This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Converged ab initio calculations of heavy nuclei

T. Miyagi tmiyagi@triumf.ca TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada    S. R. Stroberg stroberg@uw.edu Department of Physics, University of Washington, Seattle, Washington 98195, USA    P. Navrátil navratil@triumf.ca TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada    K. Hebeler kai.hebeler@physik.tu-darmstadt.de Technische Universität Darmstadt, 64289 Darmstadt, Germany ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany    J. D. Holt jholt@triumf.ca TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada Department of Physics, McGill University, 3600 Rue University, Montréal, QC H3A 2T8, Canada
Abstract

We propose a novel storage scheme for three-nucleon (3N) interaction matrix elements relevant for the normal-ordered two-body approximation used extensively in ab initio calculations of atomic nuclei. This scheme reduces the required memory by approximately two orders of magnitude, which allows the generation of 3N interaction matrix elements with the standard truncation of E3max=28E_{\rm 3max}=28, well beyond the previous limit of 18. We demonstrate that this is sufficient to obtain the ground-state energy of 132Sn converged to within a few MeV with respect to the E3maxE_{\rm 3max} truncation. In addition, we study the asymptotic convergence behavior and perform extrapolations to the un-truncated limit. Finally, we investigate the impact of truncations made when evolving free-space 3N interactions with the similarity renormalization group. We find that the contribution of blocks with angular momentum Jrel>9/2J_{\rm rel}>9/2 to the ground-state energy is dominated by a basis-truncation artifact which vanishes in the large-space limit, so these computationally expensive components can be neglected. For the two sets of nuclear interactions employed in this work, the resulting binding energy of 132Sn agrees with the experimental value within theoretical uncertainties. This work enables converged ab initio calculations of heavy nuclei.

preprint: APS/123-QED

I Introduction

With recent progress in constructing two- (NN) and three-nucleon (3N) interactions [1, 2], solving the nuclear many-body problem [3, 4, 5, 6, 7, 8, 9], and rapid increases in computational power, the range of applicability of ab initio calculations of atomic nuclei has exploded over the past decade [10]. On the side of nuclear interactions, it has become clear that a consistent treatment of NN scattering and finite nuclei requires the inclusion of 3N forces [11, 12, 13, 14, 15], where chiral effective field theory [1, 2, 16] provides a path to a consistent and systematic treatment.

On the many-body side, polynomially scaling methods, such as coupled-cluster theory [6], self-consistent Green’s functions [7], and in-medium similarity renormalization group (IMSRG) [8] have been used to treat systems of up to A100A\sim 100 particles [17, 18, 19]. In all of these calculations, the wave function is expanded on a set of basis functions—typically the eigenstates of the harmonic oscillator—and the NN and 3N matrix elements in that basis are needed as an input. The number of single-particle basis states in a calculation is given by the truncation e=2n+emaxe=2n+\ell\leq e_{\max}, with the radial quantum number nn and angular momentum ll. Achieving convergence in both the infrared (IR) and ultraviolet (UV) for medium-mass nuclei typically requires emax12e_{\rm max}\gtrsim 12. At even emax=12e_{\max}=12, however, storing the full set of 3N matrix elements would require approximately 10 TB of memory with single-precision floating point numbers, which considerably exceeds the available RAM per node on a typical supercomputer. It is therefore necessary to impose some additional truncation on the 3N matrix elements, typically taken as e1+e2+e3E3maxe_{1}+e_{2}+e_{3}\leq E_{3\rm max}. Ideally, the value of E3maxE_{3\rm max} is increased until convergence is achieved for a given observable.

The current limit of E3max18E_{3\rm max}\lesssim 18 is the primary bottleneck preventing ab initio calculations from reaching much beyond A100A\sim 100 [20, 21, 18, 22]. Overcoming this limit would significantly increase the reach of ab initio theory, e.g. to searches for physics beyond the standard model using heavy isotopes of xenon, tellurium, cesium, or mercury [23, 24, 25, 26, 27, 28, 29]. Furthermore, potential controlled calculations of 208Pb would provide the best experimentally accessible link between finite nuclei and nuclear matter, particularly in light of recently reported parity-violating electron scattering experiments [30, 31, 32]. Ab initio predictions would even be possible for the astrophysically relevant, but experimentally challenging, NN=126 region below 208Pb [33, 34, 35].

One way to overcome this limitation is to apply an importance truncation and/or tensor factorization [36, 37] to the 3N matrix elements, which would dramatically reduce the required RAM while retaining sufficient accuracy. Before resorting to these techniques, however, we observe that the most of today’s practical calculations are based on the normal-ordered two-body (NO2B) approximation [38]. This means we do not need the full set of 3N matrix elements in actual applications, particularly in the heavy-mass region. In this work, we demonstrate the efficiency of generating and storing only those combinations of 3N matrix elements involved in the NO2B approximation and discuss the E3maxE_{3\rm max} convergence of heavy nuclei around 132Sn.

The structure of this paper is as follows. In Sec. II, we introduce a novel procedure to store the 3N matrix elements relevant to the NO2B approximation. In Sec. III, the asymptotic behavior with respect to E3maxE_{3\rm max} is discussed. In Sec. IV, we demonstrate large E3maxE_{3\rm max} calculations around 132Sn, using the well-established NN+3N 1.8/2.0 (EM) interaction [39]. We also discuss the uncertainty from free-space 3N similarity renormalization group (SRG) evolution and present results for 132Sn with the chiral NN+3N(lnl) interaction [40]. Finally, we conclude in Sec. V.

II Calculation of 3N matrix elements

In Figure 1 we show the estimated file size of the 3N matrix elements as a function of E3maxE_{\rm 3max} for a fixed emax=16e_{\rm max}=16. The curve “full” illustrates that the typical basis-size limit is approximately E3max=1618E_{3\max}=16-18 for a memory limit of about 100 GB. This limit, however, is typically not sufficient to obtain converged results for nuclei beyond A=100A=100 as discussed in Refs. [20, 21, 18, 22, 41], and which we also demonstrate below. Towards heavier systems, the contributions of the residual 3N interactions is expected to be comparable to the truncation error of the many-body method [42]. Since the memory requirement for storing the full set of 3N matrix elements is prohibitive, we instead aim to exploit the simplifications offered by the NO approximation. In order to identify the minimal subset of 3N matrix elements for the NO2B Hamiltonian, we begin by reviewing the normal-ordering procedure.

Refer to caption
Figure 1: File size of the three-body matrix elements with the single-precision floating point numbers. The horizontal dashed line indicates 100 GB, which is a typical limit of the memory per node in usual work stations.

II.1 NO2B 3N matrix elements

Our starting Hamiltonian in second-quantized form is

H=pp\displaystyle H=\sum_{p^{\prime}p} tppapap+14ppqqVpqpqNNapaqaqap\displaystyle t_{p^{\prime}p}a^{{\dagger}}_{p^{\prime}}a_{p}+\frac{1}{4}\sum_{pp^{\prime}qq^{\prime}}V^{\rm NN}_{p^{\prime}q^{\prime}pq}a^{{\dagger}}_{p^{\prime}}a^{{\dagger}}_{q^{\prime}}a_{q}a_{p}
+136ppqqrrVpqrpqr3Napaqararaqap,\displaystyle+\frac{1}{36}\sum_{pp^{\prime}qq^{\prime}rr^{\prime}}V^{\rm 3N}_{p^{\prime}q^{\prime}r^{\prime}pqr}a^{{\dagger}}_{p^{\prime}}a^{{\dagger}}_{q^{\prime}}a^{{\dagger}}_{r^{\prime}}a_{r}a_{q}a_{p}, (1)

where tppt_{p^{\prime}p}, VpqpqNNV^{\rm NN}_{p^{\prime}q^{\prime}pq}, and Vpqrpqr3NV^{\rm 3N}_{p^{\prime}q^{\prime}r^{\prime}pqr} are the one-, two-, and three-body matrix elements, respectively. The index pp labels the single-particle orbit with quantum numbers {np,p,jp,mp,tzp}\{n_{p},\ell_{p},j_{p},m_{p},t_{z_{p}}\} corresponding to the radial quantum number, orbital angular momentum, total angular momentum, total angular momentum projection, and isospin projection, respectively. Performing normal ordering with respect to a reference state characterized by a one-body density matrix ρpp=apap\rho_{p^{\prime}p}=\langle a^{\dagger}_{p^{\prime}}a_{p}\rangle and discarding the residual 3N part, we obtain the NO2B Hamiltonian:

H(NO2B)=E0\displaystyle H^{\rm(NO2B)}=E_{0} +ppfpp{apap}\displaystyle+\sum_{p^{\prime}p}f_{p^{\prime}p}\{a^{{\dagger}}_{p^{\prime}}a_{p}\} (2)
+\displaystyle+ 14ppqqΓpqpq{apaqaqap},\displaystyle\frac{1}{4}\sum_{pp^{\prime}qq^{\prime}}\Gamma_{p^{\prime}q^{\prime}pq}\{a^{{\dagger}}_{p^{\prime}}a^{{\dagger}}_{q^{\prime}}a_{q}a_{p}\}\,,

where the braces {}\{\ldots\} indicate that the enclosed string of creation and annihilation operators are normal-ordered with respect to the used reference state. The Hamiltonian is now expressed in terms of a zero-body part

E0=ppρpptpp\displaystyle E_{0}=\sum_{p^{\prime}p}\rho_{p^{\prime}p}t_{p^{\prime}p} +12ppqqρppρqqVpqpqNN\displaystyle+\frac{1}{2}\sum_{pp^{\prime}qq^{\prime}}\rho_{p^{\prime}p}\rho_{q^{\prime}q}V^{\rm NN}_{p^{\prime}q^{\prime}pq} (3)
+16\displaystyle+\frac{1}{6} ppqqrrρppρqqρrrVpqrpqr3N,\displaystyle\sum_{pp^{\prime}qq^{\prime}rr^{\prime}}\rho_{p^{\prime}p}\rho_{q^{\prime}q}\rho_{r^{\prime}r}V^{\rm 3N}_{p^{\prime}q^{\prime}r^{\prime}pqr},

a normal-ordered one-body part

fpp=tpp+qqρqqVpqpqNN+12qqrrρqqρrrVqrpqrp3N,f_{p^{\prime}p}=t_{p^{\prime}p}+\sum_{q^{\prime}q}\rho_{q^{\prime}q}V^{\rm NN}_{p^{\prime}q^{\prime}pq}+\frac{1}{2}\sum_{qq^{\prime}rr^{\prime}}\rho_{q^{\prime}q}\rho_{r^{\prime}r}V^{\rm 3N}_{q^{\prime}r^{\prime}p^{\prime}qrp}, (4)

and a normal-ordered two-body part

Γpqpq=VpqpqNN+rrρrrVpqrpqr3N.\Gamma_{p^{\prime}q^{\prime}pq}=V^{\rm NN}_{p^{\prime}q^{\prime}pq}+\sum_{r^{\prime}r}\rho_{r^{\prime}r}V^{\rm 3N}_{p^{\prime}q^{\prime}r^{\prime}pqr}. (5)

The accuracy of the NO2B approximation has been investigated for ground state energies [38, 42, 43], where it was found that by 16O the error is at the level of 1% of the binding energy. With increasing mass number, this error should decrease as a fraction of the total binding energy111 The approximation also breaks translational invariance [43], but this is only important for light nuclei (i.e. A16A\lesssim 16), where the NO2B truncation is not necessary and convergence in E3maxE_{3\rm max} can be obtained by conventional methods..

If the one-body density matrix ρpp\rho_{pp^{\prime}} is rotationally invariant and conserves parity and isospin projection, it must satisfy (p,jp,mp,tzp)=(p,jp,mp,tzp)(\ell_{p^{\prime}},j_{p^{\prime}},m_{p^{\prime}},t_{z_{p^{\prime}}})=(\ell_{p},j_{p},m_{p},t_{z_{p}}), and the number of required 3N matrix elements is drastically smaller than that of the original full set. This condition is satisfied for single-reference calculations (e.g. coupled cluster, self-consistent Green’s function, IMSRG, HF-MBPT) with a closed-shell reference, as well as for particle-attached and particle-removed methods [6], and the ensemble normal ordering reference used in the valence-space IMSRG [44]. On the other hand, for broken-symmetry [45, 46] or multi-configurational [47, 48] references necessary to describe e.g. well-deformed nuclei, this would constitute an additional approximation.

