1\tau=\tau_{0}+1

|Φ1|e136τ0+e136τ0|z|4K1e2τe2(z).|\Phi_{1}|\lesssim e^{-\frac{13}{6}\tau_{0}}+e^{-\frac{13}{6}\tau_{0}}|z|^{4}\leq K_{1}e^{-2\tau}e_{2}(z).

We can easily verify

τ(Ke2τe2(z))Az(Ke2τe2(z))=0=τΦ1AzΦ1.\partial_{\tau}(Ke^{-2\tau}e_{2}(z))-A_{z}(Ke^{-2\tau}e_{2}(z))=0=\partial_{\tau}\Phi_{1}-A_{z}\Phi_{1}.

By comparison principle,

|Φ1|<K1e2τe2(z).|\Phi_{1}|<K_{1}e^{-2\tau}e_{2}(z).

5.4. The solving of Φ2\Phi_{2}

Recall the equation of Φ2\Phi_{2}

(5.14) {tΦ2ΔΦ2=G(z,τ)5×[τ0,),Φ2τ=τ0=0.\begin{cases}\partial_{t}\Phi_{2}-\Delta\Phi_{2}=G^{\bot}\ \ \ \ \ \ \ \ \ \ \ (z,\tau)\in\mathbb{R}^{5}\times[\tau_{0},\infty),\\ \Phi_{2}\mid_{\tau=\tau_{0}}=0.\end{cases}

Our goal is to prove Φ2\Phi_{2} vanishes around 0 and Φ2\|\Phi_{2}\|_{\infty} small. So we first prove the following lemma.

Lemma 5.4.

Let Az=Δzz2A_{z}=\Delta_{z}-\frac{z}{2}\cdot\nabla be the operator as before, then for any ττ1τ\tau\geq\tau_{1}\geq\tau we have

(5.15) |τ1τeAz(ττ)eτG|eτ1R12+e6τ|z|18+e74τ|z|4+e103τ|z|10.|\int_{\tau_{1}}^{\tau}e^{A_{z}(\tau-\tau^{\prime})}e^{-\tau^{\prime}}G^{\bot}|\lesssim\frac{e^{-\tau_{1}}}{R^{\frac{1}{2}}}+e^{-6\tau}|z|^{18}+e^{-\frac{7}{4}\tau}|z|^{4}+e^{-\frac{10}{3}\tau}|z|^{10}.

Proof: Notice

G=G(G,eαi)eαi,\begin{split}G^{\bot}=G-(G,e_{\alpha_{i}})e_{\alpha_{i}},\end{split}

and

|bαeα|e136τ(1+|z|4).\begin{split}|b_{\alpha}e_{\alpha}|\lesssim e^{-\frac{13}{6}\tau}(1+|z|^{4}).\end{split}

Then

Gλ1211+|y1|2+aeτR121|x|1+e5τ|z|18+e34τ|z|41e38τ|z|2e38τ+δ0731+|x|41|z|eτ4+Z2p1+|x|41|z|eτ2+e2τ1+|x|31|x|1+e7τ3(1+|z|10).\begin{split}G\lesssim&\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-\frac{1}{2}}\textbf{1}_{{|x|}\leq 1}+e^{-5\tau}|z|^{18}+e^{-\frac{3}{4}\tau}|z|^{4}\textbf{1}_{e^{\frac{3}{8}\tau}\leq{|z|}\leq 2e^{\frac{3}{8}\tau}}\\ &+\frac{\delta_{0}^{\frac{7}{3}}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{4}}}+\frac{\|Z_{2}\|_{\infty}^{p}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{2}}}+\frac{e^{-2\tau}}{1+|x|^{3}}\textbf{1}_{{|x|}\geq 1}+e^{-\frac{7\tau}{3}}(1+|z|^{10}).\\ \end{split}

We estimate the following terms

δ0731+|x|41|z|eτ4+Z2p1+|x|41|z|eτ2+e2τ1+|x|31|x|1eτ|z|4.\begin{split}\frac{\delta_{0}^{\frac{7}{3}}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{4}}}+\frac{\|Z_{2}\|_{\infty}^{p}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{2}}}+\frac{e^{-2\tau}}{1+|x|^{3}}\textbf{1}_{{|x|}\geq 1}\leq e^{-\tau}|z|^{4}.\end{split}

