This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Cosmography of chameleon gravity

A. Salehi111Email: salehi.a@lu.ac.ir Department of Physics, Lorestan University, Khoramabad, Iran
(December 14, 2024)
Abstract

The paper discusses a particular model of chameleon gravity where the scalar field has an exponential as V=M4exp(αϕMpl)V=M^{4}\exp(\frac{\alpha\phi}{M_{pl}}) and an exponential coupling to the matter density component of the Universe as ρmexp(βϕMpl)\rho_{m}\exp(\frac{\beta\phi}{M_{pl}}). We finds the relations between the four (in principle free) parameters of the model and the first five cosmographic parameters (which can be written in terms of the Hubble parameter and its first four derivatives). If such cosmographic parameter are known then the we present the algebraic relations which can be used to derive the free parameters in terms of the cosmographic ones. We show that, determining the third derivative of scale factor QQ is of great importance if the chameleon parameter β\beta and coupling constant α\alpha are known. On the other hand, if nothing can be proposed about (α,β)(\alpha,\beta), reconstructing the free parameters of the model can be done by measuring the first five derivatives of the scale factor and testing the validity of theory is only possible by its first six derivatives, so that the parameters (α,β)(\alpha,\beta) will also be determined automatically. We also find relation between cosmographic parameters and parameters of the model when it dynamically approaches its critical points.

pacs:
98.80.-k, 04.50.Kd, 04.25.Nx

In 1970, Alan Sandage Sandage interpreted cosmology as the search for two numbers: H0H_{0} and q0q_{0}. It seemed too simple and clear: the main term in the form of the Hubble parameter (HP) determined the expansion rate of the Universe and a small correction due to the gravity of its matter content will slow down the expansion over time. In 1970, Weinberg Winberg drew attention to the issue of extracting the value of constant spatial curvature kk and deceleration parameter qq from the observations, without considering cosmological constant and/or scalar field. In 1976 Harisson Harrison challenged Sandage’s remark and proved that the third derivative of scale factor is of great importance for observational cosmology, in a universe with indeterminate (dust) matter density. He considered a Universe containing the cosmological constant Λ\Lambda and non-relativistic matter. In this case, the Einstein equations reduce to the following Friedmann equation(s)

H2+kc2a2=8πG3ρ+Λ3\displaystyle H^{2}+\frac{kc^{2}}{a^{2}}=\frac{8\pi G}{3}\rho+\frac{\Lambda}{3} (1)
H˙+H2=4πG3(ρ+3P)+Λ3\displaystyle\dot{H}+H^{2}=-\frac{4\pi G}{3}(\rho+3P)+\frac{\Lambda}{3} (2)

For zero-pressure model, the equations (1) and (2) can be combined as

K=4πGρH2(q+1)\displaystyle K=4\pi G\rho-H^{2}(q+1) (3)

Where K=kc2a2K=\frac{kc^{2}}{a^{2}}, ρ\rho is the average mass density. The hubble HH and deceleration qq parameters are

H=a˙a,\displaystyle H=\frac{\dot{a}}{a}, (4)
q=a¨aH2\displaystyle q=-\frac{\ddot{a}}{aH^{2}} (5)

The verification of the cosmological equation (3) requires the measurement of the quantities K,H,ρK,H,\rho and qq Harrison . In principle, these quantities K,H,qK,H,q can be determined, although in practice their precise determination is difficultSandage -Harrison . If every thing could be known about the matter filling of universe, then the cosmological constant can be derived as

Λ=4πG3qH2\displaystyle\Lambda=4\pi G-3qH^{2} (6)

Hence, for a universe with known amount of matter, the general relativity (GR) can be tested by measuring HH and qq. However, the average density ρ\rho can not be determined, even in principal Sandage -Harrison . Here, the third derivative of scale factor

Q=a˙˙˙aH3\displaystyle Q=\frac{\dddot{a}}{aH^{3}} (7)

is required to test the validity of equation (3). Since the parameters (k,Λ,ρ)(k,\Lambda,\rho) can be obtained in terms of the first three derivatives of scale factor as

K=H2(Q1)\displaystyle K=H^{2}(Q-1) (8)
Λ=H2(Q2q)\displaystyle\Lambda=H^{2}(Q-2q) (9)
4πGρ=H2(Q+q)\displaystyle 4\pi G\rho=H^{2}(Q+q) (10)

So, the resulting equations do not contain those parameters and can be expressed in terms of the cosmological scalars as

X+2(q+Q)+qQ=0;\displaystyle X+2(q+Q)+qQ=0; (11)

Where XX is the forth derivative of scale factor.