Furthermore, in the practically used JTJT-coupled representation, we can sum up the 3N total angular momentum dependence. This can be seen in the JJ-coupled expression for the normal-ordered matrix element, the full expressions for which are provided in Appendix A. Here we show only the contributions from the three-nucleon interactions V3NV^{\rm 3N} (with the notation [x]2x+1[x]\equiv 2x+1, and using un-normalized matrix elements):

E0[3N]=16pqrpqrρppρqqρrrJpqJ[J]VpqrpqrJpqJpqJ\displaystyle E_{0}~{}[{\rm 3N}]=\frac{1}{6}\sum_{\begin{subarray}{c}p^{\prime}q^{\prime}r^{\prime}\\ pqr\end{subarray}}\rho_{p^{\prime}p}\rho_{q^{\prime}q}\rho_{r^{\prime}r}\sum_{J_{pq}J}[J]\;V^{J_{pq}J_{pq}J}_{p^{\prime}q^{\prime}r^{\prime}pqr} (6a)
fpp[3N]=12qqrrρqqρrrJqrJ[J][jp]VqrpqrpJqrJqrJ\displaystyle f_{p^{\prime}p}~{}[{\rm 3N}]=\frac{1}{2}\sum_{qq^{\prime}rr^{\prime}}\rho_{q^{\prime}q}\rho_{r^{\prime}r}\sum_{J_{qr}J}\frac{[J]}{[j_{p}]}V^{J_{qr}J_{qr}J}_{q^{\prime}r^{\prime}p^{\prime}qrp} (6b)
ΓpqpqJpq[3N]=rrρrrJ[J][Jpq]VpqrpqrJpqJpqJ.\displaystyle\Gamma^{J_{pq}}_{p^{\prime}q^{\prime}pq}~{}[{\rm 3N}]=\sum_{rr^{\prime}}\rho_{r^{\prime}r}\sum_{J}\frac{[J]}{[J_{pq}]}V^{J_{pq}J_{pq}J}_{p^{\prime}q^{\prime}r^{\prime}pqr}\,. (6c)

We can see that in Eq. (6) all terms depend on V3NV^{\rm 3\textbf{}N} through the quantity

𝒱pqrpqrJpqJ[J]VpqrpqrJpqJpqJδ~rr,\mathcal{V}_{p^{\prime}q^{\prime}r^{\prime}pqr}^{J_{pq}}\equiv\sum_{J}[J]V_{p^{\prime}q^{\prime}r^{\prime}pqr}^{J_{pq}J_{pq}J}\tilde{\delta}_{r^{\prime}r}\,, (7)

where the symbol δ~rr\tilde{\delta}_{r^{\prime}r} is shorthand for all the quantum numbers which are conserved by the one-body density matrix ρrr\rho_{r^{\prime}r}. If, instead of the full V3NV^{\rm 3N}, we only store the quantity (7), we obtain the curve “NO2B” in Fig. 1, allowing us to access E3max=26E_{3\rm max}=26 (28)(28) using single- (half-) precision floating point numbers.

Note that for a Hartree-Fock (HF) calculation, we only need the combination

𝒱¯pqrpqrJpq𝒱pqrpqrJpqδ~ppδ~qq.\overline{\mathcal{V}}_{p^{\prime}q^{\prime}r^{\prime}pqr}\equiv\sum_{J_{pq}}\mathcal{V}_{p^{\prime}q^{\prime}r^{\prime}pqr}^{J_{pq}}\tilde{\delta}_{p^{\prime}p}\tilde{\delta}_{q^{\prime}q}. (8)

The number of matrix elements (8) is sufficiently low that we can store the full 𝒱¯pqrpqr\overline{\mathcal{V}}_{p^{\prime}q^{\prime}r^{\prime}pqr} without any E3maxE_{3\rm max} truncation. However, we find that the HF part of the calculation converges at lower E3maxE_{3\rm max} than the beyond-mean-field corrections, which is why we store the quantity 𝒱pqrpqrJpq\mathcal{V}^{J_{pq}}_{p^{\prime}q^{\prime}r^{\prime}pqr}.

A similar idea was employed in Ref. [20]. However, in that work an iterative procedure was adopted in which a HF calculation was performed at a manageable E3max=14E_{3\rm max}=14, and then the lab-frame matrix elements necessary for the NO2B approximation for larger E3maxE_{3\rm max} were computed from the relative-basis matrix elements, and the procedure was iterated until self consistency was attained. In our approach, the transformation to the lab frame is performed once, and the resulting matrix elements 𝒱\mathcal{V} are written to disk and can be used for future calculations of any desired nucleus, without the need for iteration.

II.2 Transformation to single-particle coordinate

Although we can compress the file size by calculating only the NO2B relevant matrix elements via Eq. (7), we still need an efficient way to perform the transformation from the three-body Jacobi basis to single-particle basis. Originally, this transformation was derived for the three-nucleon single-particle mm-scheme basis [12, 49]. Memory requirements for the mm-scheme storage limited calculations to E3max=9E_{3\rm max}{=}9. Later, a jj-coupled storage scheme was introduced [50, 51] that allowed calculations with E3max18E_{3\rm max}\lesssim 18 as discussed in the introduction with file size requirements illustrated in Fig. 1. Here, we specify the angular momentum coupling in detail. The antisymmetrized three-body states in the lab frame are defined as

|pqr:JpqTpqJT\displaystyle|pqr:J_{pq}T_{pq}JT =6𝒜{tz}𝒞tzptzqTzpqtptqTpq𝒞TzpqtzrTzTpqtrT\displaystyle\rangle=\sqrt{6}\mathcal{A}\sum_{\{t_{z}\}}\mathcal{C}_{t_{z{p}}t_{z_{q}}T_{z{pq}}}^{t_{p}t_{q}T_{pq}}\mathcal{C}_{T_{z_{pq}}t_{z_{r}}T_{z}}^{T_{pq}t_{r}T} (9)
×{m}𝒞mpmqMpqjpjqJpq𝒞MpqmrMJpqjrJ|p|q|r\displaystyle\times\sum_{\{m\}}\mathcal{C}_{m_{p}m_{q}M_{pq}}^{j_{p}j_{q}J_{pq}}\mathcal{C}_{M_{pq}m_{r}M}^{J_{pq}j_{r}J}|p\rangle|q\rangle|r\rangle

with the antisymmetrizer

𝒜=13!(1+P13P12+P12P23P12P13P23),\mathcal{A}=\frac{1}{3!}(1+P_{13}P_{12}+P_{12}P_{23}-P_{12}-P_{13}-P_{23}), (10)

defined in terms of the permutation operator PijP_{ij}. In Eq.(9), the symbol 𝒞\mathcal{C} indicate a Clebsch-Gordan coefficient. A state in the antisymmetrized Jacobi basis is denoted |NiJrel|NiJ_{\rm rel}\rangle, with total oscillator quanta NN, total angular momentum JrelJ_{\rm rel}, and an additional quantum number ii to distinguish the states. The transformation from the Jacobi basis to the lab frame may be expressed as

\displaystyle\langle pqr:JpqTpqJT|V3N|pqr:JpqTpqJT=\displaystyle p^{\prime}q^{\prime}r^{\prime}:J_{p^{\prime}q^{\prime}}T_{p^{\prime}q^{\prime}}JT|V^{\rm 3N}|pqr:J_{pq}T_{pq}JT\rangle= (11)
6NiNiNcmLcmJrelpqr:JpqTpqJT|NcmLcmNiJrel:JT\displaystyle 6\smashoperator[]{\sum_{\begin{subarray}{c}NiN^{\prime}i^{\prime}\\ N_{\rm cm}L_{\rm cm}J_{\rm rel}\end{subarray}}^{}}\langle p^{\prime}q^{\prime}r^{\prime}:J_{p^{\prime}q^{\prime}}T_{p^{\prime}q^{\prime}}JT|N_{\rm cm}L_{\rm cm}N^{\prime}i^{\prime}J_{\rm rel}:JT\rangle
×NiJrel|V3N|NiJrel\displaystyle\hskip 20.00003pt\times\langle N^{\prime}i^{\prime}J_{\rm rel}|V^{\rm 3N}|NiJ_{\rm rel}\rangle
×NcmLcmNiJrel:JT|pqr:JpqTpqJT.\displaystyle\hskip 20.00003pt\times\langle N_{\rm cm}L_{\rm cm}NiJ_{\rm rel}:JT|pqr:J_{pq}T_{pq}JT\rangle.

The quantity NcmLcmNiJrel:JT|pqr:JpqTpqJT\langle N_{\rm cm}L_{\rm cm}NiJ_{\rm rel}:JT|pqr:J_{pq}T_{pq}JT\rangle denotes the transformation coefficient. The quantum numbers NcmN_{\rm cm} and LcmL_{\rm cm} are the radial nodes and orbital angular momentum of the center-of-mass (c.m.) motion. The summations over N,i,N,iN,i,N^{\prime},i^{\prime} can be performed efficiently by matrix-matrix multiplication, and the remaining summations over NcmN_{\rm cm}, LcmL_{\rm cm} and JrelJ_{\rm rel} can be computed manually.

The transformation coefficient can be calculated through the non-antisymmetrized Jacobi state:

\displaystyle\langle NcmLcmNiJrel:JT|pqr:JpqTpqJT=\displaystyle N_{\rm cm}L_{\rm cm}NiJ_{\rm rel}:JT|pqr:J_{pq}T_{pq}JT\rangle= (12)
αNiJrel|NαJrel\displaystyle\hskip 10.00002pt\sum_{\alpha}\langle NiJ_{\rm rel}|N\alpha J_{\rm rel}\rangle
×NcmLcmNαJrel:JT|pqr:JpqTpqJT.\displaystyle\hskip 30.00005pt\times\langle N_{\rm cm}L_{\rm cm}N\alpha J_{\rm rel}:JT|pqr:J_{pq}T_{pq}JT\rangle.

The index α\alpha labels the set of Jacobi quantum numbers α={n12,l12,s12,j12,t12,n3,l3,j3}\alpha=\{n_{12},l_{12},s_{12},j_{12},t_{12},n_{3},l_{3},j_{3}\}. The quantum numbers {n12,l12,s12,j12,t12}\{n_{12},l_{12},s_{12},j_{12},t_{12}\} are used for the relative motion of nucleons 1 and 2, i.e., the nodal, orbital angular momentum, spin, total angular momentum, and total isospin quantum numbers, respectively. Similarly, the quantum numbers {n3,l3,j3}\{n_{3},l_{3},j_{3}\} correspond to the motion of nucleon 3 with respect to the c.m. of nucleons 1 and 2. Since the antisymmetrized state |NiJrel|NiJ_{\rm rel}\rangle is an eigenstate of the antisymmetrizer 𝒜\mathcal{A}, the coefficient NiJrel|NαJrel\langle NiJ_{\rm rel}|N\alpha J_{\rm rel}\rangle is also known as the coefficient of fractional parentage [52, 53]. The coefficient NcmLcmNαJrel:JT|pqr:JpqTpqJT\langle N_{\rm cm}L_{\rm cm}N\alpha J_{\rm rel}:JT|pqr:J_{pq}T_{pq}JT\rangle is known as the TT-coefficient [49, 51], and is the bottleneck of the calculation. It turns out one can sum up three of the angular momentum sums in Eq. (B11) in Ref. [49] (S3,L3,S_{3},L_{3},{\cal L}) and obtain a significantly more efficient expression for the TT-coefficient:

NcmLcmNα:JT|pqr:JpqTpqJT\displaystyle\langle N_{\rm cm}L_{\rm cm}N\alpha:JT|pqr:J_{pq}T_{pq}JT\rangle =δt12Tpq(1)s12+l12+Lcm+Jpq+j3+3/2[jp][jq][jr][Jpq][s12][j12][j3][Jrel]\displaystyle=\delta_{t_{12}T_{pq}}(-1)^{s_{12}+l_{12}+L_{\rm cm}+J_{pq}+j_{3}+3/2}\sqrt{[j_{p}][j_{q}][j_{r}][J_{pq}][s_{12}][j_{12}][j_{3}][J_{\rm rel}]} (13)
×lpq[lpq]{lpspjplqsqjqlpqs12Jpq}N12L12(1)L12{L12l12lpqs12Jpqj12}N12L12,n12l12:lpq|nplp,nqlq:lpq1\displaystyle\times\sum_{l_{pq}}[l_{pq}]\left\{\begin{array}[]{ccc}l_{p}&s_{p}&j_{p}\\ l_{q}&s_{q}&j_{q}\\ l_{pq}&s_{12}&J_{pq}\end{array}\right\}\sum_{N_{12}L_{12}}(-1)^{L_{12}}\left\{\begin{array}[]{ccc}L_{12}&l_{12}&l_{pq}\\ s_{12}&J_{pq}&j_{12}\end{array}\right\}\langle N_{12}L_{12},n_{12}l_{12}:l_{pq}|n_{p}l_{p},n_{q}l_{q}:l_{pq}\rangle_{1}
×λ(1)λ[λ]NcmLcm,n3l3:λ|N12L12,nrlr:λ2{j12L12λLcmJpqlrl3JrelJjrsrj3}.\displaystyle\times\sum_{\lambda}(-1)^{\lambda}[\lambda]\langle N_{\rm cm}L_{\rm cm},n_{3}l_{3}:\lambda|N_{12}L_{12},n_{r}l_{r}:\lambda\rangle_{2}\left\{\begin{array}[]{cccccccc}j_{12}&&L_{12}&&\lambda&&L_{\rm cm}&\\ &J_{pq}&&l_{r}&&l_{3}&&J_{\rm rel}\\ J&&j_{r}&&s_{r}&&j_{3}&\\ \end{array}\right\}.

