This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Controlling magnetism through Ising superconductivity in magnetic van der Waals heterostructures

Faluke Aikebaier faluke.aikebaier@gmail.com Department of Applied Physics, Aalto University, 00076, Espoo, Finland Department of Physics and Nanoscience Centre, University of Jyväskylä, P.O. Box 35, fi-40014 University of Jyväskylä, Finland Computational Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland    Tero T. Heikkilä Department of Physics and Nanoscience Centre, University of Jyväskylä, P.O. Box 35, fi-40014 University of Jyväskylä, Finland    J. L. Lado Department of Applied Physics, Aalto University, 00076, Espoo, Finland
Abstract

Van der Waals heterostructures have risen as a tunable platform to combine different electronic orders, due to the flexibility in stacking different materials with competing symmetry broken states. Among them, van der Waals ferromagnets such as CrI3\rm{CrI}_{3}, CrBr3 or CrCl3 and superconductors as NbSe2\rm{NbSe}_{2} provide a natural platform to engineer novel phenomena at ferromagnet-superconductor interfaces. In particular, NbSe2 is well known for hosting strong spin-orbit coupling effects that influence the properties of the superconducting state. Here we put forward a ferromagnet/NbSe2\rm{NbSe}_{2}/ferromagnet heterostructure where the interplay between Ising superconductivity in NbSe2\rm{NbSe}_{2} and magnetism controls the magnetic alignment of the heterostructure. In particular, we show that the interplay between spin-orbit coupling and superconductivity provides a new mechanism to control magnetic ordering in van der Waals materials. We show that this coupling allows creating heterostructures featuring a magnetic phase transition from in-plane to out-of-plane associated to the onset of superconductivity. Our results show how hybrid van der Waals ferromagnet/superconductor heterostructure can be used as a tunable materials platform for superconducting spin-orbitronics.

I Introduction

Van der Waals (vdW) heterostructures have become one of the paradigmatic platforms to engineer controllable quantum materials Novoselov et al. (2016); Geim and Grigorieva (2013). This flexibility stems from the possibility of combining in a single structure a variety of competing electronic ordersLiu et al. (2016), including semimetals, insulators, semiconductors, superconductors, and ferromagnets among othersNovoselov et al. (2016); Geim and Grigorieva (2013); Liu et al. (2016). In particular, vdW heterostructures provide a natural platform to engineer novel phenomena at interfaces of antagonist orders, including superconductivity Neto (2001); Saito et al. (2016); Qiu et al. (2021) and ferromagnetism Shabbir et al. (2018); Gong et al. (2017); Huang et al. (2017a); Zhang et al. (2019); Ghazaryan et al. (2018), that can potentially lead to a whole new family of superconducting-spintronic devicesKezilebieke et al. (2020, 2021); Kang et al. (2021); Kezilebieke et al. (2020).

Monolayer transition metal dichalcogenides (TMD)Manzeli et al. (2017) provide a rich playground to exploit spin-orbit driven phenomena due to their large Ising spin-orbit coupling (SOC) effects Zhu et al. (2011). Their intrinsic spin-orbit couplings lead to a momentum-dependent spin splitting generating robust spin-momentum locking, Zhu et al. (2011); Xiao et al. (2012) a highly attractive feature for spintronics and valleytronics Xiao et al. (2012); Kormányos et al. (2014); Soriano and Lado (2020); Cortés et al. (2019); Henriques et al. (2020); Zollner et al. (2019). In particular, NbSe2 develops a so-called Ising superconducting state Xu et al. (2014); Xi et al. (2015), as a direct consequence of the interplay of spin-singlet superconductivity and Ising spin-orbit coupling Xiao et al. (2012), leading to a dramatic enhancement of the in-plane critical field Lu et al. (2015); Xi et al. (2015); Saito et al. (2015); Youn et al. (2012); de la Barrera et al. (2018). As a result, NbSe2 provides a suggestive platform to explore the novel interplay between magnetism, superconductivity, and Ising spin-orbit couplingKang et al. (2021); Rahimi et al. (2017).

Refer to caption
Figure 1: (a) Schematic structure of the vdW heterostructure considered in this paper, with ferromagnet/NbSe2{\rm{NbSe}}_{2}/ferromagnet sequence. Here xx and zz axes are the Cartesian axes. (b) Schematic illustration of the coupling between ferromagnetic layers through an Ising superconductor. For T<TT<T^{*} the ferromagnetic coupling is out-of-plane, and for T>TT>T^{*} the ferromagnetic coupling is in-plane, where TT^{*} is a temperature below the superconducting critical temperature TcT_{c}.

Here we put forward a magnet/superconductor van der Waals heterostructure as a controllable system where a magnetic transition is driven purely by Ising superconductivity. Specifically, we show that a monolayer-ferromagnet/NbSe2/monolayer-ferromagnet [Fig. 1(a)] leads to an artificial system displaying magnetic transitions triggered by Ising superconductivity. We demonstrate how the interplay between the Ising superconductivity and the ferromagnetic proximity effect controls the magnetic alignment of the heterostructure. In particular, we show that the Ising SOC keeps the magnetic alignment of the heterostructure in-plane in the normal state, and drives a transition from in-plane to out-of-plane magnetic alignment in the superconducting state [Fig. 1(b)]. Our results put forward Ising superconductivity as a potential knob to control magnetism in artificial heterostructures, leading to a promising minimal building block for van-der-Waals-based superconducting spintronics.

The manuscript is organized as follows. First, in section II we present the effective model used to capture the physics of the ferromagnet/NbSe2/ferromagnet heterostructures. In section III we discuss the interplay between Ising spin-orbit coupling, exchange coupling, and superconductivity. In section IV we show the emergence of magnetic switching driven by Ising superconductivity. Finally, in section V we summarize our results.

II Model

In the following we consider a multilayer structure consisting of a monolayer NbSe2{\rm{NbSe}}_{2} sandwiched between two ferromagnets, as shown in Fig. 1(a). The proximity effect between the ferromagnets and the superconducting layer induces an exchange field in the NbSe2{\rm{NbSe}}_{2}. The direction of the induced field depends on the magnetization directions in the two ferromagnets. Overall, the net Hamiltonian of the system is

H=H0+HSC+HJ,H=H_{0}+H_{SC}+H_{J}, (1)

where H0H_{0} is the single-particle Hamiltonian of NbSe2 including spin-orbit coupling, HSCH_{SC} accounts for the superconducting state and HJH_{J} includes the effect of the ferromagnetic leads obtained by integrating out the CrI3 degrees of freedom.

Let us first introduce the single-particle model H0H_{0} for the NbSe2{\rm{NbSe}}_{2} layerFang et al. (2015); Liebhaber et al. (2019). To study the superconducting properties, only the low-energy part of the band structure is sufficient for consideration. The crystal structure of the monolayer NbSe2\rm{NbSe}_{2} has the D3hD_{3h} point-group symmetry, strongly constraining its lowest energy model. Since a single band is located at the Fermi energy Lebègue and Eriksson (2009), a Wannier Hamiltonian with a single orbital in the triangular lattice can be built [Fig. 2(a)]. The Wannier low energy model for NbSe2 takes the form

H0=αβtαβsscα,scβ,s,H_{0}=\sum_{\alpha\beta}t^{ss^{\prime}}_{\alpha\beta}c^{\dagger}_{\alpha,s}c_{\beta,s^{\prime}}, (2)

where tαβsst^{ss^{\prime}}_{\alpha\beta} are the spin-dependent hopping amplitudes111The values of the tight-binding parameters are given in appendix. A, and ci,sc^{\dagger}_{i,s} is the creation operator of a Wannier orbital centered at each Nb site. This model captures the low-energy band structure of the monolayer NbSe2\rm{NbSe}_{2}. The SOC is included by a Kane-Mele form Kane and Mele (2005) as a complex spin and bond dependent first neighbor complex hopping parameterized by a phase ϕi\phi_{i}. We include up the sixth neighbor hopping between Wannier orbitals. The resulting electronic structure is shown in Fig. 2(c).

Refer to caption
Figure 2: (a) Top view of the crystal (hexagonal) structure of monolayer NbSe2\rm{NbSe}_{2}. Due to the sublattice imbalance, it can be effectively treated as a triangular lattice with one dd orbital per site. The shaded area is the unit cell of the triangular lattice and the black arrows denote the unit vectors connecting nearest neighbours with complex hopping parameters. The lattice constant aa is the distance between Nb atoms. The spin quantization axis is in the out-of-plane direction. (b) Brillouin zone of monolayer NbSe2\rm{NbSe}_{2} together with the energy bands at the Fermi level. (c) Band structure of the effective single-band model around the Fermi level of monolayer NbSe2\rm{NbSe}_{2}. The band structure is along the high symmetry points denoted as the blue arrows in (b). The red and the blue curves represent spin up and spin down components, respectively.

