This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Controllability of a simplified time-discrete stabilized Kuramoto-Sivashinsky system

Víctor Hernández-Santamaría Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., C.P. 04510 CDMX, Mexico. E-mail: victor.santamaria@im.unam.mx
Abstract

In this paper, we study some controllability and observability properties for a coupled system of time-discrete fourth- and second-order parabolic equations. This system can be regarded as a simplification of the well-known stabilized Kumamoto-Sivashinsky equation. Unlike the continuous case, we can prove only a relaxed observability inequality which yields a ϕ(t)\phi({\triangle t})-controllability result. This result tells that we cannot reach exactly zero but rather a small target whose size goes to 0 as the discretization parameter t{\triangle t} goes to 0. The proof relies on a known Carleman estimate for second-order time-discrete parabolic operators and a new Carleman estimate for the time-discrete fourth-order equation.

Keywords: Time discrete parabolic equations, stabilized Kuramoto-Sivashinsky, Carleman estimates, relaxed observability inequalities, ϕ(t)\phi({\triangle t})-null controllability.

1 Introduction

The stabilized Kuramoto-Sivashinsky (SKS) equation was proposed in [FMK03] as a model of front propagation in reaction-diffusion phenomena and combines dissipative features with dispersive ones. This systems consists of a Kuramoto-Sivashinsky-KdV (KS-KdV) equation linearly coupled to an extra dissipative equation. This model takes the form

{utΓuxx+ux=vx,vt+γvxxxx+vxxx+avxx+uux=ux,\begin{cases}u_{t}-\Gamma u_{xx}+u_{x}=v_{x},\\ v_{t}+\gamma v_{xxxx}+v_{xxx}+av_{xx}+uu_{x}=u_{x},\end{cases} (1.1)

where the coefficients γ,a>0\gamma,a>0 take into account the long-wave instability and the short wave dissipation, respectively, Γ>0\Gamma>0 is the dissipative parameter and c{0}c\in\mathbb{R}\setminus\{0\} is the group velocity mismatch between wave modes. This model applies to the description of surface waves on multilayered liquid films and serves as a one-dimensional model for turbulence and wave propagation, see [FMK03] for a more detailed discussion.

System (1.1) has been studied from the controllability point of view in the recent past. In [CMP12], the authors addressed for the first time the null-controllability of the SKS model when the control action is applied at the boundary of both equations. Later, in [CMP15], it has been proved the null-controllability of the coupled system with a single control applied at the interior of the fourth-order equation, while in [CnC16] the analogous result is proved by controlling from the heat equation. Stochastic versions for some of these results can be found in [HSP20] and some boundary control problems for simplified systems have been studied in [CnCM19] and [HSMV20].

In this paper, our main interest is to study some controllability and observability properties for time-discrete approximations of a simplified SKS model. As it is well-known, controllability/observability and numerical discretization do not commute well (see e.g. [Zua05]) but at least we expect to retain some properties.

1.1 Problem formulation and main result

In this paper, we shall use the notation a,b=[a,b]\llbracket a,b\rrbracket=[a,b]\cap\mathbb{N} for any real numbers a<ba<b.

We are interested in studying the controllability of a simplified time-discrete version of (1.1). To this end, let MM\in\mathbb{N}^{*} and set t=T/M{\triangle t}=T/M. We introduce the following uniform discretization of the time variable

0=t0<t1<<tM=T,0=t_{0}<t_{1}<\ldots<t_{M}=T, (1.2)

with tn=ntt_{n}=n{\triangle t} and n0,Mn\in\llbracket 0,M\rrbracket. We also introduce the midpoints tn+12=(tn+1+tn)/2t_{n+\frac{1}{2}}=(t_{n+1}+t_{n})/2 for n0,M1n\in\llbracket 0,M-1\rrbracket, see Figure 1.

0=t00=t_{0}t1t_{1}t2t_{2}tM1t_{M-1}tM=Tt_{M}=Tt12t_{\frac{1}{2}}t32t_{\frac{3}{2}}tM12t_{M-\frac{1}{2}}tM+12t_{M+\frac{1}{2}}𝒫¯=(tn)n0,M\overline{\mathcal{P}}=(t_{n})_{n\in\llbracket 0,M\rrbracket}¯D=(tn+12)n∈⟦0,M⟧
Figure 1: Discretization of the time variable and its notation.

For any time-discrete control sequence h={hn+12}n0,M1L2(Ω)h=\{h^{n+\frac{1}{2}}\}_{n\in\llbracket 0,M-1\rrbracket}\subset L^{2}(\Omega), consider the sequence (u,v)={un,vn}n0,ML2(Ω)(u,v)=\{u^{n},v^{n}\}_{n\in\llbracket 0,M\rrbracket}\subset L^{2}(\Omega) verifying the recursive formula

{un+1untΓx2un+1+cxun+1=vn+1n0,M1,vn+1vnt+γx4vn+1+x3vn+1+ax2vn+1=un+1+χωhn+12n0,M1,(v|Ω)n+1=(v|Ω)n+1=(xv|Ω)n+1=0n0,M1,u0=u0,v0=v0,\begin{cases}\displaystyle\frac{u^{n+1}-u^{n}}{{\triangle t}}-\Gamma\partial_{x}^{2}u^{n+1}+c\partial_{x}u^{n+1}={v^{n+1}}&n\in\llbracket 0,M-1\rrbracket,\\ \displaystyle\frac{v^{n+1}-v^{n}}{{\triangle t}}+\gamma\partial_{x}^{4}v^{n+1}+\partial_{x}^{3}v^{n+1}+a\partial_{x}^{2}v^{n+1}={u^{n+1}}+\chi_{\omega}h^{n+\frac{1}{2}}&n\in\llbracket 0,M-1\rrbracket,\\ \left(v_{|\partial\Omega}\right)^{n+1}=\left(v_{|\partial\Omega}\right)^{n+1}=\left(\partial_{x}v_{|\partial\Omega}\right)^{n+1}=0&n\in\llbracket 0,M-1\rrbracket,\\ u^{0}=u_{0},\quad v^{0}=v_{0},\end{cases} (1.3)

where (un,vn)(u^{n},v^{n}) (resp. hn+12h^{n+\frac{1}{2}}) denotes an approximation of (u,v)(u,v) (resp. hh) at time tnt_{n} (resp. tn+12t_{n+\frac{1}{2}}). In fact, (1.3) is an implicit Euler discretization of a simplified model for (1.1). The main simplifications are that system (1.3) is linear and that the couplings on the right-hand side are through zero order couplings (see Section 5 for further remarks about this).

As in the continuous case, we can state a notion of null-controllability, that is, system (1.3) is said to be null-controllable for any (u0,v0)[L2(Ω)]2(u_{0},v_{0})\in[L^{2}(\Omega)]^{2} if there exists a sequence h={hn+12}n0,M1h=\{h^{n+\frac{1}{2}}\}_{n\in\llbracket 0,M-1\rrbracket} such that the corresponding satisfies

uM=vM=0.u^{M}=v^{M}=0. (1.4)

However, it turns out that (1.4) is a very strong condition and in general cannot hold. In fact, as pointed out in [Zhe08], even for the simple case of the heat equation, time-discretization does not preserve null-controllability and not even approximate one.

For this reason, in this paper we shall pursue a different notion that captures some controllability properties and allows us to recover the known results in the continuous case. Our main result is the following.

Theorem 1.1.

Let T(0,1)T\in(0,1) and a discretization parameter t>0{\triangle t}>0 small enough. Then, for any (u0,v0)[L2(Ω)]2(u_{0},v_{0})\in[L^{2}(\Omega)]^{2} and any function ϕ\phi verifying

lim inft0ϕ(t)eC1/(t)1/10>0,\liminf_{{\triangle t}\to 0}\frac{\phi({\triangle t})}{e^{-C_{1}/({\triangle t})^{1/10}}}>0, (1.5)

for some C1>0C_{1}>0 uniform with respect to t{\triangle t}, there exists a time discrete control vv such that

(n=0M1tω|vn+12|2)1/2C(u0,y0)[L2(Ω)]2\left(\sum_{n=0}^{M-1}{\triangle t}\int_{\omega}|v^{n+\frac{1}{2}}|^{2}\right)^{1/2}\leq C\left\lVert(u_{0},y_{0})\right\rVert_{[L^{2}(\Omega)]^{2}} (1.6)

and such that the associated solution (u,v)(u,v) to (1.3) verifies

(uM,vM)[L2(Ω)]2Cϕ(t)(u0,y0)[L2(Ω)]2,\lVert(u^{M},v^{M})\rVert_{[L^{2}(\Omega)]^{2}}\leq C\sqrt{\phi({\triangle t})}\left\lVert(u_{0},y_{0})\right\rVert_{[L^{2}(\Omega)]^{2}}, (1.7)

where C>0C>0 only depends on ϕ\phi, TT, Ω\Omega, ω\omega, Γ\Gamma, γ\gamma, aa, and cc.

Condition (1.7) is the so-called ϕ(t)\phi({\triangle t})-controllability. This definition, introduced in [BHLR10] (see also [Boy13, BLR14]) for studying semi-discrete (i.e., in space) approximations of parabolic control problems, tell us that we do not steer the solution exactly zero but rather we reach a small target whose size goes to zero at the rate ϕ(t)\sqrt{\phi({\triangle t})}. In fact, from (1.6) and (1.7), we can recover (up to a subsequence) the expected result in the continuous case.

The strategy we shall employ for controlling (1.3) relies on time-discrete Carleman estimates and some well-known methods adapted to the discrete case. In particular, we follow the strategy outlined in [CMP15] (see also [GBdT10]) in which suitable Carleman estimates with the same weight are applied to each equation and then, by local energy estimates, one of the observations is removed.

We shall mention that the time-discrete Carleman estimate for the second-order equation has been recently obtained in [BHS20], but the time-discrete Carleman estimate for the fourth-order operator was not available in the literature. In this regard, our second main contribution is Lemma 3.3 which states precisely this estimate. Looking at such result, one can readily see the classical structure of the Carleman estimate for fourth-order parabolic equations (see [Zho12, CMP15] for the 1-d case and [GK19] for the multi-d one) but, as for the time-discrete heat equation (see Lemma 3.2), several remainders appear. This is exactly why we can prove only (1.7).

We would like to finish this introduction by mentioning that there are other approaches for controlling time-discrete systems, see for instance, [Zhe08, EZZ08, ZZZ09, EV10, BHLR11], but they mainly rely on spectral techniques. Although some of these techniques have been used for controlling coupled systems of fourth- and second-order parabolic equations at the continuous level (see e.g. [Liu14, HSP20]), their application for controlling time-discrete coupled systems is yet to be studied.

1.2 Outline

The rest of the paper is organized as follows. In Section 2, we provide some useful notations and definitions that simplify greatly the presentation. With these, our results and proofs will resemble closely those at the continuous level. Section 3 is devoted to prove a Carleman estimate for the adjoint system (3.1) with only one observation which in turn yields a relaxed observability inequality (see eq. (3.2)). This result is then employed in Section 4 to obtain the proof of Theorem 1.1. We present some final comments in Section 5

2 Some useful notation for the time-discrete scheme

We devote this section to introduce some notations and definitions that allows us to use a formalism as close as possible to the continuous case. In this way, our results and computations can be followed and carried out in a very intuitive manner.

From the discretization points (1.2), we denote by 𝒫:={tn:n1,M}\mathcal{P}:=\left\{t_{n}:n\in\llbracket 1,M\rrbracket\right\} the (primal) set of points excluding the first one and we write 𝒫¯:=𝒫{t0}\overline{\mathcal{P}}:=\mathcal{P}\cup\{t_{0}\}. To handle the approximation of time derivatives, we will work with the (dual) points tn+12t_{n+\frac{1}{2}}. Its collection is defined as 𝒟:={tn+12:n0,M1}\mathcal{D}:=\{t_{n+\frac{1}{2}}:n\in\llbracket 0,M-1\rrbracket\}. It will be convenient to consider also an extra point {tM+12}\{t_{M+\frac{1}{2}}\} which lies outside the time interval [0,T][0,T] (see Figure 1) and to write 𝒟¯:=𝒫{TM+12}\overline{\mathcal{D}}:=\mathcal{P}\cup\{T_{M+\frac{1}{2}}\}. Observe that both 𝒫\mathcal{P} and 𝒟\mathcal{D} have a total number of MM points.

We denote by 𝒫{\mathbb{R}}^{{\scriptscriptstyle\mathcal{P}}} and 𝒟{\mathbb{R}}^{{\scriptscriptstyle\mathcal{D}}} the sets of real-valued discrete functions defined on 𝒫\mathcal{P} and 𝒟\mathcal{D}. If u𝒫𝒫u^{{\scriptscriptstyle\mathcal{P}}}\in{\mathbb{R}}^{{\scriptscriptstyle\mathcal{P}}} (resp. u𝒟𝒟u^{\scriptscriptstyle\mathcal{D}}\in{\mathbb{R}}^{{\scriptscriptstyle\mathcal{D}}}), we denote by unu^{n} (resp. un+12u^{n+\frac{1}{2}}) its value corresponding to tnt_{n} (resp. tn+12t_{n+\frac{1}{2}}). For u𝒫u\in{\mathbb{R}}^{{\scriptscriptstyle\mathcal{P}}} we define the time-discrete integral

0Tu𝒫:=n=1Mtun,\int_{0}^{T}u^{{\scriptscriptstyle\mathcal{P}}}:=\sum_{n=1}^{M}{\triangle t}\,u^{n}, (2.1)

and for u𝒟𝒟u^{{\scriptscriptstyle\mathcal{D}}}\in{\mathbb{R}}^{{\scriptscriptstyle\mathcal{D}}} we define

0Tu𝒟:=n=0M1tun+12.\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int_{0}^{T}u^{{\scriptscriptstyle\mathcal{D}}}:=\sum_{n=0}^{M-1}{\triangle t}\,u^{n+\frac{1}{2}}. (2.2)
Remark 2.1.

To ease the notation and thanks to the introduction of two different integral symbols, in what follows we shall write uu indistinctly to refer to functions u𝒫u^{\scriptscriptstyle\mathcal{P}} or u𝒟u^{{\scriptscriptstyle\mathcal{D}}}.

Let {X,||X}\{X,|\cdot|_{X}\} be a real Banach space. We denote by X𝒫X^{{\scriptscriptstyle\mathcal{P}}} and X𝒟X^{{\scriptscriptstyle\mathcal{D}}} the sets of vector-valued functions defined on 𝒫\mathcal{P} and 𝒟\mathcal{D}, respectively. Using definitions (2.1) and (2.2), we denote by L𝒫p(0,T;X)L_{{\scriptscriptstyle\mathcal{P}}}^{p}(0,T;X) (resp. L𝒟p(0,T;X)L^{p}_{{\scriptscriptstyle\mathcal{D}}}(0,T;X)), 1p<1\leq p<\infty, the space X𝒫X^{\scriptscriptstyle\mathcal{P}} (resp. X𝒟X^{{\scriptscriptstyle\mathcal{D}}}) endowed with the norm

uL𝒫p(0,T;X):=(0T|u|Xp)1/p(resp.uL𝒟p(0,T;X):=(0T|u|Xp)1/p).\left\lVert u\right\rVert_{L^{p}_{{\scriptscriptstyle\mathcal{P}}}(0,T;X)}:=\left(\int_{0}^{T}|u|^{p}_{X}\right)^{1/p}\quad\left(\textnormal{resp.}\quad\left\lVert u\right\rVert_{L^{p}_{{\scriptscriptstyle\mathcal{D}}}(0,T;X)}:=\left(\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int_{0}^{T}|u|^{p}_{X}\right)^{1/p}\right).

In the case where p=2p=2 and XX is replaced by a Hilbert space {H,(,)H}\{H,(\cdot,\cdot)_{H}\}, H𝒫H^{{\scriptscriptstyle\mathcal{P}}} (resp. H𝒟H^{{\scriptscriptstyle\mathcal{D}}}) becomes a Hilbert space for the norm induced by the inner product

0T(u,v)H:=n=1Mt(un,vn)H(resp.0T(u,v)H:=n=0M1t(un+12,vn+12)H).\int_{0}^{T}\left(u,v\right)_{H}:=\sum_{n=1}^{M}{\triangle t}\,(u^{n},v^{n})_{H}\quad\left(\text{resp.}\quad\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int_{0}^{T}\left(u,v\right)_{H}:=\sum_{n=0}^{M-1}{\triangle t}\,(u^{n+\frac{1}{2}},v^{n+\frac{1}{2}})_{H}\right). (2.3)
Remark 2.2.

Particularly, if H=L2(Ω)H=L^{2}(\Omega) we shall use the notation

Quv:=0T(u,v)L2(Ω)(resp.Quv:=0T(u,v)L2(Ω)).\int\!\!\!\int_{Q}uv:=\int_{0}^{T}(u,v)_{L^{2}(\Omega)}\quad\left(\text{resp.}\quad\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{Q}uv:=\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int_{0}^{T}(u,v)_{L^{2}(\Omega)}\right).

Also, in accordance with the notation used in the continuous case, we denote the space L𝒫2(0,T;L2(Ω))L^{2}_{\mathcal{P}}(0,T;L^{2}(\Omega)) as L𝒫2(Q)L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q). Similar notation holds for functions defined on the dual grid 𝒟\mathcal{D}.

To manipulate time-discrete functions, we define translation operators 𝚝+:X𝒫X𝒟\mathtt{t}^{+}:X^{\scriptscriptstyle\mathcal{P}}\to X^{{\scriptscriptstyle\mathcal{D}}} and 𝚝:X𝒫¯X𝒟\mathtt{t}^{-}:X^{\overline{\scriptscriptstyle\mathcal{P}}}\to X^{{\scriptscriptstyle\mathcal{D}}} as

(𝚝+u)n+12:=un+1,(𝚝u)n+12:=un,n0,M1.(\mathtt{t}^{+}u)^{n+\frac{1}{2}}:=u^{n+1},\quad(\mathtt{t}^{-}u)^{n+\frac{1}{2}}:=u^{n},\quad n\in\llbracket 0,M-1\rrbracket.

With this, we can define a difference operator DtD_{t} as the map from X𝒫¯X^{\overline{\scriptscriptstyle\mathcal{P}}} into X𝒟X^{\scriptscriptstyle\mathcal{D}} given by

(Dtu)n+12:=un+1unt=(1t(𝚝+𝚝)u)n+12,n0,M1.\begin{split}&(D_{t}u)^{n+\frac{1}{2}}:=\frac{u^{n+1}-u^{n}}{{\triangle t}}=\left(\frac{1}{{\triangle t}}\left(\mathtt{t}^{+}-\mathtt{t}^{-}\right)u\right)^{n+\frac{1}{2}},\quad n\in\llbracket 0,M-1\rrbracket.\\ \end{split}

In the same manner, we can define the translation operators 𝚝¯+:X𝒟¯X𝒫\bar{\mathtt{t}}^{+}:X^{\overline{\scriptscriptstyle\mathcal{D}}}\to X^{{\scriptscriptstyle\mathcal{P}}} and 𝚝¯:X𝒟X𝒫\bar{\mathtt{t}}^{-}:X^{{\scriptscriptstyle\mathcal{D}}}\to X^{{\scriptscriptstyle\mathcal{P}}} as follows

(𝚝¯+u)n:=un+12,(𝚝¯u)n=un12,n1,M,(\bar{\mathtt{t}}^{+}u)^{n}:=u^{n+\frac{1}{2}},\quad(\bar{\mathtt{t}}^{-}u)^{n}=u^{n-\frac{1}{2}},\qquad n\in\llbracket 1,M\rrbracket,\\

as well as a difference operator D¯t\overline{{D}}_{t} (mapping X𝒟¯X^{\overline{{\scriptscriptstyle\mathcal{D}}}} into X𝒫X^{{\scriptscriptstyle\mathcal{P}}}) given by

(D¯tu)n:=un+12un12t=(1t(𝚝¯+𝚝¯)u)n,n1,M.(\overline{{D}}_{t}u)^{n}:=\frac{u^{n+\frac{1}{2}}-u^{n-\frac{1}{2}}}{{\triangle t}}=\left(\frac{1}{{\triangle t}}\left(\bar{\mathtt{t}}^{+}-\bar{\mathtt{t}}^{-}\right)u\right)^{n},\quad n\in\llbracket 1,M\rrbracket.

These definitions, together with the integral symbols (2.1) and (2.2), help us to write formulas and systems in a more compact way. For instance, (1.6) can be rewritten as vL𝒟2(0,T;L2(ω))C(u0,y0)[L2(Ω)]2\left\lVert v\right\rVert_{L^{2}_{{\scriptscriptstyle\mathcal{D}}}(0,T;L^{2}(\omega))}\leq C\left\lVert(u_{0},y_{0})\right\rVert_{[L^{2}(\Omega)]^{2}} while system (1.3) can be written compactly as

{(Dtu)n+12Γx2(𝚝+u)n+12+cx(𝚝+u)n+12=(𝚝+v)n+12n0,M1,(Dtv)n+12+γx4(𝚝+v)n+12+x3(𝚝+v)n+12+ax2(𝚝+v)n+12=(𝚝+u)n+12+χωq^n+12n0,M1,u0=u0,v0=v0,\begin{cases}\displaystyle(D_{t}u)^{n+\frac{1}{2}}-\Gamma\partial_{x}^{2}(\mathtt{t}^{+}u)^{n+\frac{1}{2}}+c\partial_{x}(\mathtt{t}^{+}u)^{n+\frac{1}{2}}=(\mathtt{t}^{+}v)^{n+\frac{1}{2}}&n\in\llbracket 0,M-1\rrbracket,\\ \displaystyle(D_{t}v)^{n+\frac{1}{2}}+\gamma\partial_{x}^{4}(\mathtt{t}^{+}v)^{n+\frac{1}{2}}+\partial_{x}^{3}(\mathtt{t}^{+}v)^{n+\frac{1}{2}}+a\partial_{x}^{2}(\mathtt{t}^{+}v)^{n+\frac{1}{2}}=(\mathtt{t}^{+}u)^{n+\frac{1}{2}}+\chi_{\omega}\widehat{q}^{\,n+\frac{1}{2}}&n\in\llbracket 0,M-1\rrbracket,\\ u^{0}=u_{0},\quad v^{0}=v_{0},\end{cases}

where we can omit the boundary conditions since no other conditions will be used in this document.

Also, the above definitions allow us to handle the evaluation of continuous functions on the primal and dual meshes 𝒫\mathcal{P} and 𝒟\mathcal{D} and enable to present an integration-by-parts (in time) formula in a very natural way. For instance, in the case of (2.3), for functions uH𝒫¯u\in H^{\overline{{\scriptscriptstyle\mathcal{P}}}} and vH𝒟¯v\in H^{\overline{{\scriptscriptstyle\mathcal{D}}}}we have

0T(Dtu,v)H=(u0,v12)H+(uM,vM+12)H0T(D¯tv,u)H.\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int_{0}^{T}(D_{t}u,v)_{H}=-(u^{0},v^{\frac{1}{2}})_{H}+(u^{M},v^{M+\frac{1}{2}})_{H}-\int_{0}^{T}(\overline{{D}}_{t}v,u)_{H}.

A summary with useful formulas and estimates are presented in Appendix A.

3 A relaxed time-discrete observability inequality

As classical in control theory, the controllability of (1.3) can be reduced to study the observability of its adjoint system, which in this case is given by

{pn12pn+12tΓx2pn12cxpn12=qn12n1,M,qn12qn+12t+γx4qn12x3qn12+ax2qn12=pn12n1,M,(p|Ω)n12=(q|Ω)n12=(xq|Ω)n12=0n1,M,pM+12=pT,qM+12=qT.\begin{cases}\displaystyle\frac{p^{n-\frac{1}{2}}-p^{n+\frac{1}{2}}}{{\triangle t}}-\Gamma\partial_{x}^{2}p^{n-\frac{1}{2}}-c\partial_{x}p^{n-\frac{1}{2}}={q^{n-\frac{1}{2}}}&n\in\llbracket 1,M\rrbracket,\\ \displaystyle\frac{q^{n-\frac{1}{2}}-q^{n+\frac{1}{2}}}{{\triangle t}}+\gamma\partial_{x}^{4}q^{n-\frac{1}{2}}-\partial_{x}^{3}q^{n-\frac{1}{2}}+a\partial_{x}^{2}q^{n-\frac{1}{2}}={p^{n-\frac{1}{2}}}&n\in\llbracket 1,M\rrbracket,\\ \left(p_{|\partial\Omega}\right)^{n-\frac{1}{2}}=\left(q_{|\partial\Omega}\right)^{n-\frac{1}{2}}=\left(\partial_{x}q_{|\partial\Omega}\right)^{n-\frac{1}{2}}=0&n\in\llbracket 1,M\rrbracket,\\ p^{M+\frac{1}{2}}=p_{T},\quad q^{M+\frac{1}{2}}=q_{T}.\end{cases} (3.1)

Since we are interested in small-time controllability, we shall always consider that T(0,1)T\in(0,1). The main goal of this section is to prove the following.

Proposition 3.1.