Let Ψ1\Psi_{1} be the solution of following equation

{tΨ1ΔΨ1=λ1211+|y1|2+aeτR121|x|1(x,t)5×[0,T),Ψ1t=0=0.\begin{cases}\partial_{t}\Psi_{1}-\Delta\Psi_{1}=\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-\frac{1}{2}}\textbf{1}_{{|x|}\leq 1}\ \ \ \ \ \ \ \ \ \ \ (x,t)\in\mathbb{R}^{5}\times[0,T),\\ \Psi_{1}\mid_{t=0}=0.\end{cases}

By Lemma 2.4, we obtain

|Ψ1|eτ1R12.|\Psi_{1}|\lesssim\frac{e^{-\tau_{1}}}{R^{\frac{1}{2}}}.

Ψ2\Psi_{2} is the solution of following equation

{tΨ2ΔΨ1=e5τ|z|18+e34τ|z|41e38τ|z|2e38τ+δ0731+|x|41|z|eτ4+Z2p1+|x|41|z|eτ2+e7τ3(1+|z|10)(x,t)5×[0,T),Ψ2t=0=0.\begin{cases}\partial_{t}\Psi_{2}-\Delta\Psi_{1}=&e^{-5\tau}|z|^{18}+e^{-\frac{3}{4}\tau}|z|^{4}\textbf{1}_{e^{\frac{3}{8}\tau}\leq{|z|}\leq 2e^{\frac{3}{8}\tau}}+\frac{\delta_{0}^{\frac{7}{3}}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{4}}}\\ &+\frac{\|Z_{2}\|_{\infty}^{p}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{2}}}+e^{-\frac{7\tau}{3}}(1+|z|^{10})\ \ \ \ \ \ \ \ \ \ \ (x,t)\in\mathbb{R}^{5}\times[0,T),\\ \Psi_{2}\mid_{t=0}=0.\end{cases}

By Duhamel’s principle

|Ψ2|τ1τe103τ(1+e5(ττ)|z|10)+e6τ(1+e9(ττ)|z|18)+e74τ(1+e2(ττ|z|4)e136τ(1+e2(ττ)|z|4)dτe74τ1+e6τ|z|18+e74τ|z|4+e103τ|z|10.\begin{split}|\Psi_{2}|\leq&\int_{\tau_{1}}^{\tau}e^{-\frac{10}{3}\tau^{\prime}}(1+e^{-5(\tau-\tau^{\prime})}|z|^{10})+e^{-6\tau^{\prime}}(1+e^{-9(\tau-\tau^{\prime})}|z|^{18})\\ &+e^{-\frac{7}{4}\tau^{\prime}}(1+e^{-2(\tau-\tau^{\prime}}|z|^{4})e^{-\frac{13}{6}\tau^{\prime}}(1+e^{-2(\tau-\tau^{\prime})}|z|^{4})d\tau^{\prime}\\ \lesssim&e^{-\frac{7}{4}\tau_{1}}+e^{-6\tau}|z|^{18}+e^{-\frac{7}{4}\tau}|z|^{4}+e^{-\frac{10}{3}\tau}|z|^{10}.\end{split}

Together with Ψ1\Psi_{1}, we obtain the conclusion.

Next we improve the estimate of Lemma 5.4 when τ\tau is large

Lemma 5.5.

Under the assumptions of Lemma 5.4, we have

(5.16) |τ0τeAz(ττ)eτG𝑑τ|eτR12+e136τe54τ0+e74τ|z|4+eτR12|z|2+e6τ|z|18+e103τ|z|10.\begin{split}|\int_{\tau_{0}}^{\tau}e^{A_{z}(\tau-\tau^{\prime})}e^{-\tau^{\prime}}G^{\bot}d\tau^{\prime}|&\lesssim\frac{e^{-\tau}}{R^{\frac{1}{2}}}+e^{-\frac{13}{6}\tau}e^{\frac{5}{4}\tau_{0}}+e^{-\frac{7}{4}\tau}|z|^{4}+\frac{e^{-\tau}}{R^{\frac{1}{2}}}|z|^{2}\\ &\quad+e^{-6\tau}|z|^{18}+e^{-\frac{10}{3}\tau}|z|^{10}.\end{split}

Proof: We separate space-time into four cases:

