This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Cooperative Fair Throughput Maximization in a Multi-Cluster Wireless Powered Network

Omid Rezaei, Maryam Masjedi, Mohammad Mahdi Naghsh1, Saeed Gazor, and Mohammad Mahdi Nayebi O. Rezaei and M. M. Nayebi are with the Department of Electrical Engineering, Sharif University of Technology, Tehran, 11155-4363, Iran. M. Masjedi, and M. M. Naghsh are with the Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran. S. Gazor is with the Department of Electrical and Computer Engineering, Queen’s University, Kingston, Ontario, K7L 3N6, Canada. 1Please address all the correspondence to M. M. Naghsh, Phone: (+98) 31-33912450; Fax: (+98) 31-33912451; Email: mm_naghsh@cc.iut.ac.ir
Abstract

In this paper, we study a multi-cluster Wireless Powered Communication Network (WPCN) where each cluster of users cooperate with a Cluster Head (CH) and a Hybrid Access Point (HAP). All users are equipped with multiple antennas. This HAP employs beamforming to deliver energy to the users in the downlink phase. The users of each cluster transmit their signals to the HAP and to their CHs in the uplink phase. In the next step the CHs first relay the signals of their cluster users and then transmit their own information to the HAP. We design the Energy Beamforming (EB) matrix, transmit covariance matrices of the users and allocate time slots to energy transfer and cooperation phases by optimizing the max-min and sum throughputs of the network. Our optimization is a non-convex problem which we break it to two non-convex sub-problems and solve them by employing the Alternating Optimization (AO) and the Minorization-Maximization (MM) technique. We recast the resulting sub-problems as a convex Second Order Cone Programming (SOCP) and a Quadratic Constraint Quadratic Programming (QCQP) for the max-min and sum throughput maximization problems, respectively. We take into account the consider imperfect Channel State Information (CSI) and non-linearity in Energy Harvesting (EH) circuits. Using numerical examples, we explore the impact of the proposed cooperation as well as optimal placement of CHs under various setups.

Index Terms:
Cluster-based communication, minorization-maximization, user cooperation, user fairness, wireless powered communication.

I Introduction

The operational lifetime of a communication network employing battery powered wireless devices can be enhanced by employing recent advances in Wireless Power Transfer (WPT) and harvesting technologies in which the wireless devices receive power/energy from dedicated wireless power transmitters [1]. One important application of WPT is in Wireless Powered Communication Network (WPCN), where the wireless devices harvest the wireless energy during the downlink communication in order to power the uplink phase. In a WPCN, the energy transmitter and the information receiver are placed either at the same location as a Hybrid Access Point (HAP) or at separate locations [2]. The authors of [3] have proposed a Harvest-Then-Transmit (HTT) protocol for a WPCN consisting of K{K} single-antenna users and a single-antenna HAP. They have shown that in a WPCN which employs a HAP, an inherent unfair “doubly near-far” phenomenon causes the users which are far from the HAP to harvest less energy in the downlink where they require more energy to transmit their information in the uplink. Several methods have been proposed in the literature to overcome the doubly near-far phenomenon [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

In [4, 5, 6, 7, 8, 9, 10], the user cooperation is proposed for a three-node WPCN assuming that all nodes are equipped with single-antenna. In the proposed methods in [4] and [5], the closer user to the HAP transmits the signal of the more distant user along with its own signal to the HAP and the sum throughput of the network is maximized to find optimal time and power allocations. The method in [4] is extended in [6] for a system employing an Intelligent Reflecting Surface (IRS). In [7], the max-min throughput fairness was considered for a single-pair WPCN, where both users harvest the transmitted energy from an energy source and then help each other to send their information to a destination node. The outage performance is studied for a single-user WPCN in [8] and [9], where the user sent its information to the HAP via a dedicated relay. A single-pair is considered in [10] with cooperation in both downlink and uplink phases.

Several references employ multiple antennas energy transmitter and design the Energy Beamforming (EB) to focus the transmitted energy toward the specific receivers [11, 12, 13, 14, 15]. The throughput maximization is investigated for a WPCN in [11, 12, 13] consisting of two cooperating single-antenna users and a multiple antennas HAP. The throughput of a single-user WPCN is calculated in [14] employing a dedicated single-antenna relay, where a multiple antennas energy source first powers the single-antenna user and the relay. Then, the source transmits its information to a single-antenna destination node with the help of the relay. In [15] a three-node cooperative wireless powered scenario is considered consisting of a source, destination and a dedicated relay which all have multiple antennas. The system in [15] is designed to maximize the throughput.

The above works have considered the WPCN only in the context of a single-pair of users. This paradigm is extended in [16, 17, 18] to consider multiple users in a single-cluster. In [16], all single-antenna users transmit their signals to the single-antenna cluster head (CH) and then the CH transmits the user signals as well as its own signal to the multiple antennas HAP via Time-Division-Multiple-Access (TDMA) protocol. The transmit time allocations and EB matrix were designed to improve the throughput fairness among the users. The model in [16] is extended in [17] to a cognitive WPCN by considering a secondary single-cluster WPCN and a primary point-to-point communication. In [18], a fairness-aware transmission is employed for a single-cluster WPCN where each user sends its information to all the other users and cooperatively send their signals to the HAP using TDMA.

Grouping of users into clusters may practically lead to significant improvement in rate and energy [21]. Similar order of enhancement is obtained in the throughput fairness for a two-cluster cooperating WPCN employing two multiple antennas HAPs and multiple single-antenna users in [19] where all the information transmissions in [19] are divided in time domain to avoid inter-cluster interference which increases the user latency. The sum throughput maximization is studied in [20] for a multi-cluster non-cooperating WPCN where HAP and all users have single-antenna. To the best of our knowledge, the design of multi-cluster cooperating WPCN with inter-cluster interference has not been addressed in the literature. In this paper, we evaluate the minimum and sum throughput enhancement for a multi-cluster Multiple-Input Multiple-Output (MIMO) WPCN with user cooperation. We consider the general MIMO case and manage the inter-cluster interference where the main advantages of our proposed scheme are: (i) lower user latency in comparison with [19]; (ii) lower path loss attenuation contrary to [20]. Precisely, the main contributions of this manuscript are summarized as follows:

  • We propose a new multi-cluster WPCN under HTT protocol with user cooperation, where the HAP as well as users have multiple antennas all operating in the same frequency band. As shown in Fig. 1, the CH assists its cluster members to transmit their informations to the HAP more efficiently [22]. Moreover, in the downlink phase, the HAP employs beamforming technique to transfer energy to the users. In the uplink phase, the users in each cluster transmit their signals to the HAP and to their CH. Finally, the CHs first relay the signals of their cluster members and then transmit their own information signals to the HAP. Note that we must deal with the inter-cluster interference in this model.

  • We design the EB matrix, transmit covariance matrices of the users and time allocations among energy transfer and cooperation phases in order to maximize max-min and sum throughputs of the network. These problems are non-convex and consequently are hard to solve. We propose a proper minorizer and develop algorithms (using Alternating Optimization (AO) and minorization-maximization (MM) techniques) to solve these problems. We recast the main sub-problems for max-min and sum throughput cases as Second Order Cone Programming (SOCP) and Quadratic Constraint Quadratic Programming (QCQP).

  • We also investigate the impact of imperfect Channel State Information (CSI) as well as the non-linearity in the Energy Harvesting (EH) circuits in our design problem and extend the proposed design to the case of deterministic energy signal.

  • Via numerical examples, we explore the impact of cooperation and non-linear EH circuits as well as optimal location of the CHs.

Organization: We present the multi-cluster cooperative model for WPCN in Section II. We analyze the max-min throughput optimization problem and present our proposed design method in Section III. We consider the special case of deterministic energy signal in Section IV and investigate the sum throughput maximization problem. Numerical results in Section V reveal the efficiency of the proposed method. We finally draw conclusions in Section VI.

Notation: Bold lowercase (uppercase) letters are used for vectors (matrices). The notations 𝔼[]\mathbb{E}[\cdot], {}\Re\{\cdot\}, 2\|\cdot\|_{2}, ()T{(\cdot)^{{T}}}, ()H(\cdot)^{{H}}, tr{}\mbox{tr}\{\cdot\}, λmax()\mathbf{\lambda}_{\textrm{max}}(\cdot), λmin()\mathbf{\lambda}_{\textrm{min}}(\cdot), vec()\textrm{vec}(\cdot) and 𝐱2f(){\nabla}^{2}_{{\mathbf{x}}}f(\cdot) indicate statistical expectation, real-part, l2l_{2}-norm of a vector, vector/matrix transpose, vector/matrix Hermitian, trace of a square matrix, principal eigenvalue of a Hermitian matrix, minimum eigenvalue of a Hermitian matrix, column-wise stacking of the elements of a matrix and the Hessian of the twice-differentiable function with respect to (w.r.t.) 𝐱\mathbf{x}, respectively. The symbol \otimes stands for the Kronecker product of two matrices/vectors. We denote 𝒞𝒩(ω,𝚺)\mathcal{CN}(\mathbf{\omega},\mathbf{\Sigma}) as the circularly symmetric complex Gaussian (CSCG) distribution with mean ω\mathbf{\omega} and covariance 𝚺\mathbf{\Sigma}. The symbol +\mathbb{R}_{+} represents non-negative real numbers, N×N{\mathbb{C}}^{N\times N} (N{\mathbb{C}}^{N}) is the set of N×N{N\times N} (N×1{N\times 1}) complex matrices (vectors), 𝕊++NN×N\mathbb{S}_{++}^{N}\subseteq{\mathbb{C}}^{N\times N} denotes the set of positive definite matrices, and 𝐈N\mathbf{I}_{N} is the N×NN\times N identity matrix. Finally, the notation 𝐀𝐁\mathbf{A}\succ\mathbf{B} (𝐀𝐁\mathbf{A}\succeq\mathbf{B}) means that 𝐀𝐁\mathbf{A}-\mathbf{B} is positive (semi)definite.

II System Model

    Hybrid     Access Point Mh{M}_{h}U1NU_{1}^{N}M1,N{M}_{1,N}U11U_{1}^{1}M1,1{M}_{1,1}U1nU_{1}^{n}M1,n{M}_{1,n}U1N1U_{1}^{N-1}M1,N1{M}_{1,N-1}UkNU_{k}^{N}Mk,N{M}_{k,N}Uk1U_{k}^{1}Mk,1{M}_{k,1}UknU_{k}^{n}Mk,n{M}_{k,n}UkN1U_{k}^{N-1}Mk,N1{M}_{k,N-1}UKNU_{K}^{N}MK,N{M}_{K,N}UK1U_{K}^{1}MK,1{M}_{K,1}UKnU_{K}^{n}MK,n{M}_{K,n}UKN1U_{K}^{N-1}MK,N1{M}_{K,N-1}Energy flowInformation flowInterferenceCluster HeadUser
Figure 1: A KN{KN}-user multi-cluster WPCN with user cooperation.

We consider a multi-cluster MIMO WPCN consisting of a HAP and KN{KN} cooperating users denoted by Ukn,1kK,1nNU_{k}^{n},1\leq k\leq{K},1\leq n\leq{N}, in K{K} clusters as shown in Fig. 1. The HAP and user UknU_{k}^{n} have Mh{M}_{h} and Mk,n{M}_{k,n} antennas, respectively, and all of them operate in the same frequency band. We assume that the HAP has a sustained power supply, whereas the users have no fixed batteries [4]. Therefore, the HAP shall first broadcast radio frequency (RF) energy to enable users to transmit their information to the HAP by using the energy collected during the downlink phase. We assume that the CH of kkth cluster denoted by UkNU_{k}^{N} (which can be one of users) is tasked to relay the information of its cluster members Ukn,1nN1U_{k}^{n},1\leq n\leq{N-1}. We further assume that the channels are reciprocal and follow a flat block fading model. We denote the channel response matrix from HAP to the user UknU_{k}^{n} and the channel matrix between UinU_{i}^{n} and the CH, i.e., UkNU_{k}^{N}, respectively by 𝐇k,nMk,n×Mh,1kK,1nN\mathbf{H}_{k,n}\in{\mathbb{C}}^{{M}_{k,n}\times{M}_{h}},1\leq k\leq K,1\leq n\leq N and 𝐆k,n,iMk,N×Mi,n,1k,iK,1nN1\mathbf{G}_{k,n,i}\in{\mathbb{C}}^{{M}_{k,N}\times{M}_{i,n}},1\leq k,i\leq K,1\leq n\leq N-1. We assume that the entries of 𝐇k,n\mathbf{H}_{k,n} and 𝐆k,n,i\mathbf{G}_{k,n,i} are independent random variables with zero mean and variances σhk,n2\sigma^{2}_{{h}_{k,n}} and σgk,n,i2\sigma^{2}_{g_{k,n,i}}, respectively.

Fig. 2 shows the timing protocol of the proposed WPCN which is an enhancement of the HTT protocol in [3]. In this scheme, one complete operation of the system takes TT seconds and is divided into four time slots. The first phase/time slot has a fixed duration of τ1\tau_{1} and is allocated to the channel estimation and user clustering [16]. In this phase, users (except CHs) transmit pilot signals to the HAP and CHs. We model the Linear Minimum Mean Square Error (LMMSE) estimation of 𝐇k,n\mathbf{H}_{k,n} (at HAP) and 𝐆k,n,i\mathbf{G}_{k,n,i} (at CHs) by [23]

𝐇k,n=𝐇^k,n+Δ𝐇k,n,k,n,\mathbf{H}_{k,n}=\widehat{\mathbf{H}}_{k,n}+\Delta\mathbf{H}_{k,n},\hskip 4.0pt\forall k,n, (1)
𝐆k,n,i=𝐆^k,n,i+Δ𝐆k,n.i,k,i,nN,{\mathbf{G}}_{k,n,i}=\widehat{{\mathbf{G}}}_{k,n,i}+\Delta{\mathbf{G}}_{k,n.i},\hskip 4.0pt\forall k,i,n\neq N, (2)

where 𝐇^k,n\widehat{\mathbf{H}}_{k,n} and 𝐆^k,n,i\widehat{{\mathbf{G}}}_{k,n,i} are the estimates of the channel matrices 𝐇k,n\mathbf{H}_{k,n} and 𝐆k,n,i{\mathbf{G}}_{k,n,i}, respectively. Moreover, the channel estimation errors Δ𝐇k,n\Delta\mathbf{H}_{k,n} and Δ𝐆k,n,i\Delta{\mathbf{G}}_{k,n,i} are uncorrelated with 𝐇^k,n\widehat{\mathbf{H}}_{k,n} and 𝐆^k,n,i\widehat{{\mathbf{G}}}_{k,n,i}. We also assume that the elements of 𝐇^k,n\widehat{\mathbf{H}}_{k,n}, 𝐆^k,n,i\widehat{{\mathbf{G}}}_{k,n,i}, Δ𝐇k,n\Delta\mathbf{H}_{k,n} and Δ𝐆k,n,i\Delta{\mathbf{G}}_{k,n,i} are independent random variables with variances σh^k,n2\sigma^{2}_{{\widehat{h}}_{k,n}}, σg^k,n,i2\sigma^{2}_{{\widehat{g}}_{k,n,i}}, σh,Δk,n2\sigma^{2}_{{h,\Delta}_{k,n}} and σg,Δk,n,i2\sigma^{2}_{{g,\Delta}_{k,n,i}}, respectively. The properties of the LMMSE estimator allows to write the following expressions

σh,Δk,n2=(1ρhk,n2)σhk,n2,σh^k,n2=ρhk,n2σhk,n2,k,n,\sigma^{2}_{{h,\Delta}_{k,n}}=(1-{\rho}^{2}_{{h}_{k,n}})\sigma^{2}_{{h}_{k,n}},\hskip 10.0pt\sigma^{2}_{{\widehat{h}_{k,n}}}={\rho}^{2}_{{h}_{k,n}}\sigma^{2}_{{h}_{k,n}},\hskip 4.0pt\forall k,n, (3)
σg,Δk,n,i2=(1ρgk,n,i2)σgk,n,i2,σg^k,n,i2=ρgk,n,i2σgk,n,i2,k,i,nN,\sigma^{2}_{{g,\Delta}_{k,n,i}}=(1-{\rho}_{{{g}_{k,n,i}}}^{2})\sigma^{2}_{{g}_{k,n,i}},\hskip 10.0pt\sigma^{2}_{{\widehat{g}}_{k,n,i}}={\rho}_{{{g}_{k,n,i}}}^{2}\sigma^{2}_{{g}_{k,n,i}},\hskip 4.0pt\forall k,i,n\neq N, (4)

where the parameters 0ρhk,n10\leq{\rho}_{{h}_{k,n}}\leq 1 and 0ρgk,n,i10\leq{\rho}_{g_{k,n,i}}\leq 1 indicate the estimation accuracy. The CHs forward the estimates to the HAP and therefore, we assume that the HAP has access to these CSI estimates [16], using which users are clustered by the HAP as a network coordinator (see [20, 24, 25] for more details).

