This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Convergence and error analysis for pure collisional breakage equation

Sanjiv Kumar Bariwal1111 Email address: p20190043@pilani.bits-pilani.ac.in, Ankik Kumar Giri2, Rajesh Kumar1
1Department of Mathematics, Birla Institute of Technology and Science, Pilani,
Pilani-333031, Rajasthan, India
2
Department of Mathematics, Indian Institute of Technology Roorkee,
Roorkee-247667, Uttarakhand, India

Abstract: Collisional breakage in the particulate process has a lot of recent curiosity. We study the pure collisional breakage equation which is nonlinear in nature accompanied by locally bounded breakage kernel and collision kernel. The continuous equation is discretized using a finite volume scheme (FVS) and the weak convergence of the approximated solution towards the exact solution is analyzed for non-uniform mesh. The idea of the analysis is based on the weak L1L^{1} compactness and a suitable stable condition on time step is introduced. Furthermore, theoretical error analysis is developed for a uniform mesh when kernels are taken in Wloc1,W_{loc}^{1,\infty} space. The scheme is shown to be first-order convergent which is verified numerically for three test examples of the kernels.

Keywords: Collisional breakage, Finite volume method, Convergence, Error estimates.

1 Introduction

Particulate processes are prominent in the dynamics of particle development and describe how particles might unite to generate larger ones or break into smaller ones. Suppose that each particle is entirely defined by a single size variable, such as its volume or mass. Particle breakage is categorized into linear breakage and collision breakage. The linear breakage equation’s success is well-known in investigating phenomena of importance in various scientific areas ranging from engineering, see [1, 2] and further citations. It is believed that its expansion is required to broaden the variety of procedures that may be evaluated and to increase analysis quality. One conceivable expansion is to include nonlinearity in the breaking process which can occur when the breakage behaviour of a particle is determined not only by its characteristics and dynamic circumstances (as in linear breakage), but also by the state and properties of the entire system, i.e., by binary interactions, collisional breakage could enable some mass transfer between colliding particles. As a result, daughter particles with more extensive volumes than the parent particles are generated. Non-linear models emerge in a wide range of contexts, including milling and crushing processes [3, 4], bulk distribution of asteroids [5, 6], fluidized beds [7, 8], etc.
Cheng and Redner [9] used the following integro-differential equation to derive the collisional breakage equation (CBE). It illustrates the time progession of particle size distribution c(t,x)0c(t,x)\geq 0 of particles of mass x]0,[x\in]0,\infty[ at time t0t\geq 0 and is defined by

c(t,x)t=0xK(y,z)b(x,y,z)c(t,y)c(t,z)𝑑y𝑑z0K(x,y)c(t,x)c(t,y)𝑑y\displaystyle\frac{\partial{c(t,x)}}{\partial t}=\int_{0}^{\infty}\int_{x}^{\infty}K(y,z)b(x,y,z)c(t,y)c(t,z)\,dy\,dz-\int_{0}^{\infty}K(x,y)c(t,x)c(t,y)\,dy (1)

with the given initial data

c(0,x)=cin(x)0,x]0,[.\displaystyle c(0,x)\ \ =\ \ c^{in}(x)\geq 0,\ \ \ x\in]0,\infty[. (2)

The characteristics tt and xx are regarded as dimensionless quantities without losing any generality. In Eq.(1), the collision kernel K(x,y)K(x,y) depicts the rate of collision for breakage event between two particles of volumes xx and yy. In practice, it is assumed that the collision rate between the particles of volumes xx and yy is identical to the collision between yy and xx. The term b(x,y,z)b(x,y,z) is called the breakage distribution function, which defines the rate for production of particles of volume xx by breakage of particle of volume yy due to interaction between particles of volumes of yy and zz. Breakage distribution function bb holds

b(x,y,z)0forx(0,y)andb(x,y,z)=0forx>yb(x,y,z)\neq 0\,\,\,\text{for}\hskip 11.38092ptx\in(0,y)\,\,\,\text{and}\hskip 11.38092ptb(x,y,z)=0\,\,\,\text{for}\hskip 11.38092ptx>y

as well as satisfies

0yxb(x,y,z)𝑑x=y\int_{0}^{y}xb(x,y,z)\,dx=y

for all (y,z)]0,[2(y,z)\in{]0,\infty[}^{2}. The first term in Eq.(1) explains gaining particles of volume xx due to collision between particles of volumes yy and zz, known as the birth term. The second term is labeled as the death term and describes the disappearance of particles of volume xx due to collision with particles of volume yy.

It is also necessary to specify some integral features of the number density function c(t,x)c(t,x), known as moments. The following equation defines the jthj^{th} moment of the solution as

Mj(t)=0xjc(t,x)𝑑x.\displaystyle M_{j}(t)=\int_{0}^{\infty}x^{j}c(t,x)\,dx. (3)

The zeroth and first moments are proportional to the total number of particles in the system and its total volume, respectively. Here, M1inM_{1}^{in} denotes the initial volume of the particles in the closed particulate system.

Before venturing into the specifics of the current work, let us review the existing literature on the linear breakage equation that has been widely investigated over the years concerning its analytical solutions [10], similarity solutions [11, 12], numerical results [13, 14].

There is a substantial body of work on the well-posedness of the coagulation and linear breakage equations (CLBE). The authors examined the existence and uniqueness of solutions to CLBE with nonsingular coagulation kernels with different growth parameters on the breakage function in [15, 16, 17]. Moreover, many publications are accessible for solving coagulation-fragmentation equations numerically, including the method of moments [18], finite element scheme [19], Monte Carlo methodology [20], and finite volume method (FVM)[21, 22, 23] to name a few. It has been reported by several authors that the FVM is an appropriate option  among the other numerical techniques for solving coagulation-fragmentation equations due to its mass conservation property.

Collisional breakage model is discussed in just a few mathematical articles in the literature, see [24, 25, 26]. The authors explained the global classical solutions of coagulation and collisional equation with collision kernel, growing indefinitely for large volumes in [26]. In addition, fewer publications in the physics literature [27, 28, 29] are committed to the collision breakage equation, with the majority dealing with scaling behavior and shattering transitions. Laurençot and Wrzosek [24] investigated the existence of a solution for discrete collisional breakage with coagulation equation in which they have used the following constraint over the kernels

K(x,y)(xy)α,α[0,1)andb(x,y,z)P<,for  1x<y.K(x,y)\leq(xy)^{\alpha},\,\,\alpha\in[0,1)\,\,\text{and}\,\,b(x,y,z)\leq P<\infty,\,\,\text{for}\,\,1\leq x<y.

They have also explored gelation and the long-term behavior of solutions. Further, in [30], the analysis is worked out with the coagulation dominating process for mass conserving solutions when the collision kernel grows at most linearly at infinity. To the best of the authors’ knowledge, none of the prior studies account for the weak convergence of the numerical scheme for solving collisional breakage equation. Therefore, this article is an attempt to study the weak convergence analysis of the model for nonsingular unbounded kernels in a numerical sense and then error estimation for kernels in Wloc1,W_{loc}^{1,\infty} space over a uniform mesh. Thanks to the idea taken from Bourgade and Filbet [22], in which they have treated coagulation and binary fragmentation equation. The proof is based on the weak L1L^{1} compactness method.

To proceed further, firstly, we will concentrate on the functional setting as having in mind that expected mass conservation in (3) is necessary. Besides the first moment, the total number of particles in the system must be finite. Therefore, we construct the solution space that exhibits the convergence of the discretized numerical solution to the weak solution of the collisional breakage equation (1), which is recognized as a weighted L1L^{1} space such as

X+={cL1(+)L1(+,xdx):c0,c<},\displaystyle X^{+}=\{c\in L^{1}(\mathbb{R}^{+})\cap L^{1}(\mathbb{R}^{+},x\,dx):c\geq 0,\|c\|<\infty\},

where c=0(1+x)c(x)𝑑x,\|c\|=\int_{0}^{\infty}(1+x)c(x)\,dx, for the non-negative initial condition cinX+c^{in}\in X^{+} and +=]0,[.\mathbb{R}^{+}=]0,\infty[. Here the notation L1(+,xdx)L^{1}({\mathbb{R}}^{+},xdx) stands for the space of the Lebesgue measurable real-valued functions on +\mathbb{R}^{+} which are integrable with respect to the measure xdx.x\,dx.

Now, the specifications of the collisional kernel KK and breakage distribution function bb are expressed in the following expression: both functions are symmetric and measurable over the domain. There exist ζ,η\zeta,\eta with 0<ζη1,ζ+η10<\zeta\leq\eta\leq 1,\,\zeta+\eta\leq 1 and α\alpha\in\mathbb{R}, λ>0\lambda>0 such that

H1:bLloc(+×+×+),\displaystyle H1:\hskip 5.69046ptb\in L_{\text{loc}}^{\infty}{(\mathbb{R}^{+}\times\mathbb{R}^{+}\times\mathbb{R}^{+})}, (4)

H2:

K(x,y)={λxy(x,y)(0,1)×(0,1)λxyα(x,y)(0,1)×(1,)λxαy(x,y)(1,)×(0,1)λ(xζyη+xηyζ)(x,y)(1,)×(1,).K(x,y)=\left\{\begin{array}[]{ll}\lambda xy&\quad(x,y)\in(0,1)\times(0,1)\\ \lambda xy^{-\alpha}&\quad(x,y)\in(0,1)\times(1,\infty)\\ \lambda x^{-\alpha}y&\quad(x,y)\in(1,\infty)\times(0,1)\\ \lambda(x^{\zeta}y^{\eta}+x^{\eta}y^{\zeta})&\quad(x,y)\in(1,\infty)\times(1,\infty).\end{array}\right. (5)

This article’s contents are organized as follows. The discretization methodology based on the FVM and non-conservative form of fully discretized CBE are introduced in Section 2, followed by the detailed convergence analysis in Section 3. In Section 4, we examine the first order error estimates of FVM on uniform meshes. Additionally, we have justified the theoretical error estimation via numerical results in section 5. Consequently, in the final Section, some conclusions are presented.

2 Numerical Scheme

In this section, we commence exploring the FVM for the solution of Eq.(1). It is based on the spatial domain being divided into tiny grid cells. Particle volumes ranging from 0 to \infty are taken into account in Eq.(1). Nevertheless, we define the particle volumes to be in a finite domain for practical purposes. Consider the reduced computational domain for volumes (0,RR], with 0<R<0<R<\infty. Thus the collisional breakage equation is truncated as

c(t,x)t=0RxRK(y,z)b(x,y,z)c(t,y)c(t,z)𝑑y𝑑z0RK(x,y)c(t,x)c(t,y)𝑑y\displaystyle\frac{\partial{c(t,x)}}{\partial t}=\int_{0}^{R}\int_{x}^{R}K(y,z)b(x,y,z)c(t,y)c(t,z)\,dy\,dz-\int_{0}^{R}K(x,y)c(t,x)c(t,y)\,dy (6)

with the given initial distribution

c(0,x)=cin(x)0,x]0,R].\displaystyle c(0,x)\ \ =\ \ c^{in}(x)\geq 0,\ \ \ x\in]0,R]. (7)

Consider a partitioning of the operating domain (0,R](0,R] into small cells as Λih:=]xi1/2,xi+1/2],i=1,2,,I\Lambda_{i}^{h}:=]x_{i-1/2},x_{i+1/2}],\,\,i=1,2,...,\mathrm{I}, where,   x1/2=0,xI+1/2=R,Δxi=xi+1/2xi1/2x_{1/2}=0,\ \ x_{\mathrm{I}+1/2}=R,\hskip 5.69046pt\Delta x_{i}=x_{i+1/2}-x_{i-1/2} and consider h=maxΔxii.h=max\,\Delta x_{i}\ \forall\ i. The grid points are the midpoints of each subinterval and are designated as

xi=(xi1/2+xi+1/2)/2fori=1,2,,I.x_{i}=(x_{i-1/2}+x_{i+1/2})/2\hskip 8.5359pt\text{for}\,\,i=1,2,...,\mathrm{I}.

Now, the expression of the mean value of the number density function ci(t)c_{i}(t) in the cell Λih\Lambda_{i}^{h} is determined by

ci(t)=1Δxixi1/2xi+1/2c(t,x)𝑑x,\displaystyle c_{i}(t)=\frac{1}{\Delta x_{i}}\int_{x_{i-1/2}}^{x_{i+1/2}}c(t,x)\,dx, (8)

where Δxi=xi+1/2xi1/2\Delta x_{i}=x_{i+1/2}-x_{i-1/2} for i=1,2,,I.i=1,2,...,\mathrm{I}. The domain is confined in the range [0, T] for the time parameter, and it is discretized into NN time intervals with time step Δt\Delta t. The interval is defined as

τn=[tn,tn+1[withtn=nΔt,n=0,1,,N1.\tau_{n}=[t_{n},t_{n+1}[\hskip 5.69046pt\text{with}\,\,t_{n}=n\Delta t,\ n=0,1,...,N-1.