For and any t>0{\triangle t}>0 small enough, there exist positive constants CTC_{T} and C1C_{1} such that for every (pT,qT)H01(Ω)×H02(Ω)(p_{T},q_{T})\in H_{0}^{1}(\Omega)\times H_{0}^{2}(\Omega), we have

p12L2(Ω)2+q12L2(Ω)2CT2(ω×(0,T)|q|2+eC1(t)1/10[xpTL2(Ω)2+x2qTL2(Ω)2]),\lVert p^{\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert q^{\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}\leq C_{T}^{2}\left(\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{\omega\times(0,T)}|q|^{2}+{e^{-\frac{C_{1}}{({\triangle t})^{1/10}}}}\left[\lVert\partial_{x}p_{T}\rVert^{2}_{L^{2}(\Omega)}+\lVert\partial_{x}^{2}q_{T}\rVert^{2}_{L^{2}(\Omega)}\right]\right), (3.2)

where CT=eC/TC_{T}=e^{C/T} and the constants CC, C1C_{1} only depend on Ω\Omega, ω\omega, mm, Γ\Gamma, γ\gamma, aa, and cc

Estimate (3.2) is precisely a relaxed observability inequality. It is weaker than a regular observability inequality due to the presence of the extra terms on the right-hand side. The study of relaxed observability estimates for discretized parabolic equations was initiated in [LT06]. We refer to [Boy13] for a further review and discussion. To obtain (3.2), we will use time-discrete Carleman estimates and well-known methodologies adapted to the discrete setting.

3.1 Preliminaries on Carleman estimates

In this part, we recall a known time-discrete Carleman estimate for the heat equation and present a new Carleman estimate for the fourth-order parabolic operator which, as mentioned before, is one of the main contributions of this paper.

Let ω0ω\omega_{0}\Subset\omega and consider a function βC4([0,1])\beta\in C^{4}([0,1]) satisfying

β(x)>0x(0,1),β(0)=β(1)=0,\begin{gathered}\beta(x)>0\quad\forall x\in(0,1),\\ \beta(0)=\beta(1)=0,\end{gathered} (3.3)

and

|β(x)|δ>0x[0,1]ω0for some δ>0.|\beta^{\prime}(x)|\geq\delta>0\quad\forall x\in[0,1]\setminus\omega_{0}\ \text{for some }\delta>0. (3.4)

The existence and construction of such function is classical, see, e.g. [FI96, Lemma 2.1]. We observe that (3.3) and (3.4) imply that

β(0)>0andβ(1)<0.\beta^{\prime}(0)>0\quad\text{and}\quad\beta^{\prime}(1)<0. (3.5)

In the spirit of [Gue07], for a parameter λ>1\lambda>1, we define the weight function

φm(x)=eλ(c2+β(x))eλc1,\varphi_{m}(x)=e^{\lambda(c_{2}+\beta(x))}-e^{\lambda c_{1}}, (3.6)

where c2=kβc_{2}=k\left\lVert\beta\right\rVert_{\infty} and c1=ek(m+1)mβc_{1}=e^{\frac{k(m+1)}{m}\left\lVert\beta\right\rVert_{\infty}}. Here, k>m>0k>m>0 are such that φm<0\varphi_{m}<0. We also introduce the weight

θm(t)=1(t+δT)m(T+δTt)m,\theta_{m}(t)=\frac{1}{(t+\delta T)^{m}(T+\delta T-t)^{m}}, (3.7)

where 0<δ<1/20<\delta<1/2. The parameter δ\delta is introduced to avoid singularities at time t=0t=0 and t=Tt=T. These singularities, which correspond to the case δ=0\delta=0, are exploited in the continuous case, but are rather difficult to handle at the discrete level (for further discussion, see e.g. [BHS20, p. 6 and Remark 1.5]).

To avoid cumbersome notation and since at some point the parameter mm will be fixed, we simply write φ\varphi and θ\theta instead of φm\varphi_{m} and θm\theta_{m}.

In the remainder of this section, we use the following notation to abridge the estimates

H(p)\displaystyle\mathcal{I}_{H}(p) =τ1Q𝚝¯(e2τθφθ1)(|D¯tp|2+|x2(𝚝¯p)|2)+τQ𝚝¯(e2τθφθ)|x(𝚝¯p)|2\displaystyle=\tau^{-1}\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2\tau\theta\varphi}\theta^{-1})\left(|\overline{{D}}_{t}p|^{2}+|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}p)|^{2}\right)+\tau\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2\tau\theta\varphi}\theta)|\partial_{x}(\bar{\mathtt{t}}^{-}p)|^{2}
+τ3Q𝚝¯(e2τθφθ3)(𝚝¯p)2,\displaystyle\quad+\tau^{3}\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2\tau\theta\varphi}\theta^{3})(\bar{\mathtt{t}}^{-}p)^{2},
KS(q)\displaystyle\mathcal{I}_{KS}(q) =τ1Q𝚝¯(e2τθφθ1)(|D¯tq|2+|x4(𝚝¯q)|2)+τQ𝚝¯(e2τθφθ)|x3(𝚝¯q)|2\displaystyle=\tau^{-1}\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2\tau\theta\varphi}\theta^{-1})\left(|\overline{{D}}_{t}q|^{2}+|\partial_{x}^{4}(\bar{\mathtt{t}}^{-}q)|^{2}\right)+\tau\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2\tau\theta\varphi}\theta)|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)|^{2}
+τ3Q𝚝¯(e2τθφθ3)|x2(𝚝¯q)|2+τ5Q𝚝¯(e2τθφθ5)|x(𝚝¯q)|2+τ7Q𝚝¯(e2τθφθ7)(𝚝¯q)2,\displaystyle\quad+\tau^{3}\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2\tau\theta\varphi}\theta^{3})|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)|^{2}+\tau^{5}\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2\tau\theta\varphi}\theta^{5})|\partial_{x}(\bar{\mathtt{t}}^{-}q)|^{2}+\tau^{7}\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2\tau\theta\varphi}\theta^{7})(\bar{\mathtt{t}}^{-}q)^{2},

and

𝒲H(p)=n{0,M}01|(esφp)n+12|2+01|(esφxp)M+12|2,\displaystyle\mathcal{W}_{H}(p)=\sum_{n\in\{0,M\}}\int_{0}^{1}\left|\left(e^{s\varphi}p\right)^{n+\frac{1}{2}}\right|^{2}+\int_{0}^{1}\left|\left(e^{s\varphi}\partial_{x}p\right)^{M+\frac{1}{2}}\right|^{2},
𝒲KS(q)=n{0,M}(01|(esφq)n+12|2+01|(esφxq)n+12|2)+01|(esφx2q)M+12|2.\displaystyle\mathcal{W}_{KS}(q)=\sum_{n\in\{0,M\}}\left(\int_{0}^{1}\left|\left(e^{s\varphi}q\right)^{n+\frac{1}{2}}\right|^{2}+\int_{0}^{1}\left|\left(e^{s\varphi}\partial_{x}q\right)^{n+\frac{1}{2}}\right|^{2}\right)+\int_{0}^{1}\left|\left(e^{s\varphi}\partial_{x}^{2}q\right)^{M+\frac{1}{2}}\right|^{2}.

We state a uniform Carleman estimate for the time-discrete backward second-order parabolic operator defined on the dual grid

(L𝒟p)n=(D¯tp)nΓx2(𝚝¯p)n,n1,M.(L_{{\scriptscriptstyle\mathcal{D}}}p)^{n}=-(\overline{{D}}_{t}p)^{n}-\Gamma\partial_{x}^{2}(\bar{\mathtt{t}}^{-}p)^{n},\quad n\in\llbracket 1,M\rrbracket. (3.8)
Lemma 3.2.

Let m1m\geq 1 and let φ\varphi and θ\theta be defined as in (3.6) and (3.7) with β\beta verifying (3.3)–(3.4). For the parameter λ1\lambda\geq 1 sufficiently large, there exist C>0C>0, τ01\tau_{0}\geq 1, ϵ0>0\epsilon_{0}>0, depending on ω\omega, λ\lambda , Γ\Gamma, and mm, such that

H(p)\displaystyle\mathcal{I}_{H}(p) C(Q𝚝¯(e2τθφ)|L𝒟p|2+τ3ω×(0,T)𝚝¯(e2τθφθ3)(𝚝¯p)2)+C(t)1𝒲H(p)\displaystyle\leq C\left(\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2\tau\theta\varphi})|L_{{\scriptscriptstyle\mathcal{D}}}p|^{2}+\tau^{3}\int\!\!\!\int_{\omega\times(0,T)}\bar{\mathtt{t}}^{-}(e^{2\tau\theta\varphi}\theta^{3})(\bar{\mathtt{t}}^{-}p)^{2}\right)+C({\triangle t})^{-1}\mathcal{W}_{H}(p)

for all ττ0(T2m+T2m1)\tau\geq\tau_{0}(T^{2m}+T^{2m-1}), and for all t>0{\triangle t}>0 and 0<δ1/20<\delta\leq 1/2 satisfying the condition

tτ4δ4mT6mϵ0,\frac{{\triangle t}\tau^{4}}{\delta^{4m}T^{6m}}\leq\epsilon_{0}, (3.9)

and pp is any time-discrete function in p(H2(0,1)H01(0,1))𝒟¯p\in(H^{2}(0,1)\cap H_{0}^{1}(0,1))^{\overline{{\scriptscriptstyle\mathcal{D}}}}.

The proof Lemma 3.2 is essentially given in [BHS20]. Actually, the authors prove this result by considering a slightly different weight, more precisely, they take c2=0c_{2}=0 and c1=K>βc_{1}=K>\|\beta\|_{\infty} with KK large enough. Nonetheless, a close inspection shows that the proof can be adapted to our case just by considering that

θ(t)CTθ1+1/mandmaxt[0,T]θ(t)(δmT2m)1.\theta^{\prime}(t)\leq CT\theta^{1+1/m}\quad\text{and}\quad\max_{t\in[0,T]}\theta(t)\leq(\delta^{m}T^{2m})^{-1}. (3.10)

Even though it does not explicitly appear in the Carleman estimate since it is hidden in the definition of (3.7), the parameter δ\delta plays a crucial role. On one hand, it is possible to define continuously the weight outside [0,T][0,T], since functions on the dual mesh 𝒟¯\overline{\mathcal{D}} have one extra point lying outside this interval. On the other, it allows us to estimate the discrete derivative of θ\theta (see Section A.2) and perform several related computations.

Now, we present a new uniform Carleman estimate for the time-discrete backward fourth-order parabolic operator defined on the dual grid, that is,

(P𝒟q)n=(D¯tq)n+γx4(𝚝¯q)n,n0,M,(P_{{\scriptscriptstyle\mathcal{D}}}q)^{n}=-(\overline{{D}}_{t}{q})^{n}+\gamma\partial_{x}^{4}(\bar{\mathtt{t}}^{-}q)^{n},\quad n\in\llbracket 0,M\rrbracket, (3.11)

where q(H4(0,1))𝒟¯q\in(H^{4}(0,1))^{\overline{{\scriptscriptstyle\mathcal{D}}}}. We have the following.

Lemma 3.3.

Let m1/3m\geq 1/3 and let φ\varphi and θ\theta be defined as in (3.6) and (3.7) with β\beta verifying (3.3)–(3.4). For the parameter λ1\lambda\geq 1 sufficiently large, there exist C>0C>0, τ01\tau_{0}\geq 1, ϵ0>0\epsilon_{0}>0, depending on ω\omega, λ\lambda, γ\gamma, and mm, such that

KS(q)\displaystyle\mathcal{I}_{KS}(q) C(Q𝚝¯(e2τθφ)|P𝒟q|2+τ7ω×(0,T)𝚝¯(e2τθφθ7)(𝚝¯q)2)+C(t)1𝒲KS(q)\displaystyle\leq C\left(\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2\tau\theta\varphi})|P_{{\scriptscriptstyle\mathcal{D}}}q|^{2}+\tau^{7}\int\!\!\!\int_{\omega\times(0,T)}\bar{\mathtt{t}}^{-}(e^{2\tau\theta\varphi}\theta^{7})(\bar{\mathtt{t}}^{-}q)^{2}\right)+C({\triangle t})^{-1}\mathcal{W}_{KS}(q)

for all ττ0(T2m+T2m1/3)\tau\geq\tau_{0}(T^{2m}+T^{2m-1/3}), and for all t>0{\triangle t}>0 and 0<δ1/20<\delta\leq 1/2 satisfying the condition

tτ5δ10mT14mϵ0.\frac{{\triangle t}\tau^{5}}{\delta^{10m}T^{14m}}\leq\epsilon_{0}. (3.12)

and qq is any time-discrete function in q(H4(0,1)H02(0,1))𝒟¯q\in(H^{4}(0,1)\cap H_{0}^{2}(0,1))^{\overline{{\scriptscriptstyle\mathcal{D}}}}.

The proof of this result follows the steps presented in [BHS20, Section 2] for the time-discrete Carleman estimate for second-order parabolic operators, together with some new computations specific to the fourth-order case. We give an abridged proof in Appendix B

We readily observe that this new estimate has the same structure as in the continuous case (cf. [CMP15, Theorem 3.3]) but due to the discrete nature of the problem it has some remainder terms like the Carleman estimate for the second-order parabolic operator. Note that in this case, we have several extra terms corresponding to first and second order derivatives of the function qq. As explained in [BHS20], it is not clear if these terms can be removed, even for the heat equation. Lastly, as discussed in [CnC16, Remark 3.4], m=1/3m=1/3 is the actual optimal power and improves the estimation of the cost of control of the linear KS equation (see [CnG16]). The same remark applies here.

3.2 A carleman estimate with only one observation

We present a Carleman estimate for the coupled adjoint system (3.1) with only one observation on the right-hand side. Using the notation of Section 2, we compactly rewrite (3.1) as

{(D¯tp)Γx2(𝚝¯p)ncx(𝚝¯p)n=(𝚝¯q)nn1,M,(D¯tq)+γx4(𝚝¯q)nx3(𝚝¯q)n+ax2(𝚝¯q)n=(𝚝¯p)nn1,M,pM+12=pT,qM+12=qT.\begin{cases}\displaystyle-(\overline{{D}}_{t}p)-\Gamma\partial_{x}^{2}(\bar{\mathtt{t}}^{-}p)^{n}-c\partial_{x}(\bar{\mathtt{t}}^{-}p)^{n}=(\bar{\mathtt{t}}^{-}q)^{n}&n\in\llbracket 1,M\rrbracket,\\ \displaystyle-(\overline{{D}}_{t}q)+\gamma\partial_{x}^{4}(\bar{\mathtt{t}}^{-}q)^{n}-\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)^{n}+a\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)^{n}=(\bar{\mathtt{t}}^{-}p)^{n}&n\in\llbracket 1,M\rrbracket,\\ p^{M+\frac{1}{2}}=p_{T},\quad q^{M+\frac{1}{2}}=q_{T}.\end{cases} (3.13)

We have the following.

Proposition 3.4.

Let m1m\geq 1 and let φ\varphi and θ\theta be defined as in (3.6) and (3.7) with β\beta verifying (3.3)–(3.4). For the parameter λ1\lambda\geq 1 sufficiently large, there exist C>0C>0, τ11\tau_{1}\geq 1, ϵ1>0\epsilon_{1}>0, depending on ω\omega, λ\lambda, Γ\Gamma, γ\gamma, and mm, such that for any (pT,qT)H01(Ω)×H02(Ω)(p_{T},q_{T})\in H_{0}^{1}(\Omega)\times H_{0}^{2}(\Omega), the solution (p,q)(p,q) to (3.13) satisfies

H\displaystyle\mathcal{I}_{H} (p)+KS(q)C(ω1×(0,T)𝚝¯(e2sφs39)(𝚝¯q)2)+C(t)1(𝒲H(p)+𝒲KS(q)),\displaystyle(p)+\mathcal{I}_{KS}(q)\leq C\left(\int\!\!\!\int_{\omega_{1}\times(0,T)}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{39})(\bar{\mathtt{t}}^{-}q)^{2}\right)+C({\triangle t})^{-1}\Big{(}\mathcal{W}_{H}(p)+\mathcal{W}_{KS}(q)\Big{)}, (3.14)

for all ττ1(T2m+T2m1+T2m1/3)\tau\geq\tau_{1}(T^{2m}+T^{2m-1}+T^{2m-1/3}), and for all t>0{\triangle t}>0 and 0<δ1/20<\delta\leq 1/2 verifying the condition

tτ10δ10mT20mϵ1.\frac{{\triangle t}\tau^{10}}{\delta^{10m}T^{20m}}\leq\epsilon_{1}. (3.15)
Proof.

We follow the classical methodology of [GBdT10] (see also [CMP15]) adapted to the time-discrete case. For clarity, we have divided the proof in three steps.

Step 1. First estimates. We apply the corresponding Carleman estimate to each equation in the system. Note that the condition for ϵ0\epsilon_{0} is stronger for the fourth-order equation, thus conditions (3.9) and (3.12) can be put in a single one. More precisely, adding up the estimates, we obtain

IH(p)+IKS(q)\displaystyle I_{H}(p)+I_{KS}(q)
C(ω0×(0,T)[𝚝¯(e2sφs3p2)+𝚝¯(e2sφs7q2)]+Q(𝚝¯e2sφ)|cx(𝚝¯p)2+(𝚝¯q)|2)\displaystyle\leq C\left(\int\!\!\!\int_{\omega_{0}\times(0,T)}\left[\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3}p^{2})+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{7}q^{2})\right]+\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}e^{2s\varphi})\left|c\partial_{x}(\bar{\mathtt{t}}^{-}p)^{2}+(\bar{\mathtt{t}}^{-}q)\right|^{2}\right)
+C(Q(𝚝¯e2sφ)|ax2(𝚝¯q)+x3(𝚝¯q)(𝚝¯p)|2)+C(t)1(𝒲H(p)+𝒲KS(q)),\displaystyle\quad+C\left(\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}e^{2s\varphi})\left|-a\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)+\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)-(\bar{\mathtt{t}}^{-}p)\right|^{2}\right)+C({\triangle t})^{-1}\Big{(}\mathcal{W}_{H}(p)+\mathcal{W}_{KS}(q)\Big{)},

for all ττ0(T2m+T2m1+T2m1/3)\tau\geq\tau_{0}(T^{2m}+T^{2m-1}+T^{2m-1/3}) and tτ5(δ10mT14m)1ϵ0{\triangle t}\tau^{5}(\delta^{10m}T^{14m})^{-1}\leq\epsilon_{0}. Since 1CT2mθ1\leq CT^{2m}\theta, we can choose τ1τ0\tau_{1}\geq\tau_{0} large enough (depending on aa and cc) such that

IH(p)+IKS(q)\displaystyle I_{H}(p)+I_{KS}(q)
C(ω0×(0,T)[𝚝¯(e2sφs3p2)+𝚝¯(e2sφs7q2)])+C(t)1(𝒲H(p)+𝒲KS(q)),\displaystyle\quad\leq C\left(\int\!\!\!\int_{\omega_{0}\times(0,T)}\left[\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3}p^{2})+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{7}q^{2})\right]\right)+C({\triangle t})^{-1}\Big{(}\mathcal{W}_{H}(p)+\mathcal{W}_{KS}(q)\Big{)}, (3.16)

for all ττ1(T2m+T2m1+T2m1/3)\tau\geq\tau_{1}(T^{2m}+T^{2m-1}+T^{2m-1/3}) and

tτ5δ10mT14mϵ0.\frac{{\triangle t}\tau^{5}}{\delta^{10m}T^{14m}}\leq\epsilon_{0}. (3.17)

Step 2. A local energy estimate. In this step, we will obtain an estimate for the local term for pp in terms of several observations for qq and its spatial derivatives. Let ω0ω1ω\omega_{0}\Subset\omega_{1}\Subset\omega and let ηCc(ω1)\eta\in C_{c}^{\infty}(\omega_{1}) such that η=1\eta=1 in ω0\omega_{0}. From the equation verified by pp we have

ω0×(0,T)𝚝¯(e2sφs3)(𝚝¯p)2\displaystyle\int\!\!\!\int_{\omega_{0}\times(0,T)}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})(\bar{\mathtt{t}}^{-}p)^{2} ω1×(0,T)η𝚝¯(e2sφs3)(𝚝¯p)(D¯tq+x4(𝚝¯q)+x3(𝚝¯q)+ax2(𝚝¯q))\displaystyle\leq\int\!\!\!\int_{\omega_{1}\times(0,T)}\eta\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})(\bar{\mathtt{t}}^{-}p)\left(-\overline{{D}}_{t}q+\partial_{x}^{4}(\bar{\mathtt{t}}^{-}q)+\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)+a\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)\right)
=:I1+I2\displaystyle=:I_{1}+I_{2} (3.18)

with

I1\displaystyle I_{1} =ω1×(0,T)η𝚝¯(e2sφs3)(𝚝¯p)[x4(𝚝¯q)+x3(𝚝¯q)+ax2(𝚝¯q)],\displaystyle=\int\!\!\!\int_{\omega_{1}\times(0,T)}\eta\,\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})(\bar{\mathtt{t}}^{-}p)\left[\partial_{x}^{4}(\bar{\mathtt{t}}^{-}q)+\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)+a\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)\right],
I2\displaystyle I_{2} =ω1×(0,T)η𝚝¯(e2sφs3)(𝚝¯p)D¯tq.\displaystyle=-\int\!\!\!\int_{\omega_{1}\times(0,T)}\eta\,\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})(\bar{\mathtt{t}}^{-}p)\overline{{D}}_{t}q.

We note that I1I_{1} does not involve time-discrete derivatives. Thus, using the estimate |x(e2sφs3η)|Ce2sφs4\left|\partial_{x}(e^{2s\varphi}s^{3}\eta)\right|\leq Ce^{2s\varphi}s^{4} in ω1×(0,T)\omega_{1}\times(0,T), we can integrate by parts in the fourth-order term and use Cauchy-Schwarz and Young inequalities to get

|I1|\displaystyle|I_{1}| ϱ(Q[𝚝¯(e2sφs)|x(𝚝¯p)|2+𝚝¯(e2sφs3)(𝚝¯p)2])\displaystyle\leq\varrho\left(\int\!\!\!\int_{Q}\left[\bar{\mathtt{t}}^{-}(e^{2s\varphi}s)|\partial_{x}(\bar{\mathtt{t}}^{-}p)|^{2}+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})(\bar{\mathtt{t}}^{-}p)^{2}\right]\right)
+Cϱ(ω1×(0,T)[𝚝¯(e2sφs3)|x2(𝚝¯q)|2+𝚝¯(e2sφs5)|x3(𝚝¯q)|2]),\displaystyle\quad+\frac{C}{\varrho}\left(\int\!\!\!\int_{\omega_{1}\times(0,T)}\left[\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)|^{2}+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{5})|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)|^{2}\right]\right), (3.19)

for any 0<ϱ<10<\varrho<1 and some C>0C>0 only depending on ω1\omega_{1} and a.

To bound I2I_{2} we argue as follows. Discrete integration by parts (see formula (A.6)) yields

I2\displaystyle I_{2} =((esφs3/2η1/2p)12,(esφs3/2η1/2q)12)L2(Ω)((esφs3/2η1/2p)M+12,(esφs3/2η1/2q)M+12)L2(Ω)\displaystyle=\left((e^{s\varphi}s^{3/2}\eta^{1/2}p)^{\frac{1}{2}},(e^{s\varphi}s^{3/2}\eta^{1/2}q)^{\frac{1}{2}}\right)_{L^{2}(\Omega)}-\left((e^{s\varphi}s^{3/2}\eta^{1/2}p)^{M+\frac{1}{2}},(e^{s\varphi}s^{3/2}\eta^{1/2}q)^{M+\frac{1}{2}}\right)_{L^{2}(\Omega)}
+Q(𝚝¯+q)D¯t(e2sφs3p)η:=j=13I2(j).\displaystyle\quad+\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{+}q)\overline{{D}}_{t}(e^{2s\varphi}s^{3}p)\eta:=\sum_{j=1}^{3}I_{2}^{(j)}. (3.20)

A direct computation gives

|I2(1)|+|I2(2)|Cn{0,M}(|(esφs3/2p)n+12|L2(Ω)2+|(esφs3/2q)n+12|L2(Ω)2).|I_{2}^{(1)}|+|I_{2}^{(2)}|\leq C\sum_{n\in\{0,M\}}\left(\left|(e^{s\varphi}s^{3/2}p)^{n+\frac{1}{2}}\right|^{2}_{L^{2}(\Omega)}+\left|(e^{s\varphi}s^{3/2}q)^{n+\frac{1}{2}}\right|^{2}_{L^{2}(\Omega)}\right). (3.21)

On the other hand, using formula (A.1), we have

I2(3)=Qη𝚝¯(e2sφs3)(𝚝¯+q)D¯tp+QηD¯t(e2sφs3)(𝚝¯+p)(𝚝¯+q),I_{2}^{(3)}=\int\!\!\!\int_{Q}\eta\,\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})(\bar{\mathtt{t}}^{+}q)\overline{{D}}_{t}p+\int\!\!\!\int_{Q}\eta\overline{{D}}_{t}(e^{2s\varphi}s^{3})(\bar{\mathtt{t}}^{+}p)(\bar{\mathtt{t}}^{+}q),

whence, using that (𝚝¯+q)=(𝚝¯q)+tD¯tq(\bar{\mathtt{t}}^{+}q)=(\bar{\mathtt{t}}^{-}q)+{\triangle t}\overline{{D}}_{t}q and D¯t(e2sφθ3)=(𝚝¯+e2sφ)D¯t(θ3)+(𝚝¯θ)3D¯t(e2sφ)\overline{{D}}_{t}(e^{2s\varphi}\theta^{3})=(\bar{\mathtt{t}}^{+}e^{2s\varphi})\overline{{D}}_{t}(\theta^{3})+(\bar{\mathtt{t}}^{-}\theta)^{3}\overline{{D}}_{t}(e^{2s\varphi}) (which follows from (A.1)), we get

I2(3)\displaystyle I_{2}^{(3)} =Qη𝚝¯(e2sφs3)(𝚝¯q)D¯tp+tQη𝚝¯(e2sφs3)(D¯tp)(D¯tq)\displaystyle=\int\!\!\!\int_{Q}\eta\,\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})(\bar{\mathtt{t}}^{-}q)\overline{{D}}_{t}p+{\triangle t}\int\!\!\!\int_{Q}\eta\,\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})(\overline{{D}}_{t}p)(\overline{{D}}_{t}q)
+Qη(𝚝¯+e2sφ)(𝚝¯+p)(𝚝¯+q)τ3D¯t(θ3)+Qη(𝚝¯+p)(𝚝¯+q)(𝚝¯s)3D¯t(e2sφ):=i=14Hi.\displaystyle+\int\!\!\!\int_{Q}\eta\,(\bar{\mathtt{t}}^{+}e^{2s\varphi})(\bar{\mathtt{t}}^{+}p)(\bar{\mathtt{t}}^{+}q)\tau^{3}\overline{{D}}_{t}(\theta^{3})+\int\!\!\!\int_{Q}\eta\,(\bar{\mathtt{t}}^{+}p)(\bar{\mathtt{t}}^{+}q)(\bar{\mathtt{t}}^{-}s)^{3}\overline{{D}}_{t}(e^{2s\varphi}):=\sum_{i=1}^{4}H_{i}. (3.22)

Using Cauchy-Schwarz and Young inequalities, we readily get

|H1|+|H2|\displaystyle|H_{1}|+|H_{2}| ϱQ𝚝¯(e2sφs1)(D¯tp)2+t2Q𝚝¯(e2sφs3)[(D¯tp)2+(D¯tq)2]\displaystyle\leq\varrho\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{-1})(\overline{{D}}_{t}p)^{2}+\frac{{\triangle t}}{2}\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})\left[(\overline{{D}}_{t}p)^{2}+(\overline{{D}}_{t}q)^{2}\right]
+Cϱω1×(0,T)𝚝¯(e2sφs7)(𝚝¯q)2.\displaystyle\quad+\frac{C}{\varrho}\int\!\!\!\int_{\omega_{1}\times(0,T)}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{7})(\bar{\mathtt{t}}^{-}q)^{2}.