The magnetic proximity effect with the top and bottom ferromagnets is included in the electronic structure of NbSe2 as Khusainov (1996); Izyumov et al. (2002)

HJ=k𝑱𝝈ssc𝒌sc𝒌s.H_{J}=\sum_{k}\boldsymbol{J}\cdot\boldsymbol{\sigma}_{ss^{\prime}}c_{\boldsymbol{k}s}^{\dagger}c_{\boldsymbol{k}s^{\prime}}. (3)

The superconducting term in the Hamiltonian is a conventional s-wave superconducting order of the form

HSC=𝒌,,(Δc𝒌,c𝒌,+Δc𝒌,c𝒌,)+K,H_{SC}=\sum_{\boldsymbol{k},\uparrow,\downarrow}\left(\Delta c_{\boldsymbol{k},\uparrow}^{\dagger}c_{-\boldsymbol{k},\downarrow}^{\dagger}+\Delta^{*}c_{-\boldsymbol{k},\downarrow}c_{\boldsymbol{k},\uparrow}\right)+K, (4)

where c𝒌,s()c_{\boldsymbol{k},s}^{(\dagger)} is the annihilation (creation) operator with spin ss at momentum 𝒌\boldsymbol{k}, 𝝈\boldsymbol{\sigma} is the vector of Pauli spin matrices and 𝑱=(Jx,Jy,Jz)\boldsymbol{J}=(J_{x},J_{y},J_{z}) is the vector of induced exchange field in the NbSe2{\rm{NbSe}_{2}} layers. It can be expressed in the spherical coordinates as Jx=JsinθcosφJ_{x}=J\sin\theta\cos\varphi, Jy=JsinθsinφJ_{y}=J\sin\theta\sin\varphi, and Jz=Jcosθ,J_{z}=J\cos\theta, where JJ is the strength of the induced exchange field in the superconductor layer, and θ\theta and φ\varphi are the related polar and azimuthal angles, respectively.

The superconducting pair potential is determined self-consistently as Δ=gc𝒌c𝒌d2𝐤,\Delta=g\int\left\langle c_{-\boldsymbol{k}\uparrow}c_{\boldsymbol{k}\downarrow}\right\rangle d^{2}\mathbf{k}, where gg is the interaction potential. The last term in Eq. (4) then can be written as

K=gc𝒌c𝒌c𝒌c𝒌d2𝐤=|Δ|2g.K=g\int\left\langle c_{\boldsymbol{k}\uparrow}^{\dagger}c_{-\boldsymbol{k}\downarrow}^{\dagger}\right\rangle\Big{\langle}c_{-\boldsymbol{k}\downarrow}c_{\boldsymbol{k}\uparrow}\Big{\rangle}d^{2}\mathbf{k}=\frac{|\Delta|^{2}}{g}. (5)

The contribution of superconductivity to the energetics of the system can be obtained by considering the free energy density. In general, the free energy density can be derived from the partition function Landau and Lifshitz (1980) Z=eK/kBT𝒌,n,σ(1+eϵ𝒌,n,σ/kBT)Z=e^{-K/k_{B}T}\prod_{\boldsymbol{k},n,\sigma}\left(1+e^{-\epsilon_{\boldsymbol{k},n,\sigma}/k_{B}T}\right), where KK is the constant term in the Hamiltonian in Eq. (4), ϵ𝒌,n,σ\epsilon_{\boldsymbol{k},n,\sigma} are the eigenvalues (with spin σ\sigma) of the Hamiltonian of the system under consideration, TT is the temperature and kBk_{B} is the Boltzmann constant. We set kB=1k_{B}=1 hereafter. The band index nn runs only over the empty states. The free energy density is defined as f=TlogZf=-T\log Z. The detailed form of the free energy density can be written as

f=|Δ|2gT𝒌,nlog[2+2cosh(ϵ𝒌,nT)].f=\frac{|\Delta|^{2}}{g}-T\sum_{\boldsymbol{k},n}\log\left[2+2\cosh\left(\frac{\epsilon_{\boldsymbol{k},n}}{T}\right)\right]. (6)

In the following, we concentrate on the free energy density fsf_{s} of the superconducting state in the presence of exchange field compared to the free energy density fnf_{n} in the normal state in the absence of the exchange field fsn=fs(𝐉)fn(J=0)f_{sn}=f_{s}({\bf J})-f_{n}(J=0).

III Impact of exchange field on Ising Superconductivity

Refer to caption
Figure 3: (a) Free energy density as a function of polar and azimuthal angles for the exchange field J=0.5HPJ=0.5H_{P} and for the strength of the SOC λsoc=150Δ0\lambda_{soc}=150\Delta_{0}. Here HP=Δ0/2H_{P}=\Delta_{0}/\sqrt{2} is the Pauli paramagnetic limit, and Δ0\Delta_{0} is the superconducting pair potential of NbSe2 at T=0T=0 and J=0J=0. The yellow dashed line is the normal state energy fsn(Δ=0)f_{sn}(\Delta=0). (b) Spin susceptibility at T=0T=0 as a function of the superconducting pair potential Δ0\Delta_{0}. Inset: Spin susceptibility as a function of temperature for various strengths of SOC λsoc\lambda_{soc}. Here J=0.1HPJ=0.1H_{P}. (c) Free energy density as a function of JJ at T=0T=0 in the presence and absence of the SOC. The black curve is the paramagnetic energy density fPf_{P} in Eq. (8). (d) Critical temperature of in- and out-of-plane exchange fields as a function of exchange field strengths JJ, for λsoc=150Δ0\lambda_{soc}=150\Delta_{0}. The critical temperature is normalized to the critical temperature at J=0J=0.

Before the discussion of the magnetic vdW heterostructure, it is instructive to summarize the properties of Ising superconductivity in the proximity of one ferromagnetic layer. The free energy density difference between the superconducting and normal state energy fsnf_{sn} has exchange field independent and dependent parts. The exchange field dependent part fsnh=fsn(𝑱)fsn(𝑱=0)f_{sn}^{h}=f_{sn}(\boldsymbol{J})-f_{sn}(\boldsymbol{J}=0) is plotted as a function of the angles of the exchange field in Fig. 3(a) for T=0T=0. We can see that the superconductor energetically prefers an in-plane exchange field (θ=π/2\theta=\pi/2). This is a direct consequence of Ising superconductivity. For conventional superconductors, the free energy density fsnf_{sn} is the same for both in-plane and out-of-plane exchange fields below the Pauli paramagnetic limit. In superconductors with a lack of inversion symmetry (such as NbSe2), the Ising spin-orbit interaction gives rise to a non-zero and anisotropic spin susceptibility even at T=0T=0 Frigeri et al. (2004); Sigrist et al. (2009); Sohn et al. (2018).

The free energy density fsnf_{sn} of an Ising superconductor in the presence of an exchange field at T=0T=0 can be written as222The definition of spin susceptibility and related derivations are given in appendix. C

fsn=12N(0)Δ0212χs(T=0)J2sin2θ,f_{sn}=-\frac{1}{2}N(0)\Delta_{0}^{2}-\frac{1}{2}\chi_{s}(T=0)J^{2}\sin^{2}\theta, (7)

where N(0)N(0) is the density of states at the Fermi level, Δ0\Delta_{0} is the superconducting pair potential at T=0T=0 and J=0J=0, and χs\chi_{s} is the spin susceptibility for an in-plane exchange field describing the anisotropic spin response. For conventional superconductors, there is no such anisotropy, and the spin susceptibility vanishes at T=0T=0 in the absence of spin relaxation. Yosida (1958).

The amount of anisotropy depends on the size of the spin-orbit coupling λsoc\lambda_{\rm soc} so that for very large λsoc\lambda_{\rm soc}, the spin susceptibility χs\chi_{s} for in-plane exchange field approaches the normal-state spin susceptibility. This is shown in Fig. 3(b) as a function of Δ0/λsoc\Delta_{0}/\lambda_{\rm soc} at T=0T=0 and in the inset as a function of temperature. On the other hand, for an exchange field perpendicular to the plane, the spin susceptibility corresponds to the case with λsoc=0\lambda_{\rm soc}=0.

The anisotropic spin susceptibility in Ising superconductors also leads to an enhancement of the paramagetic critical field Bauer and Sigrist (2012); Youn et al. (2012). In the presence of an exchange field, the normal-state free energy density is lowered by the term 12χn(θ)J2-\frac{1}{2}\chi_{n}(\theta)J^{2}. When the exchange field breaks the superconducting order, fsnf_{sn} equals the paramagnetic energy density fPf_{P} in the normal state

fP=12χn(θ)J2,f_{P}=-\frac{1}{2}\chi_{n}(\theta)J^{2}, (8)

where χn(θ)\chi_{n}(\theta) is the spin suceptibility in the normal state. Equating fsnf_{sn} and fPf_{P} yields Jc=N(0)χn(θ)χs(T=0)sin2θΔ0.J_{c}=\sqrt{\frac{N(0)}{\chi_{n}(\theta)-\chi_{s}(T=0)\sin^{2}\theta}}\Delta_{0}. Here χn(θ)=χPcos2θ+χnsocsin2θ\chi_{n}(\theta)=\chi_{P}\cos^{2}\theta+\chi_{n}^{\rm soc}\sin^{2}\theta, where χP=2N0\chi_{P}=2N_{0} is the Pauli paramagnetic susceptibility, and χnsoc\chi_{n}^{\rm soc} is the normal state spin susceptibility caused by Ising SOC. For an out-of-plane field (θ=0\theta=0), the spin susceptibility is χP\chi_{P} and the superconductivity experiences a first-order transition to the normal state, as shown in the red curve in Fig. 3(c). For θ=π/2\theta=\pi/2, the susceptibility is completely determined by χnsoc\chi_{n}^{\rm soc} and there is a second-order transition to the normal state at JcHPJ_{c}\gg H_{P}. For the case of monolayer TMDs, χnsocχP\chi_{n}^{\rm soc}\gg\chi_{P}. For weak SOC, χnsocχP\chi_{n}^{\rm soc}\rightarrow\chi_{P}, and the normal state susceptibility is isotropic Frigeri et al. (2004). The critical temperature is also influenced by this anisotropic spin susceptibility. In Fig. 3(d), the critical temperature TcT_{c} is shown for in- and out-of-plane exchange fields as a function of the exchange field strength JJ. One can see that TcT_{c} remains nearly unchanged for increasing in-plane exchange field, but the superconductivity is destroyed at the Pauli paramagnetic limit for the out-of-plane exchange field.