We now begin developing the scheme on non-uniform meshes. It has the significant advantage of allowing the inclusion of a more extensive domain with fewer mesh points than a uniform mesh. The discretization differs slightly from that of Filbet and Laurencot [22], where they first converted the model (1) to a conservative equation using Leibniz integral rule, then discretized using FVM. Although, in this work, we have developed a non-conservative scheme using FVM from the continuous equation (1).

To derive the discretized version of the CBE (6), we proceed as follows: integrate the Eq.(6) with respect to xx over ithi^{th} cell yields the following discrete form

dcidt=BC(i)DC(i),\displaystyle\frac{dc_{i}}{dt}=B_{C}(i)-D_{C}(i), (9)

where

BC(i)=1Δxixi1/2xi+1/20xI+1/2xxI+1/2K(y,z)b(x,y,z)c(t,y)c(t,z)𝑑y𝑑z𝑑x\displaystyle B_{C}(i)=\frac{1}{\Delta x_{i}}\int_{x_{i-1/2}}^{x_{i+1/2}}\int_{0}^{x_{\mathrm{I}+1/2}}\int_{x}^{x_{\mathrm{I}+1/2}}K(y,z)b(x,y,z)c(t,y)c(t,z)dy\,dz\,dx
DC(i)=1Δxixi1/2xi+1/20xI+1/2K(x,y)c(t,x)c(t,y)𝑑y𝑑x\displaystyle D_{C}(i)=\frac{1}{\Delta x_{i}}\int_{x_{i-1/2}}^{x_{i+1/2}}\int_{0}^{x_{\mathrm{I}+1/2}}K(x,y)c(t,x)c(t,y)dy\,dx

along with initial distribution,

ci(0)=ciin=1Δxixi1/2xi+1/2c0(x)𝑑x.\displaystyle c_{i}(0)=c_{i}^{in}=\frac{1}{\Delta x_{i}}\int_{x_{i-1/2}}^{x_{i+1/2}}c_{0}(x)\,dx. (10)

Implementing the midpoint rule to all of the above representation yields the semi-discrete equation after some simplifications as

dcidt=\displaystyle\frac{dc_{i}}{dt}= 1Δxil=1Ij=iIKj,lcj(t)cl(t)ΔxjΔxlxi1/2pjib(x,xj,xl)𝑑xj=1IKi,jci(t)cj(t)Δxj,\displaystyle\frac{1}{\Delta x_{i}}\sum_{l=1}^{\mathrm{I}}\sum_{j=i}^{\mathrm{I}}K_{j,l}c_{j}(t)c_{l}(t)\Delta x_{j}\Delta x_{l}\int_{x_{i-1/2}}^{p_{j}^{i}}b(x,x_{j},x_{l})\,dx-\sum_{j=1}^{\mathrm{I}}K_{i,j}c_{i}(t)c_{j}(t)\Delta x_{j}, (11)

where the term pjip_{j}^{i} is expressed by

pji={xi,if j=ixi+1/2,ji.p_{j}^{i}=\begin{cases}x_{i},&\text{if }\,j=i\\ x_{i+1/2},&j\neq i.\end{cases} (12)

Now, to obtain a fully discrete system, applying explicit Euler discretization to time variable tt leads to

cin+1cin=\displaystyle c_{i}^{n+1}-c_{i}^{n}= ΔtΔxil=1Ij=iIKj,lcjnclnΔxjΔxlxi1/2pjib(x,xj,xl)𝑑x\displaystyle\frac{\Delta t}{\Delta x_{i}}\sum_{l=1}^{\mathrm{I}}\sum_{j=i}^{\mathrm{I}}K_{j,l}c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}\int_{x_{i-1/2}}^{p_{j}^{i}}b(x,x_{j},x_{l})\,dx
Δtj=1IKi,jcincjnΔxj.\displaystyle-\Delta t\sum_{j=1}^{\mathrm{I}}K_{i,j}c_{i}^{n}c_{j}^{n}\Delta x_{j}. (13)

For the convergence analysis, consider a function chc^{h} on [0,T]×]0,R][0,T]\times]0,R] which is representated by

ch(t,x)=n=0N1i=1IcinχΛih(x)χτn(t),\displaystyle c^{h}(t,x)=\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}c_{i}^{n}\,\chi_{\Lambda_{i}^{h}}(x)\,\chi_{\tau_{n}}(t), (14)

where χD(x)\chi_{D}(x) denotes the characteristic function on a set DD as χD(x)=1\chi_{D}(x)=1 if xDx\in D or 0 everywhere else. Also noting that

ch(0,)=i=1IciinχΛih()c^{h}(0,\cdot)=\sum_{i=1}^{\mathrm{I}}c_{i}^{in}\chi_{\Lambda_{i}^{h}}(\cdot)

converges strongly to cinc^{in} in L1((0,R))L^{1}((0,R)) as h0h\rightarrow 0. A finite volume approximation approaches the kernels on each space cell, i.e., for all (u,v)]0,R]×]0,R](u,v)\in]0,R]\times]0,R] and (u,v,w)]0,R]×]0,R]×]0,R],(u,v,w)\in]0,R]\times]0,R]\times]0,R],

Kh(u,v)=i=1Ij=1IKi,jχΛih(u)χΛjh(v),\displaystyle K^{h}(u,v)=\sum_{i=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}K_{i,j}\chi_{\Lambda_{i}^{h}}(u)\chi_{\Lambda_{j}^{h}}(v), (15)
bh(u,v,w)=i=1Ij=1Il=1Ibi,j,lχΛih(u)χΛjh(v)χΛlh(w),\displaystyle b^{h}(u,v,w)=\sum_{i=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}b_{i,j,l}\chi_{\Lambda_{i}^{h}}(u)\chi_{\Lambda_{j}^{h}}(v)\chi_{\Lambda_{l}^{h}}(w), (16)

where

Ki,j=1ΔxiΔxjΛjhΛihK(u,v)𝑑u𝑑v,bi,j,l=1ΔxiΔxjΔxlΛlhΛjhΛihb(u,v,w)𝑑u𝑑v𝑑w.K_{i,j}=\frac{1}{\Delta x_{i}\Delta x_{j}}\int_{\Lambda_{j}^{h}}\int_{\Lambda_{i}^{h}}K(u,v)du\,dv,\quad b_{i,j,l}=\frac{1}{\Delta x_{i}\Delta x_{j}\Delta x_{l}}\int_{\Lambda_{l}^{h}}\int_{\Lambda_{j}^{h}}\int_{\Lambda_{i}^{h}}b(u,v,w)du\,dv\,dw.

Such discretization ensures that KhKL1((0,R)×(0,R))0\|K^{h}-K\|_{L^{1}((0,R)\times(0,R))}\rightarrow 0, bhbL1((0,R)×(0,R)×(0,R))0\|b^{h}-b\|_{L^{1}((0,R)\times(0,R)\times(0,R))}\rightarrow 0 as h0h\rightarrow 0, see [22].

3 Weak Convergence

The objective of this section is to study the convergence of solution chc^{h} to a function cc as hh and Δt\Delta t 0\rightarrow 0.

Theorem 3.1.

Consider that cinX+c^{in}\in X^{+} and the hypothesis (H1)(H2)(H1)-(H2) on kernels hold. Also assuming that under the time step Δt\Delta t and for a constant θ>0\theta>0, the following stability condition

C(R,T)Δtθ<1,\displaystyle C(R,T)\Delta t\leq\theta<1, (17)

holds for

C(R,T):=λ(2RcinL1e2λRbLM1inT+M1in).\displaystyle{}C(R,T):=\lambda(2R\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}T}+M_{1}^{in}). (18)

Then there exists the extraction of a sub-sequence as

chcinL((0,T;L1(0,R)),c^{h}\rightarrow c\ \ \text{in}\ \ L^{\infty}((0,T;L^{1}\,(0,R)),

for c being the weak solution to (1) on [0,T][0,T] with initial datum cinc^{in}. This implies that, the function c0c\geq 0 satisfies

0T0Rc(t,x)φt(t,x)𝑑x𝑑t+0Rcin(x)φ(0,x)𝑑x\displaystyle\int_{0}^{T}\int_{0}^{R}c(t,x)\frac{\partial\varphi}{\partial t}(t,x)dx\,dt+\int_{0}^{R}c^{in}(x)\varphi(0,x)dx (19)
0T0R0RxRφ(t,x)K(y,z)b(x,y,z)c(t,y)c(t,z)𝑑y𝑑z𝑑x𝑑t\displaystyle-\int_{0}^{T}\int_{0}^{R}\int_{0}^{R}\int_{x}^{R}\varphi(t,x)K(y,z)b(x,y,z)c(t,y)c(t,z)dy\,dz\,dx\,dt
+0T0R0Rφ(t,x)K(x,y)c(t,x)c(t,y)𝑑y𝑑x𝑑t=0,\displaystyle+\int_{0}^{T}\int_{0}^{R}\int_{0}^{R}\varphi(t,x)K(x,y)c(t,x)c(t,y)dy\,dx\,dt=0,

for all smooth functions φ\varphi having compact support in [0,T]×]0,R].[0,T]\times]0,{R}].

Following the preceding theorem, it is evident that the main motivation here is to demonstrate the weak convergence of the family of functions (ch)(c^{h}) to a function cc in L1(0,R)L^{1}(0,R) as hh and Δt\Delta t approach zero. The idea is based on the Dunford-Pettis theorem, which establishes a necessary and sufficient condition for L1L^{1} compactness in the presence of weak convergence.

Theorem 3.2.

Let us take : |Ω|<|\Omega|<\infty and ch:Ωc^{h}:\Omega\mapsto\mathbb{R} be a sequence in L1(Ω).L^{1}(\Omega). Assume that the sequence {ch}\{c^{h}\} satisfies

  • {ch}\{c^{h}\} is equibounded in L1(Ω)L^{1}(\Omega), i.e.

    supchL1(Ω)<\displaystyle\sup\|c^{h}\|_{L^{1}(\Omega)}<\infty (20)
  • {ch}\{c^{h}\} is equiintegrable, iff

    ΩΦ(|ch|)𝑑x<\displaystyle\int_{\Omega}\Phi(|c^{h}|)dx<\infty (21)

    for Φ\Phi being some increasing function taken as Φ:[0,[[0,[\Phi:[0,\infty[\mapsto[0,\infty[ such that

    limrΦ(r)r.\displaystyle\lim_{r\rightarrow\infty}\frac{\Phi(r)}{r}\rightarrow\infty.

Then chc^{h} belongs to a weakly compact set in L1(Ω)L^{1}(\Omega) implying that there is a subsequence of chc^{h} that weakly converges in L1(Ω)L^{1}(\Omega).

As a result, demonstrating the equiboundedness and equiintegrability of the family chc^{h} in L1L^{1} as in (20) and (21), respectively, is sufficient to establish Theorem 3.1. The following proposition addresses the non-negativity and equiboundedness of the functions chc^{h}. For the proof, we employed Bourgade and Filbet’s approach [22].

Proposition 3.3.

Assume that the stability criterion (17) holds for time step Δt\Delta t. Furthermore, assuming that the kernel growth condition satisfies (H1)(H2)(H1)-(H2). Then chc^{h} is a non-negative function that fulfills the estimation given below

0Rch(t,x)𝑑xcinL1e2λRbLM1int.\displaystyle\int_{0}^{R}c^{h}(t,x)dx\leq\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}t}. (22)
Proof.