During the next downlink phase τ2\tau_{2}, the HAP emits power to the all users. In the next two uplink phases, the users transmit their information signals to the HAP using their harvested energy. In the third phase, the users of each cluster transmit the information signals to their CH, i.e., UkNU_{k}^{N}, and the HAP via a time division scheme where τ3=n=1N1τ3,n\tau_{3}=\sum_{n=1}^{N-1}\tau_{3,n}. More precisely, in time slot τ3,n\tau_{3,n}, the nnth users from all clusters simultaneously transmit to the HAP and their CH. During the τ4,n\tau_{4,n} sub-interval of the fourth phase τ4=n=1Nτ4,n\tau_{4}=\sum_{n=1}^{N}\tau_{4,n}, the CHs transmit the decoded signals of nnth cluster members to the HAP in a similar time division scheme for all nNn\neq N. During τ4,N\tau_{4,N}, the CHs transmit their own signals to the HAP. All users of each cluster, i.e., Ukn,1nNU^{n}_{k},1\leq n\leq N could benefit from this cooperation [22]. This is obvious for Ukn,1nN1U^{n}_{k},1\leq n\leq N-1 but for the CH, i.e., UkNU^{N}_{k}, this claim can be verified using the fact that this cooperation allows the HAP to allocate more time for information transmission (i.e., τ3+τ4\tau_{3}+\tau_{4}) instead of energy transmission (i.e., τ2\tau_{2}) and therefore the CH’s throughput loss (due to cooperation) could be compensated by longer uplink time [4]. By dedicating TT as the total upper bound operation time of one block, we obtain the following constraint for different phases [16]

τ1+τ2+n=1N1τ3,n+n=1Nτ4,nT.\tau_{1}+\tau_{2}+\sum_{n=1}^{N-1}\tau_{3,n}+\sum_{n=1}^{N}\tau_{4,n}\leq T. (5)
τ1\tau_{1}τ2\tau_{2}τ3,1\tau_{3,1}τ3,N1\tau_{3,N-1}τ4,1\tau_{4,1}τ4,N1\tau_{4,N-1}τ4,N\tau_{4,N}DownlinkUplink τ3\tau_{3}Uplink τ4\tau_{4}   Channel Estimation       & Clustering HAP    Ukn{U}_{k}^{n} k=1,,Kk=1,...,{K} n=1,,Nn=1,...,{N} Uk1{U}_{k}^{1}    UkN{U}_{k}^{N} k=1,,Kk=1,...,{K} \ldots UkN1{U}_{k}^{N-1}UkN{U}_{k}^{N} k=1,,Kk=1,...,{K} UkN{U}_{k}^{N}   HAP k=1,,Kk=1,...,{K} (Uk1{U}_{k}^{1}’s signal) \ldots     UkN{U}_{k}^{N}   HAP    k=1,,Kk=1,...,{K} (UkN1{U}_{k}^{N-1}’s signal)       UkN{U}_{k}^{N}   HAP      k=1,,Kk=1,...,{K} (UkN{U}_{k}^{N}’s own signal)
Figure 2: The proposed multi-cluster cooperation protocol in WPCN.

We now model the signal and system in more details and obtain the link throughputs. The HAP transfers its energy signal 𝐱0Mh\mathbf{x}_{0}\in{\mathbb{C}}^{{M}_{h}} with the EB matrix 𝐐=𝔼[𝐱0𝐱0H]𝟎\mathbf{Q}=\mathbb{E}[\mathbf{x}_{0}{\mathbf{x}_{0}}^{{H}}]\succeq\mathbf{0} during the downlink phase τ2\tau_{2} to the users. We consider 𝐱0\mathbf{x}_{0} as a random vector and design its EB matrix. We discuss the special case of deterministic 𝐱0\mathbf{x}_{0} severalty in Subsection IV-A.. The transmit power of the HAP is constrained by p0p_{0}, i.e.,

𝔼[𝐱022]=tr{𝐐}p0.\mathbb{E}[{\|\mathbf{x}_{0}\|}_{2}^{2}]=\textrm{tr}\{\mathbf{Q}\}\leq p_{0}. (6)

The received signal at UknU_{k}^{n} during τ2\tau_{2} for all k,nk,n is expressed as

𝐲k,n(HAP-U)=(𝐇^k,n+Δ𝐇k,n)𝐱0+𝐳k,n(HAP-U),\mathbf{y}^{(\textrm{HAP-U})}_{k,n}=\left(\widehat{\mathbf{H}}_{k,n}+\Delta{\mathbf{H}}_{k,n}\right){\mathbf{x}}_{0}+\mathbf{z}^{(\textrm{HAP-U})}_{k,n}, (7)

where 𝐳k,n(HAP-U)𝒞𝒩(𝟎,𝐋k,n(HAP-U))\mathbf{z}^{(\textrm{HAP-U})}_{k,n}\sim\mathcal{CN}\left(\mathbf{0},{\mathbf{L}}^{(\textrm{HAP-U})}_{k,n}\right) is the received noise with 𝐋k,n(HAP-U)𝕊++Mk,n{\mathbf{L}}^{(\textrm{HAP-U})}_{k,n}\in\mathbb{S}_{++}^{{M}_{k,n}}. Following [26], we consider a non-linear circuit model for the EH circuit in which the curve fitting procedure is performed in logarithmic scale to obtain more accurate results in low power regimes [27]. Therefore, the energy harvested by UknU_{k}^{n} (by ignoring the harvested energy due to the receiver noise [16]) for the non-linear EH model (eq. (21) of [27] in linear scale) for all k,nk,n becomes

Ek,n=τ2exp(a(log(Pk,n))2)Pk,nbexp(c),{E}_{k,n}=\tau_{2}\hskip 1.0pt\textrm{exp}\left(a\hskip 1.0pt{\left(\textrm{log}\left(P_{k,n}\right)\right)}^{2}\right)P^{\hskip 2.0ptb}_{k,n}\hskip 1.0pt\textrm{exp}\left(c\right), (8)

where aa, bb and cc are the curve fitting parameters and

Pk,n=𝔼[(𝐲k,n(HAP-U))H𝐲k,n(HAP-U)𝐇^k,n]=tr{𝐇^k,n𝐐𝐇^k,nH+σh,Δk,n2tr{𝐐}𝐈Mk,n}.\displaystyle P_{k,n}={\mathbb{E}}\hskip 1.0pt\bigg{[}{\left(\mathbf{y}^{(\textrm{HAP-U})}_{k,n}\right)}^{{H}}\mathbf{y}^{(\textrm{HAP-U})}_{k,n}\hskip 1.0pt\Big{\mid}\hskip 1.0pt\widehat{\mathbf{H}}_{k,n}\bigg{]}=\textrm{tr}\left\{{\widehat{\mathbf{H}}_{k,n}}\mathbf{Q}\hskip 1.0pt\widehat{\mathbf{H}}^{{H}}_{k,n}+\sigma^{2}_{{h,\Delta}_{k,n}}\textrm{tr}\left\{\mathbf{Q}\right\}\mathbf{I}_{{M}_{k,n}}\right\}. (9)

During the uplink sub-interval τ3,n\tau_{3,n}, the nnth users UknU_{k}^{n} of all clusters transmit their independent message signals to the HAP and their CH by using the energy harvested in the previous phase. Let 𝐕k,nMk,n×dk,n\mathbf{V}_{k,n}\in{\mathbb{C}}^{{M}_{k,n}\times{{d}_{k,n}}} denote the linear precoder matrix used at UknU_{k}^{n} to convert the message stream 𝐦k,ndk,n\mathbf{m}_{k,n}\in{\mathbb{C}}^{{d}_{k,n}}, viz. a Gaussian random vector with zero mean and covariance matrix 𝐈dk,n\mathbf{I}_{{d}_{k,n}}, to the transmitted vector 𝐱k,nMk,n{\mathbf{x}}_{k,n}\in{\mathbb{C}}^{{M}_{k,n}} with 𝐱k,n=𝐕k,n𝐦k,n{\mathbf{x}}_{k,n}=\mathbf{V}_{k,n}\mathbf{m}_{k,n}. The total consumed energy at UknU_{k}^{n} in time slot τ3,n\tau_{3,n} shall be less than the harvested energy. Thus, we must satisfy the following constraint for all kk and nNn\neq N

Pck,nT+ηk,nτ3,ntr{𝐒k,n}Ek,n,P_{c_{k,n}}T+\eta_{k,n}\hskip 1.0pt{\tau_{3,n}}\hskip 1.0pt\textrm{tr}\left\{{\mathbf{{S}}}_{k,n}\right\}\leq E_{k,n}, (10)

where Pck,nP_{c_{k,n}} is the constant circuit power consumption, ηk,n\eta_{k,n} accounts for power amplifier efficiency and 𝐒k,n=𝔼[𝐱k,n𝐱k,nH]=𝐕k,n𝐕k,nHMk,n×Mk,n{\mathbf{{S}}}_{k,n}=\mathbb{E}[{\mathbf{x}}_{k,n}{\mathbf{x}}^{{H}}_{k,n}]=\mathbf{V}_{k,n}{\mathbf{V}^{{H}}_{k,n}}\in{\mathbb{C}}^{{M}_{k,n}\times{M}_{k,n}} is the information transmit covariance matrix at UknU_{k}^{n}. The received signals at the CH UkNU_{k}^{N} and the HAP in time slot τ3,n\tau_{3,n} for all kk and nNn\neq N are respectively given by

𝐲k,n(U-CH)=𝐆^k,n,k𝐱k,n+j=1,jkK𝐆^k,n,j𝐱j,n+j=1KΔ𝐆k,n,j𝐱j,n+𝐳k,n(U-CH),\displaystyle\mathbf{y}^{(\textrm{U-CH})}_{k,n}=\widehat{\mathbf{G}}_{k,n,k}{\mathbf{x}}_{k,n}+\sum_{j=1,j\neq k}^{{K}}\widehat{\mathbf{G}}_{k,n,j}{\mathbf{x}}_{j,n}+\sum_{j=1}^{{K}}\Delta{\mathbf{G}}_{k,n,j}{\mathbf{x}}_{j,n}+\mathbf{z}^{(\textrm{U-CH})}_{k,n}, (11)
𝐲n(U-HAP)=k=1K𝐇^k,nH𝐱k,n+k=1KΔ𝐇k,nH𝐱k,n+𝐳n(U-HAP),\displaystyle\mathbf{y}^{(\textrm{U-HAP})}_{n}=\sum_{k=1}^{{K}}\widehat{\mathbf{H}}^{{H}}_{k,n}{\mathbf{x}}_{k,n}+\sum_{k=1}^{{K}}\Delta{\mathbf{H}}^{{H}}_{k,n}{\mathbf{x}}_{k,n}+{\mathbf{{z}}}^{(\textrm{U-HAP})}_{n}, (12)

where 𝐳k,n(U-CH)𝒞𝒩(𝟎,𝐋k,n(U-CH)){\mathbf{{z}}}^{(\textrm{U-CH})}_{k,n}\sim\mathcal{CN}\left(\mathbf{0},{\mathbf{L}}^{(\textrm{U-CH})}_{k,n}\right) and 𝐳~n(U-HAP)𝒞𝒩(𝟎,𝐋n(U-HAP))\mathbf{\widetilde{z}}^{(\textrm{U-HAP})}_{n}\sim\mathcal{CN}\left(\mathbf{0},{\mathbf{L}}^{(\textrm{U-HAP})}_{n}\right) are the additive noises at the kkth CH and the HAP, respectively, with covariance matrices 𝐋k,n(U-CH)𝕊++Mk,N{{\mathbf{L}}}^{(\textrm{U-CH})}_{k,n}\in\mathbb{S}_{++}^{{M}_{k,N}} and 𝐋n(U-HAP)𝕊++Mh{\mathbf{L}}^{(\textrm{U-HAP})}_{n}\in\mathbb{S}_{++}^{{M}_{h}}. The linear decoder matrix 𝐖k,ndk,n×Mk,N\mathbf{W}_{k,n}\in{\mathbb{C}}^{{d}_{k,n}\times{M}_{k,N}} used at kkth CH estimates the message 𝐦k,n\mathbf{m}_{k,n} as:

𝐦^k,n=𝐖k,n𝐲k,n(U-CH),k and nN.\widehat{\mathbf{m}}_{k,n}=\mathbf{W}_{k,n}\mathbf{y}^{(\textrm{U-CH})}_{k,n},\quad\forall k~{}\mbox{ and }\ n\neq N. (13)

We express the achievable throughput from UknU_{k}^{n} to kkth CH during τ3,n\tau_{3,n} k\forall k and nNn\neq N as [28]:

Rk,n(U-CH)(τ3,n,𝐒k,n,𝐖k,n)=τ3,nlog2det(𝐈dk,n+𝐖k,n𝐆^k,n,k𝐒k,n𝐆^k,n,kH𝐖k,nH(𝐖k,n(𝐋k,n(U-CH)\displaystyle R_{k,n}^{(\textrm{U-CH})}\left(\tau_{3,n},{{\mathbf{{S}}}_{k,n}},{\mathbf{W}_{k,n}}\right)=\tau_{3,n}\hskip 1.0pt\textrm{log}_{2}\textrm{det}\hskip 1.0pt\Bigg{(}\mathbf{I}_{{d}_{k,n}}+\mathbf{W}_{k,n}\widehat{{\mathbf{{G}}}}_{k,n,k}{\mathbf{{S}}}_{k,n}\widehat{{\mathbf{{G}}}}^{{H}}_{k,n,k}\mathbf{W}^{{H}}_{k,n}\bigg{(}\mathbf{W}_{k,n}\bigg{(}{{\mathbf{L}}}^{(\textrm{U-CH})}_{k,n} (14)
+j=1,jkK𝐆^k,n,j𝐒j,n𝐆^k,n,jH+j=1Kσg,Δk,n,j2tr{𝐒j,n}𝐈Mk,N)𝐖k,nH)1).\displaystyle\hskip 130.0pt+\sum_{j=1,j\neq k}^{{K}}\widehat{{\mathbf{{G}}}}_{k,n,j}{\mathbf{{S}}}_{j,n}\widehat{{\mathbf{{G}}}}^{{H}}_{k,n,j}+\sum_{j=1}^{{K}}\sigma^{2}_{{g,\Delta}_{k,n,j}}\textrm{tr}\left\{{\mathbf{{S}}}_{j,n}\right\}\mathbf{I}_{{M}_{k,N}}\bigg{)}\mathbf{W}^{{H}}_{k,n}\bigg{)}^{-1}\Bigg{)}.

It is shown in [28] the LMMSE is the optimal decoder for interference suppression. Thus, we propose to employ the following LMMSE decoder for all kk and nNn\neq N (see Appendix A):

𝐖k,n=𝐕k,nH𝐆^k,n,kH(𝐋k,n(U-CH)+j=1K𝐆^k,n,j𝐒j,n𝐆^k,n,jH+j=1Kσg,Δk,n,j2tr{𝐒j,n}𝐈Mk,N)1.{\mathbf{W}}_{k,n}={\mathbf{{V}}}^{{H}}_{k,n}{\widehat{\mathbf{G}}^{{H}}_{k,n,k}}\left({{\mathbf{L}}}^{(\textrm{U-CH})}_{k,n}+\sum_{j=1}^{{K}}\widehat{\mathbf{G}}_{k,n,j}{\mathbf{{S}}}_{j,n}\widehat{\mathbf{G}}^{{H}}_{k,n,j}+\sum_{j=1}^{{K}}\sigma^{2}_{{g,\Delta}_{k,n,j}}\textrm{tr}\left\{{\mathbf{{S}}}_{j,n}\right\}\mathbf{I}_{{M}_{k,N}}\right)^{-1}. (15)

We now use the matrix inversion lemma, Sylvester’s determinant property i.e., det(𝐈+𝐀𝐁)=det(𝐈+𝐁𝐀)\textrm{det}(\mathbf{I}+\mathbf{A}\mathbf{B})=\textrm{det}(\mathbf{I}+\mathbf{B}\mathbf{A}) and substitute (15) in (14) in order to rewrite (14) as follows for all kk and nNn\neq N

Rk,n(U-CH)(τ3,n,𝐒k,n)=τ3,nlog2det(𝐈Mk,N+𝐆^k,n,k𝐒k,n𝐆^k,n,kH(𝐋k,n(U-CH)\displaystyle R_{k,n}^{(\textrm{U-CH})}\left(\tau_{3,n},{\mathbf{{S}}}_{k,n}\right)=\tau_{3,n}\textrm{log}_{2}\textrm{det}\hskip 2.0pt\Bigg{(}\mathbf{I}_{{M}_{k,N}}+\widehat{\mathbf{G}}_{k,n,k}{\mathbf{{S}}}_{k,n}\widehat{\mathbf{G}}^{{H}}_{k,n,k}\bigg{(}{{\mathbf{L}}}_{k,n}^{(\textrm{U-CH})} (16)
+j=1,jkK𝐆^k,n,j𝐒j,n𝐆^k,n,jH+j=1Kσg,Δk,n,j2tr{𝐒j,n}𝐈Mk,N)1).\displaystyle\hskip 100.0pt+\sum_{j=1,j\neq k}^{{K}}\widehat{\mathbf{G}}_{k,n,j}{\mathbf{{S}}}_{j,n}\widehat{\mathbf{G}}^{{H}}_{k,n,j}+\sum_{j=1}^{{K}}\sigma^{2}_{{g,\Delta}_{k,n,j}}\textrm{tr}\left\{{\mathbf{{S}}}_{j,n}\right\}\mathbf{I}_{{M}_{k,N}}\bigg{)}^{-1}\Bigg{)}.