The strength of the induced exchange field in the superconductor depends on many factors Izyumov et al. (2002); Bergeret et al. (2018); Bedoya-Pinto et al. (2021). If the induced exchange field is out-of-plane and is larger than the Pauli paramagnetic limit, J>HPJ>H_{P}, the monolayer TMD remains in the normal state. However, the magnitude of JJ depends on the chosen materials combination, and can also be below the critical field HPH_{P}. In what follows, we consider a case of the induced exchange field J<HPJ<H_{P} in the monolayer TMD Huang et al. (2017b); Bedoya-Pinto et al. (2021); Tartaglia et al. (2020a) so that it becomes superconducting at low enough temperature.

The direction of the exchange field is related to the magnetization direction of the ferromagnet, which is determined by the anisotropy energy. A monolayer ferromagnet such as CrI3{\rm{CrI}_{3}} Huang et al. (2017c) and CrBr3 Tartaglia et al. (2020a), shows a uniaxial anisotropy, and the anisotropy energy density can be written as

Uaniso=Keffsin2θ,U_{{\rm{aniso}}}=K_{{\rm{eff}}}\sin^{2}\theta, (9)

where θ\theta is the polar angle of the magnetization direction with respect to the zz axis, and KeffK_{{\rm{eff}}} is the effective anisotropy constant with the unit of energy density. The main source of the effective anisotropy constant KeffK_{{\rm{eff}}} is the spin-orbit interactionLado and Fernández-Rossier (2017); Chen et al. (2020); Bacaksiz et al. (2021). The positive Keff>0K_{{\rm{eff}}}>0 means the magnetization direction is along the easy-axis of the ferromagnet, and the negative Keff<0K_{{\rm{eff}}}<0 would mean the magnetization direction is in the plane.

In the normal state, the anisotropic spin susceptibility caused by the spin-orbit interaction favors in-plane magnetic alignment, see Fig. 3(a). In the superconducting state, this tendency persists, but becomes weaker because the spin susceptibility is smaller in the superconducting state, as shown in Fig. 3(b). Then the direction of the exchange field in the Ising superconductor is determined by the competition of the anisotropy energy of the ferromagnet and the contribution of spin susceptibility to the free energy density of the superconductor. The part of total free energy density dependent on magnetization configuration can be written as

faniso=(Keff12χSJ2)sin2θ.f_{{\rm{aniso}}}=\left(K_{\rm{eff}}-\frac{1}{2}\chi_{S}J^{2}\right)\sin^{2}\theta. (10)

If the condition Keff<χSJ2/2K_{\rm{eff}}<\chi_{S}J^{2}/2 holds, then the direction of the exchange field is in the plane. This relation is possible as the anisotropy energy of a monolayer ferromagnet can be tuned by various means. For example, the magnetic anisotropy can be engineered by strain Webster and Yan (2018) and by controlling the SOC via chemical tuning Tartaglia et al. (2020a). In other words, the anisotropic spin susceptibility leads to the switching of an off-plane easy axis anisotropy to the easy plane anisotropy if Keff<χSJ2/2K_{\rm{eff}}<\chi_{S}J^{2}/2. With this mechanism in mind, let us now discuss how the interplay between superconductivity driven-magnetic switching would affect the coupling between two ferromagnets.

IV Ising-mediated magnetic hysteresis

In the following, we consider a Ferromagnet/Superconductor/Ferromagnet (F/S/F) structure, in which the easy axis of the ferromagnets is influenced by the presence of superconductivity. The magnetic moments in the ferromagnets are coupled through the superconducting layer, and this coupling also determines the direction of the induced exchange field. The full energetics of the system can be written as

faniso=K1sin2θ1+K2sin2θ2+δfsn,f_{{\rm{aniso}}}=K_{1}\sin^{2}\theta_{1}+K_{2}\sin^{2}\theta_{2}+\delta f_{sn}, (11)

where K1/2K_{1/2} are the effective anisotropy constants of the two ferromagnets, θ1/2\theta_{1/2} are the related polar angles, and δfsn\delta f_{sn} is the contribution of superconductivity to the anisotropy energy density.

It is first worth noting how this mechanism would work in a conventional superconductor. For a conventional superconductor with thickness smaller than the superconducting coherence length, the coupling between the ferromagnets through the superconducting layer gives rise to an antiparallel configuration of the magnetization directions Gennes (1966); Hauser (1969); Ojajärvi et al. (2021). The contribution of this coupling to the energetics of the system δfsn\delta f_{sn} is evaluated as δfsn=N(0)J¯2cos2[12(θ1θ2)],\delta f_{sn}=N(0)\bar{J}^{2}\cos^{2}\left[\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right], where J¯\bar{J} would be the strength of the induced exchange field in the metallic film. Because of this term, the antiparallel alignment of the magnetization directions is favoured in the system. However, and in stark contrast, for the case of a vdW heterostructure containing a two-dimensional Ising superconductor, the ferromagnetic layers couple through the spin susceptibility 333Direct coupling mediated by NbSe2 is stronger than indirect superexchange between layers. We now write the components of the exchange field as Jx=J(sinθ1cosψ1+sinθ2cosψ2)J_{x}=J(\sin\theta_{1}\cos\psi_{1}+\sin\theta_{2}\cos\psi_{2}), Jy=J(sinθ1sinψ1+sinθ2sinψ2)J_{y}=J(\sin\theta_{1}\sin\psi_{1}+\sin\theta_{2}\sin\psi_{2}), Jz=J(cosθ1+cosθ2)J_{z}=J(\cos\theta_{1}+\cos\theta_{2}) in the Hamiltonian in Eq. (3), diagonalize the Hamiltonian in Eq. (1), obtaining the contribution of this coupling to the energetics of the system δfsn=12χsJ2(sinθ1+sinθ2)2.\delta f_{sn}=-\frac{1}{2}\chi_{s}J^{2}\left(\sin\theta_{1}+\sin\theta_{2}\right)^{2}. The overall effect of this term is to lower the total anisotropy energy. Hence a parallel alignment maximizes this effect. This is opposite to the case of a thin metallic superconductor discussed above, where an antiparallel alignment is energetically favoured. Note that, our discussion above neglects direct Heisenberg coupling between the magnetic monolayers. The nature of that coupling can be ferromagnetic or antiferromagnetic depending on the geometric details. A well known example is the case of CrI3 bilayersHuang et al. (2017d); Soriano et al. (2019); Sivadas et al. (2018); Ubrig et al. (2019), where depending on the relative alignment between layers the coupling can be either ferromagnetic or antiferromagnetic. This contribution is a higher order superexchange depending on the valence states of each element, can be only captured properly with quantum chemistry density functional theory calculations and can potentially depend on the geometric alignment between monolayersHuang et al. (2017d); Soriano et al. (2019); Sivadas et al. (2018); Ubrig et al. (2019). This contribution would determine the relative orientation of the magnetization between the two magnetic monolayers, and for the sake of concreteness in Fig. 1 was taken as ferromagnetic.

The ferromagnetic coupling mediated by Ising superconductivity can be detected by a magnetic hysteresis measurement. We use the Stoner–Wohlfarth (SW) model Stoner and Wohlfarth (1948); Tannous and Gieraltowski (2008) to calculate the hysteresis loop. In the SW model, the directions of the magnetization density MM and the external applied field HH are characterized by different angles with respect to the easy axis (polar angles). In the system we are considering, there is also the contribution of the superconductor to the anisotropy energy. Then the magnetization density is subjected to the competition between the anisotropy energy and Zeeman energy caused by the external applied field. The total anisotropy energy density is written as

faniso=K1sin2θ1+K2sin2θ2+δfsnHMs1cos(θ1ϑ)HMs2cos(θ2ϑ),\begin{split}&f_{{\rm{aniso}}}=K_{1}\sin^{2}\theta_{1}+K_{2}\sin^{2}\theta_{2}+\delta f_{sn}\\ &-HM_{s1}\cos\left(\theta_{1}-\vartheta\right)-HM_{s2}\cos\left(\theta_{2}-\vartheta\right),\end{split} (12)

where HH is the external applied field, Ms1/2M_{s1/2} is the saturation magnetization density in the two ferromagnets, and ϑ\vartheta is the angle between the easy axis and the direction of the external magnetic field. Substituting the value of δfsn\delta f_{sn}, we have

faniso=(K112χsJ2)sin2θ1+(K212χsJ2)sin2θ2χsJ2sinθ1sinθ2HMs1cos(θ1ϑ)HMs2cos(θ2ϑ).\begin{split}f_{{\rm{aniso}}}&=\left(K_{1}-\frac{1}{2}\chi_{s}J^{2}\right)\sin^{2}\theta_{1}\\ &+\left(K_{2}-\frac{1}{2}\chi_{s}J^{2}\right)\sin^{2}\theta_{2}-\chi_{s}J^{2}\sin\theta_{1}\sin\theta_{2}\\ &-HM_{s1}\cos\left(\theta_{1}-\vartheta\right)-HM_{s2}\cos\left(\theta_{2}-\vartheta\right).\end{split} (13)

The hysteresis curve is then obtained by calculating the longitudinal and transverse components of the magnetization density

Mz=Ms1cosθ1+Ms2cosθ2,M_{z}=M_{s1}\cos\theta_{1}^{*}+M_{s2}\cos\theta_{2}^{*}, (14)
Mx=Ms1sinθ1+Ms2sinθ2,M_{x}=M_{s1}\sin\theta_{1}^{*}+M_{s2}\sin\theta_{2}^{*}, (15)

where θ1/2\theta_{1/2}^{*} are the angles for which the total anisotropy energy density fanisof_{{\rm{aniso}}} is minimized.