X=a˙˙˙˙aH4\displaystyle X=\frac{\ddddot{a}}{aH^{4}} (12)

The fourth order ODE (11) is equivalent to the Friedmann equation (3) and has an advantage that it appears as a constraint on directly measurable quantities. In particular if k=0k=0 this relation reduces to a third order ODE Q=1Q=1.
Following the Harrison attempt, Hut Hut clearly stated that without any presumption about the matter content of the Universe, general relativity could not be tested by measuring any number of time derivatives of the scale factor. However, assuming a Universe filled with a non-interacting mixture of non-relativistic matter and radiation, the theory can be tested by measuring the first five derivatives of the scale factorHut .

k=12(X+4Q+qQ+2q2)H2\displaystyle k=\frac{1}{2}\Big{(}-X+4Q+qQ+2q-2\Big{)}H^{2} (13)
Λ=14(X+6Q+qQ+6q)H2\displaystyle\Lambda=\frac{1}{4}\Big{(}-X+6Q+qQ+6q\Big{)}H^{2} (14)
ρm=14πG(X+3Q+qQ+3q)H2\displaystyle\rho_{m}=\frac{1}{4\pi G}\Big{(}-X+3Q+qQ+3q\Big{)}H^{2} (15)
ρr=332πG(X2QqQ2q)H2\displaystyle\rho_{r}=\frac{3}{32\pi G}\Big{(}X-2Q-qQ-2q\Big{)}H^{2} (16)

By differentiating the equation (3) for the fourth time, finally, the parameters (k,Λ,ρm,ρr)(k,\Lambda,\rho_{m},\rho_{r}) would be vanished and a relation between four parameters q,Q,X,Yq,Q,X,Y is obtained

Y=7X+3Xq6(Q+q)+Q27Qq3Qq2+Qq2\displaystyle Y=7X+3Xq-6(Q+q)+Q^{2}-7Qq-3Qq^{2}+Qq^{2} (17)

Where,

Y=1H51ad5(a)dt5\displaystyle Y=\frac{1}{H^{5}}\frac{1}{a}\frac{d^{5}(a)}{dt^{5}} (18)

The condition (17) provides a full test of the general relativity theory. Hence, expressing the Friedmann equation in terms of the cosmographic parameters H,q,Q,X,YH,q,Q,X,Y as higher derivatives of the scale factor, links the measurement of these parameters to a test of GR or any of its modifications (leading to the different constraints). Cosmography was first discussed by Weinberg Weinberg2 and Visser Visse , and has been extended by Capozziello Capozziello -cap2 in a wide area of cosmological models. There is also wide variety of studies that implement this framework as a powerful model-independent approach to trace the history of the Universe Alam -Zou .

Despite the assumption of the cosmological constant in the above equations, the common idea at the time was just the Big Bang theory complemented with the inflation scenario, as the proper model of the Universe at least at first approximation.

However, the situation drastically changed at the end of the last century. Now, we know that the observations of the high redshift type Ia supernovae and the surveys of the galactic clusters Reiss (Reiss 1998)Pope (Pope 2004) reveal the accelerating expansion of Universe and that the matter contribution is smaller than what was expected to be probably close to one. Also, the observations of Cosmic Microwave Background (CMB) anisotropies indicate that the universe is flat and the total energy density is very close to the critical one Spergel (Spergel et.al 2003).

Although the above observational methods are different, they are properly consistent with each other for the mass-energy content contributions of the universe. The data indicate that the universe at the present time is made up of %5\%5 normal mater, dark matter is estimated to be about %27\%27 and dark energy (DE) is the dominant component that occupies about %68\%68 of the total energy content.