The signal transmitted by UknU_{k}^{n} is also received by the HAP as in (12). For similar arguments, we propose to employ the LMMSE decoder and Successive Interference Cancellation (SIC) technique to decode the messages of the users at the HAP. In this case, we can write the achievable transmission throughput from UknU_{k}^{n} to the HAP for all nNn\neq N as [29]:

Rk,n(U-HAP)(τ3,n,𝐒k,n)={τ3,nlog2det(𝐈Mh+𝐇^k,nH𝐒k,n𝐇^k,n(𝐋n(U-HAP)+j=k+1K𝐇^j,nH𝐒j,n𝐇^j,n+j=1Kσh,Δj,n2tr{𝐒j,n}𝐈Mh)1),kK,τ3,nlog2det(𝐈Mh+𝐇^k,nH𝐒k,n𝐇^k,n(𝐋n(U-HAP)+j=1Kσh,Δj,n2tr{𝐒j,n}𝐈Mh)1),k=K.\displaystyle R_{k,n}^{(\textrm{U-HAP})}\left(\tau_{3,n},{\mathbf{{S}}}_{k,n}\right)=\begin{cases}\tau_{3,n}\textrm{log}_{2}\textrm{det}\hskip 1.0pt\Big{(}\mathbf{I}_{{M}_{h}}+\widehat{\mathbf{H}}^{{H}}_{k,n}{\mathbf{{S}}}_{k,n}\widehat{\mathbf{H}}_{k,n}\big{(}{\mathbf{L}}_{n}^{(\textrm{U-HAP})}+\sum_{j=k+1}^{{K}}\widehat{\mathbf{H}}^{{H}}_{j,n}{\mathbf{{S}}}_{j,n}\widehat{\mathbf{H}}_{j,n}\\ \hskip 60.0pt+\sum_{j=1}^{{K}}\sigma^{2}_{{h,\Delta}_{j,n}}\textrm{tr}\left\{{\mathbf{{S}}}_{j,n}\right\}\mathbf{I}_{{M}_{h}}\big{)}^{-1}\Big{)},~{}~{}\forall k\neq K,\\ \tau_{3,n}\textrm{log}_{2}\textrm{det}\hskip 1.0pt\Big{(}\mathbf{I}_{{M}_{h}}+\widehat{\mathbf{H}}^{{H}}_{k,n}{\mathbf{{S}}}_{k,n}\widehat{\mathbf{H}}_{k,n}\big{(}{\mathbf{L}}_{n}^{(\textrm{U-HAP})}\\ \hskip 60.0pt+\sum_{j=1}^{{K}}\sigma^{2}_{{h,\Delta}_{j,n}}\textrm{tr}\left\{{\mathbf{{S}}}_{j,n}\right\}\mathbf{I}_{{M}_{h}}\big{)}^{-1}\Big{)},~{}~{}\forall k=K.\end{cases} (17)

During τ4,n\tau_{4,n}, UkNU_{k}^{N} relays the signal of its nnth cluster member UknU_{k}^{n} along with its own signal (for n=Nn=N) to the HAP. We express the transmitted vectors of UkNU_{k}^{N} during τ4,n\tau_{4,n} as follows for all k,nk,n:

𝐱~k,n=𝐕~k,n𝐦~k,n,\widetilde{{\mathbf{x}}}_{k,n}=\widetilde{\mathbf{V}}_{k,n}\widetilde{\mathbf{m}}_{k,n}, (18)

where 𝐦~k,ndk,n\widetilde{{\mathbf{m}}}_{k,n}\in{\mathbb{C}}^{{{d}_{k,n}}} is the symbol stream and 𝐕~k,nMk,N×dk,n\widetilde{\mathbf{V}}_{k,n}\in{\mathbb{C}}^{{M}_{k,N}\times{{d}_{k,n}}} is the precoder employed by UkNU_{k}^{N} for relaying the signals of its nnth cluster member (for all nNn\neq N) and its own signal (for n=Nn=N). We further assume that the elements of messages are independent Gaussian random variables with zero mean and unit variance. The total energy consumed at the kkth CH UkNU_{k}^{N} during τ4=n=1Nτ4,n\tau_{4}=\sum_{n=1}^{N}\tau_{4,n} shall be upper bounded by its harvested energy in the downlink phase. Thus, the following constraint must be satisfied for all kk

Pck,NT+ηk,Nn=1Nτ4,ntr{𝐒~k,n}Ek,N,P_{c_{k,N}}T+\eta_{k,N}\sum_{n=1}^{N}\tau_{4,n}\textrm{tr}\{\widetilde{{\mathbf{{S}}}}_{k,n}\}\leq E_{k,N}, (19)

where 𝐒~k,n=𝔼[𝐱~k,n𝐱~k,nH]=𝐕~k,n𝐕~k,nHMk,N×Mk,N\widetilde{{\mathbf{{S}}}}_{k,n}=\mathbb{E}[\widetilde{{\mathbf{x}}}_{k,n}\widetilde{{\mathbf{x}}}^{{H}}_{k,n}]=\widetilde{\mathbf{V}}_{k,n}\widetilde{{\mathbf{V}}}^{{H}}_{k,n}\in{\mathbb{C}}^{{M}_{k,N}\times{M}_{k,N}} is the transmit covariance matrix at UkNU_{k}^{N}. Therefore, we can express the received signal at the HAP during τ4,n\tau_{4,n} for all nn as

𝐲n(CH-HAP)=j=1K𝐇j,NH𝐱~j,n+𝐳n(CH-HAP),\mathbf{y}^{(\textrm{CH-HAP})}_{n}=\sum_{j=1}^{{K}}\mathbf{H}^{{H}}_{j,N}\widetilde{{\mathbf{x}}}_{j,n}+\mathbf{z}^{(\textrm{CH-HAP})}_{n}, (20)

where 𝐳~n(CH-HAP)𝒞𝒩(𝟎,𝐋n(CH-HAP))\mathbf{\widetilde{z}}^{(\textrm{CH-HAP})}_{n}\sim\mathcal{CN}\left(\mathbf{0},{{{\mathbf{L}}}}^{(\textrm{CH-HAP})}_{n}\right) denotes the receiver additive noise with 𝐋n(CH-HAP)𝕊++Mh{{\mathbf{L}}}^{(\textrm{CH-HAP})}_{n}\in\mathbb{S}_{++}^{{M}_{h}}. Similar to the third phase, we propose to use LMMSE decoder along with SIC technique at the HAP to decode the corresponding symbol streams, during the last phase. In this case, we can express the achievable throughput for decoding messages of UknU_{k}^{n} for 1nN11\leq n\leq N-1 and UkNU_{k}^{N} in time slot τ4,n\tau_{4,n} at HAP as

Rk,n(CH-HAP)(τ4,n,𝐒~k,n)={τ4,nlog2det(𝐈Mh+𝐇^k,NH𝐒~k,n𝐇^k,N(𝐋n(CH-HAP)+j=k+1K𝐇^j,NH𝐒~j,n𝐇^j,N+j=1Kσh,Δj,N2tr{𝐒~j,n}𝐈Mh)1),kK,τ4,nlog2det(𝐈Mh+𝐇^k,NH𝐒~k,n𝐇^k,N(𝐋n(CH-HAP)+j=1Kσh,Δj,N2tr{𝐒~j,n}𝐈Mh)1),k=K.\displaystyle R_{k,n}^{(\textrm{CH-HAP})}\left(\tau_{4,n},\widetilde{{\mathbf{{S}}}}_{k,n}\right)=\begin{cases}\tau_{4,n}\textrm{log}_{2}\textrm{det}\Big{(}\mathbf{I}_{{M}_{h}}+\widehat{\mathbf{H}}^{{H}}_{k,N}\widetilde{{\mathbf{{S}}}}_{k,n}\widehat{\mathbf{H}}_{k,N}\big{(}\mathbf{L}_{n}^{(\textrm{CH-HAP})}+\sum_{j=k+1}^{{K}}\widehat{\mathbf{H}}^{{H}}_{j,N}\widetilde{{\mathbf{{S}}}}_{j,n}\widehat{\mathbf{H}}_{j,N}\\ \hskip 60.0pt+\sum_{j=1}^{{K}}\sigma^{2}_{{h,\Delta}_{j,N}}\textrm{tr}\left\{\widetilde{{\mathbf{{S}}}}_{j,n}\right\}\mathbf{I}_{{M}_{h}}\big{)}^{-1}\Big{)},~{}~{}\forall k\neq K,\\ \tau_{4,n}\textrm{log}_{2}\textrm{det}\Big{(}\mathbf{I}_{{M}_{h}}+\widehat{\mathbf{H}}^{{H}}_{k,N}\widetilde{{\mathbf{{S}}}}_{k,n}\widehat{\mathbf{H}}_{k,N}\big{(}\mathbf{L}_{n}^{(\textrm{CH-HAP})}\\ \hskip 60.0pt+\sum_{j=1}^{{K}}\sigma^{2}_{{h,\Delta}_{j,N}}\textrm{tr}\left\{\widetilde{{\mathbf{{S}}}}_{j,n}\right\}\mathbf{I}_{{M}_{h}}\big{)}^{-1}\Big{)},~{}~{}\forall k={K}.\end{cases} (21)

By combining (16), (17) and (21), the achievable throughput of UknU_{k}^{n} for all nNn\neq N becomes [4]:

Rk,n(U)=min(Rk,n(U-HAP)+Rk,n(CH-HAP),Rk,n(U-CH)).\displaystyle R_{k,n}^{(\textrm{U})}=\textrm{min}\left(R_{k,n}^{(\textrm{U-HAP})}+R_{k,n}^{(\textrm{CH-HAP})},R_{k,n}^{(\textrm{U-CH})}\right). (22)

Moreover, the achievable throughput for kkth CH is given by (21), i.e.,

Rk,N(U)=Rk,N(CH-HAP).R_{k,N}^{(\textrm{U})}=R_{k,N}^{(\textrm{CH-HAP})}. (23)

III The Proposed Fair Throughput Optimization Method

In this section, we cast the max-min fairness throughput problem in which we maximize the throughput of all cooperating users by allocating optimal time durations and optimizing energy and information transmit covariance matrices of the users and HAP in different phases. We formulate this max-min throughput problem by using (5), (6), (10), (19), (22) and (23) as

max𝝉,𝐐,𝐒,𝐒~min1kK,1nNRk,n(U)\displaystyle\max_{\bm{\tau},{\mathbf{{Q}}},{\mathbf{{S}}},\widetilde{\mathbf{{S}}}}\displaystyle\min_{\begin{subarray}{c}{1\leq k\leq{K}},{1\leq n\leq{N}}\end{subarray}}{R}^{(\textrm{U})}_{k,n} (24)
s.t. C1:𝟎𝝉𝟏,τ1+τ2+n=1N1τ3,n+n=1Nτ4,n1,\displaystyle\textrm{C}_{1}:\mathbf{0}\leq\bm{\tau}\leq\mathbf{1},\hskip 5.0pt\tau_{1}+\tau_{2}+\sum_{n=1}^{N-1}\tau_{3,n}+\sum_{n=1}^{N}\tau_{4,n}\leq 1,\hskip 80.0pt
C2:𝐐𝟎,tr{𝐐}p0,\displaystyle\textrm{C}_{2}:{\mathbf{{Q}}}\succeq\mathbf{0},\hskip 3.0pt\textrm{tr}\left\{{\mathbf{{Q}}}\right\}\leq p_{0},
C3:𝐒k,n𝟎,Pck,n+ηk,nτ3,ntr{𝐒k,n}Ek,n,k,nN,\displaystyle\textrm{C}_{3}:{\mathbf{{S}}}_{k,n}\succeq\mathbf{0},\hskip 3.0ptP_{c_{k,n}}+\eta_{k,n}{\tau_{3,n}}\textrm{tr}\{{\mathbf{{S}}}_{k,n}\}\leq E_{k,n},\hskip 3.0pt\forall k,n\neq N,
C4:𝐒~k,n𝟎,Pck,N+ηk,Nn=1Nτ4,ntr{𝐒~k,n}Ek,N,k,\displaystyle\textrm{C}_{4}:\widetilde{{\mathbf{{S}}}}_{k,n}\succeq\mathbf{0},\hskip 3.0ptP_{c_{k,N}}+\eta_{k,N}\sum_{n=1}^{N}\tau_{4,n}\textrm{tr}\{\widetilde{{\mathbf{{S}}}}_{k,n}\}\leq E_{k,N},\hskip 3.0pt\forall k,

where 𝐒=[𝐒k,n,k,nN]\mathbf{S}=[\mathbf{S}_{k,n},\hskip 2.0pt\forall k,n\neq N], 𝐒~=[𝐒~k,n,k,n]\widetilde{\mathbf{S}}=[\widetilde{\mathbf{S}}_{k,n},\hskip 2.0pt\forall k,n], 𝝉=[τ2,τ3,1,,τ3,N1,τ4,1,,τ4,N]T\bm{\tau}=[\tau_{2},\tau_{3,1},...,\tau_{3,N-1},\tau_{4,1},...,\tau_{4,N}]^{{T}} and without loss of generality, we normalize the total time to T=1T=1. We note that the problem in (24) is not convex due to the coupled design variables in the objective function and in the constraints C3\textrm{C}_{3} and C4\textrm{C}_{4}. To deal with this problem, we devise a method based on AO with partitioning [𝝉𝐐,𝐒,𝐒~][\bm{\tau}\hskip 5.0pt\vdots\hskip 5.0pt\mathbf{{Q}},\mathbf{{S}},\widetilde{\mathbf{{S}}}]. We first solve the problem for [𝐐,𝐒,𝐒~][\mathbf{{Q}},\mathbf{{S}},\widetilde{\mathbf{{S}}}] assuming a fixed solution for 𝝉\bm{\tau}. Then, we solve the problem for 𝝉\bm{\tau} assuming a fixed solution for [𝐐,𝐒,𝐒~][\mathbf{{Q}},\mathbf{{S}},\widetilde{\mathbf{{S}}}]. These two steps will continue till a predefined stop criterion is satisfied for the convergence.

III-A Maximization w.r.t. Transmit Covariance Matrices

We recast the problem in (24) by introducing an auxiliary variable βa{\beta_{a}} and using (22)-(23) as follows

max𝐐,𝐒,𝐒~,βa\displaystyle\max_{\mathbf{Q},\mathbf{S},\widetilde{\mathbf{S}},\beta_{a}} βa\displaystyle{\beta_{a}} (25)
s.t. C5,1a:Rk,n(U-CH)(𝐒)βa,C5,2a:Rk,n(U-HAP)(𝐒)+Rk,n(CH-HAP)(𝐒~)βa,k,nN,\displaystyle\textrm{C}^{a}_{5,1}:R_{k,n}^{(\textrm{U-CH})}(\mathbf{S})\geq{\beta_{a}},\hskip 10.0pt\textrm{C}^{a}_{5,2}:R_{k,n}^{(\textrm{U-HAP})}(\mathbf{S})+R_{k,n}^{(\textrm{CH-HAP})}(\widetilde{\mathbf{S}})\geq{\beta_{a}},\hskip 3.0pt\forall k,n\neq N,
C6a:Rk,N(CH-HAP)(𝐒~)βa,k,C2C4.\displaystyle\textrm{C}^{a}_{6}:{R}^{(\textrm{CH-HAP})}_{k,N}(\widetilde{\mathbf{S}})\geq{\beta_{a}},\hskip 3.0pt\forall k,\hskip 10.0pt\textrm{C}_{2}-\textrm{C}_{4}.

We observe that the constraints C5,1a\textrm{C}^{a}_{5,1}, C5,2a\textrm{C}^{a}_{5,2} and C6a\textrm{C}^{a}_{6} in (25) are not convex and so the problem in (25). Thus, in what follows, we use the MM technique to devise an algorithm to solve this non-convex problem.

The iterative MM can be used to obtain a solution for some general optimization problems:

P0:{max𝐱f~(𝐱)s.t.g~(𝐱)0,\displaystyle P_{0}:\hskip 2.0pt\left\{\begin{array}[]{ll}&\underset{{\mathbf{x}}}{\max}\;\;\widetilde{f}({\mathbf{x}})\\ &\textrm{s.t.}\quad\widetilde{g}({\mathbf{x}})\leq 0,\end{array}\right. (28)

where f~(𝐱)\widetilde{f}({\mathbf{x}}) and g~(𝐱)\widetilde{g}({\mathbf{x}}) may be non-convex functions. To apply MM in P0P_{0}, we shall find two functions h~(κ)(𝐱)\widetilde{h}^{(\kappa)}({\mathbf{x}}) and q~(κ)(𝐱)\widetilde{q}^{(\kappa)}({\mathbf{x}}) at κ\kappath iteration such that q~(κ)(𝐱)\widetilde{q}^{(\kappa)}({\mathbf{x}}) minorizes f~(𝐱)\widetilde{f}({\mathbf{x}}), i.e.:

f~(𝐱)q~(κ)(𝐱),𝐱,f~(𝐱(κ1))=q~(κ)(𝐱(κ1)),\displaystyle\widetilde{f}({\mathbf{x}})\geq\widetilde{q}^{(\kappa)}({\mathbf{x}}),\hskip 1.5pt\forall{\mathbf{x}},\hskip 15.0pt\widetilde{f}({\mathbf{x}}^{(\kappa-1)})=\widetilde{q}^{(\kappa)}({\mathbf{x}}^{(\kappa-1)}), (29)

and h~(κ)(𝐱)\widetilde{h}^{(\kappa)}({\mathbf{x}}) majorizes g~(𝐱)\widetilde{g}({\mathbf{x}}) as for all 𝐱{\mathbf{x}} follows

h~(κ)(𝐱)g~(𝐱),h~(κ)(𝐱(κ1))=g~(𝐱(κ1)),\displaystyle\widetilde{h}^{(\kappa)}({\mathbf{x}})\geq\widetilde{g}({\mathbf{x}}),\hskip 15.0pt\widetilde{h}^{(\kappa)}({\mathbf{x}}^{(\kappa-1)})=\widetilde{g}({\mathbf{x}}^{(\kappa-1)}), (30)

where 𝐱(κ1){\mathbf{x}}^{(\kappa-1)} is the value of 𝐱{\mathbf{x}} at the (κ1)(\kappa-1)th iteration. The following optimization problem is solved at the κ\kappath iteration (which is simpler than the original problem):

Pκ:{max𝐱q~(κ)(𝐱)s.t.h~(κ)(𝐱)0.\displaystyle P_{\kappa}:\hskip 2.0pt\left\{\begin{array}[]{ll}&\underset{{\mathbf{x}}}{\max}\;\;\widetilde{q}^{(\kappa)}({\mathbf{x}})\\ &\textrm{s.t.}\quad\widetilde{h}^{(\kappa)}({\mathbf{x}})\leq 0.\end{array}\right. (33)

We first apply MM technique on C5,1b\textrm{C}^{b}_{5,1} by using the matrix inversion lemma and rewriting Rk,n(U-CH)R_{k,n}^{(\textrm{U-CH})} in (16) for all kk and nNn\neq N (see Appendix B) as

Rk,n(U-CH)=τ3,nlog2det(𝐀k,nH𝐃k,n1𝐀k,n),R_{k,n}^{(\textrm{U-CH})}=\tau_{3,n}\textrm{log}_{2}\textrm{det}\left(\mathbf{A}^{{H}}_{k,n}\mathbf{D}_{k,n}^{-1}\mathbf{A}_{k,n}\right), (34)

where

𝐀k,n=[𝐈Mk,n,𝟎Mk,n×Mk,N]T,\mathbf{A}_{k,n}=[\mathbf{I}_{{M}_{k,n}},\mathbf{0}_{{M}_{k,n}\times{M}_{k,N}}]^{T}, (35)
𝐃k,n=[𝐈Mk,n(𝐒k,n12)H𝐆^k,n,kH𝐆^k,n,k𝐒k,n12𝐋k,n(U-CH)+j=1K{𝐆^k,n,j𝐒j,n𝐆^k,n,jH+σg,Δk,n,j2tr{𝐒j,n}𝐈Mk,N}].\mathbf{{D}}_{k,n}=\begin{bmatrix}\mathbf{I}_{{M}_{k,n}}\hskip 1.42262pt&\hskip 1.42262pt({\mathbf{{S}}}^{\frac{1}{2}}_{k,n})^{{H}}{{\widehat{\mathbf{{G}}}}^{{H}}_{k,n,k}}\vspace*{3mm}\\ {\widehat{\mathbf{{G}}}}_{k,n,k}{{\mathbf{{S}}}^{\frac{1}{2}}_{k,n}}\hskip 1.42262pt&\hskip 1.42262pt{{\mathbf{L}}}_{k,n}^{(\textrm{U-CH})}+\sum_{j=1}^{{K}}\left\{{{\widehat{\mathbf{{G}}}}_{k,n,j}}{\mathbf{S}}_{j,n}{\widehat{\mathbf{{G}}}}^{{H}}_{k,n,j}+\sigma^{2}_{{g,\Delta}_{k,n,j}}\textrm{tr}\left\{{\mathbf{{S}}}_{j,n}\right\}\mathbf{I}_{{M}_{k,N}}\right\}\end{bmatrix}. (36)

Lemma 1 from [30] allows us to find a minorizer for Rk,n(U-CH)R_{k,n}^{(\textrm{U-CH})} in (34).