Refer to caption
Figure 4: (a) Hysteresis curve for K1=1.05χs(T=0)J2K_{1}=1.05\chi_{s}(T=0)J^{2} for an out-of-plane external field. (b) Hysteresis curve for K1=0.95χs(T=0)J2K_{1}=0.95\chi_{s}(T=0)J^{2} for an out-of-plane external field. (c) Hysteresis curve for K1=0.85χs(T=0)J2K_{1}=0.85\chi_{s}(T=0)J^{2} for an out-of-plane external field. (d) Same with (c) but for in-plane external field.

For an easy axis ferromagnet such as CrBr3 or CrI3, the induced exchange field is out-of-plane. In the absence of the Ising superconductor, the magnetic alignment of the system is ferromagnetic and two coercive fields appear in the hysteresis curve at Hc1Ms=±2K1H_{c1}M_{s}=\pm 2K_{1} and Hc2Ms=±2K2H_{c2}M_{s}=\pm 2K_{2}. If the anisotropy energy of the ferromagnet is larger than the contribution δfsn\delta f_{sn} of the superconductor, the net effect of the Ising superconductor leads to a modification of the anisotropy constants, as can be seen from Eq. (13). The modification shifts the coercive fields as Hc1Ms=±2(K1χsJ2)H_{c1}M_{s}=\pm 2(K_{1}-\chi_{s}J^{2}) and Hc2Ms=±2(K2χsJ2)H_{c2}M_{s}=\pm 2(K_{2}-\chi_{s}J^{2}). We can see that, if the values of K1K_{1} and K2K_{2} are comparable with χsJ2\chi_{s}J^{2}, the temperature dependence of the anisotropic spin susceptibility causes significant modifications to the hysteresis curves. In order to see such modifications, the difference between K1K_{1} and K2K_{2} must be smaller than the difference of the spin susceptibility χs\chi_{s} at TcT_{c} and T=0T=0. In the following calculations, we set λsoc=150Δ0\lambda_{\rm soc}=150\Delta_{0}, K1=1.12K2K_{1}=1.12K_{2} and Ms1=1.12Ms2=1.12MsM_{s1}=1.12M_{s2}=1.12M_{s} to illustrate how superconductivity affects the magnetic hysteresis in a temperature dependent manner. The hysteresis curve is shown in Fig. 4. It is worth noting that, while λsoc/Δ\lambda_{\rm soc}/\Delta cannot be efficiently tuned in a specific material, specific ratios can be obtained by taking different dichalcogenides including 1H-TaS2, 1H-TaSe2, 1H-NbS2, 1H-NbSe2, and potentially continuously using dichalcogenide alloysZhao et al. (2019).

The modified coercive fields for strong anisotropy fields Ki>χsJ2K_{i}>\chi_{s}J^{2} are shown in the hysteresis curve in Fig. 4(a). Decreasing the temperature, χs\chi_{s} becomes smaller, and the difference in the coercive fields becomes larger. In the opposite case Ki<χsJ2K_{i}<\chi_{s}J^{2}, the induced field is in the plane, and there is no hysteresis for an out-of-plane component of the magnetization density MzM_{z}, as shown in Fig. 4(c). The hysteresis curve for MxM_{x} is shown in Fig. 4(d). Contrary to the case in Fig. 4(a), the location of the coercive fields moves closer at lower temperature for smaller χs\chi_{s}.

A more interesting case takes place for ferromagnets with anisotropy constants with intermediate valuesTartaglia et al. (2020b). In this case, the induced exchange field is out-of-plane at low temperature and in-plane at a higher temperature. This transition takes place at a temperature T=TT=T^{*} and is due to the temperature dependence of the spin susceptibility χs\chi_{s}, so that the induced field is in-plane for a temperature T>TT>T^{*}. This case is shown in Fig. 4(b). In this limit, an in-plane exchange field is favoured in Ising superconducting and normal states for T>TT>T^{*}. Note that, besides moving the coercive fields of single magnets, NbSe2 promotes a ferromagnetic coupling between the magnets in the normal state. This affects the hysteresis curves by reducing the region with antiparallel magnetization directions, but cannot be directly measured in situ because of a lack of a control measurement without the presence of NbSe2. In the superconducting state this ferromagnetic coupling decreases but, unlike the coupling mediated by a conventional superconductor, does not become antiferromagnetic.

It is also worth noting that, beyond the NbSe2 platform considered here, this phenomenology can also potentially take place for generic monolayer Ising superconductors, for example electron doped MoS2 Lu et al. (2015); Costanzo et al. (2016) and other TMD monolayers like TaS2/TaSe2 Li et al. (2020). For other potential candidates with smaller spin-orbit coupling, the dependence of the anisotropic spin susceptibility on temperature is stronger, see Fig. 3(b). Then the hysteresis curves can be obtained for more varied anisotropy fields.

Interestingly, while magnetic order is often controlled by external knobs such as magnetic field, here we propose a radically different mechanism in which the magnetic order itself is controlled by the superconducting order in one of the components of the heterostructure. These results highlight that Ising superconductivity controls the way how the system reacts to magnetic fields, an effect that can be present in a variety of superconductor-ferromagnet van der Waals heterostructures. From the practical point of view, we exploit the unique temperature dependence of χs\chi_{s}, to uncover the interplay between the magnetism and superconductivity.

Besides magnetic hysteresis that in 2D materials can be measured with the magneto-optical Kerr effect, the anisotropic spin susceptibility of the Ising superconductivity can be accessed also via the ferromagnetic resonance of the multilayer system.Ojajärvi et al. (2021)

For the possible experimental realization, below we briefly elaborate on the most promising materials candidates based on recent experiments. First, recent experiments demonstrated heterostructures of the monolayer ferromagnet with CrBr3 on bulk NbSe2 Kezilebieke et al. (2020), making CrBr3 a promising candidate for our proposal. While the experiment focused on a monolayer CrBr3 on top of a bulk NbSe2, it is worth noting that the value of the exchange proximity would be comparable for a monolayer NbSe2 given its van der Waals nature. From the point of view of the ferromagnetic insulator candidates, apart from CrBr3, CrI3 Huang et al. (2017b), CrCl3 Bedoya-Pinto et al. (2021) and recently synthetised chromium heterohalides Tartaglia et al. (2020a) would provide excellent candidates. Importantly, van der Waals chromium heterohalides have been demonstrated to have a completely tunable magnetic anisotropy, making them outstanding candidates for our proposal Tartaglia et al. (2020a). Finally, we note that the magnetic anisotropy could also be engineered by strain Webster and Yan (2018), yet this approach could be more challenging from the experimental point of view.

It is finally worth mentioning that the possible moiré patterns between the layers Tong et al. (2019); Wang et al. (2020) and correlation effects Huang et al. (2016); Wang et al. (2020) in the TMDs have an influence on the effective values of the parameters used in our model. These effects modify the band structure of the middle layer, especially the splitting around the K points. However, the correlation effects in the ferromagnetic layers, for example magnetic excitations Chen et al. (2018); Costa et al. (2020); Jin et al. (2018) do not directly influence the results, as these effects do not modify the form of the low energy Hamiltonian for the hybrid heterostructure we are considering.

V Conclusions

To summarize, we demonstrate how Ising superconductivity allows controlling the magnetic coupling in ferromagnet/NbSe2/ferromagnet heterostructures. In particular, we show that the anisotropic spin response inherited by the Ising superconductor allows flipping the magnetic alignment upon entering the superconducting state. We show that the contribution of the Ising superconductivity to the energetics of the system stems from an anisotropic spin susceptibility. In the magnetic vdW heterostructure, the coupling between the ferromagnets is achieved through the anisotropic spin susceptibility, which gives rise to a parallel alignment of the magnetization directions, both in the superconducting and normal states. Interestingly, such magnetic switching was shown to lead to a hysteretic behavior in the magnetic alignment purely driven by the spin susceptibility of the NbSe2 inherited from Ising spin-orbit coupling. Our results put forward superconductor/ferromagnet van der Waals heterostructures as a novel platform to explore superconducting spintronics phenomena dominated by Ising spin-orbit coupling effects.

