This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Rong Lei 22institutetext: Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan, 22email: lei.rong.e3@tohoku.ac.jp

Convergence of a particle method for gradient flows on the LpL^{p}-Wasserstein space

Rong Lei\orcidID0009-0006-5622-6051
Abstract

We study the particle method to approximate the gradient flow on the LpL^{p}-Wasserstein space. This method relies on the discretization of the energy introduced by CPSW via nonoverlapping balls centered at the particles and preserves the gradient flow structure at the particle level. We prove the convergence of the discrete gradient flow to the continuum gradient flow on the LpL^{p}-Wasserstein space over \mathbb{R}, specifically to the doubly nonlinear diffusion equation in one dimension.

1 Introduction

In 1998, Jordan, Kinderlehrer and Otto JKO found that entropy is the natural free energy functional in the study of Fokker-Planck equations in non-equilibrium statistical mechanics and proved the Fokker-Planck equation can be viewed as a steepest descent for the associated free energy with respect to the L2L^{2}-Wasserstein metric by using the minimizing movements method introduced by De Giorgi DeG . In 2001, Otto Otto2001 established the infinite dimensional Riemannian geometric structure on the L2L^{2}-Wasserstein space and proved that the heat equation and the porous medium equation (or the fast diffusion equation) on Euclidean space are the gradient flows of the Boltzmann entropy and the Rényi entropy, respectively, on the L2L^{2}-Wasserstein space with the infinite dimensional Riemannian metric introduced in Otto2001 . More generally, the gradient flow of energy E=nH(ρ(x))𝑑xE=\int_{\mathbb{R}^{n}}H(\rho(x))dx on the L2L^{2}-Wasserstein space has the form of continuity equation tρ+(ρv)=0\partial_{t}\rho+\nabla\cdot(\rho v)=0 with the vector field vv given by v=δHδρv=\nabla\frac{\delta H}{\delta\rho}, where δHδρ=H(ρ){\frac{\delta H}{\delta\rho}}=H^{\prime}(\rho) is the L2L^{2}-derivative of HH. See e.g. AGS ; V1 ; V2 .

Using De Giorgi’s minimizing movements method, a differentiable structure on the underlying space is not required to define the gradient flow, allowing it to be established on general metric spaces (see AGS ). Consequently, gradient flows can be defined on the LpL^{p}-Wasserstein space—the space of all probability measures with finite pp-th moment, equipped with the WpW_{p}-distance. A notable example of the gradient flow on the LpL^{p}-Wasserstein space is the following Leibenson’s equation (see Leib ; IMJ ; Vazquez )

tu=Δquγ,q>1,γ>0,\partial_{t}u=\Delta_{q}u^{\gamma},\quad q>1,\gamma>0, (1)

which describe the filtration of turbulent compressible fluid through a porous medium, where 1p+1q=1\frac{1}{p}+\frac{1}{q}=1 and the parameter qq characterizes the turbulence of the flow while γ1\gamma-1 is the index of polytropy of the fluid which determines the relation PVγ1=constPV^{\gamma-1}=const between volume VV and pressure PP. Equation (1) is a so-called doubly nonlinear diffusion equation. Particularly, when γ=1\gamma=1, it becomes the qq-heat equation

tu=Δqu,\partial_{t}u=\Delta_{q}u, (2)

where Δqu:=(|u|q2u)\Delta_{q}u:=\nabla\cdot\left(|\nabla u|^{q-2}\nabla u\right). In general, the gradient flow of nH(ρ(x))𝑑x\int_{\mathbb{R}^{n}}H(\rho(x))dx on LpL^{p}-Wasserstein space is formally given by

{tρ+(ρ|φ|q2φ)=0,φ=H(ρ).\begin{cases}\partial_{t}\rho+\nabla\cdot\left(\rho|\nabla\varphi|^{q-2}\nabla\varphi\right)=0,\\ \nabla\varphi=-\nabla H^{\prime}(\rho).\end{cases} (3)

For the rigorous definition, see Section 2. In view of this, the energy corresponding to (1) is given by

E(u)=γ(γ+1p)(γ+2p)nu(x)γ+2p𝑑x.E(u)=\frac{\gamma}{(\gamma+1-p)(\gamma+2-p)}\int_{\mathbb{R}^{n}}u(x)^{\gamma+2-p}dx. (4)

The discrete approximation to the doubly nonlinear degenerate parabolic equations such as (1) is intensively studied. For example, see EH ; ABK and the reference therein. See also DEGH for the gradient discretization method based on some discrete spaces and mappings for nonlinear and nonlocal parabolic equations. In RMS , Rossi-Mielke-Savaré studied the approximation scheme by time discretization to approach the abstract doubly nonlinear equations in reflexive Banach spaces. On the other hand, in the perspective of gradient flows, Serfaty Serfaty proved the Γ\Gamma-convergence of gradient flows on metric spaces. By using this result, Carrillo-Patacchini-Sternberg-Wolansky CPSW proved the convergence of a particle method to approximate the solutions to the continuum gradient flow on the L2L^{2}-Wasserstein space, which restrict the continuum gradient flow to the discrete setting of atomic measures, while keeping the gradient flow structure at the discrete level via a suitable approximation of the energy on finite numbers of Dirac masses. The numerical study of this method is also discussed by Carrillo-Huang-Patacchini-Wolansky in CHPW . The aim of this paper is to extend this particle method to the approximation of the gradient flows on the LpL^{p}-Wasserstein space.

Denote Ωd\Omega^{d} either the closure of a bounded connected domain of d\mathbb{R}^{d} or d\mathbb{R}^{d} itself (we simply write Ω\Omega when d=1d=1). Let us consider the energy functional E:𝒫p(Ωd)(,+]E:\mathcal{P}_{p}(\Omega^{d})\to(-\infty,+\infty] is given by

E(μ)={ΩdH(ρ(x))𝑑x, if μ=ρdx𝒫p,ac(Ωd),+, otherwise ,E(\mu)=\left\{\begin{aligned} &\int_{\Omega^{d}}H(\rho(x))dx,&\text{ if }\mu=\rho dx\in\mathcal{P}_{p,ac}(\Omega^{d}),\\ &+\infty,&\text{ otherwise },\end{aligned}\right. (5)

where 𝒫p,ac(Ωd)\mathcal{P}_{p,ac}(\Omega^{d}) denotes the space of all probability measures on Ωd\Omega^{d} with density functions with respect to the Lebesgue measure dxdx and with finite pp-th moment where p>1p>1. Moreover, we assume that HH satisfies the following hypothesis:

Hypothesis 1.1

Assume HH is a proper, convex, non-negative function in C((0,))C0([0,))C^{\infty}\left((0,\infty)\right)\cap C^{0}\left([0,\infty)\right) with superlinear growth at infinity and H(0)=0H(0)=0. Moreover,

  • HH satisfies the doubling condition: there exists a constant A>0A>0 such that

    H(x+y)A(1+H(x)+H(y)),x,y[0,+).H(x+y)\leq A(1+H(x)+H(y)),\quad\forall x,y\in[0,+\infty).
  • The function h:xxdH(xd)h:x\mapsto x^{d}H(x^{-d}) is strictly convex and non-increasing on (0,+)(0,+\infty).

Note that the property of superlinear growth at infinity implies that EE is lower semi-continuous with respect to the narrow convergence, see (AGS, , Remark 9.3.8). The assumption that H(0)=0H(0)=0 and hh is convex and non-increasing implies that the energy EE is displacement convex, which is introduced by McCann McCann1997 , see also AGS ; V1 ; V2 .

Hypothesis 1.2

H′′>0H^{\prime\prime}>0 for all x(0,+)x\in(0,+\infty) and there exists a continuous function f:(0,+)[0,+)f:(0,+\infty)\to[0,+\infty) such that f(1)=1f(1)=1 and

H′′(αx)f(α)H′′(x) for all x,α(0,+).H^{\prime\prime}(\alpha x)\geq f(\alpha)H^{\prime\prime}(x)\quad\text{ for all }x,\alpha\in(0,+\infty).

Note that the typical energy (4) with γ+1p>0\gamma+1-p>0 satisfies both Hypothesis 1.1 and Hypothesis 1.2.

The rest of this paper is organized as follows. In Section 2, we introduce some notations and give the necessary background to introduce the continuum gradient flow and discrete gradient flow. In Section 3, we state the main result and then prove it. In Section 4, we prove the Γ\Gamma-convergence of the discrete energy.

2 Notations and Preliminaries

We first recall some basic knowledge about the Wasserstein space and the curve of maximal slope which is used to define the gradient flow.

Let (X,d)(X,d) be a Polish space. For p1p\geq 1, the space of all probability measures on XX with finite pp-th moment is denoted by 𝒫p(X)\mathcal{P}_{p}(X). The (pp-th) Wasserstein distance between two probability measures μ,ν𝒫p(X)\mu,\nu\in\mathcal{P}_{p}(X) is given by

Wp(μ,ν):=infπ{X×Xd(x,y)p𝑑π(x,y)}1p,W_{p}(\mu,\nu):=\inf_{\pi}\left\{\int_{X\times X}d(x,y)^{p}d\pi(x,y)\right\}^{\frac{1}{p}},

where

π(μ,ν)={π𝒫(X×X):π(,X)=μ,π(X,)=ν}.\pi\in\prod(\mu,\nu)=\left\{\pi\in\mathcal{P}(X\times X):\pi(\cdot,X)=\mu,\pi(X,\cdot)=\nu\right\}.

We call (𝒫p(X),Wp)(\mathcal{P}_{p}(X),W_{p}) the LpL^{p}-Wasserstein space (or briefly WpW_{p} space). Moreover, when the probability measures have smooth densities with respect to some reference measure dmdm, we denote the space by 𝒫p(X,dm)\mathcal{P}_{p}^{\infty}(X,dm). Note that (𝒫p(X),Wp)(\mathcal{P}_{p}(X),W_{p}) is a complete metric space if XX is complete. For more properties of the Wasserstein space, one can refer to AGS ; V1 ; V2 .

