This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Cornwall-Jackiw-Tomboulis effective field theory to nonuniversal equation of state of an ultracold Bose gas

Yi Zhang Department of Physics, Zhejiang Normal University, Jinhua 321004, People’s Republic of China    Zhaoxin Liang zhxliang@zjnu.edu.cn Department of Physics, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
(July 18, 2025)
Abstract

The equation of state (EOS) serves as a cornerstone in elucidating the properties of quantum many-body systems. A recent highlight along this research line consists of the derivation of the nonuniversal Lee-Huang-Yang (LHY) EOS for an ultracold quantum bosonic gas with finite-range interatomic interactions using one-loop effective path-integral field theory [L. Salasnich, Phys. Rev. Lett. 118, 130402 (2017)]. The purpose of this work is to extend Salasnich’s pioneering work to uncover beyond-LHY corrections to the EOS by employing the Cornwall-Jackiw-Tomboulis (CJT) effective field theory, leveraging its two-loop approximation. In this end, we expand Salasnich’s remarkable findings of EOS to the next leading order characterized by (ρas3)2\left(\rho a_{\text{s}}^{3}\right)^{2}, with ρ\rho and asa_{\text{s}} being the density and the ss-wave scattering length. Notably, we derive analytical expressions for quantum depletion and chemical potential, representing the next-to-LHY corrections to nonuniversal EOS induced by finite-range effects. Moreover, we propose an experimental protocol of observing the nonuniversal next-to-LHY corrections to the EOS by calculating fractional frequency shifts in the breathing modes. The nonuniversal beyond-LHY EOS in this work paves the way of using LHY effects in quantum simulation experiments and for investigations beyond the LHY regime.

preprint: APS/123-QED

I Introduction

The equation of state (EOS) of quantum physical systems, arising from quantum fluctuations, occupies a pivotal position at the very core of quantum many-body physics [1, 2, 3]. A prototypical illustration lies within the realm of quantum droplets [4, 5, 6] in the context of ultracold quantum gases. The basic principle underlying the stabilization of quantum droplets hinges on a delicate equilibrium between the attractive mean-field force and the repulsive force emanating from quantum fluctuations as described by the EOS [7, 8, 9, 10, 11, 12]. Consequently, delving into the EOS can provide invaluable insights into the fundamental properties of quantum droplets, as evidenced across diverse systems, spanning from dipolar Bose gases [7, 8, 9] to Bose-Bose mixtures [10, 11, 12].

The interest in the EOS of ultracold quantum gases, particularly underscored by the aforementioned quantum droplets, can be traced back to the seminal works [13, 14] in the 1950s. Particularly, the Lee-Huang-Yang (LHY) correction to the EOS of weakly-interacting bosonic systems was first explored in Ref. [14]. In more details, the chemical potential has been derived to be proportional to [32/3π](ρas3)1/2[32/3\sqrt{\pi}]\left(\rho a_{\text{s}}^{3}\right)^{1/2} with asa_{\text{s}} [15, 16] and ρ\rho being the ss-wave scattering length and the atomic density, respectively. Furthermore, the next-order correction to the energy density incorporates the universal quantum effect stemming from three-body correlations, yielding a term of 83(4π33)ρas3ln(ρas3)\frac{8}{3}\left(4\pi-3\sqrt{3}\right)\rho a_{\text{s}}^{3}\ln\left(\rho a_{\text{s}}^{3}\right), as outlined in Ref. [17]. Up to now, the highest-order term in the EOS has been derived in Ref. [18], which is given by [512/3π](ρas3)+[8192/9π3/2](ρas3)3/2[-512/3\pi]\left(\rho a_{\text{s}}^{3}\right)+[8192/9\pi^{3/2}]\left(\rho a_{\text{s}}^{3}\right)^{3/2}. At present, there are the endless and ongoing research interests and efforts in obtaining beyond the mean-field terms of EOS of weakly-interacting bosonic systems motivated by the advent of well-controlled mixtures of quantum gases with tunable interaction strengths [19, 20, 21, 22, 23].

The EOS obtained in Refs. [13, 14, 15, 16, 17, 18] are characterized by the universality, i.e. in more details, a single parameter asa_{\text{s}}, eloquently encapsulates both the intricacies of the two-body interaction and, by extension, the overarching physics governing the many-body systems [24]. In sharp contrast, the nonuniversal EOS depends on other than the parameter asa_{\text{s}}. The EOS of Bose gases becomes nonuniversal when the finite-range effects of the interatomic potential [25, 26, 27, 28, 29] is taken into account. In Refs. [26, 30], the analytical expressions of nonuniversal EOS are derived as [64πrs/as]ρ(ρas3)3/2[-64\sqrt{\pi}r_{\text{s}}/a_{\text{s}}]\rho\left(\rho a_{\text{s}}^{3}\right)^{3/2}, featuring a nonuniversal LHY term in the quantum depletion. Given the tunability of the scattering length asa_{\text{s}} [31, 32] through magnetic and optical Feshbach resonances [33, 34, 35] in ultracold atomic gases, the nonuniversal consequences stemming from the finite-range parameter rsr_{\text{s}} are of paramount importance. Consequently, an immediate challenge is referred as to calculating the next-to-LHY-order correction for the nonuniversal EOS.

The second impetus behind this paper stems from the measurement of collective excitation frequencies, which has emerged as an indispensable and highly accurate instrument for delving into the intricate EOS of atomic Bose-Einstein condensates (BECs) with unprecedented precision [15, 36, 19, 20, 21, 22, 23]. This approach not only solidifies the validity of mean-field predictions but also stands as an exceedingly potent technique to explore effects transcending the mean-field paradigm [37, 38]. From a theoretical standpoint, a gaseous BECs system can be aptly modeled by a single macroscopic wave function, thereby facilitating the derivation of clear-cut hydrodynamic formulations that yield analytical or semi-analytical insights into the dynamical characteristics of BECs systems. Thus, a timely and natural question arises as to observe the frequency shifts in the collective excitations induced by the nonuniversal beyond-LHY EOS, although tuning the finite-range interatomic interactions in this case remains experimentally challenging.

In this work, using Cornwall-Jackiw-Tomboulis (CJT) effective field theory [39, 40, 41, 42], we are interested in the nonuniversal EOS [43, 26, 30, 28, 29] of a three-dimensional (3D) Bose gas with finite-range effective interactions at absolute zero temperature. Accordingly, we derive the analytical expressions of the quantum depletion and the chemical potential up to the order of (ρas3)2\left(\rho a_{\text{s}}^{3}\right)^{2}. Our results not only include Salasnich’s remarkable EOS, but also give rise to nonuniversal beyond-LHY terms. Moreover, we explore the physical consequences of the nonuniversal beyond-LHY terms in EOS. As such, we extend the superfluid hydrodynamic equations by incorporating the aforementioned next-to-LHY corrections to the nonuniversal EOS. Leveraging these refined hydrodynamic equations, we delve into the fractional frequency shifts in the breathing modes, which are observable within the current experimental facilities. Observing this frequency shifts induced by the nonuniversal beyond-LHY EOS paves the way for a deeper understanding of quantum fluctuation of quantum many-body systems.

The paper is structured as follows. In Sec. II, we revisit the key principles of the CJT effective field theory and subsequently derive the corresponding effective potential for the model system. In Sec. III, we utilize the CJT effective potential within a two-loop approximation to deduce analytical expressions for the nonuniversal EOS. Sec. IV presents the fractional shift in the breathing mode frequency, aided by the next-to-LHY corrections to the nonuniversal chemical potential. Finally, in Sec. V, we provide a comprehensive summary of our paper and discuss the potential experimental conditions for realizing our proposed scenario.

II Cornwall-Jackiw-Tomboulis effective field theory

In this work, we are interested in a 3D weakly-interacting Bose gas, paying particular attention to the finite-range effects of the interatomic potential [27]. To investigate this system, we employ the path-integral formalism [1, 2], and the corresponding Euclidean partition function of the model system is presented below

𝒵=𝒟[𝚽,𝚽]exp{S[𝚽,𝚽]},\mathcal{Z}=\int\mathcal{D}\left[\mathbf{\Phi},\mathbf{\Phi}^{*}\right]\exp\left\{-\frac{S\left[\mathbf{\Phi},\mathbf{\Phi}^{*}\right]}{\hbar}\right\}, (1)

with the action functional S[𝚽,𝚽]=0β𝑑τd3𝐫S\left[\mathbf{\Phi},\mathbf{\Phi}^{*}\right]=\int_{0}^{\beta\hbar}d\tau\int d^{3}\mathbf{r}\mathcal{L} in Eq. (1). Here, the concrete Lagrangian density \mathcal{L} denotes as follows [43, 26, 30, 44]

[𝚽,𝚽]=𝚽(𝐫,τ)[τ222mμ]𝚽(𝐫,τ)+g02|𝚽(𝐫,τ)|4g22|𝚽(𝐫,τ)|22|𝚽(𝐫,τ)|2.\displaystyle\mathcal{L}\left[\mathbf{\Phi},\mathbf{\Phi}^{*}\right]=\mathbf{\Phi}^{*}\left(\mathbf{r},\tau\right)\left[\hbar\partial_{\tau}-\frac{\hbar^{2}\nabla^{2}}{2m}-\mu\right]\mathbf{\Phi}\left(\mathbf{r},\tau\right)+\frac{g_{0}}{2}\left|\mathbf{\Phi}\left(\mathbf{r},\tau\right)\right|^{4}-\frac{g_{2}}{2}\left|\mathbf{\Phi}\left(\mathbf{r},\tau\right)\right|^{2}\nabla^{2}\left|\mathbf{\Phi}\left(\mathbf{r},\tau\right)\right|^{2}. (2)

In Equation (2), the complex field 𝚽(𝐫,τ)\mathbf{\Phi}\left(\mathbf{r},\tau\right) represents the atomic bosons, varying in both space 𝐫\mathbf{r} and imaginary time τ\tau. Here, μ\mu signifies the chemical potential, while β=1/kBT\beta=1/k_{\text{B}}T defines the inverse of the thermal energy scale, with kBk_{\text{B}} representing the Boltzmann constant and TT denoting the temperature of the BECs. The parameters g0=4π2as/mg_{0}=4\pi\hbar^{2}a_{\text{s}}/m and g2=2π2as2rs/mg_{2}=2\pi\hbar^{2}a_{\text{s}}^{2}r_{\text{s}}/m [43], with asa_{\text{s}} and rsr_{\text{s}} being the ss-wave scattering length and the finite-range length respectively.

Note that the LHY correction to nonuniversal EOS of Lagrangian density functional (2) has already been derived [26, 30] within one-loop approximation, i.e. rewriting the partition function (1) in the form of 𝒵=eβ𝒱Veff[ϕ]\mathcal{Z}=e^{-\beta\mathcal{V}V_{\text{eff}}[\phi]}, with 𝒱\mathcal{V} being the volume of the system. In this context, the effective potential Veff[ϕ]V_{\text{eff}}[\phi] [45] within one-loop approximation solely relies on ϕ(x)\phi(x), which is the expected value of the quantum field 𝚽^(x)\hat{\mathbf{\Phi}}(x).

In contrast, the emphasis and value of this paper lie in employing the CJT [40, 42, 41, 46, 45] effective action approach or the two particle-irreducible framework, surpassing the limitations of the one-loop approximation [45]. CJT theory enables us to compute the beyond-LHY corrections to the nonuniversal EOS for the Lagrangian density functional (2). A comprehensive introduction to the CJT effective field theory is provided in Appendix A.

The central step of CJT effective field theory [39, 40, 41, 42] is to obtain the effective potential denoted as Veff[ϕ,G]V_{\text{eff}}[\phi,G] (see Eq. (31) in Appendix A) meticulously by taking both the background field ϕ(x)\phi(x) and the dressed propagator G(x,y)G(x,y) into account. Here, G(x,y)G(x,y) is a potential expectation value of the time-ordered product T𝚽^(x)𝚽^(y)T\hat{\mathbf{\Phi}}^{\dagger}(x)\hat{\mathbf{\Phi}}(y). Then, physical solutions are ascertained by ensuring that the generalized effective potential satisfies the stationarity conditions: δVeff/δϕ(x)=0\delta V_{\text{eff}}/\delta\phi(x)=0, δVeff/δG(x,y)=0\delta V_{\text{eff}}/\delta G(x,y)=0. Finally, at the core of the CJT effective field theory lies in the self-consistent loop expansion of the effective potential VeffV_{\text{eff}}, intricately tied to the full propagator GG. This expansion offers a powerful tool for systematically exploring higher-order corrections, thereby enhancing the accuracy and predictive capabilities of the system with finite-range effects taken into account. We remark that our work, together with Refs. [26, 30], provides a reasonable description of the nonuniversal EOS of a 3D interacting Bose gas with finite-range effects of the interatomic potential.

The subsequent goal of Sec. II is to derive the effective potential VeffV_{\text{eff}} for functional (2) within the framework of CJT effective field theory. Then, the obtained effective potential VeffV_{\text{eff}} is used to calculate the nonuniversal beyond-LHY EOS.

The starting point of the CJT effective field theory commences with expressing the field 𝚽\mathbf{\Phi} of functional (2) as a superposition of the condensate field ϕ0\phi_{0} and real fluctuation fields of ϕ1\phi_{1} and ϕ2\phi_{2}, i.e. 𝚽=(ϕ0+ϕ1+iϕ2)/2\mathbf{\Phi}=\left(\phi_{0}+\phi_{1}+i\phi_{2}\right)/\sqrt{2}. A rigorous methodology to attain VeffV_{\text{eff}} involves executing a double Legendre transformation on the action functional S[𝚽,𝚽]S\left[\mathbf{\Phi},\mathbf{\Phi}^{*}\right], subjecting it to the conditions δVeff/δϕ0=0\delta V_{\text{eff}}/\delta\phi_{0}=0 and δVeff/δG=0\delta V_{\text{eff}}/\delta G=0, where GG represents a relevant variable (such as the two-point function or propagator) that may need to be optimized simultaneously with ϕ0\phi_{0}. This ensures the effective potential accurately captures the dynamics of the system, incorporating both condensate and fluctuation effects.