Now, let us choose ϵ1>0\epsilon_{1}>0 small enough such that ϵ1min{ϵ0,1/2C}\epsilon_{1}\leq\min\{\epsilon_{0},1/2C\} where C>0C>0 is the constant appearing in (3.16). Hence, setting

tτ4δ4mT8mϵ1,\frac{{\triangle t}\tau^{4}}{\delta^{4m}T^{8m}}\leq\epsilon_{1}, (3.23)

we have

|H1|+|H2|\displaystyle|H_{1}|+|H_{2}| ϱQ𝚝¯(e2sφs1)(D¯tp)2+ϵ1Q𝚝¯(e2sφs1)[(D¯tp)2+(D¯tq)2]\displaystyle\leq\varrho\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{-1})(\overline{{D}}_{t}p)^{2}+\epsilon_{1}\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{-1})\left[(\overline{{D}}_{t}p)^{2}+(\overline{{D}}_{t}q)^{2}\right]
+Cϱω1×(0,T)𝚝¯(e2sφs7)(𝚝¯q)2.\displaystyle\quad+\frac{C}{\varrho}\int\!\!\!\int_{\omega_{1}\times(0,T)}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{7})(\bar{\mathtt{t}}^{-}q)^{2}. (3.24)

For the third term, using formula A.5(i) with =3\ell=3 and the facts that θ1(t)CT2m\theta^{-1}(t)\leq CT^{2m} and τCT2m1\tau\geq CT^{2m-1} we have

|H3|Qη|(𝚝¯+p)||(𝚝¯q)|𝚝¯+(e2sφs4)+Qη|(𝚝¯+p)||(𝚝¯q)|(𝚝¯+e2sφ)tτ3δ3m+2T6m+2|H_{3}|\leq\int\!\!\!\int_{Q}\eta|(\bar{\mathtt{t}}^{+}p)||(\bar{\mathtt{t}}^{-}q)|\bar{\mathtt{t}}^{+}(e^{2s\varphi}s^{4})+\int\!\!\!\int_{Q}\eta|(\bar{\mathtt{t}}^{+}p)||(\bar{\mathtt{t}}^{-}q)|(\bar{\mathtt{t}}^{+}e^{2s\varphi})\frac{{\triangle t}\tau^{3}}{\delta^{3m+2}T^{6m+2}}

Since m1/3m\geq 1/3, provided

tτ3δ9mT12m1\frac{{\triangle t}\tau^{3}}{\delta^{9m}T^{12m}}\leq 1 (3.25)

we can use the properties of the function η\eta to deduce

|H3|2ϱQ𝚝¯+(e2sφs3)(𝚝¯+p)2+Cϱω1×(0,T)𝚝¯+(e2sφs5)(𝚝¯+q)2|H_{3}|\leq 2\varrho\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{+}(e^{2s\varphi}s^{3})(\bar{\mathtt{t}}^{+}p)^{2}+\frac{C}{\varrho}\int\!\!\!\int_{\omega_{1}\times(0,T)}\bar{\mathtt{t}}^{+}(e^{2s\varphi}s^{5})(\bar{\mathtt{t}}^{+}q)^{2}

for any 0<ϱ<10<\varrho<1 and where we have used that s(t)11s(t)^{-1}\leq 1 for t[0,T]t\in[0,T] by increasing (if necessary) the value of τ1\tau_{1}. By shifting the above integrals (see formula (A.4)), we get

|H3|\displaystyle|H_{3}| 2ϱQ𝚝¯+(e2sφs3)(𝚝¯+p)2+Cϱω1×(0,T)𝚝¯+(e2sφs5)(𝚝¯+q)2\displaystyle\leq 2\varrho\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{+}(e^{2s\varphi}s^{3})(\bar{\mathtt{t}}^{+}p)^{2}+\frac{C}{\varrho}\int\!\!\!\int_{\omega_{1}\times(0,T)}\bar{\mathtt{t}}^{+}(e^{2s\varphi}s^{5})(\bar{\mathtt{t}}^{+}q)^{2}
+Ct(|(esφs3/2p)M+12|L2(Ω)2+|(esφs5/2q)M+12|L2(Ω)2).\displaystyle\quad+C{\triangle t}\left(\left|(e^{s\varphi}s^{3/2}p)^{M+\frac{1}{2}}\right|^{2}_{L^{2}(\Omega)}+\left|(e^{s\varphi}s^{5/2}q)^{M+\frac{1}{2}}\right|^{2}_{L^{2}(\Omega)}\right). (3.26)

From Lemma A.4 and A.6, we can compute

|D¯t(e2sφ)|C((𝚝+e2sφ)(𝚝¯+s)2+(𝚝¯+e2sφ)tτ2δ2m+2T4m+2).|\overline{{D}}_{t}(e^{2s\varphi})|\leq C\left((\mathtt{t}^{+}e^{2s\varphi})(\bar{\mathtt{t}}^{+}s)^{2}+(\bar{\mathtt{t}}^{+}e^{2s\varphi})\frac{{\triangle t}\tau^{2}}{\delta^{2m+2}T^{4m+2}}\right).

This, together with Lemma A.5(ii) and arguments similar to the ones used for estimating H3H_{3}, yield that

|H4|\displaystyle|H_{4}| 4ϱQ𝚝¯(e2sφs3)(𝚝¯p)2+Cϱω1×(0,T)𝚝¯(e2sφs7)(𝚝¯p)2\displaystyle\leq 4\varrho\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})(\bar{\mathtt{t}}^{-}p)^{2}+\frac{C}{\varrho}\int\!\!\!\int_{\omega_{1}\times(0,T)}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{7})(\bar{\mathtt{t}}^{-}p)^{2}
+Ct(|(esφs3/2p)M+12|L2(Ω)2+|(esφs7/2q)M+12|L2(Ω)2)\displaystyle\quad+C{\triangle t}\left(\left|(e^{s\varphi}s^{3/2}p)^{M+\frac{1}{2}}\right|^{2}_{L^{2}(\Omega)}+\left|(e^{s\varphi}s^{7/2}q)^{M+\frac{1}{2}}\right|^{2}_{L^{2}(\Omega)}\right) (3.27)

provided (3.25) holds. Having reached this point, we observe that the smallness conditions (3.17), (3.23), and (3.25) can be combined into a single one verifying

tτ10δ10mT20mϵ1\frac{{\triangle t}\tau^{10}}{\delta^{10m}T^{20m}}\leq\epsilon_{1} (3.28)

with ϵ1>0\epsilon_{1}>0 small enough as above. We have chosen these particular powers for τ\tau, δ\delta and TT since they simplify the computations in the following section.

To conclude this step, we just have to combine expressions (3.19)–(3.22), (3.24), (3.26)–(3.27) into (3.18) to obtain

ω0×(0,T)\displaystyle\int\!\!\!\int_{\omega_{0}\times(0,T)} 𝚝¯(e2sφs3)(𝚝¯p)2\displaystyle\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})(\bar{\mathtt{t}}^{-}p)^{2}
8ϱ(Q[𝚝¯(e2sφs)|x(𝚝¯p)|2+𝚝¯(e2sφs3)(𝚝¯p)2+𝚝¯(e2sφs1)(D¯tp)2])\displaystyle\leq 8\varrho\left(\int\!\!\!\int_{Q}\left[\bar{\mathtt{t}}^{-}(e^{2s\varphi}s)|\partial_{x}(\bar{\mathtt{t}}^{-}p)|^{2}+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})(\bar{\mathtt{t}}^{-}p)^{2}+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{-1})(\overline{{D}}_{t}p)^{2}\right]\right)
+ϵ1Q𝚝¯(e2sφs1)[(D¯tp)2+(D¯tq)2]\displaystyle\quad+\epsilon_{1}\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{-1})\left[(\overline{{D}}_{t}p)^{2}+(\overline{{D}}_{t}q)^{2}\right]
+Cϱ(ω1×(0,T)𝚝¯(e2sφs3)|x2(𝚝¯q)|2+𝚝¯(e2sφs5)|x3(𝚝¯q)|2+𝚝¯(e2sφs7)(𝚝¯q)2)\displaystyle\quad+\frac{C}{\varrho}\left(\int\!\!\!\int_{\omega_{1}\times(0,T)}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)|^{2}+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{5})|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)|^{2}+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{7})(\bar{\mathtt{t}}^{-}q)^{2}\right)
+C(t)1(|(esφp)M+12|L2(Ω)2+|(esφq)M+12|L2(Ω)2)\displaystyle\quad+C({\triangle t})^{-1}\left(\left|(e^{s\varphi}p)^{M+\frac{1}{2}}\right|^{2}_{L^{2}(\Omega)}+\left|(e^{s\varphi}q)^{M+\frac{1}{2}}\right|^{2}_{L^{2}(\Omega)}\right) (3.29)

for any 0<ϱ<10<\varrho<1. In the last line, we have used (3.28) to remove the powers of ss.

Step 3. Last arrangements and conclusion. Using estimate (3.29) in inequality (3.16), taking ϱ>0\varrho>0 small enough and recalling the definition of ϵ1\epsilon_{1}, we readily get

IH\displaystyle I_{H} (p)+IKS(q)\displaystyle(p)+I_{KS}(q)
C(ω1×(0,T)[𝚝¯(e2sφs3)|x2(𝚝¯q)|2+𝚝¯(e2sφs5)|x3(𝚝¯q)|2+𝚝¯(e2sφs7)(𝚝¯q)2])\displaystyle\leq C\left(\int\!\!\!\int_{\omega_{1}\times(0,T)}\left[\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)|^{2}+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{5})|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)|^{2}+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{7})(\bar{\mathtt{t}}^{-}q)^{2}\right]\right)
+C(t)1(𝒲H(p)+𝒲KS(q)),\displaystyle\quad+C({\triangle t})^{-1}\Big{(}\mathcal{W}_{H}(p)+\mathcal{W}_{KS}(q)\Big{)}, (3.30)

for all ττ1(T2m+T2m1+T2m1/3)\tau\geq\tau_{1}(T^{2m}+T^{2m-1}+T^{2m-1/3}) and provided (3.28) holds. Notice that we have removed the local term of pp at the price of having observations of the space derivatives of qq.

Now, we claim that for any ϑ>0\vartheta>0, there exists a constant Cϑ>0C_{\vartheta}>0 uniform with respect to t{\triangle t} such that

ω1×(0,T)[𝚝¯(e2sφs3)|x2(𝚝¯q)|2+𝚝¯(e2sφs5)|x3(𝚝¯q)|2+𝚝¯(e2sφs7)(𝚝¯q)2]\displaystyle\int\!\!\!\int_{\omega_{1}\times(0,T)}\left[\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)|^{2}+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{5})|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)|^{2}+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{7})(\bar{\mathtt{t}}^{-}q)^{2}\right]
ϑ(Q[𝚝¯(e2sφs1)|x4(𝚝¯q)|2+𝚝¯(e2sφs)|x3(𝚝¯q)|2+𝚝¯(e2sφs3)|x2(𝚝¯q)|2])\displaystyle\leq\vartheta\left(\int\!\!\!\int_{Q}\left[\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{-1})|\partial_{x}^{4}(\bar{\mathtt{t}}^{-}q)|^{2}+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s)|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)|^{2}+\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)|^{2}\right]\right)
+Cϑω×(0,T)𝚝¯(e2sφs39)(𝚝¯q)2.\displaystyle\quad+C_{\vartheta}\int\!\!\!\int_{\omega\times(0,T)}{\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{39})}(\bar{\mathtt{t}}^{-}q)^{2}. (3.31)

If this inequality holds, we just have to use (3.31) in (3.30) and take ϑ>0\vartheta>0 sufficiently small to discover the Carleman estimate (3.14).

To prove (3.31) we follow a standard procedure. Let ω2\omega_{2} an open set such that ω1ω2ω\omega_{1}\Subset\omega_{2}\Subset\omega and ζCc(ω2)\zeta\in C_{c}^{\infty}(\omega_{2}) with ζ=1\zeta=1 in ω1\omega_{1}. Then,

ω1×(0,T)𝚝¯(e2sφs5)|x3(𝚝¯q)|2\displaystyle\int\!\!\!\int_{\omega_{1}\times(0,T)}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{5})|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)|^{2} ω2×(0,T)ζ𝚝¯(e2sφs5)|x3(𝚝¯q)|2\displaystyle\leq\int\!\!\!\int_{\omega_{2}\times(0,T)}\zeta\,\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{5})|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)|^{2}
=ω2×(0,T)ζ𝚝¯(e2sφs5)x4(𝚝¯q)x2(𝚝¯q)\displaystyle=-\int\!\!\!\int_{\omega_{2}\times(0,T)}\zeta\,\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{5})\,\partial_{x}^{4}(\bar{\mathtt{t}}^{-}q)\,\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)
+12ω2×(0,T)𝚝¯(x2[ζe2sφs5])|x2(𝚝¯q)|2\displaystyle\quad+\frac{1}{2}\int\!\!\!\int_{\omega_{2}\times(0,T)}\bar{\mathtt{t}}^{-}\left(\partial_{x}^{2}[\zeta e^{2s\varphi}s^{5}]\right)|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)|^{2} (3.32)

and since ss only depends on time, in view of the estimate |x2(e2sφ)|Ce2sφs2|\partial_{x}^{2}(e^{2s\varphi})|\leq Ce^{2s\varphi}s^{2} in ω2×(0,T)\omega_{2}\times(0,T), we have

ω1×(0,T)\displaystyle\int\!\!\!\int_{\omega_{1}\times(0,T)} 𝚝¯(e2sφs5)|x3(𝚝¯q)|2ϑQ𝚝¯(e2sφs1)|x4(𝚝¯q)|2+Cϑω2×(0,T)𝚝¯(e2sφs11)|x2(𝚝¯q)|2.\displaystyle\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{5})|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)|^{2}\leq\vartheta\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{-1})|\partial_{x}^{4}(\bar{\mathtt{t}}^{-}q)|^{2}+C_{\vartheta}\int\!\!\!\int_{\omega_{2}\times(0,T)}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{11})|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)|^{2}. (3.33)

Analogously, if ω3\omega_{3} is an open set such that ω2ω3ω\omega_{2}\Subset\omega_{3}\Subset\omega, we get

ω2×(0,T)\displaystyle\int\!\!\!\int_{\omega_{2}\times(0,T)} 𝚝¯(e2sφs11)|x2(𝚝¯q)|2ϑQ𝚝¯(e2sφs)|x3(𝚝¯q)|2+Cϑω3×(0,T)𝚝¯(e2sφs21)|x(𝚝¯q)|2,\displaystyle\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{11})|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)|^{2}\leq\vartheta\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s)|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}q)|^{2}+C_{\vartheta}\int\!\!\!\int_{\omega_{3}\times(0,T)}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{21})|\partial_{x}(\bar{\mathtt{t}}^{-}q)|^{2}, (3.34)

and finally

ω3×(0,T)\displaystyle\int\!\!\!\int_{\omega_{3}\times(0,T)} 𝚝¯(e2sφs21)|x(𝚝¯q)|2ϑQ𝚝¯(e2sφs3)|x2(𝚝¯q)|2+Cϑω×(0,T)𝚝¯(e2sφs39)(𝚝¯q)2.\displaystyle\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{21})|\partial_{x}(\bar{\mathtt{t}}^{-}q)|^{2}\leq\vartheta\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{3})|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}q)|^{2}+C_{\vartheta}\int\!\!\!\int_{\omega\times(0,T)}\bar{\mathtt{t}}^{-}(e^{2s\varphi}s^{39})(\bar{\mathtt{t}}^{-}q)^{2}. (3.35)

Thus, the claim follows from expressions (3.32)–(3.35). This ends the proof. ∎

3.3 Proof of 3.1

Now, we are in position to obtain the observability inequality (3.2). The proof is divided into two steps: the first one resembles the continuous case and looks for estimating the weigt functions, while the second one is exclusive to the discrete case and connects the Carleman parameters with the discretization ones.

In what follows, CC denotes a positive constant depending at most on Ω\Omega, ω\omega, mm, Γ\Gamma, γ\gamma, aa, and cc, that may change from line to line.

Step 1. Cleaning up the Carleman estimate. In view of (A.3) and from our Carleman inequality with only one observation (3.14), we have

Qe2sφs3|p|2+Qe2sφs7|q|2C(ω×(0,T)e2sφs39|q|2)+C(t)1(𝒲H(p)+𝒲KS(q))\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{Q}e^{2s\varphi}s^{3}|p|^{2}+\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{Q}e^{2s\varphi}s^{7}|q|^{2}\leq C\left(\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{\omega\times(0,T)}e^{2s\varphi}s^{39}|q|^{2}\right)+C({\triangle t})^{-1}\Big{(}\mathcal{W}_{H}(p)+\mathcal{W}_{KS}(q)\Big{)} (3.36)

for all ττ1(T2m+T2m1+T2m1/3)\tau\geq\tau_{1}(T^{2m}+T^{2m-1}+T^{2m-1/3}) and any t>0{\triangle t}>0 verifying (3.15).

Now, we will remove the weights in inequality (3.36). Since τ1\tau\geq 1 and noting that (e2sφ)n+12e24m+1τK03mT2m(e^{2s\varphi})^{n+\frac{1}{2}}\geq e^{-\frac{2^{4m+1}\tau K_{0}}{3^{m}T^{2m}}} for nM/4,3M/4n\in\llbracket M/4,3M/4\rrbracket, where K0:=maxxΩ¯{φ(x)}K_{0}:=\max_{x\in\overline{\Omega}}\{-\varphi(x)\}, we see that the left hand-side of the above expression can be bounded as

Qe2sφs3|p|2+Qe2sφs7|q|2nM/4,3M/4tτ3eCτT2mT6m(|pn+12|L2(Ω)2+|qn+12|L2(Ω)2)\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{Q}e^{2s\varphi}s^{3}|p|^{2}+\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{Q}e^{2s\varphi}s^{7}|q|^{2}\geq\sum_{n\in\llbracket M/4,3M/4\rrbracket}{\triangle t}\tau^{3}e^{-\frac{C\tau}{T^{2m}}}T^{-6m}\left(|p^{n+\frac{1}{2}}|^{2}_{L^{2}(\Omega)}+|q^{n+\frac{1}{2}}|^{2}_{L^{2}(\Omega)}\right) (3.37)

for some C>0C>0 uniform with respect to t{\triangle t}. Using estimate (C.1) in Lemma C.1, we see that after iteration

p12L2(Ω)2+q12L2(Ω)2e2CT(pn+12L2(Ω)2+qn+12L2(Ω)2)\lVert p^{\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert q^{\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}\leq e^{2CT}\left(\lVert p^{n+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert q^{n+\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}\right) (3.38)

for all n1,Mn\in\llbracket 1,M\rrbracket and any t>0{\triangle t}>0 such that 2Ct<12C{\triangle t}<1. Using this in the right-hand side of (3.37) and summing over nn, we have

Qe2sφs3|p|2+Qe2sφs7|q|2\displaystyle\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{Q}e^{2s\varphi}s^{3}|p|^{2}+\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{Q}e^{2s\varphi}s^{7}|q|^{2} (T2t)τ3eCτT2mCTT6m(p12L2(Ω)2+q12L2(Ω)2)\displaystyle\geq\left(\frac{T}{2}-{\triangle t}\right)\tau^{3}e^{-\frac{C\tau}{T^{2m}}-CT}T^{-6m}\left(\lVert p^{\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert q^{\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}\right)
CTeCτT2mCT(p12L2(Ω)2+q12L2(Ω)2),\displaystyle\geq CTe^{-\frac{C\tau}{T^{2m}}-CT}\left(\lVert p^{\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert q^{\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}\right), (3.39)

where we have used that ττ1T2m\tau\geq\tau_{1}T^{2m}.

Lets comeback to the right-hand side of (3.36). Using (B.32), we see that

𝒲H(p)+𝒲KS(q)\displaystyle\mathcal{W}_{H}(p)+\mathcal{W}_{KS}(q) e2m+1k0δmT2mn{0,M}(pn+12L2(Ω)2+qn+12L2(Ω)2+xqn+12L2(Ω)2)\displaystyle\leq e^{-\frac{2^{m+1}k_{0}}{\delta^{m}T^{2m}}}\sum_{n\in\{0,M\}}\left(\lVert p^{n+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert q^{n+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert\partial_{x}q^{n+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}\right)
+e2m+1k0δmT2m(xpM+12L2(Ω)2+x2qM+12L2(Ω)2),\displaystyle\quad+e^{-\frac{2^{m+1}k_{0}}{\delta^{m}T^{2m}}}\left(\lVert\partial_{x}p^{M+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert\partial_{x}^{2}q^{M+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}\right), (3.40)

where k0:=minxΩ¯{φ(x)}k_{0}:=\min_{x\in\overline{\Omega}}\{-\varphi(x)\}. Arguing as we did for (3.38), we can obtain from (C.2) and Poincaré inequality that

x2q12L2(Ω)2CeCT(xpn+12L2(Ω)2+x2qn+12L2(Ω)2),n0,M1,\lVert\partial_{x}^{2}q^{\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}\leq Ce^{CT}\left(\lVert\partial_{x}p^{n+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\|\partial_{x}^{2}q^{n+\frac{1}{2}}\|^{2}_{L^{2}(\Omega)}\right),\quad\forall n\in\llbracket 0,M-1\rrbracket, (3.41)

since (p|Ω)n12=(q|Ω)n12=(xq|Ω)n12=0(p_{|\partial\Omega})^{n-\frac{1}{2}}=(q_{|\partial\Omega})^{n-\frac{1}{2}}=(\partial_{x}q_{|\partial\Omega})^{n-\frac{1}{2}}=0 for all n1,Mn\in\llbracket 1,M\rrbracket. By assumption (pT,qT)H01(Ω)×H02(Ω)(p_{T},q_{T})\in H_{0}^{1}(\Omega)\times H_{0}^{2}(\Omega), thus (3.38), (3.40) and (3.41) yield

𝒲H(p)+𝒲KS(q)eCτδmT2m+CT(xpTL2(Ω)2+x2qTL2(Ω)2)\mathcal{W}_{H}(p)+\mathcal{W}_{KS}(q)\leq e^{-C\frac{\tau}{\delta^{m}T^{2m}}+CT}\left(\lVert\partial_{x}p_{T}\rVert_{L^{2}(\Omega)}^{2}+\lVert\partial_{x}^{2}q_{T}\rVert^{2}_{L^{2}(\Omega)}\right) (3.42)

for some C>0C>0 uniform with respect to t{\triangle t} and δ\delta.