Here, as above, we use the notation [x]2x+1[x]\equiv 2x+1 and the usual 6-jj and 9-jj symbols are used. In addition, we use a 12-jj symbol of the first kind [54], and |d\langle\ldots|\ldots\rangle_{d} is Talmi-Moshinsky bracket with mass ratio dd [55]. For efficiency, 12-jj symbols are calculated on the fly from cached 6-jj symbols [54]. We have also used sp=sq=sr=1/2s_{p}=s_{q}=s_{r}=1/2. While (13) is a complicated expression, it involves four nested summations (including the expansion of the 12-jj symbol; the sum over N12N_{12} is trivial by energy conservation), rather than the six needed for the expression in Refs. [49, 51].

Our implementation of the above expressions allows us to generate all the lab-frame three-body matrix elements (with half-precision floating point numbers) needed for a calculation employing the NO2B approximation with a spherical reference state up to E3max=28E_{3\rm max}=28 using 105\sim 10^{5} CPU hours with 187 GB RAM per node. Importantly, this step only needs to be done once for a given interaction. Subsequent many-body calculations for different nuclei, or using different methods can be performed using the same file.

III Convergence behavior

Before presenting results for heavy nuclei, we consider the expected convergence behavior of ground-state energies with increasing E3maxE_{3\rm max}. Knowing the asymptotic behavior enables a controlled extrapolation to E3max3emaxE_{3\rm max}\to 3e_{\max}. Convergence in E3maxE_{3\rm max} is distinct from the convergence in emaxe_{\max} (or NmaxN_{\max} in the no-core shell model) discussed in Refs. [56, 57], in that the latter deals with a truncation of the Hilbert space, while the former is a truncation on the Hamiltonian. This means we do not even have an approximate variational principle to rely on. To simplify the analysis, we assume that for the soft interactions we consider here, the main contribution to the correlation energy comes from second-order perturbation theory. Also we assume that E3maxE_{3\rm max} is sufficiently large that the HF wave function is converged. The second-order energy correction is

E[2]=14abij|Γabij|2ϵi+ϵjϵaϵb,E^{[2]}=\tfrac{1}{4}\sum_{abij}\frac{|\Gamma_{abij}|^{2}}{\epsilon_{i}+\epsilon_{j}-\epsilon_{a}-\epsilon_{b}}, (14)

where Γabij\Gamma_{abij} contains both two-body and three-body contributions, c.f. (5). Here i,ji,j and a,ba,b run over hole and particle states, respectively. We can simplify the evaluation by approximating the single-particle energies by the harmonic oscillator energy with the proper energy scale: ϵp=epω\epsilon_{p}=e_{p}\hbar\omega with ep=2np+lpe_{p}=2n_{p}+l_{p} and ω\hbar\omega the optimal oscillator frequency. The subscript pp indicates either hole or particle state. We have confirmed that this replacement does not affect the asymptotic behavior. By increasing the value of E3maxE_{3\rm max} by one unit the second-order energy changes by

ΔE[2]12abijkVabijNNVijkabk3N(ei+ej+ekE3max)ωδE3max,ea+eb+ek,\Delta E^{[2]}\approx\tfrac{1}{2}\sum_{abijk}\frac{V^{\rm NN}_{abij}V^{\rm 3N}_{ijkabk}}{(e_{i}+e_{j}+e_{k}-E_{3\max})\hbar\omega}\delta_{E_{3\rm max},e_{a}+e_{b}+e_{k}}\,, (15)

where we have assumed VNNV3N||V^{\rm NN}||\gg||V^{\rm 3N}|| and retained only the term linear in V3NV^{\rm 3N}. The interactions we are interested in are regularized by cutoff functions of the form exp(Q2n/Λ2n)\exp(-Q^{2n}/\Lambda^{2n}), where QQ is a momentum scale, Λ\Lambda the cutoff scale and nn some positive power nn. Depending on the nature of the 3N interaction, QQ can be the momentum transfer or the sum of the Jacobi momenta of the form Q2=k12+3k22/4+k12+3k22/4Q^{2}=k_{1}^{2}+3k_{2}^{2}/4+k_{1}^{\prime 2}+3k_{2}^{\prime 2}/4, where ki/kik_{i}/k^{\prime}_{i} are the Jacobi momenta of the initial/final state (see [15] for details). Then, it is reasonable to assume that the off-diagonal matrix elements are suppressed as:

VabijNNV¯NNexp[(ea+ebeiejΛNN2/mϵ0)nNN],V^{\rm NN}_{abij}\approx\bar{V}^{\rm NN}\exp\left[-\left(\frac{e_{a}+e_{b}-e_{i}-e_{j}}{\Lambda_{\rm NN}^{2}/m\epsilon_{0}}\right)^{n_{\rm NN}}\right], (16)

and

Vabkijk3NV¯3Nexp[(ea+eb+ekeiejekΛ3N2/mϵ0)n3N],V^{\rm 3N}_{abkijk}\approx\bar{V}^{\rm 3N}\exp\left[-\left(\frac{e_{a}+e_{b}+e_{k}-e_{i}-e_{j}-e_{k}}{\Lambda_{\rm 3N}^{2}/m\epsilon_{0}}\right)^{n_{\rm 3N}}\right], (17)

with the cutoff for NN (3N) interaction ΛNN\Lambda_{\rm NN} (Λ3N\Lambda_{\rm 3N}) and the scale of the NN (3N) interaction V¯NN\bar{V}^{\rm NN} (V¯3N\bar{V}^{\rm 3N}) 222Another possible choice would be VabijNNV¯NNexp[(ea+eb+ei+ejΛNN2/mϵ0)nNN],V^{\rm NN}_{abij}\approx\bar{V}^{\rm NN}\exp\left[-\left(\frac{e_{a}+e_{b}+e_{i}+e_{j}}{\Lambda_{\rm NN}^{2}/m\epsilon_{0}}\right)^{n_{\rm NN}}\right], and Vabkijk3NV¯3Nexp[(ea+eb+ek+ei+ej+ekΛ3N2/mϵ0)n3N].V^{\rm 3N}_{abkijk}\approx\bar{V}^{\rm 3N}\exp\left[-\left(\frac{e_{a}+e_{b}+e_{k}+e_{i}+e_{j}+e_{k}}{\Lambda_{\rm 3N}^{2}/m\epsilon_{0}}\right)^{n_{\rm 3N}}\right]. Even with these forms, one can obtain Eq. (21) by introducing X=E3max+μX=E_{\rm 3max}+\mu, μ2eF\mu\approx 2e_{\rm F} and assuming the condition E3maxeFE_{\rm 3max}\gg e_{\rm F}. . For the sake of simplicity, we also assume nNN=n3Nnn_{\rm NN}=n_{\rm 3N}\equiv n in the following. The above suppression is also found in SRG-evolved potentials [58]. To further simplify, we take the most relevant excitations, i.e., excitations from the Fermi level (with energy eFe_{F}) to the unoccupied orbits. In this case the numerator in both (16) and (17) become, when combined with the δ\delta in (15), equal to E3max3eFE_{\rm 3max}-3e_{F}. Introducing the new scale factor 1/σn=mnϵ0n(1/ΛNN2n+1/Λ3N2n)1/\sigma^{n}=m^{n}\epsilon^{n}_{0}(1/\Lambda_{\rm NN}^{2n}+1/\Lambda_{\rm 3N}^{2n}) and taking the summation explicitly, we obtain the form

ΔE[2](A1+A2X+A3X2)exp[Xnσn],\displaystyle\Delta E^{[2]}\approx(A_{1}+A_{2}X+A_{3}X^{2})\exp\left[-\frac{X^{n}}{\sigma^{n}}\right], (18)

with X=(E3maxμ)X=(E_{\rm 3max}-\mu), μ3eF\mu\approx 3e_{\rm F}. We expect the correction E[2]E^{[2]} to be a smooth function of E3maxE_{3\rm max} in the asymptotic limit, and so we treat the difference ΔE[2]\Delta E^{[2]} as a derivative and integrate to obtain the form of E[2]E^{[2]}:

E[2]A1γ1n(x)+A2γ2n(x)+A3γ3n(x)+C,E^{[2]}\approx A_{1}\gamma_{\frac{1}{n}}(x)+A_{2}\gamma_{\frac{2}{n}}(x)+A_{3}\gamma_{\frac{3}{n}}(x)+C, (19)

with x=[(E3maxμ)/σ]nx=[(E_{3\max}-\mu)/\sigma]^{n}. Here, γs(x)\gamma_{s}(x) is the incomplete gamma function:

γs(x)=0xts1et𝑑t.\gamma_{s}(x)=\int^{x}_{0}t^{s-1}e^{-t}dt. (20)

It turns out that the functions γ1n(x)\gamma_{\frac{1}{n}}(x), γ2n(x)\gamma_{\frac{2}{n}}(x), γ3n(x)\gamma_{\frac{3}{n}}(x) show the same asymptotic behavior, and are therefore redundant for our purposes, so we may simply retain one of the γ\gamma functions in (19), and we choose γ2n(x)\gamma_{\frac{2}{n}}(x). Assuming that the HF energy is well converged with respect to E3maxE_{3\max}, the formula for the E3maxE_{3\max} extrapolation is

EAγ2n[(E3maxμσ)n]+C.E\sim A\gamma_{\frac{2}{n}}\left[\left(\frac{E_{3\max}-\mu}{\sigma}\right)^{n}\right]+C. (21)

It remains to select a reasonable value of the power nn entering in (21). An SRG-evolved interaction will go as exp[s(k2k2)2]\exp[-s(k^{2}-k^{\prime 2})^{2}] [58] with relative momenta kk and kk^{\prime}, which suggests a value n=2n=2. For the interaction under consideration, 1.8/2.0(EM), the 3N force is not SRG evolved, but instead comes with a regulator exp[(Q2/Λ2)4]\sim\exp[-(Q^{2}/\Lambda^{2})^{4}] [39], suggesting n=4n=4. We deal with this ambiguity by checking n=2,4,6n=2,4,6 to explore the sensitivity to the choice.

Furthermore, from the perturbative expansion of one-body density matrix, we can expect the same E3maxE_{\rm 3max} asymptotic behavior for the expectation value of the mean-squared radius operator r2\langle r^{2}\rangle, or any other predominantly one-body operator.

We emphasize that all the discussions are based on the softness of the employed nuclear interaction enabling us to derive the expression through the MBPT. For a harder interaction, where the MBPT breaks down, we may observe a different convergence pattern with respect to E3maxE_{\rm 3max}.

IV Numerical results

The many-body calculation methods used in the following are HF basis many-body perturbation theory (HF-MBPT) and IMSRG. For open-shell systems, we use the valence-space IMSRG (VS-IMSRG). For all the many-body methods, we store the usual NN and NO2B 3N matrix elements in RAM, perform the HF calculation to optimize the single-particle basis, and obtain the normal ordered matrix elements (33),(34) and (35). For open-shell systems, we use an ensemble reference for the normal ordering to capture the 3N interaction effect of valence nucleons as much as possible within the spherical basis framework [44, 59]. In addition to the HF calculation, we evaluate the correlation energy with MBPT. Based on a soft nuclear interaction, it was shown that the computationally cheap second- or third-order MBPT can provide results comparable with those from the coupled-cluster method [60, 61, 9]. We could confirm these results in our calculations, and so we use HF-MBPT for the calculations with a large emaxe_{\max} space, where the IMSRG is considerably more expensive. Our IMSRG calculations are performed with the Magnus formulation [62], using the arctangent generator. Details of the method may be found in recent reviews [8, 59]. The IMSRG and VS-IMSRG calculations are done with the imsrg++ [63] code, and the subsequent shell-model diagonalizations are done with the NuShellX@MSU [64] and KSHELL [65] codes.

IV.1 E3maxE_{3\rm max} convergence around 132Sn

Here, we investigate large-E3maxE_{3\rm max} calculations around 132Sn using the well-established NN+3N interaction 1.8/2.0 (EM) [39], which accurately reproduces binding energies to A100A\sim 100 [66, 17, 67]. We employ an oscillator basis with frequency ω=16\hbar\omega=16 MeV, which is near the optimal value giving the most rapid emaxe_{\rm max} convergence for the ground-state energies and radii of the medium-mass nuclei (converged results are independent of ω\hbar\omega[66].

One important feature of the 1.8/2.0 (EM) interaction for our purposes is that, while the NN force is softened by a free-space similarity renormalization group (SRG) evolution to a scale λSRG=1.8fm1\lambda_{\rm SRG}=1.8~{}{\rm fm}^{-1}, the corresponding 3N interactions are not SRG evolved. Instead, the cutoff is chosen to be Λ3N=2.0fm1\Lambda_{\rm 3N}=2.0~{}{\rm fm}^{-1} and the short-range low-energy constants cDc_{D} and cEc_{E} are refit to the triton binding energy and 4He radius. This means that we can avoid SRG evolution of the 3N interaction, which introduces additional challenges due to basis truncations (we address these in section IV.2).