Acknowledgments: We acknowledge the computational resources provided by the Aalto Science-IT project, and the financial support from the Academy of Finland Projects No. 331342, No. 336243 and No. 317118, and the Jane and Aatos Erkko Foundation.

Appendix A Single-Band Tight-Binding Model

Here we elaborate on the low energy model used for NbSe2. We take a single band model in a triangular lattice as shown in Eq. (2), whose Bloch Hamiltonian takes the form

ξ𝒌=2t0[cos(2αϕ0)+2cos(β)cos(α+ϕ0)]+2t1[cos(3αβϕ1)+cos(2βϕ1)+cos(3α+β+ϕ1)]+2t2[cos(2α+2βϕ2)+cos(2α2βϕ2)+cos(4α+ϕ2)]+2t3[cos(5α+βϕ3)+cos(4α2βϕ3)+cos(4α+2β+ϕ3)+cos(α3β+ϕ3)+cos(5αβ+ϕ3)+cos(α+3β+ϕ3)]+2t4[cos(3α3βϕ4)+cos(3α+3βϕ4)+cos(6α+ϕ4)]+2t5[cos(2αβϕ5)+cos(4βϕ5)+cos(6α+2β+ϕ5)]+ε\begin{split}&\xi_{\boldsymbol{k}\uparrow}=2t_{0}\left[\cos\left(2\alpha-\phi_{0}\right)+2\cos\left(\beta\right)\cos\left(\alpha+\phi_{0}\right)\right]\\ &+2t_{1}\left[\cos\left(3\alpha-\beta-\phi_{1}\right)+\cos\left(2\beta-\phi_{1}\right)\right.\\ &\left.+\cos\left(3\alpha+\beta+\phi_{1}\right)\right]+2t_{2}\left[\cos\left(2\alpha+2\beta-\phi_{2}\right)\right.\\ &\left.+\cos\left(2\alpha-2\beta-\phi_{2}\right)+\cos\left(4\alpha+\phi_{2}\right)\right]\\ &+2t_{3}\left[\cos\left(5\alpha+\beta-\phi_{3}\right)+\cos\left(4\alpha-2\beta-\phi_{3}\right)\right.\\ &\left.+\cos\left(4\alpha+2\beta+\phi_{3}\right)+\cos\left(\alpha-3\beta+\phi_{3}\right)\right.\\ &+\left.\cos\left(5\alpha-\beta+\phi_{3}\right)+\cos\left(\alpha+3\beta+\phi_{3}\right)\right]\\ &+2t_{4}\left[\cos\left(3\alpha-3\beta-\phi_{4}\right)+\cos\left(3\alpha+3\beta-\phi_{4}\right)\right.\\ &\left.+\cos\left(6\alpha+\phi_{4}\right)\right]+2t_{5}\left[\cos\left(2\alpha-\beta-\phi_{5}\right)\right.\\ &\left.+\cos\left(4\beta-\phi_{5}\right)+\cos\left(6\alpha+2\beta+\phi_{5}\right)\right]+\varepsilon\end{split} (16)
ξ𝒌=2t0[cos(2α+ϕ0)+2cos(β)cos(αϕ0)]+2t1[cos(3αβ+ϕ1)+cos(2β+ϕ1)+cos(3α+βϕ1)]+2t2[cos(2α+2β+ϕ2)+cos(2α2β+ϕ2)+cos(4αϕ2)]+2t3[cos(5α+β+ϕ3)+cos(4α2β+ϕ3)+cos(4α+2βϕ3)+cos(α3βϕ3)+cos(5αβϕ3)+cos(α+3βϕ3)]+2t4[cos(3α3β+ϕ4)+cos(3α+3β+ϕ4)+cos(6αϕ4)]+2t5[cos(2αβ+ϕ5)+cos(4β+ϕ5)+cos(6α+2βϕ5)]+ε,\begin{split}&\xi_{\boldsymbol{k}\downarrow}=2t_{0}\left[\cos\left(2\alpha+\phi_{0}\right)+2\cos\left(\beta\right)\cos\left(\alpha-\phi_{0}\right)\right]\\ &+2t_{1}\left[\cos\left(3\alpha-\beta+\phi_{1}\right)+\cos\left(2\beta+\phi_{1}\right)\right.\\ &\left.+\cos\left(3\alpha+\beta-\phi_{1}\right)\right]+2t_{2}\left[\cos\left(2\alpha+2\beta+\phi_{2}\right)\right.\\ &\left.+\cos\left(2\alpha-2\beta+\phi_{2}\right)+\cos\left(4\alpha-\phi_{2}\right)\right]\\ &+2t_{3}\left[\cos\left(5\alpha+\beta+\phi_{3}\right)+\cos\left(4\alpha-2\beta+\phi_{3}\right)\right.\\ &\left.+\cos\left(4\alpha+2\beta-\phi_{3}\right)+\cos\left(\alpha-3\beta-\phi_{3}\right)\right.\\ &+\left.\cos\left(5\alpha-\beta-\phi_{3}\right)+\cos\left(\alpha+3\beta-\phi_{3}\right)\right]\\ &+2t_{4}\left[\cos\left(3\alpha-3\beta+\phi_{4}\right)+\cos\left(3\alpha+3\beta+\phi_{4}\right)\right.\\ &\left.+\cos\left(6\alpha-\phi_{4}\right)\right]+2t_{5}\left[\cos\left(2\alpha-\beta+\phi_{5}\right)\right.\\ &\left.+\cos\left(4\beta+\phi_{5}\right)+\cos\left(6\alpha+2\beta-\phi_{5}\right)\right]+\varepsilon,\end{split} (17)

where tit_{i}s are the hopping energies between first to sixth neighbours, ϕi\phi_{i} are corresponding phases, ϵ\epsilon is the on-site energy, α=kxa/2\alpha=k_{x}a/2, β=3kya/2\beta=\sqrt{3}k_{y}a/2, and aa is the lattice constant shown in Fig. 2(a).

The tight-binding parameters are determined by comparing the effective one-band model with the three-band model in Ref. He et al., 2018, and listed in Table. 1.

Table 1: Parameters of the one-band tight-binding model fitted to the three band model.
ε\varepsilon t0t_{0} t1t_{1} t2t_{2} t3t_{3}
-44.5 meV 26.3 meV 99.1 meV -1.4 meV -11.2 meV
t4t_{4} t5t_{5} ϕ0\phi_{0} ϕ15\phi_{1\sim 5}
-14.6 meV 2.5 meV 0.6 0

The momentum dependent splitting can be obtained from the difference between the matrix component of the Hamiltonian in Eq. (16) and Eq. (17)

Δsoc=ξ𝒌ξ𝒌=8t0sinϕ0(cosαcosβ)sinα.\Delta_{soc}=\xi_{\boldsymbol{k}\uparrow}-\xi_{\boldsymbol{k}\downarrow}=8t_{0}\sin\phi_{0}\left(\cos\alpha-\cos\beta\right)\sin\alpha. (18)

The strength of the SOC can be defined as the half of the splitting at a KK (or KK^{\prime}) point

λsoc=12|Δsoc(K)|=33t0sinϕ0.\lambda_{soc}=\frac{1}{2}|\Delta_{soc}(K)|=3\sqrt{3}t_{0}\sin\phi_{0}. (19)

For monolayer NbSe2, the parameters in Table 1 give λsoc=77.2meV\lambda_{soc}=77.2\ \rm{meV}. Note that the tight-binding parameters are fitted first in the absence of SOC (ϕi=0\phi_{i}=0), and ϕi\phi_{i}s are determined in the presence of SOC with respect to the splitting between energy bands. As the effective value of λsoc\lambda_{soc} is influenced by the presence of charge density wave orderZheng et al. (2018), we consider different λsoc\lambda_{soc} by varying ϕ0\phi_{0}.