There are prominent candidates for DE such as the cosmological constant Sahni (Sahni 2000, Weinberg 1989), a dynamically evolving scalar field ( like quintessence) Caldwell (Caldwell & Dave 1998, Zlatev et al. 1999) or phantom (field with negative energy) Caldwell2 (Caldwell et al. 2003) that explain the cosmic accelerating expansion. Meanwhile, the accelerating expansion of universe can also be obtained through modified gravity Zhu (Zhu et al. 2004), brane cosmology and so on Zhu1 (Zhu & Alcaniz 2005)nojiri (Nojiri & Odintsov 2004).

The archetypal example of scalar field is chameleon field which has been suggested by Khoury (Khoury & Weltman 2004)Khourym (Khoury & Weltman 2004). The cosmological value of such a field evolves over Hubble time-scales and could potentially cause the late-time acceleration of our Universe Brax2 (Brax et al. 2004). The Chameleon mechanism is nowadays deeply investigated in many of possible ”shapes” (i.e. varied potentials and theoretical backgrounds), on all scales (from cosmological to astrophysical) and by much more reliable (mainly numerical) methodsBrax1 -Haidar .
In this paper we want to express the chameleon parameters in terms of directly measurable cosmological scalars constructed out of higher derivatives of the scale factor (cosmographic parameters). It enable us to construct model-independent kinematics of the chameleon cosmology. Similar to the way that Harisson Harrison and Hut Hut had done to test the general relativity, we want to find the algebraic relations which can be used to derive the free parameters in terms of the cosmographic ones and those are between latter parameters by assuming that the chameleon cosmology is hold. We consider an exponential potential V=M4Exp(αϕMpl)V=M^{4}Exp({\frac{\alpha\phi}{M_{pl}}}) where MM and α\alpha are the mass scale and coupling constant, respectively. In section. 2, we adopt the relations that have been previously found to test the model when the system dynamically approaches to its critical points. The summary and conclusion are presented in section 3.

I The Model

We begin with the action of chameleon gravity given by,

S=[MPl216π12ϕ,μϕ,μ+V(ϕ)]g𝑑x4\displaystyle S=\int[\frac{M_{Pl}^{2}}{16\pi}{\cal R}-\frac{1}{2}\phi_{,\mu}\phi^{,\mu}+V(\phi)]\sqrt{-g}dx^{4}
+m(ψ(i),gμν(i))𝑑x4,\displaystyle+\int{\cal L}_{m}(\psi^{(i)},g_{\mu\nu}^{(i)})dx^{4}, (19)

where the matter fields ψ(i)\psi^{(i)} are coupled to scalar field ϕ\phi by the definition gμν(i)e2βiϕ/MPlgμνg_{\mu\nu}^{(i)}\equiv e^{2\beta_{i}\phi/M_{Pl}}g_{\mu\nu}. The βi\beta_{i} are dimensionless coupling constants, one for each type of matter. In the following, we assume a single matter energy density component ρm\rho_{m} with coupling β\beta Khourym (Khoury & Weltman 2004). Assuming that the universe is filled with cold dark matter, i.e. γ=0\gamma=0, the variation of action (I) with respect to the metric tensor components in a spatially flat FRW cosmology yields the field equations,

3H2Mpl2=Veff(ϕ)+12ϕ˙2,\displaystyle 3H^{2}M_{pl}^{2}=V_{eff}(\phi)+\frac{1}{2}\dot{\phi}^{2}, (20)
2H˙Mpl2=ϕ˙2ρmeβMplϕ\displaystyle 2\dot{H}M_{pl}^{2}=-\dot{\phi}^{2}-\rho_{m}e^{\frac{\beta}{M_{pl}}\phi} (21)

Where, the chameleon effective potential is defined by,

Veff(ϕ)=V(ϕ)+ρmeβMplϕ,\displaystyle V_{eff}(\phi)=V(\phi)+\rho_{m}e^{\frac{\beta}{M_{pl}}\phi}, (22)

providing the wave equation of chameleon scalar field ϕ\phi.