For the case of p=2p=2, Otto Otto2001 introduced the tangent space and the Riemannian metric on the L2L^{2}-Wasserstein space, which make the L2L^{2}-Wasserstein space becomes an infinite dimensional Riemannian manifold. In general, for p1p\geq 1, the tangent space of 𝒫p(n):=𝒫p(n,dx)\mathcal{P}^{\infty}_{p}(\mathbb{R}^{n}):=\mathcal{P}^{\infty}_{p}(\mathbb{R}^{n},dx) can be defined as

Tρdx𝒫p(n)={s=(ρ|ϕ|q2ϕ):ϕC(n),n|ϕ(x)|qρ(x)dx<},T_{\rho dx}\mathcal{P}_{p}^{\infty}(\mathbb{R}^{n})=\left\{s=-\nabla\cdot(\rho|\nabla\phi|^{q-2}\nabla\phi):\phi\in C^{\infty}(\mathbb{R}^{n}),\int_{\mathbb{R}^{n}}|\nabla\phi(x)|^{q}\rho(x)dx<\infty\right\},

where qq is the conjugate exponent of pp, i.e., 1p+1q=1\frac{1}{p}+\frac{1}{q}=1. That is the tangent space of 𝒫p(n)\mathcal{P}_{p}(\mathbb{R}^{n}) can be identified as (see AGS )

Tμ𝒫p(n):={jq(ϕ):ϕCc(n)}¯Lp(n,dμ),T_{\mu}\mathcal{P}_{p}(\mathbb{R}^{n}):=\overline{\left\{j_{q}\left(\nabla\phi\right):\phi\in C_{c}^{\infty}(\mathbb{R}^{n})\right\}}^{L^{p}(\mathbb{R}^{n},d\mu)},

where jq:Lq(n,dμ)Lp(n,dμ)j_{q}:L^{q}(\mathbb{R}^{n},d\mu)\to L^{p}(\mathbb{R}^{n},d\mu) is defined by

vjq(v)={|v|q2v, if v0,0, if v=0.v\mapsto j_{q}(v)=\left\{\begin{aligned} &|v|^{q-2}v&,\quad\text{ if }v\neq 0,\\ &0&,\quad\text{ if }v=0.\end{aligned}\right.

Let EE be the energy given by (5). If EE is regular enough, in view of the definition of the tangent space, the gradient flow on 𝒫p(n)\mathcal{P}_{p}(\mathbb{R}^{n}) can be defined by a solution to

jp(vt)=E(ρt).j_{p}(v_{t})=-\nabla E(\rho_{t}).

That is the gradient flow is given by (3). In general, the gradient flow can be defined with the notion of subdifferential. See Definition 7 below. On the other hand, as mentioned in CPSW , the gradient flow formulation given in (3) is not the one allows the use of (Serfaty, , Theorem 2), which is the key tool of our proof. Thus we employ a more weaker notation of gradient flows which only uses a metric structure. The notion replacing gradient flows is then that of “curves of maximal slope”, which was introduced in DeGMT . We follow here the self-contained presentation in AGS . In the following, let (X,d)(X,d) be a complete metric space. ϕ\phi denotes a proper functional from XX to {+}\mathbb{R}\cup\{+\infty\}, i.e.

D(ϕ):={xX:ϕ(x)<+},D(\phi):=\left\{x\in X:\phi(x)<+\infty\right\}\neq\emptyset,

and II denotes a bounded subinterval of \mathbb{R}.

Definition 1 (Absolute continuity)

We say that v:IXv:I\rightarrow X is a pp-absolutely continuous curve if there exists mLp(I)m\in L^{p}(I) such that

d(v(t),v(τ))τtm(s)𝑑s for all τ,tI with τt.d(v(t),v(\tau))\leq\int_{\tau}^{t}m(s)ds\quad\text{ for all }\tau,t\in I\text{ with }\tau\leq t.

In this case we denote vACp(I,X)v\in AC^{p}(I,X) and vAC(I,X)v\in AC(I,X) if p=1p=1.

Definition 2 (Metric derivative)

Let v:IXv:I\rightarrow X be a pp-absolutely continuous curve, then

|v|d(t):=limτtd(v(τ),v(t))|τt|\left|v^{\prime}\right|_{d}(t):=\lim_{\tau\rightarrow t}\frac{d(v(\tau),v(t))}{|\tau-t|}

exists for almost every tIt\in I and is called the metric derivative of vv. Moreover, |v|d\left|v^{\prime}\right|_{d} is the smallest admissible function mm in Definition 1.

Note that vACp(I,X)v\in AC^{p}(I,X) is equivalent to |v|dLp(I,X)|v^{\prime}|_{d}\in L^{p}(I,X).

Definition 3 (Strong upper gradient)

We call g:X[0,+]g:X\rightarrow[0,+\infty] a strong upper gradient for ϕ\phi if for every vAC(I,X)v\in AC(I,X), we have that gvg\circ v is a Borel function and

|ϕ(v(t))ϕ(v(τ))|τtg(v(s))|v|d(s)ds for all τ,tI with τt.|\phi(v(t))-\phi(v(\tau))|\leq\int_{\tau}^{t}g(v(s))\left|v^{\prime}\right|_{d}(s)\mathrm{d}s\quad\text{ for all }\tau,t\in I\text{ with }\tau\leq t.

A candidate to be an upper gradient of ϕ\phi is its slope:

Definition 4 (Local slope)

We define the local slope of ϕ\phi at vD(ϕ)v\in D(\phi) by

|ϕ|(v)=lim supwv(ϕ(v)ϕ(w))+d(v,w),|\partial\phi|(v)=\limsup_{w\rightarrow v}\frac{(\phi(v)-\phi(w))_{+}}{d(v,w)},

where the subscript ++ denotes the positive part.

If ϕ\phi is λ\lambda-geodesically convex for some λ\lambda\in\mathbb{R} and lower semi-continuous, then the local slope |ϕ||\partial\phi| is a strong upper gradient for ϕ\phi. See (AGS, , Corollary 2.4.10). The energy functional (5) satisfying Hypothesis 1.1 is 0-geodesically convex on the LpL^{p}-Wasserstein space. Thus |E||\partial E| is a strong upper gradient for EE.

Definition 5 (Curve of maximal slope)

Let gg be a strong upper gradient for ϕ\phi. We say that vACp(I,X)v\in AC^{p}(I,X) is a pp-curve of maximal slope for ϕ\phi with respect to gg, if ϕv\phi\circ v is almost everywhere equal to a non-increasing function φ\varphi and

φ(t)1p|v|d(t)p1qg(v(t))q for almost every tI,\varphi^{\prime}(t)\leq-\frac{1}{p}\left|v^{\prime}\right|_{d}(t)^{p}-\frac{1}{q}g(v(t))^{q}\quad\text{ for almost every }t\in I,

where qq is the conjugate exponent of pp.

Remark 1

When vv is a pp-curve of maximal slope for a strong upper gradient gg, we have gv|v|dL1(I)g\circ v|v^{\prime}|_{d}\in L^{1}(I), ϕvAC(I,{+})\phi\circ v\in AC(I,\mathbb{R}\cup\{+\infty\}), ϕv(t)=φ(t)\phi\circ v(t)=\varphi(t) for all tIt\in I, and |v|d(t)p=g(v(t))q=φ(t)=(ϕv)(t)|v^{\prime}|_{d}(t)^{p}=g(v(t))^{q}=-\varphi^{\prime}(t)=-(\phi\circ v)^{\prime}(t) for almost every tIt\in I (see (AGS, , Remark 1.3.3)).

2.1 Continuum gradient flow

Let the energy functional EE satisfy Hypothesis 1.1. We now define the continuum gradient flow on 𝒫p(Ωd)\mathcal{P}_{p}(\Omega^{d}).

Definition 6 (Continuum gradient flow)

We say that ρACp([0,T],𝒫p(Ωd))\rho\in AC^{p}([0,T],\mathcal{P}_{p}(\Omega^{d})) is a continuum gradient flow solution with initial condition ρ0𝒫p(Ωd)\rho_{0}\in\mathcal{P}_{p}(\Omega^{d}) if it is a pp-curve of maximal slope for EE with respect to |E||\partial E| and ρ(0)=ρ0\rho(0)=\rho_{0}.

We recall another common way of defining a continuum gradient flow, which involves the notion of subdifferential. For the subdifferential calculus on the LpL^{p}-Wasserstein space, see (AGS, , Section 10.3).

Definition 7

We say that μtACp([0,T],𝒫p(Ωd))\mu_{t}\in AC^{p}([0,T],\mathcal{P}_{p}(\Omega^{d})) is a solution to the gradient flow, if there exists a Borel vector field vtv_{t} such that vtTμt𝒫p(Ωd)v_{t}\in T_{\mu_{t}}\mathcal{P}_{p}(\Omega^{d}) for L1L^{1}-a.e. t>0t>0, vtLp(μt)Lp[0,T]\|v_{t}\|_{L^{p}(\mu_{t})}\in L^{p}[0,T], the continuity equation

tμt+(vtμt)=0 in Ωd×[0,T]\partial_{t}\mu_{t}+\nabla\cdot(v_{t}\mu_{t})=0\text{ in }\Omega^{d}\times[0,T]

holds in the sense of distribution, and

jp(vt)E(μt),t[0,T],j_{p}(v_{t})\in-\partial E(\mu_{t}),\quad t\in[0,T],

where E(μt)\partial E(\mu_{t}) means the subdifferential of EE at μt\mu_{t}.