(5.17) 1.z5,τ(τ0,τ0+1).2.|z|4,τ(τ0+1,).3. 4|z|eττ02,τ(τ0+1,).4.|z|>eττ02,τ(τ0+1,).\begin{split}&1.\ z\in\mathbb{R}^{5},\ \tau\in(\tau_{0},\tau_{0}+1).\\ &2.\ |z|\leq 4,\ \tau\in(\tau_{0}+1,\infty).\\ &3.\ 4\leq|z|\leq e^{\frac{\tau-\tau_{0}}{2}},\ \tau\in(\tau_{0}+1,\infty).\\ &4.\ |z|>e^{\frac{\tau-\tau_{0}}{2}},\ \tau\in(\tau_{0}+1,\infty).\end{split}
  • z5,τ(τ0,τ0+1)z\in\mathbb{R}^{5},\tau\in(\tau_{0},\tau_{0}+1), we conclude by Lemma 5.4.

  • |z|4|z|\leq 4. Firstly we times Φ2\Phi_{2} and integral with weight ρ\rho in (5.14)

    12dΦ2ρ2dτ=(AzΦ2,Φ2)ρ+eτ(G,Φ2)ρ.\frac{1}{2}\frac{d\|\Phi_{2}\|_{\rho}^{2}}{d\tau}=(A_{z}\Phi_{2},\Phi_{2})_{\rho}+e^{-\tau}(G^{\perp},\Phi_{2})_{\rho}.

    Since (AzΦ2,Φ2)ρ52Φ22(A_{z}\Phi_{2},\Phi_{2})_{\rho}\leq-\frac{5}{2}\|\Phi_{2}\|^{2}, we deduce from Lemma 5.1 that

    (5.18) Φ2ρe136τ.\|\Phi_{2}\|_{\rho}\lesssim e^{-\frac{13}{6}\tau}.

    Next, from Lemma 2.2 and the definition of GG^{\perp}

    |τ0τ1eAz(ττ)eτG𝑑τ|=|τ0τ1eAz12eAz(ττ12)eτG𝑑τ|τ0τ1e12|z|2e4(2eτ0+eτ012)(eτ0eτ01)54e52(ττ)eτGρ𝑑ττ0τ1e54τ0e52(ττ)e136τ𝑑τe136τe54τ0.\begin{split}|\int_{\tau_{0}}^{\tau-1}e^{A_{z}(\tau-\tau^{\prime})}e^{-\tau^{\prime}}G^{\bot}d\tau^{\prime}|&=|\int_{\tau_{0}}^{\tau-1}e^{A_{z}\frac{1}{2}}e^{A_{z}(\tau-\tau^{\prime}-\frac{1}{2})}e^{-\tau^{\prime}}G^{\bot}d\tau^{\prime}|\\ &\lesssim\int_{\tau_{0}}^{\tau-1}\frac{\frac{e^{-\frac{1}{2}|z|^{2}}}{e^{4(2-e^{-\tau_{0}}+e^{-\tau_{0}-\frac{1}{2}})}}}{(e^{-\tau_{0}}-e^{-\tau_{0}-1})^{\frac{5}{4}}}e^{-\frac{5}{2}(\tau-\tau^{\prime})}\|e^{-\tau^{\prime}}G^{\bot}\|_{\rho}d\tau^{\prime}\\ &\lesssim\int_{\tau_{0}}^{\tau-1}e^{\frac{5}{4}\tau_{0}}e^{-\frac{5}{2}(\tau-\tau^{\prime})}e^{-\frac{13}{6}\tau^{\prime}}d\tau^{\prime}\\ &\lesssim e^{-\frac{13}{6}\tau}e^{\frac{5}{4}\tau_{0}}.\\ \end{split}

    The integral from τ1\tau-1 to τ\tau can be estimated by Lemma 5.4, then

    |τ1τeAz(ττ)eτG𝑑τ|eτR12.\begin{split}|\int_{\tau-1}^{\tau}e^{Az(\tau-\tau^{\prime})}e^{-\tau^{\prime}}G^{\bot}d\tau^{\prime}|\lesssim\frac{e^{-\tau}}{R^{\frac{1}{2}}}.\end{split}
  • 4|z|eττ02,τ>τ0+14\leq|z|\leq e^{\frac{\tau-\tau_{0}}{2}},\tau>\tau_{0}+1. Let τ2\tau_{2} define by |z|=eττ22|z|=e^{\frac{\tau-\tau_{2}}{2}}, from the definition, τ>τ2\tau>\tau_{2}, a similarly calculation shows