Adhering closely to the established CJT effective field theory as outlined in Refs. [47, 48, 46, 49, 18], we proceed by performing Fourier transformations on the fluctuation fields ϕ1\phi_{1} and ϕ2\phi_{2} to map them into the momentum-frequency domain. Subsequently, we select the Luttinger-Ward functional [45], denoted as Φ[ϕ0,G]\Phi\left[\phi_{0},G\right], as the foundational element. Consequently, the effective potential VeffV_{\text{eff}} corresponding to partition function in Eq. (1) can be analytically formulated as (see the detailed derivation in Eq. (39) in Appendix B)

Veff[ϕ0,G]=\displaystyle V_{\text{eff}}\left[\phi_{0},G\right]= \displaystyle- μ2ϕ02+g08ϕ04\displaystyle\frac{\mu}{2}\phi_{0}^{2}+\frac{g_{0}}{8}\phi_{0}^{4} (3)
+\displaystyle+ 12βTr[lnG1(k)+G01(k)G(k)𝟏]\displaystyle\frac{1}{2}\int_{\beta}\text{Tr}\left[\ln G^{-1}\left(k\right)+G_{0}^{-1}\left(k\right)G\left(k\right)-\mathbf{1}\right]
+\displaystyle+ 3g08(P112+P222)+g04P11P22.\displaystyle\frac{3g_{0}}{8}\left(P_{11}^{2}+P_{22}^{2}\right)+\frac{g_{0}}{4}P_{11}P_{22}.

In Equation (3), kk denotes the magnitude of the wave vector 𝐤\mathbf{k}. The quantities G01(k)G^{-1}_{0}\left(k\right) and G1(k)G^{-1}\left(k\right) represent the inverse propagators within the one-loop and two-loop approximations, respectively. The notation β\int_{\beta} encapsulates the integration over momentum space combined with a summation over bosonic Matsubara frequencies, specifically given by β=1βn=+d𝐤(2π)3\int_{\beta}=\frac{1}{\beta}\sum_{n=-\infty}^{+\infty}\int\frac{d\mathbf{k}}{\left(2\pi\right)^{3}}; ωn=2πnβ1\omega_{n}=2\pi n\beta^{-1} are the Matsubara frequencies. The functions Paa=βGaa(k)P_{aa}=\int_{\beta}G_{aa}\left(k\right) are termed momentum integrals, with aa indexing the two fields (1,2)\left(1,2\right).

Minimizing the CJT effective potential VeffV_{\text{eff}} in Eq. (3) with respect to the components of the propagator G(k)G\left(k\right), we obtain

G1(k)=G01(k)+Σ.G^{-1}\left(k\right)=G_{0}^{-1}\left(k\right)+\Sigma. (4)

In Equation (4), the context form of G01G_{0}^{-1} can be written as (see the detailed derivation in Eq. (38) in Appendix B.2)

G01(k)=[2k22mμ+3g02ϕ02+g2ϕ02k2ωnωn2k22mμ+g02ϕ02].\!\!G_{0}^{-1}\!\left(k\right)\!=\!\begin{bmatrix}\!\frac{\hbar^{2}k^{2}}{2m}\!-\!\mu\!+\!\frac{3g_{0}}{2}\phi_{0}^{2}\!+g_{2}\phi_{0}^{2}k^{2}&\!\!-\omega_{n}\\ \!\!\omega_{n}&\frac{\hbar^{2}k^{2}}{2m}\!-\!\mu\!+\!\frac{g_{0}}{2}\phi_{0}^{2}\end{bmatrix}.\!\! (5)

Meanwhile, Σ\Sigma in Eq. (4) represents the self-energy matrix in the form of

Σ=[Σ100Σ2],\Sigma=\begin{bmatrix}\Sigma_{1}&0\\ 0&\Sigma_{2}\end{bmatrix}, (6)

with the matrix entries Σ1\Sigma_{1} and Σ2\Sigma_{2} reading

Σ1\displaystyle\Sigma_{1} =\displaystyle= 3g02P11+g02P22,\displaystyle\frac{3g_{0}}{2}P_{11}+\frac{g_{0}}{2}P_{22}, (7a)
Σ2\displaystyle\Sigma_{2} =\displaystyle= 3g02P22+g02P11.\displaystyle\frac{3g_{0}}{2}P_{22}+\frac{g_{0}}{2}P_{11}. (7b)

Before proceeding with further calculations based on Eq. (3), we conduct a crucial verification to ensure that Eq. (3) can indeed reproduce the previous findings presented in Refs. [43, 26, 30]. Specifically, under the conditions where the propagator G(k)G\left(k\right) reduces to its bare form G0(k)G_{0}\left(k\right) and both P11P_{11} and P22P_{22} vanish, the effective potential simplifies significantly to align with the one-loop approximation scenario. This simplification yields Veff[ϕ0,G0]=μ2ϕ02+g08ϕ04+12βTrln[G01(k)]V_{\text{eff}}\left[\phi_{0},G_{0}\right]=-\frac{\mu}{2}\phi_{0}^{2}+\frac{g_{0}}{8}\phi_{0}^{4}+\frac{1}{2}\int_{\beta}\text{Tr}\ln\left[G_{0}^{-1}\left(k\right)\right] within the context of the path-integral formalism. Then, after minimizing VeffV_{\text{eff}} with respect to order parameter ϕ0\phi_{0} and applying the thermodynamic relationship ρ=Veff/ϕ0\rho=-\partial V_{\text{eff}}/\partial\phi_{0}, the nonuniversal EOS [43, 26, 30, 28, 29] can be obtained within one-loop approximation. Note that the CJT effective field theory not only introduces two-particle irreducible (2PI) terms in the last line of Eq. (3) but also modifies the propagator GG in a more intricate manner, affecting the second term of VeffV_{\text{eff}} in Eq. (3) in a complex and non-trivial way.

III NONUNIVERSAL EOS: chemical potential and quantum depletion

In the preceding Sec. II, we have delineated the framework of the CJT effective field theory. Moving forward, in Sec. III, our objective is to derive the explicit analytical expressions for the next-to-LHY-order correction to the nonuniversal EOS of a 3D Bose gas, utilizing the CJT effective potential of Eq. (3) within two-loop approximation. The starting point for this endeavor is to deduce the VeffV_{\text{eff}} in Eq. (3) as (refer to Appendix B for a more comprehensive derivation),

Veff=V0+12βTr[lnG1(k)]+g08(P112+P222)+3g04P11P22+12(μ+3g02ϕ02M2)P11+12(μ+g02ϕ02)P22.V_{\text{eff}}=V_{0}+\frac{1}{2}\int_{\beta}\text{\text{Tr}}\left[\ln G^{-1}\left(k\right)\right]+\frac{g_{0}}{8}\left(P_{11}^{2}+P_{22}^{2}\right)+\frac{3g_{0}}{4}P_{11}P_{22}+\frac{1}{2}\left(-\mu+\frac{3g_{0}}{2}\phi_{0}^{2}-M^{2}\right)P_{11}+\frac{1}{2}\left(-\mu+\frac{g_{0}}{2}\phi_{0}^{2}\right)P_{22}. (8)

In Equation (8), V0=μ2ϕ02+g08ϕ04V_{0}=-\frac{\mu}{2}\phi_{0}^{2}+\frac{g_{0}}{8}\phi_{0}^{4}, P11=2m3/2M33π23mmP_{11}=\frac{\sqrt{2}m^{*3/2}M^{3}}{3\pi^{2}\hbar^{3}}\sqrt{\frac{m^{*}}{m}} and P22=m3/2M332π23mmP_{22}=\frac{-m^{*3/2}M^{3}}{3\sqrt{2}\pi^{2}\hbar^{3}}\sqrt{\frac{m}{m^{*}}} (see Eqs. (54a) and (54b) in Appendix B for calculation details) with m=m/(1+2mg2ϕ022)m^{*}=m/\left(1+\frac{2mg_{2}\phi_{0}^{2}}{\hbar^{2}}\right).

The pivotal parameter MM in Eq. (8) holds a crucial role in determining not only P11P_{11} and P22P_{22}, but also the other constituent terms in Eq. (8). Subsequently, we embark on deriving the precise expression for MM, as outlined below:

(i). The parameter MM in Eq. (8) fulfills the Schwinger-Dyson (SD) equation (as elaborated in detail in Eq. (51) in Appendix B),

μ+3g02ϕ02+2g0m3/2M312π23(2mm3mm)=M2.-\mu+\frac{3g_{0}}{2}\phi_{0}^{2}+\frac{\sqrt{2}g_{0}m^{*3/2}M^{3}}{12\pi^{2}\hbar^{3}}\left(2\sqrt{\frac{m^{*}}{m}}-3\sqrt{\frac{m}{m^{*}}}\right)=M^{2}. (9)

Equation (9) contains three variables, i.e. MM, μ\mu, and ϕ0\phi_{0}. To ascertain their values, we require two additional equations in conjunction with Eq. (9).

(ii). Next, we proceed to seek for the second equation between MM, μ\mu, and ϕ0\phi_{0}. Specifically, the chemical potential of μ\mu satisfies the gap equation by setting δVeff/δϕ0=0\delta V_{\text{eff}}/\delta\phi_{0}=0 (for a detailed exposition, refer to Eq. (44) in Appendix B),

μ+g02ϕ02+2g0m3/2M312π23(6mmmm)=0.-\mu+\frac{g_{0}}{2}\phi_{0}^{2}+\frac{\sqrt{2}g_{0}m^{*3/2}M^{3}}{12\pi^{2}\hbar^{3}}\left(6\sqrt{\frac{m^{*}}{m}}-\sqrt{\frac{m}{m^{*}}}\right)=0. (10)

(iii). Finally, the third equation originated by determining the atomic density of ρ\rho, can be obtained by taking the first-order derivative of the VeffV_{\text{eff}} in Eq. (8) with respect to μ\mu,

ρ=Veffμ=ϕ022+2m3/2M312π23(2mmmm).\text{{\hbox{\rho}}}=-\frac{\partial V_{\text{eff}}}{\partial\mu}=\frac{\phi_{0}^{2}}{2}+\frac{\sqrt{2}m^{*3/2}M^{3}}{12\pi^{2}\hbar^{3}}\left(2\sqrt{\frac{m^{*}}{m}}-\sqrt{\frac{m}{m^{*}}}\right). (11)

Equations (9), (10) and (11) constitute a closed set of equations. By eliminating the variables μ\mu and ϕ0\phi_{0} from Eq. (9) with the aid of Eqs. (10) and (11), we obtain a cubic equation solely in terms of MM,

M3+(1+4mg22ρ)3/282asm1/2M23π23(1+4mg22ρ)1/22m3/2ρ=0,M^{3}+\frac{\left(1+4\frac{mg_{2}}{\hbar^{2}}\rho\right)^{3/2}}{8\sqrt{2}a_{\text{s}}m^{*1/2}}M^{2}-\frac{3\pi^{2}\hbar^{3}\left(1+4\frac{mg_{2}}{\hbar^{2}}\rho\right)^{1/2}}{\sqrt{2}m^{*3/2}}\rho=0, (12)

with g0=4π2as/mg_{0}=4\pi\hbar^{2}a_{\text{s}}/m and mm/(1+4mg22ρ)m^{*}\simeq m/\left(1+4m\frac{g_{2}}{\hbar^{2}}\rho\right).

By solving Equation (12) using perturbation theory (details provided in Appendix C) and substituting g2g_{2} with 2π2as2rs/m2\pi\hbar^{2}a_{\text{s}}^{2}r_{\text{s}}/m, we derive the analytical expression of MM expanded as the gas parameter ρas3\rho a_{\text{s}}^{3}

M=2ρg0{1163π(1+8πrsasρas3)2ρas3[1403π(1+8πrsasρas3)2ρas3]+𝒪[(ρas3)3/2]}.M=\sqrt{2\rho g_{0}}\left\{1-\frac{16}{3\sqrt{\pi}\left(1+8\pi\frac{r_{\text{s}}}{a_{\text{s}}}\rho a_{\text{s}}^{3}\right)^{2}}\sqrt{\rho a_{\text{s}}^{3}}\left[1-\frac{40}{3\sqrt{\pi}\left(1+8\pi\frac{r_{\text{s}}}{a_{\text{s}}}\rho a_{\text{s}}^{3}\right)^{2}}\sqrt{\rho a_{\text{s}}^{3}}\right]+\mathcal{O}\left[\left(\rho a_{\text{s}}^{3}\right)^{3/2}\right]\right\}. (13)

In Equation (13), the effective mass MM, emerges as a pivotal parameter characterizing weakly-interacting BECs. Our findings, encapsulated in Eq. (13) accurately reproduce previously established results in specific limiting cases. (i) In the absence of finite-range effects (i.e. rs=0r_{\text{s}}=0), we double check that our result aligns with Refs. [49, 18] in terms of the gas parameter ρas3\rho a_{\text{s}}^{3}. Firstly, in the limit where ρas31\rho a_{\text{s}}^{3}\ll 1, Eq. (13) decouples from the gas parameter ρas3\rho a_{\text{s}}^{3}, contributing to the LHY term in the universal EOS. Secondly, under the additional constraint ρas3ρas3\rho a_{\text{s}}^{3}\ll\sqrt{\rho a_{\text{s}}^{3}}, Eq. (13) truncates to the first order of ρas3\sqrt{\rho a_{\text{s}}^{3}}, contributing to beyond-LHY terms in the universal EOS. (ii) When the finite-range effects are considered (i.e. rs0r_{\text{s}}\neq 0), our results accurately recover those in Ref. [30] when calculating the EOS of nonuniversal systems using the expression for MM. This validation underscores the accuracy and applicability of our approach.

Having acquired the knowledge of MM in Eq. (13), we are now poised to compute EOS of the model system, leveraging the CJT effective potential as presented in Eq. (8). Specifically, the EOS explored in this paper pertains to two key quantities: the quantum depletion, denoted as ρex\rho_{\text{ex}}, and chemical potential, represented by μ\mu.

Using Equation (11), the expression for quantum depletion is given by ρex=2m3/2M312π23(2mmmm)\rho_{\text{ex}}=\frac{\sqrt{2}m^{*3/2}M^{3}}{12\pi^{2}\hbar^{3}}\left(2\sqrt{\frac{m^{*}}{m}}-\sqrt{\frac{m}{m^{*}}}\right). By substituting the solution for MM from Eq. (13) into ρex\rho_{\text{ex}}, we derive the analytical expression for the quantum depletion expanded in terms of the gas parameter ρas3\rho a_{\text{s}}^{3}

ρex=\displaystyle\rho_{\text{ex}}= 8ρ3π(ρas3)1/2128ρ3π(ρas3)+2048ρ9π3/2(ρas3)3/2\displaystyle\!\!\!\!\!\!\frac{8\rho}{3\sqrt{\pi}}\left(\rho a_{\text{s}}^{3}\right)^{1/2}-\frac{128\rho}{3\pi}\left(\rho a_{\text{s}}^{3}\right)+\frac{2048\rho}{9\pi^{3/2}}\left(\rho a_{\text{s}}^{3}\right)^{3/2} (14)
\displaystyle- 64πρrsas(ρas3)3/2+51203ρrsas(ρas3)2.\displaystyle 64\sqrt{\pi}\rho\frac{r_{\text{s}}}{a_{\text{s}}}\left(\rho a_{\text{s}}^{3}\right)^{3/2}+\frac{5120}{3}\rho\frac{r_{\text{s}}}{a_{\text{s}}}\left(\rho a_{\text{s}}^{3}\right)^{2}.