The energy functional EE satisfying Hypothesis 1.1 is regular in the sense of the Definition 10.3.9 of AGS . By (AGS, , Theorem 11.1.3), the definition of curves of maximal slope (Definition 5) coincides with the gradient flow defined by Definition 7 on the LpL^{p}-Wasserstein space. The displacement convexity and lower semi-continuity of EE imply the existence of such gradient flows (see (AGS, , Theorem 11.3.2)). Moreover, the tangent vector vtv_{t} to μt\mu_{t} satisfies the minimal selection principle, i.e.,

jp(vt)=E(μt), for L1-a.e. t>0,j_{p}(v_{t})=-\partial^{\circ}E(\mu_{t}),\text{ for }L^{1}\text{-a.e. }t>0,

where E(μt)\partial^{\circ}E(\mu_{t}) denotes the subset of elements of minimal norm in E(μt)\partial E(\mu_{t}), which reduces to a single point since the Lp(μt)L^{p}(\mu_{t})-norm is strictly convex if p>1p>1.

2.2 Discrete gradient flow

Following the particle method used in CPSW to approximate the continuum gradient flow, we take any NN particles x1,,xNx_{1},\cdots,x_{N} in Ωd\Omega^{d}, N2N\geq 2, and we denote 𝒙𝑵=(x1,,xN)ΩNd\boldsymbol{x_{N}}=\left(x_{1},\cdots,x_{N}\right)\in\Omega^{Nd}. Define the set of empirical measures by

𝒜N(Ωd)={μ𝒫p(Ωd):(x1,,xN)ΩNd,μ=1Ni=1Nδxi}.\mathcal{A}_{N}(\Omega^{d})=\left\{\mu\in\mathcal{P}_{p}(\Omega^{d}):\exists\left(x_{1},\cdots,x_{N}\right)\in\Omega^{Nd},\mu=\frac{1}{N}\sum_{i=1}^{N}\delta_{x_{i}}\right\}.

Let Bi,i{1,,N}B_{i},i\in\{1,\cdots,N\} be the open balls of centre xiΩdx_{i}\in\Omega^{d} with radius 12minji|xixj|\frac{1}{2}\min\limits_{j\neq i}|x_{i}-x_{j}|, where |xixj||x_{i}-x_{j}| is the standard Euclidean distance between xix_{i} and xjx_{j} on d\mathbb{R}^{d}. Define

ρN=1Ni=1NχBi|Bi|𝒫ac,p(Ωd),\rho_{N}=\frac{1}{N}\sum_{i=1}^{N}\frac{\chi_{B_{i}}}{|B_{i}|}\in\mathcal{P}_{ac,p}(\Omega^{d}),

where |Bi||B_{i}| is the volume of BiB_{i} with respect to the Lebesgue measure on d\mathbb{R}^{d}.

Definition 8 (Discrete energy)

We define the discrete energy EN:𝒜N(Ωd)E_{N}:\mathcal{A}_{N}(\Omega^{d})\to\mathbb{R} for all μN𝒜N(Ωd)\mu_{N}\in\mathcal{A}_{N}(\Omega^{d}) with particles 𝒙𝑵ΩNd\boldsymbol{x_{N}}\in\Omega^{Nd} by

EN(μN)=E(ρN)=i=1N|Bi|H(1N|Bi|).E_{N}(\mu_{N})=E(\rho_{N})=\sum_{i=1}^{N}|B_{i}|H\left(\frac{1}{N|B_{i}|}\right). (6)

We define the discrete energy equivalently as a function of 𝒙𝑵ΩNd\boldsymbol{x_{N}}\in\Omega^{Nd} by

E~N(𝒙𝑵)=EN(μN).\widetilde{E}_{N}(\boldsymbol{x_{N}})=E_{N}(\mu_{N}).

Now we introduce the weighted pp-norm on Nd\mathbb{R}^{Nd}. That is, for any 𝒙𝑵=(xi,,xN)Nd\boldsymbol{x_{N}}=(x_{i},\cdots,x_{N})\in\mathbb{R}^{Nd}, xi=(xi1,,xid)x_{i}=(x_{i}^{1},\cdots,x_{i}^{d}) for i{1,,N}i\in\{1,\cdots,N\},

𝒙𝑵w,p:={1Ni=1Nj=1d|xij|p}1/p.\|\boldsymbol{x_{N}}\|_{w,p}:=\left\{\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{d}|x_{i}^{j}|^{p}\right\}^{1/p}.

Then (Nd,w,p)(\mathbb{R}^{Nd},\|\cdot\|_{w,p}) becomes a Banach space with the dual space (Nd,w,q)(\mathbb{R}^{Nd},\|\cdot\|_{w,q}), where 1p+1q=1\frac{1}{p}+\frac{1}{q}=1. Moreover, the pair of 𝒙𝑵(Nd,w,p)\boldsymbol{x_{N}}\in(\mathbb{R}^{Nd},\|\cdot\|_{w,p}) and 𝒚𝑵(Nd,w,q)\boldsymbol{y_{N}}\in(\mathbb{R}^{Nd},\|\cdot\|_{w,q}) is given by

(𝒙𝑵,𝒚𝑵)w=1Ni=1Nj=1dxijyij.\left(\boldsymbol{x_{N}},\boldsymbol{y_{N}}\right)_{w}=\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{d}x_{i}^{j}y_{i}^{j}.

Now we define the discrete gradient flow. As mentioned in CPSW , to obtain the well-posedness of the discrete gradient flow, we restrict the framework to the case of d=1d=1. In this case, the discrete energy E~N\widetilde{E}_{N} is convex on ΩN\Omega^{N}, which makes sure that the local slope is a strong upper gradient.

By convention, in the rest of the paper, whenever particles 𝒙𝑵ΩN\boldsymbol{x_{N}}\in\Omega^{N} are considered, they are assumed to be distinct and sorted increasingly, i.e., xi+1>xix_{i+1}>x_{i} for all i{1,,N1}i\in\{1,\cdots,N-1\}. We also assume the same boundary condition as in CPSW , which construct two fictitious particles x0x_{0} and xN+1x_{N+1} to make sure the real particles stay in Ω\Omega. We denote Δxi=xixi1\Delta x_{i}=x_{i}-x_{i-1} for i{1,,N+1}i\in\{1,\cdots,N+1\}.

Definition 9 (Discrete gradient flow)

We say that μNACp([0,T],𝒜N(Ω))\mu_{N}\in AC^{p}([0,T],\mathcal{A}_{N}(\Omega)) is a discrete gradient flow solution with initial condition μN0𝒜N(Ω)\mu_{N}^{0}\in\mathcal{A}_{N}(\Omega), if it is a pp-curve of maximal slope for ENE_{N} with respect to |EN||\partial E_{N}|, and if μN(0)=μN0\mu_{N}(0)=\mu_{N}^{0}.

By (CPSW, , Proposition 2.13), it is equivalent to define the discrete gradient flow as a solution to

jq𝒙(t)wE~N(𝒙(t)),t[0,T],j_{q}\boldsymbol{x}^{\prime}(t)\in\partial_{w}\widetilde{E}_{N}(\boldsymbol{x}(t)),\quad\forall t\in[0,T], (7)

where 𝒙:[0,T]N\boldsymbol{x}:[0,T]\to\mathbb{R}^{N} and w\partial_{w} stands for the subdifferential of E~N\widetilde{E}_{N}:

wE~N(𝒙)={𝒚N|𝒛N,EN(𝒛)EN(𝒙)(𝒚,𝒛𝒙)w}.\partial_{w}\widetilde{E}_{N}(\boldsymbol{x})=\left\{\boldsymbol{y}\in\mathbb{R}^{N}\Big{|}\forall\boldsymbol{z}\in\mathbb{R}^{N},E_{N}(\boldsymbol{z})-E_{N}(\boldsymbol{x})\geq\left(\boldsymbol{y},\boldsymbol{z}-\boldsymbol{x}\right)_{w}\right\}.

Moreover, by (AGS, , Proposition 1.4.4, Corollary 2.4.12), we have the following

Proposition 1

There exists a solution to the discrete gradient flow inclusion (7). Furthermore, any solution 𝐱𝐍\boldsymbol{x_{N}} satisfies jq𝐱(t)=w0E~N(𝐱(t))j_{q}\boldsymbol{x}^{\prime}(t)=\partial_{w}^{0}\widetilde{E}_{N}(\boldsymbol{x}(t)) for almost every t[0,T]t\in[0,T].

3 main results

Before stating the main result, we recall some definitions introduced in CPSW .

Definition 10 (Smooth set)

We define the subset 𝒢(Ω)\mathcal{G}(\Omega) of 𝒫ac,p(Ω)\mathcal{P}_{ac,p}(\Omega) as follows. We write ρ𝒢(Ω)\rho\in\mathcal{G}(\Omega) if there exists r>0r>0 such that all the items below hold:

  • suppρ=[r,r]\mathrm{supp}\rho=[-r,r]; ρ|suppρC1(suppρ)\rho|_{\mathrm{supp}\rho}\in C^{1}(\mathrm{supp}\rho); minsuppρρ>0\min_{\mathrm{supp}\rho}\rho>0;

  • if Ω=[l,l]\Omega=[-l,l], then r=lr=l.

Definition 11 (recovery sequence and well-preparedness)

Let ρ𝒫p(Ω)\rho\in\mathcal{P}_{p}(\Omega). Any (μN)N2(\mu_{N})_{N\geq 2} with μN𝒜N(Ω)\mu_{N}\in\mathcal{A}_{N}(\Omega) for all N2N\geq 2 such that μNρ\mu_{N}\rightharpoonup\rho narrowly as NN\to\infty and lim supNEN(μN)E(ρ)\limsup_{N\to\infty}E_{N}(\mu_{N})\leq E(\rho) is said to be a recovery sequence for ρ\rho. Let (𝒙𝑵)N2(\boldsymbol{x_{N}})_{N\geq 2} be the particles of (μN)N2(\mu_{N})_{N\geq 2}. We say that (μN)N2(\mu_{N})_{N\geq 2} is well-prepared for ρ\rho if it is a recovery sequence for ρ\rho and there exist a1,a2>0a_{1},a_{2}>0 such that a1/NΔxia2/Na_{1}/N\leq\Delta x_{i}\leq a_{2}/N for all i{2,,N}i\in\{2,\cdots,N\} and all N2N\geq 2; if ρ𝒢(Ω)\rho\in\mathcal{G}(\Omega), we moreover require xN=x1=rx_{N}=-x_{1}=r.