    |τ0τ2eAz(ττ)eτG𝑑τ||τ0τ2e54τ0e52(ττ)e136τGτ|e13τ2e52τe54τ0e136τe54τ0,|τ2τ1eAz(ττ)eτG𝑑τ|eτ2R12+e6τ|z|18+e74τ|z|4+e103τ|z|10eτR12|z|2+e6τ|z|18+e74τ|z|4+e103τ|z|10.\begin{split}|\int_{\tau_{0}}^{\tau_{2}}e^{Az(\tau-\tau^{\prime})}e^{-\tau^{\prime}}G^{\bot}d\tau^{\prime}|&\leq|\int_{\tau_{0}}^{\tau_{2}}e^{\frac{5}{4}\tau_{0}}e^{-\frac{5}{2}(\tau-\tau^{\prime})}e^{-\frac{13}{6}\tau^{\prime}}G^{\bot}\tau^{\prime}|\\ &\lesssim e^{\frac{1}{3}\tau_{2}}e^{-\frac{5}{2}\tau}e^{\frac{5}{4}\tau_{0}}\\ &\lesssim e^{-\frac{13}{6}\tau}e^{\frac{5}{4}\tau_{0}},\\ |\int_{\tau_{2}}^{\tau-1}e^{Az(\tau-\tau^{\prime})}e^{-\tau^{\prime}}G^{\bot}d\tau^{\prime}|&\leq\frac{e^{-\tau_{2}}}{R^{\frac{1}{2}}}+e^{-6\tau}|z|^{18}+e^{-\frac{7}{4}\tau}|z|^{4}+e^{-\frac{10}{3}\tau}|z|^{10}\\ &\lesssim\frac{e^{-\tau}}{R^{\frac{1}{2}}}|z|^{2}+e^{-6\tau}|z|^{18}+e^{-\frac{7}{4}\tau}|z|^{4}+e^{-\frac{10}{3}\tau}|z|^{10}.\\ \end{split}
  • |z|>eττ02|z|>e^{\frac{\tau-\tau_{0}}{2}}. Similar as before, by Lemma 5.4 and |z|>eττ02|z|>e^{\frac{\tau-\tau_{0}}{2}}.

    |τ0τeAz(ττ)eτG𝑑τ|eτ0R12+e6τ|z|18+e74τ|z|4+e103τ|z|10eτR12|z|2+e6τ|z|18+e74τ|z|4+e103τ|z|10.\begin{split}&|\int_{\tau_{0}}^{\tau}e^{Az(\tau-\tau^{\prime})}e^{-\tau^{\prime}}G^{\bot}d\tau^{\prime}|\\ &\lesssim\frac{e^{-\tau_{0}}}{R^{\frac{1}{2}}}+e^{-6\tau}|z|^{18}+e^{-\frac{7}{4}\tau}|z|^{4}+e^{-\frac{10}{3}\tau}|z|^{10}\\ &\lesssim\frac{e^{-\tau}}{R^{\frac{1}{2}}}|z|^{2}+e^{-6\tau}|z|^{18}+e^{-\frac{7}{4}\tau}|z|^{4}+e^{-\frac{10}{3}\tau}|z|^{10}.\end{split}

Combining all these estimates we complete the proof of Lemma 5.5.

Recall our goal is to show Φ(x,t)\Phi_{*}(x,t) lays in space XX and it’s norm is smaller than δ0\delta_{0}. In the estimate of Lemma 5.5, when τ>1514τ0\tau>\frac{15}{14}\tau_{0} the term

e136τe54τ0X,e^{-\frac{13}{6}\tau}e^{\frac{5}{4}\tau_{0}}\in X,

and

e136τe54τ0<δ0eτ.e^{-\frac{13}{6}\tau}e^{\frac{5}{4}\tau_{0}}<\delta_{0}e^{-\tau}.

But when τ\tau is near τ0\tau_{0} we can not obtain the same estimate. Thus we need to employ Lemma 5.4. In Lemma 5.4, let τ1=τ0\tau_{1}=\tau_{0}, because R=eτ02R=e^{\frac{\tau_{0}}{2}}, the first term in Lemma 5.4 is

eτ0R12=eτ0eτ04=e54τ0.\frac{e^{-\tau_{0}}}{R^{\frac{1}{2}}}={e^{-\tau_{0}}}e^{-\frac{\tau_{0}}{4}}={e^{-\frac{5}{4}\tau_{0}}}.