Mathematical induction is used to demonstrate the non-negativity and equiboundedness of the function chc^{h}. At t = 0, it is known that ch(0)0c^{h}(0)\geq 0 and belongs to L1(0,R)L^{1}(0,R). Assuming that the functions ch(tn)0c^{h}(t^{n})\geq 0 and

0Rch(tn,x)𝑑xcinL1e2λRbLM1intn.\displaystyle\int_{0}^{R}c^{h}(t^{n},x)dx\leq\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}t^{n}}. (23)

Then, our first goal is to demonstrate that ch(tn+1)0c^{h}(t^{n+1})\geq 0. Consider the cell at the boundary with index i = 1. As a result, in this situation, we obtain from Eq.(2),

c1n+1=\displaystyle c_{1}^{n+1}= c1n+ΔtΔx1l=1Ij=1IKj,lcjnclnΔxjΔxlx1/2pj1b(x,xj,xl)𝑑x\displaystyle c_{1}^{n}+\frac{\Delta t}{\Delta x_{1}}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}K_{j,l}c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}\int_{x_{1/2}}^{p_{j}^{1}}b(x,x_{j},x_{l})\,dx
Δtj=1IK1,jc1ncjnΔxj\displaystyle-\Delta t\sum_{j=1}^{\mathrm{I}}K_{1,j}c_{1}^{n}c_{j}^{n}\Delta x_{j}
c1nΔtj=1IK1,jc1ncjnΔxj.\displaystyle\geq c_{1}^{n}-\Delta t\sum_{j=1}^{\mathrm{I}}K_{1,j}c_{1}^{n}c_{j}^{n}\Delta x_{j}. (24)

Moving further, we choose the first case for collisional kernel, case-(1): K(x,y)=λ(xζyη+xηyζ),when(x,y)(1,R)×(1,R)K(x,y)=\lambda(x^{\zeta}y^{\eta}+x^{\eta}y^{\zeta}),\,\text{when}\,\,(x,y)\in(1,R)\times(1,R)

c1n+1c1nΔtj=1Iλ(x1ζxjη+x1ηxjζ)c1ncjnΔxj,\displaystyle c_{1}^{n+1}\geq c_{1}^{n}-\Delta t\sum_{j=1}^{\mathrm{I}}\lambda(x_{1}^{\zeta}x_{j}^{\eta}+x_{1}^{\eta}x_{j}^{\zeta})c_{1}^{n}c_{j}^{n}\Delta x_{j},

using the fact that λ(xiζxjη+xiηxjζ)λ(xi+xj)\lambda(x_{i}^{\zeta}x_{j}^{\eta}+x_{i}^{\eta}x_{j}^{\zeta})\leq\lambda(x_{i}+x_{j}), thanks to Young’s inequality, convert the above inequality into following one

c1n+1\displaystyle c_{1}^{n+1} c1nλΔtj=1I(x1+xj)c1ncjnΔxj\displaystyle\geq\,c_{1}^{n}-\lambda\Delta t\sum_{j=1}^{\mathrm{I}}(x_{1}+x_{j})c_{1}^{n}c_{j}^{n}\Delta x_{j}
[1λΔt(Rj=1IcjnΔxj+M1in)]c1n.\displaystyle\geq[1-\lambda\Delta t(R\sum_{j=1}^{\mathrm{I}}c_{j}^{n}\Delta x_{j}+M_{1}^{in})]c_{1}^{n}. (25)

Now, consider case-(2): K(x,y)=λxαy,when(x,y)(1,R)×(0,1)K(x,y)=\lambda x^{-\alpha}y,\,\text{when}\,\,(x,y)\in(1,R)\times(0,1) and put this value in Eq.(3), then imposing the condition xα1x^{-\alpha}\leq 1 yields

c1n+1\displaystyle c_{1}^{n+1} c1nλΔtj=1Ixjc1ncjnΔxj\displaystyle\geq\,c_{1}^{n}-{\lambda}\Delta t\sum_{j=1}^{\mathrm{I}}x_{j}c_{1}^{n}c_{j}^{n}\Delta x_{j}
(1λΔtM1in)c1n.\displaystyle\geq(1-\lambda\Delta tM_{1}^{in})c_{1}^{n}. (26)

For case-(3): K(x,y)=λxyα,when(x,y)(0,1)×(1,R)K(x,y)=\lambda xy^{-\alpha},\,\text{when}\,\,(x,y)\in(0,1)\times(1,R) with yα1y^{-\alpha}\leq 1 and for case-(4): K(x,y)=λ(xy),when(x,y)(0,1)×(0,1)K(x,y)=\lambda(xy),\,\text{when}\,\,(x,y)\in(0,1)\times(0,1) provide

c1n+1(1λΔtj=1IcjnΔxj)c1n.\displaystyle c_{1}^{n+1}\geq(1-\lambda\Delta t\sum_{j=1}^{\mathrm{I}}c_{j}^{n}\Delta x_{j})c_{1}^{n}. (27)

All the results from case(1)-case(4) are collected and the following inequality is achieved

c1n+1[1λΔt(Rj=1IcjnΔxj+M1in)]c1n.\displaystyle c_{1}^{n+1}\geq[1-\lambda\Delta t(R\sum_{j=1}^{\mathrm{I}}c_{j}^{n}\Delta x_{j}+M_{1}^{in})]c_{1}^{n}. (28)

Using conditions (17), (18) and Eq.(23), the non-negativity of c1n+1c_{1}^{n+1} is obtained. Thus, we assume that the computations for i2i\geq 2 goes similar to i=1i=1 for all four cases and obtain the results like the previous ones. As a result, applying the stability condition on the time step Δt\Delta t and the L1L^{1} bound on chc^{h} yield ch(tn+1)0.c^{h}({t^{n+1}})\geq 0.

Following that, it is demonstrated that ch(tn+1)c^{h}(t^{n+1}) follows a similar estimation as (23). To see this, multiply equation (2) by the term Δxi\Delta x_{i}, leaving the negative term out, and determine the result using summation with respect to ii, as

i=1Icin+1Δxi\displaystyle\sum_{i=1}^{\mathrm{I}}c_{i}^{n+1}\Delta x_{i} i=1IcinΔxi+Δti=1Il=1Ij=iIKj,lcjnclnΔxjΔxlxi1/2pjib(x,xj,xl)𝑑x\displaystyle\leq\sum_{i=1}^{\mathrm{I}}c_{i}^{n}\Delta x_{i}+\Delta t\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=i}^{\mathrm{I}}K_{j,l}c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}\int_{x_{i-1/2}}^{p_{j}^{i}}b(x,x_{j},x_{l})\,dx
i=1IcinΔxi+Δtbi=1Il=1Ij=1IKj,lcjnclnΔxjΔxlxi1/2xi+1/2𝑑x\displaystyle\leq\sum_{i=1}^{\mathrm{I}}c_{i}^{n}\Delta x_{i}+\Delta t\|b\|_{\infty}\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}K_{j,l}c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}\int_{x_{i-1/2}}^{x_{i+1/2}}\,dx
i=1IcinΔxi+ΔtRbl=1Ij=1IKj,lcjnclnΔxjΔxl.\displaystyle\leq\sum_{i=1}^{\mathrm{I}}c_{i}^{n}\Delta x_{i}+\Delta tR\|b\|_{\infty}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}K_{j,l}c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}. (29)

Again, the above will be simplified for four cases of kernels:
Case-(1): K(x,y)=λ(xζyη+xηyζ),when(x,y)(1,R)×(1,R)K(x,y)=\lambda(x^{\zeta}y^{\eta}+x^{\eta}y^{\zeta}),\,\text{when}\,\,(x,y)\in(1,R)\times(1,R). Substitute the value of K(x,y)K(x,y) in Eq.(3) and using the Young’s inequality leads to

i=1Icin+1Δxi\displaystyle\sum_{i=1}^{\mathrm{I}}c_{i}^{n+1}\Delta x_{i} i=1IcinΔxi+λΔtRbl=1Ij=1I(xj+xl)cjnclnΔxjΔxl\displaystyle\leq\sum_{i=1}^{\mathrm{I}}c_{i}^{n}\Delta x_{i}+{\lambda}\Delta tR\|b\|_{\infty}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}(x_{j}+x_{l})c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}
(1+2λΔtRbM1in)i=1IcinΔxi.\displaystyle\leq(1+2{\lambda}\Delta tR\|b\|_{\infty}M_{1}^{in})\sum_{i=1}^{\mathrm{I}}c_{i}^{n}\Delta x_{i}.

Finally, having (23) the L1L^{1} bound of chc^{h} at time step n and 1+x<exp(x)1+x<\exp(x) \forall x>0x>0 imply that

i=1Icin+1ΔxicinL1e2λRbLM1intn+1.\sum_{i=1}^{\mathrm{I}}c_{i}^{n+1}\Delta x_{i}\leq\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}t^{n+1}}.

As a consequence, the result (22) accomplished.
Case-(2): K(x,y)=λxαy,when(x,y)(1,R)×(0,1)K(x,y)=\lambda x^{-\alpha}y,\,\text{when}\,\,(x,y)\in(1,R)\times(0,1), and case-(3): K(x,y)=λxyα,when(x,y)(0,1)×(1,R)K(x,y)=\lambda xy^{-\alpha},\,\text{when}\,\,(x,y)\in(0,1)\times(1,R) have similar computations. The values of K(x,y)K(x,y) after substituting in Eq.(3) yields

i=1Icin+1Δxi\displaystyle\sum_{i=1}^{\mathrm{I}}c_{i}^{n+1}\Delta x_{i} i=1IcinΔxi+λΔtRbl=1Ij=1I(xjαxl)cjnclnΔxjΔxl\displaystyle\leq\sum_{i=1}^{\mathrm{I}}c_{i}^{n}\Delta x_{i}+{\lambda}\Delta tR\|b\|_{\infty}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}(x_{j}^{-\alpha}x_{l})c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}
i=1IcinΔxi+λΔtRbl=1Ij=1IxlcjnclnΔxjΔxl\displaystyle\leq\sum_{i=1}^{\mathrm{I}}c_{i}^{n}\Delta x_{i}+{\lambda}\Delta tR\|b\|_{\infty}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}x_{l}c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}
(1+λΔtRbM1in)i=1IcinΔxi.\displaystyle\leq(1+\lambda\Delta tR\|b\|_{\infty}M_{1}^{in})\sum_{i=1}^{\mathrm{I}}c_{i}^{n}\Delta x_{i}.

Again, using (23) and 1+x<exp(x)1+x<\exp(x) \forall x>0x>0 provide the L1L^{1} bound for chc^{h} at time step n+1n+1.

Case-(4): For K(x,y)=λ(xy),when(x,y)(0,1)×(0,1)K(x,y)=\lambda(xy),\,\text{when}\,\,(x,y)\in(0,1)\times(0,1), inserting the value of KK in Eq.(3) employs

i=1Icin+1Δxi\displaystyle\sum_{i=1}^{\mathrm{I}}c_{i}^{n+1}\Delta x_{i} i=1IcinΔxi+λΔtRbl=1Ij=1IxjxlcjnclnΔxjΔxl\displaystyle\leq\sum_{i=1}^{\mathrm{I}}c_{i}^{n}\Delta x_{i}+{\lambda}\Delta tR\|b\|_{\infty}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}x_{j}x_{l}c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}
i=1IcinΔxi+λΔtRbl=1Ij=1IxlcjnclnΔxjΔxl.\displaystyle\leq\sum_{i=1}^{\mathrm{I}}c_{i}^{n}\Delta x_{i}+{\lambda}\Delta tR\|b\|_{\infty}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}x_{l}c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}.

To get the result (22) for ch(tn+1),c^{h}(t^{n+1}), the computations are similar to the previous case. ∎

To demonstrate the family of solutions’s uniform integrability, let us designate a specific category of convex functions as CVP,C_{VP,\infty}. Consider ΦC([0,))\Phi\in C^{\infty}([0,\infty)), a non-negative and convex function that belongs to the CVP,{C}_{VP,\infty} class and has the following properties:

(i)

Φ(0)=0,Φ(0)=1\Phi(0)=0,\ \Phi^{\prime}(0)=1 and Φ\Phi^{\prime} is concave;

(ii)

limpΦ(p)=limpΦ(p)p=\lim_{p\to\infty}\Phi^{\prime}(p)=\lim_{p\to\infty}\frac{\Phi(p)}{p}=\infty;

(iii)

for θ(1,2)\theta\in(1,2),

Πθ(Φ):=supp0{Φ(p)pθ}<.\displaystyle\Pi_{\theta}(\Phi):=\sup_{p\geq 0}\bigg{\{}\frac{\Phi(p)}{p^{\theta}}\bigg{\}}<\infty. (30)

It is given that, cinL1(0,R)c^{in}\in L^{1}\,(0,R), therefore, by De la Vallée Poussin theorem, a convex function Φ0\mathrm{\Phi}\geq 0 exists which is continuously differentiable on +\mathbb{R}^{+} with Φ(0)=0\mathrm{\Phi}(0)=0, Φ(0)=1\mathrm{\Phi}^{\prime}(0)=1 such that Φ\mathrm{\Phi}^{\prime} is concave

Φ(p)p,asp\frac{\mathrm{\Phi}(p)}{p}\rightarrow\infty,\ \ \text{as}\ \ p\rightarrow\infty

and

:=0RΦ(cin)(x)𝑑x<.\displaystyle\mathcal{I}:=\int_{0}^{R}\mathrm{\Phi}(c^{in})(x)dx<\infty. (31)
Lemma 3.4 ([31], Lemma B.1.).