Appendix B Self-Consistency Equation

The self-consistency equation can be derived from the free energy density by minimizing with respect to the superconducting pair potential. Using the free energy density expression in Eq. (6), we have

fsnΔ=2Δg𝒌,nϵ𝒌,nΔtanh(ϵ𝒌,n2kBT)=0,\frac{\partial f_{sn}}{\partial\Delta}=\frac{2\Delta}{g}-\sum_{\boldsymbol{k},n}\frac{\partial\epsilon_{\boldsymbol{k},n}}{\partial\Delta}\tanh\left(\frac{\epsilon_{\boldsymbol{k},n}}{2k_{B}T}\right)=0, (20)

where ϵ𝒌,n\epsilon_{\boldsymbol{k},n} is the eigenvalue of the Hamiltonian in Eq. (1). For convenience, we now write the partial derivative of ϵ𝒌,n\epsilon_{\boldsymbol{k},n} with respect to Δ\Delta in terms of ϵ𝒌,n\epsilon_{\boldsymbol{k},n} as

ϵ𝒌,nΔ=Δ(2ϵ𝒌,n2+ξ𝒌2+ξ𝒌2+2Δ22J2)(ξ𝒌2ξ𝒌2)hz+ϵ𝒌,n(ξ𝒌2+ξ𝒌2+2Δ2+2J2)2ϵ𝒌,n3.\begin{split}&\frac{\partial\epsilon_{\boldsymbol{k},n}}{\partial\Delta}=\\ &\frac{\Delta\left(-2\epsilon_{\boldsymbol{k},n}^{2}+\xi_{\boldsymbol{k}\downarrow}^{2}+\xi_{\boldsymbol{k}\uparrow}^{2}+2\Delta^{2}-2J^{2}\right)}{\left(\xi_{\boldsymbol{k}\uparrow}^{2}-\xi_{\boldsymbol{k}\downarrow}^{2}\right)h_{z}+\epsilon_{\boldsymbol{k},n}\left(\xi_{\boldsymbol{k}\downarrow}^{2}+\xi_{\boldsymbol{k}\uparrow}^{2}+2\Delta^{2}+2J^{2}\right)-2\epsilon_{\boldsymbol{k},n}^{3}}.\end{split} (21)

Changing the momentum sum to a momentum integral, we can write the self-consistency equation as

g2BZd𝒌(2π)2[ntanh(ϵ𝒌,n2kBT)×ξ𝒌+2J2+Δ2ϵ𝒌,n2ξ𝒌2hcosθ+ϵ𝒌,n(ξ𝒌+2+J2+Δ2ϵ𝒌,n2)]=1,\begin{split}&\frac{g}{2}\int_{BZ}\frac{d\boldsymbol{k}}{(2\pi)^{2}}\left[\sum_{n}\tanh\left(\frac{\epsilon_{\boldsymbol{k},n}}{2k_{B}T}\right)\times\right.\\ &\left.\frac{\xi_{\boldsymbol{k}+}^{2}-J^{2}+\Delta^{2}-\epsilon_{\boldsymbol{k},n}^{2}}{\xi_{\boldsymbol{k}-}^{2}h\cos\theta+\epsilon_{\boldsymbol{k},n}\left(\xi_{\boldsymbol{k}+}^{2}+J^{2}+\Delta^{2}-\epsilon_{\boldsymbol{k},n}^{2}\right)}\right]=1,\end{split} (22)

where ξ𝒌+2=(ξ𝒌2+ξ𝒌2)/2\xi_{\boldsymbol{k}+}^{2}=(\xi_{\boldsymbol{k}\downarrow}^{2}+\xi_{\boldsymbol{k}\uparrow}^{2})/2 and ξ𝒌2=(ξ𝒌2ξ𝒌2)/2\xi_{\boldsymbol{k}-}^{2}=(\xi_{\boldsymbol{k}\uparrow}^{2}-\xi_{\boldsymbol{k}\downarrow}^{2})/2. The interaction potential gg could be determined from the superconducting pair potential of monolayer NbSe2\rm{NbSe}_{2} at zero temperature and exchange field, Δ0=1.8Tc0\Delta_{0}=1.8T_{c0}, where Tc0=3T_{c0}=3Xi et al. (2015); de la Barrera et al. (2018). The momentum integral goes over the first Brillouin zone. This model hence disregards the possible retardation effects in the source of the attractive interaction. For the value of Δ\Delta small compared to the bandwidth considered in this manuscript, this simplification only affects the chosen value of the coupling constant gg with which Δ\Delta is obtained.

Appendix C Free Energy Density at Zero Temperature

The Hamiltonian in Eq. (4) can be written in the matrix form as

HBdG=(H^0(𝒌)𝑱𝝈Δ^Δ^σy[H^0(𝒌)𝑱𝝈]σy),H_{{\rm{BdG}}}=\begin{pmatrix}\hat{H}_{0}(\boldsymbol{k})-\boldsymbol{J}\cdot\boldsymbol{\sigma}&\hat{\Delta}\\ \hat{\Delta}^{\dagger}&-\sigma_{y}\left[\hat{H}_{0}^{*}(-\boldsymbol{k})-\boldsymbol{J}\cdot\boldsymbol{\sigma}\right]\sigma_{y}\end{pmatrix}, (23)

where H^0(𝒌)=diag(ξ𝒌,ξ𝒌)\hat{H}_{0}(\boldsymbol{k})={\rm{diag}}(\xi_{\boldsymbol{k}\uparrow},\xi_{\boldsymbol{k}\downarrow}), ξ𝒌\xi_{\boldsymbol{k}\uparrow\downarrow} is given in Eq. (16) and Eq. (17), Δ^=Δτ1\hat{\Delta}=\Delta\tau_{1}, 𝑱\boldsymbol{J} is the induced exchange field in the superconductor, and σi/τi\sigma_{i}/\tau_{i} is the Pauli matrix in the spin/Nambu space. Up to the second order in J=|𝑱|J=|\boldsymbol{J}|, the eigenvalues of the Hamiltonian in Eq. (23) can be written as

E𝒌=±ξ𝒌2+Δ02+Jcosθ±(ξ𝒌ξ𝒌+ξ𝒌2+2Δ02)(ξ𝒌2ξ𝒌2)ξ𝒌2+Δ02J2sin2θ\begin{split}E_{\boldsymbol{k}\uparrow}=&\pm\sqrt{\xi_{\boldsymbol{k}\uparrow}^{2}+\Delta_{0}^{2}}+J\cos\theta\\ &\pm\frac{(\xi_{\boldsymbol{k}\uparrow}\xi_{\boldsymbol{k}\downarrow}+\xi_{\boldsymbol{k}\uparrow}^{2}+2\Delta_{0}^{2})}{(\xi_{\boldsymbol{k}\uparrow}^{2}-\xi_{\boldsymbol{k}\downarrow}^{2})\sqrt{\xi_{\boldsymbol{k}\uparrow}^{2}+\Delta_{0}^{2}}}J^{2}\sin^{2}\theta\end{split} (24)
E𝒌=±ξ𝒌2+Δ02Jcosθ±(ξ𝒌ξ𝒌+ξ𝒌2+2Δ02)(ξ𝒌2ξ𝒌2)ξ𝒌2+Δ02J2sin2θ,\begin{split}E_{\boldsymbol{k}\downarrow}=&\pm\sqrt{\xi_{\boldsymbol{k}\downarrow}^{2}+\Delta_{0}^{2}}-J\cos\theta\\ &\pm\frac{(\xi_{\boldsymbol{k}\uparrow}\xi_{\boldsymbol{k}\downarrow}+\xi_{\boldsymbol{k}\downarrow}^{2}+2\Delta_{0}^{2})}{(\xi_{\boldsymbol{k}\downarrow}^{2}-\xi_{\boldsymbol{k}\uparrow}^{2})\sqrt{\xi_{\boldsymbol{k}\downarrow}^{2}+\Delta_{0}^{2}}}J^{2}\sin^{2}\theta,\end{split} (25)

where θ\theta is the polar angle of the exchange field. We note that in the presence of an in-plane component of the exchange field, ,\uparrow,\downarrow denote the pseudospin degree of freedom, instead of the original zz spin component.

At T=0T=0, the free energy density can be simplified as

f(T=0)=Δ02g𝒌,nϵ𝒌,n.f(T=0)=\frac{\Delta_{0}^{2}}{g}-\sum_{\boldsymbol{k},n}\epsilon_{\boldsymbol{k},n}. (26)

Then we have

fsn=d𝒌(2π)2(ξ𝒌2+Δ02ξ𝒌+ξ𝒌2+Δ02ξ𝒌)d𝒌(2π)2[(ξ𝒌ξ𝒌+ξ𝒌2+2Δ02)(ξ𝒌2ξ𝒌2)ξ𝒌2+Δ02+(ξ𝒌ξ𝒌+ξ𝒌2+2Δ02)(ξ𝒌2ξ𝒌2)ξ𝒌2+Δ02]J2sin2θ+Δ02g.\begin{split}f_{sn}=&-\int\frac{d\boldsymbol{k}}{(2\pi)^{2}}\left(\sqrt{\xi_{\boldsymbol{k}\uparrow}^{2}+\Delta_{0}^{2}}-\xi_{\boldsymbol{k}\uparrow}+\sqrt{\xi_{\boldsymbol{k}\downarrow}^{2}+\Delta_{0}^{2}}-\xi_{\boldsymbol{k}\downarrow}\right)\\ &-\int\frac{d\boldsymbol{k}}{(2\pi)^{2}}\left[\frac{(\xi_{\boldsymbol{k}\uparrow}\xi_{\boldsymbol{k}\downarrow}+\xi_{\boldsymbol{k}\uparrow}^{2}+2\Delta_{0}^{2})}{(\xi_{\boldsymbol{k}\uparrow}^{2}-\xi_{\boldsymbol{k}\downarrow}^{2})\sqrt{\xi_{\boldsymbol{k}\uparrow}^{2}+\Delta_{0}^{2}}}\right.\\ &\left.+\frac{(\xi_{\boldsymbol{k}\uparrow}\xi_{\boldsymbol{k}\downarrow}+\xi_{\boldsymbol{k}\downarrow}^{2}+2\Delta_{0}^{2})}{(\xi_{\boldsymbol{k}\downarrow}^{2}-\xi_{\boldsymbol{k}\uparrow}^{2})\sqrt{\xi_{\boldsymbol{k}\downarrow}^{2}+\Delta_{0}^{2}}}\right]J^{2}\sin^{2}\theta+\frac{\Delta_{0}^{2}}{g}.\end{split} (27)