This is to say when τ<54τ0\tau<\frac{5}{4}\tau_{0} we have

(5.19) |Φ2|<δ0eτ.|\Phi_{2}|<\delta_{0}e^{-\tau}.

So, in |z|eτ4|z|\leq e^{\frac{\tau}{4}}, for any ττ0\tau\geq\tau_{0}

(5.20) |Φ2|<δ0eτ.|\Phi_{2}|<\delta_{0}e^{-\tau}.

5.5. A point wise estimate for ψ\psi in |z|>eτ4|z|>e^{\frac{\tau}{4}}

The estimate of last section is locally. In this section we make use of comparison principle to obtain an estimate in larger region.

Lemma 5.6.

There exists constant K2K_{2} such that in the region |z|>eτ4|z|>e^{\frac{\tau}{4}}

(5.21) |ψ|K2T14.|\psi|\leq K_{2}T^{\frac{1}{4}}.

Proof: We separate ψ\psi into 2 parts. Let Ψ3\Psi_{3} be the solution satisfies

{tΨ3ΔΨ3=λ2211+|y2|2+aR12(x,t)5×[0,T).Ψ3t=0=0,\begin{cases}\partial_{t}\Psi_{3}-\Delta\Psi_{3}=\lambda_{2}^{-2}\frac{1}{1+|y_{2}|^{2+a}}R^{-\frac{1}{2}}\ \ \ \ \ \ \ \ \ \ \ (x,t)\in\mathbb{R}^{5}\times[0,T).\\ \Psi_{3}\mid_{t=0}=0,\end{cases}

Denote

G=λ1211+|y1|2+aeτR121|x|1+e34τ|z|41e38τ|z|2e38τ+e7τ6|z|41|z|2eτ2+e7τ3|z|101|z|2eτ4+e7τ3|z|61|z|2e38τ+e73τ1|z|1+δ0731+|x|41|z|eτ4+Z2p1+|x|41|z|eτ2+e2τ1+|x|31|x|1.\begin{split}G^{\prime}=&\lambda_{1}^{-2}\frac{1}{1+|y_{1}|^{2+a}}e^{-\tau}R^{-\frac{1}{2}}\textbf{1}_{{|x|}\leq 1}+e^{-\frac{3}{4}\tau}|z|^{4}\textbf{1}_{e^{\frac{3}{8}\tau}\leq{|z|}\leq 2e^{\frac{3}{8}\tau}}+e^{-\frac{7\tau}{6}}|z|^{4}\textbf{1}_{{|z|}\leq 2e^{\frac{\tau}{2}}}\\ &+e^{-\frac{7\tau}{3}}|z|^{10}\textbf{1}_{{|z|}\leq 2e^{\frac{\tau}{4}}}+e^{-\frac{7\tau}{3}}|z|^{6}\textbf{1}_{{|z|}\leq 2e^{\frac{3}{8}\tau}}+e^{-\frac{7}{3}\tau}\textbf{1}_{{|z|}\leq 1}\\ &+\frac{\delta_{0}^{\frac{7}{3}}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{4}}}+\frac{\|Z_{2}\|_{\infty}^{p}}{1+|x|^{4}}\textbf{1}_{{|z|}\geq e^{\frac{\tau}{2}}}+\frac{e^{-2\tau}}{1+|x|^{3}}\textbf{1}_{{|x|}\geq 1}.\end{split}

Let Ψ4\Psi_{4} satisfies

{tΨ4ΔΨ4=G(x,t)5×[0,T),Ψ4t=0=(de)η(ze38τ).\begin{split}\begin{cases}\partial_{t}\Psi_{4}-\Delta\Psi_{4}=G^{\prime}\ \ \ \ \ \ \ \ \ \ \ (x,t)\in\mathbb{R}^{5}\times[0,T),\\ \Psi_{4}\mid_{t=0}={(d\cdot e)\eta(\frac{z}{e^{\frac{3}{8}\tau}})}.\end{cases}\end{split}

Use Lemma 2.4 we obtain

(5.22) |Ψ3|T14.|\Psi_{3}|\leq T^{\frac{1}{4}}.