Let ΦCVP,\mathrm{\Phi}\in{C}_{VP,\infty}. Then \forall (x,y)+×+,(x,y)\in\mathbb{R}^{+}\times\mathbb{R}^{+},

xΦ(y)Φ(x)+Φ(y).x\mathrm{\Phi}^{\prime}(y)\leq\mathrm{\Phi}(x)+\mathrm{\Phi}(y).

The equiintegrability is now examined in the following statement.

Proposition 3.5.

Let cin0L1(0,R)c^{in}\geq 0\in L^{1}(0,R) and (2) constructs the family (ch)(c^{h}) for any hh and Δt\Delta t, where Δt\Delta t fulfills the relation (17). Then (ch)(c^{h}) is weakly relatively sequentially compact in L1((0,T)×(0,R))L^{1}((0,T)\times(0,R)).

Proof.

The objective here is to get a result comparable to (31) for the function family chc^{h}. Using the sequence cinc^{n}_{i}, the integral of (ch)(c^{h}) may be expressed as

0T0RΦ(ch(t,x))𝑑x𝑑t=\displaystyle\int_{0}^{T}\int_{0}^{R}\mathrm{\Phi}(c^{h}(t,x))dx\,dt= n=0N1i=1IτnΛihΦ(k=0N1j=1IcjkχΛjh(x)χτk(t))𝑑x𝑑t\displaystyle\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\int_{\tau_{n}}\int_{\Lambda_{i}^{h}}\mathrm{\Phi}\bigg{(}\sum_{k=0}^{N-1}\sum_{j=1}^{\mathrm{I}}c_{j}^{k}\chi_{\Lambda_{j}^{h}}(x)\chi_{\tau_{k}}(t)\bigg{)}dx\,dt
=\displaystyle= n=0N1i=1IΔtΔxiΦ(cin).\displaystyle\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\Delta t\Delta x_{i}\mathrm{\Phi}(c_{i}^{n}).

It follows from the discrete Eq.(2), as well as the convexity of the function Φ\mathrm{\Phi} and Φ0{\mathrm{\Phi}}^{{}^{\prime}}\geq 0, that

i=1I[Φ(cin+1)Φ(cin)]Δxi\displaystyle\sum_{i=1}^{\mathrm{I}}[\mathrm{\Phi}(c_{i}^{n+1})-\mathrm{\Phi}(c_{i}^{n})]\Delta x_{i} i=1I(cin+1cin)Φ(cin+1)Δxi\displaystyle\leq\sum_{i=1}^{\mathrm{I}}\left(c_{i}^{n+1}-c_{i}^{n}\right)\mathrm{\Phi}^{{}^{\prime}}(c_{i}^{n+1})\Delta x_{i}
Δti=1Il=1Ij=iIKj,lcjnclnΦ(cin+1)ΔxjΔxlxi1/2xi+1/2b(x,xj,xl)𝑑x\displaystyle\leq\Delta t\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=i}^{\mathrm{I}}K_{j,l}c_{j}^{n}c_{l}^{n}\mathrm{\Phi}^{{}^{\prime}}(c_{i}^{n+1})\Delta x_{j}\Delta x_{l}\int_{x_{i-1/2}}^{x_{i+1/2}}b(x,x_{j},x_{l})\,dx
Δti=1Il=1Ij=1IKj,lcjnclnΦ(cin+1)ΔxjΔxlb(xi,xj,xl)Δxi.\displaystyle\leq\Delta t\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}K_{j,l}c_{j}^{n}c_{l}^{n}\mathrm{\Phi}^{{}^{\prime}}(c_{i}^{n+1})\Delta x_{j}\Delta x_{l}b(x_{i},x_{j},x_{l})\Delta x_{i}. (32)

Case-(1): K(x,y)=λ(xζyη+xηyζ),when(x,y)(1,R)×(1,R)K(x,y)=\lambda(x^{\zeta}y^{\eta}+x^{\eta}y^{\zeta}),\,\text{when}\,\,(x,y)\in(1,R)\times(1,R). Substitute the value of K(x,y)K(x,y) in Eq.(3) yields

i=1I[Φ(cin+1)Φ(cin)]Δxi\displaystyle\sum_{i=1}^{\mathrm{I}}[\mathrm{\Phi}(c_{i}^{n+1})-\mathrm{\Phi}(c_{i}^{n})]\Delta x_{i}\leq λΔti=1Il=1Ij=1I(xj+xl)cjnΔxjclnΔxlΔxib(xi,xj,xl)Φ(cin+1).\displaystyle{\lambda}\Delta t\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}(x_{j}+x_{l})c_{j}^{n}\Delta x_{j}c_{l}^{n}\Delta x_{l}\Delta x_{i}b(x_{i},x_{j},x_{l})\mathrm{\Phi}^{{}^{\prime}}(c_{i}^{n+1}).

The convexity result in Lemma 3.4 allows us to obtain

i=1I[Φ(cin+1)Φ(cin)]Δxi\displaystyle\sum_{i=1}^{\mathrm{I}}[\mathrm{\Phi}(c_{i}^{n+1})-\mathrm{\Phi}(c_{i}^{n})]\Delta x_{i} 2λΔti=1Il=1Ij=1IxjcjnΔxjclnΔxlΔxi[Φ(cin+1)+Φ(b(xi,xj,xl))]\displaystyle\leq 2{\lambda}\Delta t\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}x_{j}c_{j}^{n}\Delta x_{j}c_{l}^{n}\Delta x_{l}\Delta x_{i}[\mathrm{\Phi}(c_{i}^{n+1})+{\mathrm{\Phi}}(b(x_{i},x_{j},x_{l}))]
2λΔti=1Il=1Ij=1IxjcjnΔxjclnΔxlΔxiΦ(cin+1)\displaystyle\leq 2{\lambda}\Delta t\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}x_{j}c_{j}^{n}\Delta x_{j}c_{l}^{n}\Delta x_{l}\Delta x_{i}\mathrm{\Phi}(c_{i}^{n+1})
+2λΔti=1Il=1Ij=1IxjcjnΔxjclnΔxlΔxiΦ(b(xi,xj,xl)).\displaystyle+2{\lambda}\Delta t\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}x_{j}c_{j}^{n}\Delta x_{j}c_{l}^{n}\Delta x_{l}\Delta x_{i}{\mathrm{\Phi}}(b(x_{i},x_{j},x_{l})). (33)

After employing the Eq.(30) and Eq.(22) into the second term on right-hand side of the above equation leads to

2λΔti=1Il=1Ij=1IxjcjnΔxjclnΔxlΔxiΦ(b(xi,xj,xl))\displaystyle 2{\lambda}\Delta t\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}x_{j}c_{j}^{n}\Delta x_{j}c_{l}^{n}\Delta x_{l}\Delta x_{i}{\mathrm{\Phi}}(b(x_{i},x_{j},x_{l}))
=2λΔti=1Il=1Ij=1IxjcjnΔxjcln\displaystyle=2{\lambda}\Delta t\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}x_{j}c_{j}^{n}\Delta x_{j}c_{l}^{n} ΔxlΔxiΦ(b(xi,xj,xl)){b(xi,xj,xl)}θb(xi,xj,xl)θ\displaystyle\Delta x_{l}\Delta x_{i}\frac{{\mathrm{\Phi}}(b(x_{i},x_{j},x_{l}))}{\{b(x_{i},x_{j},x_{l})\}^{\theta}}{b(x_{i},x_{j},x_{l})}^{\theta}
2λΔtRΠθ(Φ)M1inbθl=1I\displaystyle\leq 2{\lambda}\Delta tR\Pi_{\theta}(\Phi)M_{1}^{in}{\|b\|}^{\theta}_{\infty}\sum_{l=1}^{\mathrm{I}} clnΔxl\displaystyle c_{l}^{n}\Delta x_{l}
2λΔtRΠθ(Φ)M1inbθ\displaystyle\leq 2\lambda\Delta tR\Pi_{\theta}(\Phi)M_{1}^{in}{\|b\|}^{\theta}_{\infty} cinL1e2λRbLM1inT.\displaystyle\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}T}. (34)

Now, Eq.(3) and Eq.(3) imply that

i=1I[Φ(cin+1)Φ(cin)]Δxi\displaystyle\sum_{i=1}^{\mathrm{I}}[\mathrm{\Phi}(c_{i}^{n+1})-\mathrm{\Phi}(c_{i}^{n})]\Delta x_{i}\leq 2λΔtM1incinL1e2λRbLM1inTi=1IΔxiΦ(cin+1)\displaystyle 2\lambda\Delta tM_{1}^{in}\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}T}\sum_{i=1}^{\mathrm{I}}\Delta x_{i}\mathrm{\Phi}(c_{i}^{n+1})
+2λΔtRΠθ(Φ)M1inbθcinL1e2λRbLM1inT.\displaystyle+2\lambda\Delta tR\Pi_{\theta}(\Phi)M_{1}^{in}{\|b\|}^{\theta}_{\infty}\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}T}.

It can be easily simplified as

(12λΔtM1incinL1e2λRbLM1inT)i=1IΔxiΦ(cin+1)\displaystyle(1-2\lambda\Delta tM_{1}^{in}\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}T})\sum_{i=1}^{\mathrm{I}}\Delta x_{i}\mathrm{\Phi}(c_{i}^{n+1})\leq i=1IΔxiΦ(cin)\displaystyle\sum_{i=1}^{\mathrm{I}}\Delta x_{i}\mathrm{\Phi}(c_{i}^{n})
+2λΔtRΠθ(Φ)M1inbθcinL1e2λRbLM1inT.\displaystyle+2\lambda\Delta tR\Pi_{\theta}(\Phi)M_{1}^{in}{\|b\|}^{\theta}_{\infty}\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}T}.

The above inequality implies that

i=1IΔxiΦ(cin+1)Ai=1IΔxiΦ(cin)+B,\displaystyle\sum_{i=1}^{\mathrm{I}}\Delta x_{i}\mathrm{\Phi}(c_{i}^{n+1})\leq A\sum_{i=1}^{\mathrm{I}}\Delta x_{i}\mathrm{\Phi}(c_{i}^{n})+B,

where

A=1(12λΔtM1incinL1e2λRbLM1inT),B=2λΔtRΠθ(Φ)M1inbθcinL1e2λRbLM1inT(12λΔtM1incinL1e2λRbLM1inT).A=\frac{1}{(1-2\lambda\Delta tM_{1}^{in}\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}T})},\,\,B=\frac{2\lambda\Delta tR\Pi_{\theta}(\Phi)M_{1}^{in}{\|b\|}^{\theta}_{\infty}\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}T}}{(1-2\lambda\Delta tM_{1}^{in}\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}T})}.

Therefore,

i=1IΔxiΦ(cin)Ani=1IΔxiΦ(ciin)+BAn1A1.\displaystyle\sum_{i=1}^{\mathrm{I}}\Delta x_{i}\mathrm{\Phi}(c_{i}^{n})\leq A^{n}\sum_{i=1}^{\mathrm{I}}\Delta x_{i}\mathrm{\Phi}(c_{i}^{in})+B\frac{A^{n}-1}{A-1}. (35)

Thanks to Jensen’s inequality and having (31), we obtain

0Φ(ch(t,x))𝑑x\displaystyle\int_{0}^{\mathbb{R}}\mathrm{\Phi}(c^{h}(t,x))\,dx\leq Ani=1I(h)ΔxiΦ(1ΔxiΛihcin(x)𝑑x)+BAn1A1\displaystyle A^{n}\sum_{i=1}^{\mathrm{I}(h)}\Delta x_{i}\mathrm{\Phi}\bigg{(}\frac{1}{\Delta x_{i}}\int_{\Lambda_{i}^{h}}c^{in}(x)dx\bigg{)}+B\frac{A^{n}-1}{A-1}
\displaystyle\leq An+BAn1A1<,for allt[0,T].\displaystyle A^{n}\mathcal{I}+B\frac{A^{n}-1}{A-1}<\infty,\quad\text{for all}\ \ \ t\in[0,T]. (36)

The computations for Case-(2), Case-(3) and Case-(4) is equavilent to the Case-(1). Only just, we got the different values of A and B, which are the following

A=1(1λΔtM1incinL1e2λRbLM1inT),B=λΔtRΠθ(Φ)M1inbθcinL1e2λRbLM1inT(1λΔtM1incinL1e2λRbLM1inT).A=\frac{1}{(1-\lambda\Delta tM_{1}^{in}\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}T})},\,\,B=\frac{\lambda\Delta tR\Pi_{\theta}(\Phi)M_{1}^{in}{\|b\|}^{\theta}_{\infty}\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}T}}{(1-\lambda\Delta tM_{1}^{in}\|c^{in}\|_{L^{1}}\,e^{2\lambda R\|b\|_{L^{\infty}}M_{1}^{in}T})}.