Lemma 1. The function f(𝐗)=log2det(𝐀H𝐗1𝐀)f(\mathbf{X})=\textrm{log}_{2}\textrm{det}\left(\mathbf{A}^{H}{\mathbf{X}}^{-1}\mathbf{A}\right) is convex in 𝐗𝕊++N\mathbf{X}\in\mathbb{S}_{++}^{N} for any full column rank matrix 𝐀\mathbf{A}. \hskip 388.0pt\blacksquare

It can be proved that 𝐃k,n\mathbf{{D}}_{k,n} for all kk and nNn\neq N is positive definite by using schur complement [31]. Thus, Lemma 1 implies that Rk,n(U-CH)R_{k,n}^{(\textrm{U-CH})} is convex w.r.t. 𝐃k,n\mathbf{{D}}_{k,n}. This gives the following minorization at κ\kappath iteration of the algorithm [30, 32] for all kk and nNn\neq N:

τ3,nlog2det(𝐀k,nH𝐃k,n1𝐀k,n)τ3,nlog2det(𝐀k,nH(𝐃k,n(κ1))1𝐀k,n)τ3,ntr{𝐅k,n(κ1)(𝐃k,n𝐃k,n(κ1))},\tau_{3,n}\textrm{log}_{2}\textrm{det}\left(\mathbf{A}_{k,n}^{{H}}\mathbf{D}_{k,n}^{-1}\mathbf{A}_{k,n}\right)\geq\tau_{3,n}\textrm{log}_{2}\textrm{det}\left(\mathbf{A}_{k,n}^{{H}}\left(\mathbf{D}^{(\kappa-1)}_{k,n}\right)^{-1}\mathbf{A}_{k,n}\right)-\tau_{3,n}\textrm{tr}\left\{\mathbf{F}^{(\kappa-1)}_{k,n}\left(\mathbf{D}_{k,n}-\mathbf{D}^{(\kappa-1)}_{k,n}\right)\right\}, (37)

where 𝐅k,n(κ1)=(𝐃k,n(κ1))1𝐀k,n(𝐀k,nH(𝐃k,n(κ1))1𝐀k,n)1𝐀k,nH(𝐃k,n(κ1))1𝟎\mathbf{F}^{(\kappa-1)}_{k,n}=\left(\mathbf{D}^{(\kappa-1)}_{k,n}\right)^{-1}\mathbf{A}_{k,n}\left(\mathbf{A}^{{H}}_{k,n}\left(\mathbf{D}^{(\kappa-1)}_{k,n}\right)^{-1}\mathbf{A}_{k,n}\right)^{-1}\mathbf{A}^{{H}}_{k,n}\left(\mathbf{D}^{(\kappa-1)}_{k,n}\right)^{-1}\succeq\mathbf{0}.

We now derive an explicit expression for the constraint C5,1a\textrm{C}^{a}_{5,1} in terms of the design variables 𝐒k,n\mathbf{S}_{k,n} by partitioning

𝐅k,n=[(𝐅k,n)11Mk,n×Mk,n(𝐅k,n)12Mk,n×Mk,N(𝐅k,n)21Mk,N×Mk,n(𝐅k,n)22Mk,N×Mk,N].\mathbf{F}_{k,n}=\begin{bmatrix}(\mathbf{F}_{k,n})_{11}\in{\mathbb{C}}^{{{M}_{k,n}\times{M}_{k,n}}}\hskip 8.53581pt&\hskip 8.53581pt(\mathbf{F}_{k,n})_{12}\in{\mathbb{C}}^{{{M}_{k,n}\times{M}_{k,N}}}\vspace*{3mm}\\ (\mathbf{F}_{k,n})_{21}\in{\mathbb{C}}^{{{M}_{k,N}\times{M}_{k,n}}}\hskip 8.53581pt&\hskip 8.53581pt(\mathbf{F}_{k,n})_{22}\in{\mathbb{C}}^{{{M}}_{k,N}\times{M}_{k,N}}\end{bmatrix}. (38)

Next by using (36), we can write the following expression for all kk and nNn\neq N:

tr{𝐅k,n𝐃k,n}\displaystyle\textrm{tr}\left\{\mathbf{F}_{k,n}\mathbf{D}_{k,n}\right\} =2{tr{(𝐅k,n)12𝐆^k,n,k𝐒k,n12}}+tr{(𝐅k,n)11}+tr{(𝐅k,n)22𝐋k,n(U-CH)}\displaystyle=2\Re\left\{\textrm{tr}\left\{{{(\mathbf{F}_{k,n})}_{12}}{\widehat{\mathbf{{G}}}}_{k,n,k}{\mathbf{{S}}}^{\frac{1}{2}}_{k,n}\right\}\right\}+\textrm{tr}\left\{{(\mathbf{F}_{k,n})}_{11}\right\}+\textrm{tr}\left\{{(\mathbf{F}_{k,n})_{22}}{{\mathbf{L}}}^{\textrm{(U-CH)}}_{k,n}\right\} (39)
+tr{(𝐅k,n)22j=1K{𝐆^k,n,j𝐒j,n𝐆^k,n,jH+σg,Δk,n,j2tr{𝐒j,n}𝐈Mk,N}}.\displaystyle\hskip 5.0pt+\textrm{tr}\left\{{(\mathbf{F}_{k,n})}_{22}\sum_{j=1}^{{K}}\left\{{\widehat{\mathbf{{G}}}}_{k,n,j}{{\mathbf{{S}}}_{j,n}}{{\widehat{\mathbf{{G}}}}^{{H}}_{k,n,j}}+\sigma^{2}_{{g,\Delta}_{k,n,j}}\textrm{tr}\left\{{\mathbf{{S}}}_{j,n}\right\}\mathbf{I}_{{M}_{k,N}}\right\}\right\}.

We rewrite the right-hand side of (37) by defining 𝐬k,nvec(𝐒k,n12)\mathbf{s}_{k,n}\triangleq\textrm{vec}({{\mathbf{{S}}}^{\frac{1}{2}}_{k,n}}) and using tr{𝐀𝐁}=(vec(𝐀T))Tvec(𝐁)\textrm{tr}\{\mathbf{A}\mathbf{B}\}=(\textrm{vec}(\mathbf{A}^{{T}}))^{{T}}\textrm{vec}(\mathbf{B}) and vec(𝐀𝐁𝐂)=(𝐂T𝐀)vec(𝐁)\textrm{vec}(\mathbf{A}\mathbf{B}\mathbf{C})=(\mathbf{C}^{{T}}\otimes\mathbf{A})\textrm{vec}(\mathbf{B}) for all kk and nNn\neq N as:

τ3,n(𝐓k,n(κ1)+2{(𝐯k,n(κ1))H𝐬k,n}+j=1K𝐬j,nH𝚼k,n,j(κ1)𝐬j,n),-\tau_{3,n}\left(\mathbf{T}^{(\kappa-1)}_{k,n}+2\Re\left\{\left(\mathbf{v}^{(\kappa-1)}_{k,n}\right)^{{H}}\mathbf{s}_{k,n}\right\}+\sum_{j=1}^{{K}}{\mathbf{s}}^{{H}}_{j,n}\mathbf{\Upsilon}^{(\kappa-1)}_{k,n,j}{\mathbf{s}}_{j,n}\right), (40)

where by considering tr{(𝐅k,n)22σg,Δk,n,j2tr{𝐒j,n}𝐈Mk,N}=tr{tr{(𝐅k,n)22}σg,Δk,n,j2𝐒j,n},\textrm{tr}\left\{{(\mathbf{F}_{k,n})}_{22}\sigma^{2}_{{g,\Delta}_{k,n,j}}\textrm{tr}\left\{{\mathbf{{S}}}_{j,n}\right\}\mathbf{I}_{{M}_{k,N}}\right\}=\textrm{tr}\left\{\textrm{tr}\left\{{(\mathbf{F}_{k,n})}_{22}\right\}\sigma^{2}_{{g,\Delta}_{k,n,j}}{\mathbf{{S}}}_{j,n}\right\}, we let

𝐓k,n(κ1)\displaystyle\mathbf{T}^{(\kappa-1)}_{k,n} =log2det(𝐀k,nH(𝐃k,n(κ1))1𝐀k,n)tr{𝐅k,n(κ1)𝐃k,n(κ1)}\displaystyle=-\textrm{log}_{2}\textrm{det}\left(\mathbf{A}_{k,n}^{{H}}\left(\mathbf{D}^{(\kappa-1)}_{k,n}\right)^{-1}\mathbf{A}_{k,n}\right)-\textrm{tr}\left\{\mathbf{F}^{(\kappa-1)}_{k,n}\mathbf{D}^{(\kappa-1)}_{k,n}\right\} (41)
+tr{(𝐅k,n(κ1))11}+tr{(𝐅k,n(κ1))22𝐋k,n(U-CH)},\displaystyle\hskip 5.0pt+\textrm{tr}\left\{\left(\mathbf{F}^{(\kappa-1)}_{k,n}\right)_{11}\right\}+\textrm{tr}\left\{\left(\mathbf{F}^{(\kappa-1)}_{k,n}\right)_{22}{{\mathbf{L}}}_{k,n}^{\textrm{(U-CH)}}\right\},
𝐯k,n(κ1)=vec(𝐆^k,n,kH(𝐅k,n(κ1))12H),\mathbf{v}^{(\kappa-1)}_{k,n}=\textrm{vec}\left({{\widehat{\mathbf{{G}}}}^{{H}}_{k,n,k}}\left(\mathbf{F}^{(\kappa-1)}_{k,n}\right)^{{H}}_{12}\right), (42)
𝚼k,n,j(κ1)=𝐈Mj,n(𝐆^k,n,jH(𝐅k,n(κ1))22𝐆^k,n,j+σg,Δk,n,j2tr{(𝐅k,n)22}𝐈Mj,n).\mathbf{\Upsilon}^{(\kappa-1)}_{k,n,j}=\mathbf{I}_{{M}_{j,n}}\otimes\left({{\widehat{\mathbf{{G}}}}^{{H}}_{k,n,j}}\left(\mathbf{F}^{(\kappa-1)}_{k,n}\right)_{22}{\widehat{\mathbf{{G}}}}_{k,n,j}+\sigma^{2}_{{g,\Delta}_{k,n,j}}\textrm{tr}\left\{{(\mathbf{F}_{k,n})}_{22}\right\}\mathbf{I}_{{M}_{j,n}}\right). (43)

We have (𝐅k,n(κ1))22𝟎{\left(\mathbf{F}^{(\kappa-1)}_{k,n}\right)}_{22}\succeq\mathbf{0} because 𝐅k,n(κ1)𝟎\mathbf{F}^{(\kappa-1)}_{k,n}\succeq\mathbf{0}. Thus, 𝐆^k,n,jH(𝐅k,n(κ1))22𝐆^k,n,j𝟎{{\widehat{\mathbf{{G}}}}^{{H}}_{k,n,j}}(\mathbf{F}^{(\kappa-1)}_{k,n})_{22}{\widehat{\mathbf{{G}}}}_{k,n,j}\succeq\mathbf{0}. Consequently, from the Kronecker product properties, we have 𝚼k,n,j(κ1)𝟎\mathbf{\Upsilon}^{(\kappa-1)}_{k,n,j}\succeq\mathbf{0} since 𝐆^k,n,jH(𝐅k,n(κ1))22𝐆^k,n,j+σg,Δk,n,j2tr{(𝐅k,n)22}𝐈Mj,n𝟎{{\widehat{\mathbf{{G}}}}^{{H}}_{k,n,j}}\left(\mathbf{F}^{(\kappa-1)}_{k,n}\right)_{22}{\widehat{\mathbf{{G}}}}_{k,n,j}+\sigma^{2}_{{g,\Delta}_{k,n,j}}\textrm{tr}\left\{{(\mathbf{F}_{k,n})}_{22}\right\}\mathbf{I}_{{M}_{j,n}}\succeq\mathbf{0}. Therefore, (40) is a quadratic and concave expression in terms of 𝐬k,n{\mathbf{s}}_{k,n}.

We manage the constraints C5,2a\textrm{C}^{a}_{5,2} and C6a\textrm{C}^{a}_{6} in (25) similar to C5,1a\textrm{C}^{a}_{5,1} by applying the MM technique. Precisely, we consider SIC (see (17) and substitute (21)), the left-hand side of the constraints C5,2a\textrm{C}^{a}_{5,2} and C6a\textrm{C}^{a}_{6} respectively with the following expressions at the κ\kappath iteration

τ3,n(𝐓~k,n(κ1)+2{(𝐯~k,n(κ1))H𝐬k,n}+j=kK𝐬j,nH𝚼~j,n(κ1)𝐬j,n)\displaystyle-\tau_{3,n}\left(\widetilde{\mathbf{T}}^{(\kappa-1)}_{k,n}+2\Re\left\{\left(\widetilde{\mathbf{v}}^{(\kappa-1)}_{k,n}\right)^{{H}}{\mathbf{s}}_{k,n}\right\}+\sum_{j=k}^{{K}}{\mathbf{s}}^{{H}}_{j,n}\widetilde{\mathbf{\Upsilon}}^{(\kappa-1)}_{j,n}{\mathbf{s}}_{j,n}\right) (44)
τ4,n(𝐓¯k,n(κ1)+2{(𝐯¯k,n(κ1))H𝐬~k,n}+j=kK𝐬~j,nH𝚼¯j,n(κ1)𝐬~j,n),\displaystyle-\tau_{4,n}\left(\bar{\mathbf{T}}^{(\kappa-1)}_{k,n}+2\Re\left\{\left(\bar{\mathbf{v}}^{(\kappa-1)}_{k,n}\right)^{{H}}{\widetilde{\mathbf{s}}}_{k,n}\right\}+\sum_{j=k}^{{K}}{{\widetilde{\mathbf{s}}}^{{H}}_{j,n}}\bar{\mathbf{\Upsilon}}^{(\kappa-1)}_{j,n}{\widetilde{\mathbf{s}}}_{j,n}\right),
τ4,N(𝐓¯k,N(κ1)+2{(𝐯¯k,N(κ1))H𝐬~k,N}+j=kK𝐬~j,NH𝚼¯j,N(κ1)𝐬~j,N),-\tau_{4,N}\left(\bar{\mathbf{T}}^{(\kappa-1)}_{k,N}+2\Re\left\{\left(\bar{\mathbf{{v}}}^{(\kappa-1)}_{k,N}\right)^{{H}}{\widetilde{\mathbf{s}}}_{k,N}\right\}+\sum_{j=k}^{{K}}{{\widetilde{\mathbf{s}}}^{{H}}_{j,N}}\bar{\mathbf{\Upsilon}}^{(\kappa-1)}_{j,N}{\widetilde{\mathbf{s}}}_{j,N}\right), (45)

where 𝐬~k,nvec(𝐒~k,n12){{\widetilde{\mathbf{{s}}}}_{k,n}}\triangleq\textrm{vec}({{\widetilde{\mathbf{{S}}}}^{\frac{1}{2}}_{k,n}}). Moreover, the matrices/vectors 𝐓~k,n(κ1)\widetilde{\mathbf{T}}^{(\kappa-1)}_{k,n}, 𝐓¯k,n(κ1)\bar{\mathbf{T}}^{(\kappa-1)}_{k,n}, 𝐯~k,n(κ1)\widetilde{\mathbf{v}}^{(\kappa-1)}_{k,n}, 𝐯¯k,n(κ1)\bar{\mathbf{v}}^{(\kappa-1)}_{k,n}, 𝚼~j,n(κ1)\widetilde{\mathbf{\Upsilon}}^{(\kappa-1)}_{j,n}, 𝚼¯j,n(κ1)\bar{\mathbf{\Upsilon}}^{(\kappa-1)}_{j,n}, 𝐅~k,n(κ1)\widetilde{\mathbf{F}}^{(\kappa-1)}_{k,n}, 𝐅¯k,n(κ1)\bar{\mathbf{F}}^{(\kappa-1)}_{k,n}, 𝐀~k,n\widetilde{\mathbf{A}}_{k,n}, 𝐀¯k,n\bar{\mathbf{A}}_{k,n}, 𝐃~k,n\widetilde{\mathbf{{D}}}_{k,n} and 𝐃¯k,n\bar{\mathbf{{D}}}_{k,n} are defined in Appendix C.

Finally, the κ\kappath iteration of the proposed method is handled via solving the following problem

max𝐐,𝐬,𝐬~,βa\displaystyle\max_{{\mathbf{{Q}}},{\mathbf{{s}}},\widetilde{\mathbf{s}},{\beta_{a}}} βa\displaystyle{\beta_{a}} (46)
s.t. C5,1a:(40)βa,C5,2a:(44)βa,C6a:(45)βa,C2,\displaystyle\textrm{C}^{a}_{5,1}:\eqref{fg6001}\geq\beta_{a},\hskip 10.0pt\textrm{C}^{a}_{5,2}:\eqref{fg60101}\geq\beta_{a},\hskip 10.0pt\textrm{C}^{a}_{6}:\eqref{fg60111}\geq\beta_{a},\hskip 10.0pt\textrm{C}_{2},
C3a:Pck,n+ηk,nτ3,n𝐬k,n22Ek,n,k,nN,\displaystyle\textrm{C}^{a}_{3}:P_{c_{k,n}}+\eta_{k,n}{\tau_{3,n}}{\|{\mathbf{{s}}}_{k,n}\|}^{2}_{2}\leq E_{k,n},\hskip 4.0pt\forall k,n\neq N,
C4a:Pck,N+ηk,Nn=1Nτ4,n𝐬~k,n22Ek,N,k,\displaystyle\textrm{C}^{a}_{4}:P_{c_{k,N}}+\eta_{k,N}\sum_{n=1}^{N}\tau_{4,n}{\|{\widetilde{\mathbf{{s}}}}_{k,n}\|}^{2}_{2}\leq E_{k,N},\hskip 4.0pt\forall k,

where 𝐬=[𝐬k,n,k,1nN1]{\mathbf{s}}=[{\mathbf{s}}_{k,n},\hskip 2.0pt\forall k,1\leq n\leq N-1] and 𝐬~=[𝐬~k,n,k,n]\widetilde{\mathbf{s}}=[\widetilde{\mathbf{s}}_{k,n},\hskip 2.0pt\forall k,n]. We observed that the problem in (46) is convex and particularly is a SOCP w.r.t. [𝐬,𝐬~][{\mathbf{s}},\widetilde{\mathbf{s}}] with linear constraints on matrix 𝐐\mathbf{{Q}} and βa\beta_{a}. Therefore, (46) can be quickly solved e.g. via interior point methods.