We observe that e2sφs39τ39278mT78mexp(22m+1k0T2m)Ce^{2s\varphi}s^{39}\leq\tau^{39}2^{78m}T^{-78m}\exp\left(-\frac{2^{2m+1}k_{0}}{T^{2m}}\right)\leq C for all (x,t)Q(x,t)\in Q, uniformly for τ392m+1k0T2m\tau\geq\frac{39}{2^{m+1}k_{0}}T^{2m}. Hence, putting together (3.36), (3.39) and (3.42), we get

p12L2(Ω)2+q12L2(Ω)2\displaystyle\lVert p^{\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}+\lVert q^{\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}
CT1eCT(eCτT2mω×(0,T)|q|2+(t)1eτT2m(CCδm)[xpTL2(Ω)2+x2qTL2(Ω)2])\displaystyle\quad\leq CT^{-1}e^{CT}\left(e^{\frac{C\tau}{T^{2m}}}\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{\omega\times(0,T)}|q|^{2}+({\triangle t})^{-1}e^{\frac{\tau}{T^{2m}}(C-\frac{C}{\delta^{m}})}\left[\lVert\partial_{x}p_{T}\rVert_{L^{2}(\Omega)}^{2}+\lVert\partial_{x}^{2}q_{T}\rVert^{2}_{L^{2}(\Omega)}\right]\right)

for all ττ2(T2m+T2m1+T2m1/3)\tau\geq\tau_{2}(T^{2m}+T^{2m-1}+T^{2m-1/3}) where τ2max{τ1,39/(2m+1k0)}\tau_{2}\geq\max\{\tau_{1},39/(2^{m+1}k_{0})\}. For 0<δδ1<1/20<\delta\leq\delta_{1}<1/2 with δ1\delta_{1} small enough, we get

p12L2(Ω)2+q12L2(Ω)2eC/T(eCτT2mω×(0,T)|q|2+(t)1eCτδmT2m[xpTL2(Ω)2+x2qTL2(Ω)2]).\lVert p^{\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}+\lVert q^{\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}\leq e^{C/T}\left(e^{\frac{C\tau}{T^{2m}}}\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{\omega\times(0,T)}|q|^{2}+({\triangle t})^{-1}e^{-\frac{C\tau}{\delta^{m}T^{2m}}}\left[\lVert\partial_{x}p_{T}\rVert_{L^{2}(\Omega)}^{2}+\lVert\partial_{x}^{2}q_{T}\rVert^{2}_{L^{2}(\Omega)}\right]\right). (3.43)

Step 2. Connection of the discrete parameters. To conclude the proof, we will connect the parameters associated to the discretization, i.e., t{\triangle t} and δ\delta. We recall that the condition tτ10δ10mT20mϵ1\frac{{\triangle t}\tau^{10}}{\delta^{10m}T^{20m}}\leq\epsilon_{1} should be fulfilled along with 0<δδ10<\delta\leq\delta_{1} and 2Ct<12C{\triangle t}<1 for some C>0C>0.

Let us fix τ=τ2(T2m+T2m1+T2m1/3)\tau=\tau_{2}(T^{2m}+T^{2m-1}+T^{2m-1/3}) and define t~:=ϵ0δ110mτ210(1+1T+1T1/3)10\widetilde{{\triangle t}}:=\epsilon_{0}\frac{\delta_{1}^{10m}}{\tau_{2}^{10}}(1+\frac{1}{T}+\frac{1}{T^{1/3}})^{-10}. Hence, τ10t~δ110mT20m=ϵ0\frac{\tau^{10}\widetilde{{\triangle t}}}{\delta_{1}^{10m}T^{20m}}=\epsilon_{0}. Now, we choose tmin{t~,1/2C}{\triangle t}\leq\min\{\widetilde{{\triangle t}},1/2C\} and set δ=(t)1/10mδ1(t~)1/10mδ1.\delta=\frac{({\triangle t})^{1/10m}\delta_{1}}{(\widetilde{{\triangle t}})^{1/10m}}\leq\delta_{1}. We find that tτ10δ10mT20m=ϵ0\frac{{\triangle t}\tau^{10}}{\delta^{10m}T^{20m}}=\epsilon_{0} and τ/(δmT2m)=ϵ01/10/(t)1/10\tau/(\delta^{m}T^{2m})=\epsilon_{0}^{1/10}/({\triangle t})^{1/10}, hence from (3.43) we get

p12L2(Ω)2\displaystyle\lVert p^{\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2} +q12L2(Ω)2\displaystyle+\lVert q^{\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}
eC/T(eC(1+1/T+1/T1/3)ω×(0,T)|q|2+(t)1eCϵ01/10(t)1/10[xpTL2(Ω)2+x2qTL2(Ω)2]),\displaystyle\leq e^{C/T}\left(e^{C(1+{1}/{T}+{1}/{T^{1/3}})}\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{\omega\times(0,T)}|q|^{2}+({\triangle t})^{-1}e^{-\frac{C\epsilon_{0}^{1/10}}{({\triangle t})^{1/10}}}\left[\lVert\partial_{x}p_{T}\rVert_{L^{2}(\Omega)}^{2}+\lVert\partial_{x}^{2}q_{T}\rVert^{2}_{L^{2}(\Omega)}\right]\right),
eC/T(ω×(0,T)|q|2+eC1(t)1/10[xpTL2(Ω)2+x2qTL2(Ω)2])\displaystyle\leq e^{C/T}\left(\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{\omega\times(0,T)}|q|^{2}+e^{-\frac{C_{1}}{({\triangle t})^{1/10}}}\left[\lVert\partial_{x}p_{T}\rVert_{L^{2}(\Omega)}^{2}+\lVert\partial_{x}^{2}q_{T}\rVert^{2}_{L^{2}(\Omega)}\right]\right)

for some C1>0C_{1}>0 uniform with respect to t{\triangle t} and where we have used that T(0,1)T\in(0,1) to simplify in the first term. This ends the proof.

4 ϕ(t)\phi({\triangle t})-controllability

This section is devoted to prove Theorem 1.1. Due to the presence of the spatial derivatives of the initial data in the right-hand of (3.2), we have to prove Theorem 1.1 in two steps. First, using the well-known penalized Hilbert Uniqueness Method (see, for instance, [GLH08, Boy13]) we build a time-discrete control providing a controllability result in the space H1(Ω)×H2(Ω)H^{-1}(\Omega)\times H^{-2}(\Omega). Then, using classical elliptic arguments, we obtain the controllability in the L2L^{2}-setting.

4.1 Controllability in H1×H2H^{-1}\times H^{-2}

The goal here is to prove the following.

Proposition 4.1.

Let T(0,1)T\in(0,1), t>0{\triangle t}>0 small enough and ϕ(t)\phi({\triangle t}) verifying (1.5). Then, there exists a continuous and linear map LTt:[L2(Ω)]2L𝒟2(0,T;L2(ω))L_{T}^{\scriptscriptstyle\triangle t}:[L^{2}(\Omega)]^{2}\to L^{2}_{{\scriptscriptstyle\mathcal{D}}}(0,T;L^{2}(\omega)) such that for all initial data (u0,v0)[L2(Ω)]2(u_{0},v_{0})\in[L^{2}(\Omega)]^{2}, there exists a time-discrete control h=LTt(u0,v0)h=L_{T}^{\scriptscriptstyle\triangle t}(u_{0},v_{0}) such that the solution to (1.3) satisfies

(uM,vM)H1(Ω)×H2(Ω)CTϕ(t)(u0,v0)[L2(Ω)]2\left\lVert(u^{M},v^{M})\right\rVert_{H^{-1}(\Omega)\times H^{-2}(\Omega)}\leq C_{T}\sqrt{\phi({\triangle t})}\left\lVert(u_{0},v_{0})\right\rVert_{[L^{2}(\Omega)]^{2}} (4.1)

and

hL𝒟2(0,T;L2(ω))CT(u0,v0)[L2(Ω)]2,\left\lVert h\right\rVert_{L^{2}_{{\scriptscriptstyle\mathcal{D}}}(0,T;L^{2}(\omega))}\leq C_{T}\left\lVert(u_{0},v_{0})\right\rVert_{[L^{2}(\Omega)]^{2}}, (4.2)

where CT>0C_{T}>0 is the constant appearing in 3.1.

Proof.

Consider the adjoint system (3.1) and the relaxed observability inequality of 3.1. We begin by proving the case where ϕ(t)=eC1/(t)1/10\phi({\triangle t})={e^{-{C_{1}}/{({\triangle t})^{1/10}}}}.

We introduce the time-discrete functional

Jt(pT,qT)=12ω×(0,T)|q|2+ϕ(t)2(pT,qT)H01(Ω)×H02(Ω)2+(u0,p12)L2(Ω)+(v0,q12)L2(Ω),\displaystyle J_{{\triangle t}}(p_{T},q_{T})=\frac{1}{2}\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{\omega\times(0,T)}|q|^{2}+\frac{\phi({\triangle t})}{2}\left\lVert(p_{T},q_{T})\right\rVert_{H_{0}^{1}(\Omega)\times H^{2}_{0}(\Omega)}^{2}+(u_{0},p^{\frac{1}{2}})_{L^{2}(\Omega)}+(v_{0},q^{\frac{1}{2}})_{L^{2}(\Omega)},
(pT,qT)H01(Ω)×H02(Ω).\displaystyle\quad\forall(p_{T},q_{T})\in H_{0}^{1}(\Omega)\times H_{0}^{2}(\Omega). (4.3)

Clearly, the above functional is continuous and strictly convex. Since pTH01(Ω)p_{T}\in H_{0}^{1}(\Omega) (resp. qTH02(Ω)q_{T}\in H_{0}^{2}(\Omega)), we have from Poincaré inequality that pTH01(Ω)2=Ω|xpT|2\|p_{T}\|^{2}_{H_{0}^{1}(\Omega)}=\int_{\Omega}|\partial_{x}p_{T}|^{2} (resp. qTH02(Ω)2=Ω|x2qT|2\|q_{T}\|^{2}_{H_{0}^{2}(\Omega)}=\int_{\Omega}|\partial_{x}^{2}q_{T}|^{2}), and thus the observability inequality (3.2) implies the coerciveness of JtJ_{{\triangle t}}. This guarantees the existence of a minimizer that we denote by (pT^,qT^)(\widehat{p_{T}},\widehat{q_{T}}).

Now, consider (p^,q^)(\widehat{p},\widehat{q}) (resp. (p,q)(p,q)) the solution to (3.1) with initial data (pT^,qT^)(\widehat{p_{T}},\widehat{q_{T}}) (resp. (pT,qT)(p_{T},q_{T})). The Euler-Lagrange equation associated with the minimization of the functional (4.3) reads as

ω×(0,T)q^q+ϕ(t)[(xpT^,xpT)L2(Ω)+(x2qT^,x2qT)L2(Ω)]+(u0,p12)L2(Ω)+(v0,q12)L2(Ω)=0,\displaystyle\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{\omega\times(0,T)}\widehat{q}q+\phi({\triangle t})\left[(\partial_{x}\widehat{p_{T}},\partial_{x}p_{T})_{L^{2}(\Omega)}+(\partial_{x}^{2}\widehat{q_{T}},\partial_{x}^{2}q_{T})_{L^{2}(\Omega)}\right]+(u_{0},p^{\frac{1}{2}})_{L^{2}(\Omega)}+(v_{0},q^{\frac{1}{2}})_{L^{2}(\Omega)}=0,
(pT,qT)H01(Ω)×H02(Ω).\displaystyle\quad\forall(p_{T},q_{T})\in H_{0}^{1}(\Omega)\times H_{0}^{2}(\Omega). (4.4)

We set the control h=LTt(u0,v0)=(χωq^n+12)n0,M1h=L_{T}^{\scriptscriptstyle\triangle t}(u_{0},v_{0})=(\chi_{\omega}\widehat{q}^{\,n+\frac{1}{2}})_{n\in\llbracket 0,M-1\rrbracket} and consider the solution (u,v)(u,v) of the controlled problem

{(Dtu)n+12Γx2(𝚝+u)n+12+cx(𝚝+u)n+12=(𝚝+v)n+12n0,M1,(Dtv)n+12+γx4(𝚝+v)n+12+x3(𝚝+v)n+12+ax2(𝚝+v)n+12=(𝚝+u)n+12+χωq^n+12n0,M1,u0=u0,v0=v0.\begin{cases}\displaystyle(D_{t}u)^{n+\frac{1}{2}}-\Gamma\partial_{x}^{2}(\mathtt{t}^{+}u)^{n+\frac{1}{2}}+c\partial_{x}(\mathtt{t}^{+}u)^{n+\frac{1}{2}}=(\mathtt{t}^{+}v)^{n+\frac{1}{2}}&n\in\llbracket 0,M-1\rrbracket,\\ \displaystyle(D_{t}v)^{n+\frac{1}{2}}+\gamma\partial_{x}^{4}(\mathtt{t}^{+}v)^{n+\frac{1}{2}}+\partial_{x}^{3}(\mathtt{t}^{+}v)^{n+\frac{1}{2}}+a\partial_{x}^{2}(\mathtt{t}^{+}v)^{n+\frac{1}{2}}=(\mathtt{t}^{+}u)^{n+\frac{1}{2}}+\chi_{\omega}\widehat{q}^{\,n+\frac{1}{2}}&n\in\llbracket 0,M-1\rrbracket,\\ u^{0}=u_{0},\quad v^{0}=v_{0}.\end{cases}

Multiplying this system by (pn+12,qn+12)(p^{n+\frac{1}{2}},q^{n+\frac{1}{2}}) at each point of 𝒟\mathcal{D} and integrating in L2(Ω)L^{2}(\Omega), we have after integration by parts and summing in n0,M1n\in\llbracket 0,M-1\rrbracket that

ω×(0,T)q^q=uM,pT1,1+vM,qT2,2(u0,p12)L2(Ω)(v0,q12)L2(Ω),\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int\!\!\!\int_{\omega\times(0,T)}\widehat{q}q=\langle u^{M},p_{T}\rangle_{-1,1}+\langle v^{M},q_{T}\rangle_{-2,2}-(u_{0},p^{\frac{1}{2}})_{L^{2}(\Omega)}-(v_{0},q^{\frac{1}{2}})_{L^{2}(\Omega)}, (4.5)

where ,s,s\langle\cdot,\cdot\rangle_{-s,s} denotes the duality pairing between H0s(Ω)H_{0}^{s}(\Omega) and Hs(Ω)H^{-s}(\Omega), ss\in\mathbb{N}^{*}. With (4.4) and (4.5), we deduce that

(uM,vM)=ϕ(t)((x2)pT^,x4qT^).(u^{M},v^{M})=-\phi({\triangle t})\left((-\partial_{x}^{2})\widehat{p_{T}},\partial_{x}^{4}\widehat{q_{T}}\right). (4.6)

By taking (pT,qT)=(pT^,qT^)(p_{T},q_{T})=(\widehat{p_{T}},\widehat{q_{T}}) in (4.4), we get

hL𝒟2(0,T;L2(ω))2+ϕ(t)(pT^,qT^)H01(Ω)×H02(Ω)2\displaystyle\left\lVert h\right\rVert_{L^{2}_{{\scriptscriptstyle\mathcal{D}}}(0,T;L^{2}(\omega))}^{2}+\phi({\triangle t})\left\lVert(\widehat{p_{T}},\widehat{q_{T}})\right\rVert_{H_{0}^{1}(\Omega)\times H^{2}_{0}(\Omega)}^{2} =(u0,p^12)L2(Ω)(v0,q^12)L2(Ω)\displaystyle=-(u_{0},\widehat{p}^{\frac{1}{2}})_{L^{2}(\Omega)}-(v_{0},\widehat{q}^{\frac{1}{2}})_{L^{2}(\Omega)}
(u0,v0)[L2(Ω)]2(p^12,q^12)[L2(Ω)]2,\displaystyle\leq\left\lVert(u_{0},v_{0})\right\rVert_{[L^{2}(\Omega)]^{2}}\lVert(\widehat{p}^{\frac{1}{2}},\widehat{q}^{\frac{1}{2}})\rVert_{[L^{2}(\Omega)]^{2}},

thus, from (3.2), we have hL𝒟2(0,T;L2(ω))=q^L𝒟2(0,T;L2(ω))CT(u0,v0)[L2(Ω)]2\|h\|_{L^{2}_{{\scriptscriptstyle\mathcal{D}}}(0,T;L^{2}(\omega))}=\left\lVert\widehat{q}\right\rVert_{L^{2}_{{\scriptscriptstyle\mathcal{D}}}(0,T;L^{2}(\omega))}\leq C_{T}\left\lVert(u_{0},v_{0})\right\rVert_{[L^{2}(\Omega)]^{2}} and

ϕ(t)(pT^,qT^)H01(Ω)×H02(Ω)CT(u0,v0)[L2(Ω)]2.\sqrt{\phi({\triangle t})}\left\lVert(\widehat{p_{T}},\widehat{q_{T}})\right\rVert_{H_{0}^{1}(\Omega)\times H^{2}_{0}(\Omega)}\leq C_{T}\left\lVert(u_{0},v_{0})\right\rVert_{[L^{2}(\Omega)]^{2}}. (4.7)

In this way, the linear map LTt:[L2(Ω)]2L𝒟2(0,T;L2(ω))L_{T}^{\scriptscriptstyle\triangle t}:[L^{2}(\Omega)]^{2}\to L^{2}_{{\scriptscriptstyle\mathcal{D}}}(0,T;L^{2}(\omega)) is well defined and continuous. Finally, expressions (4.6) and (4.7) together with the definition of the HsH^{-s}-norm, ss\in\mathbb{N}^{*}, yield (4.1). This ends the proof for ϕ(t)=eC1/(t)1/10\phi({\triangle t})=e^{-C_{1}/({\triangle t})^{1/10}}.

The case of a general function ϕ\phi follows similarly. Indeed, for any given ϕ(t)\phi({\triangle t}) verifying (1.5), we see that there exists some t¯>0\overline{{\triangle t}}>0 such that ϕ(t)=eC1/(t)1/10ϕ(h)\phi({\triangle t})=e^{-C_{1}/({\triangle t})^{1/10}}\leq\phi(h) for all 0<tt¯0<{\triangle t}\leq\overline{{\triangle t}} and, decreasing t{\triangle t} if necessary, the observability inequality (3.2) also holds for the function ϕ(t)\phi({\triangle t}). The rest of the proof is the same. ∎

4.2 Proof of Theorem 1.1: controllability in L2L^{2}

The proof of Theorem 1.1 relies on 4.1. The idea is to steer the solution to a small target in H1×H2H^{-1}\times H^{-2} and then let the solution evolve uncontrolled. Let ϕ\phi be a function satisfying (1.5) and set ϕ~(t)=tϕ(t)\widetilde{\phi}({\triangle t})={\triangle t}\,\phi({\triangle t}). Notice that ϕ~\widetilde{\phi} also satisfies (1.5) for a (possibly) different constant C1>0C_{1}>0.

Let us fix T(0,1)T\in(0,1), the initial data (u0,v0)[L2(Ω)]2(u_{0},v_{0})\in[L^{2}(\Omega)]^{2} and the partition (1.2). We choose some T0<TT_{0}<T and set M0=T0tM_{0}=\left\lfloor{\frac{T_{0}}{{\triangle t}}}\right\rfloor. From 4.1, there exists a time-discrete control h0=(h0n+12)n0,M01h_{0}=(h_{0}^{n+\frac{1}{2}})_{n\in\llbracket 0,M_{0}-1\rrbracket} with h0L𝒟2(0,T;L2ω)CT0(u0,v0)[L2(Ω)]2\left\lVert h_{0}\right\rVert_{L^{2}_{{\scriptscriptstyle\mathcal{D}}}{(0,T;L^{2}{\omega})}}\leq C_{T_{0}}\left\lVert(u_{0},v_{0})\right\rVert_{[L^{2}(\Omega)]^{2}} and such that the solution to

{un+1untΓx2un+1+cxun+1=vn+1n0,M1,vn+1vnt+γx4vn+1+x3vn+1+ax2vn+1=un+1+χωh0n+12n0,M1,(v|Ω)n+1=(v|Ω)n+1=(xv|Ω)n+1=0n0,M1,u0=u0,v0=v0,\begin{cases}\displaystyle\frac{u^{n+1}-u^{n}}{{\triangle t}}-\Gamma\partial_{x}^{2}u^{n+1}+c\partial_{x}u^{n+1}={v^{n+1}}&n\in\llbracket 0,M-1\rrbracket,\\ \displaystyle\frac{v^{n+1}-v^{n}}{{\triangle t}}+\gamma\partial_{x}^{4}v^{n+1}+\partial_{x}^{3}v^{n+1}+a\partial_{x}^{2}v^{n+1}={u^{n+1}}+\chi_{\omega}h_{0}^{n+\frac{1}{2}}&n\in\llbracket 0,M-1\rrbracket,\\ \left(v_{|\partial\Omega}\right)^{n+1}=\left(v_{|\partial\Omega}\right)^{n+1}=\left(\partial_{x}v_{|\partial\Omega}\right)^{n+1}=0&n\in\llbracket 0,M-1\rrbracket,\\ u^{0}=u_{0},\quad v^{0}=v_{0},\end{cases} (4.8)

verifies

(uM0,vM0)H1(Ω)×H2(Ω)CT0ϕ~(t)(u0,v0)[L2(Ω)]2,\left\lVert(u^{M_{0}},v^{M_{0}})\right\rVert_{H^{-1}(\Omega)\times H^{-2}(\Omega)}\leq C_{T_{0}}\sqrt{\widetilde{\phi}({\triangle t})}\left\lVert(u_{0},v_{0})\right\rVert_{[L^{2}(\Omega)]^{2}}, (4.9)

where CT0C_{T_{0}} is the observability constant corresponding to the interval (0,T0)(0,T_{0}) as given in 3.1. This defines the state (un,vn)(u^{n},v^{n}) for all n0,M0n\in\llbracket 0,M_{0}\rrbracket.

Now, we set hn+120h^{n+\frac{1}{2}}\equiv 0 for nM0,M1n\in\llbracket M_{0},M-1\rrbracket and consider the uncontrolled system

{un+1untΓx2un+1+cxun+1=vn+1nM0,M1,vn+1vnt+γx4vn+1+x3vn+1+ax2vn+1=un+1nM0,M1,(v|Ω)n+1=(v|Ω)n+1=(xv|Ω)n+1=0nM0,M1,\begin{cases}\displaystyle\frac{u^{n+1}-u^{n}}{{\triangle t}}-\Gamma\partial_{x}^{2}u^{n+1}+c\partial_{x}u^{n+1}={v^{n+1}}&n\in\llbracket M_{0},M-1\rrbracket,\\ \displaystyle\frac{v^{n+1}-v^{n}}{{\triangle t}}+\gamma\partial_{x}^{4}v^{n+1}+\partial_{x}^{3}v^{n+1}+a\partial_{x}^{2}v^{n+1}={u^{n+1}}&n\in\llbracket M_{0},M-1\rrbracket,\\ \left(v_{|\partial\Omega}\right)^{n+1}=\left(v_{|\partial\Omega}\right)^{n+1}=\left(\partial_{x}v_{|\partial\Omega}\right)^{n+1}=0&n\in\llbracket M_{0},M-1\rrbracket,\end{cases} (4.10)

with initial data yM0y^{M_{0}} coming from the sequence (4.8). Observe that for n=M0n=M_{0}, (uM0+1,vM0+1)(u^{M_{0}+1},v^{M_{0}+1}) solves the elliptic system

{tΓx2uM0+1+tcxuM0+1+uM0+1=tvM0+1+uM0in (0,1),tγx4vM0+1+tx3vM0+1+tax2vM0+1+vM0+1=tuM0+1+vM0in (0,1),vM0+1=vM0+1=xvM0+1=0on {0,1}.\begin{cases}-{\triangle t}\,\Gamma\partial_{x}^{2}u^{M_{0}+1}+{\triangle t}\,c\partial_{x}u^{M_{0}+1}+u^{M_{0}+1}={\triangle t}v^{M_{0}+1}+u^{M_{0}}&\text{in }(0,1),\\ {\triangle t}\gamma\partial_{x}^{4}v^{M_{0}+1}+{\triangle t}\partial_{x}^{3}v^{M_{0}+1}+{\triangle t}a\partial_{x}^{2}v^{M_{0}+1}+v^{M_{0}+1}={\triangle t}u^{M_{0}+1}+v^{M_{0}}&\text{in }(0,1),\\ v^{M_{0}+1}=v^{M_{0}+1}=\partial_{x}v^{M_{0}+1}=0&\text{on }\{0,1\}.\end{cases}

In view of Lax-Milgram lemma, (4.9) and a procedure similar to (C.1), we can deduce the regularity estimate

t(uM0+1,vM0+1)H01(Ω)×H02(Ω)C(uM0,vM0)H1(Ω)×H2×(Ω)\sqrt{{\triangle t}}\lVert(u^{M_{0}+1},v^{M_{0}+1})\rVert_{H_{0}^{1}(\Omega)\times H_{0}^{2}(\Omega)}\leq C\lVert(u^{M_{0}},v^{M_{0}})\rVert_{H^{-1}(\Omega)\times H^{-2}\times(\Omega)}

for all t>0{\triangle t}>0 small enough and some C>0C>0 only depending on Ω\Omega, Γ\Gamma, γ\gamma, aa, and cc. This, together with (4.9) yields

(uM0+1,vM0+1)H01(Ω)×H02(Ω)Cϕ~(t)t(u0,v0)[L2(Ω)]2=Cϕ(t)(u0,v0)[L2(Ω)]2.\lVert(u^{M_{0}+1},v^{M_{0}+1})\rVert_{H_{0}^{1}(\Omega)\times H_{0}^{2}(\Omega)}\leq C\sqrt{\frac{\widetilde{\phi}({\triangle t})}{{\triangle t}}}\left\lVert(u_{0},v_{0})\right\rVert_{[L^{2}(\Omega)]^{2}}=C\sqrt{\phi({\triangle t})}\left\lVert(u_{0},v_{0})\right\rVert_{[L^{2}(\Omega)]^{2}}.