ϕ¨+3Hϕ˙=dVeff(ϕ)dϕ,\displaystyle\ddot{\phi}+3H\dot{\phi}=-\frac{dV_{eff(\phi)}}{d\phi}, (23)

One can also easily find the mass associated with field ϕ\phi:

mch2=d2dϕ2Veff(ϕ).\displaystyle m_{ch}^{2}=\frac{d^{2}}{d\phi^{2}}V_{eff}(\phi). (24)

For γ=0\gamma=0, if β\beta in the second term of Veff(ϕ)V_{eff}(\phi) is positive, the effective potential monotonically decreases to a minimum at a finite field value ϕ=ϕmin\phi=\phi_{min}, where ddϕVeff(ϕ)|ϕ=ϕmin=0\frac{d}{d\phi}V_{eff}(\phi)|_{\phi=\phi_{min}}=0, and mch=mchminm_{ch}=m_{ch_{min}}. From equation (23)

ϕ¨min=3Hϕ˙min\displaystyle\ddot{\phi}_{min}=-3H\dot{\phi}_{min} (25)

Note that mchminm_{ch_{min}} in the above equations is the inverse of the characteristic range of chameleon force in a given medium. By differentiating both sides of the equation (21) with respect to time

2H¨Mpl2=2ϕ˙ϕ¨ρm˙eβMplϕβMplρmeβMplϕϕ˙\displaystyle 2\ddot{H}M_{pl}^{2}=-2\dot{\phi}\ddot{\phi}-\dot{\rho_{m}}e^{\frac{\beta}{M_{pl}}\phi}-\frac{\beta}{M_{pl}}\rho_{m}e^{\frac{\beta}{M_{pl}}\phi}\dot{\phi}

The equation (I) can be rewritten as

2H¨Mpl2=2ϕ˙ϕ¨3Hϕ˙26HH˙Mpl2+2βMplϕ˙H˙+βMplϕ˙3\displaystyle 2\ddot{H}M_{pl}^{2}=-2\dot{\phi}\ddot{\phi}-3H\dot{\phi}^{2}-6H\dot{H}M_{pl}^{2}+2\beta M_{pl}\dot{\phi}\dot{H}+\frac{\beta}{M_{pl}}\dot{\phi}^{3}

From equations (20) and 21 we can also obtain

ρmeβMplϕ=2Mpl2H˙ϕ˙2\displaystyle\rho_{m}e^{\frac{\beta}{M_{pl}}\phi}=-2M_{pl}^{2}\dot{H}-\dot{\phi}^{2} (28)
V(ϕ)=(2H˙+3H2)Mp2+12ϕ˙2\displaystyle V(\phi)=(2\dot{H}+3H^{2})M_{p}^{2}+\frac{1}{2}\dot{\phi}^{2} (29)

Using equations (28) and (29) and by considering exponential potential V=V0eαMplϕV=V_{0}e^{\frac{\alpha}{M_{pl}}\phi} where dimensionless constant α\alpha characterizing the slope of potential, one can obtain

dVeffdϕ=2(αβ)MplH˙+(α2β)2Mplϕ˙2+3αMplH2\displaystyle\frac{dV_{eff}}{d\phi}=2(\alpha-\beta)M_{pl}\dot{H}+\frac{(\alpha-2\beta)}{2M_{pl}}\dot{\phi}^{2}+3\alpha M_{pl}H^{2} (30)

Also, the mass of chameleon field is expressed by

mch2=d2Veffdϕ2=2(α2β2)H˙+(α22β2)2Mpl2ϕ˙2+3α2H2\displaystyle m_{ch}^{2}=\frac{d^{2}V_{eff}}{d\phi^{2}}=2(\alpha^{2}-\beta^{2})\dot{H}+\frac{(\alpha^{2}-2\beta^{2})}{2M_{pl}^{2}}\dot{\phi}^{2}+3\alpha^{2}H^{2} (31)

So, using equations (23) and (30) the second time derivative of scalar ϕ\phi would be