III-B Maximization w.r.t. 𝛕\bm{\tau}

We introduce an auxiliary variable βb\beta_{b} and use (22) and (23) in (24) to simplify the problem into its epigraphic form as follows

max𝝉,βb\displaystyle\max_{\bm{\tau},{\beta_{b}}} βb\displaystyle{\beta_{b}} (47)
s.t. C5,1b:Rk,n(U-CH)(𝝉)βb,C5,2b:Rk,n(U-HAP)(𝝉)+Rk,n(CH-HAP)(𝝉)βb,k,nN,\displaystyle\textrm{C}^{b}_{5,1}:R_{k,n}^{(\textrm{U-CH})}(\bm{\tau})\geq{\beta_{b}},\hskip 10.0pt\textrm{C}^{b}_{5,2}:R_{k,n}^{(\textrm{U-HAP})}(\bm{\tau})+R_{k,n}^{(\textrm{CH-HAP})}(\bm{\tau})\geq{\beta_{b}},\hskip 3.0pt\forall k,n\neq N,
C6b:Rk,N(CH-HAP)(𝝉)βb,k,C1,C3,C4.\displaystyle\textrm{C}^{b}_{6}:{R}^{(\textrm{CH-HAP})}_{k,N}(\bm{\tau})\geq{\beta_{b}},\hskip 3.0pt\forall k,\hskip 10.0pt\textrm{C}_{1},\textrm{C}_{3},\textrm{C}_{4}.

It is observed that (47) is a Linear Programming (LP) and can be solved efficiently e.g. by interior point methods.

Table I summaries the steps of this algorithm. This method has a nested loop. In the outer loop denoted by superscript ll, we alternate between partitioned variables [𝝉𝐐,𝐒,𝐒~][\bm{\tau}\hskip 5.0pt\vdots\hskip 5.0pt\mathbf{{Q}},\mathbf{{S}},{\widetilde{\mathbf{{S}}}}]. In step 1, [𝐐,𝐒,𝐒~][\mathbf{{Q}},\mathbf{{S}},{\widetilde{\mathbf{{S}}}}] are optimized for fixed 𝝉\bm{\tau}. In step 2, 𝝉\bm{\tau} is optimized for fixed [𝐐,𝐒,𝐒~][\mathbf{{Q}},\mathbf{{S}},{\widetilde{\mathbf{{S}}}}]. Note that optimizing [𝐐,𝐒,𝐒~][\mathbf{{Q}},\mathbf{{S}},{\widetilde{\mathbf{{S}}}}] for fixed 𝝉\bm{\tau} is performed with inner iterations denoted by superscript κ\kappa introduced by the MM to deal with non-convex constraint set in (25). We note that the LP in (47) and SOCP in (46) are solved efficiently by using interior point methods in polynomial time.

Remark 1 (Convergence).

The sequence of objective values of Problem (25) obtained by applying MM in step 1 has a ascent property and converges to a finite value [33]. Moreover, the sequence of the objective values of (24), the design problem, has the same property and converges to a finite value (see [33] for the conditions in which MM and AO converge to stationary points).

Remark 2 (Complexity Analysis).

The problem in (46) (see step 1 of Algorithm 1) has 2+2K(N1)2+2K(N-1) variables. Also, C2\textrm{C}_{2} consists of two sets of constraints, each of dimension Mh2M^{2}_{h}. Moreover, C3a\textrm{C}^{a}_{3} is associated with K(N1)K(N-1) constraints with dimension111This value is computed for the worst case in terms of constraint dimension. maxk,nNMk,n2\displaystyle\max_{k,n\neq N}M^{2}_{k,n}. Note that dimensions of C4a\textrm{C}^{a}_{4}, C5,1a\textrm{C}^{a}_{5,1}, C5,2a\textrm{C}^{a}_{5,2}, and C6a\textrm{C}^{a}_{6} in (46) can be obtained similarly. Therefore, applying interior point methods to the problem in (46) leads to computational complexity of (see [34] for details)

𝒪(((2+2K(N1))(2Mh2+3K(N1)maxk,nNMk,n2+K(N+1)maxkMk,N2))3.5).\displaystyle\mathcal{O}\bigg{(}\Big{(}(2+2K(N-1))(2M^{2}_{h}+3K(N-1)\max_{k,n\neq N}M^{2}_{k,n}+K(N+1)\max_{k}M^{2}_{k,N})\Big{)}^{3.5}\bigg{)}. (48)

As to step 2 of Algorithm 1, we note that it is nothing but an LP with computational complexity of 𝒪(2N+1)\mathcal{O}\left(\sqrt{2N+1}\right) [35], where 2N+12N+1 denotes the number of variables. Note that the total computational complexity of step 1 and 2 are linear with the number of iterations.

TABLE I: The Proposed Fair Throughput Maximization Method for a Cooperative Multi-Cluster WPCN
Step 0: Initialize 𝐐\mathbf{Q}, 𝐬{\mathbf{s}} and 𝐬~{\widetilde{\mathbf{s}}} such that satisfy the constraints C2,C3b\textrm{C}_{2},\textrm{C}^{b}_{3} and C4b\textrm{C}^{b}_{4}.
Step 1: Compute 𝐐(l)\mathbf{Q}^{(l)}, 𝐬(l){\mathbf{s}}^{(l)} and 𝐬~(l){\widetilde{\mathbf{s}}}^{(l)}.
   Step 1-1: Solve the convex problem in (46).
   Step 1-2: Update 𝐓k,n{\mathbf{T}}_{k,n}, 𝐓~k,n\widetilde{\mathbf{T}}_{k,n}, 𝐓¯k,n\bar{\mathbf{T}}_{k,n}, 𝐯k,n{\mathbf{v}}_{k,n}, 𝐯~k,n\widetilde{\mathbf{v}}_{k,n}, 𝐯¯k,n\bar{\mathbf{v}}_{k,n},𝚼k,n,j{\mathbf{\Upsilon}}_{k,n,j}, 𝚼~j,n\widetilde{\mathbf{\Upsilon}}_{j,n} and
   𝚼¯j,n\bar{\mathbf{\Upsilon}}_{j,n} according to (41), (42), (43) and Appendix C.
   Step 1-3: Repeat steps 1-1 and 1-2 till the stop criterion is satisfied.
Step 2: Compute 𝝉(l)\bm{\tau}^{(l)} by solving the LP in (47).
Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied, e.g. |g(l+1)g(l)|ξ|g^{(l+1)}-g^{(l)}|\leq\xi (where gg denotes the objective function of the Problem (24)) for some ξ>0\xi>0.

IV Extensions

IV-A Deterministic Energy Signal

Here we consider the energy signal 𝐱0\mathbf{x}_{0} as a deterministic signal with a rank-1 EB matrix 𝐐=𝐱0𝐱0H\mathbf{Q}=\mathbf{x}_{0}\mathbf{x}^{{H}}_{0}. In this case, the instantaneous received energy by UknU_{k}^{n} during the downlink phase can be used more reliably for information transmission in the next phases [33].

From (9), we can express the RF input power of user UknU_{k}^{n} as

P~k,n(𝐱0)=𝔼[(𝐲k,n(HAP-U))H𝐲k,n(HAP-U)𝐇^k,n]=𝐱0H(𝐁k,n)𝐱0,k,n,\displaystyle\widetilde{P}_{k,n}(\mathbf{x}_{0})={\mathbb{E}}\hskip 1.0pt\bigg{[}{\left(\mathbf{y}^{(\textrm{HAP-U})}_{k,n}\right)}^{{H}}\mathbf{y}^{(\textrm{HAP-U})}_{k,n}\hskip 1.0pt\Big{\mid}\hskip 1.0pt\widehat{\mathbf{H}}_{k,n}\bigg{]}=\mathbf{x}^{{H}}_{0}\left(\mathbf{B}_{k,n}\right)\mathbf{x}_{0},\hskip 4.0pt\forall k,n, (49)

where 𝐁k,n=𝐇^k,nH𝐇^k,n+σh,Δk,n2Mk,n𝐈Mh\mathbf{B}_{k,n}=\widehat{\mathbf{H}}^{{H}}_{k,n}{\widehat{\mathbf{H}}_{k,n}}+\sigma^{2}_{{h,\Delta}_{k,n}}{{M}_{k,n}}\mathbf{I}_{{M}_{h}}. The constraints C2\textrm{C}_{2} and C3aC4a\textrm{C}^{a}_{3}-\textrm{C}^{a}_{4} in Problems (46) and (57) can be respectively updated as

C2det:𝐱022p0,\displaystyle{\textrm{C}}^{\textrm{det}}_{2}:\|{\mathbf{x}}_{0}\|_{2}^{2}\leq p_{0},
C3det:Pck,n+ηk,nτ3,n𝐬k,n22Ek,n(P~k,n),\displaystyle{\textrm{C}}^{\textrm{det}}_{3}:P_{c_{k,n}}+\eta_{k,n}{\tau_{3,n}}{\|{\mathbf{{s}}}_{k,n}\|}^{2}_{2}\leq E_{k,n}(\widetilde{P}_{k,n}),
C4det:Pck,N+ηk,Nn=1Nτ4,n𝐬~k,n22Ek,N(P~k,n),\displaystyle{\textrm{C}}^{\textrm{det}}_{4}:P_{c_{k,N}}+\eta_{k,N}\sum_{n=1}^{N}\tau_{4,n}{\|{\widetilde{\mathbf{{s}}}}_{k,n}\|}^{2}_{2}\leq E_{k,N}(\widetilde{P}_{k,n}),

where Ek,n(P~k,n)E_{k,n}(\widetilde{P}_{k,n}) is defined in (8). We observe that C2det{\textrm{C}}^{\textrm{det}}_{2} is convex. We now consider C3det{\textrm{C}}^{\textrm{det}}_{3} and C4det{\textrm{C}}^{\textrm{det}}_{4}. The energy expression Ek,n(𝐱0){E}_{k,n}({\mathbf{x}}_{0}) is neither convex nor concave w.r.t. 𝐱0{\mathbf{x}}_{0} since Ek,n(P~k,n)E_{k,n}(\widetilde{P}_{k,n}) is a non-decreasing concave function w.r.t. P~k,n\widetilde{P}_{k,n} and P~k,n(𝐱0)\widetilde{P}_{k,n}({\mathbf{x}}_{0}) is a convex function w.r.t. 𝐱0{\mathbf{x}}_{0}. Thus, C3det{\textrm{C}}^{\textrm{det}}_{3} and C4det{\textrm{C}}^{\textrm{det}}_{4} are non-convex sets. To deal with this non-convexity, we first define a sufficiently large parameter ξk,n\xi_{k,n} such that 𝐱02Ek,n(𝐱0)+ξk,n𝐈Mh𝟎,{\nabla}^{2}_{\mathbf{x}_{0}}{E}_{k,n}(\mathbf{x}_{0})+\xi_{k,n}\mathbf{I}_{{{M}}_{h}}\succeq\mathbf{0}, as a convex function plus a concave one:

Ek,n(𝐱0)=Ek,n(𝐱0)+12ξk,n𝐱0H𝐱0convex12ξk,n𝐱0H𝐱0concave.{E}_{k,n}(\mathbf{x}_{0})=\underbrace{{E}_{k,n}(\mathbf{x}_{0})+\frac{1}{2}\xi_{k,n}{\mathbf{x}_{0}}^{{H}}\mathbf{x}_{0}}_{\textrm{convex}}\underbrace{-\frac{1}{2}\xi_{k,n}{\mathbf{x}_{0}}^{{H}}\mathbf{x}_{0}}_{\textrm{concave}}. (50)

See Appendix D for such a selection of ξk,n\xi_{k,n}. We now apply the MM technique on C3det{\textrm{C}}^{\textrm{det}}_{3} and C4det{\textrm{C}}^{\textrm{det}}_{4} to obtain convex constraints. To this end, we keep the concave part and minorize the convex part of Ek,n(𝐱0){E}_{k,n}({\mathbf{x}}_{0}) as follows

Ek,n(𝐱0(κ1))+12ξk,n(𝐱0(κ1))H𝐱0(κ1)+{𝐮k,n(κ)(𝐱0𝐱0(κ1))}12ξk,n𝐱0H𝐱0,{E}_{k,n}\left({\mathbf{x}}^{(\kappa-1)}_{0}\right)+\frac{1}{2}\xi_{k,n}\left({{\mathbf{x}}^{(\kappa-1)}_{0}}\right)^{{H}}{\mathbf{x}}^{(\kappa-1)}_{0}+\Re\left\{{{\mathbf{u}}}^{(\kappa)}_{k,n}\left(\mathbf{x}_{0}-{\mathbf{x}}^{(\kappa-1)}_{0}\right)\right\}-\frac{1}{2}\xi_{k,n}{\mathbf{x}}^{{H}}_{0}\mathbf{x}_{0}, (51)

where

𝐮k,n(κ)\displaystyle{{\mathbf{u}}}^{(\kappa)}_{k,n} =ξk,n(𝐱0(κ1))H\displaystyle=\xi_{k,n}\left({{\mathbf{x}_{0}}^{(\kappa-1)}}\right)^{{H}} (52)
+2τ1exp(c)exp(a(log(ωk,n(κ)))2)(ωk,n(κ))b1(2alog(ωk,n(κ))+b)(𝐱0(κ1))H𝐇k,nH𝐇k,n,\displaystyle\hskip 2.0pt+2\tau_{1}\textrm{exp}\left(c\right)\textrm{exp}\left(a\hskip 1.0pt{\left(\textrm{log}\left(\omega^{(\kappa)}_{k,n}\right)\right)}^{2}\right){\left(\omega^{(\kappa)}_{k,n}\right)}^{b-1}\left({2a\textrm{log}\left(\omega^{(\kappa)}_{k,n}\right)}+b\right)\hskip 2.0pt\left({{\mathbf{x}}^{(\kappa-1)}_{0}}\right)^{{H}}\mathbf{H}^{{H}}_{k,n}{\mathbf{H}_{k,n}},

with ωk,n(κ)=(𝐱0(κ1))H𝐁k,n𝐱0(κ1)\omega^{(\kappa)}_{k,n}=\left({{\mathbf{x}}^{(\kappa-1)}_{0}}\right)^{{H}}\mathbf{B}_{k,n}\hskip 1.0pt{\mathbf{x}}^{(\kappa-1)}_{0}. Now, we can rewrite the constraints C3det{\textrm{C}}^{\textrm{det}}_{3} and C4det{\textrm{C}}^{\textrm{det}}_{4} as follows

C3det:Pck,n+ηk,nτ3,n𝐬k,n22(51),\displaystyle{\textrm{C}}^{\textrm{det}}_{3}:P_{c_{k,n}}+\eta_{k,n}{\tau_{3,n}}{\|{\mathbf{{s}}}_{k,n}\|}^{2}_{2}\leq\eqref{mm}, (53)
C4det:Pck,N+ηk,Nn=1Nτ4,n𝐬~k,n22(51).\displaystyle{\textrm{C}}^{\textrm{det}}_{4}:P_{c_{k,N}}+\eta_{k,N}\sum_{n=1}^{N}\tau_{4,n}{\|{\widetilde{\mathbf{{s}}}}_{k,n}\|}^{2}_{2}\leq\eqref{mm}. (54)

Finally, to deal with the new design problem, we can modify the algorithm in Table I by replacing the constraints C2{\textrm{C}}_{2}, C3a{\textrm{C}}^{a}_{3}, and C4a{\textrm{C}}^{a}_{4} in (46) with C2detC4det{\textrm{C}}^{\textrm{det}}_{2}-{\textrm{C}}^{\textrm{det}}_{4} above.

IV-B Sum Throughput Maximization

The proposed max-min throughput method can be straightforwardly extended to the sum throughput maximization problem. Considering the sum throughput of the network. i.e., k=1Kn=1N\sum_{k=1}^{K}\sum_{n=1}^{N} Rk,n(U)R_{k,n}^{(\textrm{U})}, we cast the following sum throughput optimization problem

max𝝉,𝐐,𝐒,𝐒~\displaystyle\max_{\bm{\tau},{\mathbf{{Q}}},{\mathbf{{S}}},{\widetilde{\mathbf{{S}}}}} k=1Kn=1NRk,n(U)\displaystyle\sum_{k=1}^{K}\sum_{n=1}^{N}R_{k,n}^{(\textrm{U})} (55)
s.t. C1C4.\displaystyle\textrm{C}_{1}-\textrm{C}_{4}.