Now we state our main result.

Theorem 3.1 (Main theorem)

Assume HH satisfies Hypothesis 1.1. Suppose μNACp([0,T],𝒜N(Ω))\mu_{N}\in AC^{p}\left([0,T],\mathcal{A}_{N}(\Omega)\right), with particles 𝐱𝐍ACp([0,T],ΩN)\boldsymbol{x_{N}}\in AC^{p}\left([0,T],\Omega^{N}\right), is a discrete gradient flow solution with initial condition μN0𝒜N(Ω)\mu_{N}^{0}\in\mathcal{A}_{N}(\Omega), with particles 𝐱𝐍𝟎ΩN\boldsymbol{x_{N}^{0}}\in\Omega^{N}. Let ρ𝒢(Ω)\rho\in\mathcal{G}(\Omega), and assume that (μ0)(\mu_{0}) is well-prepared for ρ\rho according to Definition 11. Then (μN(t))N2\left(\mu_{N}(t)\right)_{N\geq 2} is tight and there exists a subsequence (μNk(t))N2(\mu_{N_{k}}(t))_{N\geq 2} and a probability measure ρACp([0,T],𝒫p(Ω))\rho\in AC^{p}\left([0,T],\mathcal{P}_{p}(\Omega)\right) such that

μNk(t)ρ(t) narrowly \mu_{N_{k}}(t)\rightharpoonup\rho(t)\text{ narrowly }

as kk\rightarrow\infty for all t[0,T]t\in[0,T]. Moreover, if Ω=[,]\Omega=[-\ell,\ell] and HH satisfies Hypothesis 1.2, then ρ\rho is a continuum gradient flow and it holds111When we write the metric derivative with respect to the WpW_{p}-distance, we omit the subscript.

{limk|μNk|=|ρ| in Lp([0,T]),limkENk(μNk(t))=E(ρ(t)) for all t[0,T],limk|ENk(μNk)|=|E(ρ)| in Lp([0,T]).\begin{cases}\lim\limits_{k\rightarrow\infty}\left|\mu_{N_{k}}^{\prime}\right|=\left|\rho^{\prime}\right|\quad&\text{ in }L^{p}([0,T]),\\ \lim\limits_{k\rightarrow\infty}E_{N_{k}}\left(\mu_{N_{k}}(t)\right)=E(\rho(t))\quad&\text{ for all }t\in[0,T],\\ \lim\limits_{k\rightarrow\infty}\left|\partial E_{N_{k}}\left(\mu_{N_{k}}\right)\right|=|\partial E(\rho)|\quad&\text{ in }L^{p}([0,T]).\end{cases} (8)

In particular, assuming Ω=[l,l]\Omega=[-l,l]. If p=2p=2 or EE is given by (4) with γ+1p>0\gamma+1-p>0, then μN(t)\mu_{N}(t) narrowly converges to ρ(t)\rho(t) for all t[0,T]t\in[0,T] and (8) holds for whole sequence μN(t)\mu_{N}(t) and ENE_{N}.

Remark 2

The first part of this theorem is the tightness of (μtN)N2\left(\mu_{t}^{N}\right)_{N\geq 2} which will be proved in Proposition 2. Then by Prohorov’s theorem, (μtN)N2\left(\mu_{t}^{N}\right)_{N\geq 2} is narrowly sequentially compact. Using Theorem 3.2, we prove that the sequential limit ρ\rho is a solution to the continuum gradient flow. Moreover, if we know the uniqueness of the solution to the continuum gradient flow, which is established for the case of p=2p=2 (see (AGS, , Theorem 11.1.4)), qq-heat equation (2) (see (Vazquez, , Chapter 11) and Kell ) and the Leibenson’s equation (1) (see IMJ ), then we can obtain that the whole sequence of μN\mu_{N} narrowly converges to ρ\rho and (8) holds for whole sequence μN(t)\mu_{N}(t) and ENE_{N}.

Remark 3

In Theorem 3.1, it can actually be proved that the convergence of μNk(t)\mu_{N_{k}}(t) to ρ(t)\rho(t) is stronger than narrowly convergence. Indeed, we will prove μN(t)\mu_{N}(t) has bounded pp-th moment uniformly in NN and t[0,T]t\in[0,T]. See the proof of Proposition 2. Thus μNk(t)\mu_{N_{k}}(t) converges to ρ(t)\rho(t) in WrW_{r}-distance for all 1<rp1<r\leq p and t[0,T]t\in[0,T], see e.g. (AGS, , Proposition 7.1.5).

To prove this theorem, we use the following theorem proved by Serfaty in Serfaty , which is the Γ\Gamma-convergence of gradient flow on metric spaces.

Theorem 3.2 (Serfaty )

Let μNACp([0,T],𝒜N(Ω))\mu_{N}\in AC^{p}([0,T],\mathcal{A}_{N}(\Omega)) be a discrete gradient flow. Assume that μN(t)ρ(t)\mu_{N}(t)\rightharpoonup\rho(t) narrowly as NN\to\infty for all t[0,T]t\in[0,T] for some ρACp([0,T],𝒫p(Ω))\rho\in AC^{p}([0,T],\mathcal{P}_{p}(\Omega)). Furthermore, suppose that (μN(0))N2(\mu_{N}(0))_{N\geq 2} is a recovery sequence for ρ(0)\rho(0), and that the following conditions hold for all t[0,T]t\in[0,T].

  • (C1)

    lim infN0t|μN|(s)2𝑑s0t|ρ|(s)2𝑑s\liminf\limits_{N\rightarrow\infty}\int_{0}^{t}\left|\mu_{N}^{\prime}\right|(s)^{2}ds\geq\int_{0}^{t}\left|\rho^{\prime}\right|(s)^{2}ds.

  • (C2)

    lim infNEN(μN(t))E(ρ(t))\liminf\limits_{N\rightarrow\infty}E_{N}\left(\mu_{N}(t)\right)\geq E(\rho(t)).

  • (C3)

    lim infN|EN|(μN(t))|E|(ρ(t))\liminf\limits_{N\rightarrow\infty}\left|\partial E_{N}\right|\left(\mu_{N}(t)\right)\geq|\partial E|(\rho(t)).

Then ρ\rho is a continuum gradient flow and (8) holds for ENE_{N} and μN\mu_{N}.

3.1 Tightness and condition on the metric derivatives

Now we prove the first part of the Main theorem.

Proposition 2

Let Ω=\Omega=\mathbb{R} or Ω=[l,l]\Omega=[-l,l] for fixed ll\in\mathbb{R}. Assume HH satisfies Hypothesis 1.1. Let (μN)N2(\mu_{N})_{N\geq 2} be as in Theorem 3.1. Then (μN)N2(\mu_{N})_{N\geq 2} is tight in ACp([0,T],𝒫p(Ω))AC^{p}([0,T],\mathcal{P}_{p}(\Omega)). Moreover, there exists a subsequence μNk\mu_{N_{k}} narrowly converges to some ρACp([0,T],𝒫p(Ω))\rho\in AC^{p}([0,T],\mathcal{P}_{p}(\Omega)) as kk\to\infty for all t[0,T]t\in[0,T]. Furthermore, (C1)(C1) holds for this subsequence.

Proof

For any σ𝒫p(Ω)\sigma\in\mathcal{P}_{p}(\Omega), let μt\mu_{t} be an absolutely continuous curve on 𝒫p(Ω)\mathcal{P}_{p}(\Omega) with velocity vtv_{t}. Then the differentiability of WpW_{p} gives

1pddtWpp(μt,σ)=Ω2vt(x1),jp(x1x2)dγt(x1.x2),L1-a.e. t(0,+),\frac{1}{p}\frac{d}{dt}W_{p}^{p}(\mu_{t},\sigma)=\int_{\Omega^{2}}\langle v_{t}(x_{1}),j_{p}(x_{1}-x_{2})\rangle d\gamma_{t}(x_{1}.x_{2}),\quad L^{1}\text{-a.e. }t\in(0,+\infty),

where γtΓo(μt,σ)\gamma_{t}\in\Gamma_{o}(\mu_{t},\sigma) is an optimal transport plan form μt\mu_{t} to σ\sigma. Applying the Hölder’s inequality, it holds

1pddtWpp(μt,σ)\displaystyle\frac{1}{p}\frac{d}{dt}W_{p}^{p}(\mu_{t},\sigma) \displaystyle\leq vtLp(Ω,μt)(Ω2|jp(x1x2)|q𝑑γt(x1,x2))1q\displaystyle\|v_{t}\|_{L^{p}(\Omega,\mu_{t})}\left(\int_{\Omega^{2}}\left|j_{p}(x_{1}-x_{2})\right|^{q}d\gamma_{t}(x_{1},x_{2})\right)^{1\over q}
=\displaystyle= vtLp(Ω,μt)(Ω2|x1x2|p𝑑γt(x1,x2))1ppq\displaystyle\|v_{t}\|_{L^{p}(\Omega,\mu_{t})}\left(\int_{\Omega^{2}}\left|x_{1}-x_{2}\right|^{p}d\gamma_{t}(x_{1},x_{2})\right)^{\frac{1}{p}\cdot\frac{p}{q}}
=\displaystyle= vtLp(Ω,μt)(Wp(μt,σ))p1,\displaystyle\|v_{t}\|_{L^{p}(\Omega,\mu_{t})}\left(W_{p}(\mu_{t},\sigma)\right)^{p-1},

Let μt\mu_{t} be a pp-curve of maximal slope for EE with respect to |E||\partial E|. Then

|μt|=vtLp(Ω,μt) for L-a.e. t[0,T].|\mu_{t}^{\prime}|=\|v_{t}\|_{L^{p}(\Omega,\mu_{t})}\quad\text{ for }L\text{-a.e. }t\in[0,T].