Next, integrating the gap equation from Eq. (10) with the thermodynamic relation for the density in Eq. (11), we systematically derive the analytical expression for the chemical potential. The expression for the chemical potential takes the form μ=g0ρ+g02m3/2M33π23mm\mu=g_{0}\rho+g_{0}\frac{\sqrt{2}m^{*3/2}M^{3}}{3\pi^{2}\hbar^{3}}\sqrt{\frac{m^{*}}{m}}. By plugging the expression for MM from Eq. (13) into the formula of chemical potential, we are able to express μ\mu as an expansion in terms of the gas parameter ρas3\rho a_{\text{s}}^{3}

μ=g0ρ[1\displaystyle\mu\!=\!g_{0}\rho\Big{[}1 +\displaystyle+ 323π(ρas3)1/25123π(ρas3)+81929π3/2(ρas3)3/2\displaystyle\frac{32}{3\sqrt{\pi}}\left(\rho a_{\text{s}}^{3}\right)^{1/2}\!-\!\frac{512}{3\pi}\left(\rho a_{\text{s}}^{3}\right)\!+\!\frac{8192}{9\pi^{3/2}}\left(\rho a_{\text{s}}^{3}\right)^{3/2} (15)
\displaystyle- 5123πrsas(ρas3)3/2+163843rsas(ρas3)2].\displaystyle\frac{512}{3}\sqrt{\pi}\frac{r_{\text{s}}}{a_{\text{s}}}\left(\rho a_{\text{s}}^{3}\right)^{3/2}+\frac{16384}{3}\frac{r_{\text{s}}}{a_{\text{s}}}\left(\rho a_{\text{s}}^{3}\right)^{2}\Big{]}.

Equations (14) and (15) embody the key analytical expressions for nonuniversal EOS of a weakly-interacting Bose gas, with finite-range effects taken into consideration. Our results of Eqs. (14) and (15), demonstrate their versatility by successfully recovering previously established results under specific limiting conditions. (i) In the absence of the finite-range effects (i.e. rs=0r_{\text{s}}=0), our results align perfectly with the Refs. [14, 13, 49, 18], as verified through the order of the gas parameter ρas3\rho a_{\text{s}}^{3}. First, at the leading order (ρas3)0\left(\rho a_{\text{s}}^{3}\right)^{0}, all particles condense at the mean field ϕ0\phi_{0}, resulting in zero excess density (ρex=0\rho_{\text{ex}}=0) and chemical potential μ=g0ρ\mu=g_{0}\rho. Second, proceeding to the next order (ρas3)1/2\left(\rho a_{\text{s}}^{3}\right)^{1/2}, Eq. (15) recovers the universal LHY term [14, 13]. Third, truncating at the order of (ρas3)3/2\left(\rho a_{\text{s}}^{3}\right)^{3/2} for small gas parameter values, our results coincide with those reported in Ref. [18] as they should be, emphasizing the consistency and robustness of our approach. (ii) Then, when the finite-range effects are taken into account (i.e. rs0r_{\text{s}}\neq 0), our results maintain their consistency with the Refs. [26, 30, 43], expanded in terms of the gas parameter ρas3\rho a_{\text{s}}^{3}. Notably, truncating within the order of (ρas3)3/2\left(\rho a_{\text{s}}^{3}\right)^{3/2}, the nonuniversal EOS in Eqs. (14) and (15) match precisely with those in Refs. [26, 30, 43], obtained via the functional path-integral method. Crucially, our approach offers a significant enhancement in precision. Not only do we approximate the universal EOS in Eqs. (14) and (15) up to the order of (ρas3)3/2\left(\rho a_{\text{s}}^{3}\right)^{3/2}, but also uncover the nonuniversal next-to-LHY EOS, given by [16384rs/3as](ρas3)2[16384r_{\text{s}}/3a_{\text{s}}]\left(\rho a_{\text{s}}^{3}\right)^{2}, utilizing the CJT effective field theory. This additional insight underscores the robustness and precision of our analytical framework.

In Equations (14) and (15), the EOS comprises two distinct components: the universal terms, described by the scattering length asa_{\text{s}}, and the nonuniversal terms, described by both the scattering length asa_{\text{s}} and the finite-range length rsr_{\text{s}} based on Lagrangian density (2). However, in Refs. [17, 25, 50], the EOS has been calculated with both two-body correlations and three-body correlations taken into account, which we have mentioned in the Introduction. In particular, the universal next-to-LHY term of energy density induced by three-body correlations is ε=g0ρ22[8(4π33)3ρas3ln(ρas3)]\varepsilon=\frac{g_{0}\rho^{2}}{2}\left[\frac{8\left(4\pi-3\sqrt{3}\right)}{3}\rho a_{\text{s}}^{3}\ln\left(\rho a_{\text{s}}^{3}\right)\right], as shown in Table 1. The relative hamiltonian density can be written as =22m𝚽𝚽μ|𝚽|2+U02|𝚽|4+W6|𝚽|6\mathcal{H}=\frac{\hbar^{2}}{2m}\nabla\mathbf{\Phi}^{*}\cdot\nabla\mathbf{\Phi}-\mu\left|\mathbf{\Phi}\right|^{2}+\frac{U_{0}}{2}\left|\mathbf{\Phi}\right|^{4}+\frac{W}{6}\left|\mathbf{\Phi}\right|^{6}. In the tight-bingding limit, the relationship between dimensionless W¯\overline{W} and U¯0\overline{U}_{0} is W¯=(3π)3/2ln(Cη2)(V0Er)3/4e2V0Eras2k2U¯02\overline{W}=\left(3\pi\right)^{-3/2}\ln\left(C\eta^{2}\right)\left(\frac{V_{0}}{E_{\text{r}}}\right)^{3/4}e^{-2\sqrt{\frac{V_{0}}{E_{\text{r}}}}}a_{\text{s}}^{2}k^{2}\overline{U}^{2}_{0} [51, 52]. Here, η=ρas3\eta=\sqrt{\rho a_{\text{s}}^{3}}, CC constant has been given in Ref. [53], V0V_{0} represents the tunable barrier height of a homogeneous periodic lattice potential, while kk denotes the wave vector and Er=2k2/2mE_{\text{r}}=\hbar^{2}k^{2}/2m is the recoil energy. In contemporary experiments, as2k2a_{\text{s}}^{2}k^{2} typically spans from 10810^{-8} to 10210^{-2} [54]. Within this range, the influence of three-body interactions is markedly negligible in comparison to two-body interactions, implying that the effects stemming from three-body interactions are exceedingly difficult to discern experimentally. Therefore, we neglect the three-body correlations when we calculate the EOS for our boson-boson interacting system.

Meanwhile, the known next-to-LHY term of EOS induced by three-body correlations resides at the order of (ρas3)1\left(\rho a_{\text{s}}^{3}\right)^{1}, aligning with the first term of universal next-to-LHY EOS though CJT effective field theory, as demonstrated in the third line in Table 1. It can be roughly interpreted that the CJT effective field theory essentially effects a higher-order perturbation of the two-body interacting system in comparison to a direct consideration of three-body interactions. We note that the EOS in Eq. (15) is at the order of (ρas3)2\left(\rho a_{\text{s}}^{3}\right)^{2}, which is higher than the results in Refs. [25, 50]. In this sense, we need to consider the three-body correlations. Meanwhile, there is no need to use CJT effective field theory when calculating the nonuniversal EOS induced by three-body effect, which is supposed to give the higher order than (ρas3)2\left(\rho a_{\text{s}}^{3}\right)^{2}. It is enough to obtain a proper EOS through adding the terms induced by three-body correlations in Refs. [25, 50] into our results in Eq. (15) by hand. We conclude our result together with the logarithmic term of the next-to-LHY correction to the universal EOS gives a reasonable description of the EOS of an ultracold Bose gas.

Table 1: Expressions of the EOS expanded as the gas parameter ρas3\rho a_{\text{s}}^{3} for weakly-interacting Bose gas. Here, μ\mu signifies the chemical potential, ρex\rho_{\text{ex}} represents the quantum depletion and ε\varepsilon denotes the energy density with ρ\rho being the density, asa_{\text{s}} being the ss-wave scattering length and rsr_{\text{s}} representing the finite-range length respectively. For three-body correlations, lVl_{\text{V}} is the length scale set by the van der Waals potential, while the parameters cEc_{\text{E}} and bb represent the nonuniversal and universal coefficients respectively. The nonuniversal beyond-LHY EOS of the Lagrangian density functional (2) is calculated with two-body correlations taken into account in this work. It gives a higher order term of ρex\rho_{\text{ex}} compared with the Ref. [30].
Interatomic potential Quantum fluctuation EOS Gas parameter(ρas3)\left(\rho a_{\text{s}}^{3}\right) Ref.
Two-body μ=g0ρ[1+323π(ρas3)1/2\mu=g_{0}\rho\big{[}1+\frac{32}{3\sqrt{\pi}}\left(\rho a_{\text{s}}^{3}\right)^{1/2} 5123π(ρas3)+81929π3/2(ρas3)3/2-\frac{512}{3\pi}\left(\rho a_{\text{s}}^{3}\right)+\!\frac{8192}{9\pi^{3/2}}\left(\rho a_{\text{s}}^{3}\right)^{3/2} 5123πrsas(ρas3)3/2+163843rsas(ρas3)2]-\frac{512}{3}\sqrt{\pi}\frac{r_{\text{s}}}{a_{\text{s}}}\left(\rho a_{\text{s}}^{3}\right)^{3/2}+\frac{16384}{3}\frac{r_{\text{s}}}{a_{\text{s}}}\left(\rho a_{\text{s}}^{3}\right)^{2}\big{]} This work
Two-body Universal μMF=g0ρ\mu_{\text{MF}}=g_{0}\rho Mean-field term Ref. [15]
Universal μLHY=g0ρ[323π(ρas3)1/2]\mu_{\text{LHY}}=g_{0}\rho\big{[}\frac{32}{3\sqrt{\pi}}\left(\rho a_{\text{s}}^{3}\right)^{1/2}\big{]} LHY term Ref. [13]
Universal μBLHY=g0ρ[5123π(ρas3)+81929π3/2(ρas3)3/2]\mu_{\text{BLHY}}=g_{0}\rho\big{[}-\frac{512}{3\pi}\left(\rho a_{\text{s}}^{3}\right)+\!\frac{8192}{9\pi^{3/2}}\left(\rho a_{\text{s}}^{3}\right)^{3/2}\big{]} Beyond-LHY terms Ref. [18]
Three-body Universal εBLHY=g0ρ22[8(4π33)3ρas3ln(ρas3)]\varepsilon_{\text{BLHY}}=\frac{g_{0}\rho^{2}}{2}\big{[}\frac{8\left(4\pi-3\sqrt{3}\right)}{3}\rho a_{\text{s}}^{3}\ln\left(\rho a_{\text{s}}^{3}\right)\big{]} Beyond-LHY term Ref. [17]
Nonuniversal εBLHY=g0ρ22[8(4π33)3ρas3ln(ρaslV2)]\varepsilon_{\text{BLHY}}=\frac{g_{0}\rho^{2}}{2}\big{[}\frac{8\left(4\pi-3\sqrt{3}\right)}{3}\rho a_{\text{s}}^{3}\ln\left(\rho a_{\text{s}}l_{\text{V}}^{2}\right)\big{]} Beyond-LHY term Ref. [50]
Nonuniversal εBLHY=g0ρ22{[cE+(4π33)6πln(16πρas3)+49π2]\varepsilon_{\text{BLHY}}=\frac{g_{0}\rho^{2}}{2}\Big{\{}\big{[}c_{\text{E}}+\frac{\left(4\pi-3\sqrt{3}\right)}{6\pi}\ln\left(16\pi\rho a_{\text{s}}^{3}\right)+\frac{4}{9\pi^{2}}\big{]} (16πρas3)+(16π[cE+(4π33)6πln(16πρas3)]\left(16\pi\rho a_{\text{s}}^{3}\right)+\Big{(}\frac{16}{\pi}[c_{\text{E}}+\frac{\left(4\pi-3\sqrt{3}\right)}{6\pi}\ln\left(16\pi\rho a_{\text{s}}^{3}\right)] 1615πrsas+b)(16πρas3)3/2}-\frac{16}{15\pi}\frac{r_{\text{s}}}{a_{\text{s}}}+b\Big{)}\left(16\pi\rho a_{\text{s}}^{3}\right)^{3/2}\Big{\}} Beyond-LHY terms Ref. [25]
Two-body Nonuniversal ρexLHY=64πρrsas(ρas3)3/2\rho^{\text{LHY}}_{\text{ex}}=-64\sqrt{\pi}\rho\frac{r_{\text{s}}}{a_{\text{s}}}\left(\rho a_{\text{s}}^{3}\right)^{3/2} LHY term Ref. [30]
Nonuniversal ρexNLHY=51203ρrsas(ρas3)2\rho^{\text{NLHY}}_{\text{ex}}=\frac{5120}{3}\rho\frac{r_{\text{s}}}{a_{\text{s}}}\left(\rho a_{\text{s}}^{3}\right)^{2} Next-to-LHY term This work

Next, based on the chemical potential μ\mu, the inverse compressibility κ1=ρμρ\kappa^{-1}=\rho\frac{\partial\mu}{\partial\rho} can be readily derived

κ1=\displaystyle\kappa^{-1}= g0ρ[1+32αρ1/23α2ρ+158α3ρ3/2\displaystyle\!\!\!\!\!\!g_{0}\rho\Big{[}1+\frac{3}{2}\alpha\rho^{1/2}-3\alpha^{2}\rho+\frac{15}{8}\alpha^{3}\rho^{3/2} (16)
\displaystyle- 45π2128rsasα3ρ3/2+81π264rsasα4ρ2],\displaystyle\frac{45\pi^{2}}{128}\frac{r_{\text{s}}}{a_{\text{s}}}\alpha^{3}\rho^{3/2}+\frac{81\pi^{2}}{64}\frac{r_{\text{s}}}{a_{\text{s}}}\alpha^{4}\rho^{2}\Big{]},

with α=(32/3π)as3/2\alpha=\left(32/3\sqrt{\pi}\right)a_{\text{s}}^{3/2}.