Similar to the problem in (24), the problem in (55) is non-convex due to the coupled design variables in the objective function and in the constraints C3\textrm{C}_{3} and C4\textrm{C}_{4}. Therefore, we employ AO with partitioning [𝝉𝐐,𝐒,𝐒~][\bm{\tau}\hskip 5.0pt\vdots\hskip 5.0pt\mathbf{{Q}},\mathbf{{S}},{\widetilde{\mathbf{{S}}}}]. The resulting sub-problem w.r.t. the parameter 𝝉\bm{\tau} is an LP and can be solved via e.g. interior point methods (similar to the Subsection III-B). Then, by introducing the auxiliary variables ϕk,n,k,nN\phi_{k,n},\hskip 2.0pt\forall k,n\neq N and using (22) and (23), the Problem (55) w.r.t. [𝐐,𝐒,𝐒~][\mathbf{{Q}},\mathbf{{S}},{\widetilde{\mathbf{{S}}}}] can be recast as

max𝐐,𝐒,𝐒~,𝚽\displaystyle\max_{{\mathbf{{Q}}},{\mathbf{{S}}},\widetilde{\mathbf{{S}}},\bm{\Phi}} k=1K{Rk,N(CH-HAP)(𝐒~)+n=1N1ϕk,n}\displaystyle\sum_{k=1}^{{K}}\left\{{R}^{(\textrm{CH-HAP})}_{k,N}\left(\widetilde{\mathbf{{S}}}\right)+\sum_{n=1}^{{N-1}}{\phi_{k,n}}\right\} (56)
s.t. C5,1sum:Rk,n(U-CH)(𝐒)ϕk,n,C5,2sum:Rk,n(U-HAP)(𝐒)+Rk,n(CH-HAP)(𝐒~)ϕk,n,k,nN,\displaystyle\textrm{C}^{\textrm{sum}}_{5,1}:R_{k,n}^{(\textrm{U-CH})}\left(\mathbf{{S}}\right)\geq{\phi_{k,n}},\hskip 5.0pt\textrm{C}^{\textrm{sum}}_{5,2}:R_{k,n}^{(\textrm{U-HAP})}\left({\mathbf{{S}}}\right)+R_{k,n}^{(\textrm{CH-HAP})}\left(\widetilde{\mathbf{{S}}}\right)\geq{\phi_{k,n}},\hskip 2.0pt\forall k,n\neq N,
C2C4,\displaystyle\textrm{C}_{2}-\textrm{C}_{4},

where 𝚽=[ϕk,n,k,nN]\bm{\Phi}=[\phi_{k,n},\hskip 2.0pt\forall k,n\neq N]. The constraints C5,1sum\textrm{C}^{\textrm{sum}}_{5,1} and C5,2sum\textrm{C}^{\textrm{sum}}_{5,2} can be tackled similar to the constraints C5,1a\textrm{C}^{a}_{5,1} and C5,2a\textrm{C}^{a}_{5,2} in Subsection III-A. Moreover, similar to the minorization process in (34)-(43), the objective function of this problem (considering SIC) can be dealt with by neglecting the constant terms. Consequently, we can handle the sum throughput maximization problem in (56) at the κ\kappath MM iteration by:

min𝐐,𝐬,𝐬~,𝚽\displaystyle\min_{\mathbf{Q},\mathbf{s},\widetilde{\mathbf{s}},\bm{\Phi}} k=1K{j=kK𝐬~j,NH𝚼¯j,N(κ1)𝐬~j,N+2{(𝐯¯k,N(κ1))H𝐬~k,N}n=1N1ϕk,n}\displaystyle\sum_{k=1}^{{K}}\left\{\sum_{j=k}^{{K}}{{\widetilde{\mathbf{s}}}^{{H}}_{j,N}}\bar{\mathbf{\Upsilon}}^{(\kappa-1)}_{j,N}{\widetilde{\mathbf{s}}}_{j,N}+2\Re\left\{\left(\bar{\mathbf{{v}}}^{(\kappa-1)}_{k,N}\right)^{{H}}{\widetilde{\mathbf{s}}}_{k,N}\right\}-\sum_{n=1}^{N-1}\phi_{k,n}\right\} (57)
s.t. C5,1sum:(40)ϕk,n,C5,2sum:(44)ϕk,n,k,1nN1,\displaystyle\textrm{C}^{\textrm{sum}}_{5,1}:\eqref{fg6001}\geq\phi_{k,n},\hskip 10.0pt\textrm{C}^{\textrm{sum}}_{5,2}:\eqref{fg60101}\geq\phi_{k,n},\hskip 2.0pt\forall k,1\leq n\leq N-1,
C2,C3a,C4a.\displaystyle\textrm{C}_{2},\hskip 4.0pt\textrm{C}^{a}_{3},\hskip 4.0pt\textrm{C}^{a}_{4}.

We see that the problem in (57) is convex, i.e., a QCQP w.r.t. [𝐬,𝐬~][{\mathbf{s}},\widetilde{\mathbf{s}}] with linear constraints on matrix 𝐐\mathbf{{Q}} and 𝚽\bm{\Phi}. Thus, this problem can be solved efficiently by using interior point methods.

V Numerical Examples

In this section, we evaluate the proposed method in different scenarios via Monte-Carlo simulations. The channels from HAP to users and the channels between user UinU_{i}^{n} and kkth CH UkNU_{k}^{N} are modeled as 𝐇k,n=0.1(dk,n(U-HAP)d0)α2𝐇~k,n,k,n\mathbf{H}_{k,n}={0.1\left(\frac{d^{(\textrm{U-HAP})}_{k,n}}{d_{0}}\right)^{\frac{-\alpha}{2}}}\widetilde{\mathbf{H}}_{k,n},\forall k,n and 𝐆k,n,i=0.1(dk,n,i(U-CH)d0)α2𝐆~k,n,i,k,i,nN{\mathbf{G}}_{k,n,i}={0.1\left(\frac{d^{(\textrm{U-CH})}_{k,n,i}}{d_{0}}\right)^{\frac{-\alpha}{2}}}\widetilde{\mathbf{G}}_{k,n,i},\forall k,i,n\neq N, respectively, where d0=1meters (m)d_{0}=1\hskip 2.0pt\textrm{meters (m)} is a reference distance, dk,n(U-HAP)d^{(\textrm{U-HAP})}_{k,n} is the distance between HAP and users, dk,n,i(U-CH){d^{(\textrm{U-CH})}_{k,n,i}} is the distance between user UinU_{i}^{n} and kkth CH (see Fig. 3) and α\alpha is the path-loss exponent. We assume that the entries of 𝐇~k,n\widetilde{\mathbf{H}}_{k,n} and 𝐆~k,n,i\widetilde{\mathbf{G}}_{k,n,i} are i.i.d. circularly symmetric complex Gaussian random variables with zero mean and unit variance. We set N=2N=2 and also 2dk,2(U-HAP)=2dk,1,k(U-CH)=dk,1(U-HAP)=10m,k,n,2d^{(\textrm{U-HAP})}_{k,2}=2d^{(\textrm{U-CH})}_{k,1,k}=d^{(\textrm{U-HAP})}_{k,1}=10\hskip 1.0pt\textrm{m},\forall k,n, θ=30\theta=30^{\circ} (as shown in Fig. 3) and α=3\alpha=3, unless otherwise stated. We also consider HAP and the users with Mh=Mk,n=M=4,k,n{M}_{h}={M}_{k,n}={M}=4,\forall k,n antennas and set p0=3watts (w)p_{0}=3\hskip 2.5pt\textrm{watts (w)} unless otherwise specified. We assume the receiver noise vectors to be white with 𝐋n(U-HAP)=𝐋k,n(U-CH)=σ2𝐈M,k,nN{\mathbf{L}}^{(\textrm{U-HAP})}_{n}={\mathbf{L}}^{(\textrm{U-CH})}_{k,n}=\sigma^{2}\mathbf{I}_{{M}},\forall k,n\neq N and σ2=80dBm\sigma^{2}=-80\hskip 2.0pt\textrm{dBm}. We further assume K=4{K}=4, Pck,n=23dBm,k,nP_{c_{k,n}}=-23\hskip 2.0pt\textrm{dBm},\forall k,n, and power amplifier inefficiency factor ηk,n=1,k,n\eta_{k,n}=1,\forall k,n. Moreover, we use a bandwidth of 1MHz1\hskip 2.0pt\textrm{MHz} and the curve fitting parameters a=0.0977a=-0.0977, b=0.9151b=-0.9151 and c=11.1648c=-11.1648 as suggested in [26, Fig. 5.a]. Finally, we solve the convex optimization problems using CVX package [36] for ρhk,n=ρgk,n,i=ρ=0.95,k,n,i{\rho}_{{{h}_{k,n}}}={\rho}_{{{g}_{k,n,i}}}={\rho}=0.95,\forall k,n,i.

HAPθ\thetaθ\thetaθ\thetaU12U_{1}^{2}U11U_{1}^{1}U22U_{2}^{2}U21U_{2}^{1}U32U_{3}^{2}U31U_{3}^{1}U42U_{4}^{2}U41U_{4}^{1}d2,1,1(U-CH)d^{(\textrm{U-CH})}_{2,1,1}d2,3,1(U-CH)d^{(\textrm{U-CH})}_{2,3,1}d3,3,1(U-CH)d^{(\textrm{U-CH})}_{3,3,1}d4,2(U-HAP)d^{(\textrm{U-HAP})}_{4,2}d1,1(U-HAP)d^{(\textrm{U-HAP})}_{1,1}U12U_{1}^{2}
Figure 3: The geometry for the simulation setup for the case of N=2N=2.

V-A Convergence of the Proposed Algorithm

Refer to caption
Figure 4: The values of the objective function in (24) versus the number of outer iterations.

Fig. 4 shows the values of the max-min throughput, i.e., the objective values in (24) versus the number of outer iterations (see Table I), for different number of antennas at the HAP and the users (M{M}). As expected, the max-min throughput increases at each iteration and quickly converges within small number of iterations.

V-B The Effect of the CH Locations

Refer to caption
Refer to caption
Figure 5: Comparison of the cooperative and non-cooperative methods versus various distance ratio: (a) minimum throughput; cooperative method: γopt=0.4\gamma_{\textrm{opt}}=0.4 for α=2.5\alpha=2.5 and γopt=0.5\gamma_{\textrm{opt}}=0.5 for α=3\alpha=3, non-cooperative method: γopt=0.4\gamma_{\textrm{opt}}=0.4 for both α=2.5,3\alpha=2.5,3, (b) cooperation ratio; γopt=0.4\gamma_{\textrm{opt}}=0.4 for α=2.5\alpha=2.5 and γopt=0.6\gamma_{\textrm{opt}}=0.6 for α=3\alpha=3.

In this scenario, we study the effect of the distance between HAP, kkth CH, i.e. Uk2U^{2}_{k}, and Uk1U^{1}_{k} on the max-min throughput performance. For this purpose, we define γ=dk,2(U-HAP)dk,1(U-HAP)\gamma=\frac{d^{(\textrm{U-HAP})}_{k,2}}{d^{(\textrm{U-HAP})}_{k,1}} as the distance ratio as shown in Fig. 3. The max-min throughput versus γ\gamma is plotted in Fig. 5.a for different values of α\alpha. In this figure, we also compare the proposed cooperative resource allocation method with a non-cooperative method. In the non-cooperative method, CHs do not perform their relaying duty in the fourth phase; indeed, for the time duration of the fourth phase we can write τ4,n=0,nN\tau_{4,n}=0,\hskip 2.0pt\forall n\neq N and therefore, τ4=τ4,N\tau_{4}=\tau_{4,N} (see Fig. 2). We observe that the cooperation leads to a significant increase for the achievable minimum throughput, for all values of γ\gamma and α\alpha. Also, the minimum throughput of the method with cooperation first increases until γγopt\gamma\leq\gamma_{\textrm{opt}}, and then decreases by increasing γ\gamma, i.e., when γγopt\gamma\geq\gamma_{\textrm{opt}}. Because the doubly near-far problem is more severe for larger values of α\alpha, the value of γopt\gamma_{\textrm{opt}} increases w.r.t. α\alpha for the method with cooperation. In light of Fig. 5.a, we define a cooperation ratio as cooprerationnon-coopreration\frac{\textrm{coopreration}}{\textrm{non-coopreration}} and plot it in Fig. 5.b versus distance ratio. The optimum location of CHs associated with the largest cooperation ratio can be observed from this figure.

V-C Minimum Throughput Versus Maximum Power of HAP

In Fig. 6, we plot the max-min throughput as a function of the maximum power budget at HAP i.e., p0p_{0}, for a constant distance ratio γ=0.8\gamma=0.8 (see Fig. 3) for different values of the path-loss exponent α\alpha and comparing the cooperative and non-cooperative methods. We observe that the proposed cooperative resource allocation method achieves higher throughput than the non-cooperative method. Moreover, the curves in Fig. 6, can be interpreted in three zones. In zone 1, the EH circuits of both kkth CH and Uk1U_{k}^{1} in each cluster operate in their linear region. In zone 2, the EH circuit of Uk1U_{k}^{1} operates in its linear region and the EH circuit of kkth CH is saturated. In zone 3, the EH circuits of both are saturated. Note that minimum throughput gain from the cooperation for α=3\alpha=3 is less than that of α=2.5\alpha=2.5 in zone 1 (linear zone) due to the larger channel attenuation.

Refer to caption
Figure 6: Minimum throughput versus maximum power budget at HAP.

V-D The Max-min Versus Sum Throughput Optimizations

Fig. 7 compares the throughput obtained from the max-min and sum throughput optimization problems, for the proposed (cooperative) method. It is observed that in sum throughput optimization, the values of the minimum throughput and the sum throughput of all pairs are equal to min1k41n2Rk,n(U)=0.12\min_{\begin{subarray}{c}1\leq k\leq 4\\ 1\leq n\leq 2\end{subarray}}{R}^{(\textrm{U})}_{k,n}=0.12 Mbps and k=14n=12Rk,n(U)=9.11\sum_{k=1}^{4}\sum_{n=1}^{2}R^{(\textrm{U})}_{k,n}=9.11 Mbps, respectively; whereas for the max-min case we have min1k41n2Rk,n(U)=0.83\min_{\begin{subarray}{c}1\leq k\leq 4\\ 1\leq n\leq 2\end{subarray}}{R}^{(\textrm{U})}_{k,n}=0.83 Mbps and k=14n=12Rk,n(U)=6.64\sum_{k=1}^{4}\sum_{n=1}^{2}R^{(\textrm{U})}_{k,n}=6.64 Mbps. Therefore, we can conclude that the max-min throughput method achieves fairness among users by compromising sum throughput. Note that the objective in the sum throughput maximization method is to maximize the sum throughput of all users, and as a result, we numerically observed that the time allocated to the time slots τ4,n,nN\tau_{4,n},\forall n\neq N, i.e., relaying time slots of the sum throughput problem is very small..

We illustrate the effect of the initialization in step 0 of Table I on the performance of the both methods. Considering red parts, it can be seen that the quality of the obtained solution has a small sensitivity w.r.t. various initializations. Precisely, for 10 different initial points, the maximum level of relative error (i.e., the maximum deviation from average value divided by average value) for the minimum throughput of the max-min problem and sum throughput of the sum throughput maximization problem are respectively 2.37%2.37\% and 3.32%3.32\%.

Refer to caption
Figure 7: The user throughputs in the max-min and sum throughput optimizations.

V-E The Effect of Inter-Cluster Interference

Fig. 8 illustrates the minimum throughput of the cooperative method versus the parameter θ\theta (see Fig. 3). We observe that as θ\theta decreases, the minimum throughput decreases for both scenarios with α=2.5\alpha=2.5 and α=3\alpha=3. This is due to the fact that as θ\theta increases, the inter-cluster interference increases which leads to a reduction in Rk,n(U-CH),k,nNR^{(\textrm{U-CH})}_{k,n},\forall k,n\neq N and thus a reduction in Rk,n(U),k,nNR_{k,n}^{(\textrm{U})},\forall k,n\neq N (see (22)). Note that this throughput reduction for α=3\alpha=3 is less than the case of α=2.5\alpha=2.5, because there is more inter-user interference for α=2.5\alpha=2.5.

Refer to caption
Figure 8: Minimum throughput versus the parameter θ\theta (in degrees).

V-F The Effect of Channel Estimation Error

In this subsection, we study the effect of channel estimation error by comparing the robust and the non-robust schemes for the cooperative max-min method in Fig. 9. The robust scheme considers the errors of channel estimation in the resource allocation stage as opposed to the non-robust scheme. In this case, we apply a linear curve fitting to both methods in a least-squares sense in a log-scale as follows

RdB(U)=log(mink,nRk,n(U))=aρρ+bρ{R}^{(\textrm{U})}_{dB}=\textrm{log}\left(\min_{k,n}{R}^{(\textrm{U})}_{k,n}\right)=a_{\rho}\rho+b_{\rho} (58)

where aρa_{\rho} and bρb_{\rho} are the coefficients of the polynomial. We observe in Fig. 9.a that the minimum throughput increases as the estimation quality ρ\rho increases. Note that in Fig. 9.a, we consider the performance evaluation of the robust and the non-robust schemes in the average sense. However, in some cases, the non-robust scheme has a much worse performance than the robust one. Therefore, we define the loss parameter as

χ(ρ)=1R(nr)(ρ)R(r)(ρ),\chi(\rho)=1-\frac{{R}^{(\textrm{nr})}(\rho)}{{R}^{(\textrm{r})}(\rho)}, (59)

where R(nr){R}^{(\textrm{nr})} and R(r){R}^{(\textrm{r})} represent the minimum throughput for the robust and the non-robust schemes, respectively. Fig. 9.b shows the maximum of the loss parameter over 100 realizations of the channel matrices. As expected, the loss decreases as the estimation quality increases, and tends to zero for perfect CSI as ρ1\rho\rightarrow 1. We also observe that the proposed (robust) scheme provides enhanced throughput compared to the non-robust one even for relatively large values of the estimation quality.

Refer to caption
Refer to caption
Figure 9: The effect of channel estimation error: (a) linear curve fitting (in log-scale) for minimum throughput versus the estimation quality ρ\rho; proposed (robust) method: aρ=4.1123,bρ=7.4633a_{\rho}=4.1123,\hskip 2.0ptb_{\rho}=7.4633, non-robust method: aρ=5.6956,bρ=5.7844a_{\rho}=5.6956,\hskip 2.0ptb_{\rho}=5.7844, (b) maximum value of the loss parameter χ(ρ)\chi(\rho) versus the estimation quality ρ\rho.

V-G The Impact of CH Selection for N>2N>2

Herein, we aim to analyze the impact of the CH assignment to the minimum throughput performance for the cooperative max-min throughput optimization problem. In the previous subsections for N=2N=2, it was trivial to select the user which is closest to the HAP as CH in each cluster. In this scenario, we assume that the users are uniformly distributed in each cluster within a circle with a radius of 5m5\hskip 1.5pt\textrm{m}. Furthermore, the center of the clusters are set to be 10m10\hskip 1.5pt\textrm{m} apart and also 10m10\hskip 1.5pt\textrm{m} away from the HAP. Fig. 10 compares the performance of the two CH selection methods in which the nearest user to the HAP//cluster center is selected as CH for each cluster. Precisely, Fig. 10 shows the total minimum throughput, i.e., minimum throughput×KN\hskip 1.0pt\times KN of two mentioned methods versus number of clusters KK for the case of N=4N=4. We observe a superior performance when the CH is the nearest user to the cluster center as compared to the one nearest to HAP in Fig. 10. This is because the maximum distance between users and CH in each cluster is larger and as a result the minimum throughput will be lower.

Refer to caption
Figure 10: Minimum throughput×KN\hskip 1.0pt\times KN versus the number of clusters KK for the two CH selection methods.