ϕ¨=3Hϕ˙2(αβ)MplH˙(α2β)2Mplϕ˙23αMplH2,\displaystyle\ddot{\phi}=-3H\dot{\phi}-2(\alpha-\beta)M_{pl}\dot{H}-\frac{(\alpha-2\beta)}{2M_{pl}}\dot{\phi}^{2}-3\alpha M_{pl}H^{2},

By combining the equations (I)and (I), the second derivative of Hubble parameter gives

2H¨H3=6H˙H2+(αβ)(ϕ˙MplH)3+3(ϕ˙MplH)2\displaystyle 2\frac{\ddot{H}}{H^{3}}=-6\frac{\dot{H}}{H^{2}}+(\alpha-\beta)(\frac{\dot{\phi}}{M_{pl}H})^{3}+3(\frac{\dot{\phi}}{M_{pl}H})^{2}
+((2β4α)H˙H2+2α)(ϕ˙MplH)\displaystyle+\Big{(}(2\beta-4\alpha)\frac{\dot{H}}{H^{2}}+2\alpha\Big{)}(\frac{\dot{\phi}}{M_{pl}H})

Here, we rewrite the cosmographic parameters as follows

q=1H˙H2\displaystyle q=-1-\frac{\dot{H}}{H^{2}} (34)
Q=H¨H33q2\displaystyle Q=\frac{\ddot{H}}{H^{3}}-3q-2 (35)
X=H˙˙˙H4+4Q+3q(q+4)+6\displaystyle X=\frac{\dddot{H}}{H^{4}}+4Q+3q(q+4)+6 (36)
Y=H˙˙˙˙H5+5X10Q(q+2)30q(q+2)24\displaystyle Y=\frac{\ddddot{H}}{H^{5}}+5X-10Q(q+2)-30q(q+2)-24 (37)

Here for more simplicity, we also define the following dimensionless parameters

x=ϕ˙HMpl,y=ρmeβϕMplH2Mpl2,z=VH2Mpl2\displaystyle x=\frac{\phi\dot{}}{HM_{pl}},y=\frac{\rho_{m}e^{\frac{\beta\phi}{M_{pl}}}}{H^{2}M^{2}_{pl}},z=\frac{V}{H^{2}M^{2}_{pl}} (38)

Where equation (20) puts a constraint on the variables as

1=x26+y3+z3\displaystyle 1=\frac{x^{2}}{6}+\frac{y}{3}+\frac{z}{3} (39)

Equation (I) can be rewritten in terms of the cosmographic parameters (q,Q)(q,Q) and the model parameters (x,α,β)(x,\alpha,\beta) as

2(Q1)=(αβ)x3+3x2+((4α2β)(1+q)+2α)x\displaystyle 2\Big{(}Q-1\Big{)}=(\alpha-\beta)x^{3}+3x^{2}+\Big{(}(4\alpha-2\beta)(1+q)+2\alpha\Big{)}x

This is a cubic polynomial in terms of xx, as ax3+bx2+cx+d=0ax^{3}+bx^{2}+cx+d=0, where
{a=(αβ)b=3c=((4α2β)(1+q)+2α)d=2(1Q)\left\{\begin{array}[]{ll}a=(\alpha-\beta)\\ b=3\\ c=\Big{(}(4\alpha-2\beta)(1+q)+2\alpha\Big{)}\\ d=2\Big{(}1-Q\Big{)}\\ \end{array}\right.

Solving the equation (I), therefore, gives xx in terms of the cosmographic (q,Q)(q,Q) and constant (α,β)(\alpha,\beta) parameters.

For a simple case where Q=1Q=1, one can find the following three solutions
{x=0x=3+(9+16α2q24αβq8α2+8β2+8β2q)122(αβ)x=3+(9+16α2q24αβq8α2+8β2+8β2q)122(αβ)\left\{\begin{array}[]{ll}x=0\\ x=\frac{-3+(9+16\alpha^{2}q-24\alpha\beta q-8\alpha^{2}+8\beta^{2}+8\beta^{2}q)^{\frac{1}{2}}}{2(\alpha-\beta)}\\ x=-\frac{3+(9+16\alpha^{2}q-24\alpha\beta q-8\alpha^{2}+8\beta^{2}+8\beta^{2}q)^{\frac{1}{2}}}{2(\alpha-\beta)}\\ \end{array}\right.
It is a striking and slightly puzzling fact that almost all current cosmological observations can be summarized by a simple statement: The jerk of the Universe is equal to one” (Q=1).(Q=1). Maciej ,Alam ,Kun . Also VisserVisse , have investigated in some details the jerk condition (Q=1)(Q=1) . From equations (28)(\ref{vv}) and (29)(\ref{vv1}), the variables (y,z)(y,z) can also be specified in terms of x,qx,q;