Then we check that Ψ¯=K2(2e14τ0e14τ)\overline{\Psi}=K_{2}(2e^{-\frac{1}{4}\tau_{0}}-e^{-\frac{1}{4}\tau}), K2K_{2} sufficient large, is a super solution of Ψ4\Psi_{4} in |z|>eτ4|z|>e^{\frac{\tau}{4}}.
First, from Lemma 5.3, (5.20) and

|bαeα|e136τ(1+|z|4),|b_{\alpha}e_{\alpha}|\lesssim e^{-\frac{13}{6}\tau}(1+|z|^{4}),

we obtain when |z|=eτ4|z|=e^{\frac{\tau}{4}}

|ψ|eτ.|\psi|\lesssim e^{-\tau}.

Also ψ=Ψ3+Ψ4\psi=\Psi_{3}+\Psi_{4}, because |Ψ3|T14|\Psi_{3}|\leq T^{\frac{1}{4}}, for |z|=eτ4|z|=e^{\frac{\tau}{4}}

|Ψ4|e14τ0Ψ¯,|\Psi_{4}|\leq e^{-\frac{1}{4}\tau_{0}}\leq\overline{\Psi},

and for |z|>eτ4|z|>e^{\frac{\tau}{4}}, we verify that

Ψ¯τAzΨ¯=K24e14τ>eτG>τΨ4AzΨ4.\overline{\Psi}_{\tau}-A_{z}\overline{\Psi}=\frac{K_{2}}{4}e^{-\frac{1}{4}\tau}>e^{-\tau}G^{\prime}>\partial_{\tau}\Psi_{4}-A_{z}\Psi_{4}.

For τ=τ0\tau=\tau_{0}

|Ψ4|e136τ0e32τ0e23τ0|Ψ¯|.|\Psi_{4}|\leq e^{-\frac{13}{6}\tau_{0}}e^{\frac{3}{2}\tau_{0}}\leq e^{-\frac{2}{3}\tau_{0}}\leq|\overline{\Psi}|.

Use comparison principle |ψ|Ψ3+Ψ4|\psi|\leq\Psi_{3}+\Psi_{4}, we finished the proof.

Now Lemma 5.6 provides an LL^{\infty} estimate, then we give the decay estimate.

Lemma 5.7.

For |x||q|+1|x|\geq|q|+1, there exists constant K3>0K_{3}>0 such that

(5.23) |ψ|K3(T3(Tt)3|x|3+Z2p|x|2).|\psi|\leq K_{3}(\frac{T^{3}-(T-t)^{3}}{|x|^{3}}+\frac{\|Z_{2}\|_{\infty}^{p}}{|x|^{2}}).

Proof: We are going to check that

ψ~=K3(T6(Tt)6|x|3+Z2p|x|2),\widetilde{\psi}=K_{3}(\frac{T^{6}-(T-t)^{6}}{|x|^{3}}+\frac{\|Z_{2}\|_{\infty}^{p}}{|x|^{2}}),

for K3K_{3} sufficient large, is a super solution of ψ\psi in |x||q|+1|x|\geq|q|+1. First we verify that if K3K_{3} large

ψ~tΔψ~=K3(3(Tt)2|x|3+2Z2p|x|4)ψtΔψ.\widetilde{\psi}_{t}-\Delta\widetilde{\psi}=K_{3}(\frac{3(T-t)^{2}}{|x|^{3}}+\frac{2\|Z_{2}\|_{\infty}^{p}}{|x|^{4}})\geq\psi_{t}-\Delta\psi.

From Lemma 5.6, for |x|=q+1|x|=q+1

|ψ|K2T14ψ~.|\psi|\leq K_{2}T^{\frac{1}{4}}\leq\widetilde{\psi}.

When t=0t=0, because the intersection of |x||q|+1|x|\geq|q|+1 and

ψt=0=(de)η(ze38τ)\psi\mid_{t=0}={(d\cdot e)\eta(\frac{z}{e^{\frac{3}{8}\tau}})}

is empty. So in |x||q|+1|x|\geq|q|+1

ψt=0=0Z2p|x|2=ψ~t=0.\psi\mid_{t=0}=0\leq\frac{\|Z_{2}\|_{\infty}^{p}}{|x|^{2}}=\widetilde{\psi}\mid_{t=0}.