To delve deeper into our analysis, utilizing the Eq. (16), we explore the nonuniversal quantum effect present in the speed of sound, denoted as cs=(κm)1c_{\text{s}}=\sqrt{\left(\kappa m\right)^{-1}},

cs=g0ρm{\displaystyle c_{\text{s}}=\!\!\sqrt{\frac{g_{0}\rho}{m}}\Bigg{\{} 1\displaystyle 1 +8ρas3π[164ρas33π+12809πρas3\displaystyle+\frac{8\sqrt{\rho a_{\text{s}}^{3}}}{\sqrt{\pi}}\Big{[}1-\frac{64\sqrt{\rho a_{\text{s}}^{3}}}{3\sqrt{\pi}}+\frac{1280}{9\pi}\rho a_{\text{s}}^{3} (17)
\displaystyle- 80π3rsasρas3+1024πrsasρas33]}.\displaystyle\frac{80\pi}{3}\frac{r_{\text{s}}}{a_{\text{s}}}\rho a_{\text{s}}^{3}+1024\sqrt{\pi}\frac{r_{\text{s}}}{a_{\text{s}}}\sqrt{\rho a_{\text{s}}^{3}}^{3}\Big{]}\Bigg{\}}.

In Equation (17), the coefficient associated with the term ρas3\sqrt{\rho a_{\text{s}}^{3}} is 8/π8/\sqrt{\pi}, differing from LHY’s prediction of 16/π16/\sqrt{\pi}. The deviation is readily traceable to the corresponding corrective terms present in the definition of the inverse compressibility κ1\kappa^{-1}, given by Eq. (16). As a consequence of the nonuniversal effect, our derived expression for the sound speed csc_{\text{s}} incorporates higher-order terms in the gas parameter ρas3\rho a_{\text{s}}^{3}, distinguishing it from the findings presented in Ref. [49]. This feature underscores the paramount importance and significance of our approach.

IV Frequency shifts induced by NONUNIVERSAL beyond-LHY EOS

In Sec. III, we have rigorously derived the nonuniversal next-to-LHY term in EOS (see Eqs. (14) and (15)) to the order of (ρas3)2\left(\rho a_{\text{s}}^{3}\right)^{2}. The purpose of Sec. IV is to propose an experimental protocol to observe the nonuniversal beyond-LHY corrections to the EOS by calculating the frequency shifts in the breathing modes. In contemporary experiments, the gas parameter ρas3\rho a_{\text{s}}^{3} typically remains below 10410^{-4}, rendering even the initial LHY correction to the mean-field energy, scaling as ρas3\sqrt{\rho a_{\text{s}}^{3}}, negligible at best, contributing less than 1%1\% of the total energy. Consequently, the higher-order corrections beyond LHY in Eq. (15) are anticipated to be too subtle to discern in density profiles or release energies. While enhancing quantum fluctuations by tuning asa_{\text{s}} via Feshbach resonance [31, 32, 55, 33, 35, 34] can amplify their impact, we propose an alternative route: studying the frequency shifts in collective excitations [56, 57, 58, 59] induced by quantum fluctuations [60]. To this end, we augment our model system with a 3D harmonic trap, defined by Vext=12mω02r2V_{\text{ext}}=\frac{1}{2}m\omega^{2}_{0}r^{2}, and embark on calculating the resulting shifts in the breathing mode frequency, attributed to beyond-LHY terms in Eq. (15). This endeavor is motivated by the potential to experimentally verify and quantify the nonuniversal contributions to the EOS.

Adhering closely to the standard methodology outlined in Ref. [38] for calculating frequency shifts, we formulate the hydrodynamic equation as follows:

m2δρ(𝐫,t)t2[ρ(𝐫)(μlρδρ(𝐫,t))]=0.m\frac{\partial^{2}\delta\rho\left(\mathbf{r},t\right)}{\partial t^{2}}-\nabla\cdot\left[\rho\left(\mathbf{r}\right)\nabla\left(\frac{\partial\mu_{l}}{\partial\rho}\delta\rho\left(\mathbf{r},t\right)\right)\right]=0. (18)

Equation (18) incorporates the density fluctuation, denoted as δρ(𝐫,t)\delta\rho\left(\mathbf{r},t\right), which arises around the targeted ground state density ρ(𝐫)\rho\left(\mathbf{r}\right) and the local chemical potential μl\mu_{l} as specified in Eq. (15).

As an initial step, utilizing Eq. (15), we can iteratively derive the expansion of the ground state density, expressed in terms of α=(32/3π)as3/2\alpha=\left(32/3\sqrt{\pi}\right)a_{\text{s}}^{3/2},

ρ(𝐫)=\displaystyle\rho\left(\mathbf{r}\right)= ρTFαρTF3/2+32α2ρTF234α3ρTF5/2\displaystyle\!\!\!\!\!\!\rho_{\text{TF}}-\alpha\rho_{\text{TF}}^{3/2}+\frac{3}{2}\alpha^{2}\rho_{\text{TF}}^{2}-\frac{3}{4}\alpha^{3}\rho_{\text{TF}}^{5/2} (19)
+\displaystyle+ 964π2rsasα3ρTF5/22764π2rsasα4ρTF3.\displaystyle\frac{9}{64}\pi^{2}\frac{r_{\text{s}}}{a_{\text{s}}}\alpha^{3}\rho_{\text{TF}}^{5/2}-\frac{27}{64}\pi^{2}\frac{r_{\text{s}}}{a_{\text{s}}}\alpha^{4}\rho_{\text{TF}}^{3}.

In Equation (19), ρTF=(g0ρVext)/g0\rho_{\text{TF}}=\left(g_{0}\rho-V_{\text{ext}}\right)/g_{0} [37, 38], is the so-called Thomas-Fermi result for the ground state density. Examining Eq. (19), we observe that its first line comprises three distinct terms: the mean-field term being ρTF\rho_{\text{TF}}, the universal LHY term represented by αρTF3/2-\alpha\rho_{\text{TF}}^{3/2}, and the universal beyond-LHY term 3/2α2ρTF23/4α3ρTF5/23/2\alpha^{2}\rho_{\text{TF}}^{2}-3/4\alpha^{3}\rho_{\text{TF}}^{5/2}. Notably, the second line of Eq. (19) vanishes solely when nonuniversal effects are disregarded, emphasizing their significance. Consequently, 964π2rsasα3ρTF5/2\frac{9}{64}\pi^{2}\frac{r_{\text{s}}}{a_{\text{s}}}\alpha^{3}\rho_{\text{TF}}^{5/2} is designated as the nonuniversal LHY term, while 2764π2rsasα4ρTF3-\frac{27}{64}\pi^{2}\frac{r_{\text{s}}}{a_{\text{s}}}\alpha^{4}\rho_{\text{TF}}^{3} corresponds to the nonuniversal next-to-LHY term.

Subsequently, we derive the expansion of [ρμl/ρ]\left[\rho\partial\mu_{l}/\partial\rho\right] as a series in terms of ρeff\rho_{\text{eff}} by substituting Eq. (19) into Eq. (16). Following this substitution, we insert both Eqs. (16) and (19) into the Eq. (18). Through meticulous algebraic manipulations, we ultimately arrive at

mω2δρ+[g0ρTFδρ]=\displaystyle\!\!\!\!\!\!\!\!m\omega^{2}\delta\rho+\nabla\cdot\left[g_{0}\rho_{\text{TF}}\nabla\delta\rho\right]= \displaystyle- 12α2(g0ρTF3/2δρ)+154α22(g0ρTF2δρ)3α2(g0ρTFδρρTF)\displaystyle\frac{1}{2}\alpha\nabla^{2}\left(g_{0}\rho_{\text{TF}}^{3/2}\delta\rho\right)+\frac{15}{4}\alpha^{2}\nabla^{2}\left(g_{0}\rho_{\text{TF}}^{2}\delta\rho\right)-3\alpha^{2}\nabla\cdot\left(g_{0}\rho_{\text{TF}}\delta\rho\nabla\rho_{\text{TF}}\right) (20)
+\displaystyle+ (454+63π2128rsas)α32(g0ρTF5/2δρ)+574α3(g0ρTF3/2δρρTF)\displaystyle\left(-\frac{45}{4}+\frac{63\pi^{2}}{128}\frac{r_{\text{s}}}{a_{\text{s}}}\right)\alpha^{3}\nabla^{2}\left(g_{0}\rho_{\text{TF}}^{5/2}\delta\rho\right)+\frac{57}{4}\alpha^{3}\nabla\cdot\left(g_{0}\rho_{\text{TF}}^{3/2}\delta\rho\nabla\rho_{\text{TF}}\right)
+\displaystyle+ (1658261π2128rsas)α42(g0ρTF3δρ)+(49516+27π216rsas)α4(g0ρTF2δρρTF).\displaystyle\left(\frac{165}{8}-\frac{261\pi^{2}}{128}\frac{r_{\text{s}}}{a_{\text{s}}}\right)\alpha^{4}\nabla^{2}\left(g_{0}\rho_{\text{TF}}^{3}\delta\rho\right)+\left(-\frac{495}{16}+\frac{27\pi^{2}}{16}\frac{r_{\text{s}}}{a_{\text{s}}}\right)\alpha^{4}\nabla\cdot\left(g_{0}\rho_{\text{TF}}^{2}\delta\rho\nabla\rho_{\text{TF}}\right).

Equation (20) simplifies into the basic hydrodynamic equation mω2δρ+[g0ρTFδρ]=0m\omega^{2}\delta\rho+\nabla\cdot\left[g_{0}\rho_{\text{TF}}\nabla\delta\rho\right]=0 in case of α=0\alpha=0. For this simplified scenario, the calculated frequency ω\omega exhibits analytical solutions of the form ω(nr,l)=ω0(2nr2+2nrl+3nr+l)1/2\omega\left(n_{r},l\right)=\omega_{0}\left(2n_{r}^{2}+2n_{r}l+3n_{r}+l\right)^{1/2}, with nrn_{r} representing the number of radial nodes and ll denoting the angular momentum associated with the excitation. This analytical expression provides a direct link between the frequency of the excitation and its quantum numbers.

Finally, Equation (20) can be routinely tackled by considering its right-hand side as a minor perturbation. By adopting this approach, we can derive the analytical expression for the frequency shifts,

δωω=\displaystyle\frac{\delta\omega}{\omega}= \displaystyle- αg04mω2d3𝐫2(δρ)ρTF3/2δρd3𝐫δρδρ+15α2g08mω2d3𝐫2(δρ)ρTF2δρd3𝐫δρδρ+3α2g02mω2d3𝐫(δρ)(ρTF)ρTFδρd3𝐫δρδρ\displaystyle\frac{\alpha g_{0}}{4m\omega^{2}}\frac{\int d^{3}{\mathbf{r}}\nabla^{2}\left(\delta\rho^{*}\right)\rho_{\text{TF}}^{3/2}\delta\rho}{\int d^{3}{\mathbf{r}}\delta\rho^{*}\delta\rho}+\frac{15\alpha^{2}g_{0}}{8m\omega^{2}}\frac{\int d^{3}{\mathbf{r}}\nabla^{2}\left(\delta\rho^{*}\right)\rho_{\text{TF}}^{2}\delta\rho}{\int d^{3}{\mathbf{r}}\delta\rho^{*}\delta\rho}+\frac{3\alpha^{2}g_{0}}{2m\omega^{2}}\frac{\int d^{3}{\mathbf{r}}\nabla\left(\delta\rho^{*}\right)\cdot\nabla\left(\rho_{\text{TF}}\right)\rho_{\text{TF}}\delta\rho}{\int d^{3}{\mathbf{r}}\delta\rho^{*}\delta\rho} (21)
+\displaystyle+ (454+63π2128rsas)α3g02mω2d3𝐫2(δρ)ρTF5/2δρd3𝐫δρδρ574α3g02mω2d3𝐫(δρ)(ρTF)ρTF3/2δρd3𝐫δρδρ\displaystyle\frac{\left(-\frac{45}{4}+\frac{63\pi^{2}}{128}\frac{r_{\text{s}}}{a_{\text{s}}}\right)\alpha^{3}g_{0}}{2m\omega^{2}}\frac{\int d^{3}{\mathbf{r}}\nabla^{2}\left(\delta\rho^{*}\right)\rho_{\text{TF}}^{5/2}\delta\rho}{\int d^{3}{\mathbf{r}}\delta\rho^{*}\delta\rho}-\frac{\frac{57}{4}\alpha^{3}g_{0}}{2m\omega^{2}}\frac{\int d^{3}{\mathbf{r}}\nabla\left(\delta\rho^{*}\right)\cdot\nabla\left(\rho_{\text{TF}}\right)\rho_{\text{TF}}^{3/2}\delta\rho}{\int d^{3}{\mathbf{r}}\delta\rho^{*}\delta\rho}
+\displaystyle+ (1658261π2128rsas)α4g02mω2d3𝐫2(δρ)ρTF3δρd3𝐫δρδρ(49516+27π216rsas)α4g02mω2d3𝐫(δρ)(ρTF)ρTF2δρd3𝐫δρδρ.\displaystyle\frac{\left(\frac{165}{8}-\frac{261\pi^{2}}{128}\frac{r_{\text{s}}}{a_{\text{s}}}\right)\alpha^{4}g_{0}}{2m\omega^{2}}\frac{\int d^{3}{\mathbf{r}}\nabla^{2}\left(\delta\rho^{*}\right)\rho_{\text{TF}}^{3}\delta\rho}{\int d^{3}{\mathbf{r}}\delta\rho^{*}\delta\rho}-\frac{\left(-\frac{495}{16}+\frac{27\pi^{2}}{16}\frac{r_{\text{s}}}{a_{\text{s}}}\right)\alpha^{4}g_{0}}{2m\omega^{2}}\frac{\int d^{3}{\mathbf{r}}\nabla\left(\delta\rho^{*}\right)\cdot\nabla\left(\rho_{\text{TF}}\right)\rho_{\text{TF}}^{2}\delta\rho}{\int d^{3}{\mathbf{r}}\delta\rho^{*}\delta\rho}.

The integrals in Eq. (21) are confined to the domain where the Thomas-Fermi density remains positive. To delve into effects that transcend the LHY theory, it becomes imperative to concentrate on compressional modes, which are highly responsive to alterations in the EOS. Among these, the breathing mode in a spherical trap, characterized by (nr=1,l=0)\left(n_{r}=1,l=0\right), stands as the fundamental excitation. This mode is distinguished by its zeroth-order dispersion, yielding a frequency of ω=5ω0\omega=\sqrt{5}\omega_{0} and exhibits density oscillations that adhere to the pattern δρ(r23/5R2)\delta\rho\sim\left(r^{2}-3/5R^{2}\right). In this specific scenario, Eq. (21) furnishes:

δωω=\displaystyle\frac{\delta\omega}{\omega}= 63π128[ρ(0)as3]1/216384135π[ρ(0)as3]\displaystyle\!\!\!\!\!\!\frac{63\sqrt{\pi}}{128}\left[\rho\left(0\right)a_{\text{s}}^{3}\right]^{1/2}-\frac{16384}{135\pi}\left[\rho\left(0\right)a_{\text{s}}^{3}\right] (22)
+\displaystyle+ 3682220516π2rsas3π[ρ(0)as3]3/2\displaystyle\frac{3682-\frac{2205}{16}\pi^{2}\frac{r_{\text{s}}}{a_{\text{s}}}}{3\sqrt{\pi}}\left[\rho\left(0\right)a_{\text{s}}^{3}\right]^{3/2}
+\displaystyle+ (71200π2+6465rsas)[ρ(0)as3]2,\displaystyle\left(\frac{-71200}{\pi^{2}}+6465\frac{r_{\text{s}}}{a_{\text{s}}}\right)\left[\rho\left(0\right)a_{\text{s}}^{3}\right]^{2},

revealing the fractional shift in the breathing mode frequency, where ρ(0)\rho\left(0\right) represents the density evaluated at the center of the trap.