Arguing as we did in 3.1, we can iterate for indices nM0+1,Mn\in\llbracket M_{0}+1,M\rrbracket and using Poincaré inequality we can deduce (uM,vM)[L2(Ω)]2Cϕ(t)(u0,v0)[L2(Ω)]2\lVert(u^{M},v^{M})\rVert_{[L^{2}(\Omega)]^{2}}\leq C\sqrt{\phi({\triangle t})}\left\lVert(u_{0},v_{0})\right\rVert_{[L^{2}(\Omega)]^{2}} for some constant depending on TT and T0T_{0}. Therefore, by means of the auxiliary problems (4.8) and (4.10), we have constructed a sequence (u,v)={un,vn}n0,M(u,v)=\{u^{n},v^{n}\}_{n\in\llbracket 0,M\rrbracket} such that (uM,vM)(u^{M},v^{M}) verifies a ϕ(t)\phi({\triangle t})-null controllability constraint in [L2(Ω)]2[L^{2}(\Omega)]^{2}. This ends the proof.

5 Concluding remarks

In this paper, we have studied the controllability of a time-discrete simplified stabilized Kuramoto-Sivashinsky equation. The main ingredient is a relaxed observability inequality which in turn is a consequence of time-discrete Carleman estimates with the same weight for the fourth- and second-order parabolic operators. Once this observability inequality is obtained, the controllability of the system is achieved in two steps: first we control to a small target in H1×H2H^{-1}\times H^{-2} and then we use some regularity results to deduce the controllability in L2L^{2}.

As we have mentioned in the introduction, two important simplifications have been done to obtain our results. The first one is that the system is linear. Although the controllability of time-discrete semilinear systems is in fact possible (see e.g. [BLR14] in the semi-discrete case or [BHS20] for the time-discrete one), the nonlinearities in such works are regarded as globally Lipschitz, which is not the case for the nonlinearity uuxuu_{x} in (1.1). How to treat this type of nonlinearity in the discrete case remains as an open and interesting problem.

The second simplification concerns the coupling terms in the right-hand side of (1.3). As compared to (1.1), these couplings are easier to handle with the usual Carleman estimates and including them in our current framework require further investigation. One possible way to consider only first-order couplings is to argue as in [CMP15, Theorem 3.1], where the authors prove a Carleman inequality for the parabolic operator (L𝒟xp)(L_{{\scriptscriptstyle\mathcal{D}}}\partial_{x}p) (see definition (3.8) in our case). Such estimate can be deduced from the Carleman estimate with Fourier boundary conditions shown in [FCGBGP06, Theorem 1.1] whose proof relies on the classical duality method introduced in [FI96]. A priori, it seems that this result can be deduced for the time-discrete case, but a close inspection to the proof of [FCGBGP06, Theorem 1.1] highlights some difficulties with our Carleman estimate in Lemma 3.2 (with the important change of Dirichlet to Neumann boundary conditions) and shows an incompatibility when considering the terms in 𝒲H\mathcal{W}_{H} (particulartly the one at n=12n=\frac{1}{2}). In any case, this problem deserves further attention.

Appendix A Time-discrete calculus results

The goal of this section is to provide a summary of calculus rules for manipulating the time-discrete operators DtD_{t} and D¯t\overline{{D}}_{t}, and also to provide estimates for the application of such operators on the weight functions.

To avoid introducing additional notation, we present the following continuous difference operator. For a function ff defined on {\mathbb{R}}, we set

t+f(t):=f(t+t2),tf(t):=f(tt2),Dtf:=1t(t+t)f.\displaystyle{\textsf{t}}^{+}f(t):=f(t+\tfrac{{\triangle t}}{2}),\quad{\textsf{t}}^{-}f(t):=f(t-\tfrac{{\triangle t}}{2}),\quad\textsf{D}_{t}f:=\frac{1}{{\triangle t}}({\textsf{t}}^{+}-{\textsf{t}}^{-})f.

In this way, discrete versions of the results given below will be natural. With the notation given in the introduction, for a function ff continuously defined on {\mathbb{R}}, the discrete function DtfD_{t}f amounts to evaluate Dtf\textsf{D}_{t}f at the mesh points 𝒟\mathcal{D} and D¯tf\overline{{D}}_{t}f is Dtf\textsf{D}_{t}f sampled at the mesh points 𝒫\mathcal{P}.

A.1 Time-discrete calculus formulas

Lemma A.1.

Let the functions f1f_{1} and f2f_{2} be continuously defined over \mathbb{R}. We have

Dt(f1f2)=t+f1Dtf2+Dtf1tf2,Dt(f1f2)=tf1Dtf2+Dtf1t+f2.\textsf{D}_{t}(f_{1}f_{2})={\textsf{t}}^{+}f_{1}\,\textsf{D}_{t}f_{2}+\textsf{D}_{t}f_{1}\,{\textsf{t}}^{-}f_{2},\quad\textsf{D}_{t}(f_{1}f_{2})={\textsf{t}}^{-}f_{1}\,\textsf{D}_{t}f_{2}+\textsf{D}_{t}f_{1}\,{\textsf{t}}^{+}f_{2}.

From the above formulas, if f1=f2=ff_{1}=f_{2}=f, we have the useful identities

t+fDtf=12Dt(f2)+12t(Dtf)2,tfDtf=12Dt(f2)12t(Dtf)2.\displaystyle{\textsf{t}}^{+}f\,\textsf{D}_{t}f=\frac{1}{2}\textsf{D}_{t}\left(f^{2}\right)+\frac{1}{2}{\triangle t}(\textsf{D}_{t}f)^{2},\qquad{\textsf{t}}^{-}f\,\textsf{D}_{t}f=\frac{1}{2}\textsf{D}_{t}\left(f^{2}\right)-\frac{1}{2}{\triangle t}(\textsf{D}_{t}f)^{2}.

The translation of the result to discrete functions f,g1,g2H𝒟¯f,g_{1},g_{2}\in H^{\overline{\mathcal{D}}} is

D¯t(g1g2)=(𝚝¯+g1)D¯tg2+D¯tg1(𝚝¯g2),D¯t(g1g2)=(𝚝¯g1)D¯tg2+D¯tg1(𝚝¯+g2),\begin{split}&\overline{{D}}_{t}(g_{1}g_{2})=(\bar{\mathtt{t}}^{+}g_{1})\overline{{D}}_{t}g_{2}+\overline{{D}}_{t}g_{1}(\bar{\mathtt{t}}^{-}g_{2}),\quad\overline{{D}}_{t}(g_{1}g_{2})=(\bar{\mathtt{t}}^{-}g_{1})\overline{{D}}_{t}g_{2}+\overline{{D}}_{t}g_{1}(\bar{\mathtt{t}}^{+}g_{2}),\end{split} (A.1)

and

(𝚝¯+f)D¯tf=12D¯t(f2)+12t(D¯tf)2,(𝚝¯f)D¯tf=12D¯t(f2)12t(D¯tf)2.\displaystyle(\bar{\mathtt{t}}^{+}f)\overline{{D}}_{t}f=\frac{1}{2}\overline{{D}}_{t}\left(f^{2}\right)+\frac{1}{2}{\triangle t}(\overline{{D}}_{t}f)^{2},\quad(\bar{\mathtt{t}}^{-}f)\overline{{D}}_{t}f=\frac{1}{2}\overline{{D}}_{t}\left(f^{2}\right)-\frac{1}{2}{\triangle t}(\overline{{D}}_{t}f)^{2}. (A.2)

Of course, the above identities also hold for functions f,g1,g2H𝒫¯f,g_{1},g_{2}\in H^{\overline{\mathcal{P}}} and their respective translation operators and difference operator 𝚝±\mathtt{t^{\pm}} and DtD_{t}.

The following result covers discrete integration by parts and some useful related formulas.

Proposition A.2.

Let {H,(,)H}\{H,(\cdot,\cdot)_{H}\} be a real Hilbert space and consider uH𝒫¯u\in H^{\overline{\mathcal{P}}} and vH𝒟¯v\in H^{\overline{\mathcal{D}}}. We have the following:

0T(t+u,v)H=0T(u,𝚝¯v)H,\displaystyle\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int_{0}^{T}\left({\textsf{t}}^{+}u,v\right)_{H}=\int_{0}^{T}\left(u,\bar{\mathtt{t}}^{-}v\right)_{H}, (A.3)
0T(tu,v)H=t(u0,v12)Ht(uM,vM+12)H+0T(u,𝚝¯+v)H.\displaystyle\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int_{0}^{T}\left({\textsf{t}}^{-}u,v\right)_{H}={\triangle t}(u^{0},v^{\frac{1}{2}})_{H}-{\triangle t}(u^{M},v^{M+\frac{1}{2}})_{H}+\int_{0}^{T}\left(u,\bar{\mathtt{t}}^{+}v\right)_{H}. (A.4)

Moreover, combining the above identities, we have the following discrete integration by parts formula

0T(Dtu,v)H=(u0,v12)H+(uM,vM+12)H0T(D¯tv,u)H.\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int_{0}^{T}\left(D_{t}u,v\right)_{H}=-(u^{0},v^{\frac{1}{2}})_{H}+(u^{M},v^{M+\frac{1}{2}})_{H}-\int_{0}^{T}\left(\overline{{D}}_{t}v,u\right)_{H}. (A.5)
Remark A.3.

If we consider two functions f,gH𝒟¯f,g\in H^{\overline{\mathcal{D}}}, we can combine (A.3) and (A.5) to obtain the formula

0T(D¯tf,𝚝¯g)H=(f12,g12)H+(fM+12,gM+12)H0T(𝚝¯+f,D¯tg)H.\int_{0}^{T}\left(\overline{{D}}_{t}f,\bar{\mathtt{t}}^{-}g\right)_{H}=-(f^{\frac{1}{2}},g^{\frac{1}{2}})_{H}+(f^{M+\frac{1}{2}},g^{M+\frac{1}{2}})_{H}-\int_{0}^{T}\left(\bar{\mathtt{t}}^{+}f,\overline{{D}}_{t}g\right)_{H}. (A.6)

Analogously, for f,gH𝒫¯f,g\in H^{\overline{\mathcal{P}}}, the following holds

0T(Dtf,t+g)H=(f0,g0)H+(fM,gM)H0T(tf,Dtg)H.\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int_{0}^{T}\left(D_{t}f,{\textsf{t}}^{+}g\right)_{H}=-(f^{0},g^{0})_{H}+(f^{M},g^{M})_{H}-\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int_{0}^{T}\left({\textsf{t}}^{-}f,D_{t}g\right)_{H}. (A.7)

Observe that in these formulas, the integrals are taken over the same discrete points.

A.2 Time-discrete computations related to Carleman weights

We present some lemmas related to time-discrete operations applied to the Carleman weights. The proof of these results can be found in [BHS20, Appendix B]. We recall that r=esφr=e^{s\varphi} and ρ=r1\rho=r^{-1}. We highlight the dependence on τ\tau, δ\delta, t{\triangle t} and λ\lambda in the following estimates.

Lemma A.4 (Time-discrete derivative of the Carleman weight).

Let T(0,1)T\in(0,1) and τ1\tau\geq 1. Provided tτ(δm+1T2m+1)11{\triangle t}\tau(\delta^{m+1}T^{2m+1})^{-1}\leq 1, we have

t(r)Dtρ=τt(θ)φ+t(τδm+2T2m+2+τ2δ2m+2T4m+2)𝒪λ(1).{\textsf{t}}^{-}(r)\textsf{D}_{t}\rho=-\tau\,{\textsf{t}}^{-}(\theta^{\prime})\varphi+{\triangle t}\left(\frac{\tau}{\delta^{m+2}T^{2m+2}}+\frac{\tau^{2}}{\delta^{2m+2}T^{4m+2}}\right)\mathcal{O}_{\lambda}(1).
Proof.

The proof of this result can be done exactly as in [BHS20, Lemma B.4]. It relies on Taylor’s formula at order 2 and the estimate maxt[0,T]θ(j)(t)Cmδm+jT2m+j\max_{t\in[0,T]}\theta^{(j)}(t)\leq\frac{C_{m}}{\delta^{m+j}T^{2m+j}}, j=1,2j=1,2. ∎

Lemma A.5 (Discrete operations on the weight θ\theta).

There exists a universal constant C,m>0C_{\ell,m}>0 uniform with respect to t{\triangle t}, δ\delta and TT such that

  1. (i)

    |Dt(θ)|C,mTt(θ+1m)+C,mtδm+2T2m+2,=1,2,|\textsf{D}_{t}(\theta^{\ell})|\leq C_{\ell,m}T\,{\textsf{t}}^{-}(\theta^{\ell+\frac{1}{m}})+C_{\ell,m}\frac{{\triangle t}}{\delta^{m\ell+2}T^{2m\ell+2}},\quad\ell=1,2,\ldots

  2. (ii)

    t(θ)t+(θ)+C,mtδm+1T2m+1,=1,2,{\textsf{t}}^{-}(\theta^{\ell})\leq{\textsf{t}}^{+}(\theta^{\ell})+C_{\ell,m}\frac{{\triangle t}}{\delta^{m\ell+1}T^{2m\ell+1}},\quad\ell=1,2,\ldots

Proof.

The proof of this result can be done exactly as in [BHS20, Lemma B.5]. From the estimate maxt[0,T]tj(θ)C,m,jδm+jT2m+j\max_{t\in[0,T]}\partial_{t}^{j}(\theta^{\ell})\leq\frac{C_{\ell,m,j}}{\delta^{m\ell+j}T^{2m\ell+j}}, for j,=1,2j,\ell=1,2, inequality (i) follows for j=2j=2 and Taylor’s formula at order 2. Similarly, (ii) follows from such estimate at j=1j=1 and Taylor’s formula at order 1. ∎

Remark A.6.

As it will be of interest during the proof of 3.4, Lemma A.5 is also valid (for a possibly different universal constant) if we replace t{\textsf{t}}^{-} by t+{\textsf{t}}^{+} and t+{\textsf{t}}^{+} by t{\textsf{t}}^{-} everywhere.

Appendix B Carleman estimate for the time-discrete fourth-order parabolic operator

We devote this section to present the proof of Lemma 3.3. For clarity, we have divided the proof in several steps and we mainly focus in those containing time-discrete computations.

As in other works addressing Carleman estimates, we will keep track of the dependency of all the constants with respect to the parameters λ\lambda, τ\tau and TT. Also, in accordance with the nature of our problem, we pay special attention to the discrete parameters t{\triangle t} and δ\delta.

B.1 The change of variable

Without loss of generality, let γ=1\gamma=1 and assume for the time being that q(C4([0,1])H02(0,1))𝒟¯q\in(C^{4}([0,1])\cap H_{0}^{2}(0,1))^{\overline{{\scriptscriptstyle\mathcal{D}}}}. Recalling (3.6) and (3.7), we introduce the following instrumental functions

s(t)=τθ(t),τ>0,t(δT,T+δT),\displaystyle s(t)=\tau\theta(t),\quad\tau>0,\quad t\in(-\delta T,T+\delta T),
r(t,x)=es(t)φ(x),ρ(t,x)=(r(t,x))1,x[0,1],t(δT,T+δT),\displaystyle r(t,x)=e^{s(t)\varphi(x)},\quad\rho(t,x)=(r(t,x))^{-1},\quad x\in[0,1],\quad t\in(-\delta T,T+\delta T),

and set the change of variables

zn+12=r(tn+12,)qn+12,n0,M.z^{n+\frac{1}{2}}=r(t_{n+\frac{1}{2}},\cdot)q^{n+\frac{1}{2}},\quad n\in\llbracket 0,M\rrbracket. (B.1)

For the remainder of this section, we will simplify the notation in (B.1) by simply writing z=rqz=rq which implicitly means that the (continuous) weight function rr is evaluated on the same time grid (in this case the dual grid 𝒟\mathcal{D}) and at the same time point as the one attached to the discrete variable. This will not lead to any ambiguity.

From the change of variables (B.1) and since βC4([0,1])\beta\in C^{4}([0,1]) and qC4([0,1])𝒟¯q\in C^{4}([0,1])^{\overline{{\scriptscriptstyle\mathcal{D}}}}, we can obtain –after a very long, but straightforward computation– that

rx4(ρz)=𝒯+𝒯r\partial_{x}^{4}(\rho z)=\mathcal{LT}+\mathcal{RT} (B.2)

where

𝒯:=\displaystyle\mathcal{LT}:= 4s3λ3(βx)3ϕ3xz+s4λ4(βx)4ϕ4z+6s2λ2(βx)2ϕ2x2z\displaystyle-4s^{3}\lambda^{3}(\beta_{x})^{3}\phi^{3}\partial_{x}z+s^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}z+6s^{2}\lambda^{2}(\beta_{x})^{2}\phi^{2}\partial_{x}^{2}z
4sλβxϕx3z+x4z+6s2λ2((βx)2ϕ2)xxz\displaystyle-4s\lambda\beta_{x}\phi\partial_{x}^{3}z+\partial_{x}^{4}z+6s^{2}\lambda^{2}\left((\beta_{x})^{2}\phi^{2}\right)_{x}\partial_{x}z

and

𝒯:=\displaystyle\mathcal{RT}:= sλβ(4)ϕz4sλ2βxβxxxϕz+4s2λ2βxxxβxϕ2z4sλβxxxϕxz3sλ2(βxx)2ϕz\displaystyle-s\lambda\beta^{(4)}\phi z-4s\lambda^{2}\beta_{x}\beta_{xxx}\phi z+4s^{2}\lambda^{2}\beta_{xxx}\beta_{x}\phi^{2}z-4s\lambda\beta_{xxx}\phi\partial_{x}z-3s\lambda^{2}(\beta_{xx})^{2}\phi z
6sλ3(βx)2βxxϕz+18s2λ3(βx)2βxxϕ2z+3s2λ2(βxx)2ϕ2z6λ3s3(βx)2βxxϕ3z\displaystyle-6s\lambda^{3}(\beta_{x})^{2}\beta_{xx}\phi z+18s^{2}\lambda^{3}(\beta_{x})^{2}\beta_{xx}\phi^{2}z+3s^{2}\lambda^{2}(\beta_{xx})^{2}\phi^{2}z-6\lambda^{3}s^{3}(\beta_{x})^{2}\beta_{xx}\phi^{3}z
6sλβxxϕx2zsλ4(βx)4ϕz+7s2λ4(βx)4ϕ2z6s3λ4(βx)4ϕ3z6sλ2(βx)2ϕx2z\displaystyle-6s\lambda\beta_{xx}\phi\partial_{x}^{2}z-s\lambda^{4}(\beta_{x})^{4}\phi z+7s^{2}\lambda^{4}(\beta_{x})^{4}\phi^{2}z-6s^{3}\lambda^{4}(\beta_{x})^{4}\phi^{3}z-6s\lambda^{2}(\beta_{x})^{2}\phi\partial_{x}^{2}z
12sλ2βxβxxϕxz4sλ3(βx)3ϕxz.\displaystyle-12s\lambda^{2}\beta_{x}\beta_{xx}\phi\partial_{x}z-4s\lambda^{3}(\beta_{x})^{3}\phi\partial_{x}z.

On the other hand, using (A.1), we have

D¯t(ρz)=(𝚝¯ρ)D¯tzD¯tρ(𝚝¯+z).-\overline{{D}}_{t}(\rho z)=-(\bar{\mathtt{t}}^{-}\rho)\overline{{D}}_{t}z-\overline{{D}}_{t}\rho(\bar{\mathtt{t}}^{+}z).

Moreover, multiplying the above equation by (𝚝¯r)(\bar{\mathtt{t}}^{-}r) and taking into account Lemma A.4, we get

(𝚝¯r)D¯t(ρz)=D¯tz+τφ(𝚝¯θ)(𝚝¯+z)𝒪λ(1)tτ2δ2m+2T4m+2(𝚝¯+z),-(\bar{\mathtt{t}}^{-}r)\overline{{D}}_{t}(\rho z)=-\overline{{D}}_{t}z+\tau\varphi(\bar{\mathtt{t}}^{-}\theta^{\prime})(\bar{\mathtt{t}}^{+}z)-\mathcal{O}_{\lambda}(1)\frac{{\triangle t}\tau^{2}}{\delta^{2m+2}T^{4m+2}}(\bar{\mathtt{t}}^{+}z),

where we have used that τ1\tau\geq 1 and T(0,1)T\in(0,1) to simplify in the last term. From here, using that tD¯tz=(𝚝¯+z)(𝚝¯z){\triangle t}\overline{{D}}_{t}{z}=(\bar{\mathtt{t}}^{+}z)-(\bar{\mathtt{t}}^{-}z), we get

(𝚝¯r)D¯t(ρz)=D¯tz+τφ𝚝¯(θz)+tτφ(𝚝¯θ)D¯tz𝒪λ(1)tτ2δ2m+2T4m+2(𝚝¯+z).-(\bar{\mathtt{t}}^{-}r)\overline{{D}}_{t}(\rho z)=-\overline{{D}}_{t}z+\tau\varphi\,\bar{\mathtt{t}}^{-}(\theta^{\prime}z)+{\triangle t}\tau\varphi(\bar{\mathtt{t}}^{-}\theta^{\prime})\overline{{D}}_{t}{z}-\mathcal{O}_{\lambda}(1)\frac{{\triangle t}\tau^{2}}{\delta^{2m+2}T^{4m+2}}(\bar{\mathtt{t}}^{+}z). (B.3)

Since q=ρzq=\rho z and both zz and qq are naturally attached to the dual time grid 𝒟\mathcal{D}, we can see from (3.11) that

(𝚝¯r)D¯t(ρz)+(𝚝¯r)x4𝚝¯(ρz)=(𝚝¯r)(P𝒟q)-(\bar{\mathtt{t}}^{-}r)\overline{{D}}_{t}(\rho z)+(\bar{\mathtt{t}}^{-}r)\partial_{x}^{4}\bar{\mathtt{t}}^{-}(\rho z)=(\bar{\mathtt{t}}^{-}r)(P_{{\scriptscriptstyle\mathcal{D}}}q) (B.4)

thus, putting together (B.3), (B.2) (after an application of the discrete shift 𝚝¯\bar{\mathtt{t}}^{-}) and (B.4), we can conveniently write the Carleman identity

Az+Bz=g,Az+Bz=g, (B.5)

where Az=i=14AizAz=\sum_{i=1}^{4}A_{i}z, Bz=i=13BizBz=\sum_{i=1}^{3}{B_{i}}z,

g\displaystyle g =(𝚝¯r)(P𝒟q)𝚝¯(T)τφ𝚝¯(θz)\displaystyle=(\bar{\mathtt{t}}^{-}r)(P_{{\scriptscriptstyle\mathcal{D}}}q)-\bar{\mathtt{t}}^{-}(\mathcal{R}T)-\tau\varphi\,\bar{\mathtt{t}}^{-}(\theta^{\prime}z)
tτφ(𝚝¯θ)D¯tz+𝒪λ(1)tτ2δ2m+2T4m+2(𝚝¯+z),\displaystyle\quad-{\triangle t}\tau\varphi(\bar{\mathtt{t}}^{-}\theta^{\prime})\overline{{D}}_{t}z+\mathcal{O}_{\lambda}(1)\frac{{\triangle t}\tau^{2}}{\delta^{2m+2}T^{4m+2}}(\bar{\mathtt{t}}^{+}z), (B.6)

and with

A1z=6τ2(𝚝¯θ)2λ2(βx)2ϕ2x2(𝚝¯z),A2z=τ4(𝚝¯θ)4λ4(βx)4ϕ4(𝚝¯z),\displaystyle A_{1}z=6\tau^{2}(\bar{\mathtt{t}}^{-}\theta)^{2}\lambda^{2}(\beta_{x})^{2}\phi^{2}\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z),\quad A_{2}z=\tau^{4}(\bar{\mathtt{t}}^{-}\theta)^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}(\bar{\mathtt{t}}^{-}z),
A3z=x4(𝚝¯z),A4z=6τ2(𝚝¯θ)2λ2((βx)2ϕ2)xx(𝚝¯z),\displaystyle A_{3}z=\partial_{x}^{4}(\bar{\mathtt{t}}^{-}z),\quad A_{4}z=6\tau^{2}(\bar{\mathtt{t}}^{-}\theta)^{2}\lambda^{2}\left((\beta_{x})^{2}\phi^{2}\right)_{x}\partial_{x}(\bar{\mathtt{t}}^{-}z), (B.7)

and

B1z=D¯tz,B2z=4τ3(𝚝¯θ)3λ3(βx)3ϕ3x(𝚝¯z),B3z=4τ(𝚝¯θ)λβxϕx3(𝚝¯z).\displaystyle B_{1}z=-\overline{{D}}_{t}z,\quad B_{2}z=-4\tau^{3}(\bar{\mathtt{t}}^{-}\theta)^{3}\lambda^{3}(\beta_{x})^{3}\phi^{3}\partial_{x}(\bar{\mathtt{t}}^{-}z),\quad B_{3}z=-4\tau(\bar{\mathtt{t}}^{-}\theta)\lambda\beta_{x}\phi\partial_{x}^{3}(\bar{\mathtt{t}}^{-}z). (B.8)

At this point, we have used that s=τθs=\tau\theta.