Thus, the sequence (ch)(c^{h}) is said to be weakly compact in L1L^{1} by applying the Dunford-Pettis theorem. At the same moment, it is equally bounded with regard to hh and tt, and condition (22) is achieved, ensuring the existence of a subsequence of (ch)(c^{h}) that converges weakly to cL1((0,T)×(0,R))c\in L^{1}((0,T)\times(0,R)) as h0h\rightarrow 0. ∎

The moment has arrived to demonstrate the weak convergence of the sequence cinc^{n}_{i}, which is formed by a succession of step functions chc^{h}. To do this, various point approximations are utilized, which are as seen below.
Midpoint approximation:

Xh:x(0,R)Xh(x)=i=1IxiχΛih(x).\displaystyle X^{h}:x\in(0,R)\rightarrow X^{h}(x)=\sum_{i=1}^{\mathrm{I}}x_{i}\chi_{\Lambda_{i}^{h}}(x).

Right endpoint approximation:

Ξh:x(0,R)Ξh(x)=i=1Ixi+1/2χΛih(x).\displaystyle\Xi^{h}:x\in(0,R)\rightarrow\Xi^{h}(x)=\sum_{i=1}^{\mathrm{I}}x_{i+1/2}\chi_{\Lambda_{i}^{h}}(x).

Left endpoint approximation:

ξh:x(0,R)ξh(x)=i=1Ixi1/2χΛih(x).\displaystyle\xi^{h}:x\in(0,R)\rightarrow\xi^{h}(x)=\sum_{i=1}^{\mathrm{I}}x_{i-1/2}\chi_{\Lambda_{i}^{h}}(x).

The following lemma is a valuable tool for the convergence.

Lemma 3.6.

[[31], Lemma A.2] Let Π\Pi be an open subset of m\mathbb{R}^{m} and let there exists a constant l>0l>0 and two sequences (zn1)n(z^{1}_{n})_{n\in\mathbb{N}} and (zn2)n(z^{2}_{n})_{n\in\mathbb{N}} such that (zn1)L1(Π),z1L1(Π)(z^{1}_{n})\in L^{1}(\Pi),z^{1}\in L^{1}(\Pi) and

zn1z1,weakly inL1(Π)asn,z^{1}_{n}\rightharpoonup z^{1},\ \ \ \text{weakly in}\ \,L^{1}(\Pi)\ \text{as}\ n\rightarrow\infty,

(zn2)L(Π),z2L(Π),(z^{2}_{n})\in L^{\infty}(\Pi),z^{2}\in L^{\infty}(\Pi), and for all n,|zn2|ln\in\mathbb{N},|z^{2}_{n}|\leq l with

zn2z2,almost everywhere (a.e.) inΠasn.z^{2}_{n}\rightarrow z^{2},\ \ \text{almost everywhere (a.e.) in}\ \ \Pi\ \text{as}\ \ n\rightarrow\infty.

Then

limnzn1(zn2z2)L1(Π)=0\lim_{n\rightarrow\infty}\|z^{1}_{n}(z^{2}_{n}-z^{2})\|_{L^{1}(\Pi)}=0

and

zn1zn2z1z2,weakly inL1(Π)asn.z^{1}_{n}\,z^{2}_{n}\rightharpoonup z^{1}\,z^{2},\ \ \ \text{weakly in}\ \,L^{1}(\Pi)\ \text{as}\ n\rightarrow\infty.

We have now gathered all the evidences needed to support Theorem 3.1. To demonstrate this, take a test function φC1([0,T]×]0,R])\varphi\in C^{1}([0,T]\times]0,R]) with compact support with respect to tt in [0,tN1][0,t_{N-1}] for small tt. Establish the finite volume for time variable and left endpoint approximation for space variable of φ\varphi on τn×Λih\tau_{n}\times\Lambda_{i}^{h} by

φin=1Δttntn+1φ(t,xi1/2)𝑑t.\varphi_{i}^{n}=\frac{1}{\Delta t}\int_{t_{n}}^{t_{n+1}}\varphi(t,x_{i-1/2})dt.

Multiplying (2) by φin\varphi_{i}^{n} and summing over n{0,,N1}n\in\{0,...,N-1\} as well as i{1,,I}i\in\{1,...,\mathrm{I}\} yield

n=0N1i=1IΔxi(cin+1cin)φin=\displaystyle\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\Delta x_{i}(c_{i}^{n+1}-c_{i}^{n})\varphi_{i}^{n}= Δtn=0N1i=1Il=1Ij=iIKj,lcjnclnΔxjΔxlφinxi1/2pjib(x,xj,xl)𝑑x\displaystyle{\Delta t}\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=i}^{\mathrm{I}}K_{j,l}c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}\varphi_{i}^{n}\int_{x_{i-1/2}}^{p_{j}^{i}}b(x,x_{j},x_{l})dx
Δtn=0N1i=1Ij=1IKi,jcincjnΔxiΔxjφin.\displaystyle-{\Delta t}\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}K_{i,j}c_{i}^{n}c_{j}^{n}\Delta x_{i}\Delta x_{j}\varphi_{i}^{n}. (37)

When the summation for nn is separated, the left-hand side (LHS) resembles like this

n=0N1i=1IΔxi(cin+1cin)φin=n=0N1i=1IΔxicin+1(φin+1φin)+i=1IΔxiciinφi0.\displaystyle\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\Delta x_{i}(c_{i}^{n+1}-c_{i}^{n})\varphi_{i}^{n}=\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\Delta x_{i}c_{i}^{n+1}(\varphi_{i}^{n+1}-\varphi_{i}^{n})+\sum_{i=1}^{\mathrm{I}}\Delta x_{i}c_{i}^{in}\varphi_{i}^{0}.

Furthermore, considering the latter equation in terms of the function chc^{h} produces

n=0N1i=1IΔxi(cin+1cin)φin=\displaystyle\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\Delta x_{i}(c_{i}^{n+1}-c_{i}^{n})\varphi_{i}^{n}= n=0N1i=1Iτn+1Λihch(t,x)φ(t,ξh(x))φ(tΔt,ξh(x))Δt𝑑x𝑑t\displaystyle\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\int_{\tau_{n+1}}\int_{\Lambda_{i}^{h}}c^{h}(t,x)\frac{\varphi(t,\xi^{h}(x))-\varphi(t-\Delta t,\xi^{h}(x))}{\Delta t}dx\,dt
+i=1IΛihch(0,x)1Δt0Δtφ(t,ξh(x))𝑑t𝑑x\displaystyle+\sum_{i=1}^{\mathrm{I}}\int_{\Lambda_{i}^{h}}c^{h}(0,x)\frac{1}{\Delta t}\int_{0}^{\Delta t}\varphi(t,\xi^{h}(x))dt\,dx
=\displaystyle= ΔtT0Rch(t,x)φ(t,ξh(x))φ(tΔt,ξh(x))Δt𝑑x𝑑t\displaystyle\int_{\Delta t}^{T}\int_{0}^{R}c^{h}(t,x)\frac{\varphi(t,\xi^{h}(x))-\varphi(t-\Delta t,\xi^{h}(x))}{\Delta t}dx\,dt
+0Rch(0,x)1Δt0Δtφ(t,ξh(x))𝑑t𝑑x.\displaystyle+\int_{0}^{R}c^{h}(0,x)\frac{1}{\Delta t}\int_{0}^{\Delta t}\varphi(t,\xi^{h}(x))dt\,dx.

Since, φC1([0,T]×]0,R])\varphi\in C^{1}([0,T]\times]0,R]) posseses compact support and having bounded derivative, ch(0,x)cinc^{h}(0,x)\rightarrow c^{in} in L1(0,R)L^{1}(0,R) will provide the following result with the help of Lemma 3.6

0Rch(0,x)1Δt0Δtφ(t,ξh(x))𝑑t𝑑x0Rcin(x)φ(0,x)𝑑x\displaystyle\int_{0}^{R}c^{h}(0,x)\frac{1}{\Delta t}\int_{0}^{\Delta t}\varphi(t,\xi^{h}(x))dtdx\rightarrow\int_{0}^{R}c^{in}(x)\varphi(0,x)dx (38)

as max{h,Δt}\{h,\Delta t\} goes to 0. Now, applying Taylor series expansion of φ\varphi, Lemma 3.6 and Proposition 3.5 ensure that for max{h,Δt}0\{h,\Delta t\}\rightarrow 0

0T0Rch(t,x)φ(t,ξh(x))φ(tΔt,ξh(x))Δt𝑑x𝑑t0T0Rc(t,x)\displaystyle\int_{0}^{T}\int_{0}^{R}c^{h}(t,x)\frac{\varphi(t,\xi^{h}(x))-\varphi(t-\Delta t,\xi^{h}(x))}{\Delta t}dx\,dt\rightarrow\int_{0}^{T}\int_{0}^{R}c(t,x) φt(t,x)dxdt.\displaystyle\frac{\partial\varphi}{\partial t}(t,x)dx\,dt.

Hence, we obtain

ΔtT0Rch(t,x)φ(t,ξh(x))φ(tΔt,ξh(x))Δtc(φ)𝑑x𝑑t\displaystyle\int_{\Delta t}^{T}\int_{0}^{R}\underbrace{c^{h}(t,x)\frac{\varphi(t,\xi^{h}(x))-\varphi(t-\Delta t,\xi^{h}(x))}{\Delta t}}_{c(\varphi)}dx\,dt
=0T0Rc(φ)𝑑x𝑑t0Δt0Rc(φ)𝑑x𝑑t0T0Rc(t,x)φt(t,x)𝑑x𝑑t\displaystyle=\int_{0}^{T}\int_{0}^{R}c(\varphi)\,dx\,dt-\int_{0}^{\Delta t}\int_{0}^{R}c(\varphi)\,dx\,dt\rightarrow\int_{0}^{T}\int_{0}^{R}c(t,x)\frac{\partial\varphi}{\partial t}(t,x)dx\,dt (39)

as max{h,Δt}0\{h,\Delta t\}\rightarrow 0.
Now, the first term in the RHS of Eq.(3) is taken for observing the computation

Δtn=0N1i=1Il=1Ij=iIKj,lcjnclnΔxjΔxlφinxi1/2pjib(x,xj,xl)𝑑x\displaystyle{\Delta t}\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=i}^{\mathrm{I}}K_{j,l}c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}\varphi_{i}^{n}\int_{x_{i-1/2}}^{p_{j}^{i}}b(x,x_{j},x_{l})dx
=Δtn=0N1i=1Il=1IKi,lcinclnΔxiΔxlφin\displaystyle={\Delta t}\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}K_{i,l}c_{i}^{n}c_{l}^{n}\Delta x_{i}\Delta x_{l}\varphi_{i}^{n} xi1/2xib(x,xi,xl)𝑑x\displaystyle\int_{x_{i-1/2}}^{x_{i}}b(x,x_{i},x_{l})dx
+Δtn=0N1i=1Il=1Ij=i+1IKj,lcjnclnΔxj\displaystyle+\Delta t\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=i+1}^{\mathrm{I}}K_{j,l}c_{j}^{n}c_{l}^{n}\Delta x_{j} Δxlφinxi1/2xi+1/2b(x,xj,xl)𝑑x.\displaystyle\Delta x_{l}\varphi_{i}^{n}\int_{x_{i-1/2}}^{x_{i+1/2}}b(x,x_{j},x_{l})dx. (40)

The first term of the Eq.(3) simplifies to

Δtn=0N1i=1Il=1IKi,lcinclnΔxiΔxlφinxi1/2xib(x,xi,xl)𝑑x\displaystyle\Delta t\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}K_{i,l}c_{i}^{n}c_{l}^{n}\Delta x_{i}\Delta x_{l}\varphi_{i}^{n}\int_{x_{i-1/2}}^{x_{i}}b(x,x_{i},x_{l})dx
=n=0N1i=1Il=1IτnΛihΛlhKh(x,z)ch(t,x)ch(t,z)φ(t,ξh(x))\displaystyle=\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\int_{\tau_{n}}\int_{\Lambda_{i}^{h}}\int_{\Lambda_{l}^{h}}K^{h}(x,z)c^{h}(t,x)c^{h}(t,z)\varphi(t,\xi^{h}(x)) ξh(x)Xh(x)b(r,Xh(x),Xh(z))𝑑r𝑑z𝑑x𝑑t\displaystyle\int_{\xi^{h}(x)}^{X^{h}(x)}b(r,X^{h}(x),X^{h}(z))dr\,dz\,dx\,dt
=0T0R0RKh(x,z)ch(t,x)ch(t,z)φ(t,ξh(x))ξh(x)Xh(x)\displaystyle=\int_{0}^{T}\int_{0}^{R}\int_{0}^{R}K^{h}(x,z)c^{h}(t,x)c^{h}(t,z)\varphi(t,\xi^{h}(x))\int_{\xi^{h}(x)}^{X^{h}(x)} b(r,Xh(x),Xh(z))drdzdxdt.\displaystyle b(r,X^{h}(x),X^{h}(z))dr\,dz\,dx\,dt. (41)