Refer to caption
Figure 2: Ground state energy of 132Sn as a function of E3maxE_{3\rm max}, computed in many-body perturbation theory to second and third order and in IMSRG(2).
Refer to caption
Figure 3: (a) The ground state energy of 132Sn computed in MBPT(2) and IMSRG(2), as a function of E3maxE_{3\rm max}, and the extrapolated energies for (b) MBPT(2) and (c) IMSRG. The points used in the fitting procedure are indicated by the solid symbols in panel (a). The dashed and solid curves are obtained by fitting the functions using n=2,4,6n=2,4,6 in Eq. (21) with the data points of MBPT(2) (emax=14e_{\max}=14) and IMSRG (emax=14e_{\max}=14) results, respectively. In panels (b) and (c), the energies are extrapolated to E3max=28E_{\rm 3max}=28. The error bars indicate the standard deviation of the distribution, which are obtained with 10410^{4} samples drawn from the covariance matrix of the fit.

In Fig. 2 we show the ground-state energy of 132Sn calculated with HF-MBPT and IMSRG as a function of E3maxE_{3\rm max}. The non-variational nature mentioned above is evident, and is present even at the mean-field level. We see that truncations at E3max=22E_{3\rm max}=22 or 2424 are sufficient to obtain convergence within a few MeV. For all points in Fig. 2, the 3N matrix elements are stored and read in using half-precision floating point numbers to reduce the memory footprint. Up to E3max=24E_{3\rm max}=24, we can use single-precision numbers to check the impact of this choice. At emax=14e_{\rm max}=14, E3max=24E_{3\rm max}=24, the half-precision calculation yields HF energies shifted by 2.14-2.14 MeV, while the second- and third-order MBPT corrections are changed by 0.68 MeV and 0.11 MeV, respectively, yielding a total difference up to third order of 1.35-1.35 MeV. This is completely negligible compared with uncertainties arising from many-body truncations (which we expect to be on the order of 20 MeV here333This estimate is based on the difference between the MBPT(2), MBPT(3) and IMSRG(2) energies, and is consistent with Ref. [60] where the error at MBPT(3) for similarly soft interactions was found to be 0.1-0.2 MeV per particle. We have further corroborated this estimate with MBPT(4) calculations in a smaller emaxe_{\rm max} space.) and the interaction itself. We also show in Fig. 2 the convergence with respect to emaxe_{\rm max}. At E3max=28E_{3\rm max}=28, the third-order energies for emax=14,16,18e_{\rm max}=14,16,18, are 1115.85-1115.85 MeV, 1117.61-1117.61 MeV, and 1118.16-1118.16 MeV, respectively, demonstrating convergence at the 11 MeV level.

Since the second-order correction of 300\sim-300 MeV is much larger than third-order correction of 20\sim-20 MeV, the correlation energy is dominated by second-order correction. This supports the claim that the extrapolation formula Eq. (21) based on the second-order energy correction is applicable in the case of the HF-MBPT(3) and IMSRG, which includes correlations beyond second order. In panel (a) of Fig. 3, we show n=2,4,6n=2,4,6 curves of Eq. (21) fitted with the HF-MBPT(2) and IMSRG energy results at emax=14e_{\max}=14, indicated by the solid symbols in the panel. We see that Eq. (21) works for IMSRG energies as well. Panels (b) and (c) show the extrapolated energies to E3max=28E_{3\rm max}=28, which is the largest value we can calculate. Since the extrapolated point is finite, the uncertainty of all the fitting parameters can propagate to uncertainty of the extrapolated energies. The uncertainty of the energy is estimated as the standard deviation of the 10000 samples generated with the covariance matrix from the fit. Comparing the extrapolated and calculated energies, we see that n=2n=2 (Gaussian) reproduces the energies for both HF-MBPT(2) and IMSRG cases, and n=2n=2 is the most likely to reproduce the convergence behavior in this case. With n=2n=2 formula, we observed that the extrapolated energy to E3max=42E_{3\max}=42 is 1110.57(2)-1110.57(2) [1097.13(2)-1097.13(2)] MeV using the IMSRG [HF-MBPT(2)] data 18E3max2318\leq E_{3\max}\leq 23.

Refer to caption
Figure 4: Excitation spectrum of 127Cd as a function of E3maxE_{3\rm max}, computed in the VS-IMSRG(2) approximation.

As already mentioned in Sec. I, we have observed a lack of convergence with respect to E3maxE_{3\rm max} in some calculations of heavier systems. One particular example is 127Cd as discussed in Ref. [21]. We revisit the calculations in that work, obtained with the VS-IMSRG, and extend them to larger E3maxE_{3\rm max}. Here, our single-particle basis truncation is emax=14e_{\max}=14, and we take the valence space as {1p3/2,1p1/2,0f5/2,0g9/2}\{1p_{3/2},1p_{1/2},0f_{5/2},0g_{9/2}\} for protons and {1d5/2,2s1/2,1d3/2,0g7/2,0h11/2}\{1d_{5/2},2s_{1/2},1d_{3/2},0g_{7/2},0h_{11/2}\} for neutrons above 78Ni core. As seen in Fig 4, by E3max=28E_{3\rm max}=28 we obtain convergence in excitation energies at the level of 5 keV. With the previous limit of E3max=18E_{3\rm max}=18 there is no sign of convergence. This behavior can be understood by noting that the h11/2h_{11/2} orbit with e5e\geq 5, is impacted by the E3maxE_{3\rm max} cut differently than the other neutron valence orbits which have e4e\geq 4, and that the parity of a state is driven by the occupation of the h11/2h_{11/2}. An analogous argument applies to the proton orbits.

Refer to caption
Figure 5: First 2+2^{+} excitation energies of the tin isotopes calculated with the VS-IMSRG(2) approximation. The black bars indicate the experimental data [68].

In contrast, when two states have the same number of oscillator quanta in their naive configurations, we expect that their convergence with respect to E3maxE_{3\rm max} will be similar and so the energy difference will be less sensitive to the E3maxE_{3\rm max} truncation. To illustrate this, we present in the top panel of Fig 5 the first 2+2^{+} excitation energies of even-mass tin isotopes, obtained with the VS-IMSRG. The valence space is {1p3/2,1p1/2,0f5/2,0g9/2}\{1p_{3/2},1p_{1/2},0f_{5/2},0g_{9/2}\} for protons and {2s1/2,1d3/2,0h11/2,1f7/2}\{2s_{1/2},1d_{3/2},0h_{11/2},1f_{7/2}\} for neutrons above a 92Ni core, indicated by the open symbols in the figure. During the IMSRG evolution, the center-of-mass (c.m.) motions are separated with the Glöckner-Lawson prescription [69] with the coefficient β=3\beta=3, and we observe the stability with respect to β\beta (see [70] for a detailed discussion). The ground-state energies are converged within approximately 2 MeV. It is clear from the figure that the 2+2^{+} energies show convergence as E3maxE_{3\rm max} is increased and E3max=18E_{3\rm max}=18 is sufficient to see the systematics of the 2+2^{+} energies. We note that the 2+2^{+} energy of 132Sn at E3max=18E_{3\rm max}=18 and 2424 differ by 200 keV. We successfully reproduce the AA-independent excitation energies of the open-shell nuclei, consistent with the seniority picture. In fact, the analysis of the calculated wave function of 126-130Sn reveals that our valence-space wave functions of ground and first 2+2^{+} states are dominated more than 7070% by the seniority v=0v=0 and v=2v=2 states, respectively444While such quantitative details about the wave function will in general depend on the details of the IMSRG transformation, this is a relatively simple way to understand the convergence behavior.. The relatively fast convergence of the excitation energies with respect to E3maxE_{3\rm max} reflects the fact that both the ground and excited states are dominated by configurations with the same occupancies in the oscillator basis. On the other hand, the excitation at N=82N=82 is dominated by a single neutron excitation 0h11/21f7/20h_{11/2}\to 1f_{7/2}. As these orbits have the same naive number of oscillator quanta, dependence on the E3maxE_{3\rm max} is still mild. The predicted excitation energy is about 1.5 MeV above the experimental value, which is attributed to the IMSRG(2) approximation, as seen in earlier works [66, 71]. Efforts to go beyond the IMSRG(2) approximation are underway [72].

Finally, we consider the convergence behavior of point-proton and point-neutron radii through the Hartree-Fock, second-order HF-MBPT, and IMSRG(2). The diagrams taken into account in the second-order HF-MBPT are listed in Appendix B. The charge radii of several isotopes including 132Sn were recently computed with the self-consistent Green’s function method using chiral forces up to emax=13e_{\rm max}=13 and E3max=16E_{3\rm max}=16 [18]. We compute point-proton and point-neutron root-mean-squared radii and the neutron skin of 132Sn as a function of E3maxE_{3\rm max}, and plot the result in Fig. 6. We see that convergence is achieved by E3max22E_{3\rm max}\sim 22. The corresponding converged charge radii are rch=4.43r_{ch}=4.43 fm and 4.424.42 fm with IMSRG and second-order HF-MBPT, respectively, demonstrating that the effect of the many-body truncation is controllable for radii. Eq. (21) with n=2n=2 reasonably captures the asymptotic convergence behavior of radii. Also we note that the often-used N2LOsat interaction is harder than the interaction employed here, and thus we would expect the calculations with N2LOsat will show slower convergence with respect to E3maxE_{\rm 3max}. Our converged neutron skin with IMSRG(2) is 0.2202(4)—where the quoted uncertainty only accounts for the E3maxE_{3\rm max} truncation—consistent with the (model-dependent) extraction [73] of 0.24(4).

Refer to caption
Figure 6: Root-mean-squared point-proton and point-neutron radii, and neutron skin thickness of 132Sn as a function of E3maxE_{3\rm max}. We use the EM 1.8/2.0 interaction with emax=14e_{\rm max}=14 and compute the radii in the Hartree-Fock, HF-MBPT(2), or IMSRG(2) approximations. The dotted, dot-dashed, and dashed lines are obtained by fitting to Eq. (21). The points indicated by the solid symbols are used in the fitting procedure. The shaded or hatched bands show the extrapolated radii to E3max=3emax=42E_{\rm 3max}=3e_{\rm max}=42 and the widths of the bands are estimated with 10410^{4} samples, as in the energy extrapolation.

IV.2 SRG evolved NN+3N interaction

The NN and 3N contributions to the 1.8/2.0 (EM) interaction, used for the calculations discussed in the previous section, are defined at different cutoff and resolution scales. For a more systematic convergence study of the calculations it would be desirable explore the resolution-scale and cutoff dependence of observables. Using interactions with a higher cutoff, observables in heavy nuclei will be impossible to converge in the largest feasible model spaces, even with the advances discussed in this work. Therefore, these interactions first need to be softened via a free-space SRG evolution [74] (or some other procedure [75, 76, 77]). For the following calculations we evolve NN and 3N sectors consistently in the harmonic-oscillator basis space. For the NN sector, the evolution is done within the space spanned by the principle quantum number of the relative motion up to 200. Assuming our typical basis frequency of a few tens MeV, the UV scale of this space is a few GeV/c/c—sufficiently larger than the typical momentum scale of 500\sim 500 MeV/c/c of the bare NN interaction from the chiral EFT, and we can safely evolve the NN Hamiltonian.

For the 3N sector, we evolve the 3N Hamiltonian within the space defined by the three-body principle quantum number N3maxN_{3\max}, the sum of the principle quantum numbers of the motions for corresponding Jacobi variables. Since the 3N evolution is computationally demanding compared to the NN evolution, we cannot handle a value of N3maxN_{3\max} well beyond the typical nuclear interaction scale. We therefore need to investigate the N3maxN_{3\max} dependence as we move to heavier systems, as done in Ref. [20]. In the following, we use the chiral N3LO NN interaction from Entem and Machleidt [78] and the N2LO 3N interaction with both local and non-local regulators developed in Ref. [40] denoted as NN+3N(lnl).

Refer to caption
Figure 7: Ground state energy of 132Sn as a function of N3maxN_{3\max} for the SRG evolution, computed in third-order HF basis many-body perturbation theory HF-MBPT(3) at ω=15\hbar\omega=15 MeV, emax=16e_{\max}=16, and E3max=22E_{3\max}=22. The vertical dashed lines indicate the partitions of low-JJ (Jrel13/2J_{\rm rel}\leq 13/2), middle-JJ (15/2Jrel21/215/2\leq J_{\rm rel}\leq 21/2), and high-JJ (Jrel23/2J_{\rm rel}\geq 23/2) regions.