VI Conclusion

In this paper, we proposed a fair cooperative multi-cluster method in a WPCN where both the HAP and users have multiple antennas. In the downlink phase of the network, the HAP transfers RF energy toward the users and then, the users, via the harvested energy in the aforementioned phase, transmit their information to the HAP with cooperation in the uplink phase. We considered the minimum and sum throughputs of the users as the design metrics and cast the optimization problem w.r.t. the time allocation vector, EB matrix, and covariance matrices of the users. The design problems were non-convex and so hard to solve. Therefore, we resort to the AO approach to deal with the problems. The resulting sub-problems w.r.t. the time allocation vector were convex; however, the sub-problems w.r.t. the EB and covariance matrices were non-convex and hence, the MM technique was employed to deal with them. We further considered the imperfect CSI and non-linear EH circuit in our design methodology. Various numerical examples illustrated the effectiveness of the proposed cooperative max-min scheme to achieve fairness among users. Studying distributed algorithm for cooperative multi-cluster WPCN to reduce signaling overhead especially in systems with large number of users can be a topic of future work.

Appendix A Proof of the LMMSE decoders in (15)

Without loss of generality, we assume that the information stream of the Ukn,1nN1U^{n}_{k},1\leq n\leq N-1 and the received signal at the kkth CH (i.e., UkNU^{N}_{k}) in (11) satisfy 𝔼[𝐦k,n]=𝔼[𝐲k,n(U-CH)]=0\mathbb{E}\left[\mathbf{m}_{k,n}\right]=\mathbb{E}\left[\mathbf{y}^{(\textrm{U-CH)}}_{k,n}\right]=0. Then, for the LMMSE decoder 𝐖k,n\mathbf{W}_{k,n} we have [23]

𝐖k,n=𝔼[𝐦k,n(𝐲k,n(U-CH))H](𝔼[𝐲k,n(U-CH)(𝐲k,n(U-CH))H])1\displaystyle\mathbf{W}_{k,n}=\mathbb{E}\left[\mathbf{m}_{k,n}\left({\mathbf{y}^{(\textrm{U-CH)}}_{k,n}}\right)^{{H}}\right]\left(\mathbb{E}\left[{\mathbf{y}^{(\textrm{U-CH)}}_{k,n}}\left({\mathbf{y}^{(\textrm{U-CH)}}_{k,n}}\right)^{{H}}\right]\right)^{-1} (60)
=𝐕k,nH𝐆^k,n,kH(𝐋k,n(U-CH)+j=1K𝐆^k,n,j𝐒j,n𝐆^k,n,jH+𝔼[j=1Kj=1KΔ𝐆k,n,j𝐕j,n𝐦j,n𝐦j,nH𝐕j,nHΔ𝐆k,n,jH])1\displaystyle={\mathbf{{V}}}^{{H}}_{k,n}{\widehat{\mathbf{G}}^{{H}}_{k,n,k}}\left({{\mathbf{L}}}^{(\textrm{U-CH)}}_{k,n}+\sum_{j=1}^{{K}}\widehat{\mathbf{G}}_{k,n,j}{\mathbf{{S}}}_{j,n}\widehat{\mathbf{G}}^{{H}}_{k,n,j}+\mathbb{E}\left[\sum_{j=1}^{{K}}\sum_{j^{\prime}=1}^{{K}}{\Delta\mathbf{G}}_{k,n,j}{\mathbf{{V}}}_{j,n}\mathbf{m}_{j,n}\mathbf{m}^{{H}}_{j^{\prime},n}{\mathbf{{V}}}^{{H}}_{j^{\prime},n}\Delta\mathbf{G}^{{H}}_{k,n,j^{\prime}}\right]\right)^{-1}
=𝐕k,nH𝐆^k,n,kH(𝐋k,n(U-CH)+j=1K𝐆^k,n,j𝐒j,n𝐆^k,n,jH+j=1Kσg,Δk,n,j2tr{𝐒j,n}𝐈Mk,N)1.\displaystyle={\mathbf{{V}}}^{{H}}_{k,n}{\widehat{\mathbf{G}}^{{H}}_{k,n,k}}\left({{\mathbf{L}}}^{(\textrm{U-CH)}}_{k,n}+\sum_{j=1}^{{K}}\widehat{\mathbf{G}}_{k,n,j}{\mathbf{{S}}}_{j,n}\widehat{\mathbf{G}}^{{H}}_{k,n,j}+\sum_{j=1}^{{K}}\sigma^{2}_{{g,\Delta}_{k,n,j}}\textrm{tr}\left\{{\mathbf{{S}}}_{j,n}\right\}\mathbf{I}_{{M}_{k,N}}\right)^{-1}.

Appendix B The derivation of the throughput expression in (34)

Let denote 𝐃k,n1\mathbf{D}^{-1}_{k,n} as inversion of the matrix 𝐃k,n\mathbf{D}_{k,n}, with

𝐃k,n1=[𝐃k,n,111Mk,n×Mk,n𝐃k,n,121Mk,n×Mk,N𝐃k,n,211Mk,N×Mk,n𝐃k,n,221Mk,N×Mk,N],k,1nN1.\mathbf{{D}}^{-1}_{k,n}=\begin{bmatrix}\mathbf{{D}}^{-1}_{k,n,11}\in{\mathbb{C}}^{{M}_{k,n}\times{M}_{k,n}}\hskip 5.69054pt&\hskip 5.69054pt\mathbf{{D}}^{-1}_{k,n,12}\in{\mathbb{C}}^{{M}_{k,n}\times{M}_{k,N}}\vspace*{3mm}\\ \mathbf{{D}}^{-1}_{k,n,21}\in{\mathbb{C}}^{{M}_{k,N}\times{M}_{k,n}}\hskip 5.69054pt&\hskip 5.69054pt\mathbf{{D}}^{-1}_{k,n,22}\in{\mathbb{C}}^{{M}_{k,N}\times{M}_{k,N}}\end{bmatrix},\hskip 5.0pt\forall k,1\leq n\leq N-1. (61)

By using blockwise matrix inversion lemma (see, e.g., [37, Appendix A]), we can write:

𝐃k,n,111=\displaystyle\mathbf{{D}}^{-1}_{k,n,11}= (𝐈Mk,n(𝐒k,n12)H𝐆^k,n,kH(𝐋k,n(U-CH)+j=1K𝐆^k,n,j𝐒j,n𝐆^k,n,jH\displaystyle\Bigg{(}\mathbf{I}_{{M}_{k,n}}-\left({\mathbf{{S}}}^{\frac{1}{2}}_{k,n}\right)^{{H}}\widehat{\mathbf{G}}^{{H}}_{k,n,k}\bigg{(}{{\mathbf{L}}}_{k,n}^{(\textrm{U-CH})}+\sum_{j=1}^{{K}}\widehat{\mathbf{G}}_{k,n,j}{\mathbf{{S}}}_{j,n}\widehat{\mathbf{G}}^{{H}}_{k,n,j} (62)
+j=1Kσg,Δk,n,j2tr{𝐒j,n}𝐈Mk,N)1𝐆^k,n,k𝐒k,n12)1,k,1nN1.\displaystyle\hskip 10.0pt+\sum_{j=1}^{{K}}\sigma^{2}_{{g,\Delta}_{k,n,j}}\textrm{tr}\left\{{\mathbf{{S}}}_{j,n}\right\}\mathbf{I}_{{M}_{k,N}}\bigg{)}^{-1}\widehat{\mathbf{G}}_{k,n,k}{\mathbf{{S}}}^{\frac{1}{2}}_{k,n}\Bigg{)}^{-1},\hskip 3.0pt\forall k,1\leq n\leq N-1.

Then, by using Woodbury matrix identity, i.e., (𝐅+𝐔𝐂𝐕)1=𝐅1𝐅1𝐔(𝐂1+𝐕𝐅1𝐔)1𝐕𝐅1{(\mathbf{F}+\mathbf{U}\mathbf{C}\mathbf{V})}^{-1}=\mathbf{F}^{-1}-\mathbf{F}^{-1}\mathbf{U}{(\mathbf{C}^{-1}+\mathbf{V}\mathbf{F}^{-1}\mathbf{U})}^{-1}\mathbf{V}\mathbf{F}^{-1}, we can rewrite 𝐃k,n,111\mathbf{{D}}^{-1}_{k,n,11} as

𝐃k,n,111=\displaystyle\mathbf{{D}}^{-1}_{k,n,11}= 𝐈Mk,n+(𝐒k,n12)H𝐆^k,n,kH(𝐋k,n(U-CH)+j=1,jkK𝐆^k,n,j𝐒j,n𝐆^k,n,jH\displaystyle\mathbf{I}_{{M}_{k,n}}+\left({\mathbf{{S}}}^{\frac{1}{2}}_{k,n}\right)^{{H}}\widehat{\mathbf{G}}^{{H}}_{k,n,k}\bigg{(}{{\mathbf{L}}}_{k,n}^{(\textrm{U-CH})}+\sum_{j=1,j\neq k}^{{K}}\widehat{\mathbf{G}}_{k,n,j}{\mathbf{{S}}}_{j,n}\widehat{\mathbf{G}}^{{H}}_{k,n,j} (63)
+j=1Kσg,Δk,n,j2tr{𝐒j,n}𝐈Mk,N)1𝐆^k,n,k𝐒12k,n,k,1nN1.\displaystyle+\sum_{j=1}^{{K}}\sigma^{2}_{{g,\Delta}_{k,n,j}}\textrm{tr}\left\{{\mathbf{{S}}}_{j,n}\right\}\mathbf{I}_{{M}_{k,N}}\bigg{)}^{-1}\widehat{\mathbf{G}}_{k,n,k}{\mathbf{{S}}}^{\frac{1}{2}}_{k,n},\hskip 3.0pt\forall k,1\leq n\leq N-1.

Finally, by substituting (63) in (34) and using Sylvester’s determinant property i.e., det(𝐈+𝐀𝐁)=det(𝐈+𝐁𝐀)\textrm{det}(\mathbf{I}+\mathbf{AB})=\textrm{det}(\mathbf{I}+\mathbf{BA}), (16) is obtained.

Appendix C Details on variables in (44) and (45)

Note that variables that are used for the constraints C5,2a\textrm{C}^{a}_{5,2} and C6a\textrm{C}^{a}_{6} of the Problem (25) in (44) and (45) can be written as

𝐀~k,n=[𝐈Mk,n,𝟎Mk,n×Mh]T,k,1nN1,𝐀¯k,n=[𝐈Mk,N,𝟎Mk,N×Mh]T,k,n,\widetilde{\mathbf{A}}_{k,n}=[\mathbf{I}_{{M}_{k,n}},\mathbf{0}_{{M}_{k,n}\times{M}_{h}}]^{T},\forall k,1\leq n\leq N-1,\hskip 10.0pt\bar{\mathbf{A}}_{k,n}=[\mathbf{I}_{{M}_{k,N}},\mathbf{0}_{{M}_{k,N}\times{M}_{h}}]^{T},\forall k,n,
𝐃~k,n=[𝐈Mk,n(𝐒k,n12)H𝐇^k,n𝐇^k,nH𝐒k,n12𝐋n(U-HAP)+j=kK{𝐇^j,nH𝐒j,n𝐇^j,n+σh,Δj,n2tr{𝐒j,n}𝐈Mh}],k,1nN1,\widetilde{\mathbf{{D}}}_{k,n}=\begin{bmatrix}\mathbf{I}_{{M}_{k,n}}\hskip 1.42262pt&\hskip 1.42262pt\left({\mathbf{{S}}}^{\frac{1}{2}}_{k,n}\right)^{{H}}\widehat{\mathbf{{H}}}_{k,n}\vspace*{2mm}\\ \widehat{\mathbf{H}}^{{H}}_{k,n}{{\mathbf{{S}}}^{\frac{1}{2}}_{k,n}}\hskip 1.42262pt&\hskip 1.42262pt{{\mathbf{L}}}_{n}^{(\textrm{U-HAP})}+\sum_{j=k}^{{K}}\left\{{\widehat{\mathbf{{H}}}^{{H}}_{j,n}}{{\mathbf{{S}}}_{j,n}}\widehat{\mathbf{{H}}}_{j,n}+\sigma^{2}_{{h,\Delta}_{j,n}}\textrm{tr}\left\{{\mathbf{{S}}}_{j,n}\right\}\mathbf{I}_{{M}_{h}}\right\}\end{bmatrix},\forall k,1\leq n\leq N-1,
𝐃¯k,n=[𝐈Mk,N(𝐒~k,n12)H𝐇^k,N𝐇^k,NH𝐒~k,n12𝐋n(CH-HAP)+j=kK{𝐇^j,NH𝐒~j,n𝐇^j,N+σh,Δj,N2tr{𝐒~j,n}𝐈Mh}],k,n,\bar{\mathbf{{D}}}_{k,n}=\begin{bmatrix}\mathbf{I}_{{M}_{k,N}}\hskip 1.42262pt&\hskip 1.42262pt\left({\widetilde{\mathbf{{S}}}}^{\frac{1}{2}}_{k,n}\right)^{{H}}{\widehat{\mathbf{{H}}}_{k,N}}\vspace*{1.5mm}\\ \widehat{\mathbf{{H}}}^{{H}}_{k,N}{{\widetilde{\mathbf{{S}}}}^{\frac{1}{2}}_{k,n}}\hskip 1.42262pt&\hskip 1.42262pt{{{\mathbf{L}}}}_{n}^{(\textrm{CH-HAP})}+\sum_{j=k}^{{K}}\left\{{\widehat{\mathbf{{H}}}^{{H}}_{j,N}}{{\widetilde{\mathbf{{S}}}}_{j,n}}\widehat{\mathbf{{H}}}_{j,N}+\sigma^{2}_{{h,\Delta}_{j,N}}\textrm{tr}\left\{{\widetilde{\mathbf{{S}}}}_{j,n}\right\}\mathbf{I}_{{M}_{h}}\right\}\end{bmatrix},\forall k,n,
𝐅~k,n(κ1)=(𝐃~k,n(κ1))1𝐀~k,n(𝐀~k,nH(𝐃~k,n(κ1))1𝐀~k,n)1𝐀~k,nH(𝐃~k,n(κ1))1,k,1nN1,{\widetilde{\mathbf{F}}}^{(\kappa-1)}_{k,n}=\left({\widetilde{\mathbf{D}}}^{(\kappa-1)}_{k,n}\right)^{-1}\widetilde{\mathbf{A}}_{k,n}\left(\widetilde{\mathbf{A}}^{{H}}_{k,n}\left({\widetilde{\mathbf{D}}^{(\kappa-1)}_{k,n}}\right)^{-1}\widetilde{\mathbf{A}}_{k,n}\right)^{-1}\widetilde{\mathbf{A}}^{{H}}_{k,n}\left({\widetilde{\mathbf{D}}^{(\kappa-1)}_{k,n}}\right)^{-1},\hskip 4.0pt\forall k,1\leq n\leq N-1,
𝐅¯k,n(κ1)=(𝐃¯k,n(κ1))1𝐀¯k,n(𝐀¯k,nH(𝐃¯k,n(κ1))1𝐀¯k,n)1𝐀¯k,nH(𝐃¯k,n(κ1))1,k,n,\bar{\mathbf{F}}^{(\kappa-1)}_{k,n}=\left({\bar{\mathbf{D}}^{(\kappa-1)}_{k,n}}\right)^{-1}\bar{\mathbf{A}}_{k,n}\left(\bar{\mathbf{A}}^{{H}}_{k,n}\left({\bar{\mathbf{D}}^{(\kappa-1)}_{k,n}}\right)^{-1}\bar{\mathbf{A}}_{k,n}\right)^{-1}\bar{\mathbf{A}}^{{H}}_{k,n}\left({\bar{\mathbf{D}}^{(\kappa-1)}_{k,n}}\right)^{-1},\hskip 4.0pt\forall k,n,
𝐓~k,n(κ1)=\displaystyle\widetilde{\mathbf{T}}^{(\kappa-1)}_{k,n}= log2det(𝐀~k,nH(𝐃~k,n(κ1))1𝐀~k,n)tr{𝐅~k,n(κ1)𝐃~k,n(κ1)}+tr{(𝐅~k,n(κ1))11}\displaystyle-\textrm{log}_{2}\textrm{det}\left(\widetilde{\mathbf{A}}^{{H}}_{k,n}\left(\widetilde{\mathbf{D}}^{(\kappa-1)}_{k,n}\right)^{-1}\widetilde{\mathbf{A}}_{k,n}\right)-\textrm{tr}\left\{\widetilde{\mathbf{F}}^{(\kappa-1)}_{k,n}\widetilde{\mathbf{D}}^{(\kappa-1)}_{k,n}\right\}+\textrm{tr}\left\{\left(\widetilde{\mathbf{F}}^{(\kappa-1)}_{k,n}\right)_{11}\right\}
+tr{(𝐅~k,n(κ1))22𝐋n(U-HAP)},k,1nN1,\displaystyle+\textrm{tr}\left\{\left(\widetilde{\mathbf{F}}^{(\kappa-1)}_{k,n}\right)_{22}{{\mathbf{L}}}_{n}^{(\textrm{U-HAP})}\right\},\hskip 4.0pt\forall k,1\leq n\leq N-1,
𝐓¯k,n(κ1)=\displaystyle\bar{\mathbf{T}}^{(\kappa-1)}_{k,n}= log2det(𝐀¯k,nH(𝐃¯k,n(κ1))1𝐀¯k,n)tr{𝐅¯k,n(κ1)𝐃¯k,n(κ1)}+tr{(𝐅¯k,n(κ1))11}\displaystyle-\textrm{log}_{2}\textrm{det}\left(\bar{\mathbf{A}}^{{H}}_{k,n}(\bar{\mathbf{D}}^{(\kappa-1)}_{k,n})^{-1}\bar{\mathbf{A}}_{k,n}\right)-\textrm{tr}\left\{\bar{\mathbf{F}}^{(\kappa-1)}_{k,n}\bar{\mathbf{D}}^{(\kappa-1)}_{k,n}\right\}+\textrm{tr}\left\{\left(\bar{\mathbf{F}}^{(\kappa-1)}_{k,n}\right)_{11}\right\}
+tr{(𝐅¯k,n(κ1))22𝐋n(CH-HAP)},k,n,\displaystyle+\textrm{tr}\left\{\left(\bar{\mathbf{F}}^{(\kappa-1)}_{k,n}\right)_{22}{{\mathbf{L}}}_{n}^{(\textrm{CH-HAP})}\right\},\hskip 4.0pt\forall k,n,
𝐯~k,n(κ1)=vec(𝐇^k,n(𝐅~k,n(κ1))12H),k,1nN1,𝐯¯k,n(κ1)=vec(𝐇^k,N(𝐅¯k,n(κ1))12H),k,n,\widetilde{\mathbf{v}}^{(\kappa-1)}_{k,n}=\textrm{vec}\left(\widehat{\mathbf{{H}}}_{k,n}\left(\widetilde{\mathbf{F}}^{(\kappa-1)}_{k,n}\right)^{{H}}_{12}\right),\hskip 1.0pt\forall k,1\leq n\leq N-1,\hskip 10.0pt\bar{\mathbf{v}}^{(\kappa-1)}_{k,n}=\textrm{vec}\left(\widehat{\mathbf{{H}}}_{k,N}\left(\bar{\mathbf{F}}^{(\kappa-1)}_{k,n}\right)^{{H}}_{12}\right),\hskip 1.0pt\forall k,n,
𝚼~j,n(κ1)=𝐈Mj,n(𝐇^j,n(𝐅~k,n(κ1))22𝐇^j,nH+σh,Δj,n2tr{(𝐅k,n)22}𝐈Mj,n),k,1nN1,\widetilde{\mathbf{\Upsilon}}^{(\kappa-1)}_{j,n}=\mathbf{I}_{{M}_{j,n}}\otimes\left(\widehat{\mathbf{{H}}}_{j,n}\left(\widetilde{\mathbf{F}}^{(\kappa-1)}_{k,n}\right)_{22}\widehat{\mathbf{{H}}}^{{H}}_{j,n}+\sigma^{2}_{{h,\Delta}_{j,n}}\textrm{tr}\left\{{(\mathbf{F}_{k,n})}_{22}\right\}\mathbf{I}_{{M}_{j,n}}\right),\hskip 4.0pt\forall k,1\leq n\leq N-1,
𝚼¯j,n(κ1)=𝐈Mj,N(𝐇^j,N(𝐅¯k,n(κ1))22𝐇^j,NH+σh,Δj,N2tr{(𝐅k,n)22}𝐈Mj,N),k,n.\bar{\mathbf{\Upsilon}}^{(\kappa-1)}_{j,n}=\mathbf{I}_{{M}_{j,N}}\otimes\left(\widehat{\mathbf{{H}}}_{j,N}\left(\bar{\mathbf{F}}^{(\kappa-1)}_{k,n}\right)_{22}\widehat{\mathbf{{H}}}^{{H}}_{j,N}+\sigma^{2}_{{h,\Delta}_{j,N}}\textrm{tr}\left\{{(\mathbf{F}_{k,n})}_{22}\right\}\mathbf{I}_{{M}_{j,N}}\right),\hskip 4.0pt\forall k,n.