Next, the second term of Eq.(3) leads to

Δtn=0N1i=1Il=1Ij=i+1IKj,lcjnclnΔxjΔxlφinxi1/2xi+1/2b(x,xj,xl)𝑑x\displaystyle\Delta t\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=i+1}^{\mathrm{I}}K_{j,l}c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}\varphi_{i}^{n}\int_{x_{i-1/2}}^{x_{i+1/2}}b(x,x_{j},x_{l})dx
=n=0N1i=1Il=1Ij=i+1IτnΛihΛlhΛjhKh(y,z)ch(t,y)ch(t,z)φ(t,ξh(x))\displaystyle=\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=i+1}^{\mathrm{I}}\int_{\tau_{n}}\int_{\Lambda_{i}^{h}}\int_{\Lambda_{l}^{h}}\int_{\Lambda_{j}^{h}}K^{h}(y,z)c^{h}(t,y)c^{h}(t,z)\varphi(t,\xi^{h}(x))
1ΔxiΛihb(r,Xh(y),Xh(z))𝑑r𝑑y𝑑z𝑑x𝑑t\displaystyle\frac{1}{\Delta x_{i}}\int_{\Lambda_{i}^{h}}b(r,X^{h}(y),X^{h}(z))dr\,dy\,dz\,dx\,dt
=0T0R0RΞh(x)RKh(y,z)ch(t,y)ch(t,z)φ(t,ξh(x))b(Xh(x),Xh(y),Xh(z))𝑑y𝑑z𝑑x𝑑t.\displaystyle=\int_{0}^{T}\int_{0}^{R}\int_{0}^{R}\int_{\Xi^{h}(x)}^{R}K^{h}(y,z)c^{h}(t,y)c^{h}(t,z)\varphi(t,\xi^{h}(x))b(X^{h}(x),X^{h}(y),X^{h}(z))dy\,dz\,dx\,dt. (42)

Eqs.(3)-(3), Lemma 3.6 and Proposition 3.5 imply that as max{h,Δt}0\{h,\Delta t\}\rightarrow 0

Δtn=0N1i=1Il=1Ij=iIKj,lcjnclnΔxjΔxlφinxi1/2pjib(x,xj,xl)𝑑x\displaystyle{\Delta t}\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\sum_{l=1}^{\mathrm{I}}\sum_{j=i}^{\mathrm{I}}K_{j,l}c_{j}^{n}c_{l}^{n}\Delta x_{j}\Delta x_{l}\varphi_{i}^{n}\int_{x_{i-1/2}}^{p_{j}^{i}}b(x,x_{j},x_{l})dx
0T0R0RxRK(y,z)c(t,y)c(t,z)φ(t,x)\displaystyle\rightarrow\int_{0}^{T}\int_{0}^{R}\int_{0}^{R}\int_{x}^{R}K(y,z)c(t,y)c(t,z)\varphi(t,x) b(x,y,z)dydzdxdt.\displaystyle b(x,y,z)dy\,dz\,dx\,dt. (43)

Taking the second term on the RHS of Eq.(3) employs

Δtn=0N1i=1Ij=1IKi,jcincjnΔxiΔxjφin\displaystyle{\Delta t}\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}}\sum_{j=1}^{\mathrm{I}}K_{i,j}c_{i}^{n}c_{j}^{n}\Delta x_{i}\Delta x_{j}\varphi_{i}^{n}
=n=0N1i=1I\displaystyle=\sum_{n=0}^{N-1}\sum_{i=1}^{\mathrm{I}} j=1IτnΛihΛjhKh(x,y)ch(t,x)ch(t,y)φ(t,ξh(x))𝑑y𝑑x𝑑t\displaystyle\sum_{j=1}^{\mathrm{I}}\int_{\tau_{n}}\int_{\Lambda_{i}^{h}}\int_{\Lambda_{j}^{h}}K^{h}(x,y)c^{h}(t,x)c^{h}(t,y)\varphi(t,\xi^{h}(x))dy\,dx\,dt
0T\displaystyle\rightarrow\int_{0}^{T} 0R0RK(x,y)c(t,x)c(t,y)φ(t,x)𝑑y𝑑x𝑑t\displaystyle\int_{0}^{R}\int_{0}^{R}K(x,y)c(t,x)c(t,y)\varphi(t,x)dy\,dx\,dt (44)

as max{h,Δt}0\{h,\Delta t\}\rightarrow 0. Eqs.(3)-(3) deliver the desired results for the weak convergence as presented in Eq.(LABEL:convergence0).

4 Error Simulation

In this section, the error estimation is explored for CBE, which is based on the idea of [22]. Taking the uniform mesh is crucial for estimating the error component, i.e., Δxi=h\Delta x_{i}=h  i{1,2,,I}\forall i\in\{1,2,...,\mathrm{I}\}. The error estimate is achieved by providing a estimations on the difference chcc^{h}-c, where chc^{h} is constructed using the numerical technique and cc represents the exact solution to the problem (1). By using the following Theorem, we can determine the error estimate by making some assumptions about the kernels and the initial datum.

Theorem 4.1.

Let the collisional and breakage kernels satisfy KWloc1,(+×+)K\in W^{1,\infty}_{loc}(\mathbb{R}^{+}\times\mathbb{R}^{+}), bWloc1,(+×+×+)b\in W^{1,\infty}_{loc}(\mathbb{R}^{+}\times\mathbb{R}^{+}\times\mathbb{R}^{+}) and initial datum cinWloc1,(+)c^{in}\in W^{1,\infty}_{loc}(\mathbb{R}^{+}). Moreover, consider a uniform volume mesh and time step Δt\Delta t that satisfy the condition (17). Then, the following error estimates

chcL(0,T;L1(0,R))H(T,R)(h+Δt)\displaystyle\|c^{h}-c\|_{L^{\infty}(0,T;L^{1}(0,R))}\leq H(T,R)(h+\Delta t) (45)

holds, where cc is the weak solution to (1).

Before proving the Theorem, consider the following proposition, which provides an estimate on the approximate solution chc^{h} and the exact solution cc given certain additional assumptions. These estimates are important in the analysis of the error.

Proposition 4.2.

Assume that kinetic parameters KLloc(+×+)K\in L^{\infty}_{loc}(\mathbb{R}^{+}\times\mathbb{R}^{+}), bLloc(+×+×+)b\in L^{\infty}_{loc}(\mathbb{R}^{+}\times\mathbb{R}^{+}\times\mathbb{R}^{+}) and the condition (17) holds for time step Δt\Delta t. Also, let the initial datum cinc^{in} restricted in LlocL^{\infty}_{loc}. Then, solution chc^{h} and cc to (1) are essentially bounded in (0,T)×(0,R)(0,T)\times(0,R) as

chL((0,T)×(0,R))H(T,R),cL((0,T)×(0,R))H(T,R).\|c^{h}\|_{L^{\infty}((0,T)\times(0,R))}\leq H(T,R),\hskip 11.38092pt\|c\|_{L^{\infty}((0,T)\times(0,R))}\leq H(T,R).

Furthermore, if the kernels KWloc1,(+×+)K\in W^{1,\infty}_{loc}(\mathbb{R}^{+}\times\mathbb{R}^{+}), bWloc1,(+×+×+)b\in W^{1,\infty}_{loc}(\mathbb{R}^{+}\times\mathbb{R}^{+}\times\mathbb{R}^{+}) and cinWloc1,(+)c^{in}\in W^{1,\infty}_{loc}(\mathbb{R}^{+}). Then there exists a positive constant H(T,R)H(T,R) such that

cW1,(0,R)H(T,R).\displaystyle\|c\|_{W^{1,\infty}(0,R)}\leq H(T,R). (46)
Proof.

The purpose is to connect the continuous Eq.(1) to the bounded solution cc. In consequence integrating Eq.(6) with respect to the time variable provides the following result

c(t,x)\displaystyle c(t,x)\leq cin(x)+0t0RxRK(y,z)b(x,y,z)c(s,y)c(s,z)𝑑y𝑑z𝑑s\displaystyle c^{in}(x)+\int_{0}^{t}\int_{0}^{R}\int_{x}^{R}K(y,z)b(x,y,z)c(s,y)c(s,z)dy\,dz\,ds
cin(x)+Kbc,12t,\displaystyle\leq c^{in}(x)+\|K\|_{\infty}\|b\|_{\infty}{\|c\|}^{2}_{\infty,1}t,

where c,1\|c\|_{\infty,1} represents the norm of cc in L(0,T;L1( 0,R))L^{\infty}(0,T;L^{1}(\,0,R)\,).

cL((0,T)×( 0,R))H(T,R).\displaystyle\|c\|_{L^{\infty}((0,T)\times(\,0,R)\,)}\leq H(T,R).

Now, let us go to the culmination of an analysis of (46). First, integrate Eq.(6) for the time variable tt, and then differentiate it with respect to the volume variable xx yields

c(t,x)x\displaystyle\frac{\partial c(t,x)}{\partial x}\leq cin(x)x+x0t0RxRK(y,z)b(x,y,z)c(s,y)c(s,z)𝑑y𝑑z𝑑s\displaystyle\frac{\partial c^{in}(x)}{\partial x}+\frac{\partial}{\partial x}\int_{0}^{t}\int_{0}^{R}\int_{x}^{R}K(y,z)b(x,y,z)c(s,y)c(s,z)dy\,dz\,ds
x0t0RK(x,y)c(t,x)c(t,y)𝑑y,\displaystyle-\frac{\partial}{\partial x}\int_{0}^{t}\int_{0}^{R}K(x,y)c(t,x)c(t,y)\,dy,

use of the maximum value across the domain of xx and simplification of compuatation yield the following condition

c(t)x\displaystyle\left\|{\frac{\partial c(t)}{\partial x}}\right\|_{\infty}\leq cin(x)x+[Kbc,1c+KbW1,c,12\displaystyle\left\|{\frac{\partial c^{in}(x)}{\partial x}}\right\|_{\infty}+[\|Kb\|_{\infty}\|c\|_{\infty,1}\|c\|_{\infty}+\|K\|_{\infty}\|b\|_{W^{1,\infty}}{\|c\|}^{2}_{\infty,1}
+KW1,c,1c]t+Kc,10tcxds,\displaystyle+\|K\|_{W^{1,\infty}}\|c\|_{\infty,1}\|c\|_{\infty}]t+\|K\|_{\infty}\|c\|_{\infty,1}\int_{0}^{t}\left\|\frac{\partial c}{\partial x}\right\|_{\infty}\,ds,

it has been written in a more coherent way

c(t)xΥ(t)+υ0tcx𝑑s,\displaystyle\left\|{\frac{\partial c(t)}{\partial x}}\right\|_{\infty}\leq\Upsilon(t)+\upsilon\int_{0}^{t}\left\|\frac{\partial c}{\partial x}\right\|_{\infty}\,ds,

where

Υ(t)=cin(x)x+[Kbc,1c+KbW1,c,12+KW1,c,1c]t,\Upsilon(t)=\left\|{\frac{\partial c^{in}(x)}{\partial x}}\right\|_{\infty}+[\|Kb\|_{\infty}\|c\|_{\infty,1}\|c\|_{\infty}+\|K\|_{\infty}\|b\|_{W^{1,\infty}}{\|c\|}^{2}_{\infty,1}+\|K\|_{W^{1,\infty}}\|c\|_{\infty,1}\|c\|_{\infty}]t,
υ=Kc,1.\upsilon=\|K\|_{\infty}\|c\|_{\infty,1}.

Beyond that, the use of Gronwall’s lemma and integration by parts establish the proof as follows

c(t)x\displaystyle\left\|{\frac{\partial c(t)}{\partial x}}\right\|_{\infty} Υ(t)+0tΥ(s)υestυ𝑑r𝑑s\displaystyle\leq\Upsilon(t)+\int_{0}^{t}\Upsilon(s)\upsilon e^{\int_{s}^{t}\upsilon\,dr}\,ds
Υ(0)eυt+(Kbc,1c+KbW1,c,12\displaystyle\leq\Upsilon(0)e^{\upsilon t}+(\|Kb\|_{\infty}\|c\|_{\infty,1}\|c\|_{\infty}+\|K\|_{\infty}\|b\|_{W^{1,\infty}}{\|c\|}^{2}_{\infty,1}
+KW1,c,1c)[(eυt1)].\displaystyle+\|K\|_{W^{1,\infty}}\|c\|_{\infty,1}\|c\|_{\infty})[(e^{\upsilon t}-1)].