From (B.5), we readily identify the identity sought in the classical methodology developed in [FI96]. The splitting we have used here is inspired by the work [CMP15]. Comparing to the identity shown there, we see that we have two additional terms in the right hand side of (B.5) with a factor t{\triangle t} in front and, of course, we have the time discrete derivative D¯tz\overline{{D}}_{t}z instead of the continuous one in the term B1zB_{1}z.

B.2 Estimate of the cross product

Notice that equality (B.5) is written in the primal mesh 𝒫\mathcal{P}. Thus, following the classical method, we take the L𝒫2L^{2}_{{\scriptscriptstyle\mathcal{P}}}-norm on both sides, which yields

AzL𝒫2(Q)2+BzL𝒫2(Q)2+2(Az,Bz)L𝒫2(Q)=gL𝒫2(Q)2.\left\lVert Az\right\rVert^{2}_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}+\left\lVert Bz\right\rVert^{2}_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}+2\left(Az,Bz\right)_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}=\left\lVert g\right\rVert^{2}_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}. (B.9)

In this part, we will dedicate to estimate the term (Az,Bz)L𝒫2(Q)\left(Az,Bz\right)_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}. Developing further, we set Iij:=(Aiz,Bjz)L𝒫2(Q)I_{ij}:=(A_{i}z,B_{j}z)_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}.

B.2.1 Estimates that do not involve time-discrete operations

As it can be noticed, some of the terms in the cross product (Az,Bz)L𝒫2(Q)\left(Az,Bz\right)_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)} do not require time-discrete computations. Indeed, only I11I_{11}, I21I_{21}, I31I_{31} and I41I_{41} require a time-discrete integration by parts. All of the others, can be carried out with a standard integration by parts in the space variable and just bearing in mind the notation for the shift 𝚝¯\bar{\mathtt{t}}^{-}. To keep this step short, we only present the final result for such terms.

Employing the notation s(t)=τθ(t)s(t)=\tau\theta(t), we have

I12=60Q(𝚝¯s)5λ5(βx)4βxxϕ5|x(𝚝¯z)|2+60Q(𝚝¯s)5λ6(βx)6ϕ5|x(𝚝¯z)|2,\displaystyle\bullet\ I_{12}=60\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{5}\lambda^{5}(\beta_{x})^{4}\beta_{xx}\phi^{5}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}+60\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{5}\lambda^{6}(\beta_{x})^{6}\phi^{5}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2},
I13=120T(𝚝¯s)3λ3(βx)3ϕ3|x2(𝚝¯z)|2|01+36Q(𝚝¯s)3λ3(βx)2βxxϕ3|x2(𝚝¯z)|2\displaystyle\bullet\ I_{13}=-12\left.\int_{0}^{T}(\bar{\mathtt{t}}^{-}s)^{3}\lambda^{3}(\beta_{x})^{3}\phi^{3}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2}\ \right|_{0}^{1}+36\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{3}\lambda^{3}(\beta_{x})^{2}\beta_{xx}\phi^{3}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2}
+36Q(𝚝¯s)3λ4(βx)4ϕ3|x2(𝚝¯z)|2,\displaystyle\qquad\qquad+36\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{3}\lambda^{4}(\beta_{x})^{4}\phi^{3}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2},
I22=14Q(𝚝¯s)7λ7(βx)6βxxϕ7(𝚝¯z)2+14Q(𝚝¯s)7λ8(βx)8ϕ7(𝚝¯z)2,\displaystyle\bullet\ I_{22}=14\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{7}\lambda^{7}(\beta_{x})^{6}\beta_{xx}\phi^{7}(\bar{\mathtt{t}}^{-}z)^{2}+14\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{7}\lambda^{8}(\beta_{x})^{8}\phi^{7}(\bar{\mathtt{t}}^{-}z)^{2},
I23=28Q(𝚝¯s)5λ6(βx)6ϕ5|x(𝚝¯z)|230Q(𝚝¯s)5λ5(βx)4βxϕ5|x(𝚝¯z)|2\displaystyle\bullet\ I_{23}=-28\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{5}\lambda^{6}(\beta_{x})^{6}\phi^{5}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}-30\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{5}\lambda^{5}(\beta_{x})^{4}\beta_{x}\phi^{5}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}
+2Q(𝚝¯s)5λ5((βx)5ϕ5)xxx(𝚝¯z)2,\displaystyle\qquad\qquad+2\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{5}\lambda^{5}\left(\left(\beta_{x}\right)^{5}\phi^{5}\right)_{xxx}(\bar{\mathtt{t}}^{-}z)^{2},
I32=6Q(𝚝¯s)3λ3(βx)2βxxϕ3|x2(𝚝¯z)|26Q(𝚝¯s)3λ4(βx)4ϕ3|x2(𝚝¯z)|2\displaystyle\bullet\ I_{32}=-6\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{3}\lambda^{3}(\beta_{x})^{2}\beta_{xx}\phi^{3}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2}-6\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{3}\lambda^{4}(\beta_{x})^{4}\phi^{3}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2}
+20T(𝚝¯s)3λ3(βx)3ϕ3|x2(𝚝¯z)|2|01,\displaystyle\qquad\qquad+2\left.\int_{0}^{T}(\bar{\mathtt{t}}^{-}s)^{3}\lambda^{3}(\beta_{x})^{3}\phi^{3}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2}\ \right|_{0}^{1},
I33=20T(𝚝¯s)λβxϕ|x3(𝚝¯z)|2|01+2Q(𝚝¯s)λβxxϕ|x3(𝚝¯z)|2\displaystyle\bullet\ I_{33}=-2\left.\int_{0}^{T}(\bar{\mathtt{t}}^{-}s)\lambda\beta_{x}\phi|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}z)|^{2}\ \right|_{0}^{1}+2\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)\lambda\beta_{xx}\phi|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}z)|^{2}
+2Q(𝚝¯s)λ2(βx)2ϕ|x3(𝚝¯z)|2,\displaystyle\qquad\qquad+2\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)\lambda^{2}(\beta_{x})^{2}\phi|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}z)|^{2},
I42=48Q(𝚝¯s)5λ5(βx)4βxxϕ5|x(𝚝¯z)|248Q(𝚝¯s)5λ6(βx)6ϕ5|x(𝚝¯z)|2,\displaystyle\bullet\ I_{42}=-48\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{5}\lambda^{5}(\beta_{x})^{4}\beta_{xx}\phi^{5}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}-48\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{5}\lambda^{6}(\beta_{x})^{6}\phi^{5}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2},
I43=48Q(𝚝¯s)3λ4(βx)4ϕ3|x2(𝚝¯z)|2+48Q(𝚝¯s)λ3(βx)2βxxϕ3|x2(𝚝¯z)|2\displaystyle\bullet\ I_{43}=48\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{3}\lambda^{4}(\beta_{x})^{4}\phi^{3}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2}+48\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)\lambda^{3}(\beta_{x})^{2}\beta_{xx}\phi^{3}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2}
12Q(𝚝¯s)3λ3[(βx)2ϕ((βx)2ϕ2)x]xx|x(𝚝¯z)|2.\displaystyle\qquad\qquad-12\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{3}\lambda^{3}\left[(\beta_{x})^{2}\phi\left((\beta_{x})^{2}\phi^{2}\right)_{x}\right]_{xx}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}.

Adding up all the boundary terms above and using (A.3) with property (3.5), we see that

100Ts3λ3(βx)3ϕ3|x2z|2|0120Tsλβxϕ|x3z|2|010,-10\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int_{0}^{T}{s}^{3}\lambda^{3}\left(\beta_{x}\right)^{3}\phi^{3}|\partial_{x}^{2}{z}|^{2}\Bigg{|}_{0}^{1}-2\,\mathchoice{{\vbox{\hbox{$\textstyle\textrm{---}$}}\kern-7.36673pt}}{{\vbox{\hbox{$\scriptstyle\textrm{---}$}}\kern-5.80672pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-4.11668pt}}{{\vbox{\hbox{$\scriptscriptstyle\textrm{---}$}}\kern-3.68335pt}}\!\int_{0}^{T}s\lambda\beta_{x}\phi|\partial_{x}^{3}z|^{2}\Bigg{|}_{0}^{1}\geq 0,

thus we shall drop them hereinafter.

B.2.2 Estimates involving time-discrete computations

- Estimate of I11I_{11}. This is the most delicate estimate. Integrating by parts in space we have

I11\displaystyle I_{11} =6Qτ2(𝚝¯θ)2λ2((βx)2ϕ2)xx(𝚝¯z)D¯tz+6Qτ2(𝚝¯θ)2λ2(βx)2ϕ2x(𝚝¯z)D¯t(xz)\displaystyle=6\int\!\!\!\int_{Q}\tau^{2}(\bar{\mathtt{t}}^{-}\theta)^{2}\lambda^{2}\left((\beta_{x})^{2}\phi^{2}\right)_{x}\partial_{x}(\bar{\mathtt{t}}^{-}z)\overline{{D}}_{t}z+6\int\!\!\!\int_{Q}\tau^{2}(\bar{\mathtt{t}}^{-}\theta)^{2}\lambda^{2}(\beta_{x})^{2}\phi^{2}\partial_{x}(\bar{\mathtt{t}}^{-}z)\overline{{D}}_{t}(\partial_{x}z)
=:I11(1)+I11(2).\displaystyle=:I_{11}^{(1)}+I_{11}^{(2)}.

We keep I11(1)I_{11}^{(1)} since it will be canceled in a subsequent step. For the second term, we have using formula (A.2) and then integrating in time that

I11(2)\displaystyle I_{11}^{(2)} =3Qτ2(𝚝¯θ)2λ2(βx)2ϕ2D¯t[(xz)2]3tQτ2(𝚝¯θ)2λ2(βx)2ϕ2(D¯txz)2\displaystyle=3\int\!\!\!\int_{Q}\tau^{2}(\bar{\mathtt{t}}^{-}\theta)^{2}\lambda^{2}(\beta_{x})^{2}\phi^{2}\overline{{D}}_{t}[(\partial_{x}z)^{2}]-3{\triangle t}\int\!\!\!\int_{Q}\tau^{2}(\bar{\mathtt{t}}^{-}\theta)^{2}\lambda^{2}(\beta_{x})^{2}\phi^{2}\left(\overline{{D}}_{t}\partial_{x}z\right)^{2}
=301τ2(θM+12)2λ2(βx)2ϕ2|xzM+12|2301τ2(θ12)2λ2(βx)2ϕ2|xz12|2\displaystyle=3\int_{0}^{1}\tau^{2}(\theta^{M+\frac{1}{2}})^{2}\lambda^{2}(\beta_{x})^{2}\phi^{2}|\partial_{x}z^{M+\frac{1}{2}}|^{2}-3\int_{0}^{1}\tau^{2}(\theta^{\frac{1}{2}})^{2}\lambda^{2}(\beta_{x})^{2}\phi^{2}|\partial_{x}z^{\frac{1}{2}}|^{2}
Qτ2(D¯tθ2)λ2ϕ2|x(𝚝¯+z)|2:=𝒫3tQτ2(𝚝¯θ)2λ2(βx)2ϕ2(D¯txz)2:=𝒬.\displaystyle\quad-\underbrace{\int\!\!\!\int_{Q}\tau^{2}(\overline{{D}}_{t}\theta^{2})\lambda^{2}\phi^{2}|\partial_{x}(\bar{\mathtt{t}}^{+}z)|^{2}}_{:=\mathcal{P}}-\underbrace{3{\triangle t}\int\!\!\!\int_{Q}\tau^{2}(\bar{\mathtt{t}}^{-}\theta)^{2}\lambda^{2}(\beta_{x})^{2}\phi^{2}\left(\overline{{D}}_{t}\partial_{x}z\right)^{2}}_{:=\mathcal{Q}}.

We observe that the first two terms above have a prescribed sign. Note that the same is true for the term 𝒫\mathcal{P}, nonetheless has the bad sign and cannot be dropped.

Let us find a bound for 𝒫\mathcal{P}. Using Lemma A.5(i) with =2\ell=2 we have

|𝒫|CQ{T(𝚝¯+θ)2+1/m+tδ2m+2T4m+2}τ2λ2(βx)2ϕ2|x(𝚝¯+z)|2.\displaystyle\left|\mathcal{P}\right|\leq C\int\!\!\!\int_{Q}\left\{T(\bar{\mathtt{t}}^{+}\theta)^{2+{1}/{m}}+\frac{{\triangle t}}{\delta^{2m+2}T^{4m+2}}\right\}\tau^{2}\lambda^{2}\left(\beta_{x}\right)^{2}\phi^{2}|\partial_{x}(\bar{\mathtt{t}}^{+}z)|^{2}. (B.10)

Using the definitions of 𝚝¯\bar{\mathtt{t}}^{-} and 𝚝¯+\bar{\mathtt{t}}^{+}, we can shift the indices in the above equation to deduce

|𝒫|\displaystyle|\mathcal{P}| CQ{T(𝚝¯θ)2+1/m+tδ2m+2T4m+2}τ2λ2(βx)2ϕ2|x(𝚝¯z)|2\displaystyle\leq C\int\!\!\!\int_{Q}\left\{T(\bar{\mathtt{t}}^{-}\theta)^{2+{1}/{m}}+\frac{{\triangle t}}{\delta^{2m+2}T^{4m+2}}\right\}\tau^{2}\lambda^{2}\left(\beta_{x}\right)^{2}\phi^{2}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}
+C01{T(θM+12)2+1/m+tδ2m+2T4m+2}τ2λ2(βx)2ϕ2|xzM+12|2\displaystyle\quad+C\int_{0}^{1}\left\{T(\theta^{M+\frac{1}{2}})^{2+{1}/{m}}+\frac{{\triangle t}}{\delta^{2m+2}T^{4m+2}}\right\}\tau^{2}\lambda^{2}\left(\beta_{x}\right)^{2}\phi^{2}|\partial_{x}z^{M+\frac{1}{2}}|^{2}
C01{T(θ12)2+1/m+tδ2m+2T4m+2}τ2λ2(βx)2ϕ2|xz12|2.\displaystyle\quad-C\int_{0}^{1}\left\{T(\theta^{\frac{1}{2}})^{2+{1}/{m}}+\frac{{\triangle t}}{\delta^{2m+2}T^{4m+2}}\right\}\tau^{2}\lambda^{2}\left(\beta_{x}\right)^{2}\phi^{2}|\partial_{x}z^{\frac{1}{2}}|^{2}. (B.11)

Now, we turn our attention to 𝒬\mathcal{Q}. Noting that D¯t\overline{{D}}_{t} and x\partial_{x} commute, we can integrate by parts in the space variable to get

𝒬\displaystyle\mathcal{Q} =3tQτ2(𝚝¯θ)2λ2(βx)2ϕ2(D¯tz)(D¯tx2z)\displaystyle=3{\triangle t}\int\!\!\!\int_{Q}\tau^{2}(\bar{\mathtt{t}}^{-}\theta)^{2}\lambda^{2}(\beta_{x})^{2}\phi^{2}\left(\overline{{D}}_{t}z\right)\left(\overline{{D}}_{t}\partial_{x}^{2}z\right)
+3tQτ2(𝚝¯θ)2λ2((βx)2ϕ2)x(D¯tz)(D¯txz)=:𝒬1+𝒬2.\displaystyle\quad+3{\triangle t}\int\!\!\!\int_{Q}\tau^{2}(\bar{\mathtt{t}}^{-}\theta)^{2}\lambda^{2}\left((\beta_{x})^{2}\phi^{2}\right)_{x}(\overline{{D}}_{t}z)(\overline{{D}}_{t}\partial_{x}z)=:\mathcal{Q}_{1}+\mathcal{Q}_{2}.

We observe that there are not boundary terms since q(H02(0,1))𝒟¯q\in(H_{0}^{2}(0,1))^{\overline{{\scriptscriptstyle\mathcal{D}}}} and thus zn12=xzn12=0z^{n-\frac{1}{2}}=\partial_{x}z^{n-\frac{1}{2}}=0 for n1,M+1n\in\llbracket 1,M+1\rrbracket. Using Cauchy-Schwarz and Young inequalities, we get

|𝒬1|ϑtQ(D¯tx2z)2+CϑtQτ4(𝚝¯θ)4λ4(βx)4ϕ4(D¯tz)2|\mathcal{Q}_{1}|\leq\vartheta{\triangle t}\int\!\!\!\int_{Q}(\overline{{D}}_{t}\partial_{x}^{2}z)^{2}+\frac{C}{\vartheta}{\triangle t}\int\!\!\!\int_{Q}\tau^{4}(\bar{\mathtt{t}}^{-}\theta)^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}(\overline{{D}}_{t}z)^{2}

for any 0<ϑ<10<\vartheta<1 and some C>0C>0 uniform with respect to t{\triangle t}. For 𝒬2\mathcal{Q}_{2}, we have after integration by parts in space

𝒬2=3t2Qτ2(𝚝¯θ)2λ2((βx)2ϕ2)xx(D¯tz)2.\mathcal{Q}_{2}=-\frac{3{\triangle t}}{2}\int\!\!\!\int_{Q}\tau^{2}(\bar{\mathtt{t}}^{-}\theta)^{2}\lambda^{2}\left((\beta_{x})^{2}\phi^{2}\right)_{xx}(\overline{{D}}_{t}z)^{2}.

Once again, we do not have boundary terms since q(H02(0,1))𝒟¯q\in(H_{0}^{2}(0,1))^{\overline{{\scriptscriptstyle\mathcal{D}}}}.

Overall, collecting the above terms, we have

I11\displaystyle I_{11} I11(1)CQT(𝚝¯θ)2+1/mτ2λ2(βx)2ϕ2|x(𝚝¯z)|2ϑtQ(D¯tx2z)2\displaystyle\geq I_{11}^{(1)}-C\int\!\!\!\int_{Q}T(\bar{\mathtt{t}}^{-}\theta)^{2+{1}/{m}}\tau^{2}\lambda^{2}\left(\beta_{x}\right)^{2}\phi^{2}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}-\vartheta{\triangle t}\int\!\!\!\int_{Q}\left(\overline{{D}}_{t}\partial_{x}^{2}z\right)^{2}
CX11C(1+1ϑ)Y11CW11,\displaystyle\quad-CX_{11}-C\left(1+\frac{1}{\vartheta}\right)Y_{11}-CW_{11}, (B.12)

for any 0<ϑ<10<\vartheta<1 and some constant C>0C>0, with

X11\displaystyle X_{11} :=tδ2m+2T4m+2Qτ2λ2(βx)2ϕ2|x(𝚝¯z)|2\displaystyle:=\frac{{\triangle t}}{\delta^{2m+2}T^{4m+2}}\int\!\!\!\int_{Q}\tau^{2}\lambda^{2}\left(\beta_{x}\right)^{2}\phi^{2}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}
Y11\displaystyle Y_{11} :=tQτ2(𝚝¯θ)2λ2|((βx)2ϕ2)xx|(D¯tz)2+tQτ4(𝚝¯θ)4λ4(βx)4ϕ4(D¯tz)2\displaystyle:={\triangle t}\int\!\!\!\int_{Q}\tau^{2}(\bar{\mathtt{t}}^{-}\theta)^{2}\lambda^{2}\left|\left((\beta_{x})^{2}\phi^{2}\right)_{xx}\right|\left(\overline{{D}}_{t}z\right)^{2}+{\triangle t}\int\!\!\!\int_{Q}\tau^{4}(\bar{\mathtt{t}}^{-}\theta)^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}(\overline{{D}}_{t}z)^{2}
W11\displaystyle W_{11} :=01τ2(θ12)2λ2(βx)2ϕ2|xz12|2+01{T(θM+12)2+1/m+tδ2m+2T4m+2}τ2λ2(βx)2ϕ2|xzM+12|2.\displaystyle:=\int_{0}^{1}\tau^{2}(\theta^{\frac{1}{2}})^{2}\lambda^{2}(\beta_{x})^{2}\phi^{2}|\partial_{x}z^{\frac{1}{2}}|^{2}+\int_{0}^{1}\left\{T(\theta^{M+\frac{1}{2}})^{2+{1}/{m}}+\frac{{\triangle t}}{\delta^{2m+2}T^{4m+2}}\right\}\tau^{2}\lambda^{2}\left(\beta_{x}\right)^{2}\phi^{2}|\partial_{x}z^{M+\frac{1}{2}}|^{2}.

- Estimate of I21I_{21}. Using formula (A.2) we have

I21\displaystyle I_{21} =Qτ4(𝚝¯θ)4λ4(βx)4ϕ4(𝚝¯z)D¯tz\displaystyle=-\int\!\!\!\int_{Q}\tau^{4}(\bar{\mathtt{t}}^{-}\theta)^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}(\bar{\mathtt{t}}^{-}z)\overline{{D}}_{t}z
=12Qτ4(𝚝¯θ)4λ4(βx)4ϕ4D¯t(z2)+t2Qτ4(𝚝¯θ)4λ4(βx)4ϕ4(D¯tz)2\displaystyle=-\frac{1}{2}\int\!\!\!\int_{Q}\tau^{4}(\bar{\mathtt{t}}^{-}\theta)^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}\overline{{D}}_{t}(z^{2})+\frac{{\triangle t}}{2}\int\!\!\!\int_{Q}\tau^{4}(\bar{\mathtt{t}}^{-}\theta)^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}(\overline{{D}}_{t}z)^{2}
=:I21(1)+I21(2).\displaystyle=:I_{21}^{(1)}+I_{21}^{(2)}. (B.13)

We notice that I21(2)I_{21}^{(2)} is positive. On the other hand, discrete integration by parts in the first term yields

I21(1)\displaystyle I_{21}^{(1)} =12QD¯t(θ4)τ4λ4(βx)4ϕ4(𝚝¯+z)21201τ4(θM+12)4λ4(βx)4ϕ4|zM+12|2\displaystyle=\frac{1}{2}\int\!\!\!\int_{Q}\overline{{D}}_{t}(\theta^{4})\tau^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}(\bar{\mathtt{t}}^{+}z)^{2}-\frac{1}{2}\int_{0}^{1}\tau^{4}(\theta^{M+\frac{1}{2}})^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}|z^{M+\frac{1}{2}}|^{2}
+1201τ4(θ12)4λ4(βx)4ϕ4|z12|2.\displaystyle\quad+\frac{1}{2}\int_{0}^{1}\tau^{4}(\theta^{\frac{1}{2}})^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}|z^{\frac{1}{2}}|^{2}. (B.14)

Let us focus now on the first term of the above expression. Using Lemma A.5(i) with =4\ell=4 we have

|12QD¯t(θ4)τ4λ4(βx)4(𝚝¯+z)2|CQ{T(𝚝¯+θ)4+1/m+tδ4m+2T8m+2}τ4λ4(βx)4ϕ4(𝚝¯+z)2\displaystyle\left|\frac{1}{2}\int\!\!\!\int_{Q}\overline{{D}}_{t}(\theta^{4})\tau^{4}\lambda^{4}(\beta_{x})^{4}(\bar{\mathtt{t}}^{+}z)^{2}\right|\leq C\int\!\!\!\int_{Q}\left\{T(\bar{\mathtt{t}}^{+}\theta)^{4+{1}/{m}}+\frac{{\triangle t}}{\delta^{4m+2}T^{8m+2}}\right\}\tau^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}(\bar{\mathtt{t}}^{+}z)^{2}

whence, shifting the indices in the right-hand side, we get

|12QD¯t(θ4)τ4λ4(βx)4(𝚝¯+z)2|\displaystyle\left|\frac{1}{2}\int\!\!\!\int_{Q}\overline{{D}}_{t}(\theta^{4})\tau^{4}\lambda^{4}(\beta_{x})^{4}(\bar{\mathtt{t}}^{+}z)^{2}\right|
CQ{T(𝚝¯θ)4+1/m+tδ4m+2T8m+2}τ4λ4(βx)4ϕ4(𝚝¯z)2\displaystyle\quad\leq C\int\!\!\!\int_{Q}\left\{T(\bar{\mathtt{t}}^{-}\theta)^{4+{1}/{m}}+\frac{{\triangle t}}{\delta^{4m+2}T^{8m+2}}\right\}\tau^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}(\bar{\mathtt{t}}^{-}z)^{2}
+C01{T(θM+12)4+1/m+tδ4m+2T8m+2}τ4λ4(βx)4ϕ4(zM+12)2\displaystyle\qquad+C\int_{0}^{1}\left\{T(\theta^{M+\frac{1}{2}})^{4+{1}/{m}}+\frac{{\triangle t}}{\delta^{4m+2}T^{8m+2}}\right\}\tau^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}(z^{M+\frac{1}{2}})^{2}
C01{T(θ12)4+1/m+tδ4m+2T8m+2}τ4λ4(βx)4ϕ4(z12)2.\displaystyle\qquad-C\int_{0}^{1}\left\{T(\theta^{\frac{1}{2}})^{4+{1}/{m}}+\frac{{\triangle t}}{\delta^{4m+2}T^{8m+2}}\right\}\tau^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}(z^{\frac{1}{2}})^{2}. (B.15)

Combining (B.13)–(B.15) and dropping the corresponding positive terms, we can bound I21I_{21} from below as follows

I21CQT(𝚝¯θ)4+1/mτ4λ4(βx)4ϕ4(𝚝¯z)2CX21CW21I_{21}\geq-C\int\!\!\!\int_{Q}T(\bar{\mathtt{t}}^{-}\theta)^{4+{1}/{m}}\tau^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}(\bar{\mathtt{t}}^{-}z)^{2}-CX_{21}-CW_{21} (B.16)

for some C>0C>0 uniform with respect to t{\triangle t}, with

X21\displaystyle X_{21} :=tδ4m+2T8m+2Qτ4λ4(βx)4ϕ4(𝚝¯z)2,\displaystyle:=\frac{{\triangle t}}{\delta^{4m+2}T^{8m+2}}\int\!\!\!\int_{Q}\tau^{4}\lambda^{4}(\beta_{x})^{4}\phi^{4}(\bar{\mathtt{t}}^{-}z)^{2},
W21\displaystyle W_{21} :=01{(θM+12)4+T(θM+12)4+1/m+tδ4m+2T8m+2}τ4λ4ϕ4(zM+12)2.\displaystyle:=\int_{0}^{1}\left\{(\theta^{M+\frac{1}{2}})^{4}+T(\theta^{M+\frac{1}{2}})^{4+{1}/{m}}+\frac{{\triangle t}}{\delta^{4m+2}T^{8m+2}}\right\}\tau^{4}\lambda^{4}\phi^{4}(z^{M+\frac{1}{2}})^{2}.