The integrals in the first row can be solved by changing the momentum integral to an energy integral, which yields N(0)Δ2/2Δ2/g-N(0)\Delta^{2}/2-\Delta^{2}/g, where N(0)N(0) is the density of states at the Fermi level, and gg is the interaction potential. The integral in the second row is related to the spin susceptibility due to the definition χspin=2fsn/J2|J0\chi_{\rm{spin}}=-\partial^{2}f_{sn}/\partial J^{2}|_{J\rightarrow 0}. From Eq. (6), we have

χi=2fJi2|Ji0=𝒌,n[12Tsech2(ϵ𝒌,n2T)(ϵ𝒌,nJi)2+tanh(ϵ𝒌,n2T)(2ϵ𝒌,nJi2)]|Ji0,\begin{split}\chi_{i}=&-\frac{\partial^{2}f}{\partial J_{i}^{2}}\Big{|}_{J_{i}\rightarrow 0}=\sum_{\boldsymbol{k},n}\left[\frac{1}{2T}{\rm{sech}}^{2}\left(\frac{\epsilon_{\boldsymbol{k},n}}{2T}\right)\left(\frac{\partial\epsilon_{\boldsymbol{k},n}}{\partial J_{i}}\right)^{2}\right.\\ &\left.+\tanh\left(\frac{\epsilon_{\boldsymbol{k},n}}{2T}\right)\left(\frac{\partial^{2}\epsilon_{\boldsymbol{k},n}}{\partial J_{i}^{2}}\right)\right]\Bigg{|}_{J_{i}\rightarrow 0},\end{split} (28)

where i=/i=\parallel/\perp. At T=0T=0, from the eigenvalues in Eq. (24) and Eq. (25), we have χ=0\chi_{\perp}=0, and the second integral in Eq. (27) is equal to the spin susceptibility χ=χs\chi_{\parallel}=\chi_{s}. Now we can write

fsn=12N(0)Δ0212χsJ2sin2θ.f_{sn}=-\frac{1}{2}N(0)\Delta_{0}^{2}-\frac{1}{2}\chi_{s}J^{2}\sin^{2}\theta. (29)

Contrary to conventional superconductors with weak spin-orbit coupling, the spin susceptibility is nonzero at zero temperature. It leads to several important properties of Ising superconductivity like enhancing the critical field of a superconductor in the presence of an in-plane exchange field.

The spin susceptibility can be solved analytically for the case of weak SOC. For such a case, the spin-splitting caused by SOC can be approximated by the splitting at the Fermi level. We can write ξ𝒌=ξ𝒌+λ0\xi_{\boldsymbol{k}\uparrow}=\xi_{\boldsymbol{k}}+\lambda_{0} and ξ𝒌=ξ𝒌λ0\xi_{\boldsymbol{k}\downarrow}=\xi_{\boldsymbol{k}}-\lambda_{0}, where λ0=|Δsoc(kF)|/2\lambda_{0}=|\Delta_{soc}(k_{F})|/2, and Δsoc\Delta_{soc} is defined in Eq. (18). Then the momentum integral can be transformed to energy integral, and the spin susceptibility is given by

χs=χP[1Δ022λ0λ02+Δ02log(λ0+λ02+Δ2λ0+λ02+Δ2)],\chi_{s}=\chi_{P}\left[1-\frac{\Delta_{0}^{2}}{2\lambda_{0}\sqrt{\lambda_{0}^{2}+\Delta_{0}^{2}}}\log\left(\frac{\lambda_{0}+\sqrt{\lambda_{0}^{2}+\Delta^{2}}}{-\lambda_{0}+\sqrt{\lambda_{0}^{2}+\Delta^{2}}}\right)\right], (30)

where χP=2N0\chi_{P}=2N_{0} is the Pauli paramagnetic susceptibility. We can see that for weak SOC, χnsocχP\chi_{n}^{soc}\rightarrow\chi_{P}, and the structure of the spin susceptibility is consistent with known results Frigeri et al. (2004); Gor'kov and Rashba (2001). For strong SOC, namely, λsoct0\lambda_{soc}\sim t_{0}, the spin susceptibility cannot be solved analytically and the numerically calculated results are shown in the main text.