Use comparison principle, we finished the proof.

6. The proof of theorem 1.1

After the preparation of the last few sections, we start to prove Theorem 1.1.
Because for 1im1\leq i\leq m

|bαieαi|e136τ(1+|z|4),\begin{split}|b_{\alpha_{i}}e_{\alpha_{i}}|\lesssim e^{-\frac{13}{6}\tau}(1+|z|^{4}),\end{split}

from Lemma 5.3

|Φ1(z,τ)Ce2τ(1+|z|4),ττ0.|\Phi_{1}(z,\tau)\leq Ce^{-2\tau}(1+|z|^{4}),\quad\tau\geq\tau_{0}.

combine with Lemma 5.5 and (5.20), we have

(6.1) |Φ2|=|τ0τeAz(ττ)eτG𝑑τ|δ0eτ+e74τ|z|4+eτR12|z|2+e6τ|z|18+e103τ|z|10.\begin{split}|\Phi_{2}|=&|\int_{\tau_{0}}^{\tau}e^{A_{z}(\tau-\tau^{\prime})}e^{-\tau^{\prime}}G^{\bot}d\tau^{\prime}|\leq\delta_{0}e^{-\tau}+e^{-\frac{7}{4}\tau}|z|^{4}+\frac{e^{-\tau}}{R^{\frac{1}{2}}}|z|^{2}\\ &+e^{-6\tau}|z|^{18}+e^{-\frac{10}{3}\tau}|z|^{10}.\end{split}

When |z|eτ4|z|\leq e^{-\frac{\tau}{4}}

(6.2) |Φ2|δ0eτ+e74τ|z|4+eτR12|z|2+e6τ|z|18+e103τ|z|10δ0eτ+e74τ|z|4+eτR12|z|2+e52τ|z|4+e116τ|z|4.\begin{split}|\Phi_{2}|&\lesssim\delta_{0}e^{-\tau}+e^{-\frac{7}{4}\tau}|z|^{4}+\frac{e^{-\tau}}{R^{\frac{1}{2}}}|z|^{2}+e^{-6\tau}|z|^{18}+e^{-\frac{10}{3}\tau}|z|^{10}\\ &\lesssim\delta_{0}e^{-\tau}+e^{-\frac{7}{4}\tau}|z|^{4}+\frac{e^{-\tau}}{R^{\frac{1}{2}}}|z|^{2}+e^{-\frac{5}{2}\tau}|z|^{4}+e^{-\frac{11}{6}\tau}|z|^{4}.\\ \end{split}

If τ0\tau_{0} sufficient large, we have

(6.3) |Φ2|δ0eτ(1+|z|4),|\Phi_{2}|\leq\delta_{0}e^{-\tau}(1+|z|^{4}),

and from Lemma 5.6 and Lemma 5.7 we have when |z|eτ4|z|\geq e^{-\frac{\tau}{4}}

(6.4) |ψ|δ011+|x|2.|\psi|\leq\delta_{0}\frac{1}{1+|x|^{2}}.

We know operator T(Φ)=ΦT(\Phi)=\Phi_{*} maps X in to X, and from local Holder estimate and Ascoli-Arezela theorem we know TT is compact. By Schauder fixed point theorem, we know that TT has a fixed point Φ\Phi in X. Which finished the proof of Theorem 1.1