By (AGS, , Remark 2.4.17), we have the following estimate

t|E|q(μt)E(μ0)infμD(E)E(μ)E(μ0).t|\partial E|^{q}(\mu_{t})\leq E(\mu_{0})-\inf_{\mu\in D(E)}E(\mu)\leq E(\mu_{0}).

Since |E||\partial E| is a strong upper gradient of EE, it holds

|E|q(μt)=|μt|p.|\partial E|^{q}(\mu_{t})=|\mu_{t}^{\prime}|^{p}.

Thus we have

1pddtWpp(μt,σ)(E(μ0)t)1p(Wp(μt,σ))p1.\frac{1}{p}\frac{d}{dt}W_{p}^{p}(\mu_{t},\sigma)\leq\left(\frac{E(\mu_{0})}{t}\right)^{\frac{1}{p}}\left(W_{p}(\mu_{t},\sigma)\right)^{p-1}.

Then we can derive

Wp(μt,σ)qE(μ0)1p(t1qt01q)+Wp(μt0,σ),0t0tT.W_{p}(\mu_{t},\sigma)\leq qE(\mu_{0})^{1\over p}\left(t^{1\over q}-t_{0}^{1\over q}\right)+W_{p}(\mu_{t_{0}},\sigma),\quad\forall 0\leq t_{0}\leq t\leq T.

In particular, we choose t0=0t_{0}=0 and σ=μ0\sigma=\mu_{0}, then

Wp(μt,μ0)qE(μ0)1pt1qqE(μ0)1pT1q.W_{p}(\mu_{t},\mu_{0})\leq qE(\mu_{0})^{1\over p}t^{1\over q}\leq qE(\mu_{0})^{1\over p}T^{1\over q}.

Let μtN\mu_{t}^{N} be a gradient flow of ENE_{N} with initial value μ0N\mu_{0}^{N}. Then

Wp(μtN,μ0N)qEN(μ0N)1pT1q.W_{p}(\mu_{t}^{N},\mu_{0}^{N})\leq qE_{N}(\mu_{0}^{N})^{1\over p}T^{1\over q}.

Assuming there exists a constant e0e_{0} such that EN(μ0N)e0E_{N}(\mu_{0}^{N})\leq e_{0}, then

Wp(μtN,μ0N)qe01pT1q.W_{p}(\mu_{t}^{N},\mu_{0}^{N})\leq qe_{0}^{1\over p}T^{1\over q}.

Note that

Mp(μtN)\displaystyle M_{p}(\mu_{t}^{N}) =\displaystyle= Wpp(μtN,δ0)(Wp(μtN,μ0N)+Wp(μ0N,δ0))p\displaystyle W_{p}^{p}(\mu_{t}^{N},\delta_{0})\leq\left(W_{p}(\mu_{t}^{N},\mu_{0}^{N})+W_{p}(\mu_{0}^{N},\delta_{0})\right)^{p}
\displaystyle\leq 2p1Wpp(μtN,μ0N)+2p1Wpp(μ0N,δ0)\displaystyle 2^{p-1}W_{p}^{p}(\mu_{t}^{N},\mu_{0}^{N})+2^{p-1}W_{p}^{p}(\mu_{0}^{N},\delta_{0})
\displaystyle\leq 2p1qpe0Tpq+2p1Mp(μ0N),\displaystyle 2^{p-1}q^{p}e_{0}T^{p\over q}+2^{p-1}M_{p}(\mu_{0}^{N}),

where MpM_{p} denotes the pp-th moment. Assume there exists a constant m0m_{0} such that Mp(μ0N)m0M_{p}(\mu_{0}^{N})\leq m_{0}, and we have

Mp(μtN)2p1qpe0Tpq+2p1m0.M_{p}(\mu_{t}^{N})\leq 2^{p-1}q^{p}e_{0}T^{p\over q}+2^{p-1}m_{0}. (9)

That is μtN\mu_{t}^{N} have bounded pp-th moment (p>1p>1) uniformly in NN and t[0,T]t\in[0,T], then the Chebyshev’s inequality gives the uniformly integrability of μtN\mu_{t}^{N}, which imply the tightness of μtN\mu_{t}^{N}. By Prohorov’s theorem, there exist a subsequence μNk(t)\mu_{N_{k}}(t) and ρC([0,T],𝒫p(Ω))\rho\in C([0,T],\mathcal{P}_{p}(\Omega)) such that μNk(t)\mu_{N_{k}}(t) narrowly converges to ρ(t)\rho(t) as kk\to\infty for all t[0,T]t\in[0,T].

Now we show that ρ\rho is actually in ACp([0,T],𝒫p(Ω))AC^{p}([0,T],\mathcal{P}_{p}(\Omega)). By (AGS, , Theorem 11.3.2),

0t|μN|p(s)𝑑s=EN(μN0)EN(μN(t))e0,t[0,T],\int_{0}^{t}|\mu_{N}^{\prime}|^{p}(s)ds=E_{N}(\mu_{N}^{0})-E_{N}(\mu_{N}(t))\leq e_{0},\quad t\in[0,T],

which means the metric derivative |μN||\mu_{N}^{\prime}| is bounded in Lp([0,t])L^{p}([0,t]), thus it is LpL^{p}-weakly convergent to some vLp([0,t])v\in L^{p}([0,t]) up to a subsequence (still denoted by |μN||\mu_{N}^{\prime}|). In particular, we can choose the test function by the characteristic function χ[0,T]Lq([0,T])\chi_{[0,T]}\in L^{q}([0,T]), then we have

limNt0t1|μN|(s)𝑑s=t0t1v(s)𝑑s for all 0t0t1T.\lim_{N\to\infty}\int_{t_{0}}^{t_{1}}|\mu_{N}^{\prime}|(s)ds=\int_{t_{0}}^{t_{1}}v(s)ds\quad\text{ for all }0\leq t_{0}\leq t_{1}\leq T. (10)

Note that μN\mu_{N} is pp-absolutely continuous, by definition of the metric derivative,

Wp(μN(t0),μN(t1))t0t1|μN|(s)𝑑s.W_{p}(\mu_{N}(t_{0}),\mu_{N}(t_{1}))\leq\int_{t_{0}}^{t_{1}}|\mu_{N}^{\prime}|(s)ds.

Then, by (10) and the narrow lower semi-continuity of WpW_{p} (see (AGS, , Proposition 7.1.3)),

Wp(ρ(t0),ρ(t1))t0t1v(s)𝑑s.W_{p}(\rho(t_{0}),\rho(t_{1}))\leq\int_{t_{0}}^{t_{1}}v(s)ds.

Therefore ρACp([0,T],𝒫p(Ω))\rho\in AC^{p}([0,T],\mathcal{P}_{p}(\Omega)). Moreover, |ρ|(s)v(s)|\rho^{\prime}|(s)\leq v(s) for almost every s[0,T]s\in[0,T]. By the weak lower semi-continuity of the LpL^{p}-norm, this gives

lim infN0t|μN|p(s)𝑑s=limN0t|μN|p(s)𝑑s0tv(s)p𝑑s0t|ρ|p(s)𝑑s,\liminf_{N\to\infty}\int_{0}^{t}|\mu_{N}^{\prime}|^{p}(s)ds=\lim_{N\to\infty}\int_{0}^{t}|\mu_{N}^{\prime}|^{p}(s)ds\geq\int_{0}^{t}v(s)^{p}ds\geq\int_{0}^{t}|\rho^{\prime}|^{p}(s)ds,

which is (C1)(C1).

3.2 Condition on the energy

Now we verify the “lower semi-continuity” conditions on the energies and the slopes of the energies.

Proposition 3

Let HH satisfy Hypothesis 1.1 and let (μN)N2\left(\mu_{N}\right)_{N\geq 2} and ρ\rho be as in Theorem 3.1. Then (C2)(C2) holds.

Proof

From now on, we denote the subsequence in Theorem 3.1 by (μN)N2(\mu_{N})_{N\geq 2}. By definition, EN(μN)=E(ρN)E_{N}(\mu_{N})=E(\rho_{N}). Since EE is narrowly lower semi-continuous, we need to prove ρN\rho_{N} narrowly converges to ρ\rho as NN\to\infty. By tightness, μNρ\mu_{N}\rightharpoonup\rho narrowly, thus we only need to prove ρNμN\rho_{N}\rightharpoonup\mu_{N} narrowly as NN\to\infty. By the density of Lipschitz function in Cb()C_{b}(\mathbb{R}), we only test against φCb()\varphi\in C_{b}(\mathbb{R}) with Lipschitz constant L>0L>0. Compute

|φ(x)ρN(x)𝑑xφ(x)𝑑μN(x)|=|i=1N1NBiφ(x)|Bi|𝑑x1Ni=1Nφ(xi)|\displaystyle\left|\int_{\mathbb{R}}\varphi(x)\rho_{N}(x)dx-\int_{\mathbb{R}}\varphi(x)d\mu_{N}(x)\right|=\left|\sum_{i=1}^{N}\frac{1}{N}\int_{B_{i}}\frac{\varphi(x)}{|B_{i}|}dx-\frac{1}{N}\sum_{i=1}^{N}\varphi(x_{i})\right|
\displaystyle\leq 1Ni=1N1|Bi|Bi|φ(x)φ(xi)|𝑑xLNi=1N1|Bi|Bi|xxi|𝑑xL4Ni=1N|Bi|\displaystyle\frac{1}{N}\sum_{i=1}^{N}\frac{1}{|B_{i}|}\int_{B_{i}}\left|\varphi(x)-\varphi(x_{i})\right|dx\leq\frac{L}{N}\sum_{i=1}^{N}\frac{1}{|B_{i}|}\int_{B_{i}}|x-x_{i}|dx\leq\frac{L}{4N}\sum_{i=1}^{N}|B_{i}|
\displaystyle\leq LNi=2NΔxi+LNΔx22p1pLN((x1p+xNp)1/p+(x1p+x2p)1/p)\displaystyle\frac{L}{N}\sum_{i=2}^{N}\Delta x_{i}+\frac{L}{N}\Delta x_{2}\leq\frac{2^{\frac{p-1}{p}}L}{N}\left(\left(x_{1}^{p}+x_{N}^{p}\right)^{1/p}+\left(x_{1}^{p}+x_{2}^{p}\right)^{1/p}\right)
\displaystyle\leq 2p1pL(Mp(μN)Np1)1/p.\displaystyle 2^{\frac{p-1}{p}}L\left(\frac{M_{p}(\mu_{N})}{N^{p-1}}\right)^{1/p}.