Therefore

cxL((0,T)×( 0,R))H(T,R).\displaystyle\left\|{\frac{\partial c}{\partial x}}\right\|_{L^{\infty}((0,T)\times(\,0,R)\,)}\leq H(T,R).

It concludes the result (46). ∎

The discrete collisional birth-death term given as in (2) expressed like

BC(i)DC(i)=1Δxil=1Ij=iIKj,lcjnclnΔxjΔxlxi1/2pjib(x,xj,xl)𝑑xj=1IKi,jcincjnΔxj\displaystyle B_{C}(i)-D_{C}(i)=\frac{1}{\Delta x_{i}}\sum_{l=1}^{\mathrm{I}}\sum_{j=i}^{\mathrm{I}}K_{j,l}c^{n}_{j}c^{n}_{l}\Delta x_{j}\Delta x_{l}\int_{x_{i-1/2}}^{p_{j}^{i}}b(x,x_{j},x_{l})\,dx-\sum_{j=1}^{\mathrm{I}}K_{i,j}c^{n}_{i}c^{n}_{j}\Delta x_{j} (47)

The subsequent lemma offers a simplified version of the preceding discrete terms.

Lemma 4.3.

Consider the initial condition cinc^{in} Wloc1,\in W^{1,\infty}_{loc} and uniform mesh, Δxi=h\Delta x_{i}=h i\forall i. Also assuming that KK and bb follow the conditions K,bWloc1,.K,b\in W^{1,\infty}_{loc}. Let (s,x)τn×Λih(s,x)\in\tau_{n}\times\Lambda_{i}^{h}, where n{0,1,,N1},i{1,2,,I}n\in\{0,1,...,N-1\}\,,i\in\{1,2,...,\mathrm{I}\}.Then

BC(i)DC(i)=\displaystyle B_{C}(i)-D_{C}(i)= 0RΞh(x)RKh(y,z)bh(x,y,z)ch(s,y)ch(s,z)𝑑y𝑑z\displaystyle\int_{0}^{R}\int_{{\Xi}^{h}(x)}^{R}K^{h}(y,z)b^{h}(x,y,z)c^{h}(s,y)c^{h}(s,z)\,dydz
0RKh(x,y)ch(s,x)ch(s,y)𝑑y+ε(h),\displaystyle-\int_{0}^{R}K^{h}(x,y)c^{h}(s,x)c^{h}(s,y)\,dy+\varepsilon(h), (48)

In the strong L1L^{1} topology, ε(h)\varepsilon(h) defines the first order term with regard to hh:

ε(h)L1KbL2cinL12e2γRbLM1inTh.\displaystyle\|\varepsilon(h)\|_{L^{1}}\leq\frac{\|Kb\|_{L^{\infty}}}{2}{\|c^{in}\|}^{2}_{L^{1}}\,e^{2\gamma R\|b\|_{L^{\infty}}M_{1}^{in}T}h. (49)
Proof.

Initiate with a discrete birth term of Eq.(47) and convert it to a continuous form with a uniform mesh and xΛihx\in\Lambda_{i}^{h},

1Δxil=1Ij=iIKj,lcjnclnΔxjΔxlxi1/2pjib(x,xj,xl)𝑑x\displaystyle\frac{1}{\Delta x_{i}}\sum_{l=1}^{\mathrm{I}}\sum_{j=i}^{\mathrm{I}}K_{j,l}c^{n}_{j}c^{n}_{l}\Delta x_{j}\Delta x_{l}\int_{x_{i-1/2}}^{p_{j}^{i}}b(x,x_{j},x_{l})\,dx
=l=1Ij=i+1IKj,lcjnclnΔxjΔxl1Δxixi1/2xi+1/2b(x,xj,xl)𝑑x+l=1IKi,lcinclnΔxlxi1/2xib(x,xi,xl)𝑑x\displaystyle=\sum_{l=1}^{\mathrm{I}}\sum_{j=i+1}^{\mathrm{I}}K_{j,l}c^{n}_{j}c^{n}_{l}\Delta x_{j}\Delta x_{l}\frac{1}{\Delta x_{i}}\int_{x_{i-1/2}}^{x_{i+1/2}}b(x,x_{j},x_{l})\,dx+\sum_{l=1}^{\mathrm{I}}K_{i,l}c^{n}_{i}c^{n}_{l}\Delta x_{l}\int_{x_{i-1/2}}^{x_{i}}b(x,x_{i},x_{l})\,dx
=0RΞh(x)RKh(y,z)bh(x,y,z)ch(s,y)ch(s,z)𝑑y𝑑z+ε(h),\displaystyle=\int_{0}^{R}\int_{{\Xi}^{h}(x)}^{R}K^{h}(y,z)b^{h}(x,y,z)c^{h}(s,y)c^{h}(s,z)\,dydz+\varepsilon(h), (50)

where ε(h)=l=1IKi,lcinclnΔxlxi1/2xib(x,xi,xl)𝑑x\varepsilon(h)=\sum_{l=1}^{\mathrm{I}}K_{i,l}c^{n}_{i}c^{n}_{l}\Delta x_{l}\int_{x_{i-1/2}}^{x_{i}}b(x,x_{i},x_{l})\,dx is defined. Calculating the L1L^{1} norm of ε(h)\varepsilon(h) leads to the following term

ε(𝔽,h)L1\displaystyle\|\varepsilon(\mathbb{F},h)\|_{L^{1}} KbLi=1IcinΔxil=1IclnΔxlxi1/2xi𝑑x\displaystyle\leq\|Kb\|_{L^{\infty}}\sum_{i=1}^{\mathrm{I}}c_{i}^{n}\Delta x_{i}\sum_{l=1}^{\mathrm{I}}c_{l}^{n}\Delta x_{l}\int_{x_{i-1/2}}^{x_{i}}\,dx
KbL2(i=1IcinΔxi)2h\displaystyle\leq\frac{\|Kb\|_{L^{\infty}}}{2}{\big{(}\sum_{i=1}^{\mathrm{I}}c_{i}^{n}\Delta x_{i}}\big{)}^{2}h
KbL2cinL12e2γRbLM1inTh.\displaystyle\leq\frac{\|Kb\|_{L^{\infty}}}{2}{\|c^{in}\|}^{2}_{L^{1}}\,e^{2\gamma R\|b\|_{L^{\infty}}M_{1}^{in}T}h.

Now, taking the discrete death term of (47)

j=1IKi,jcincjnΔxj=0RKh(x,y)ch(s,x)ch(s,y)𝑑y.\displaystyle\sum_{j=1}^{\mathrm{I}}K_{i,j}c^{n}_{i}c^{n}_{j}\Delta x_{j}=\int_{0}^{R}K^{h}(x,y)c^{h}(s,x)c^{h}(s,y)\,dy. (51)

Using the formula (4.3), Eq.(6) and Eq.(2), lead to error formulation for tτnt\in\tau_{n} as

0R|ch(t,x)c(t,x)|𝑑x0R|ch(0,x)c(0,x)|𝑑x+β=13(CB)β(h)\displaystyle\int_{0}^{R}|c^{h}(t,x)-c(t,x)|dx\leq\int_{0}^{R}|c^{h}(0,x)-c(0,x)|dx+\sum_{\beta=1}^{3}(CB)_{\beta}(h)
+0R|ϵ(t,n)|𝑑x+ε(h)L1t,\displaystyle+\int_{0}^{R}|\epsilon(t,n)|\,dx+\|\varepsilon(h)\|_{L^{1}}t, (52)

where error terms are expressed by (CB)β(h)(CB)_{\beta}(h) for β=1,2,3\beta=1,2,3

(CB)1(h)=0t0R0RΞh(x)R|Kh(y,z)bh(x,y,z)ch(s,y)ch(s,z)\displaystyle(CB)_{1}(h)=\int_{0}^{t}\int_{0}^{R}\int_{0}^{R}\int_{\Xi^{h}(x)}^{R}|K^{h}(y,z)b^{h}(x,y,z)c^{h}(s,y)c^{h}(s,z)
K(y,z)b(x,y,z)c(s,y)c(s,z)|dydzdxds,\displaystyle-K(y,z)b(x,y,z)c(s,y)c(s,z)|\,dy\,dz\,dx\,ds,
(CB)2(h)=0t0R0RxΞh(x)K(y,z)b(x,y,z)c(s,y)c(s,z)𝑑y𝑑z𝑑x𝑑s,\displaystyle(CB)_{2}(h)=\int_{0}^{t}\int_{0}^{R}\int_{0}^{R}\int_{x}^{\Xi^{h}(x)}K(y,z)b(x,y,z)c(s,y)c(s,z)\,dy\,dz\,dx\,ds,

and

(CB)3(h)=0t0R0R|Kh(x,y)ch(s,x)ch(s,y)K(x,y)c(s,x)c(s,y)|𝑑y𝑑x𝑑s.\displaystyle(CB)_{3}(h)=\int_{0}^{t}\int_{0}^{R}\int_{0}^{R}|K^{h}(x,y)c^{h}(s,x)c^{h}(s,y)-K(x,y)c(s,x)c(s,y)|\,dy\,dx\,ds.

Considering |ttn|Δt|t-t_{n}|\leq\Delta t, the time discretization provides the following expression

0R|ϵ(t,n)|𝑑x\displaystyle\int_{0}^{R}|\epsilon(t,n)|\,dx\leq tnt0R0RΞh(x)RKh(y,z)bh(x,y,z)ch(s,y)ch(s,z)𝑑y𝑑z𝑑x𝑑s\displaystyle\int_{t_{n}}^{t}\int_{0}^{R}\int_{0}^{R}\int_{\Xi^{h}(x)}^{R}K^{h}(y,z)b^{h}(x,y,z)c^{h}(s,y)c^{h}(s,z)\,dy\,dz\,dx\,ds
+tnt0R0RKh(x,y)ch(s,x)ch(s,y)𝑑y𝑑x𝑑s\displaystyle+\int_{t_{n}}^{t}\int_{0}^{R}\int_{0}^{R}K^{h}(x,y)c^{h}(s,x)c^{h}(s,y)\,dy\,dx\,ds
+tnt0Rε(h)𝑑x𝑑s.\displaystyle+\int_{t_{n}}^{t}\int_{0}^{R}\varepsilon(h)\,dx\,ds.

Given K,bWloc1,K,b\in W_{loc}^{1,\infty}, we have x,y(0,R]x,y\in(0,R] for

|Kh(x,y)K(x,y)|KW1,h.|K^{h}(x,y)-K(x,y)|\leq\|K\|_{W^{1,\infty}}h.

As a result, it produces an estimate of (CB)1(h)(CB)_{1}(h) using the L1L^{1} bound on chc^{h} and cc. To begin, divide the expression into four segments

(CB)1(h)\displaystyle(CB)_{1}(h)\leq 0t0R0R0R|Kh(y,z)K(y,z)|b(x,y,z)c(s,y)c(s,z)𝑑y𝑑z𝑑x𝑑s\displaystyle\int_{0}^{t}\int_{0}^{R}\int_{0}^{R}\int_{0}^{R}|K^{h}(y,z)-K(y,z)|b(x,y,z)c(s,y)c(s,z)\,dy\,dz\,dx\,ds
+0t0R0R0RKh(y,z)|bh(x,y,z)b(x,y,z)|c(s,y)c(s,z)𝑑y𝑑z𝑑x𝑑s\displaystyle+\int_{0}^{t}\int_{0}^{R}\int_{0}^{R}\int_{0}^{R}K^{h}(y,z)|b^{h}(x,y,z)-b(x,y,z)|c(s,y)c(s,z)\,dy\,dz\,dx\,ds
+0t0R0R0RKh(y,z)bh(x,y,z)|ch(s,y)c(s,y)|c(s,z)𝑑y𝑑z𝑑x𝑑s\displaystyle+\int_{0}^{t}\int_{0}^{R}\int_{0}^{R}\int_{0}^{R}K^{h}(y,z)b^{h}(x,y,z)|c^{h}(s,y)-c(s,y)|c(s,z)\,dy\,dz\,dx\,ds
+0t0R0R0RKh(y,z)bh(x,y,z)ch(s,y)|ch(s,z)c(s,z)|𝑑y𝑑z𝑑x𝑑s.\displaystyle+\int_{0}^{t}\int_{0}^{R}\int_{0}^{R}\int_{0}^{R}K^{h}(y,z)b^{h}(x,y,z)c^{h}(s,y)|c^{h}(s,z)-c(s,z)|\,dy\,dz\,dx\,ds.