Equation (22) constitutes another pivotal finding, encapsulating corrections to the breathing mode frequency that scale with the gas parameter ρ(0)as3\rho\left(0\right)a_{\text{s}}^{3}. The corrections in Eq. (22) stem from diverse origins, encompassing both LHY and beyond-LHY contributions to the EOS. The first term on the right-hand side of Eq. (22) represents the ubiquitous LHY-mediated fractional shift of the breathing mode frequency, which scales as [ρ(0)as3]1/2\left[\rho\left(0\right)a_{\text{s}}^{3}\right]^{1/2}. All the subsequent terms in Eq. (22) are of higher order than [ρ(0)as3]1/2\left[\rho\left(0\right)a_{\text{s}}^{3}\right]^{1/2}, offering insights into more intricate effects. Notably, among these beyond-LHY terms, the one scaling with [ρ(0)as3]\left[\rho\left(0\right)a_{\text{s}}^{3}\right] is a so-called next-to-LHY universal fractional shift. This term, specifically 16384135π[ρ(0)as3]\frac{-16384}{135\pi}\left[\rho\left(0\right)a_{\text{s}}^{3}\right], underscores the persistence of universal behavior beyond the leading LHY correction. Particularly, terms in Eq. (22) involving rsr_{\text{s}} represent nonuniversal contributions, arising from the finite-range effective potential, further illuminating the intricacies of the system’s response. Thus, the complexity deepens with the term 3682220516π2rsas3π[ρ(0)as3]3/2\frac{3682-\frac{2205}{16}\pi^{2}\frac{r_{\text{s}}}{a_{\text{s}}}}{3\sqrt{\pi}}\left[\rho\left(0\right)a_{\text{s}}^{3}\right]^{3/2} in Eq. (22), which encapsulates both the next-next-to-LHY universal fractional shift 36823π[ρ(0)as3]3/2\frac{3682}{3\sqrt{\pi}}\left[\rho\left(0\right)a_{\text{s}}^{3}\right]^{3/2} and a LHY nonuniversal contribution 220516π2rsas3π[ρ(0)as3]3/2\frac{-\frac{2205}{16}\pi^{2}\frac{r_{\text{s}}}{a_{\text{s}}}}{3\sqrt{\pi}}\left[\rho\left(0\right)a_{\text{s}}^{3}\right]^{3/2}. Similarly, the last term (71200π2+6465rsas)[ρ(0)as3]2\left(\frac{-71200}{\pi^{2}}+6465\frac{r_{\text{s}}}{a_{\text{s}}}\right)\left[\rho\left(0\right)a_{\text{s}}^{3}\right]^{2} in Eq. (22) comprises two distinct components: the next-next-next-to-LHY universal fractional shift 71200π2[ρ(0)as3]2\frac{-71200}{\pi^{2}}\left[\rho\left(0\right)a_{\text{s}}^{3}\right]^{2} and the next-to-LHY nonuniversal fractional shift 6465rsas[ρ(0)as3]26465\frac{r_{\text{s}}}{a_{\text{s}}}\left[\rho\left(0\right)a_{\text{s}}^{3}\right]^{2}. We remark that to our best knowledge, the analytical expressions of beyond-LHY-induced fractional shift of the breathing mode frequency in Eq. (22) are obtained for the first time.

Before delving into the intricacies concerning the fractional shift in the breathing mode frequency as described in Eq. (22), it is crucial to assess the rationality of the dimensionless finite-range coupling constant rs/asr_{\text{s}}/a_{\text{s}} and the gas parameter ρ(0)as3\rho\left(0\right)a_{\text{s}}^{3}. This preliminary examination is fundamental as it sheds light on the experimental feasibility of our proposed model. To exemplify, let us take the case of Li6{}^{6}\text{Li}, as mentioned in Ref. [61]. In this context, the typical density ρ(0)\rho\left(0\right) is approximately 4×1012cm34\times 10^{12}\text{cm}^{-3}. while the scattering length asa_{\text{s}} is estimated to be approximately 1.13×107m1.13\times 10^{-7}\text{m}. Consequently, the magnitude of ρ(0)as3\rho\left(0\right)a_{\text{s}}^{3} falls within the order of 10310^{-3}. Furthermore, according to Ref. [62], the effective distance rsr_{\text{s}} is estimated to lie within the interval of 0±3.71×106m0\sim\pm 3.71\times 10^{-6}\text{m}. By substituting these parameters into the expressions for rs/asr_{\text{s}}/a_{\text{s}} and ρ(0)as3\rho\left(0\right)a_{\text{s}}^{3}, we can reasonably infer that rs/asr_{\text{s}}/a_{\text{s}} falls within the range of 0±10\sim\pm 1. This assessment underscores the physical relevance and potential experimental applicability of our model’s key parameters.

Refer to caption
Figure 1: Frequency shifts δω/ω\delta\omega/\omega as a function of the gas parameter ρas3\rho a_{\text{s}}^{3} with different values of rs/asr_{\text{s}}/a_{\text{s}}. All the curves are plotted by Eq. (22), showing the frequency shifts in breathing modes arising from the nonuniversal beyond-LHY EOS of a 3D Bose gas.

We are now poised to discuss the influence of the nonuniversal EOS in Eq. (15), stemming from the finite-range interaction parameter rsr_{\text{s}}, on the fractional shift of the breathing mode frequency in Eq. (22). To visualize this effect, we have plotted frequency shifts of the breathing mode δω/ω\delta\omega/\omega in Eq. (22) into Fig. 1, showing how the dimensionless finite-range interaction parameter of rs/asr_{\text{s}}/a_{\text{s}} can affect the frequency shifts of δω/ω\delta\omega/\omega. Note that the red solid curve in Fig. 1 corresponds to case of vanishing the finite-range interaction by taking the dimensionless parameter of rs/as=0r_{\text{s}}/a_{s}=0; meanwhile the black dot-dashed and blue dashed curves in Fig. 1 demonstrate how the attractive (rs/as=0.75r_{\text{s}}/a_{\text{s}}=0.75) and repulsive (rs/as=0.75r_{\text{s}}/a_{\text{s}}=-0.75) finite-range interaction can affect frequency shifts of δω/ω\delta\omega/\omega. As shown in Fig. 1, the finite-range interaction has relative small effects on frequency shifts of δω/ω\delta\omega/\omega compared with the case of vanishing the finite-range interaction when the gas parameter of ρas3\rho a^{3}_{\text{s}} is small. In contrast, with the increase of the ρas3\rho a^{3}_{\text{s}}, the effect of finite-range interaction on frequency shifts of δω/ω\delta\omega/\omega becomes to be significant. For example, at the typical experimental parameter onset of ρas3103\rho a^{3}_{\text{s}}\sim 10^{-3}, the derivation of the fractional shift of δω/ω\delta\omega/\omega in case of rs/as=0.75r_{\text{s}}/a_{\text{s}}=0.75 from the case of rs/as=0.75r_{\text{s}}/a_{\text{s}}=-0.75 is calculated as more than 0.5%0.5\%, showing the finite-range effect well in reach in experiments. We point out that a precision of <0.3%<0.3\% in measuring collective frequencies has already been established [19, 20, 21, 22, 23], offering opportunities to probe the nonuniversial beyond-LHY corrections to EOS experimentally.

V CONCLUSION and outlook

In summary, we have theoretically investigated the nonuniversal EOS for a weakly-interacting Bose gas with the finite-range interatomic interaction. With the framework of CJT effective field theory under the two-loop approximation, we obtain analytical expressions for quantum depletion and chemical potential of model system, representing the next-to-LHY correction to nonuniversal EOS induced by finite-range effects. These analytical results represent significant generalizations of the nonuniversal LHY EOS studied in Refs. [43, 26, 30] to the beyond-LHY regimes, offering fresh insights into understanding the quantum behavior induced by the quantum fluctuations in many-body bosonic systems. We further calculate the frequency shifts in the breathing mode induced by the nonuniversal beyond-LHY EOS. Therefore, the beyond-LHY effects studied in this work should be observable within the current experiment capability.

We finally remark that the CJT theory developed in this work can be readily applied to other ultracold quantum systems, including the novel quantum droplet phases of interacting Bose mixtures or ultracold quantum Fermi systems. Our results lay the groundwork for further investigation of the nonuniversal beyond-LHY EOS.

We thank Xiaoran Ye, Tao Yu and Ying Hu for stimulating discussions. This work was supported by the National Natural Science Foundation of China (Nos. 12074344), the Zhejiang Provincial Natural Science Foundation (Grant Nos. LZ21A040001) and the key projects of the Natural Science Foundation of China (Grant No. 11835011).

Appendix A CJT EFFECTIVE FIELD THEORY

For the purpose of maintaining self-consistency within this work, we provide a concise overview of the key steps of the Cornwall-Jackiw-Tomboulis (CJT) effective field theory, drawing from seminal works (see e.g. Refs. [39, 40] and the references therein). Specifically, we delve into the detailed derivation of the effective potential VeffV_{\text{eff}} as presented in Eq. (3), elucidating each step to ensure a comprehensive understanding.

To begin with, let us contemplate the partition function, which incorporates both linear and bilinear external sources,

𝒵[J,K]\displaystyle\mathcal{Z}\left[J,K\right] =eW[J,K]/=𝒟[𝚽]exp{1[d4x[𝚽]+J(x)𝚽(x)+12d4xd4y𝚽(x)K(x,y)𝚽(y)]}.\displaystyle=e^{-W\left[J,K\right]/\hbar}=\int\mathcal{D}\left[\mathbf{\Phi}\right]\exp\left\{-\frac{1}{\hbar}\left[\int d^{4}x\mathcal{L}\left[\mathbf{\Phi}\right]+J\left(x\right)\mathbf{\Phi}\left(x\right)+\frac{1}{2}\int d^{4}xd^{4}y\mathbf{\Phi}\left(x\right)K\left(x,y\right)\mathbf{\Phi}\left(y\right)\right]\right\}. (23)

In Equation (23), d4x=0β𝑑τd3𝐫\int d^{4}x=\int_{0}^{\beta\hbar}d\tau\int d^{3}\mathbf{r}. So that we have

δW[J,K]δJ(x)\displaystyle\frac{\delta W\left[J,K\right]}{\delta J\left(x\right)} =\displaystyle= δln𝒵δJ(x)=𝚽(x)J,K=ϕ(x),\displaystyle-\frac{\delta\ln\mathcal{Z}}{\delta J\left(x\right)}=\left\langle\mathbf{\Phi}\left(x\right)\right\rangle_{J,K}=\phi\left(x\right), (24a)
δW[J,K]δK(x,y)\displaystyle\frac{\delta W\left[J,K\right]}{\delta K\left(x,y\right)} =\displaystyle= δln𝒵δK(x,y)=12𝚽(x)𝚽(y)J,K\displaystyle-\frac{\delta\ln\mathcal{Z}}{\delta K\left(x,y\right)}=\frac{1}{2}\left\langle\mathbf{\Phi}\left(x\right)\mathbf{\Phi}\left(y\right)\right\rangle_{J,K} (24b)
=\displaystyle= 12[ϕ(x)ϕ(y)+G(x,y)].\displaystyle\frac{1}{2}\left[\phi\left(x\right)\phi\left(y\right)+\hbar G\left(x,y\right)\right].

The effective action, denoted as Γ[ϕ,G]\Gamma\left[\phi,G\right], is precisely defined through the application of the double Legendre transformation to the generating functional W[J,K]W\left[J,K\right]. This transformation yields the expression:

Γ[ϕ,G]=W[J,K]d4uϕ(u)J(u)\displaystyle\Gamma\left[\phi,G\right]=\!W\left[J,K\right]-\int d^{4}u\phi\left(u\right)J\left(u\right) (25)
12d4vd4wK(v,w)[ϕ(v)ϕ(w)+G(v,w)],\displaystyle-\frac{1}{2}\!\int\!\!d^{4}vd^{4}wK\left(v,w\right)\left[\phi\left(v\right)\phi\left(w\right)+\hbar G\left(v,w\right)\right],

which is subject to the conditions encapsulated in the following set of equations:

δΓ[ϕ,G]δϕ(x)\displaystyle\frac{\delta\Gamma\left[\phi,G\right]}{\delta\phi\left(x\right)} =\displaystyle= J(x)d4wK(x,w)ϕ(w),\displaystyle-J\left(x\right)-\int d^{4}wK\left(x,w\right)\phi\left(w\right), (26a)
δΓ[ϕ,G]δG(x,y)\displaystyle\frac{\delta\Gamma\left[\phi,G\right]}{\delta G\left(x,y\right)} =\displaystyle= 12K(x,y).\displaystyle-\frac{1}{2}\hbar K\left(x,y\right). (26b)

Equations (26a) and (26b) underscore the intricate relationship between the effective action and its functional derivatives with respect to the classical field ϕ\phi and the two-point function GG, respectively. After the saddle-point approximation, we calculate 𝒵\mathcal{Z} as ​

𝒵\displaystyle\mathcal{Z} eS[ϕ,J,K]/𝒟[𝚽~]e12d4xd4y𝚽~(x)[D01+K]𝚽~(y)\displaystyle\simeq e^{-S\left[\phi,J,K\right]/\hbar}\int\mathcal{D}[\widetilde{\mathbf{\Phi}}]e^{-\frac{1}{2\hbar}\int d^{4}xd^{4}y\tilde{\mathbf{\Phi}}\left(x\right)\left[D_{0}^{-1}+K\right]\tilde{\mathbf{\Phi}}\left(y\right)}
=eS[ϕ,J,K]/[det[(D01+K)/]]1/2,\displaystyle=e^{-S\left[\phi,J,K\right]/\hbar}\left[\det\left[\left(D_{0}^{-1}+K\right)/\hbar\right]\right]^{-1/2}, (27)

with

S[ϕ,J,K]=d4xϕD01ϕ+d4xd4yϕK2ϕ+d4xJϕ.S\left[\phi,J,K\right]=\int d^{4}x\phi D_{0}^{-1}\phi+\int d^{4}xd^{4}y\phi\frac{K}{2}\phi+\int d^{4}xJ\phi. (28)