By (9), we have

|φ(x)ρN(x)𝑑xφ(x)𝑑μN(x)|0, as N.\left|\int_{\mathbb{R}}\varphi(x)\rho_{N}(x)dx-\int_{\mathbb{R}}\varphi(x)d\mu_{N}(x)\right|\to 0,\text{ as }N\to\infty.

The last step is to verify the condition (C3)(C3) on the local slopes. In this section, we denote g:=|E|g:=|\partial E| and gN:=|EN|g_{N}:=|\partial E_{N}|, and we take Ω=[l,l]\Omega=[-l,l]. In this case, the local slope gg of EE is given in the lemma below.

Lemma 1

(AGS, , Theorem 10.4.6) Let HH satisfies the Hypothesis 1.1. Then the local slope of EE is given by

g(ρ)=(Ip(ρ))1p,g(\rho)=\left(I_{p}(\rho)\right)^{1\over p},

where Ip(ρ)I_{p}(\rho) is the generalized Fisher information on 𝒫p([l,l])\mathcal{P}_{p}([-l,l]) which is defined by

Ip(ρ)={ll|H′′(x)ρ(x)|pρ(x)𝑑x, if ρ𝒫ac,p([l,l]) and LH(ρ())W1,1([l.l]),+, otherwise, I_{p}(\rho)=\left\{\begin{aligned} &\int_{-l}^{l}|H^{\prime\prime}(x)\rho^{\prime}(x)|^{p}\rho(x)dx,\quad\begin{aligned} &\text{ if }\rho\in\mathcal{P}_{ac,p}([-l,l])\\ &\text{ and }L_{H}(\rho(\cdot))\in W^{1,1}([-l.l]),\end{aligned}\\ &+\infty,\quad\text{ otherwise, }\end{aligned}\right.

where LH(ρ)=ρH(ρ)H(ρ)L_{H}(\rho)=\rho H^{\prime}(\rho)-H(\rho).

Now we verify the condition (C3)(C3).

Proposition 4

Let HH satisfies Hypothesis 1.1 and Hypothesis 1.2. Let ρ\rho be as in Theorem 3.1. Then (C3)(C3) holds. That is

lim infNgN(μN(t))g(ρ(t)),t[0,T].\liminf_{N\to\infty}g_{N}(\mu_{N}(t))\geq g(\rho(t)),\quad\forall t\in[0,T].

First, we compute explicitly the local slope of ENE_{N}. Denote gN(μN)=|EN|(μN)g_{N}(\mu_{N})=|\partial E_{N}|(\mu_{N}) for μN𝒜N([l,l])\mu_{N}\in\mathcal{A}_{N}([-l,l]). By the definition of local slope, we have

gN(μN)=w0E~N(𝒙𝑵)w,p.g_{N}(\mu_{N})=\|\partial^{0}_{w}\widetilde{E}_{N}(\boldsymbol{x_{N}})\|_{w,p}.

We use the notation and strategy in CPSW to describe whether the closest neighbour to that particle is to the right and to characterize wE~N\partial_{w}\widetilde{E}_{N}. Given 𝒙𝑵[l,l]N\boldsymbol{x_{N}}\in[-l,l]^{N}, we write (λ,λ,λ+)Λ(𝒙𝑵)(\lambda^{-},\lambda,\lambda^{+})\in\Lambda(\boldsymbol{x_{N}}) if

λi{=0 if Δxi>Δxi1,[0,1] if Δxi=Δxi1,=1 if Δxi<Δxi1,λi{=0 if Δxi+1>Δxi,[0,1] if Δxi+1=Δxi,=1 if Δxi+1<Δxi,λi+{=0 if Δxi+2>Δxi+1[0,1] if Δxi+2=Δxi+1=1 if Δxi+2<Δxi+1\lambda_{i}^{-}\left\{\begin{array}[]{ l l }{=0}&{\text{ if }\Delta x_{i}>\Delta x_{i-1},}\\ {\in[0,1]}&{\text{ if }\Delta x_{i}=\Delta x_{i-1},}\\ {=1}&{\text{ if }\Delta x_{i}<\Delta x_{i-1},}\end{array}~{}\lambda_{i}\left\{\begin{array}[]{ l l }{=0}&{\text{ if }\Delta x_{i+1}>\Delta x_{i},}\\ {\in[0,1]}&{\text{ if }\Delta x_{i+1}=\Delta x_{i},}\\ {=1}&{\text{ if }\Delta x_{i+1}<\Delta x_{i},}\end{array}~{}\lambda_{i}^{+}\left\{\begin{array}[]{ll}=0&\text{ if }\Delta x_{i+2}>\Delta x_{i+1}\\ \in[0,1]&\text{ if }\Delta x_{i+2}=\Delta x_{i+1}\\ =1&\text{ if }\Delta x_{i+2}<\Delta x_{i+1}\end{array}\right.\right.\right.

for all i{1,,N}i\in\{1,\ldots,N\}, with the convention that Δx1>Δx0\Delta x_{1}>\Delta x_{0} and ΔxN+1>ΔxN+2\Delta x_{N+1}>\Delta x_{N+2}.

Lemma 2

Take 𝐱𝐍[l,l]N\boldsymbol{x_{N}}\in[-l,l]^{N}. We have

wE~N(𝒙𝑵)={zN|(λ,λ,λ+)Λ(𝒙𝑵), for 1iN,zi=(λiλi++1)ψi+1(λiλi+1)ψi},\partial_{w}\widetilde{E}_{N}(\boldsymbol{x_{N}})=\left\{z\in\mathbb{R}^{N}\Big{|}\quad\begin{aligned} &\exists(\lambda^{-},\lambda,\lambda^{+})\in\Lambda(\boldsymbol{x_{N}}),\text{ for }1\leq i\leq N,\\ &z_{i}=(\lambda_{i}-\lambda_{i}^{+}+1)\psi_{i+1}-(\lambda_{i}^{-}-\lambda_{i}+1)\psi_{i}\end{aligned}\right\},

where ψi:=Nh(NΔxi)\psi_{i}:=-Nh^{\prime}(N\Delta x_{i}) for all i{1,,N}i\in\left\{1,\cdots,N\right\}.

Proof

Denote ri=min{Δxi,Δxi+1}r_{i}=\min\{\Delta x_{i},\Delta x_{i+1}\} for i{1,,N}i\in\{1,\cdots,N\}. We have

E~N(𝒙𝑵)\displaystyle\widetilde{E}_{N}\left(\boldsymbol{x}_{\boldsymbol{N}}\right) =1Ni=1Nh(Nri)=1Ni=1Nmax[h(NΔxi),h(NΔxi+1)]\displaystyle=\frac{1}{N}\sum_{i=1}^{N}h\left(Nr_{i}\right)=\frac{1}{N}\sum_{i=1}^{N}\max\left[h\left(N\Delta x_{i}\right),h\left(N\Delta x_{i+1}\right)\right]
=1N[max{h(NΔxi1),h(NΔxi)}+max{h(NΔxi),h(NΔxi+1)}\displaystyle=\frac{1}{N}\Big{[}\max\left\{h(N\Delta x_{i-1}),h(N\Delta x_{i})\right\}+\max\left\{h(N\Delta x_{i}),h(N\Delta x_{i+1})\right\}
+max{h(NΔxi+1),h(NΔxi+2)}+k{i1,i,i+1}h(Nri)],\displaystyle\qquad\quad+\max\left\{h(N\Delta x_{i+1}),h(N\Delta x_{i+2})\right\}+\sum_{k\notin\{i-1,i,i+1\}}h\left(Nr_{i}\right)\Big{]},

where the function hh is a smooth convex and non-increasing function on (0,)(0,\infty). Moreover, one can check that xNri(x)x\mapsto Nr_{i}(x) is Lipschitz continuous around xx. Thus we can use the chain rule of subdifferential (see (Mor, , Theorem 1.110)) and obtain

iE~N(𝒙𝑵)\displaystyle\partial^{i}\widetilde{E}_{N}\left(\boldsymbol{x}_{\boldsymbol{N}}\right) =λih(NΔxi)+(λi+1)h(NΔxi)λih(NΔxi+1)+(λi+1)h(NΔxi+1)\displaystyle=\lambda_{i}^{-}h^{\prime}(N\Delta x_{i})+(-\lambda_{i}+1)h^{\prime}(N\Delta x_{i})-\lambda_{i}h^{\prime}(N\Delta x_{i+1})+(\lambda_{i}^{+}-1)h^{\prime}(N\Delta x_{i+1})
=1N(λiλi++1)ψi1N(λiλi+1)ψi+1,\displaystyle=\frac{1}{N}\left(\lambda_{i}-\lambda_{i}^{+}+1\right)\psi_{i}-\frac{1}{N}\left(\lambda_{i}^{-}-\lambda_{i}+1\right)\psi_{i+1},

which gives the conclusion.