In Fig. 7 we show the ground-state energy of 132Sn as a function of N3maxN_{\rm 3max}. Because the Hamiltonian is block diagonal in the relative angular momentum JrelJ_{\rm rel}, we can apply a different N3maxN_{\rm 3max} cut to each JrelJ_{\rm rel} block. We include all channels up to JrelE3max+3/2=47/2J_{\rm rel}\leq E_{3\rm max}+3/2=47/2, which is the highest value that can contribute. To simplify the analysis, we divide the JrelJ_{\rm rel} blocks into low-JJ (Jrel13/2J_{\rm rel}\leq 13/2), middle-JJ (15/2Jrel21/215/2\leq J_{\rm rel}\leq 21/2), and high-JJ (Jrel23/2J_{\rm rel}\geq 23/2) partitions, and vary N3maxN_{\rm 3max} for each partition. The SRG evolution is run to a scale of λSRG=2.0\lambda_{\rm SRG}=2.0 fm-1, working with a basis frequency ω=30\hbar\omega=30 MeV. After the evolution, the frequency is converted to ω=15\hbar\omega=15 MeV for the many-body calculations (see Ref. [51] for details). The many-body calculations are done with third-order HF-MBPT with lab-frame truncations emax=16e_{\rm max}=16 and E3max=22E_{3\rm max}=22. In Fig. 7 we see that the low-JJ and high-JJ partitions are converged within the level of a few MeV by N3max=48N_{\rm 3max}=48 and N3max=42N_{\rm 3max}=42, respectively, while the middle-JJ region converges more slowly. To our knowledge, these are the largest N3maxN_{\rm 3max} spaces explored in the literature. It appears that SRG evolution of the Jrel15/2J_{\rm rel}\gtrsim 15/2 blocks such that heavy nuclei are converged with respect to N3maxN_{\rm 3max} will not be possible in the near term without further technical developments.

Refer to caption
Figure 8: Ground state energy of 132Sn computed in HF-MBPT(3) at ω=15\hbar\omega=15 MeV, emax=16e_{\max}=16, and E3max=22E_{3\max}=22. In the top panel, the energies are shown as a function of maximum JrelJ_{\rm rel} for the transformation to the lab-frame. The middle panel shows the extrapolation of N3maxN_{\rm 3max} to the infinity. The extrapolated energies are shown as a function of maximum JrelJ_{\rm rel} in the bottom panel.

An alternative truncation scheme we can explore is the maximum value of JrelJ_{\rm rel}. Since the nuclear interaction is short range, we naively expect that the high JrelJ_{\rm rel} components are suppressed by the angular momentum barrier. In the top panel of Fig. 8, the ground-state energy of 132Sn is shown as a function of the maximum JrelJ_{\rm rel} included in the transformation Eq. (11). The points labeled “Full” use a uniform N3maxN_{\rm 3max} for all blocks up to Jrel=47/2J_{\rm rel}=47/2. Again, energies are computed with HF-MBPT(3) at ω=15\hbar\omega=15 MeV, emax=16e_{\max}=16, and E3max=22E_{\rm 3max}=22. We observe that as we increase N3maxN_{\rm 3max}, the contribution of channels with Jrel>9/2J_{\rm rel}>9/2 becomes essentially negligible.

In order to extrapolate to N3maxN_{\rm 3max}\to\infty, we fit the calculated energies with an exponential function E=aexp(bN3max)+EE=a\exp(-bN_{\rm 3max})+E_{\infty} as shown in the middle panel. In the fitting procedure, we used the energies at N3max=36,38,40,42,44N_{\rm 3max}=36,38,40,42,44, and used the N3max=48N_{\rm 3max}=48 points to validate the assumed functional form.555We also tried fitting with the Gaussian function E=aexp(bN3max2)+EE=a\exp(-bN_{\rm 3max}^{2})+E_{\infty}, and found this does not provide consistent results with the computed N3max=48N_{\rm 3max}=48 energies. The N3maxN_{\rm 3max} extrapolated energies are shown in the bottom panel. The agreement of calculated and extrapolated energies at N3max=48N_{\rm 3max}=48 validates the fitting formula employed here. The final energy obtained by extrapolating the ”full” results to N3maxN_{\rm 3max}\to\infty is 1105.6(15)-1105.6(15) MeV, which agrees within the error bars with the extrapolated energies from max(Jrel)=9/2,11/2,13/2\max(J_{\rm rel})=9/2,11/2,13/2 results. This reinforces the observation that the contributions from channels with Jrel>9/2J_{\rm rel}>9/2 are negligible in the N3maxN_{\rm 3max}\to\infty limit.

This result is somewhat surprising as it suggests that we can obtain a more accurate result by neglecting the high-JrelJ_{\rm rel} sector altogether than we can by evolving it in the largest space we can manage. Evidently, the main impact of the high-JrelJ_{\rm rel} matrix elements is to introduce an artifact due to the N3maxN_{\rm 3max} truncation, which is removed in the limit N3maxN_{\rm 3max}\to\infty. To investigate the origin of this artifact, in Fig. 9 we hold fixed N3max=48N_{\rm 3max}=48 for the Jrel13/2J_{\rm rel}\leq 13/2 partition, and plot the expectation values T+VNN\langle T+V^{\rm NN}\rangle, Vind3N\langle V^{\rm 3N}_{\rm ind}\rangle, Vgen3N\langle V^{\rm 3N}_{\rm gen}\rangle, and H\langle H\rangle as a function of the N3maxN_{3\max} cut applied to the Jrel15/2J_{\rm rel}\geq 15/2 partition. Here TT is the relative kinetic energy, VNNV^{\rm NN} is the evolved NN potential, Vind3NV^{\rm 3N}_{\rm ind} is the induced 3N potential, Vgen3NV^{\rm 3N}_{\rm gen} is the evolved “genuine” 3N potential, and HH is the transformed Hamiltonian obtained by summing all of the kinetic and potential terms. The expectation values are taken in a naive harmonic oscillator ground state of 132Sn.

At N3max=0N_{\rm 3max}=0, corresponding to the J=13/2J=13/2 point in Fig. 8, we obtain a bound energy. With increasing N3maxN_{\rm 3max} the energy shoots up to 15 GeV, driven by the Vind3N\langle V^{\rm 3N}_{\rm ind}\rangle component, before converging back towards the N3max=0N_{\rm 3max}=0 value. It appears that the impact the high-JrelJ_{\rm rel} matrix elements are negligible. Similar behavior is found in 78Ni, where the fully-converged and N3max=0N_{\rm 3max}=0 HF energies differ by 0.3 MeV.

Refer to caption
Figure 9: Harmonic-oscillator basis energy components of 132Sn as a function of the cut N3maxN_{3\max} applied to the SRG basis for states with Jrel15/2J_{\rm rel}\geq 15/2. For details regarding each component, see main text.

To further investigate the enormous contributions from induced 3N interactions, we decompose Vind3N\langle V^{\rm 3N}_{\rm ind}\rangle into terms induced by transforming the one-pion exchange, two-pion exchange, and contact parts of VNNV_{\rm NN}, as well as the kinetic energy. We find that at N3max=16N_{\rm 3max}=16, all four of these induced terms contribute several GeV to the energy in Fig. 9, indicating that this behavior is generic and not tied to the detailed structure of the NN interaction. Further understanding of the mechanism of this large induced component should be pursued, as it may point the way to a more efficient treatment.

Through this analysis, we conclude that one can perform a more accurate 3N SRG evolution with a truncation in JrelJ_{\rm rel}, rather than using all possible JrelJ_{\rm rel} channels without fully achieving the convergence with respect to N3maxN_{\rm 3max}. We leave for future work the question of whether this holds for other operators.

Finally, we demonstrate that the asymptotic convergence in E3maxE_{3\rm max} discussed in section III is also observed for a consistently SRG-evolved NN+3N interaction. In Fig. 10, we show the 3rd order HF-MBPT ground-state energy of 132Sn as a function of E3maxE_{3\rm max}, at multiple values of N3maxN_{\rm 3max} for the case Jrel13/2J_{\rm rel}\leq 13/2 (similar behavior is observed for Jrel9/2J_{\rm rel}\leq 9/2). In contrast to the unevolved case, we observe an increase in the energy for large E3maxE_{3\rm max}. This bump diminishes with increasing N3maxN_{\rm 3max}, indicating that the truncation artifact shows up most significantly in the large E3maxE_{3\rm max} matrix elements, as would be expected. For each E3maxE_{3\rm max}, we extrapolate to N3maxN_{\rm 3max}\to\infty using an exponential form, and we obtain the gray squares in Fig. 10 (the extrapolation uncertainties are smaller than the markers).

The extrapolated points still display a minimum as a function of E3maxE_{3\rm max} before converging to the final answer from below. The decreasing trend below E3max=20E_{3\rm max}=20 is driven by the convergence of the HF energy, while the increase above E3max=20E_{3\rm max}=20 is driven by the second order MBPT correction. The fact that the energy converges from below in this case supports the assumption in section III that the asymptotic convergence in E3maxE_{3\rm max} is driven by the VNNV_{NN}-V3NV_{3N} cross-term , which can be either positive or negative. The asymptotic behavior is fit well with a Gaussian with similar parameters (aside from the overal sign) to those in the unevolved case.

The extrapolated ground-state energy for 132Sn is then 1099.502(3)-1099.502(3) MeV, where this tiny uncertainty only accounts for the fit uncertainty in the E3maxE_{3\rm max} and N3maxN_{\rm 3max} extrapolations. This uncertainty is clearly negligible compared with the many-body uncertainty (we only use third-order MBPT), the emaxe_{\rm max} truncation uncertainty, effects of induced 4N forces, contributions from higher orders in the EFT expansion, and the fact that we use a half-precision floating point representation for storing the 3N matrix elements. We note that the effect of the SRG induced many-body interactions can be accessed by checking the λSRG\lambda_{\rm SRG} dependence. Our almost-converged 132Sn calculations at emax=16e_{\rm max}=16 and E3max=22E_{\rm 3max}=22 show that the ground-state energy changes about 20 MeV within λSRG=1.82.2\lambda_{\rm SRG}=1.8-2.2 fm-1 range, which is at the 2% level of the total ground-state energy. As the other sources of uncertainty likely contribute at the level of a few tens of MeV, the NN+3N(lnl) interaction is in excellent agreement with the experimental value of 1102.8-1102.8 MeV [79], especially considering that it was fit to the properties of A4A\leq 4 nuclei.

Refer to caption
Figure 10: Ground state energy of 132Sn obtained in 3rd order HF-MBPT, as a function of E3maxE_{3\rm max} for several values of N3maxN_{\rm 3max}. We retain relative angular momenta Jrel13/2J_{\rm rel}\leq 13/2 in the transformation to the single-particle coordinate. The gray squares are extrapolated to N3maxN_{\rm 3max}\to\infty with an exponential, and then fit with a Gaussian (dashed line) to extrapolate in E3maxE_{3\rm max}.

V Conclusion

In this work we introduce a framework in which only 3N matrix elements relevant for the NO2B approximation are stored in memory, which reduces the memory requirement by approximately two orders of magnitude. This enables us to generate lab-frame 3N matrix elements up to E3max=28E_{3\rm max}=28, significantly larger than the previous limit of E3max=18E_{3\rm max}=18. We further discussed the asymptotic behavior of the ground-state energy with respect to the E3maxE_{\rm 3max} truncation, which allows controlled extrapolations to E3max=3emaxE_{3\rm max}=3e_{\max}. To explore the applicability of the ab initio calculation, we empolyed the HF-MBPT(2), HF-MBPT(3), and IMSRG(2) to solve the many-body Schrödinger equation. Using the established 1.8/2.0 (EM) interaction, we obtained the ground-state energies converged at the level of 1 MeV (with respect to the emaxe_{\rm max} and E3maxE_{3\rm max} truncations) around 132Sn. As illustrated in the 127Cd case, convergence in E3maxE_{3\rm max} is essential not just for ground states but for spectroscopy as well. Even with this substantially larger lab-frame E3maxE_{\rm 3max} cut, as we move to the heavy-mass region, convergence with respect to truncations made in the free-space 3N SRG evolution pose an additional challenge. Using the N3LO NN + N2LO 3N(lnl) [40] interaction, we have demonstrated that a truncation Jrel13/2J_{\rm rel}~{}\lesssim 13/2 is more accurate (not to mention less costly) for calculations of ground state energies than including larger JrelJ_{\rm rel}, if full convergence in those channels cannot be achieved. A corresponding convergence analysis for excited states and other observables with respect to JrelJ_{\rm rel} remains future work.

This work lifts the primary limitation that has thus far kept ab initio calculations constrained to the A100A\lesssim 100 region. Among the studies that will be enabled are the neutron skin of 208Pb [80], neutrinoless double-beta decays and dark matter searches in germanium and selenium [81], as well as xenon [28] and tellurium [82], and investigations of nuclear matter parameters based on the response functions of heavy nuclei [83].

Acknowledgements.
We thank A. Bansal, H. Hergert, K. Kravvaris, A. McCoy, R. Roth, J. Simonis, R. Wirth and J. M. Yao for valuable discussions. TRIUMF receives funding via a contribution through the National Research Council of Canada. SRS is supported by the U. S. Department of Energy under Contract DE-FG02-97ER41014. PN acknowledges support from the NSERC Grant No. SAPIN-2016-00033 and JDH from NSERC Grants SAPIN-2018-00027 and RGPAS-2018-522453. KH acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 279384907 – SFB 1245. Computations were performed with an allocation of computing resources on Cedar at WestGrid and Compute Canada, and on the Oak Cluster at TRIUMF managed by the University of British Columbia department of Advanced Research Computing (ARC).