Plugging Eqs. (28) and (A) into Eq. (25), we can obtain

Γ[ϕ,G]\displaystyle\Gamma\left[\phi,G\right] =12d4ϕD01ϕ+2Trln[(D01+K)]2d4vd4wK(v,w)G(v,w).\displaystyle=\frac{1}{2}\int d^{4}\phi D_{0}^{-1}\phi+\frac{\hbar}{2}\text{Tr}\ln\left[\left(D_{0}^{-1}+K\right)\right]-\frac{\hbar}{2}\int d^{4}vd^{4}wK\left(v,w\right)G\left(v,w\right). (29)

By taking the logarithm of Eq. (A) and subsequently computing its first-order derivative with respect to K(x,y)K\left(x,y\right), utilizing Eq. (28) as an aid, we can establish a direct comparison with Eq. (24b). This comparison leads to the conclusion that G1=D01+KG^{-1}=D_{0}^{-1}+K. Consequently, Γ[ϕ,G]\Gamma\left[\phi,G\right] can be expressed as

Γ[ϕ,G]\displaystyle\Gamma\left[\phi,G\right] =\displaystyle= 12d4xϕD01ϕ\displaystyle\frac{1}{2}\int d^{4}x\phi D_{0}^{-1}\phi (30)
+\displaystyle+ 2Tr[lnG1+D01G𝟏]\displaystyle\frac{\hbar}{2}\text{Tr}\left[\ln G^{-1}+D_{0}^{-1}G-\mathbf{1}\right]
+\displaystyle+ [ϕ,G],\displaystyle\mathcal{I}\left[\phi,G\right],

where [ϕ,G]\mathcal{I}\left[\phi,G\right] is the Luttinger-Ward functional. However, our primary focus lies solely on translation-invariant solutions. To this end, we simplify our analysis by setting ϕ(x)\phi\left(x\right) to a constant value, denoted as ϕ0\phi_{0}, and considering G(x,y)G\left(x,y\right) as a function exclusively dependent on the difference xyx-y. This specific choice allows us to define a generalized form of the effective potential as

Veff\displaystyle V_{\text{eff}} =\displaystyle= 1β𝒱Γ[ϕ0,G]\displaystyle\frac{1}{\beta\hbar\mathcal{V}}\Gamma\left[\phi_{0},G\right] (31)
=\displaystyle= 12ϕ0D01ϕ0+1β𝒱[12Tr(lnG1+D01G𝟏)]\displaystyle\frac{1}{2}\phi_{0}D_{0}^{-1}\phi_{0}+\frac{1}{\beta\mathcal{V}}\left[\frac{1}{2}\text{Tr}\left(\ln G^{-1}+D_{0}^{-1}G-\mathbf{1}\right)\right]
+Φ[ϕ0,G].\displaystyle+\Phi\left[\phi_{0},G\right].

with Φ[ϕ0,G]\Phi\left[\phi_{0},G\right] being the average of time and space of the [ϕ0,G]\mathcal{I}\left[\phi_{0},G\right].

Appendix B DETAILED DERIVATION OF THE EFFECTIVE POTENTIAL VeffV_{\text{eff}} OF EQ. (8)

To ensure the self-consistency and comprehensiveness of this work, we provide a concise overview of the crucial steps involved in deriving the self-consistent VeffV_{\text{eff}} that fulfills the condition of gapless excitations (see e.g. Refs. [63, 18] and the references therein). In particular, we delve into the derivation of the effective potential VeffV_{\text{eff}} as presented in Eq. (8). To effectively implement the CJT effective field theory [39], it is advantageous to initially transform the CJT effective potential into the momentum-frequency space

ϕ1\phi_{1}(𝐫,τ)\left(\mathbf{r},\tau\right) =\displaystyle= 1β𝒱𝐤,ωnei𝐤𝐫iωnτ/ϕ1(𝐤,ωn),\displaystyle\sqrt{\frac{1}{\beta\hbar\mathcal{V}}}\sum_{{\mathbf{k}},\omega_{n}}e^{i{\mathbf{k}}\cdot{\mathbf{r}}-i\omega_{n}\tau/\hbar}\phi_{1}\left({\mathbf{k}},\omega_{n}\right), (32a)
ϕ2\phi_{2}(𝐫,τ)\left(\mathbf{r},\tau\right) =\displaystyle= 1β𝒱𝐤,ωnei𝐤𝐫iωnτ/ϕ2(𝐤,ωn),\displaystyle\sqrt{\frac{1}{\beta\hbar\mathcal{V}}}\sum_{{\mathbf{k}},\omega_{n}}e^{i{\mathbf{k}}\cdot{\mathbf{r}}-i\omega_{n}\tau/\hbar}\phi_{2}\left({\mathbf{k}},\omega_{n}\right), (32b)

with β\beta defined as 1/kBT1/k_{\text{B}}T, where kBk_{\text{B}} is the Boltzmann constant and TT represents the temperature, 𝒱\mathcal{V} denotes the volume of the system under consideration. Furthermore, kk signifies the magnitude of the wave vector 𝐤\mathbf{k}, while ωn=2πn/β\omega_{n}=2\pi n/\beta represents the bosonic Matsubara frequency, with nn being integers. This transformation facilitates a more streamlined analysis and allows us to leverage the properties of Fourier transforms in our calculations.

Based on the CJT effective field theory, we find the CJT effective potential from the Lagrangian density (2) as

Veff[ϕ0,G]=\displaystyle V_{\text{eff}}\left[\phi_{0},G\right]= \displaystyle- μ2ϕ02\displaystyle\frac{\mu}{2}\phi_{0}^{2} (33)
+\displaystyle+ 12βTr[lnG1(k)+D01(k)G(k)𝟏]\displaystyle\frac{1}{2}\int_{\beta}\text{\text{Tr}}\left[\ln G^{-1}\left(k\right)+D_{0}^{-1}\left(k\right)G\left(k\right)-\mathbf{1}\right]
+\displaystyle+ Φ[ϕ0,G],\displaystyle\Phi\left[\phi_{0},G\right],

with Φ[ϕ0,G]\Phi\left[\phi_{0},G\right] being the Luttinger-Ward functional as shown in Fig. 2.

Refer to caption
Figure 2: Feynman 2PI diagrams corresponding to Luttinger-Ward functional of Φ[ϕ0,G]\Phi\left[\phi_{0},G\right] in Eq. (33).

More specifically, Φ[ϕ0,G]=g08ϕ04+3g04ϕ02P11+g04ϕ02P22+g22ϕ02k2P11+g04P11P22+3g08(P112+P222)\Phi\left[\phi_{0},G\right]=\frac{g_{0}}{8}\phi_{0}^{4}+\frac{3g_{0}}{4}\phi_{0}^{2}P_{11}+\frac{g_{0}}{4}\phi_{0}^{2}P_{22}+\frac{g_{2}}{2}\phi_{0}^{2}k^{2}P_{11}+\frac{g_{0}}{4}P_{11}P_{22}+\frac{3g_{0}}{8}\left(P_{11}^{2}+P_{22}^{2}\right), where the functions P11P_{11} and P22P_{22} denote as

P11\displaystyle P_{11} =\displaystyle= βG11(k)=1βn=+d𝐤(2π)3G11(k),\displaystyle\int_{\beta}G_{11}\left(k\right)=\frac{1}{\beta}\sum_{n=-\infty}^{+\infty}\int\frac{d\mathbf{k}}{\left(2\pi\right)^{3}}G_{11}\left(k\right), (34a)
P22\displaystyle P_{22} =\displaystyle= βG22(k)=1βn=+d𝐤(2π)3G22(k).\displaystyle\int_{\beta}G_{22}\left(k\right)=\frac{1}{\beta}\sum_{n=-\infty}^{+\infty}\int\frac{d\mathbf{k}}{\left(2\pi\right)^{3}}G_{22}\left(k\right). (34b)

Prior to utilizing the effective potential VeffV_{\text{eff}} for any computational purposes, it is imperative to engage in a brief discourse regarding its behavior under various loop approximation conditions. This discussion will provide valuable insights into the applicability and limitations of VeffV_{\text{eff}} within different theoretical frameworks.

B.1 Zero-loop

In zero-loop approximation, we solely consider the first diagram depicted in Fig. 2 as the contribution to Φ[ϕ0]\Phi\left[\phi_{0}\right]. Consequently, the effective potential can be succinctly expressed as Veff[ϕ0]=μ2ϕ02+g08ϕ04V_{\text{eff}}[\phi_{0}]=-\frac{\mu}{2}\phi_{0}^{2}+\frac{g_{0}}{8}\phi_{0}^{4}. Notably, Veff[ϕ0]V_{\text{eff}}[\phi_{0}] involves a single variable ϕ0\phi_{0}, which represents the mean-field. By minimizing the Veff[ϕ0]V_{\text{eff}}[\phi_{0}] with respect to ϕ0\phi_{0} and incorporating thermodynamic relationships, we derive μ=g0ρ\mu=g_{0}\rho and ρex=0\rho_{\text{ex}}=0. These results align perfectly with the well-established findings within the mean-field approximation framework.

B.2 One-loop

Subsequently, we proceed to truncate Φ[ϕ0,G]\Phi\left[\phi_{0},G\right] within one-loop approximation. This entails focusing solely on the diagrams featured in the first line of Fig. 2. Under this approximation, the effective potential Veff[ϕ0,G]V_{\text{eff}}[\phi_{0},G] takes on a specific form, which can be written as

Veff[ϕ0,G]=\displaystyle V_{\text{eff}}[\phi_{0},G]= \displaystyle- μ2ϕ02+g08ϕ04\displaystyle\frac{\mu}{2}\phi_{0}^{2}+\frac{g_{0}}{8}\phi_{0}^{4} (35)
+\displaystyle+ 12βTr[lnG1(k)+D01(k)G(k)𝟏]\displaystyle\frac{1}{2}\int_{\beta}\text{\text{Tr}}\left[\ln G^{-1}\left(k\right)+D_{0}^{-1}\left(k\right)G\left(k\right)-\mathbf{1}\right]
+\displaystyle+ 3g04ϕ02P11+g04ϕ02P22+g22ϕ02k2P11.\displaystyle\frac{3g_{0}}{4}\phi_{0}^{2}P_{11}+\frac{g_{0}}{4}\phi_{0}^{2}P_{22}+\frac{g_{2}}{2}\phi_{0}^{2}k^{2}P_{11}.

In Equation (35), D01(k)D_{0}^{-1}\left(k\right) can be written as

D01(k)=[2k22mμωnωn2k22mμ],D_{0}^{-1}\!\left(k\right)=\begin{bmatrix}\frac{\hbar^{2}k^{2}}{2m}-\mu&-\omega_{n}\\ \omega_{n}&\frac{\hbar^{2}k^{2}}{2m}-\mu\end{bmatrix}, (36)

being the inversion propagator in free space. And G(k)G\left(k\right) is the propagator of the system. Notably, Equation (35) admits simplification by consolidating the terms in the third line into the second line. Through meticulous calculations, we can re-express Veff[ϕ0,G]V_{\text{eff}}[\phi_{0},G] in a more concise form as

Veff[\displaystyle V_{\text{eff}}[ ϕ0\displaystyle\phi_{0} ,G]=μ2ϕ02+g08ϕ04\displaystyle,G]=-\frac{\mu}{2}\phi_{0}^{2}+\frac{g_{0}}{8}\phi_{0}^{4} (37)
+\displaystyle+ 12βTr[lnG1(k)+G01(k)G(k)𝟏],\displaystyle\frac{1}{2}\int_{\beta}\text{\text{Tr}}\left[\ln G^{-1}\left(k\right)+G_{0}^{-1}\left(k\right)G\left(k\right)-\mathbf{1}\right],

where G01(k)G_{0}^{-1}\left(k\right) is

G01(k)=[2k22mμ+3g02ϕ02+g2ϕ02k2ωnωn2k22mμ+g02ϕ02],\!\!\!G_{0}^{-1}\left(k\right)\!\!=\!\!\begin{bmatrix}\frac{\hbar^{2}k^{2}}{2m}\!\!-\!\!\mu\!+\!\!\frac{3g_{0}}{2}\phi_{0}^{2}\!\!+\!\!g_{2}\phi_{0}^{2}k^{2}&-\omega_{n}\\ \omega_{n}&\frac{\hbar^{2}k^{2}}{2m}\!\!-\!\!\mu\!+\!\!\frac{g_{0}}{2}\phi_{0}^{2}\end{bmatrix}\!\!, (38)

being the inversion propagator within one-loop approximation. Minimizing the effective potential Veff[ϕ0,G]V_{\text{eff}}\left[\phi_{0},G\right] with respect to the elements of the propagator G(k)G\left(k\right), we obtain that G1(k)=G01(k)G^{-1}\left(k\right)=G_{0}^{-1}\left(k\right). Consequently, we reformulate Veff[ϕ0,G]V_{\text{eff}}[\phi_{0},G] as Veff[ϕ0,G0]V_{\text{eff}}[\phi_{0},G_{0}], which in this approximation takes the form: Veff[ϕ0,G0]=μ2ϕ02+g08ϕ04+12βTr[lnG01(k)]V_{\text{eff}}[\phi_{0},G_{0}]=-\frac{\mu}{2}\phi_{0}^{2}+\frac{g_{0}}{8}\phi_{0}^{4}+\frac{1}{2}\int_{\beta}\text{\text{Tr}}\left[\ln G^{-1}_{0}\left(k\right)\right]. Further minimization of Veff[ϕ0,G0]V_{\text{eff}}[\phi_{0},G_{0}] with respect to order parameter ϕ0\phi_{0} and application of thermodynamic relationships lead to the quantum depletion: ρex=8ρ3π(ρas3)1/264πρrsas(ρas3)3/2\rho_{\text{ex}}=\frac{8\rho}{3\sqrt{\pi}}\left(\rho a_{\text{s}}^{3}\right)^{1/2}-64\sqrt{\pi}\rho\frac{r_{\text{s}}}{a_{\text{s}}}\left(\rho a_{\text{s}}^{3}\right)^{3/2}. This result aligns with the findings reported in Ref. [30], thereby validating the one-loop approximation approach.

B.3 Two-loop

Upon substituting the expression of Φ[ϕ0,G]\Phi\left[\phi_{0},G\right] into the Eq. (33), which encompasses all the diagrams depicted in Fig. 2, we are able to recast VeffV_{\text{eff}} in an alternative form as

Veff[ϕ0,G]=\displaystyle V_{\text{eff}}[\phi_{0},G]= \displaystyle- μ2ϕ02+g08ϕ04\displaystyle\frac{\mu}{2}\phi_{0}^{2}+\frac{g_{0}}{8}\phi_{0}^{4} (39)
+\displaystyle+ 12βTr[lnG1(k)+G01(k)G(k)𝟏]\displaystyle\frac{1}{2}\int_{\beta}\text{\text{Tr}}\left[\ln G^{-1}\left(k\right)+G_{0}^{-1}\left(k\right)G\left(k\right)-\mathbf{1}\right]
+\displaystyle+ 3g08(P112+P222)+g04P11P22.\displaystyle\frac{3g_{0}}{8}\left(P_{11}^{2}+P_{22}^{2}\right)+\frac{g_{0}}{4}P_{11}P_{22}.