Appendix D A choice of ξk,n{\xi}_{k,n} in Subsection IV-A

The parameter ξk,n{\xi}_{k,n} can be selected in such a way that it satisfies the following condition:

𝐱02Ek,n(𝐱0)+ξk,n𝐈Mh𝟎,k,n,{\nabla}^{2}_{{\mathbf{x}}_{0}}{E}_{k,n}\left({\mathbf{x}}_{0}\right)+{\xi}_{k,n}\mathbf{I}_{{{M}_{h}}}\succeq\mathbf{0},\hskip 6.0pt\forall k,n, (64)

where 𝐱02Ek,n(𝐱0){\nabla}^{2}_{{\mathbf{x}}_{0}}{E}_{k,n}\left({\mathbf{x}}_{0}\right) is straightforwardly calculated as

𝐱02Ek,n(𝐱0)=ϱk,n𝐁k,n+ϖk,n𝐁k,n𝐱0𝐱0H𝐁k,n,k,n,{\nabla}^{2}_{{\mathbf{x}}_{0}}{E}_{k,n}\left({\mathbf{x}}_{0}\right)=\varrho_{k,n}\mathbf{B}_{k,n}+\varpi_{k,n}\mathbf{B}_{k,n}\mathbf{x}_{0}\mathbf{x}^{{H}}_{0}\mathbf{B}_{k,n},\hskip 4.0pt\forall k,n, (65)

with

ϱk,n=2τ2exp(c)exp(a(log(P~k,n))2)P~k,nb1(2alog(P~k,n)+b),\varrho_{k,n}=2\tau_{2}\hskip 1.0pt\textrm{exp}\left({c}\right)\hskip 1.0pt\textrm{exp}\left({a}\hskip 1.0pt{\left(\textrm{log}\left(\widetilde{P}_{k,n}\right)\right)}^{2}\right)\widetilde{P}_{k,n}^{{b}-1}\left(2{a}\textrm{log}\left(\widetilde{P}_{k,n}\right)+{b}\right), (66)
ϖk,n=4τ2exp(c)exp(a(log(P~k,n))2)P~k,nb2(4a2(log(P~k,n))2+log(P~k,n)(4ab2a)+b2b+2a).\varpi_{k,n}=4\tau_{2}\textrm{exp}\left({c}\right)\textrm{exp}\left({a}{\left(\textrm{log}\left(\widetilde{P}_{k,n}\right)\right)}^{2}\right)\widetilde{P}^{{b}-2}_{k,n}\left(4{{a}}^{2}\left(\textrm{log}\left(\widetilde{P}_{k,n}\right)\right)^{2}+\textrm{log}\left(\widetilde{P}_{k,n}\right)\left(4{{a}}{{b}}-2{{a}}\right)+{{b}}^{2}-{{b}}+2{a}\right). (67)

As a<0,b<0,𝐁k,n𝟎,{a}<0,{b}<0,\mathbf{B}_{k,n}\succeq\mathbf{0}, and 𝐁k,n𝐱0𝐱0H𝐁k,n𝟎\mathbf{B}_{k,n}\mathbf{x}_{0}\mathbf{x}^{{H}}_{0}\mathbf{B}_{k,n}\succeq\mathbf{0}, it suffices to choose ξk,n\xi_{k,n} such that

ξk,n𝐈Mhϱ~k,n𝐁k,nϖ~k,n𝐁k,n𝐱0𝐱0H𝐁k,n,\xi_{k,n}\mathbf{I}_{{{M}_{h}}}\succeq-\widetilde{\varrho}_{k,n}\mathbf{B}_{k,n}-\widetilde{\varpi}_{k,n}\mathbf{B}_{k,n}\mathbf{x}_{0}\mathbf{x}^{{H}}_{0}\mathbf{B}_{k,n}, (68)

where

ϱ~k,n=2τ2bexp(c)exp(a(log(P~k,n))2)P~k,nb1,\widetilde{\varrho}_{k,n}=2\tau_{2}\hskip 1.0pt{b}\hskip 2.0pt\textrm{exp}\left({c}\right)\hskip 1.0pt\textrm{exp}\left({a}\hskip 1.0pt{\left(\textrm{log}\left(\widetilde{P}_{k,n}\right)\right)}^{2}\right)\widetilde{P}^{{b}-1}_{k,n}, (69)
ϖ~k,n=4τ2exp(c)exp(a(log(P~k,n))2)P~k,nb2(log(P~k,n)(4ab2a)+2a).\widetilde{\varpi}_{k,n}=4\tau_{2}\textrm{exp}\left({c}\right)\textrm{exp}\left({a}{\left(\textrm{log}\left(\widetilde{P}_{k,n}\right)\right)}^{2}\right)\widetilde{P}^{{b}-2}_{k,n}\left(\textrm{log}\left(\widetilde{P}_{k,n}\right)\left(4{{a}}{{b}}-2{{a}}\right)+2{a}\right). (70)

Then, using C2det{\textrm{C}}^{\textrm{det}}_{2}, (68), (69), (70) and considering the fact that 𝐱0H𝐁k,n2𝐱0𝐱022λmax(𝐁k,n2)\mathbf{x}^{{H}}_{0}\mathbf{B}^{2}_{k,n}\mathbf{x}_{0}\leq\|{\mathbf{x}}_{0}\|^{2}_{2}\lambda_{\textrm{max}}\left(\mathbf{B}^{2}_{k,n}\right) as well as 𝐱022λmin(𝐁k,n)P~k,n=𝐱0H𝐁k,n𝐱0𝐱022λmax(𝐁k,n)\|{\mathbf{x}}_{0}\|^{2}_{2}\lambda_{\textrm{min}}\left(\mathbf{B}_{k,n}\right)\leq\widetilde{P}_{k,n}=\mathbf{x}^{{H}}_{0}\mathbf{B}_{k,n}\mathbf{x}_{0}\leq\|{\mathbf{x}}_{0}\|^{2}_{2}\lambda_{\textrm{max}}\left(\mathbf{B}_{k,n}\right), the Parameter ξk,n>ξk,nt{\xi}_{k,n}>{\xi}^{t}_{k,n} can be selected as

ξk,nt=\displaystyle{\xi}^{t}_{k,n}= 2τ2exp(c)exp(a(log(p0λmax(𝐁k,n)))2)(p0λmin(𝐁k,n))b1(bp0λmin(𝐁k,n)λmax(𝐁k,n)\displaystyle-2\tau_{2}\hskip 1.0pt\textrm{exp}\left({c}\right)\hskip 1.0pt\textrm{exp}\Big{(}{a}\hskip 1.0pt{\left(\textrm{log}\left(p_{0}\lambda_{\textrm{max}}\left(\mathbf{B}_{k,n}\right)\right)\right)}^{2}\Big{)}\big{(}p_{0}\lambda_{\textrm{min}}\left(\mathbf{B}_{k,n}\right)\big{)}^{b-1}\Big{(}{b}\hskip 2.0ptp_{0}\lambda_{\textrm{min}}\left(\mathbf{B}_{k,n}\right)\lambda_{\textrm{max}}\left(\mathbf{B}_{k,n}\right)
+2(log(p0λmin(𝐁k,n))(4ab2a)+2a)p0λmax(𝐁k,n2)),k,n,\displaystyle+2\left(\textrm{log}\left(p_{0}\lambda_{\textrm{min}}\left(\mathbf{B}_{k,n}\right)\right)\left(4{{a}}{{b}}-2{{a}}\right)+2{a}\right)p_{0}\lambda_{\textrm{max}}\left(\mathbf{B}^{2}_{k,n}\right)\Big{)},\hskip 4.0pt\forall k,n,

where, we should remark on the fact that λmin(𝐁k,n)=λmin(𝐇^k,nH𝐇^k,n)+σh,Δk,n2Mk,n>0,k,n\lambda_{\textrm{min}}\left(\mathbf{B}_{k,n}\right)=\lambda_{\textrm{min}}\left(\widehat{\mathbf{H}}^{{H}}_{k,n}{\widehat{\mathbf{H}}_{k,n}}\right)+\sigma^{2}_{{h,\Delta}_{k,n}}{{M}_{k,n}}>0,\hskip 1.0pt\forall k,n.

References

  • [1] C. K. Ho and R. Zhang, “Optimal energy allocation for wireless communications with energy harvesting constraints,” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4808–4818, 2012.
  • [2] S. Bi and R. Zhang, “Placement optimization of energy and information access points in wireless powered communication networks,” IEEE transactions on wireless communications, vol. 15, no. 3, pp. 2351–2364, 2016.
  • [3] H. Ju and R. Zhang, “Throughput maximization in wireless powered communication networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 1, pp. 418–428, 2014.
  • [4] ——, “User cooperation in wireless powered communication networks,” in Global Communications Conference (GLOBECOM), 2014 IEEE.   IEEE, 2014, pp. 1430–1435.
  • [5] D. Song, W. Shin, J. Lee, and H. V. Poor, “Sum-throughput maximization with QoS constraints for cooperative WPCNs,” IEEE Access, vol. 7, pp. 130 622–130 637, 2019.
  • [6] Y. Zheng, S. Bi, Y. J. Zhang, Z. Quan, and H. Wang, “Intelligent reflecting surface enhanced user cooperation in wireless powered communication networks,” IEEE Wireless Communications Letters, vol. 9, no. 6, pp. 901–905, 2020.
  • [7] M. Zhong, S. Bi, and X.-H. Lin, “User cooperation for enhanced throughput fairness in wireless powered communication networks,” Wireless Networks, vol. 23, no. 4, pp. 1315–1330, 2017.
  • [8] Y. Gu, H. Chen, Y. Li, and B. Vucetic, “An adaptive transmission protocol for wireless-powered cooperative communications,” in Communications (ICC), 2015 IEEE International Conference on.   IEEE, 2015, pp. 4223–4228.
  • [9] H. Chen, Y. Li, J. L. Rebelatto, B. F. Uchôa Filho, and B. Vucetic, “Harvest-Then-Cooperate: Wireless-powered cooperative communications.” IEEE Trans. Signal Processing, vol. 63, no. 7, pp. 1700–1711, 2015.
  • [10] H. Chen, X. Zhou, Y. Li, P. Wang, and B. Vucetic, “Wireless-powered cooperative communications via a hybrid relay,” in Information Theory Workshop (ITW), 2014 IEEE.   IEEE, 2014, pp. 666–670.
  • [11] X. Di, K. Xiong, P. Fan, H.-C. Yang, and K. B. Letaief, “Optimal resource allocation in wireless powered communication networks with user cooperation,” IEEE Transactions on Wireless Communications, vol. 16, no. 12, pp. 7936–7949, 2017.
  • [12] Z. Chu, F. Zhou, Z. Zhu, M. Sun, and N. Al-Dhahir, “Energy beamforming design and user cooperation for wireless powered communication networks,” IEEE Wireless Communications Letters, vol. 6, no. 6, pp. 750–753, 2017.
  • [13] H. Liang, C. Zhong, H. A. Suraweera, G. Zheng, and Z. Zhang, “Optimization and analysis of wireless powered multi-antenna cooperative systems,” IEEE Transactions on Wireless Communications, vol. 16, no. 5, pp. 3267–3281, 2017.
  • [14] C. Zhong, G. Zheng, Z. Zhang, and G. K. Karagiannidis, “Optimum wirelessly powered relaying,” IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1728–1732, 2015.
  • [15] Y. Huang and B. Clerckx, “Relaying strategies for wireless-powered MIMO relay networks,” IEEE Transactions on Wireless Communications, vol. 15, no. 9, pp. 6033–6047, 2016.
  • [16] L. Yuan, S. Bi, S. Zhang, X. Lin, and H. Wang, “Multi-antenna enabled cluster-based cooperation in wireless powered communication networks,” IEEE Access, vol. 5, pp. 13 941–13 950, 2017.
  • [17] L. Yuan, S. Bi, X. Lin, and H. Wang, “Optimizing throughput fairness of cluster-based cooperation in underlay cognitive WPCNs,” Computer Networks, vol. 166, p. 106853, 2020.
  • [18] Z. Mao, F. Hu, D. Sun, S. Ma, and X. Liu, “Fairness-aware intragroup cooperative transmission in wireless powered communication networks,” IEEE Transactions on Vehicular Technology, vol. 69, no. 6, pp. 6463–6472, 2020.
  • [19] L. Yuan, H. Chen, and J. Gong, “Interactive communication with clustering collaboration for wireless powered communication networks,” International Journal of Distributed Sensor Networks, vol. 18, no. 2, p. 15501477211069910, 2022.
  • [20] Z. Na, Y. Liu, J. Wang, M. Guan, and Z. Gao, “Clustered-NOMA based resource allocation in wireless powered communication networks,” Mobile Networks and Applications, vol. 25, no. 6, pp. 2412–2420, 2020.
  • [21] Z. Ding, R. Schober, and H. V. Poor, “A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment,” IEEE Transactions on Wireless Communications, vol. 15, no. 6, pp. 4438–4454, 2016.
  • [22] S. A. Astaneh and S. Gazor, “Resource allocation and relay selection for collaborative communications,” IEEE Transactions on Wireless Communications, vol. 8, no. 12, pp. 6126–6133, 2009.
  • [23] S. M. Kay, “Fundamentals of statistical signal processing,” 1993.
  • [24] A. Celik, R. M. Radaydeh, F. S. Al-Qahtani, A. H. A. El-Malek, and M.-S. Alouini, “Resource allocation and cluster formation for imperfect NOMA in DL/UL decoupled hetnets,” in 2017 IEEE Globecom Workshops (GC Wkshps).   IEEE, 2017, pp. 1–6.
  • [25] Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions,” IEEE Transactions on Vehicular Technology, vol. 65, no. 8, pp. 6010–6023, 2015.
  • [26] B. Clerckx and J. Kim, “On the beneficial roles of fading and transmit diversity in wireless power transfer with nonlinear energy harvesting,” IEEE Transactions on Wireless Communications, vol. 17, no. 11, pp. 7731–7743, 2018.
  • [27] B. Clerckx, R. Zhang, R. Schober, D. W. K. Ng, D. I. Kim, and H. V. Poor, “Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 1, pp. 4–33, 2019.
  • [28] F. Negro, S. P. Shenoy, I. Ghauri, and D. T. Slock, “On the MIMO interference channel,” in Information Theory and Applications Workshop (ITA), 2010.   IEEE, 2010, pp. 1–9.
  • [29] D. Tse and P. Viswanath, Fundamentals of wireless communication.   Cambridge university press, 2005.
  • [30] M. M. Naghsh, M. Modarres-Hashemi, M. A. Kerahroodi, and E. H. M. Alian, “An information theoretic approach to robust constrained code design for MIMO radars,” IEEE Transactions on Signal Processing, vol. 65, no. 14, pp. 3647–3661, 2017.
  • [31] C. D. Meyer, Matrix analysis and applied linear algebra.   Siam, 2000, vol. 71.
  • [32] J. Dattorro, Convex optimization & Euclidean distance geometry.   Lulu. com, 2010.
  • [33] O. Rezaei, M. M. Naghsh, Z. Rezaei, and R. Zhang, “Throughput optimization for wireless powered interference channels,” IEEE Transactions on Wireless Communications, vol. 18, no. 5, pp. 2464–2476, 2019.
  • [34] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization: analysis, algorithms, and engineering applications.   SIAM, 2001.
  • [35] J. Gondzio and T. Terlaky, A computational view of interior-point methods for linear programming.   Citeseer, 1994.
  • [36] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, sept. 2014,” Available on-line at http://cvxr. com/cvx.
  • [37] P. Stoica, R. L. Moses et al., “Spectral analysis of signals,” 2005.