Appendix A Normal-ordered matrix elements

In an uncoupled basis, the expressions for the normal-ordered matrix elements are

E0=\displaystyle E_{0}= ppρpptpp+14ppqqρpqpqVpqpqNN\displaystyle\sum_{p^{\prime}p}\rho_{p^{\prime}p}t_{p^{\prime}p}+\frac{1}{4}\sum_{pp^{\prime}qq^{\prime}}\rho_{p^{\prime}q^{\prime}pq}V^{\rm NN}_{p^{\prime}q^{\prime}pq} (22)
+136ppqqrrρpqrpqrVpqrpqr3N\displaystyle+\frac{1}{36}\sum_{pp^{\prime}qq^{\prime}rr^{\prime}}\rho_{p^{\prime}q^{\prime}r^{\prime}pqr}V^{\rm 3N}_{p^{\prime}q^{\prime}r^{\prime}pqr}
fpp=\displaystyle f_{p^{\prime}p}= tpp+qqρqqVpqpqNN\displaystyle t_{p^{\prime}p}+\sum_{q^{\prime}q}\rho_{q^{\prime}q}V^{\rm NN}_{p^{\prime}q^{\prime}pq} (23)
+14qqrrρqrprVqrpqrp3N\displaystyle+\frac{1}{4}\sum_{qq^{\prime}rr^{\prime}}\rho_{q^{\prime}r^{\prime}pr}V^{\rm 3N}_{q^{\prime}r^{\prime}p^{\prime}qrp}
Γpqpq=VpqpqNN+rrρrrVpqrpqr3N.\Gamma_{p^{\prime}q^{\prime}pq}=V^{\rm NN}_{p^{\prime}q^{\prime}pq}+\sum_{rr^{\prime}}\rho_{r^{\prime}r}V^{\rm 3N}_{p^{\prime}q^{\prime}r^{\prime}pqr}. (24)

In (22) (23), (24), we have used the density matrices

ρpp\displaystyle\rho_{p^{\prime}p} Φ|apap|Φ\displaystyle\equiv\langle\Phi|a^{\dagger}_{p^{\prime}}a_{p}|\Phi\rangle (25)
ρpqpq\displaystyle\rho_{p^{\prime}q^{\prime}pq} Φ|apaqaqap|Φ\displaystyle\equiv\langle\Phi|a^{\dagger}_{p^{\prime}}a^{\dagger}_{q^{\prime}}a_{q}a_{p}|\Phi\rangle
ρpqrpqr\displaystyle\rho_{p^{\prime}q^{\prime}r^{\prime}pqr} Φ|apaqararaqap|Φ\displaystyle\equiv\langle\Phi|a^{\dagger}_{p^{\prime}}a^{\dagger}_{q^{\prime}}a^{\dagger}_{r^{\prime}}a_{r}a_{q}a_{p}|\Phi\rangle

taken for some general reference state |Φ|\Phi\rangle. If the reference |Φ|\Phi\rangle is spherically symmetric, then the density matrices may be expressed in a JJ-coupled form defined by

ρpp\displaystyle\rho_{p^{\prime}p} =ρppδjpjpδmpmp\displaystyle=\rho_{p^{\prime}p}\delta_{j_{p^{\prime}}j_{p}}\delta_{m_{p^{\prime}}m_{p}} (26)
ρpqpq\displaystyle\rho_{p^{\prime}q^{\prime}pq} =J𝒞mpmqMjpjqJ𝒞mpmqMjpjqJρpqpqJ\displaystyle=\sum_{J}\mathcal{C}^{j_{p^{\prime}}j_{q^{\prime}}J}_{m_{p^{\prime}}m_{q^{\prime}}M}\mathcal{C}^{j_{p}j_{q}J}_{m_{p}m_{q}M}\rho_{p^{\prime}q^{\prime}pq}^{J} (27)
ρpqrpqr\displaystyle\rho_{p^{\prime}q^{\prime}r^{\prime}pqr} =JpqJpqJ𝒞mpmqMpqjpjqJpq𝒞mpmqMpqjpjqJpq\displaystyle=\sum_{J_{pq}J_{p^{\prime}q^{\prime}}J}\mathcal{C}^{j_{p^{\prime}}j_{q^{\prime}}J_{p^{\prime}q^{\prime}}}_{m_{p^{\prime}}m_{q^{\prime}}M_{p^{\prime}q^{\prime}}}\mathcal{C}^{j_{p}j_{q}J_{pq}}_{m_{p}m_{q}M_{pq}} (28)
×𝒞MpqmrMJpqjrJ𝒞MpqmrMJpqjrJρpqrpqrJpqJpqJ\displaystyle\hskip 10.00002pt\times\mathcal{C}^{J_{p^{\prime}q^{\prime}}j_{r^{\prime}}J}_{M_{p^{\prime}q^{\prime}}m_{r^{\prime}}M}\mathcal{C}^{J_{pq}j_{r}J}_{M_{pq}m_{r}M}\rho_{p^{\prime}q^{\prime}r^{\prime}pqr}^{J_{p^{\prime}q^{\prime}}J_{pq}J}

where the 𝒞\mathcal{C} are Clebsch-Gordan coefficients. If |Φ|\Phi\rangle does not mix proton and neutron orbits, then (26) will contain an additional δtzp,tzp\delta_{t_{zp^{\prime}},t_{zp}}. If |Φ|\Phi\rangle has good parity, we also have δlplp\delta_{l_{p^{\prime}}l_{p}}. For a spherical reference, the expression for the normal-ordered matrix elements becomes

E0\displaystyle E_{0} =ppρpptpp+14ppqqJ[J]ρpqpqJVpqpqJ\displaystyle=\sum_{p^{\prime}p}\rho_{p^{\prime}p}t_{p^{\prime}p}+\frac{1}{4}\sum_{pp^{\prime}qq^{\prime}}\sum_{J}[J]\rho^{J}_{p^{\prime}q^{\prime}pq}V^{J}_{p^{\prime}q^{\prime}pq} (29)
+136ppqqrrJpqJ[J]ρpqrpqrJpqJpqJVpqrpqrJpqJpqJ\displaystyle+\frac{1}{36}\sum_{pp^{\prime}qq^{\prime}rr^{\prime}}\sum_{J_{pq}J}[J]\rho^{J_{pq}J_{pq}J}_{p^{\prime}q^{\prime}r^{\prime}pqr}V^{J_{pq}J_{pq}J}_{p^{\prime}q^{\prime}r^{\prime}pqr}
fpp\displaystyle f_{p^{\prime}p} =tpp+qqJ[J][jp]ρqqVpqpqJ\displaystyle=t_{p^{\prime}p}+\sum_{q^{\prime}q}\sum_{J}\frac{[J]}{[j_{p}]}\rho_{q^{\prime}q}V^{J}_{p^{\prime}q^{\prime}pq} (30)
+14qqrrJqrJ[J][jp]ρqrqrJqrVqrpqrpJqrJqrJ\displaystyle+\frac{1}{4}\sum_{qq^{\prime}rr^{\prime}}\sum_{J_{qr}J}\frac{[J]}{[j_{p}]}\rho^{J_{qr}}_{q^{\prime}r^{\prime}qr}V^{J_{qr}J_{qr}J}_{q^{\prime}r^{\prime}p^{\prime}qrp}
ΓpqpqJpq=VpqpqJpq+rrJ[J][Jpq]ρrrVpqrpqrJpqJpqJ.\Gamma^{J_{pq}}_{p^{\prime}q^{\prime}pq}=V^{J_{pq}}_{p^{\prime}q^{\prime}pq}+\sum_{r^{\prime}rJ}\frac{[J]}{[J_{pq}]}\rho_{r^{\prime}r}V^{J_{pq}J_{pq}J}_{p^{\prime}q^{\prime}r^{\prime}pqr}. (31)

Where we have used un-normalized JJ-coupled matrix elements. Finally, in the case where |Φ|\Phi\rangle is uncorrelated so that ρpqpq\rho_{p^{\prime}q^{\prime}pq} and ρpqrpqr\rho_{p^{\prime}q^{\prime}r^{\prime}pqr} are given by antisymmetrized products of one-body densities (again using the index permutation operators PP)

ρpqpq\displaystyle\rho_{p^{\prime}q^{\prime}pq} =(1Ppq)ρppρqq\displaystyle=(1-P_{pq})\rho_{p^{\prime}p}\rho_{q^{\prime}q} (32)
ρpqrpqr\displaystyle\rho_{p^{\prime}q^{\prime}r^{\prime}pqr} =(1Pqr)(1PpqPpr)ρppρqqρrr,\displaystyle=(1-P_{qr})(1-P_{pq}-P_{pr})\rho_{p^{\prime}p}\rho_{q^{\prime}q}\rho_{r^{\prime}r},

then the normal ordered matrix elements become

E0\displaystyle E_{0} =ppρpptpp+12ppqqρppρqqJ[J]VpqpqJ\displaystyle=\sum_{pp^{\prime}}\rho_{p^{\prime}p}t_{p^{\prime}p}+\frac{1}{2}\sum_{pp^{\prime}qq^{\prime}}\rho_{p^{\prime}p}\rho_{q^{\prime}q}\sum_{J}[J]V^{J}_{p^{\prime}q^{\prime}pq} (33)
+16pqrpqrρppρqqρrrJpqJ[J]VpqrpqrJpqJpqJ\displaystyle+\frac{1}{6}\sum_{\begin{subarray}{c}pqr\\ p^{\prime}q^{\prime}r^{\prime}\end{subarray}}\rho_{p^{\prime}p}\rho_{q^{\prime}q}\rho_{r^{\prime}r}\sum_{J_{pq}J}[J]V^{J_{pq}J_{pq}J}_{p^{\prime}q^{\prime}r^{\prime}pqr}
fpp\displaystyle f_{p^{\prime}p} =tpp+qqρqqJ[J][jp]VpqpqJ\displaystyle=t_{p^{\prime}p}+\sum_{qq^{\prime}}\rho_{q^{\prime}q}\sum_{J}\frac{[J]}{[j_{p}]}V^{J}_{p^{\prime}q^{\prime}pq} (34)
+12qqrrρqqρrrJqrJ[J][jp]VqrpqrpJqrJqrJ\displaystyle+\frac{1}{2}\sum_{qq^{\prime}rr^{\prime}}\rho_{q^{\prime}q}\rho_{r^{\prime}r}\sum_{J_{qr}J}\frac{[J]}{[j_{p}]}V^{J_{qr}J_{qr}J}_{q^{\prime}r^{\prime}p^{\prime}qrp}
ΓpqpqJpq=VpqpqJpq+rrρrrJ[J][Jpq]VpqrpqrJpqJpqJ\Gamma^{J_{pq}}_{p^{\prime}q^{\prime}pq}=V^{J_{pq}}_{p^{\prime}q^{\prime}pq}+\sum_{rr^{\prime}}\rho_{r^{\prime}r}\sum_{J}\frac{[J]}{[J_{pq}]}V^{J_{pq}J_{pq}J}_{p^{\prime}q^{\prime}r^{\prime}pqr} (35)

where we have omitted the δ\deltas implied by 26.

Appendix B Ground-state expectation value of a scalar operator in second-order HF-MBPT

Refer to caption
Figure 11: Hugenholtz diagrams for the ground-state expectation value of a scalar operator up to the second order. The solid and open circles indicate Hamiltonian and scalar operators, respectively. The Hartree-Fock basis is assumed. The diagram rules are same as in Ref. [84].

For the ground-state expectation value of a scalar operator in the second-order HF-MBPT, the diagrams are shown in Fig. 11. The expectation value of the scalar operator SS is given as

SHF|S|HF+i=12Fi+i=115Si.\langle S\rangle\approx\langle{\rm HF}|S|{\rm HF}\rangle+\sum_{i=1}^{2}F_{i}+\sum_{i=1}^{15}S_{i}. (36)

In actual calculations, we use the efficient JJ-coupled scheme. Below we provide the explicit expressions corresponding to the diagrams. Let SpqS_{pq} and SpqrsJS^{J}_{pqrs} be the one- and JJ-coupled two-body matrix elements of the scalar operator, and we use the notation:

X¯pqrsJ\displaystyle\bar{X}^{J}_{pqrs} =(1+δpq)(1+δrs)XpqrsJ,\displaystyle=\sqrt{(1+\delta_{pq})(1+\delta_{rs})}X^{J}_{pqrs}, (37)
X¯pqrsJ,CC\displaystyle\bar{X}^{J,\rm{CC}}_{pqrs} =J[J]{jpjqJjrjsJ}X¯psrqJ,\displaystyle=\sum_{J^{\prime}}[J^{\prime}]\left\{\begin{array}[]{ccc}j_{p}&j_{q}&J^{\prime}\\ j_{r}&j_{s}&J\end{array}\right\}\bar{X}^{J^{\prime}}_{psrq},
ϵijab\displaystyle\epsilon^{ab\ldots}_{ij\ldots} =(fii+fjj+)(faa+fbb+).\displaystyle=(f_{ii}+f_{jj}+\cdots)-(f_{aa}+f_{bb}+\cdots).