In equation (39), G(k)G\left(k\right) is the propagator or Green’s function. By minimizing the CJT effective potential Veff[ϕ0,G]V_{\text{eff}}\left[\phi_{0},G\right] concerning the elements of the propagator G(k)G\left(k\right), we obtain

G1(k)=G01(k)+Σ,G^{-1}\left(k\right)=G_{0}^{-1}\left(k\right)+\Sigma, (40)

in which

Σ=[Σ100Σ2],\Sigma=\begin{bmatrix}\Sigma_{1}&0\\ 0&\Sigma_{2}\end{bmatrix}, (41)

with the matrix entries Σ1\Sigma_{1} and Σ2\Sigma_{2} being the self-energies that can be constructed from Eqs. (39), (34a), and (34b),

Σ1\displaystyle\Sigma_{1} =\displaystyle= 3g02P11+g02P22,\displaystyle\frac{3g_{0}}{2}P_{11}+\frac{g_{0}}{2}P_{22}, (42a)
Σ2\displaystyle\Sigma_{2} =\displaystyle= 3g02P22+g02P11.\displaystyle\frac{3g_{0}}{2}P_{22}+\frac{g_{0}}{2}P_{11}. (42b)

Furthermore, the expression for G01(k)G_{0}^{-1}\left(k\right) remains identical to that presented in Eq. (38) in Appendix B.2. Consequently, by examining the poles of the Green’s function, as detailed in Ref. [64], we can derive the dispersion relation, which is given as

ϵk\displaystyle\epsilon_{\text{k}} =\displaystyle= (2k22mμ+3g02ϕ02+g2ϕ02k2+Σ1)1/2\displaystyle\left(\frac{\hbar^{2}k^{2}}{2m}-\mu+\frac{3g_{0}}{2}\phi_{0}^{2}+g_{2}\phi_{0}^{2}k^{2}+\Sigma_{1}\right)^{1/2} (43)
×(2k22mμ+g02ϕ02+Σ2)1/2.\displaystyle\times\left(\frac{\hbar^{2}k^{2}}{2m}-\mu+\frac{g_{0}}{2}\phi_{0}^{2}+\Sigma_{2}\right)^{1/2}.

By optimizing the CJT effective potential with respect to the order parameter ϕ0\phi_{0}, we can derive the gap equation within the Hartree-Fock (HF) approximation,

μ+g02ϕ02+Σ1=0.-\mu+\frac{g_{0}}{2}\phi_{0}^{2}+\Sigma_{1}=0. (44)

The Goldstone theorem [65] postulates the necessity of a gapless excitation spectrum. Nevertheless, the dispersion relation derived from Eqs. (43) and (44) indicates a non-gapless spectrum, thereby violating the Goldstone theorem in the context of spontaneously broken symmetry within the HF approximation. To rectify this bug and reinstate the Nambu-Goldstone boson, we introduce a corrective term, denoted as ΔV\Delta V [63] to the Veff[ϕ0,G]V_{\text{eff}}\left[\phi_{0},G\right], which is given by

ΔV\displaystyle\Delta V =g04(P112+P222)+g02P11P22.\displaystyle=-\frac{g_{0}}{4}\left(P_{11}^{2}+P_{22}^{2}\right)+\frac{g_{0}}{2}P_{11}P_{22}. (45)

So that the revised VeffV_{\text{eff}} is

Veff=\displaystyle V_{\text{eff}}= \displaystyle- μ2ϕ02+g08ϕ04\displaystyle\frac{\mu}{2}\phi_{0}^{2}+\frac{g_{0}}{8}\phi_{0}^{4} (46)
+\displaystyle+ 12βTr[lnG1(k)+G01(k)G(k)𝟏]\displaystyle\frac{1}{2}\int_{\beta}\text{\text{Tr}}\left[\ln G^{-1}\left(k\right)+G_{0}^{-1}\left(k\right)G\left(k\right)-\mathbf{1}\right]
+\displaystyle+ g08(P112+P222)+3g04P11P22.\displaystyle\frac{g_{0}}{8}\left(P_{11}^{2}+P_{22}^{2}\right)+\frac{3g_{0}}{4}P_{11}P_{22}.

In Equation (46), the first two terms constitute the mean-field component, corresponding to the condensate atoms, while the subsequent terms represent the excitation part stemming from the excited atoms. By replicating the calculations performed leading up to Eq. (40), we obtain the revised inverse propagator,

G1(k)=G01(k)+Σ,G^{-1}\left(k\right)=G_{0}^{-1}\left(k\right)+\Sigma^{\prime}, (47)

where

Σ=[Σ100Σ2],\Sigma^{\prime}=\begin{bmatrix}\Sigma_{1}^{\prime}&0\\ 0&\Sigma_{2}^{\prime}\end{bmatrix}, (48)

in which the self-energies Σ1\Sigma_{1}^{\prime} and Σ2\Sigma_{2}^{\prime} are defined as follows,

Σ1\displaystyle\Sigma_{1}^{\prime} =\displaystyle= g02P11+3g02P22,\displaystyle\frac{g_{0}}{2}P_{11}+\frac{3g_{0}}{2}P_{22}, (49a)
Σ2\displaystyle\Sigma_{2}^{\prime} =\displaystyle= g02P22+3g02P11.\displaystyle\frac{g_{0}}{2}P_{22}+\frac{3g_{0}}{2}P_{11}. (49b)

Then, the gap equation that μ\mu satisfies can be reformulated as

μ+g02ϕ02+Σ2=0.-\mu+\frac{g_{0}}{2}\phi_{0}^{2}+\Sigma_{2}^{\prime}=0. (50)

Furthermore, we can formulate the Schwinger-Dyson (SD) equation as

μ+3g02ϕ02+Σ1=M2.-\mu+\frac{3g_{0}}{2}\phi_{0}^{2}+\Sigma_{1}^{\prime}=M^{2}. (51)

Upon modifying mm to m=m/(1+2mg2ϕ02/2)m^{*}=m/\left(1+2mg_{2}\phi_{0}^{2}/\hbar^{2}\right), the revised inversion propagator G1(k)G^{-1}\left(k\right) and the corresponding propagator G(k)G\left(k\right) can be turned out

G1(k)=[2k22m+M2,ωnωn,k22m],\displaystyle G^{-1}\left(k\right)=\begin{bmatrix}\frac{\hbar^{2}k^{2}}{2m^{*}}+M^{2},&-\omega_{n}\\ \omega_{n},&\frac{k^{2}}{2m}\end{bmatrix}, (52a)
G(k)=1ϵk2+ωn2[2k22m,ωnωn,2k22m+M2].\displaystyle G\left(k\right)=\frac{1}{\epsilon_{\text{k}}^{2}+\omega_{n}^{2}}\begin{bmatrix}\frac{\hbar^{2}k^{2}}{2m},&\omega_{n}\\ -\omega_{n},&\frac{\hbar^{2}k^{2}}{2m^{*}}+M^{2}\end{bmatrix}. (52b)

In Equation (52b), ϵk=2k22m(2k22m+M2)\epsilon_{\text{k}}=\sqrt{\frac{\hbar^{2}k^{2}}{2m}\left(\frac{\hbar^{2}k^{2}}{2m^{*}}+M^{2}\right)}, representing the dispersion relation.

Plugging Eqs. (38) and (52b) into Eq. (46) and performing the calculations pertaining to the second term, we proceed to obtain

Veff=\displaystyle V_{\text{eff}}= \displaystyle- μ2ϕ02+g08ϕ02\displaystyle\frac{\mu}{2}\phi_{0}^{2}+\frac{g_{0}}{8}\phi_{0}^{2} (53)
+\displaystyle+ 12βTr[lnG1(k)]\displaystyle\frac{1}{2}\int_{\beta}\text{\text{Tr}}\left[\ln G^{-1}\left(k\right)\right]
+\displaystyle+ g08(P112+P222)+3g04P11P22\displaystyle\frac{g_{0}}{8}\left(P_{11}^{2}+P_{22}^{2}\right)+\frac{3g_{0}}{4}P_{11}P_{22}
+\displaystyle+ 12(μ+3g02ϕ02M2)P11\displaystyle\frac{1}{2}\left(-\mu+\frac{3g_{0}}{2}\phi_{0}^{2}-M^{2}\right)P_{11}
+\displaystyle+ 12(μ+g02ϕ02)P22.\displaystyle\frac{1}{2}\left(-\mu+\frac{g_{0}}{2}\phi_{0}^{2}\right)P_{22}.

Meanwhile, by evaluating Eq. (34) through summing over the bosonic Matsubara frequencies using Eq. (52b), and then taking the limit as T0T\rightarrow 0, we perform the calculations in spherical coordinates employing dimensional regularization techniques, yielding:

P11\displaystyle P_{11} =\displaystyle= 12d𝐤(2π)32k22m2k22m+M2\displaystyle\frac{1}{2}\int\frac{d\mathbf{k}}{\left(2\pi\right)^{3}}\sqrt{\frac{\frac{\hbar^{2}k^{2}}{2m}}{\frac{\hbar^{2}k^{2}}{2m^{*}}+M^{2}}} (54a)
=\displaystyle= 12d𝐤(2π)32k22m2k22m+M2mm\displaystyle\frac{1}{2}\int\frac{d\mathbf{k}}{\left(2\pi\right)^{3}}\sqrt{\frac{\frac{\hbar^{2}k^{2}}{2m}}{\frac{\hbar^{2}k^{2}}{2m^{*}}+M^{2}}}\sqrt{\frac{m^{*}}{m}}
=\displaystyle= 18π2(2mM22)32mm0t(t+1)12𝑑t\displaystyle\frac{1}{8\pi^{2}}\left(\frac{2m^{*}M^{2}}{\hbar^{2}}\right)^{\frac{3}{2}}\sqrt{\frac{m^{*}}{m}}\int_{0}^{\infty}t\left(t+1\right)^{-\frac{1}{2}}dt
=\displaystyle= 18π2(2mM22)32mmΓ[2]Γ[32]Γ[12]\displaystyle\frac{1}{8\pi^{2}}\left(\frac{2m^{*}M^{2}}{\hbar^{2}}\right)^{\frac{3}{2}}\sqrt{\frac{m^{*}}{m}}\frac{\Gamma\left[2\right]\Gamma\left[\frac{-3}{2}\right]}{\Gamma\left[\frac{1}{2}\right]}
=\displaystyle= 2m3/2M33π23mm,\displaystyle\frac{\sqrt{2}m^{*3/2}M^{3}}{3\pi^{2}\hbar^{3}}\sqrt{\frac{m^{*}}{m}},
P22\displaystyle P_{22} =\displaystyle= 12d𝐤(2π)32k22m+M22k22m\displaystyle\frac{1}{2}\int\frac{d\mathbf{k}}{\left(2\pi\right)^{3}}\sqrt{\frac{\frac{\hbar^{2}k^{2}}{2m^{*}}+M^{2}}{\frac{\hbar^{2}k^{2}}{2m}}} (54b)
=\displaystyle= 12d𝐤(2π)32k22m+M22k22mmm\displaystyle\frac{1}{2}\int\frac{d\mathbf{k}}{\left(2\pi\right)^{3}}\sqrt{\frac{\frac{\hbar^{2}k^{2}}{2m^{*}}+M^{2}}{\frac{\hbar^{2}k^{2}}{2m^{*}}}}\sqrt{\frac{m}{m^{*}}}
=\displaystyle= 18π2(2mM22)32mm0t0(t+1)12𝑑t\displaystyle\frac{1}{8\pi^{2}}\left(\frac{2m^{*}M^{2}}{\hbar^{2}}\right)^{\frac{3}{2}}\sqrt{\frac{m}{m^{*}}}\int_{0}^{\infty}t^{0}\left(t+1\right)^{\frac{1}{2}}dt
=\displaystyle= 18π2(2mM22)32mmΓ[1]Γ[32]Γ[12]\displaystyle\frac{1}{8\pi^{2}}\left(\frac{2m^{*}M^{2}}{\hbar^{2}}\right)^{\frac{3}{2}}\sqrt{\frac{m}{m^{*}}}\frac{\Gamma\left[1\right]\Gamma\left[\frac{-3}{2}\right]}{\Gamma\left[-\frac{1}{2}\right]}
=\displaystyle= m3/2M332π23mm.\displaystyle-\frac{m^{*3/2}M^{3}}{3\sqrt{2}\pi^{2}\hbar^{3}}\sqrt{\frac{m}{m^{*}}}.

Appendix C DETAILED CALCULATION OF THE SOLUTION OF EQ. (13)

For the sake of self-consistence of this work, we briefly review the key steps to solve the Eq. (13) utilizing perturbation theory. Initially, we introduce a small parameter ϵ\epsilon to the left-hand side of M3M^{3}, thereby transforming the cubic equation in MM into the form

ϵM3\displaystyle\epsilon M^{3} +\displaystyle+ 3π(1+4mg22ρ)3/282asm1/2M2\displaystyle\frac{3\pi\hbar\left(1+4\frac{mg_{2}}{\hbar^{2}}\rho\right)^{3/2}}{8\sqrt{2}a_{\text{s}}m^{*1/2}}M^{2} (55)
\displaystyle- 3π23(1+4mg22ρ)1/22m3/2ρ=0.\displaystyle\frac{3\pi^{2}\hbar^{3}\left(1+4\frac{mg_{2}}{\hbar^{2}}\rho\right)^{1/2}}{\sqrt{2}m^{*3/2}}\rho=0.

Meanwhile, we express MM as a polynomial expansion in terms of the parameter ϵ\epsilon

MM0+ϵM1+ϵ2M2.M\rightarrow M_{0}+\epsilon M_{1}+\epsilon^{2}M_{2}. (56)

Next, we substitute the expression for MM from Eq. (56) into Eq. (55) and organize the resulting equation into orders of ϵ0\epsilon^{0}, ϵ1\epsilon^{1} and ϵ2\epsilon^{2}.