References

  • [1] C. Collot,Nonradial type II blow-up for the energy-supercritical semilinear heat equation. Anal. PDE 10 (2017), no. 1, 127–252.
  • [2] COLLOT C, MERLE F, RAPHAëL P.Dynamics near the ground state for the energy critical nonlinear heat equation in large dimensions. Comm. Math. Phys. 352 (2017), no. 1, 215–285.
  • [3] CORTáZAR C, DEL PINO M, MUSSO M.Green’s function and infinite-time bubbling in the critical nonlinear heat equation. J. Eur. Math. Soc. (JEMS) 22 (2020), no. 1, 283–344.
  • [4] DáVILA J, DEL PINO M, WEI J.Singularity formation for the two-dimensional harmonic map flow into 𝕊2\mathbb{S}^{2}.Invent. Math. 219 (2020), no. 2, 345–466.
  • [5] DEL PINO M, MUSSO M, WEI J.Geometry driven type ii higher dimensional blow-up for the critical heat equationarXiv:1710.11461, 2017.
  • [6] DEL PINO M, MUSSO M, WEI J C.Type II blow-up in the 5-dimensional energy critical heat equation. Acta Math. Sin. (Engl. Ser.) 35 (2019), no. 6, 1027–1042.
  • [7] DEL PINO M, MUSSO M, WEI J.Infinite-time blow-up for the 3-dimensional energy-critical heat equation. Anal. PDE 13 (2020), no. 1, 215–274.
  • [8] DEL PINO M, MUSSO M, WEI J, et al.Type ii finite time blow-up for the three dimensional energy critical heat equationarXiv:2002.05765, 2020.
  • [9] DEL PINO M, MUSSO M, WEI J, et al.Type II finite time blow-up for the energy critical heat equation in 4\mathbb{R}^{4}.Discrete &amp; Continuous Dynamical Systems-A, 2020, 40(6):3327.
  • [10] FILIPPAS S, HERRERO M A, VELáZQUEZ J J L.Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 2000, 456(2004):2957-2982.
  • [11] FUJITA H..:On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+αu_{t}=\Delta u+u^{1+\alpha}. J. Fac. Sci. Univ. Tokyo Sect. I . J. Amer. Math. Soc. 28 (2015),
  • [12] GIGA Y, KOHN R V. Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math., 1985, 38(3):297-319.
  • [13] GIGA Y, KOHN R V. Characterizing blowup using similarity variables. Indiana Univ. Math. J., 1987, 36(1):1-40.
  • [14] GIGA Y, MATSUI S, SASAYAMA S. Blow up rate for semilinear heat equations with subcritical nonlinearity. Indiana Univ. Math. J., 2004, 53(2):483-514.
  • [15] HARADA J. Blowup profile for a complex valued semilinear heat equation. J. Funct. Anal., 2016, 270(11):4213-4255.
  • [16] HARADA J. Construction of type II blow-up solutions for a semilinear parabolic system with higher dimension. Calc. Var. Partial Differential Equations, 2017, 56(4):Paper No. 121, 36.
  • [17] HARADA J. A higher speed type II blowup for the five dimensional energy critical heat equation.. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2020, 37(2):309-341.
  • [18] HARADA J. A type ii blowup for the six dimensional energy critical heat equation. arXiv:2002.00528, 2020.
  • [19] HERRERO M A, VELáZQUEZ J J L. Explosion de solutions d’équations paraboliques semilinéaires supercritiques. C. R. Acad. Sci. Paris Sér. I Math., 1994, 319(2):141-145.
  • [20] HERRERO M A, VELÁZQUEZ J J. A blow up result for semilinear heat equations in the supercritical case. unpublished, 1992.
  • [21] MATANO H, MERLE F. On nonexistence of type II blowup for a supercritical nonlinear heat equation. Comm. Pure Appl. Math., 2004, 57(11):1494-1541.
  • [22] MERLE F, ZAAG H. Stability of the blow-up profile for equations of the type ut=Δu+|u|p1uu_{t}=\Delta u+|u|^{p-1}u. Duke Math. J., 1997, 86(1):143-195.
  • [23] MERLE F, RAPHAëL P, SZEFTEL J. On Strongly Anisotropic Type I Blowup. Int. Math. Res. Not. IMRN, 2020(2):541-606.
  • [24] POON C C. Blow-up behavior for semilinear heat equations in nonconvex domains[J]. Differential Integral Equations, 2000, 13(7-9):1111-1138.
  • [25] QUITTNER P, SOUPLET P. Birkhäuser advanced texts: Basler lehrbücher. [birkhäuser advanced texts: Basel textbooks]: Superlinear parabolic problems.. Birkhäuser/Springer, Cham, 2019: xvi+725.
  • [26] SCHWEYER R. Type II blow-up for the four dimensional energy critical semi linear heat equation. J. Funct. Anal., 2012, 263(12):3922-3983.
  • [27] SEKI Y. Type II blow-up mechanisms in a semilinear heat equation with critical Joseph-Lundgren exponent. J. Funct. Anal., 2018, 275(12):3380-3456.
  • [28] TALENTI G. Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4), 1976, 110:353-372.
  • [29] VELáZQUEZ J J L. Estimates on the (n1)(n-1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation. Indiana Univ. Math. J., 1993, 42(2):445-476.