Here, XpqrsJX^{J}_{pqrs} is the normalized antisymmetrized two-body matrix element of either Hamiltonian or scalar operator. In the following, we show the JJ-coupled expressions for the diagrams. As in the main text, we use the convention that a,b,c,da,b,c,d label particle states and i,j,k,li,j,k,l label hole states.

F1=14abijJ[J]Γ¯abijJS¯abijJϵijabF_{1}=\frac{1}{4}\sum_{abij}\sum_{J}[J]\frac{\bar{\Gamma}^{J}_{abij}\bar{S}^{J}_{abij}}{\epsilon^{ab}_{ij}} (38)
F2=F1F_{2}=F_{1} (39)
S1=12abijkJ[J]Γ¯abijJΓ¯kbijJSakϵijabϵkaS_{1}=-\frac{1}{2}\sum_{abijk}\sum_{J}[J]\frac{\bar{\Gamma}^{J}_{abij}\bar{\Gamma}^{J}_{kbij}S_{ak}}{\epsilon^{ab}_{ij}\epsilon^{a}_{k}} (40)
S2=12abcijJ[J]Γ¯abijJΓ¯abcjJSciϵijabϵicS_{2}=\frac{1}{2}\sum_{abcij}\sum_{J}[J]\frac{\bar{\Gamma}^{J}_{abij}\bar{\Gamma}^{J}_{abcj}S_{ci}}{\epsilon^{ab}_{ij}\epsilon^{c}_{i}} (41)
S3=12abcijJ[J]Γ¯abijJΓ¯acijJSbcϵijabϵijacS_{3}=\frac{1}{2}\sum_{abcij}\sum_{J}[J]\frac{\bar{\Gamma}^{J}_{abij}\bar{\Gamma}^{J}_{acij}S_{bc}}{\epsilon^{ab}_{ij}\epsilon^{ac}_{ij}} (42)
S4=12abijkJ[J]Γ¯abijJΓ¯abikJSjkϵijabϵikabS_{4}=-\frac{1}{2}\sum_{abijk}\sum_{J}[J]\frac{\bar{\Gamma}^{J}_{abij}\bar{\Gamma}^{J}_{abik}S_{jk}}{\epsilon^{ab}_{ij}\epsilon^{ab}_{ik}} (43)
S5=S1S_{5}=S_{1} (44)
S6=S2S_{6}=S_{2} (45)
S7=18abcdijJ[J]Γ¯abijJΓ¯abcdJS¯cdijJϵijabϵijcdS_{7}=\frac{1}{8}\sum_{abcdij}\sum_{J}[J]\frac{\bar{\Gamma}^{J}_{abij}\bar{\Gamma}^{J}_{abcd}\bar{S}^{J}_{cdij}}{\epsilon^{ab}_{ij}\epsilon^{cd}_{ij}} (46)
S8=18abijklJ[J]Γ¯abijJΓ¯jiklJS¯abklJϵijabϵklabS_{8}=\frac{1}{8}\sum_{abijkl}\sum_{J}[J]\frac{\bar{\Gamma}^{J}_{abij}\bar{\Gamma}^{J}_{jikl}\bar{S}^{J}_{abkl}}{\epsilon^{ab}_{ij}\epsilon^{ab}_{kl}} (47)
S9=abcijkJ[J]Γ¯ajibJ,CCΓ¯ibkcJ,CCS¯kcajJ,CCϵijabϵjkacS_{9}=-\sum_{abcijk}\sum_{J}[J]\frac{\bar{\Gamma}^{J,{\rm CC}}_{ajib}\bar{\Gamma}^{J,{\rm CC}}_{ibkc}\bar{S}^{J,{\rm CC}}_{kcaj}}{\epsilon^{ab}_{ij}\epsilon^{ac}_{jk}} (48)
S10=18abcdijJ[J]Γ¯abijJS¯abcdJΓ¯cdijJϵijabϵijcdS_{10}=\frac{1}{8}\sum_{abcdij}\sum_{J}[J]\frac{\bar{\Gamma}^{J}_{abij}\bar{S}^{J}_{abcd}\bar{\Gamma}^{J}_{cdij}}{\epsilon^{ab}_{ij}\epsilon^{cd}_{ij}} (49)
S11=18abijklJ[J]Γ¯abijJS¯jiklJΓ¯abklJϵijabϵklabS_{11}=\frac{1}{8}\sum_{abijkl}\sum_{J}[J]\frac{\bar{\Gamma}^{J}_{abij}\bar{S}^{J}_{jikl}\bar{\Gamma}^{J}_{abkl}}{\epsilon^{ab}_{ij}\epsilon^{ab}_{kl}} (50)
S12=abcijkJ[J]Γ¯ajibJ,CCS¯ibkcJ,CCΓ¯kcajJ,CCϵijabϵjkacS_{12}=-\sum_{abcijk}\sum_{J}[J]\frac{\bar{\Gamma}^{J,{\rm CC}}_{ajib}\bar{S}^{J,{\rm CC}}_{ibkc}\bar{\Gamma}^{J,{\rm CC}}_{kcaj}}{\epsilon^{ab}_{ij}\epsilon^{ac}_{jk}} (51)
S13=S7S_{13}=S_{7} (52)
S14=S8S_{14}=S_{8} (53)
S15=S9S_{15}=S_{9} (54)