By simplifying and employing Proposition (4.2), the above may be transformed to

(CB)1(h)\displaystyle(CB)_{1}(h) (KW1,b+KbW1,)tR3c2h\displaystyle\leq(\|K\|_{W^{1,\infty}}\|b\|_{\infty}+\|K\|_{\infty}\|b\|_{W^{1,\infty}})tR^{3}{\|c\|}^{2}_{\infty}h
+R2Kb(c+ch)0tch(s)c(s)L1𝑑s,\displaystyle+R^{2}\|K\|_{\infty}\|b\|_{\infty}(\|c\|_{\infty}+\|c^{h}\|_{\infty})\int_{0}^{t}\|c^{h}(s)-c(s)\|_{L^{1}}\,ds, (53)

similar estimation for (CB)3(h)(CB)_{3}(h)

(CB)3(h)KW1,tR2c2h+RK(c+ch)0tch(s)c(s)L1𝑑s.\displaystyle(CB)_{3}(h)\leq\|K\|_{W^{1,\infty}}tR^{2}{\|c\|}^{2}_{\infty}h+R\|K\|_{\infty}(\|c\|_{\infty}+\|c^{h}\|_{\infty})\int_{0}^{t}\|c^{h}(s)-c(s)\|_{L^{1}}\,ds. (54)

Moving on to the remaining terms, (CB)2(h)(CB)_{2}(h) and 0R|ϵ(t,n)|𝑑x\int_{0}^{R}|\epsilon(t,n)|\,dx, it is clear that

(CB)2(h)tR22Kbc2h,\displaystyle(CB)_{2}(h)\leq\frac{tR^{2}}{2}\|Kb\|_{\infty}{\|c\|}^{2}_{\infty}h, (55)

and

0R|ϵ(t,n)|𝑑x(Kbch2R3+Kch2R2+ϵ(h)L1)Δt.\displaystyle\int_{0}^{R}|\epsilon(t,n)|\,dx\leq(\|Kb\|_{\infty}{\|c^{h}\|}^{2}_{\infty}R^{3}+\|K\|_{\infty}{\|c^{h}\|}^{2}_{\infty}R^{2}+\|\epsilon(h)\|_{L^{1}})\Delta t. (56)

Furthermore, substituting all of the estimations (4)-(56) in (4) and applying the Gronwall’s lemma to conclude the result in (45). ∎

5 Numerical Testing

In this part of the article, the discussion over experimental error and experimental order of convergence (EOC) has been concluded for three combinations of collision kernel and breakage distribution function. As we are aware that the kernels must exist in Wloc1,W^{1,\infty}_{loc} space for error estimation with uniform meshes. In two cases, no theoretical results are available in the literature. To test this problem’s theoretical error estimation, we have elected three cases with exponential initial condition (IC) c(0,x)=exp(x)c(0,x)=\exp(-x). To validate the result, the following collision kernel (KK), breakage distribution function (bb) and IC combinations are used:

Test case 1: K(y,z)=1,b(x,y,z)=(+2)x(y)+1,1<0K(y,z)=1,b(x,y,z)=\frac{(\aleph+2)x^{\aleph}}{(y)^{\aleph+1}},-1<\aleph\leq 0 with =0\aleph=0.
Test case 2: K(y,z)=y+z,b(x,y,z)=(+2)x(y)+1,1<0K(y,z)=y+z,b(x,y,z)=\frac{(\aleph+2)x^{\aleph}}{(y)^{\aleph+1}},-1<\aleph\leq 0 with =0\aleph=0.
Test case 3: K(y,z)=y+z,b(x,y,z)=δ(x0.4y)+δ(x0.6y)K(y,z)=y+z,b(x,y,z)=\delta(x-0.4y)+\delta(x-0.6y).

The experimental domain of volume is [1e-3, 10] discretized into 30,60,120,240, and 480 cells and computations run from time 0 to 0.2. In order to observe the EOC of the FVS in each cell of the computational domain, the following relation is used to estimate result:

EOC=ln(NIN2IN2IN4I)/ln(2).\displaystyle EOC=\ln\left(\frac{\|N_{\mathrm{I}}-N_{2\mathrm{I}}\|}{\|N_{2\mathrm{I}}-N_{4\mathrm{I}}\|}\right)/\ln(2). (57)

Here, NIN_{\mathrm{I}} denotes the total number of particles generated by the FVS (2) with a mesh of I\mathrm{I} number of cells.

Cells Error EOC
30 - -
60 0.4377×104\times 10^{-4} -
120 0.2047×104\times 10^{-4} 1.0963
240 0.0989×104\times 10^{-4} 1.0501
480 0.0485×104\times 10^{-4} 1.0265
Table 1: Test case 1
Cells Error EOC
30 - -
60 0.4879×104\times 10^{-4} -
120 0.2196×104\times 10^{-4} 1.1515
240 0.1032×104\times 10^{-4} 1.0901
480 0.0498×104\times 10^{-4} 1.0497
Table 2: Test case 2
Cells Error EOC
30 - -
60 0.4309×104\times 10^{-4} -
120 0.2023×104\times 10^{-4} 1.0905
240 0.0981×104\times 10^{-4} 1.0452
480 0.0483×104\times 10^{-4} 1.0226
Table 3: Test case 3

Tables 1, 2 and 3 represent the error and EOC for uniform mesh. In addition, The numerical errors are measured using  30, 60, 120, 240, and 480  cells, and the scheme provides the error in decreasing mode. The tables depict that the FVS yields first-order convergence, as predicted by theoretical results in section 4.

6 Conclusion

This article proposes the finite volume scheme for the collisional breakage equation for the non-uniform mesh. It yields a non-conservative scheme, for which a weak convergence analysis has been executed with unbounded collision and breakage distribution kernels. Where numerical truncated solution convergences to a weak solution of the problem. It is accomplished in the presence of the Weak L1L^{1} compactness method based on Dunford-Pettis and La Valle´\acute{e}e Poussin theorems. In addition, explicit error estimation of the method is also explored for the locally bounded kernels. It has been demonstrated that the FVS is first-order accurate for uniform meshes. Moreover, We also compared experimental result to theoretical result for various combinations of collision kernel and breakage distribution function.

References

  • [1] R. B. Diemer, “Applications of the linear mass-sectional breakage population balance to various milling process configurations,” AAPS PharmSciTech, vol. 22, no. 3, pp. 1–17, 2021.
  • [2] G. Danha, D. Hildebrandt, D. Glasser, and C. Bhondayi, “Application of basic process modeling in investigating the breakage behavior of ug2 ore in wet milling,” Powder Technology, vol. 279, pp. 42–48, 2015.
  • [3] A. Spampinato and D. Axinte, “On modelling the interaction between two rotating bodies with statistically distributed features: an application to dressing of grinding wheels,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2208, p. 20170466, 2017.
  • [4] S. Chen and S. Li, “Collision-induced breakage of agglomerates in homogenous isotropic turbulence laden with adhesive particles,” Journal of Fluid Mechanics, vol. 902, 2020.
  • [5] I. Kudzotsa, Mechanisms of aerosol indirect effects on glaciated clouds simulated numerically. University of Leeds, 2013.
  • [6] J.-I. Yano, V. T. Phillips, and V. Kanawade, “Explosive ice multiplication by mechanical break-up in ice–ice collisions: a dynamical system-based study,” Quarterly Journal of the Royal Meteorological Society, vol. 142, no. 695, pp. 867–879, 2016.
  • [7] B. Crüger, V. Salikov, S. Heinrich, S. Antonyuk, V. S. Sutkar, N. G. Deen, and J. Kuipers, “Coefficient of restitution for particles impacting on wet surfaces: An improved experimental approach,” Particuology, vol. 25, pp. 1–9, 2016.
  • [8] K. F. Lee, M. Dosta, A. D. McGuire, S. Mosbach, W. Wagner, S. Heinrich, and M. Kraft, “Development of a multi-compartment population balance model for high-shear wet granulation with discrete element method,” Computers & Chemical Engineering, vol. 99, pp. 171–184, 2017.
  • [9] Z. Cheng and S. Redner, “Scaling theory of fragmentation,” Physical review letters, vol. 60, no. 24, p. 2450, 1988.
  • [10] R. M. Ziff, “New solutions to the fragmentation equation,” Journal of Physics A: Mathematical and General, vol. 24, no. 12, p. 2821, 1991.
  • [11] T. W. Peterson, “Similarity solutions for the population balance equation describing particle fragmentation,” Aerosol science and technology, vol. 5, no. 1, pp. 93–101, 1986.
  • [12] G. Breschi and M. A. Fontelos, “A note on the self-similar solutions to the spontaneous fragmentation equation,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2201, p. 20160740, 2017.
  • [13] E. S. Hosseininia and A. Mirghasemi, “Numerical simulation of breakage of two-dimensional polygon-shaped particles using discrete element method,” Powder Technology, vol. 166, no. 2, pp. 100–112, 2006.
  • [14] J. Kumar and G. Warnecke, “Convergence analysis of sectional methods for solving breakage population balance equations-i: The fixed pivot technique,” Numerische Mathematik, vol. 111, no. 1, pp. 81–108, 2008.
  • [15] P. K. Barik and A. K. Giri, “A note on mass-conserving solutions to the coagulation-fragmentation equation by using non-conservative approximation,” arXiv preprint arXiv:1802.08038, 2018.
  • [16] D. Ghosh and J. Kumar, “Existence of mass conserving solution for the coagulation–fragmentation equation with singular kernel,” Japan Journal of Industrial and Applied Mathematics, vol. 35, no. 3, pp. 1283–1302, 2018.
  • [17] J. Saha and J. Kumar, “The singular coagulation equation with multiple fragmentation,” Zeitschrift für angewandte Mathematik und Physik, vol. 66, no. 3, pp. 919–941, 2015.
  • [18] M. M. Attarakih, C. Drumm, and H.-J. Bart, “Solution of the population balance equation using the sectional quadrature method of moments (sqmom),” Chemical Engineering Science, vol. 64, no. 4, pp. 742–752, 2009.
  • [19] N. Ahmed, G. Matthies, and L. Tobiska, “Stabilized finite element discretization applied to an operator-splitting method of population balance equations,” Applied Numerical Mathematics, vol. 70, pp. 58–79, 2013.
  • [20] Y. Lin, K. Lee, and T. Matsoukas, “Solution of the population balance equation using constant-number monte carlo,” Chemical Engineering Science, vol. 57, no. 12, pp. 2241–2252, 2002.
  • [21] R. Kumar, J. Kumar, and G. Warnecke, “Moment preserving finite volume schemes for solving population balance equations incorporating aggregation, breakage, growth and source terms,” Mathematical Models and Methods in Applied Sciences, vol. 23, no. 07, pp. 1235–1273, 2013.
  • [22] J.-P. Bourgade and F. Filbet, “Convergence of a finite volume scheme for coagulation-fragmentation equations,” Mathematics of Computation, vol. 77, no. 262, pp. 851–882, 2008.
  • [23] L. Forestier-Coste and S. Mancini, “A finite volume preserving scheme on nonuniform meshes and for multidimensional coalescence,” SIAM Journal on Scientific Computing, vol. 34, no. 6, pp. B840–B860, 2012.
  • [24] P. Laurençot and D. Wrzosek, “The discrete coagulation equations with collisional breakage,” Journal of Statistical Physics, vol. 104, no. 1, pp. 193–220, 2001.
  • [25] C. Walker, “Coalescence and breakage processes,” Mathematical methods in the applied sciences, vol. 25, no. 9, pp. 729–748, 2002.
  • [26] P. K. Barik and A. K. Giri, “Global classical solutions to the continuous coagulation equation with collisional breakage,” Zeitschrift für angewandte Mathematik und Physik, vol. 71, no. 1, pp. 1–23, 2020.
  • [27] Z. Cheng and S. Redner, “Kinetics of fragmentation,” Journal of Physics A: Mathematical and General, vol. 23, no. 7, p. 1233, 1990.
  • [28] M. H. Ernst and I. Pagonabarraga, “The nonlinear fragmentation equation,” Journal of Physics A: Mathematical and Theoretical, vol. 40, no. 17, p. F331, 2007.
  • [29] P. Krapivsky and E. Ben-Naim, “Shattering transitions in collision-induced fragmentation,” Physical Review E, vol. 68, no. 2, p. 021102, 2003.
  • [30] A. K. Giri and P. Laurençot, “Weak solutions to the collision-induced breakage equation with dominating coagulation,” Journal of Differential Equations, vol. 280, pp. 690–729, 2021.
  • [31] P. Laurençot and S. Mischler, “The continuous coagulation-fragmentation equatons with diffusion,” Archive for rational mechanics and analysis, vol. 162, no. 1, pp. 45–99, 2002.