- Estimate of I31I_{31}. Since q(H02(0,1))𝒟¯q\in(H_{0}^{2}(0,1))^{\overline{{\scriptscriptstyle\mathcal{D}}}} and thus zn12=xzn12=0z^{n-\frac{1}{2}}=\partial_{x}z^{n-\frac{1}{2}}=0 for n1,M+1n\in\llbracket 1,M+1\rrbracket, we can integrate by parts in the space variable twice and obtain

I31\displaystyle I_{31} =Qx4(𝚝¯z)D¯tz=Qx2(𝚝¯z)D¯t(x2z)\displaystyle=-\int\!\!\!\int_{Q}\partial_{x}^{4}(\bar{\mathtt{t}}^{-}z)\overline{{D}}_{t}{z}=-\int\!\!\!\int_{Q}\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)\overline{{D}}_{t}(\partial_{x}^{2}z)
=12QD¯t(x2z)+t2Q(D¯tx2z)2,\displaystyle=-\frac{1}{2}\int\!\!\!\int_{Q}\overline{{D}}_{t}(\partial_{x}^{2}z)+\frac{{\triangle t}}{2}\int\!\!\!\int_{Q}\left(\overline{{D}}_{t}\partial_{x}^{2}z\right)^{2},

and using discrete integration by parts in the first term we get

I31\displaystyle I_{31} =1201|x2z12|21201|x2zM+12|2+t2Q(D¯tx2z)2\displaystyle=\frac{1}{2}\int_{0}^{1}\left|\partial_{x}^{2}z^{\frac{1}{2}}\right|^{2}-\frac{1}{2}\int_{0}^{1}\left|\partial_{x}^{2}z^{M+\frac{1}{2}}\right|^{2}+\frac{{\triangle t}}{2}\int\!\!\!\int_{Q}\left(\overline{{D}}_{t}\,\partial_{x}^{2}z\right)^{2}
t2Q(D¯tx2z)2W31\displaystyle\geq\frac{{\triangle t}}{2}\int\!\!\!\int_{Q}\left(\overline{{D}}_{t}\,\partial_{x}^{2}z\right)^{2}-W_{31} (B.17)

with W31:=1201|x2zM+12|2W_{31}:=\frac{1}{2}\int_{0}^{1}|\partial_{x}^{2}z^{M+\frac{1}{2}}|^{2}.

Remark B.1.

Unlike for the time-discrete heat equation (see [BHS20, Eq. (2.20)]), we keep the positive term in (B.17) since it will help to absorb the similar term coming from (B.12). We emphasize that in the continuous case I310I_{31}\equiv 0.

- Estimate of I41I_{41}. We readily have

I41=6Qτ2(𝚝¯θ)2λ2((βx)2ϕ2)xx(𝚝¯z)D¯tz=I11(1).I_{41}=-6\int\!\!\!\int_{Q}\tau^{2}(\bar{\mathtt{t}}^{-}\theta)^{2}\lambda^{2}\left((\beta_{x})^{2}\phi^{2}\right)_{x}\partial_{x}(\bar{\mathtt{t}}^{-}z)\overline{{D}}_{t}z=-I_{11}^{(1)}. (B.18)

Recalling the notation s(t)=τθ(t)s(t)=\tau\theta(t), we can put together estimates (B.12), (B.16), (B.17), (B.18) and fix ϑ>0\vartheta>0 small enough to obtain

i=14Ii1\displaystyle\sum_{i=1}^{4}I_{i1} ctQ(D¯tx2z)2CQT(𝚝¯θ)1/m(𝚝¯s)2λ2(βx)2ϕ2|x(𝚝¯z)|2\displaystyle\geq c{\triangle t}\int\!\!\!\int_{Q}\left(\overline{{D}}_{t}\partial_{x}^{2}z\right)^{2}-C\int\!\!\!\int_{Q}T(\bar{\mathtt{t}}^{-}\theta)^{1/m}(\bar{\mathtt{t}}^{-}s)^{2}\lambda^{2}\left(\beta_{x}\right)^{2}\phi^{2}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}
CQT(𝚝¯θ)1/m(𝚝¯s)4λ4(βx)4ϕ4(𝚝¯z)2CXCYCW,\displaystyle\quad-C\int\!\!\!\int_{Q}T(\bar{\mathtt{t}}^{-}\theta)^{1/m}(\bar{\mathtt{t}}^{-}s)^{4}\lambda^{4}\left(\beta_{x}\right)^{4}\phi^{4}(\bar{\mathtt{t}}^{-}z)^{2}-CX-CY-CW, (B.19)

for some constants c,C>0c,C>0 uniform with respect to t{\triangle t}, with X:=X11+X21X:=X_{11}+X_{21}, Y:=Y11Y:=Y_{11}, and W=W11+W21+W31W=W_{11}+W_{21}+W_{31}.

Remark B.2.

Estimate (B.19) resembles the one obtained in the continuous setting, in fact, the second and third terms the expected ones. All of the other terms are related to the time-discrete nature of our problem. The terms collected in XX and YY depend directly on the parameter t{\triangle t}, while the terms in WW appear since our Carleman weight does not blow up as t0+t\to 0^{+} and tTt\to T^{-}.

B.3 Towards the Carleman estimate

For a set UΩU\subset\Omega, we define

IU(z;λ)\displaystyle I_{U}(z;\lambda) =Q(𝚝¯s)7λ8ϕ7(𝚝¯z)2+Q(𝚝¯s)5λ6ϕ5|x(𝚝¯z)|2\displaystyle=\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{7}\lambda^{8}\phi^{7}(\bar{\mathtt{t}}^{-}z)^{2}+\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{5}\lambda^{6}\phi^{5}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}
+Q(𝚝¯s)3λ4ϕ3|x2(𝚝¯z)|2+Q(𝚝¯s)λ2ϕ|x3(𝚝¯z)|2.\displaystyle\quad+\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{3}\lambda^{4}\phi^{3}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2}+\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)\lambda^{2}\phi|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}z)|^{2}. (B.20)

As usual in other proofs for Carleman estimates, using the properties of the weight β\beta (see eq. 3.4) and collecting the terms IijI_{ij} from Sections B.2.1 and B.2.2, we have that for λC\lambda\geq C and τCT2m1/3\tau\geq CT^{2m-1/3} the following estimate holds

i=14j=13IijCIΩω0(z;τ,λ)=CIΩ(z;τ,λ)CIω0(z;τ,λ),\sum_{i=1}^{4}\sum_{j=1}^{3}I_{ij}\geq CI_{\Omega\setminus\omega_{0}}(z;\tau,\lambda)=CI_{\Omega}(z;\tau,\lambda)-CI_{\omega_{0}}(z;\tau,\lambda),

for some C>0C>0 only depending on ω\omega. So far, from (B.9) and the above estimate, we have

IΩ(z;τ,λ)+AzL𝒫(Q)22+BzL𝒫(Q)2C(gL𝒫(Q)22+Iω0(z;τ,λ)+X+Y+Z)\displaystyle I_{\Omega}(z;\tau,\lambda)+\left\lVert Az\right\rVert_{L^{2}_{{\scriptscriptstyle\mathcal{P}}(Q)}}^{2}+\left\lVert Bz\right\rVert_{L^{2}_{{\scriptscriptstyle\mathcal{P}}(Q)}}\leq C\left(\left\lVert g\right\rVert^{2}_{L^{2}_{{\scriptscriptstyle\mathcal{P}}(Q)}}+I_{\omega_{0}}(z;\tau,\lambda)+X+Y+Z\right) (B.21)

for any λC\lambda\geq C and τCT2m1/3\tau\geq CT^{2m-1/3}.

We will add terms containing D¯tz\overline{{D}}_{t}z and x4(𝚝¯z)\partial_{x}^{4}(\bar{\mathtt{t}}^{-}z) in the left-hand side of the above equation. From (B.7), we have

(𝚝¯s)1/2ϕ1/2x4(𝚝¯z)L𝒫2(Q)2\displaystyle\|(\bar{\mathtt{t}}^{-}s)^{-1/2}\phi^{-1/2}\partial_{x}^{4}(\bar{\mathtt{t}}^{-}z)\|^{2}_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}
C((𝚝¯s)1/2AzL2(Q)2+(𝚝¯s)3/2λ2ϕ3/2x2(𝚝¯z)L𝒫2(Q)2)\displaystyle\quad\leq C\left(\|(\bar{\mathtt{t}}^{-}s)^{-1/2}Az\|^{2}_{L^{2}(Q)}+\|(\bar{\mathtt{t}}^{-}s)^{3/2}\lambda^{2}\phi^{3/2}\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)\|^{2}_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}\right)
+C((𝚝¯s)7/2λ4ϕ7/2(𝚝¯z)L𝒫2(Q)2+(𝚝¯s)5/2λ3ϕ5/2x(𝚝¯z)L𝒫2(Q)2),\displaystyle\qquad+C\left(\|(\bar{\mathtt{t}}^{-}s)^{7/2}\lambda^{4}\phi^{7/2}(\bar{\mathtt{t}}^{-}z)\|^{2}_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}+\|(\bar{\mathtt{t}}^{-}s)^{5/2}\lambda^{3}\phi^{5/2}\partial_{x}(\bar{\mathtt{t}}^{-}z)\|^{2}_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}\right),

where we have used that |((βx)2ϕ2)x|Cλϕ2\left|(\left(\beta_{x})^{2}\phi^{2}\right)_{x}\right|\leq C\lambda\phi^{2} and have taken λ1\lambda\geq 1 and τCT2m\tau\geq CT^{2m}. Similarly, from (B.8) we get

(𝚝¯s)1/2ϕ1/2D¯tzL𝒫2(Q)2\displaystyle\|(\bar{\mathtt{t}}^{-}s)^{-1/2}\phi^{-1/2}\overline{{D}}_{t}z\|_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}^{2} C(𝚝¯s)1/2ϕ1/2BzL𝒫2(Q)2+C(𝚝¯s)5/2λ3ϕ3/2x(𝚝¯z)L𝒫2(Q)2\displaystyle\leq C\|(\bar{\mathtt{t}}^{-}s)^{-1/2}\phi^{-1/2}Bz\|_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}^{2}+C\|(\bar{\mathtt{t}}^{-}s)^{5/2}\lambda^{3}\phi^{3/2}\partial_{x}(\bar{\mathtt{t}}^{-}z)\|^{2}_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}
+C(𝚝¯s)1/2λϕ1/2x3(𝚝¯z)L𝒫2(Q)2.\displaystyle\quad+C\|(\bar{\mathtt{t}}^{-}s)^{1/2}\lambda\phi^{1/2}\partial_{x}^{3}(\bar{\mathtt{t}}^{-}z)\|^{2}_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)}.

Thus, taking into account the above estimates and increasing (if necessary) the value of τ\tau such that s(t)1s(t)\geq 1, estimate (B.21) becomes

Q\displaystyle\int\!\!\!\int_{Q} (𝚝¯s)1[|D¯tz|2+|x4(𝚝¯z)|2]+IΩ(z;τ,λ)\displaystyle(\bar{\mathtt{t}}^{-}s)^{-1}\left[|\overline{{D}}_{t}z|^{2}+|\partial_{x}^{4}(\bar{\mathtt{t}}^{-}z)|^{2}\right]+I_{\Omega}(z;\tau,\lambda)
C(gL𝒫(Q)22+Iω0(z;τ,λ)+X+Y+Z)\displaystyle\leq C\left(\left\lVert g\right\rVert^{2}_{L^{2}_{{\scriptscriptstyle\mathcal{P}}(Q)}}+I_{\omega_{0}}(z;\tau,\lambda)+X+Y+Z\right) (B.22)

for all λC\lambda\geq C and τC(T2m+T2m1/3)\tau\geq C(T^{2m}+T^{2m-1/3}).

B.4 Absorbing discrete related terms

In this step, we will absorb the remaining terms in the right-hand side of (B.26) by choosing the Carleman parameters in a specific order. We begin by choosing λ01\lambda_{0}\geq 1 large enough (only depending on ω0\omega_{0} and ω\omega) and set λ=λ0\lambda=\lambda_{0} for the rest of the proof.

We begin with the following result.

Lemma B.3.

There exists Cλ0>0C_{\lambda_{0}}>0 such that

gL𝒫2(Q)2\displaystyle\left\lVert g\right\rVert^{2}_{L^{2}_{{\scriptscriptstyle\mathcal{P}}}(Q)} Cλ0(Q(𝚝¯r)2|P𝒟q|2+τ1IΩ(z;1)+Xg+Yg+Wg)\displaystyle\leq C_{\lambda_{0}}\left(\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}r)^{2}|P_{{\scriptscriptstyle\mathcal{D}}}q|^{2}+\tau^{-1}I_{\Omega}(z;1)+X_{g}+Y_{g}+W_{g}\right) (B.23)

for all ττ0(T2m+T2m1/3)\tau\geq\tau_{0}(T^{2m}+T^{2m-1/3}) where τ0\tau_{0} is a positive constant only depending on λ0\lambda_{0} and

Xg:=(tτ2δ2m+2T4m+2)2Q(𝚝¯z)2,Yg:=(t)2τ2T2Q(𝚝¯θ)2(1+1/m)(D¯tz)2,\displaystyle X_{g}:=\left(\frac{{\triangle t}\tau^{2}}{\delta^{2m+2}T^{4m+2}}\right)^{2}\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}z)^{2},\quad Y_{g}:=({\triangle t})^{2}\tau^{2}T^{2}\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}\theta)^{2(1+{1}/{m})}(\overline{{D}}_{t}z)^{2}, (B.24)
Wg:=(tτ2δ2m+2T4m+2)201|zM+12|2.\displaystyle W_{g}:=\left(\frac{{\triangle t}\tau^{2}}{\delta^{2m+2}T^{4m+2}}\right)^{2}\int_{0}^{1}|z^{M+\frac{1}{2}}|^{2}. (B.25)
Proof.

The proof follows by successive applications of triangle and Young inequalities. Looking at the definition of gg, see eq. (B.6), the first term of (B.23) is obvious. The second term comes from estimating the terms in 𝒯\mathcal{RT} in (B.6) by using the fact that βC4([0,1])\beta\in C^{4}([0,1]) and τCT2m\tau\geq CT^{2m} for some C>0C>0 only depending on λ0\lambda_{0}. The third term in (B.6) can be incorporated on the second one in (B.23) by noting that |θ(t)|CTθ(t)1+1m|\theta^{\prime}(t)|\leq CT\theta(t)^{1+\frac{1}{m}} for all t(0,T)t\in(0,T), φC(Ω¯)=𝒪λ0(1)\|\varphi\|_{C(\overline{\Omega})}={\mathcal{O}}_{\lambda_{0}}(1) and taking τCT2m1/3\tau\geq CT^{2m-1/3} for some C>0C>0 only depending on λ0\lambda_{0}. The terms in XgX_{g}, YgY_{g} and WgW_{g} can be obtained straightforwardly. ∎

Using inequality (B.23) in (B.26) and since ϕ=𝒪λ0(1)\|\phi\|_{\infty}={\mathcal{O}}_{\lambda_{0}}(1), we have

Q\displaystyle\int\!\!\!\int_{Q} (𝚝¯s)1[(D¯tz)2+|x4(𝚝¯z)|2]+IΩ(z)\displaystyle(\bar{\mathtt{t}}^{-}s)^{-1}\left[\left(\overline{{D}}_{t}z\right)^{2}+|\partial_{x}^{4}(\bar{\mathtt{t}}^{-}z)|^{2}\right]+I_{\Omega}(z)
Cλ0(Q(𝚝¯r)2|P𝒟q|2+Iω0(z)+X¯+Y¯+W¯)\displaystyle\leq C_{\lambda_{0}}\left(\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}r)^{2}|P_{{\scriptscriptstyle\mathcal{D}}}q|^{2}+I_{\omega_{0}}(z)+\underline{X}+\underline{Y}+\underline{W}\right) (B.26)

for any ττ0(T2m+T2m1/3)\tau\geq\tau_{0}(T^{2m}+T^{2m-1/3}), where τ0\tau_{0} is a positive constant only depending on λ0\lambda_{0}. In (B.26), for UΩU\subset\Omega we have abridged

IU(z)\displaystyle I_{U}(z) =U(𝚝¯s)|x3(𝚝¯z)|2+U(𝚝¯s)3|x2(𝚝¯z)|2\displaystyle=\int\!\!\!\int_{U}(\bar{\mathtt{t}}^{-}s)|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}z)|^{2}+\int\!\!\!\int_{U}(\bar{\mathtt{t}}^{-}s)^{3}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2}
+U(𝚝¯s)5|x(𝚝¯z)|2+U(𝚝¯s)7(𝚝¯z)2\displaystyle\quad+\int\!\!\!\int_{U}(\bar{\mathtt{t}}^{-}s)^{5}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}+\int\!\!\!\int_{U}(\bar{\mathtt{t}}^{-}s)^{7}(\bar{\mathtt{t}}^{-}z)^{2}

and we have collected similar terms so

X¯\displaystyle\underline{X} :=tτ2δ2m+2T4m+2Q|x(𝚝¯z)|2+tτ4δ4m+2T8m+2Q(𝚝¯z)2+(tτ2δ2m+2T4m+2)2Q(𝚝¯z)2,\displaystyle:=\frac{{\triangle t}\tau^{2}}{\delta^{2m+2}T^{4m+2}}\int\!\!\!\int_{Q}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}+\frac{{\triangle t}\tau^{4}}{\delta^{4m+2}T^{8m+2}}\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}z)^{2}+\left(\frac{{\triangle t}\tau^{2}}{\delta^{2m+2}T^{4m+2}}\right)^{2}\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}z)^{2},
Y¯\displaystyle\underline{Y} :=tQ(𝚝¯s)2(D¯tz)2+tQ(𝚝¯s)4(D¯tz)2+(t)2τ2T2Q(𝚝¯θ)2(1+1/m)(D¯tz)2,\displaystyle:={\triangle t}\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{2}\left(\overline{{D}}_{t}z\right)^{2}+{\triangle t}\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{4}(\overline{{D}}_{t}z)^{2}+({\triangle t})^{2}\tau^{2}T^{2}\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}\theta)^{2(1+{1}/{m})}(\overline{{D}}_{t}z)^{2},
W¯\displaystyle\underline{W} :=01τ2(θ12)2|xz12|2+01{T(θM+12)2+1/m+tδ2m+2T4m+2}τ2|xzM+12|2\displaystyle:=\int_{0}^{1}\tau^{2}(\theta^{\frac{1}{2}})^{2}|\partial_{x}z^{\frac{1}{2}}|^{2}+\int_{0}^{1}\left\{T(\theta^{M+\frac{1}{2}})^{2+{1}/{m}}+\frac{{\triangle t}}{\delta^{2m+2}T^{4m+2}}\right\}\tau^{2}|\partial_{x}z^{M+\frac{1}{2}}|^{2}
+01{(θM+12)4+T(θM+12)4+1/m+tδ4m+2T8m+2}τ4(zM+12)2\displaystyle\quad+\int_{0}^{1}\left\{(\theta^{M+\frac{1}{2}})^{4}+T(\theta^{M+\frac{1}{2}})^{4+{1}/{m}}+\frac{{\triangle t}}{\delta^{4m+2}T^{8m+2}}\right\}\tau^{4}(z^{M+\frac{1}{2}})^{2}
+1201|x2zM+12|2+(tτ2δ2m+2T4m+2)201|zM+12|2.\displaystyle\quad+\frac{1}{2}\int_{0}^{1}|\partial_{x}^{2}z^{M+\frac{1}{2}}|^{2}+\left(\frac{{\triangle t}\tau^{2}}{\delta^{2m+2}T^{4m+2}}\right)^{2}\int_{0}^{1}|z^{M+\frac{1}{2}}|^{2}.

As in [BHS20], using the parameter t{\triangle t}, we will estimate the terms in X¯\underline{X} and Y¯\underline{Y}. The results reads as follows.

Lemma B.4.

For any τ1\tau\geq 1, there exists ϵ=ϵ(λ0)\epsilon=\epsilon(\lambda_{0}) such that for

0<tτ5δ10mT14mϵ{0<\frac{{\triangle t}\tau^{5}}{\delta^{10m}T^{14m}}}\leq\epsilon (B.27)

the following estimate holds

X¯+Y¯ϵ(Q(𝚝¯s)7(𝚝¯z)2+Q(𝚝¯s)5|x(𝚝¯z)|2+Q(𝚝¯s)1(D¯tz)2).\underline{X}+\underline{Y}\leq\epsilon\left(\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{7}(\bar{\mathtt{t}}^{-}z)^{2}+\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{5}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}+\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{-1}(\overline{{D}}_{t}z)^{2}\right). (B.28)
Proof.

We increase the value of τ0\tau_{0} so that τ01\tau_{0}\geq 1 and τ1\tau\geq 1. In fact, notice that

τ0τ0(1+1T1/3)τθ=s(t),for all t[0,T].\displaystyle\tau_{0}\leq\tau_{0}\left(1+\frac{1}{T^{1/3}}\right)\leq\tau\theta=s(t),\quad\mbox{for all }t\in[0,T]. (B.29)

By assumption δ1/2\delta\leq 1/2 and 0<T<10<T<1, thus using that m1/3m\geq 1/3, we have tτ2δ2m+2T4m+2+tτ4δ4m+2T8m+22tτ4δ10mT14m\frac{{\triangle t}\tau^{2}}{\delta^{2m+2}T^{4m+2}}+\frac{{\triangle t}\tau^{4}}{\delta^{4m+2}T^{8m+2}}\leq\frac{2{\triangle t}\tau^{4}}{\delta^{10m}T^{14m}}. Hence, provided tτ4δ10mT14mϵ1\frac{{\triangle t}\tau^{4}}{\delta^{10m}T^{14m}}\leq\epsilon_{1} with ϵ1>0\epsilon_{1}>0 small enough, we readily see that

X¯4(ϵ1+ϵ12)(Q(𝚝¯s)5|x(𝚝¯z)|2+Q(𝚝¯s)7(𝚝¯z)7).\underline{X}\leq 4(\epsilon_{1}+\epsilon_{1}^{2})\left(\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{5}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}+\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{7}(\bar{\mathtt{t}}^{-}z)^{7}\right).

On the other hand, recalling that maxt[0,T]θ(t)1δmT2m\max_{t\in[0,T]}\theta(t)\leq\frac{1}{\delta^{m}T^{2m}}, we have

Y¯\displaystyle\underline{Y} (tτ3δ3mT6m+tτ5δ5mT10m+(t)2τ3δ3m+2T6m+2)Q(𝚝¯s)1(D¯tz)2\displaystyle\leq\left(\frac{{\triangle t}\tau^{3}}{\delta^{3m}T^{6m}}+\frac{{\triangle t}\tau^{5}}{\delta^{5m}T^{10m}}+\frac{({\triangle t})^{2}\tau^{3}}{\delta^{3m+2}T^{6m+2}}\right)\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{-1}(\overline{{D}}_{t}z)^{2}
(2ϵ2+ϵ22)Q(𝚝¯s)1(D¯tz)2,\displaystyle\leq(2\epsilon_{2}+\epsilon_{2}^{2})\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{-1}(\overline{{D}}_{t}z)^{2},

provided tτ5δ5mT10mϵ2\frac{{\triangle t}\tau^{5}}{\delta^{5m}T^{10m}}\leq\epsilon_{2} for ϵ2>0\epsilon_{2}>0 small enough. To conclude, it is enough to combine the above smallness conditions into (B.27) for some ϵ>0\epsilon>0 small enough. ∎

Using Lemma B.4 with ϵ=1/2Cλ0\epsilon=1/2C_{\lambda_{0}}, where Cλ0>0C_{\lambda_{0}}>0 is the constant appearing in (B.26), we can absorb all the terms in X¯\underline{X} and Y¯\underline{Y}, thus obtaining

Q\displaystyle\int\!\!\!\int_{Q} (𝚝¯s)1[(D¯tz)2+|x4(𝚝¯z)|2]+IΩ(z)Cλ0(Q(𝚝¯r)2|P𝒟q|2+Iω0(z)+W¯).\displaystyle(\bar{\mathtt{t}}^{-}s)^{-1}\left[\left(\overline{{D}}_{t}z\right)^{2}+|\partial_{x}^{4}(\bar{\mathtt{t}}^{-}z)|^{2}\right]+I_{\Omega}(z)\leq C_{\lambda_{0}}\left(\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}r)^{2}|P_{{\scriptscriptstyle\mathcal{D}}}q|^{2}+I_{\omega_{0}}(z)+\underline{W}\right). (B.30)

As in other discrete-Carleman works, we cannot remove the terms in W¯\underline{W}, but just estimate them. The following result gives a bound.