(i) ϵ0\epsilon^{0} order of equation

3π(1+4mg22ρ)3/282asm1/2M023π23(1+4mg22ρ)1/22m3/2ρ=0,\frac{3\pi\hbar\left(1+4\frac{mg_{2}}{\hbar^{2}}\rho\right)^{3/2}}{8\sqrt{2}a_{\text{s}}m^{*1/2}}M_{0}^{2}-\frac{3\pi^{2}\hbar^{3}\left(1+4\frac{mg_{2}}{\hbar^{2}}\rho\right)^{1/2}}{\sqrt{2}m^{*3/2}}\rho=0, (57)
M0=2g0ρ.\Rightarrow M_{0}=\sqrt{2g_{0}\rho}. (58)

(ii) ϵ1\epsilon^{1} order of equation

M03+3π(1+4mg22ρ)3/242asm1/2M0M1=0,M_{0}^{3}+\frac{3\pi\hbar\left(1+4\frac{mg_{2}}{\hbar^{2}}\rho\right)^{3/2}}{4\sqrt{2}a_{\text{s}}m^{*1/2}}M_{0}M_{1}=0, (59)
M1=162g0ρ3π(1+4mg22ρ)2ρas3.\Rightarrow M_{1}=-\frac{16\sqrt{2g_{0}\rho}}{3\sqrt{\pi}\left(1+4\frac{mg_{2}}{\hbar^{2}}\rho\right)^{2}}\sqrt{\rho a_{\text{s}}^{3}}. (60)

(iii) ϵ2\epsilon^{2} order of equation

3M02M1+3π(1+4mg22ρ)3/282asm1/2(M12+2M0M2)=0,3M_{0}^{2}M_{1}+\frac{3\pi\hbar\left(1+4\frac{mg_{2}}{\hbar^{2}}\rho\right)^{3/2}}{8\sqrt{2}a_{\text{s}}m^{*1/2}}\left(M_{1}^{2}+2M_{0}M_{2}\right)=0, (61)
M2=6402g0ρ9π(1+4mg22ρ)4ρas3.\Rightarrow M_{2}=\frac{640\sqrt{2g_{0}\rho}}{9\pi\left(1+4\frac{mg_{2}}{\hbar^{2}}\rho\right)^{4}}\rho a_{\text{s}}^{3}. (62)

Finally, we derive the expression for MM, which is expanded as M0+M1+M2M_{0}+M_{1}+M_{2}, in terms of the gas parameter ρas3\rho a_{\text{s}}^{3}

M=2g0ρ{1163π(1+4mg22ρ)2ρas3[1403π(1+4mg22ρ)2ρas3]+𝒪[(ρas3)3/2]}.M=\sqrt{2g_{0}\rho}\left\{1-\frac{16}{3\sqrt{\pi}\left(1+4\frac{mg_{2}}{\hbar^{2}}\rho\right)^{2}}\sqrt{\rho a_{\text{s}}^{3}}\left[1-\frac{40}{3\sqrt{\pi}\left(1+4\frac{mg_{2}}{\hbar^{2}}\rho\right)^{2}}\sqrt{\rho a_{\text{s}}^{3}}\right]+\mathcal{O}\left[\left(\rho a_{\text{s}}^{3}\right)^{3/2}\right]\right\}. (63)

References

  • Nagaosa [1999] N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer Science & Business Media, 1999).
  • Pitaevskii and Stringari [2016] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and Superfluidity (Oxford University Press, 2016).
  • Peskin [1995] M. E. Peskin, An Introduction to Quantum Field Theory (CRC Press, 1995).
  • Bulgac [2002] A. Bulgac, Dilute quantum droplets, Phys. Rev. Lett. 89, 050402 (2002).
  • Petrov [2015] D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose-Bose mixture, Phys. Rev. Lett. 115, 155302 (2015).
  • Tanzi et al. [2019] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabbanini, R. N. Bisset, L. Santos, and G. Modugno, Observation of a dipolar quantum gas with metastable supersolid properties, Phys. Rev. Lett. 122, 130405 (2019).
  • Ferrier-Barbut et al. [2016] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116, 215301 (2016).
  • Chomaz et al. [2016] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6, 041039 (2016).
  • Wenzel et al. [2017] M. Wenzel, F. Böttcher, T. Langen, I. Ferrier-Barbut, and T. Pfau, Striped states in a many-body system of tilted dipoles, Phys. Rev. A 96, 053630 (2017).
  • Semeghini et al. [2018] G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-bound quantum droplets of atomic mixtures in free space, Phys. Rev. Lett. 120, 235301 (2018).
  • Cabrera et al. [2018] C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose-Einstein condensates, Science 359, 301 (2018).
  • D’Errico et al. [2019] C. D’Errico, A. Burchianti, M. Prevedelli, L. Salasnich, F. Ancilotto, M. Modugno, F. Minardi, and C. Fort, Observation of quantum droplets in a heteronuclear bosonic mixture, Phys. Rev. Res. 1, 033155 (2019).
  • Lee et al. [1957] T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev. 106, 1135 (1957).
  • Lee and Yang [1957] T. D. Lee and C. N. Yang, Many-body problem in quantum mechanics and quantum statistical mechanics, Phys. Rev. 105, 1119 (1957).
  • Dalfovo et al. [1999] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999).
  • Roth and Feldmeier [2001] R. Roth and H. Feldmeier, Effective s- and p-wave contact interactions in trapped degenerate Fermi gases, Phys. Rev. A 64, 043603 (2001).
  • Wu [1959] T. T. Wu, Ground state of a Bose system of hard spheres, Phys. Rev. 115, 1390 (1959).
  • Van Thu and Berx [2022] N. Van Thu and J. Berx, The condensed fraction of a homogeneous dilute Bose gas within the improved Hartree-Fock approximation, J. Stat. Phys. 188, 16 (2022).
  • Mordini et al. [2020] C. Mordini, D. Trypogeorgos, A. Farolfi, L. Wolswijk, S. Stringari, G. Lamporesi, and G. Ferrari, Measurement of the canonical equation of state of a weakly interacting 3D Bose gas, Phys. Rev. Lett. 125, 150404 (2020).
  • Skov et al. [2021] T. G. Skov, M. G. Skou, N. B. Jørgensen, and J. J. Arlt, Observation of a Lee-Huang-Yang fluid, Phys. Rev. Lett. 126, 230404 (2021).
  • Lavoine et al. [2021] L. Lavoine, A. Hammond, A. Recati, D. S. Petrov, and T. Bourdel, Beyond-mean-field effects in Rabi-coupled two-component Bose-Einstein condensate, Phys. Rev. Lett. 127, 203402 (2021).
  • Cominotti et al. [2023] R. Cominotti, A. Berti, C. Dulin, C. Rogora, G. Lamporesi, I. Carusotto, A. Recati, A. Zenesini, and G. Ferrari, Ferromagnetism in an extended coherently coupled atomic superfluid, Phys. Rev. X 13, 021037 (2023).
  • Busley et al. [2022] E. Busley, L. E. Miranda, A. Redmann, C. Kurtscheid, K. K. Umesh, F. Vewinger, M. Weitz, and J. Schmitt, Compressibility and the equation of state of an optical quantum gas in a box, Science 375, 1403 (2022)https://www.science.org/doi/pdf/10.1126/science.abm2543 .
  • Bloch et al. [2008] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).
  • Braaten et al. [2001] E. Braaten, H.-W. Hammer, and S. Hermans, Nonuniversal effects in the homogeneous Bose gas, Phys. Rev. A 63, 063609 (2001).
  • Cappellaro and Salasnich [2017] A. Cappellaro and L. Salasnich, Thermal field theory of bosonic gases with finite-range effective interaction, Phys. Rev. A 95, 033627 (2017).
  • Lorenzi et al. [2023] F. Lorenzi, A. Bardin, and L. Salasnich, On-shell approximation for the ss-wave scattering theory, Phys. Rev. A 107, 033325 (2023).
  • Ye et al. [2024] X. Ye, T. Yu, and Z. Liang, Nonuniversal equation of state of a quasi-two-dimensional Bose gas in dimensional crossover, Phys. Rev. A 109, 063304 (2024).
  • Yu et al. [2024] T. Yu, X. Ye, and Z. Liang, Interaction-induced dimensional crossover from fully three-dimensional to one-dimensional spaces, Phys. Rev. A 110, 013304 (2024).
  • Tononi et al. [2018] A. Tononi, A. Cappellaro, and L. Salasnich, Condensation and superfluidity of dilute Bose gases with finite-range interaction, New J. Phys. 20, 125007 (2018).
  • Cornish et al. [2000] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Stable Rb85{}^{85}\mathrm{Rb} Bose-Einstein condensates with widely tunable interactions, Phys. Rev. Lett. 85, 1795 (2000).
  • Cowell et al. [2002] S. Cowell, H. Heiselberg, I. E. Mazets, J. Morales, V. R. Pandharipande, and C. J. Pethick, Cold Bose gases with large scattering lengths, Phys. Rev. Lett. 88, 210403 (2002).
  • Chin et al. [2010] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).
  • Wu and Thomas [2012a] H. Wu and J. E. Thomas, Optical control of Feshbach resonances in Fermi gases using molecular dark states, Phys. Rev. Lett. 108, 010401 (2012a).
  • Wu and Thomas [2012b] H. Wu and J. E. Thomas, Optical control of the scattering length and effective range for magnetically tunable Feshbach resonances in ultracold gases, Phys. Rev. A 86, 063625 (2012b).
  • Morsch and Oberthaler [2006] O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices, Rev. Mod. Phys. 78, 179 (2006).
  • Stringari [1996] S. Stringari, Collective excitations of a trapped Bose-condensed gas, Phys. Rev. Lett. 77, 2360 (1996).
  • Pitaevskii and Stringari [1998] L. Pitaevskii and S. Stringari, Elementary excitations in trapped Bose-Einstein condensed gases beyond the mean-field approximation, Phys. Rev. Lett. 81, 4541 (1998).
  • Cornwall et al. [1974] J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective action for composite operators, Phys. Rev. D 10, 2428 (1974).
  • Amelino-Camelia and Pi [1993] G. Amelino-Camelia and S.-Y. Pi, Self-consistent improvement of the finite-temperature effective potential, Phys. Rev. D 47, 2356 (1993).
  • Pilaftsis and Teresi [2013] A. Pilaftsis and D. Teresi, Symmetry-improved CJT effective action, Nucl. Phys. B 874, 594 (2013).
  • Sharma et al. [2022] A. Sharma, G. Kartvelishvili, and J. Khoury, Finite temperature description of an interacting Bose gas, Phys. Rev. D 106, 045025 (2022).
  • Salasnich [2017] L. Salasnich, Nonuniversal equation of state of the two-dimensional Bose gas, Phys. Rev. Lett. 118, 130402 (2017).
  • Salasnich and Toigo [2016] L. Salasnich and F. Toigo, Zero-point energy of ultracold atoms, Phys. Rep. 640, 1 (2016).
  • Haugset et al. [1998] T. Haugset, H. Haugerud, and F. Ravndal, Thermodynamics of a weakly interacting Bose-Einstein gas, Ann. Phys. 266, 27 (1998).
  • Phat et al. [2009] T. H. Phat, L. V. Hoa, N. T. Anh, and N. Van Long, Bose-Einstein condensation in binary mixture of Bose gases, Ann. Phys. 324, 2074 (2009).
  • Phat et al. [2007] T. H. Phat, L. V. Hoa, N. T. Anh, and N. V. Long, High temperature symmetry nonrestoration and inverse symmetry breaking in the Cornwall-Jackiw-Tomboulis formalism, Phys. Rev. D 76, 125027 (2007).
  • Phat et al. [2008] T. H. Phat, N. Van Long, N. T. Anh, and L. V. Hoa, Kaon condensation in the linear sigma model at finite density and temperature, Phys. Rev. D 78, 105016 (2008).
  • Song [2022] P. T. Song, Universal quantum effect of two-body correlation in a weakly interacting Bose gas, Europhys. Lett. 139, 45001 (2022).
  • Braaten and Nieto [1999] E. Braaten and A. Nieto, Quantum corrections to the energy density of a homogeneous Bose gas, Eur. Phys. J. B 11, 143 (1999).
  • Chen et al. [2008] B.-l. Chen, X.-b. Huang, S.-p. Kou, and Y. Zhang, Mott-Hubbard transition of bosons in optical lattices with three-body interactions, Phys. Rev. A 78, 043603 (2008).
  • Zhou et al. [2010] K. Zhou, Z. Liang, and Z. Zhang, Quantum phases of a dipolar Bose-Einstein condensate in an optical lattice with three-body interaction, Phys. Rev. A 82, 013634 (2010).
  • Köhler [2002] T. Köhler, Three-body problem in a dilute Bose-Einstein condensate, Phys. Rev. Lett. 89, 210404 (2002).
  • Pethick and Smith [2008] C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, 2nd ed. (Cambridge University Press, 2008).
  • Bourdel et al. [2004] T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans, and C. Salomon, Experimental study of the BEC-BCS crossover region in Lithium 6, Phys. Rev. Lett. 93, 050401 (2004).
  • Astrakharchik et al. [2005] G. E. Astrakharchik, R. Combescot, X. Leyronas, and S. Stringari, Equation of state and collective frequencies of a trapped Fermi gas along the BEC-unitarity crossover, Phys. Rev. Lett. 95, 030404 (2005).
  • Hu et al. [2010] Y. Hu, Z. Liang, and B. Hu, Collective excitations of a trapped Bose-Einstein condensate in the presence of weak disorder and a two-dimensional optical lattice, Phys. Rev. A 81, 053621 (2010).
  • Hu and Liang [2011] Y. Hu and Z. Liang, Visualization of dimensional effects in collective excitations of optically trapped quasi-two-dimensional Bose gases, Phys. Rev. Lett. 107, 110401 (2011).
  • Li and Stringari [2011] Y. Li and S. Stringari, Universal contact and collective excitations of a strongly interacting Fermi gas, Phys. Rev. A 84, 023628 (2011).
  • Hu et al. [2009] Y. Hu, Z. Liang, and B. Hu, Effects of disorder on quantum fluctuations and superfluid density of a Bose-Einstein condensate in a two-dimensional optical lattice, Phys. Rev. A 80, 043629 (2009).
  • Bartenstein et al. [2005] M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin, J. H. Denschlag, R. Grimm, A. Simoni, E. Tiesinga, C. J. Williams, and P. S. Julienne, Precise determination of Li6{}^{6}\mathrm{Li} cold collision parameters by radio-frequency spectroscopy on weakly bound molecules, Phys. Rev. Lett. 94, 103201 (2005).
  • Wu and Thomas [2012c] H. Wu and J. E. Thomas, Optical control of the scattering length and effective range for magnetically tunable Feshbach resonances in ultracold gases, Phys. Rev. A 86, 063625 (2012c).
  • Ivanov et al. [2005] Y. B. Ivanov, F. Riek, and J. Knoll, Gapless Hartree-Fock resummation scheme for the O(N){O}({N}) model, Phys. Rev. D 71, 105016 (2005).
  • Andersen [2004] J. O. Andersen, Theory of the weakly interacting Bose gas, Rev. Mod. Phys. 76, 599 (2004).
  • Goldstone et al. [1962] J. Goldstone, A. Salam, and S. Weinberg, Broken symmetries, Phys. Rev. 127, 965 (1962).