References

  • Novoselov et al. (2016) K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, Science 353, aac9439 (2016).
  • Geim and Grigorieva (2013) A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).
  • Liu et al. (2016) Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, Nature Rev. Mat. 110.1038/natrevmats.2016.42 (2016).
  • Neto (2001) A. H. C. Neto, Phys. Rev. Lett. 86, 4382 (2001).
  • Saito et al. (2016) Y. Saito, T. Nojima, and Y. Iwasa, Nature Rev. Mat. 210.1038/natrevmats.2016.94 (2016).
  • Qiu et al. (2021) D. Qiu, C. Gong, S. Wang, M. Zhang, C. Yang, X. Wang, and J. Xiong, Advanced Materials 33, 2006124 (2021).
  • Shabbir et al. (2018) B. Shabbir, M. Nadeem, Z. Dai, M. S. Fuhrer, Q.-K. Xue, X. Wang, and Q. Bao, Applied Physics Reviews 5, 041105 (2018).
  • Gong et al. (2017) C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Nature 546, 265 (2017).
  • Huang et al. (2017a) B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Nature 546, 270 (2017a).
  • Zhang et al. (2019) Z. Zhang, J. Shang, C. Jiang, A. Rasmita, W. Gao, and T. Yu, Nano Lett. 19, 3138 (2019).
  • Ghazaryan et al. (2018) D. Ghazaryan, M. T. Greenaway, Z. Wang, V. H. Guarochico-Moreira, I. J. Vera-Marun, J. Yin, Y. Liao, S. V. Morozov, O. Kristanovski, A. I. Lichtenstein, M. I. Katsnelson, F. Withers, A. Mishchenko, L. Eaves, A. K. Geim, K. S. Novoselov, and A. Misra, Nature Electronics 1, 344 (2018).
  • Kezilebieke et al. (2020) S. Kezilebieke, M. N. Huda, V. Vaňo, M. Aapro, S. C. Ganguli, O. J. Silveira, S. Głodzik, A. S. Foster, T. Ojanen, and P. Liljeroth, Nature 588, 424 (2020).
  • Kezilebieke et al. (2021) S. Kezilebieke, O. J. Silveira, M. N. Huda, V. Vaňo, M. Aapro, S. C. Ganguli, J. Lahtinen, R. Mansell, S. Dijken, A. S. Foster, and P. Liljeroth, Advanced Materials 33, 2006850 (2021).
  • Kang et al. (2021) K. Kang, S. Jiang, H. Berger, K. Watanabe, T. Taniguchi, L. Forró, J. Shan, and K. F. Mak, arXiv e-prints , arXiv:2101.01327 (2021), arXiv:2101.01327 [cond-mat.supr-con] .
  • Kezilebieke et al. (2020) S. Kezilebieke, V. Vaňo, M. N. Huda, M. Aapro, S. C. Ganguli, P. Liljeroth, and J. L. Lado, arXiv e-prints , arXiv:2011.09760 (2020), arXiv:2011.09760 [cond-mat.mes-hall] .
  • Manzeli et al. (2017) S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nature Rev. Mat. 210.1038/natrevmats.2017.33 (2017).
  • Zhu et al. (2011) Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, Phys. Rev. B 8410.1103/physrevb.84.153402 (2011).
  • Xiao et al. (2012) D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 10810.1103/physrevlett.108.196802 (2012).
  • Kormányos et al. (2014) A. Kormányos, V. Zólyomi, N. D. Drummond, and G. Burkard, Physical Review X 410.1103/physrevx.4.011034 (2014).
  • Soriano and Lado (2020) D. Soriano and J. L. Lado, Journal of Physics D: Applied Physics 53, 474001 (2020).
  • Cortés et al. (2019) N. Cortés, O. Ávalos-Ovando, L. Rosales, P. A. Orellana, and S. E. Ulloa, Phys. Rev. Lett. 122, 086401 (2019).
  • Henriques et al. (2020) J. C. G. Henriques, G. Catarina, A. T. Costa, J. Fernández-Rossier, and N. M. R. Peres, Phys. Rev. B 101, 045408 (2020).
  • Zollner et al. (2019) K. Zollner, P. E. Faria Junior, and J. Fabian, Phys. Rev. B 100, 085128 (2019).
  • Xu et al. (2014) X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Nature Physics 10, 343 (2014).
  • Xi et al. (2015) X. Xi, Z. Wang, W. Zhao, J.-H. Park, K. T. Law, H. Berger, L. Forró, J. Shan, and K. F. Mak, Nature Physics 12, 139 (2015).
  • Lu et al. (2015) J. M. Lu, O. Zheliuk, I. Leermakers, N. F. Q. Yuan, U. Zeitler, K. T. Law, and J. T. Ye, Science 350, 1353 (2015).
  • Saito et al. (2015) Y. Saito, Y. Nakamura, M. S. Bahramy, Y. Kohama, J. Ye, Y. Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga, T. Nojima, Y. Yanase, and Y. Iwasa, Nature Physics 12, 144 (2015).
  • Youn et al. (2012) S. J. Youn, M. H. Fischer, S. H. Rhim, M. Sigrist, and D. F. Agterberg, Phys. Rev. B 8510.1103/physrevb.85.220505 (2012).
  • de la Barrera et al. (2018) S. C. de la Barrera, M. R. Sinko, D. P. Gopalan, N. Sivadas, K. L. Seyler, K. Watanabe, T. Taniguchi, A. W. Tsen, X. Xu, D. Xiao, and B. M. Hunt, Nature Communications 910.1038/s41467-018-03888-4 (2018).
  • Rahimi et al. (2017) M. A. Rahimi, A. G. Moghaddam, C. Dykstra, M. Governale, and U. Zülicke, Physical Review B 95, 104515 (2017).
  • Fang et al. (2015) S. Fang, R. Kuate Defo, S. N. Shirodkar, S. Lieu, G. A. Tritsaris, and E. Kaxiras, Phys. Rev. B 92, 205108 (2015).
  • Liebhaber et al. (2019) E. Liebhaber, S. A. González, R. Baba, G. Reecht, B. W. Heinrich, S. Rohlf, K. Rossnagel, F. von Oppen, and K. J. Franke, Nano Lett. 20, 339 (2019).
  • Lebègue and Eriksson (2009) S. Lebègue and O. Eriksson, Phys. Rev. B 7910.1103/physrevb.79.115409 (2009).
  • Note (1) The values of the tight-binding parameters are given in appendix. A.
  • Kane and Mele (2005) C. L. Kane and E. J. Mele, Phys. Rev. Lett. 9510.1103/physrevlett.95.226801 (2005).
  • Khusainov (1996) M. G. Khusainov, Eksp. Teor. Fiz. 109, 524 (1996).
  • Izyumov et al. (2002) Y. A. Izyumov, Y. N. Proshin, and M. G. Khusainov, Uspekhi Fizicheskikh Nauk (UFN) Journal 45, 109 (2002).
  • Landau and Lifshitz (1980) L. D. Landau and E. M. Lifshitz, eds., Statistical Physics (Elsevier, 1980).
  • Frigeri et al. (2004) P. A. Frigeri, D. F. Agterberg, and M. Sigrist, New Journal of Physics 6, 115 (2004).
  • Sigrist et al. (2009) M. Sigrist, A. Avella, and F. Mancini, in AIP Conference Proceedings (AIP, 2009).
  • Sohn et al. (2018) E. Sohn, X. Xi, W.-Y. He, S. Jiang, Z. Wang, K. Kang, J.-H. Park, H. Berger, L. Forró, K. T. Law, J. Shan, and K. F. Mak, Nature Materials 17, 504 (2018).
  • Note (2) The definition of spin susceptibility and related derivations are given in appendix. C.
  • Yosida (1958) K. Yosida, Phys. Rev. 110, 769 (1958).
  • Bauer and Sigrist (2012) E. Bauer and M. Sigrist, eds., Non-Centrosymmetric Superconductors (Springer Berlin Heidelberg, 2012).
  • Bergeret et al. (2018) F. S. Bergeret, M. Silaev, P. Virtanen, and T. T. Heikkilä, Rev. Mod. Phys. 90, 041001 (2018).
  • Bedoya-Pinto et al. (2021) A. Bedoya-Pinto, J.-R. Ji, A. K. Pandeya, P. Gargiani, M. Valvidares, P. Sessi, J. M. Taylor, F. Radu, K. Chang, and S. S. P. Parkin, Science 374, 616–620 (2021).
  • Huang et al. (2017b) B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, and et al., Nature 546, 270–273 (2017b).
  • Tartaglia et al. (2020a) T. A. Tartaglia, J. N. Tang, J. L. Lado, F. Bahrami, M. Abramchuk, G. T. McCandless, M. C. Doyle, K. S. Burch, Y. Ran, J. Y. Chan, and F. Tafti, Science Advances 6, eabb9379 (2020a).
  • Huang et al. (2017c) B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Nature 546, 270 (2017c).
  • Lado and Fernández-Rossier (2017) J. L. Lado and J. Fernández-Rossier, 2D Materials 4, 035002 (2017).
  • Chen et al. (2020) L. Chen, J.-H. Chung, T. Chen, C. Duan, A. Schneidewind, I. Radelytskyi, D. J. Voneshen, R. A. Ewings, M. B. Stone, A. I. Kolesnikov, B. Winn, S. Chi, R. A. Mole, D. H. Yu, B. Gao, and P. Dai, Phys. Rev. B 10110.1103/physrevb.101.134418 (2020).
  • Bacaksiz et al. (2021) C. Bacaksiz, D. Šabani, R. M. Menezes, and M. V. Milošević, Phys. Rev. B 10310.1103/physrevb.103.125418 (2021).
  • Webster and Yan (2018) L. Webster and J.-A. Yan, Phys. Rev. B 98, 144411 (2018).
  • Gennes (1966) P. D. Gennes, Physics Letters 23, 10 (1966).
  • Hauser (1969) J. J. Hauser, Phys. Rev. Lett. 23, 374 (1969).
  • Ojajärvi et al. (2021) R. Ojajärvi, F. Bergeret, M. Silaev, and T. T. Heikkilä, arXiv:2107.09959  (2021).
  • Note (3) Direct coupling mediated by NbSe2 is stronger than indirect superexchange between layers.
  • Huang et al. (2017d) B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Nature 546, 270 (2017d).
  • Soriano et al. (2019) D. Soriano, C. Cardoso, and J. Fernández-Rossier, Solid State Communications 299, 113662 (2019).
  • Sivadas et al. (2018) N. Sivadas, S. Okamoto, X. Xu, C. J. Fennie, and D. Xiao, Nano Letters 18, 7658 (2018).
  • Ubrig et al. (2019) N. Ubrig, Z. Wang, J. Teyssier, T. Taniguchi, K. Watanabe, E. Giannini, A. F. Morpurgo, and M. Gibertini, 2D Materials 7, 015007 (2019).
  • Stoner and Wohlfarth (1948) E. C. Stoner and E. P. Wohlfarth, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 240, 599 (1948).
  • Tannous and Gieraltowski (2008) C. Tannous and J. Gieraltowski, European Journal of Physics 29, 475 (2008).
  • Zhao et al. (2019) K. Zhao, H. Lin, X. Xiao, W. Huang, W. Yao, M. Yan, Y. Xing, Q. Zhang, Z.-X. Li, S. Hoshino, J. Wang, S. Zhou, L. Gu, M. S. Bahramy, H. Yao, N. Nagaosa, Q.-K. Xue, K. T. Law, X. Chen, and S.-H. Ji, Nature Physics 15, 904 (2019).
  • Tartaglia et al. (2020b) T. A. Tartaglia, J. N. Tang, J. L. Lado, F. Bahrami, M. Abramchuk, G. T. McCandless, M. C. Doyle, K. S. Burch, Y. Ran, J. Y. Chan, and F. Tafti, Science Advances 6, eabb9379 (2020b).
  • Costanzo et al. (2016) D. Costanzo, S. Jo, H. Berger, and A. F. Morpurgo, Nature nanotechnology 11, 339 (2016).
  • Li et al. (2020) J. Li, P. Song, J. Zhao, K. Vaklinova, X. Zhao, Z. Li, Z. Qiu, Z. Wang, L. Lin, M. Zhao, T. S. Herng, Y. Zuo, W. Jonhson, W. Yu, X. Hai, P. Lyu, H. Xu, H. Yang, C. Chen, S. J. Pennycook, J. Ding, J. Teng, A. H. C. Neto, K. S. Novoselov, and J. Lu, Nature Materials 20, 181 (2020).
  • Tong et al. (2019) Q. Tong, M. Chen, and W. Yao, Phys. Rev. Applied 12, 024031 (2019).
  • Wang et al. (2020) L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D. A. Rhodes, C. Tan, M. Claassen, D. M. Kennes, Y. Bai, B. Kim, et al.Nature materials 19, 861 (2020).
  • Huang et al. (2016) P.-R. Huang, Q.-Y. Chen, H. K. Pal, M. Kindermann, C. Cao, and Y. He, Superlattices and Microstructures 100, 997 (2016).
  • Chen et al. (2018) L. Chen, J.-H. Chung, B. Gao, T. Chen, M. B. Stone, A. I. Kolesnikov, Q. Huang, and P. Dai, Phys. Rev. X 8, 041028 (2018).
  • Costa et al. (2020) A. T. Costa, D. L. R. Santos, N. M. Peres, and J. Fernández-Rossier, 2D Materials 7, 045031 (2020).
  • Jin et al. (2018) W. Jin, H. H. Kim, Z. Ye, S. Li, P. Rezaie, F. Diaz, S. Siddiq, E. Wauer, B. Yang, C. Li, et al.Nature communications 9, 1 (2018).
  • He et al. (2018) W.-Y. He, B. T. Zhou, J. J. He, N. F. Q. Yuan, T. Zhang, and K. T. Law, Communications Physics 110.1038/s42005-018-0041-4 (2018).
  • Zheng et al. (2018) F. Zheng, Z. Zhou, X. Liu, and J. Feng, Phys. Rev. B 97, 081101 (2018).
  • Gor'kov and Rashba (2001) L. P. Gor'kov and E. I. Rashba, Phys. Rev. Lett. 8710.1103/physrevlett.87.037004 (2001).