Lemma B.5.

Under the hypothesis of Lemma B.4, there exists C>0C>0 only depending on mm such that

W¯C(1+ϵ)(t)1(01|zM+12|2+01|xz12|2+|xzM+12|2+01|x2zM+12|2).\underline{W}\leq C(1+\epsilon)({\triangle t})^{-1}\left(\int_{0}^{1}|z^{M+\frac{1}{2}}|^{2}+\int_{0}^{1}|\partial_{x}z^{\frac{1}{2}}|^{2}+|\partial_{x}z^{M+\frac{1}{2}}|^{2}+\int_{0}^{1}|\partial_{x}^{2}z^{M+\frac{1}{2}}|^{2}\right). (B.31)
Proof.

Under the hypothesis of the lemma and recalling that δ1/2\delta\leq 1/2, we have t(δT)m/2m{\triangle t}\leq(\delta T)^{m}/2^{m} and hence

maxt[0,T+t]θ(t)2mδmT2m.\max_{t\in[0,T+{\triangle t}]}\theta(t)\leq\frac{2^{m}}{\delta^{m}T^{2m}}. (B.32)

Inequality (B.31) follows from this estimate and direct computations. ∎

Using estimate (B.31) in (B.30), we obtain

Q\displaystyle\int\!\!\!\int_{Q} (𝚝¯s)1[(D¯tz)2+|x4(𝚝¯z)|2]+IΩ(z)Cλ0(Q(𝚝¯r)2|P𝒟q|2+Iω0(z))\displaystyle(\bar{\mathtt{t}}^{-}s)^{-1}\left[\left(\overline{{D}}_{t}z\right)^{2}+|\partial_{x}^{4}(\bar{\mathtt{t}}^{-}z)|^{2}\right]+I_{\Omega}(z)\leq C_{\lambda_{0}}\left(\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}r)^{2}|P_{{\scriptscriptstyle\mathcal{D}}}q|^{2}+I_{\omega_{0}}(z)\right)
+Cλ0(t)1(01|zM+12|2+01|xz12|2+|xzM+12|2+01|x2zM+12|2),\displaystyle+C_{\lambda_{0}}({\triangle t})^{-1}\left(\int_{0}^{1}|z^{M+\frac{1}{2}}|^{2}+\int_{0}^{1}|\partial_{x}z^{\frac{1}{2}}|^{2}+|\partial_{x}z^{M+\frac{1}{2}}|^{2}+\int_{0}^{1}|\partial_{x}^{2}z^{M+\frac{1}{2}}|^{2}\right), (B.33)

for ττ0(T2m+T2m1/3)\tau\geq\tau_{0}(T^{2m}+T^{2m-1/3}) and tτ5(δ10mT14m)1ϵ0{\triangle t}\tau^{5}(\delta^{10m}T^{14m})^{-1}\leq\epsilon_{0}.

B.5 Conclusion

Once we have proved (B.33), the conclusion follows from standard arguments, so we present them briefly.

To have a Carleman estimate with only observation in L2L^{2}, let ω1\omega_{1} be an open set such that ω0ω1ω\omega_{0}\Subset\omega_{1}\Subset\omega and a cut-off function ρCc(ω1)\rho\in C_{c}^{\infty}(\omega_{1}) such that ρ=1\rho=1 in ω0\omega_{0}. Then, integrating by parts

ω0×(0,T)(𝚝¯s)|x3(𝚝¯z)|2\displaystyle\int\!\!\!\int_{\omega_{0}\times(0,T)}(\bar{\mathtt{t}}^{-}s)|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}z)|^{2} ω1×(0,T)(𝚝¯s)ρ|x3(𝚝¯z)|2\displaystyle\leq\int\!\!\!\int_{\omega_{1}\times(0,T)}(\bar{\mathtt{t}}^{-}s)\rho|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}z)|^{2}
=ω1×(0,T)(𝚝¯s)x4(𝚝¯z)x2(𝚝¯z)+12ω1×(0,T)(𝚝¯s)ρxx|x2(𝚝¯z)|2\displaystyle=-\int\!\!\!\int_{\omega_{1}\times(0,T)}(\bar{\mathtt{t}}^{-}s)\partial_{x}^{4}(\bar{\mathtt{t}}^{-}z)\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)+\frac{1}{2}\int\!\!\!\int_{\omega_{1}\times(0,T)}(\bar{\mathtt{t}}^{-}s)\rho_{xx}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2}
γQ(𝚝¯s)1|x4(𝚝¯z)|2+Cγω1×(0,T)(𝚝¯s)3|x2(𝚝¯z)|2\displaystyle\leq\gamma\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{-1}|\partial_{x}^{4}(\bar{\mathtt{t}}^{-}z)|^{2}+C_{\gamma}\int\!\!\!\int_{\omega_{1}\times(0,T)}(\bar{\mathtt{t}}^{-}s)^{3}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2}

for any γ>0\gamma>0. Here, we have also used that s(t)1s(t)\geq 1 (see eq. (B.29)) to adjust the powers of ss in the last term. By an analogous procedure, if ω2\omega_{2} is an open set such that ω1ω2ω\omega_{1}\Subset\omega_{2}\Subset\omega, then it is not difficult to see that

ω1×(0,T)(𝚝¯s)3|x2(𝚝¯z)|2γQ(𝚝¯s)|x3(𝚝¯z)|2+Cγω2×(0,T)(𝚝¯s)5|x(𝚝¯z)|2\int\!\!\!\int_{\omega_{1}\times(0,T)}(\bar{\mathtt{t}}^{-}s)^{3}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2}\leq\gamma\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)|\partial_{x}^{3}(\bar{\mathtt{t}}^{-}z)|^{2}+C_{\gamma}\int\!\!\!\int_{\omega_{2}\times(0,T)}(\bar{\mathtt{t}}^{-}s)^{5}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}

and

ω2×(0,T)(𝚝¯s)5|x(𝚝¯z)|2γQ(𝚝¯s)3|x2(𝚝¯z)|2+Cγω×(0,T)(𝚝¯s)7(𝚝¯z)2.\int\!\!\!\int_{\omega_{2}\times(0,T)}(\bar{\mathtt{t}}^{-}s)^{5}|\partial_{x}(\bar{\mathtt{t}}^{-}z)|^{2}\leq\gamma\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}s)^{3}|\partial_{x}^{2}(\bar{\mathtt{t}}^{-}z)|^{2}+C_{\gamma}\int\!\!\!\int_{\omega\times(0,T)}(\bar{\mathtt{t}}^{-}s)^{7}(\bar{\mathtt{t}}^{-}z)^{2}.

Combining the above inequalities, putting them into (B.33) and taking γ>0\gamma>0 small enough yields

Q\displaystyle\int\!\!\!\int_{Q} (𝚝¯s)1[(D¯tz)2+|x4(𝚝¯z)|2]+IΩ(z)Cλ0Q(𝚝¯r)2|P𝒟q|2\displaystyle(\bar{\mathtt{t}}^{-}s)^{-1}\left[\left(\overline{{D}}_{t}z\right)^{2}+|\partial_{x}^{4}(\bar{\mathtt{t}}^{-}z)|^{2}\right]+I_{\Omega}(z)\leq C_{\lambda_{0}}\int\!\!\!\int_{Q}(\bar{\mathtt{t}}^{-}r)^{2}|P_{{\scriptscriptstyle\mathcal{D}}}q|^{2}
+Cλ0(t)1(01|zM+12|2+01|xz12|2+|xzM+12|2+01|x2zM+12|2),\displaystyle+C_{\lambda_{0}}({\triangle t})^{-1}\left(\int_{0}^{1}|z^{M+\frac{1}{2}}|^{2}+\int_{0}^{1}|\partial_{x}z^{\frac{1}{2}}|^{2}+|\partial_{x}z^{M+\frac{1}{2}}|^{2}+\int_{0}^{1}|\partial_{x}^{2}z^{M+\frac{1}{2}}|^{2}\right), (B.34)

for ττ0(T2m+T2m1/3)\tau\geq\tau_{0}(T^{2m}+T^{2m-1/3}) and tτ5(δ10mT14m)1ϵ0{\triangle t}\tau^{5}(\delta^{10m}T^{14m})^{-1}\leq\epsilon_{0}.

Finally, we shall come back to the original variable. Recalling identity (B.1), a straightforward computation gives

1Cr2\displaystyle\frac{1}{C}r^{2} (s7|q|2+s5|xq|2+s3|x2q|2+s|x3q|2+s1|x4q|2)\displaystyle\left(s^{7}|q|^{2}+s^{5}|\partial_{x}q|^{2}+s^{3}|\partial_{x}^{2}q|^{2}+s|\partial_{x}^{3}q|^{2}+s^{-1}|\partial_{x}^{4}q|^{2}\right)
s7|z|2+s5|xz|2+s3|x2z|2+s|x3z|2+s1|x4z|2,\displaystyle\leq s^{7}|z|^{2}+s^{5}|\partial_{x}z|^{2}+s^{3}|\partial_{x}^{2}z|^{2}+s|\partial_{x}^{3}z|^{2}+s^{-1}|\partial_{x}^{4}z|^{2}, (B.35)

for some C>0C>0 only depending on Ω\Omega and ω\omega. This estimate help us to comeback to the original variable in the terms IΩ(z)I_{\Omega}(z) of (B.34) and the one containing x4\partial_{x}^{4}. To add the term corresponding to D¯tq\overline{{D}}_{t}q, we just have to notice that D¯tq=P𝒟qx4(𝚝¯q)-\overline{{D}}_{t}q=P_{{\scriptscriptstyle\mathcal{D}}}q-\partial_{x}^{4}(\bar{\mathtt{t}}^{-}q), hence

Q𝚝¯(r2s1)|D¯tq|22Q𝚝¯(r2s1)|P𝒟q|2+2Q𝚝¯(r2s1)|x4(𝚝¯q)|2.\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(r^{2}s^{-1})|\overline{{D}}_{t}q|^{2}\leq 2\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(r^{2}s^{-1})|P_{{\scriptscriptstyle\mathcal{D}}}q|^{2}+2\int\!\!\!\int_{Q}\bar{\mathtt{t}}^{-}(r^{2}s^{-1})|\partial_{x}^{4}(\bar{\mathtt{t}}^{-}q)|^{2}. (B.36)

Lastly, the terms evaluated at n=12n=\frac{1}{2} and n=M+12n={M}+\frac{1}{2} can be estimated by noting that xz=xrq+rxq\partial_{x}z=\partial_{x}rq+r\partial_{x}q and x2z=rx2q+2xrxq+x2rq\partial_{x}^{2}z=r\partial_{x}^{2}q+2\partial_{x}r\partial_{x}q+\partial_{x}^{2}rq and arguing similar to the proof of Lemma B.5. We skip the details. This ends the proof.

Appendix C An auxiliary lemma

Lemma C.1.

Let t>0{\triangle t}>0 such that 2Ct<12C{\triangle t}<1 for some constant C>0C>0 only depending on Ω\Omega, Γ\Gamma, γ\gamma, aa, and cc. Then, we have

\displaystyle\bullet\;\; pn12L2(Ω)2+qn12L2(Ω)2e2Ct(pn+12L2(Ω)2+qn+12L2(Ω)2),\displaystyle\lVert p^{n-\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert q^{n-\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}\leq e^{2C{\triangle t}}\left(\lVert p^{n+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert q^{n+\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}\right), (C.1)
\displaystyle\bullet\;\; xpn12L2(Ω)2+x2qn12L2(Ω)2\displaystyle\lVert\partial_{x}p^{n-\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert\partial_{x}^{2}q^{n-\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}
e2Ct(xpn+12L2(Ω)2+x2qn+12L2(Ω)2)+Cte2Ct(pn+12L2(Ω)2+qn+12L2(Ω)2),\displaystyle\quad\leq e^{2C{\triangle t}}\left(\lVert\partial_{x}p^{n+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert\partial_{x}^{2}q^{n+\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}\right)+C{\triangle t}\,e^{2C{\triangle t}}\left(\lVert p^{n+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert q^{n+\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}\right), (C.2)

for all n1,Mn\in\llbracket 1,M\rrbracket.

Proof.

Let us fix n1,Mn\in\llbracket 1,M\rrbracket. Recalling the identity (ab)a=12a212b2+12(ab)2(a-b)a=\frac{1}{2}a^{2}-\frac{1}{2}b^{2}+\frac{1}{2}(a-b)^{2}, multiplying by pn12p^{n-\frac{1}{2}} in the first equation of (3.1) and integrating by parts, we have that

pn12L2(Ω)2pn+12L2(Ω)2+\displaystyle\lVert p^{n-\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}-\lVert p^{n+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+ pn12pn+12L2(Ω)2+2ΓtΩ|xp|2\displaystyle\lVert p^{n-\frac{1}{2}}-p^{n+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+2\Gamma{\triangle t}\int_{\Omega}|\partial_{x}p|^{2}
=2tΩqn12pn12+2ctΩxpn12pn12\displaystyle=2{\triangle t}\int_{\Omega}q^{n-\frac{1}{2}}p^{n-\frac{1}{2}}+2c{\triangle t}\int_{\Omega}\partial_{x}p^{n-\frac{1}{2}}p^{n-\frac{1}{2}}

whence

pn12L2(Ω)2+ΓtΩ|xpn12|2pn+12L2(Ω)2+Ct(qn12L2(Ω)2+pn12L2(Ω)2).\displaystyle\lVert p^{n-\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\Gamma{\triangle t}\int_{\Omega}|\partial_{x}p^{n-\frac{1}{2}}|^{2}\leq\|p^{n+\frac{1}{2}}\|^{2}_{L^{2}(\Omega)}+C{\triangle t}\left(\|q^{n-\frac{1}{2}}\|^{2}_{L^{2}(\Omega)}+\|p^{n-\frac{1}{2}}\|^{2}_{L^{2}(\Omega)}\right). (C.3)

Similarly, multiplying by qn12q^{n-\frac{1}{2}} in the second equation of (3.1) and integrating by parts yields

qn12L2(Ω)2\displaystyle\lVert q^{n-\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)} qn+12L2(Ω)2+qn12qn+12L2(Ω)2+2γtΩ|x2qn12|2\displaystyle-\lVert q^{n+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert q^{n-\frac{1}{2}}-q^{n+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+2\gamma{\triangle t}\int_{\Omega}|\partial_{x}^{2}q^{n-\frac{1}{2}}|^{2}
=2tΩx2qn12xqn122atΩx2qn12qn12+2tΩpn12qn12.\displaystyle=2{\triangle t}\int_{\Omega}\partial_{x}^{2}q^{n-\frac{1}{2}}\partial_{x}q^{n-\frac{1}{2}}-2a{\triangle t}\int_{\Omega}\partial_{x}^{2}q^{n-\frac{1}{2}}q^{n-\frac{1}{2}}+2{\triangle t}\int_{\Omega}p^{n-\frac{1}{2}}q^{n-\frac{1}{2}}.

Thus, using that Ω|ux|2ϵΩ|uxx|2+CϵΩ|u|2\int_{\Omega}|u_{x}|^{2}\leq\epsilon\int_{\Omega}|u_{xx}|^{2}+C_{\epsilon}\int_{\Omega}|u|^{2} for all ϵ>0\epsilon>0 (which follows from Ehrling’s lemma), together with Cauchy-Schwarz and Young inequalities, we get

qn12L2(Ω)2+γtΩ|x2qn12|2qn+12L2(Ω)2+Ct(qn12L2(Ω)2+pn12L2(Ω)2)\|q^{n-\frac{1}{2}}\|^{2}_{L^{2}(\Omega)}+\gamma{\triangle t}\int_{\Omega}|\partial_{x}^{2}q^{n-\frac{1}{2}}|^{2}\leq\|q^{n+\frac{1}{2}}\|^{2}_{L^{2}(\Omega)}+C{\triangle t}\left(\|q^{n-\frac{1}{2}}\|^{2}_{L^{2}(\Omega)}+\|p^{n-\frac{1}{2}}\|^{2}_{L^{2}(\Omega)}\right) (C.4)

for some C>C> only depending on Ω\Omega, γ\gamma and aa.

Now, define En12:=pn12L2(Ω)2+qn12L2(Ω)2E^{n-\frac{1}{2}}:=\lVert p^{n-\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\lVert q^{n-\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}. Then adding estimates (C.3) and (C.4), we have (1tC)En12En+12(1-{\triangle t}C)E^{n-\frac{1}{2}}\leq E^{n+\frac{1}{2}} for some C>0C>0 only depending on Ω\Omega, Γ\Gamma, γ\gamma, aa, and cc. Using the inequality e2x>1/(1x)e^{2x}>1/(1-x) for 0<x<1/20<x<1/2 yields En12e2CtEn+12E^{n-\frac{1}{2}}\leq e^{2C{\triangle t}}E^{n+\frac{1}{2}}, n1,Mn\in\llbracket 1,M\rrbracket, which is exactly (C.1).

To prove (C.2), we multiply by xpn12\partial_{x}p^{n-\frac{1}{2}} in the first equation of (3.1) and arguing as before, we have

xpn12L2(Ω)2+ΓtΩ|x2pn12|2xpn+12L2(Ω)2+Ct(xpn12L2(Q)2+qn12L2(Q)2).\lVert\partial_{x}p^{n-\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\Gamma{\triangle t}\int_{\Omega}|\partial_{x}^{2}p^{n-\frac{1}{2}}|^{2}\leq\lVert\partial_{x}p^{n+\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}+C{\triangle t}\left(\lVert\partial_{x}p^{n-\frac{1}{2}}\rVert^{2}_{L^{2}(Q)}+\lVert q^{n-\frac{1}{2}}\rVert^{2}_{L^{2}(Q)}\right). (C.5)

In the same way, multiplying the second equation of (3.1) by x4qn12\partial_{x}^{4}q^{n-\frac{1}{2}} and using that Ω|uxxx|2ϵΩ|uxxxx|2+CϵΩ|u|2\int_{\Omega}|u_{xxx}|^{2}\leq\epsilon\int_{\Omega}|u_{xxxx}|^{2}+C_{\epsilon}\int_{\Omega}|u|^{2} for all ϵ>0\epsilon>0, we get

x2qn12L2(Ω)2+γtΩ|x4qn12|2\displaystyle\lVert\partial_{x}^{2}q^{n-\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+\gamma{\triangle t}\int_{\Omega}|\partial_{x}^{4}q^{n-\frac{1}{2}}|^{2}
x2qn+12L2(Ω)2+Ct(x2qn12L2(Ω)2+qn12L2(Ω)2+pn12L2(Ω)2).\displaystyle\quad\leq\lVert\partial_{x}^{2}q^{n+\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}+C{\triangle t}\left(\lVert\partial_{x}^{2}q^{n-\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}+\lVert q^{n-\frac{1}{2}}\rVert_{L^{2}(\Omega)}^{2}+\lVert p^{n-\frac{1}{2}}\rVert^{2}_{L^{2}(\Omega)}\right). (C.6)

Estimate (C.2) follows from (C.1), (C.5), and (C.6). This ends the proof. ∎

The author would like to thank Prof. Alberto Mercado (Universidad Técnica Federico Santa María) for some clarifying discussions about the SKS system.

This work has received support from the program “Estancias posdoctorales por México” of CONACyT, Mexico.

References

  • [BHLR10] Franck Boyer, Florence Hubert, and Jérôme Le Rousseau. Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications. SIAM J. Control Optim., 48(8):5357–5397, 2010.
  • [BHLR11] Franck Boyer, Florence Hubert, and Jérôme Le Rousseau. Uniform controllability properties for space/time-discretized parabolic equations. Numer. Math., 118(4):601–661, 2011.
  • [BHS20] Franck Boyer and Víctor Hernández-Santamaría. Carleman estimates for time-discrete parabolic equations and applications to controllability. ESAIM Control Optim. Calc. Var., 26:Paper No. 12, 43, 2020.
  • [BLR14] Franck Boyer and Jérôme Le Rousseau. Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 31(5):1035–1078, 2014.
  • [Boy13] Franck Boyer. On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems. In CANUM 2012, 41e Congrès National d’Analyse Numérique, volume 41 of ESAIM Proc., pages 15–58. EDP Sci., Les Ulis, 2013.
  • [CMP12] Eduardo Cerpa, Alberto Mercado, and Ademir F. Pazoto. On the boundary control of a parabolic system coupling KS-KdV and heat equations. Sci. Ser. A Math. Sci. (N.S.), 22:55–74, 2012.
  • [CMP15] Eduardo Cerpa, Alberto Mercado, and Ademir F. Pazoto. Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control. SIAM J. Control Optim., 53(3):1543–1568, 2015.
  • [CnC16] Nicolás Carreño and Eduardo Cerpa. Local controllability of the stabilized Kuramoto-Sivashinsky system by a single control acting on the heat equation. J. Math. Pures Appl. (9), 106(4):670–694, 2016.
  • [CnCM19] Nicolás Carreño, Eduardo Cerpa, and Alberto Mercado. Boundary controllability of a cascade system coupling fourth- and second-order parabolic equations. Systems Control Lett., 133:104542, 7, 2019.
  • [CnG16] Nicolás Carreño and Patricio Guzmán. On the cost of null controllability of a fourth-order parabolic equation. J. Differential Equations, 261(11):6485–6520, 2016.
  • [EV10] Sylvain Ervedoza and Julie Valein. On the observability of abstract time-discrete linear parabolic equations. Rev. Mat. Complut., 23(1):163–190, 2010.
  • [EZZ08] Sylvain Ervedoza, Chuang Zheng, and Enrique Zuazua. On the observability of time-discrete conservative linear systems. J. Funct. Anal., 254(12):3037–3078, 2008.
  • [FCGBGP06] Enrique Fernández-Cara, Manuel González-Burgos, Sergio Guerrero, and Jean-Pierre Puel. Null controllability of the heat equation with boundary Fourier conditions: the linear case. ESAIM Control Optim. Calc. Var., 12(3):442–465, 2006.
  • [FI96] Andrei V. Fursikov and Oleg Yu. Imanuvilov. Controllability of evolution equations, volume 34 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.
  • [FMK03] Bao-Feng Feng, Boris A. Malomed, and Takuji Kawahara. Cylindrical solitary pulses in a two-dimensional stabilized Kuramoto-Sivashinsky system. Phys. D, 175(3-4):127–138, 2003.
  • [GBdT10] Manuel González-Burgos and Luz de Teresa. Controllability results for cascade systems of mm coupled parabolic PDEs by one control force. Port. Math., 67(1):91–113, 2010.
  • [GK19] Sergio Guerrero and Karim Kassab. Carleman estimate and null controllability of a fourth order parabolic equation in dimension N2N\geq 2. J. Math. Pures Appl. (9), 121:135–161, 2019.
  • [GLH08] Roland Glowinski, Jacques-Louis Lions, and Jiwen He. Exact and approximate controllability for distributed parameter systems, volume 117 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2008. A numerical approach.
  • [Gue07] Sergio Guerrero. Null controllability of some systems of two parabolic equations with one control force. SIAM J. Control Optim., 46(2):379–394, 2007.
  • [HSMV20] Víctor Hernández-Santamaría, Alberto Mercado, and Piero Visconti. Boundary controllability of a simplified stabilized Kuramoto-Sivashinsky system. HAL preprint 03090716, December 2020.
  • [HSP20] Víctor Hernández-Santamaría and Liliana Peralta. Controllability results for stochastic coupled systems of fourth-and second-order parabolic equations. arXiv preprint arXiv:2003.01334, 2020.
  • [Liu14] Xu Liu. Controllability of some coupled stochastic parabolic systems with fractional order spatial differential operators by one control in the drift. SIAM J. Control Optim., 52(2):836–860, 2014.
  • [LT06] Stéphane Labbé and Emmanuel Trélat. Uniform controllability of semidiscrete approximations of parabolic control systems. Systems Control Lett., 55(7):597–609, 2006.
  • [Zhe08] Chuang Zheng. Controllability of the time discrete heat equation. Asymptot. Anal., 59(3-4):139–177, 2008.
  • [Zho12] Zhongcheng Zhou. Observability estimate and null controllability for one-dimensional fourth order parabolic equation. Taiwanese J. Math., 16(6):1991–2017, 2012.
  • [Zua05] Enrique Zuazua. Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev., 47(2):197–243, 2005.
  • [ZZZ09] Xu Zhang, Chuang Zheng, and Enrique Zuazua. Time discrete wave equations: boundary observability and control. Discrete Contin. Dyn. Syst., 23(1-2):571–604, 2009.