By the same method in CPSW and going through each case of the triplets (λ,λ,λ+)Λ(𝒙𝑵)(\lambda^{-},\lambda,\lambda^{+})\in\Lambda(\boldsymbol{x_{N}}), we have the following Lemma 3, Lemma 4 and Lemma 5. We assume the same boundary condition as in CPSW . Since the proofs of these lemmas can be modified using the same strategy as in CPSW , we omit details here.

Lemma 3

Let z=(z1,,zN)w0EN(𝐱𝐍)z=(z_{1},\cdots,z_{N})\in\partial_{w}^{0}E_{N}(\boldsymbol{x}_{\boldsymbol{N}}). Then |zi||ψiψi+1||z_{i}|\geq|\psi_{i}-\psi_{i+1}|.

Lemma 4

Let 𝐱𝐍[l,l]N\boldsymbol{x_{N}}\in[-l,l]^{N} be as assumed in Theorem 3.1. Then xN(t)=x1(t)=lx_{N}(t)=-x_{1}(t)=l for all t[0,T]t\in[0,T].

Lemma 5

Let 𝐱𝐍[l,l]N\boldsymbol{x_{N}}\in[-l,l]^{N} be as assumed in Theorem 3.1. Then, for all t[0,T]t\in[0,T],

a1N1Δxi(t)a2N1 for all i{2,,N}.a_{1}N^{-1}\leq\Delta x_{i}(t)\leq a_{2}N^{-1}\text{ for all }i\in\{2,\cdots,N\}.

The constants a1a_{1} and a2a_{2} are those of Definition 11 for the well-prepared set 𝐱𝐍𝟎\boldsymbol{x_{N}^{0}} for ρ0\rho_{0}.

The following lemma is the key to prove the convergence in (C3)(C3).

Lemma 6

Suppose that lim infNgN(μN(t))\liminf\limits_{N\to\infty}g_{N}(\mu_{N}(t)) is finite for all t[0,T]t\in[0,T]. Then

maxi{2,,N1}|Δxi+1Δxi1|N0,t[0,T].\max_{i\in\{2,\cdots,N-1\}}\left|\frac{\Delta x_{i+1}}{\Delta x_{i}}-1\right|\xrightarrow{N\to\infty}0,\qquad\forall t\in[0,T]. (11)
Proof

Let z=(z1,,zN)w0EN(𝒙𝑵)z=(z_{1},\cdots,z_{N})\in\partial_{w}^{0}E_{N}(\boldsymbol{x}_{\boldsymbol{N}}). Then by Lemma 3,

gN(μN)p=1Ni=1N|zi|p1Ni=1N|ψiψi+1|p.g_{N}(\mu_{N})^{p}=\frac{1}{N}\sum_{i=1}^{N}|z_{i}|^{p}\geq\frac{1}{N}\sum_{i=1}^{N}\left|\psi_{i}-\psi_{i+1}\right|^{p}.

By Lemma 4, it holds Δx1=Δx2\Delta x_{1}=\Delta x_{2} and ΔxN=ΔxN+1\Delta x_{N}=\Delta x_{N+1}. Therefore ψ1=ψ2\psi_{1}=\psi_{2} and ψN=ψN+1\psi_{N}=\psi_{N+1}. Noticing that hh is smooth, it follows that

gN(μN)p\displaystyle g_{N}(\mu_{N})^{p} 1Ni=1N|ψiψi+1|p=1Ni=1NNp|h(NΔxi)h(NΔxi+1)|p\displaystyle\geq\frac{1}{N}\sum_{i=1}^{N}\left|\psi_{i}-\psi_{i+1}\right|^{p}=\frac{1}{N}\sum_{i=1}^{N}N^{p}\left|h(N\Delta x_{i})-h(N\Delta x_{i+1})\right|^{p}
=Np1i=1N|h(ξ)|pNp|ΔxiΔxi+1|p,\displaystyle=N^{p-1}\sum_{i=1}^{N}\left|h^{\prime}(\xi)\right|^{p}N^{p}\left|\Delta x_{i}-\Delta x_{i+1}\right|^{p},

where ξ=θ(NΔxi)+(1θ)(NΔxi+1)\xi=\theta(N\Delta x_{i})+(1-\theta)(N\Delta x_{i+1}) for some θ[0,1]\theta\in[0,1]. By Lemma 5, it holds a1ξa2a_{1}\leq\xi\leq a_{2} for all t[0,T]t\in[0,T]. Therefore h(ξ)h^{\prime}(\xi) is finite and independent of NN. Thus lim infNgN(μN(t))<\liminf\limits_{N\to\infty}g_{N}(\mu_{N}(t))<\infty implies (11)\eqref{convergence of step}.

Proof (Proof of Proposition 4)

We omit the time dependence. First we define the interpolation ρ~N\widetilde{\rho}_{N} to approximate ρ\rho. Using the same method and notations as in CPSW , we introduce the function ψ:(0,)[0,)\psi:(0,\infty)\to[0,\infty) by

ψ(x)=h(x),x(0,).\psi(x)=-h^{\prime}(x),\quad\forall x\in(0,\infty).

Clearly ψi=Nψ(NΔxi)\psi_{i}=N\psi(N\Delta x_{i}). For i{1,,N1}i\in\{1,\cdots,N-1\}, we introduce the monotone function pi:[xi,xi+1](0,)p_{i}:[x_{i},x_{i+1}]\to(0,\infty) by

pi(x)=1NΔxi+1[(xxi)ψi+1(xi+1xi)ψi]for x[xi,xi+1].p_{i}(x)=\frac{1}{N\Delta x_{i+1}}\left[(x-x_{i})\psi_{i+1}-(x_{i+1}-x_{i})\psi_{i}\right]\quad\text{for }x\in[x_{i},x_{i+1}].

Obviously pi(xi)=ψiNp_{i}(x_{i})=\frac{\psi_{i}}{N}, pi(xi+1)=ψi+1Np_{i}(x_{i+1})=\frac{\psi_{i+1}}{N}. Since hh^{\prime} is strictly increasing, ψ\psi is strictly decreasing and therefore invertible222Since the function ψ\psi in CPSW is also required to be invertible, the strictly convexity of function hh in CPSW is also necessary. . Define

ρ~N(x):=1/mNψ1(pi(x))for x[xi,xi+1],i{1,,N1},\widetilde{\rho}_{N}(x):=\frac{1/m_{N}}{\psi^{-1}(p_{i}(x))}\quad\text{for }x\in[x_{i},x_{i+1}],i\in\{1,\cdots,N-1\}, (12)

where mNm_{N} is the normalization constant to make ρ~N\widetilde{\rho}_{N} belong to 𝒫ac,p([l,l])\mathcal{P}_{ac,p}([-l,l]). One can check that ρ~N(t)\widetilde{\rho}_{N}(t) narrowly convergent to ρ(t)\rho(t) as NN\to\infty for all t[0,T]t\in[0,T]. By the monotonicity of pip_{i} and ψ\psi, we have

Nmin{Δxi,Δxi+1}ψ1(pi(x))Nmax{Δxi,Δxi+1}for x[xi,xi+1].N\min\{\Delta x_{i},\Delta x_{i+1}\}\leq\psi^{-1}(p_{i}(x))\leq N\max\{\Delta x_{i},\Delta x_{i+1}\}\quad\text{for }x\in[x_{i},x_{i+1}]. (13)

By Lemma 5, this yields

a1ψ1(pi(x))a2for x[xi,xi+1].a_{1}\leq\psi^{-1}(p_{i}(x))\leq a_{2}\quad\text{for }x\in[x_{i},x_{i+1}].

Now the proof reduces to show that ρ~N\widetilde{\rho}_{N} gives a good estimate of gN(μN)g_{N}(\mu_{N}) and g(ρ)g(\rho), that is

lim infNgN(μN)lim infNg(ρ~N)g(ρ).\liminf_{N\to\infty}g_{N}(\mu_{N})\geq\liminf_{N\to\infty}g(\widetilde{\rho}_{N})\geq g(\rho). (14)

where (ρ~N)N2(\widetilde{\rho}_{N})_{N\geq 2} is the sequence associated to (μN)N2(\mu_{N})_{N\geq 2} defined as in (12). The second inequality above is due to ρ~Nρ\widetilde{\rho}_{N}\rightharpoonup\rho narrowly and the narrow lower semi-continuity of gg, see (AGS, , Corollary 2.4.10). Now we check the first inequality. Let us denote νN=mNρ~N\nu_{N}=m_{N}\widetilde{\rho}_{N}. Noticing that H′′(x)=1x3h′′(1x)H^{\prime\prime}(x)=\frac{1}{x^{3}}h^{\prime\prime}\left(\frac{1}{x}\right), we have

I(νN)p\displaystyle I(\nu_{N})^{p} =ll|νN(x)H′′(νN(x))|pνN(x)𝑑x\displaystyle=\int_{-l}^{l}|\nu_{N}^{\prime}(x)H^{\prime\prime}(\nu_{N}(x))|^{p}\nu_{N}(x)dx
=ll|νN(x)|p|h′′(1νN(x))|pνN(x)13p𝑑x\displaystyle=\int_{-l}^{l}|\nu_{N}^{\prime}(x)|^{p}\left|h^{\prime\prime}(\frac{1}{\nu_{N}(x)})\right|^{p}\nu_{N}(x)^{1-3p}dx
=ll|νN(x)|p|ψ(1νN(x))|pνN(x)13p𝑑x\displaystyle=\int_{-l}^{l}\left|\nu_{N}^{\prime}(x)\right|^{p}\left|\psi^{\prime}\left(\frac{1}{\nu_{N}(x)}\right)\right|^{p}\nu_{N}(x)^{1-3p}dx
=ll|(ψ(1νN(x)))|pνN(x)1p𝑑x\displaystyle=\int_{-l}^{l}\left|\left(\psi\left(\frac{1}{\nu_{N}(x)}\right)\right)^{\prime}\right|^{p}\nu_{N}(x)^{1-p}dx
=i=1N1xixi+1|pi(x)|p|ψ1(pi(x))|p1𝑑x\displaystyle=\sum_{i=1}^{N-1}\int_{x_{i}}^{x_{i+1}}\left|p_{i}^{\prime}(x)\right|^{p}\left|\psi^{-1}(p_{i}(x))\right|^{p-1}dx
=1Npi=1N1xixi+1|ψi+1ψiΔxi+1|p|ψ1(pi(x))|p1𝑑x\displaystyle=\frac{1}{N^{p}}\sum_{i=1}^{N-1}\int_{x_{i}}^{x_{i+1}}\left|\frac{\psi_{i+1}-\psi_{i}}{\Delta x_{i+1}}\right|^{p}\left|\psi^{-1}(p_{i}(x))\right|^{p-1}dx

By (13)\eqref{estimate of psi compo pi}, it holds

I(νN)p1Ni=1N1|ψi+1ψi|p|max{1,ΔxiΔxi+1}|p1.I(\nu_{N})^{p}\leq\frac{1}{N}\sum_{i=1}^{N-1}\left|\psi_{i+1}-\psi_{i}\right|^{p}\left|\max\left\{1,\frac{\Delta x_{i}}{\Delta x_{i+1}}\right\}\right|^{p-1}.