References

  • Epelbaum et al. [2009] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009).
  • Machleidt and Entem [2011] R. Machleidt and D. Entem, Phys. Rep. 503, 1 (2011).
  • Navrátil et al. [2016] P. Navrátil, S. Quaglioni, G. Hupin, C. Romero-Redondo, and A. Calci, Phys. Scr. 91, 053002 (2016).
  • Carlson et al. [2015] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla, K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067 (2015).
  • Lee [2009] D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009).
  • Hagen et al. [2014] G. Hagen, T. Papenbrock, M. Hjorth-Jensen, and D. J. Dean, Reports Prog. Phys. 77, 096302 (2014).
  • Dickhoff and Barbieri [2004] W. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004).
  • Hergert et al. [2016] H. Hergert, S. Bogner, T. Morris, A. Schwenk, and K. Tsukiyama, Phys. Rep. 621, 165 (2016).
  • Tichai et al. [2020] A. Tichai, R. Roth, and T. Duguet, Front. Phys. 8, 1 (2020).
  • Hergert [2020] H. Hergert, Front. Phys. 8, 1 (2020).
  • Pieper et al. [2002] S. C. Pieper, K. Varga, and R. B. Wiringa, Phys. Rev. C 66, 044310 (2002).
  • Navrátil and Ormand [2003] P. Navrátil and W. E. Ormand, Phys. Rev. C 68, 034305 (2003).
  • Otsuka et al. [2010] T. Otsuka, T. Suzuki, J. D. Holt, A. Schwenk, and Y. Akaishi, Phys. Rev. Lett. 105, 032501 (2010).
  • Hebeler et al. [2015] K. Hebeler, J. D. Holt, J. Menéndez, and A. Schwenk, Annu. Rev. Nucl. Part. Sci. 65, 457 (2015).
  • Hebeler [2021] K. Hebeler, Phys. Rept. 890, 1 (2021).
  • Hammer et al. [2020] H.-W. Hammer, S. König, and U. van Kolck, Rev. Mod. Phys. 92, 025004 (2020).
  • Morris et al. [2018] T. D. Morris, J. Simonis, S. R. Stroberg, C. Stumpf, G. Hagen, J. D. Holt, G. R. Jansen, T. Papenbrock, R. Roth, and A. Schwenk, Phys. Rev. Lett. 120, 152503 (2018).
  • Arthuis et al. [2020] P. Arthuis, C. Barbieri, M. Vorabbi, and P. Finelli, Phys. Rev. Lett. 125, 182501 (2020).
  • Gysbers et al. [2019] P. Gysbers et al.Nature Phys. 15, 428 (2019).
  • Binder et al. [2014] S. Binder, J. Langhammer, A. Calci, and R. Roth, Phys. Lett. B 736, 119 (2014).
  • Lascar et al. [2017] D. Lascar, R. Klawitter, C. Babcock, E. Leistenschneider, S. R. Stroberg, B. R. Barquest, A. Finlay, M. Foster, A. T. Gallant, P. Hunt, J. Kelly, B. Kootte, Y. Lan, S. F. Paul, M. L. Phan, M. P. Reiter, B. Schultz, D. Short, J. Simonis, C. Andreoiu, M. Brodeur, I. Dillmann, G. Gwinner, J. D. Holt, A. A. Kwiatkowski, K. G. Leach, and J. Dilling, Phys. Rev. C 96, 044323 (2017).
  • Manea et al. [2020] V. Manea, J. Karthein, D. Atanasov, M. Bender, K. Blaum, T. E. Cocolios, S. Eliseev, A. Herlert, J. D. Holt, W. J. Huang, Y. A. Litvinov, D. Lunney, J. Menéndez, M. Mougeot, D. Neidherr, L. Schweikhard, A. Schwenk, J. Simonis, A. Welker, F. Wienholtz, and K. Zuber, Phys. Rev. Lett. 124, 092502 (2020).
  • Adams et al. [2020] D. Q. Adams et al. (CUORE collaboration), Phys. Rev. Lett. 124, 122501 (2020).
  • Anton et al. [2019] G. Anton et al. (EXO-200 collaboration), Phys. Rev. Lett. 123, 161802 (2019).
  • Aprile et al. [2019] E. Aprile et al. (XENON collaboration), Phys. Rev. Lett. 123, 251801 (2019).
  • Suzuki et al. [2019] T. Suzuki et al. (XMASS collaboration), Astropart. Phys. 110, 1 (2019).
  • Akerib et al. [2016] D. S. Akerib, H. M. Araújo, X. Bai, A. J. Bailey, J. Balajthy, P. Beltrame, E. P. Bernard, A. Bernstein, T. P. Biesiadzinski, E. M. Boulton, A. Bradley, R. Bramante, S. B. Cahn, M. C. Carmona-Benitez, C. Chan, J. J. Chapman, A. A. Chiller, C. Chiller, A. Currie, J. E. Cutter, T. J. R. Davison, L. de Viveiros, A. Dobi, J. E. Y. Dobson, E. Druszkiewicz, B. N. Edwards, C. H. Faham, S. Fiorucci, R. J. Gaitskell, V. M. Gehman, C. Ghag, K. R. Gibson, M. G. D. Gilchriese, C. R. Hall, M. Hanhardt, S. J. Haselschwardt, S. A. Hertel, D. P. Hogan, M. Horn, D. Q. Huang, C. M. Ignarra, M. Ihm, R. G. Jacobsen, W. Ji, K. Kazkaz, D. Khaitan, R. Knoche, N. A. Larsen, C. Lee, B. G. Lenardo, K. T. Lesko, A. Lindote, M. I. Lopes, D. C. Malling, A. Manalaysay, R. L. Mannino, M. F. Marzioni, D. N. McKinsey, D.-M. Mei, J. Mock, M. Moongweluwan, J. A. Morad, A. S. J. Murphy, C. Nehrkorn, H. N. Nelson, F. Neves, K. O’Sullivan, K. C. Oliver-Mallory, R. A. Ott, K. J. Palladino, M. Pangilinan, E. K. Pease, P. Phelps, L. Reichhart, C. Rhyne, S. Shaw, T. A. Shutt, C. Silva, V. N. Solovov, P. Sorensen, S. Stephenson, T. J. Sumner, M. Szydagis, D. J. Taylor, W. Taylor, B. P. Tennyson, P. A. Terman, D. R. Tiedt, W. H. To, M. Tripathi, L. Tvrznikova, S. Uvarov, J. R. Verbus, R. C. Webb, J. T. White, T. J. Whitis, M. S. Witherell, F. L. H. Wolfs, K. Yazdani, S. K. Young, and C. Zhang, Phys. Rev. Lett. 116, 161301 (2016).
  • Gando et al. [2016] A. Gando, Y. Gando, T. Hachiya, A. Hayashi, S. Hayashida, H. Ikeda, K. Inoue, K. Ishidoshiro, Y. Karino, M. Koga, S. Matsuda, T. Mitsui, K. Nakamura, S. Obara, T. Oura, H. Ozaki, I. Shimizu, Y. Shirahata, J. Shirai, A. Suzuki, T. Takai, K. Tamae, Y. Teraoka, K. Ueshima, H. Watanabe, A. Kozlov, Y. Takemoto, S. Yoshida, K. Fushimi, T. I. Banks, B. E. Berger, B. K. Fujikawa, T. O’Donnell, L. A. Winslow, Y. Efremenko, H. J. Karwowski, D. M. Markoff, W. Tornow, J. A. Detwiler, S. Enomoto, and M. P. Decowski, Phys. Rev. Lett. 117, 082503 (2016).
  • Engel et al. [2013] J. Engel, M. J. Ramsey-Musolf, and U. van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013).
  • Horowitz and Piekarewicz [2001] C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001).
  • Roca-Maza et al. [2011] X. Roca-Maza, M. Centelles, X. Viñas, and M. Warda, Phys. Rev. Lett. 106, 252501 (2011).
  • Abrahamyan et al. [2012] S. Abrahamyan et al. (PREX collaboration), Phys. Rev. Lett. 108, 1 (2012).
  • Grawe et al. [2007] H. Grawe, K. Langanke, and G. Martínez-Pinedo, Reports Prog. Phys. 70, 1525 (2007).
  • Watanabe et al. [2015] Y. X. Watanabe, Y. H. Kim, S. C. Jeong, Y. Hirayama, N. Imai, H. Ishiyama, H. S. Jung, H. Miyatake, S. Choi, J. S. Song, E. Clement, G. de France, A. Navin, M. Rejmund, C. Schmitt, G. Pollarolo, L. Corradi, E. Fioretto, D. Montanari, M. Niikura, D. Suzuki, H. Nishibata, and J. Takatsu, Phys. Rev. Lett. 115, 172503 (2015).
  • Savard et al. [2020] G. Savard, M. Brodeur, J. A. Clark, R. A. Knaack, and A. A. Valverde, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 463, 258 (2020).
  • Tichai et al. [2019a] A. Tichai, R. Schutski, G. E. Scuseria, and T. Duguet, Phys. Rev. C 99, 034320 (2019a).
  • Tichai et al. [2019b] A. Tichai, J. Ripoche, and T. Duguet, Eur. Phys. J. A 55, 90 (2019b).
  • Roth et al. [2012] R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, and P. Navrátil, Phys. Rev. Lett. 109, 052501 (2012).
  • Hebeler et al. [2011] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A. Schwenk, Phys. Rev. C 83, 031301(R) (2011).
  • Somà et al. [2020] V. Somà, P. Navrátil, F. Raimondi, C. Barbieri, and T. Duguet, Phys. Rev. C 101, 014318 (2020).
  • Whitmore et al. [2020] K. Whitmore, C. Andreoiu, F. H. Garcia, K. Ortner, J. D. Holt, T. Miyagi, G. C. Ball, N. Bernier, H. Bidaman, V. Bildstein, M. Bowry, D. S. Cross, M. R. Dunlop, R. Dunlop, A. B. Garnsworthy, P. E. Garrett, J. Henderson, J. Measures, B. Olaizola, J. Park, C. M. Petrache, J. L. Pore, J. K. Smith, D. Southall, C. E. Svensson, M. Ticu, J. Turko, and T. Zidar, Phys. Rev. C 102, 024327 (2020).
  • Binder et al. [2013] S. Binder, J. Langhammer, A. Calci, P. Navrátil, and R. Roth, Phys. Rev. C 87, 021303(R) (2013).
  • Djärv et al. [2021] T. Djärv, A. Ekström, C. Forssén, and G. R. Jansen, Phys. Rev. C 104, 024324 (2021).
  • Stroberg et al. [2017] S. R. Stroberg, A. Calci, H. Hergert, J. D. Holt, S. K. Bogner, R. Roth, and A. Schwenk, Phys. Rev. Lett. 118, 032502 (2017).
  • Signoracci et al. [2015] A. Signoracci, T. Duguet, G. Hagen, and G. R. Jansen, Phys. Rev. C 91, 064320 (2015).
  • Novario et al. [2020] S. J. Novario, G. Hagen, G. R. Jansen, and T. Papenbrock, Phys. Rev. C 102, 051303(R) (2020).
  • Hergert et al. [2013] H. Hergert, S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett. 110, 242501 (2013).
  • Gebrerufael et al. [2016] E. Gebrerufael, A. Calci, and R. Roth, Phys. Rev. C 93, 031301(R) (2016).
  • Nogga et al. [2006] A. Nogga, P. Navrátil, B. R. Barrett, and J. P. Vary, Phys. Rev. C 73, 064002 (2006).
  • Roth et al. [2011] R. Roth, J. Langhammer, A. Calci, S. Binder, and P. Navrátil, Phys. Rev. Lett. 107, 072501 (2011).
  • Roth et al. [2014] R. Roth, A. Calci, J. Langhammer, and S. Binder, Phys. Rev. C 90, 024325 (2014).
  • Navrátil and Barrett [1999] P. Navrátil and B. R. Barrett, Phys. Rev. C 59, 1906 (1999).
  • Navrátil et al. [2000] P. Navrátil, G. P. Kamuntavičius, and B. R. Barrett, Phys. Rev. C 61, 044001 (2000).
  • Khersonskii et al. [1988] V. K. Khersonskii, A. N. Moskalev, and D. A. Varshalovich, Quantum Theory Of Angular Momemtum (World Scientific Publishing Company, 1988).
  • Kamuntavičius et al. [2001] G. Kamuntavičius, R. Kalinauskas, B. Barrett, S. Mickevičius, and D. Germanas, Nucl. Phys. A 695, 191 (2001).
  • Furnstahl et al. [2012] R. J. Furnstahl, G. Hagen, and T. Papenbrock, Phys. Rev. C 86, 031301(R) (2012).
  • Furnstahl et al. [2014] R. J. Furnstahl, S. N. More, and T. Papenbrock, Phys. Rev. C 89, 044301 (2014).
  • Jurgenson et al. [2008] E. D. Jurgenson, S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 78, 014003 (2008).
  • Stroberg et al. [2019] S. R. Stroberg, H. Hergert, S. K. Bogner, and J. D. Holt, Annu. Rev. Nucl. Part. Sci. 69, 307 (2019).
  • Tichai et al. [2016] A. Tichai, J. Langhammer, S. Binder, and R. Roth, Phys. Lett. B 756, 283 (2016).
  • Tichai et al. [2018] A. Tichai, P. Arthuis, T. Duguet, H. Hergert, V. Somà, and R. Roth, Phys. Lett. B 786, 195 (2018).
  • Morris et al. [2015] T. D. Morris, N. M. Parzuchowski, and S. K. Bogner, Phys. Rev. C 92, 034331 (2015).
  • [63] S. R. Stroberg, https://github.com/ragnarstroberg/imsrg.
  • Brown and Rae [2014] B. A. Brown and W. D. M. Rae, Nucl. Data Sheets 120, 115 (2014).
  • Shimizu et al. [2019] N. Shimizu, T. Mizusaki, Y. Utsuno, and Y. Tsunoda, Comput. Phys. Commun. 244, 372 (2019).
  • Simonis et al. [2017] J. Simonis, S. R. Stroberg, K. Hebeler, J. D. Holt, and A. Schwenk, Phys. Rev. C 96, 014303 (2017).
  • Stroberg et al. [2021] S. R. Stroberg, J. D. Holt, A. Schwenk, and J. Simonis, Phys. Rev. Lett. 126, 022501 (2021).
  • [68] National Nuclear Data Center, https://www.nndc.bnl.gov.
  • Gloeckner and Lawson [1974] D. Gloeckner and R. Lawson, Phys. Lett. B 53, 313 (1974).
  • Miyagi et al. [2020] T. Miyagi, S. R. Stroberg, J. D. Holt, and N. Shimizu, Phys. Rev. C 102, 034320 (2020).
  • Taniuchi et al. [2019] R. Taniuchi, C. Santamaria, P. Doornenbal, A. Obertelli, K. Yoneda, G. Authelet, H. Baba, D. Calvet, F. Château, A. Corsi, A. Delbart, J.-M. Gheller, A. Gillibert, J. D. Holt, T. Isobe, V. Lapoux, M. Matsushita, J. Menéndez, S. Momiyama, T. Motobayashi, M. Niikura, F. Nowacki, K. Ogata, H. Otsu, T. Otsuka, C. Péron, S. Péru, A. Peyaud, E. C. Pollacco, A. Poves, J.-Y. Roussé, H. Sakurai, A. Schwenk, Y. Shiga, J. Simonis, S. R. Stroberg, S. Takeuchi, Y. Tsunoda, T. Uesaka, H. Wang, F. Browne, L. X. Chung, Z. Dombradi, S. Franchoo, F. Giacoppo, A. Gottardo, K. Hadyńska-Klȩk, Z. Korkulu, S. Koyama, Y. Kubota, J. Lee, M. Lettmann, C. Louchart, R. Lozeva, K. Matsui, T. Miyazaki, S. Nishimura, L. Olivier, S. Ota, Z. Patel, E. Åžahin, C. Shand, P.-A. Söderström, I. Stefan, D. Steppenbeck, T. Sumikama, D. Suzuki, Z. Vajta, V. Werner, J. Wu, and Z. Y. Xu, Nature 569, 53 (2019).
  • Heinz et al. [2021] M. Heinz, A. Tichai, J. Hoppe, K. Hebeler, and A. Schwenk, Phys. Rev. C 103, 044318 (2021).
  • Klimkiewicz et al. [2007] A. Klimkiewicz, N. Paar, P. Adrich, M. Fallot, K. Boretzky, T. Aumann, D. Cortina-Gil, U. D. Pramanik, T. W. Elze, H. Emling, H. Geissel, M. Hellström, K. L. Jones, J. V. Kratz, R. Kulessa, C. Nociforo, R. Palit, H. Simon, G. Surówka, K. Sümmerer, D. Vretenar, and W. Waluś, Phys. Rev. C 76, 051603(R) (2007).
  • Bogner et al. [2007] S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75, 061001(R) (2007).
  • Bogner et al. [2003] S. K. Bogner, T. T. S. Kuo, and A. Schwenk, Phys. Rep. 386, 1 (2003).
  • Navrátil and Barrett [1998] P. Navrátil and B. R. Barrett, Phys. Rev. C 57, 562 (1998).
  • Feldmeier et al. [1998] H. Feldmeier, T. Neff, R. Roth, and J. Schnack, Nucl. Phys. A 632, 61 (1998).
  • Entem and Machleidt [2003] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R) (2003).
  • Wang et al. [2017] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).
  • Piekarewicz and Fattoyev [2019] J. Piekarewicz and F. J. Fattoyev, Phys. Today 72, 30 (2019).
  • Belley et al. [2021] A. Belley, C. G. Payne, S. R. Stroberg, T. Miyagi, and J. D. Holt, Phys. Rev. Lett. 126, 042502 (2021).
  • Alfonso et al. [2015] K. Alfonso, D. R. Artusa, F. T. Avignone, O. Azzolini, M. Balata, T. I. Banks, G. Bari, J. W. Beeman, F. Bellini, A. Bersani, M. Biassoni, C. Brofferio, C. Bucci, A. Caminata, L. Canonica, X. G. Cao, S. Capelli, L. Cappelli, L. Carbone, L. Cardani, N. Casali, L. Cassina, D. Chiesa, N. Chott, M. Clemenza, S. Copello, C. Cosmelli, O. Cremonesi, R. J. Creswick, J. S. Cushman, I. Dafinei, A. Dally, S. Dell’Oro, M. M. Deninno, S. Di Domizio, M. L. Di Vacri, A. Drobizhev, L. Ejzak, D. Q. Fang, M. Faverzani, G. Fernandes, E. Ferri, F. Ferroni, E. Fiorini, S. J. Freedman, B. K. Fujikawa, A. Giachero, L. Gironi, A. Giuliani, P. Gorla, C. Gotti, T. D. Gutierrez, E. E. Haller, K. Han, E. Hansen, K. M. Heeger, R. Hennings-Yeomans, K. P. Hickerson, H. Z. Huang, R. Kadel, G. Keppel, Y. G. Kolomensky, K. E. Lim, X. Liu, Y. G. Ma, M. Maino, M. Martinez, R. H. Maruyama, Y. Mei, N. Moggi, S. Morganti, S. Nisi, C. Nones, E. B. Norman, A. Nucciotti, T. O’Donnell, F. Orio, D. Orlandi, J. L. Ouellet, C. E. Pagliarone, M. Pallavicini, V. Palmieri, L. Pattavina, M. Pavan, M. Pedretti, G. Pessina, V. Pettinacci, G. Piperno, S. Pirro, S. Pozzi, E. Previtali, C. Rosenfeld, C. Rusconi, E. Sala, S. Sangiorgio, D. Santone, N. D. Scielzo, M. Sisti, A. R. Smith, L. Taffarello, M. Tenconi, F. Terranova, C. Tomei, S. Trentalange, G. Ventura, M. Vignati, S. L. Wagaarachchi, B. S. Wang, H. W. Wang, L. Wielgus, J. Wilson, L. A. Winslow, T. Wise, L. Zanotti, C. Zarra, G. Q. Zhang, B. X. Zhu, and S. Zucchelli, Phys. Rev. Lett. 115, 102502 (2015).
  • Hu et al. [tion] B. Hu et al.,  (in preparation).
  • Shavitt and Bartlett [2009] I. Shavitt and R. J. Bartlett, Many – Body Methods in Chemistry and Physics (Cambridge University Press, Cambridge, 2009).