By Lemma 6, we have ΔxiΔxi+11\frac{\Delta x_{i}}{\Delta x_{i+1}}\to 1 as NN\to\infty uniformly for i{1,,N1}i\in\{1,\cdots,N-1\}. Thus for any ϵ>0\epsilon>0, there exists N(ϵ)N(\epsilon) large enough such that max{1,ΔxiΔxi+1}<1+ϵ\max\left\{1,\frac{\Delta x_{i}}{\Delta x_{i+1}}\right\}<1+\epsilon for all NN(ϵ)N\geq N(\epsilon) and i{1,,N1}i\in\{1,\cdots,N-1\}. For such NN we obtain

g(νN)p1+ϵNi=1N1|ψi+1ψi|p(1+ϵ)gN(μN)p.g(\nu_{N})^{p}\leq\frac{1+\epsilon}{N}\sum_{i=1}^{N-1}\left|\psi_{i+1}-\psi_{i}\right|^{p}\leq(1+\epsilon)g_{N}(\mu_{N})^{p}.

By taking the limits NN\to\infty and ϵ0\epsilon\to 0 in this order, we get

lim infNg(νN)lim infNgN(μN).\liminf_{N\to\infty}g(\nu_{N})\leq\liminf_{N\to\infty}g_{N}(\mu_{N}). (15)

In order to prove (14), we only need to show that lim infNg(νN)lim infNg(ρ~N)\liminf\limits_{N\to\infty}g(\nu_{N})\geq\liminf\limits_{N\to\infty}g(\widetilde{\rho}_{N}). Compute

g(νN)p=g(mNρ~N)p\displaystyle g(\nu_{N})^{p}=g(m_{N}\widetilde{\rho}_{N})^{p} =mNp+1llρ~N(x)pH′′(mNρ~N(x))pρ~N(x)𝑑x\displaystyle=m_{N}^{p+1}\int_{-l}^{l}\widetilde{\rho}_{N}^{\prime}(x)^{p}H^{\prime\prime}(m_{N}\widetilde{\rho}_{N}(x))^{p}\widetilde{\rho}_{N}(x)dx
mNp+1f(mN)pg(ρ~N)p,\displaystyle\geq m_{N}^{p+1}f(m_{N})^{p}g(\widetilde{\rho}_{N})^{p},

where ff is as in Hypothesis 1.2. Since ρ~N(t)ρ(t)\widetilde{\rho}_{N}(t)\rightharpoonup\rho(t) narrowly as NN\to\infty for all t[0,T]t\in[0,T], we have mN1m_{N}\to 1 as NN\to\infty. This completes the proof.

4 Γ\Gamma-convergence of the discrete energy.

We show that the discrete energy ENE_{N} is Γ\Gamma-convergent to the continuum energy EE with respect to the WpW_{p}-distance.

Definition 12 (Γ\Gamma-convergence)

We say that the discrete energy (EN)N2(E_{N})_{N\geq 2} is Γ\Gamma-convergent to the continuum energy EE with respect to WpW_{p}-distance if the following two conditions hold for all ρ𝒫p(Ω)\rho\in\mathcal{P}_{p}(\Omega):

  • (i)

    (”liminf” condition) All sequences (μN)N2(\mu_{N})_{N\geq 2} with μN𝒜N(Ω)\mu_{N}\in\mathcal{A}_{N}(\Omega) such that Wp(μN,ρ)0W_{p}(\mu_{N},\rho)\to 0 as NN\to\infty satisfy E(ρ)lim infNEN(μN)E(\rho)\leq\liminf_{N\to\infty}E_{N}(\mu_{N}).

  • (ii)

    (”limsup” condition) There exists a recovery sequence with respect to WpW_{p} for ρ\rho.

To obtain the Γ\Gamma-convergence, we require that HH satisfies the following additional condition: there exist continuous functions f1,f2:[0,)f_{1},f_{2}:[0,\infty)\to\mathbb{R} such that f1(1)=1f_{1}(1)=1 and f2(1)=0f_{2}(1)=0, and

H(αx)f1(α)H(x)+f2(α)x for all x,α[0,).H(\alpha x)\leq f_{1}(\alpha)H(x)+f_{2}(\alpha)x\text{ for all }x,\alpha\in[0,\infty). (16)

This is still satisfied by typical energy such as (4).

Theorem 4.1

Let HH satisfy Hypothesis 1.1 and (16). Then (EN)N2(E_{N})_{N\geq 2} Γ\Gamma-converges to EE.

Proof

We follow the same strategy as in CPSW . The ”liminf” condition can be obtained from (C2)(C2) proved in Proposition 3. To prove the ”limsup” condition, we need to find a recovery sequence for any ρ𝒫p(Ω)\rho\in\mathcal{P}_{p}(\Omega) with respect to the WpW_{p}-distance. This is done by two steps. First, the recovery sequence is constructed for any ρ𝒢(Ω)\rho\in\mathcal{G}(\Omega), and then relax this assumption on ρ\rho and prove the general result for any ρ𝒫ac,p(Ω)\rho\in\mathcal{P}_{ac,p}(\Omega) by a density argument. Here we do the construction of the recovery sequence for ρ𝒢(Ω)\rho\in\mathcal{G}(\Omega) as in (CPSW, , Lemma 5.5), which replies on the pseudo-inverse of the distribution function of ρ\rho. And then by the same argument as in (CPSW, , Lemma 6.6), we can extend this result to any ρ𝒫ac,p(Ω)\rho\in\mathcal{P}_{ac,p}(\Omega). We omit details here.

Acknowledgements.
The author is supported by JSPS Grant-in-Aid for Transformative Research Areas(B) No. 23H03798. The author would also like to thank Professor Jun Masamune for giving the support and encouragement.

References

  • (1) Ambrosio, L, Gigli, N, Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser Basel, 2005.
  • (2) Andreianov, B., Bendahmane, M., Karlsen, K. H.: Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations. J. Hyperbolic Differ. Equ. 7(01), 1-67 (2010)
  • (3) Carrillo, J. A., Patacchini, F. S., Sternberg, P., Wolansky, G.: Convergence of a particle method for diffusive gradient flows in one dimension. SIAM J. Math. Anal. 48(6), 3708-3741 (2016)
  • (4) Carrillo, J. A., Huang, Y., Patacchini, F. S., Wolansky, G.: Numerical study of a particle method for gradient flows. arXiv preprint arXiv:1512.03029 (2015)
  • (5) Droniou, J., Eymard, R., Gallouet, T., Herbin, R.: Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23(13), 2395-2432 (2013)
  • (6) De Giorgi, E.: New problems on minimizing movements. Boundary value problems for partial differential equations and applications, 81–98, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993.
  • (7) De Giorgi, E., Marino, A., Tosques, M.: Problems of evolution in metric spaces and maximal decreasing curve. Att Accad Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8)68, 180-187 (1980)
  • (8) Evje, S., Hvistendahl Karlsen, K.: Discrete approximations of BV solutions to doubly nonlinear degenerate parabolic equations. Numer. Math. 86(3), 377-417 (2000)
  • (9) Ivanov, A.V., Mkrtychyan, P.Z., Jäger, W.: Existence and uniqueness of a regular solution of the Cauchy–Dirichlet problem for a class of doubly nonlinear parabolic equations. J. Math. Sci. 1(84), 845–855 (1997)
  • (10) Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1-17 (1998)
  • (11) Kell, M.: qq-heat flow and the gradient flow of the Rényi entropy in the pp-Wasserstein space. J. Funct. Anal. 271(8), 2045-2089 (2016)
  • (12) Leibenson, L.: General problem of the movement of a compressible fluid in a porous medium. izv akad. nauk sssr. Geography and Geophysics, 9, 7–10 (1945)
  • (13) McCann, R. J.: A convexity principle for interacting gases, Adv. Math. 128(1), 153–179 (1997)
  • (14) Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation I: Basic Theory, Grundlehren Math. Wiss. 330, Springer, Berlin, Heidelberg, 2006.
  • (15) Otto, F.: The geometry of dissipative evolution equations: The porous medium equation, Commun. Partial Differ. Equ. 26(1-2), 101–174 (2001)
  • (16) Rossi, R., Mielke, A., Savaré, G.: A metric approach to a class of doubly nonlinear evolution equations and applications. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze. 7(1), 97-169 (2008)
  • (17) Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst. 31(4), 1427–1451 (2011)
  • (18) Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations, in: Equations of Porous Medium Type, in: Oxford Lecture Series in Mathematics and Its Applications, vol. 33, Oxford University Press, Oxford (2006)
  • (19) Villani, C.: Topics in Mass Transportation, Graduate Studies in Mathematics, American Mathematical Society, Providence, 2003.
  • (20) Villani, C.: Optimal Transport, Old and New, Springer, Berlin, 2008.