y=x2+2(1+q)\displaystyle y=-x^{2}+2(1+q) (41)
z=x22+(12q)\displaystyle z=\frac{x^{2}}{2}+(1-2q) (42)

If the values of (α,β)(\alpha,\beta) are known, consequently, all model variables would be reconstruct in terms of cosmographic parameters (q,Q)(q,Q). In addition, the equation (31) gives the chameleon mass mchm_{ch} in terms of (H,q,Q,α,β)(H,q,Q,\alpha,\beta)

mch2H2=2(β2α2)(1+q)+(α22β2)2x2+3α2\displaystyle\frac{m_{ch}^{2}}{H^{2}}=2(\beta^{2}-\alpha^{2})(1+q)+\frac{(\alpha^{2}-2\beta^{2})}{2}x^{2}+3\alpha^{2} (43)

Equations (I) and (43) imply the possibility of determining the chameleon mass in terms of coupling parameters (α,β)(\alpha,\beta) and first three derivatives of scale factor (H,q,Q)(H,q,Q). Note that l.h.s of equation (44) is positive, hence x2<2(1+q)x^{2}<2(1+q). Exerting this condition on equation (43) gives an upper bound for chameleon mass as mch2<α2(2q)H2m_{ch}^{2}<\alpha^{2}(2-q)H^{2}. If the parameters (α,β)(\alpha,\beta) are known, chameleon mechanism can be interpenetrated by only the first three derivatives of scale factor (H,q,Q)(H,q,Q). As it was pointed out by the original chameleon article that Khourym (Khoury & Weltman 2004), in harmony with string theory, β\beta must be of the order unity; so that we got β=1\beta=1. Furthermore, we get α\alpha of the order of unity with negative sign (because the potential V(ϕ)V(\phi)) is assumed to be of the runaway form for monotonically decreasing function of ϕ\phi), then the solution of equation (I) gives

x=12+16A13(132+6q)A13\displaystyle x=\frac{1}{2}+\frac{1}{6}A^{\frac{1}{3}}-(\frac{13}{2}+6q)A^{\frac{-1}{3}} (44)

Where,
A=6(1830+5292q+4941q2+1296q3+486Q+972qQ+324Q2)1281162q108QA=6\Big{(}1830+5292q+4941q^{2}+1296q^{3}+486Q+972qQ+324Q^{2}\Big{)}^{\frac{1}{2}}-81-162q-108Q
Finally, using equations (44), (41) and (42), the chameleon gravity is expressed on the way of time derivatives of scale factor measuring the (H,q,Q)(H,q,Q) parameters.

However, if nothing can be proposed about (α,β)(\alpha,\beta), the chameleon parameters will not be determined by considering the first three derivatives of scale factor, as its forth and fifth derivatives must also be measured. By differentiating both sides of the equation (21) with respect to time, the third time derivative of Hubble parameter would be obtained as

2H˙˙˙Mpl2\displaystyle 2\dddot{H}M_{pl}^{2} =2ϕ˙ϕ˙˙˙2ϕ¨23H˙ϕ˙26Hϕ˙ϕ¨6HH¨Mpl2\displaystyle=-2\dot{\phi}\dddot{\phi}-2\ddot{\phi}^{2}-3\dot{H}\dot{\phi}^{2}-6H\dot{\phi}\ddot{\phi}-6H\ddot{H}M_{pl}^{2}
6H˙2Mpl2+2βMplϕ¨H˙+2βMplϕ˙H¨+3βMplϕ¨ϕ˙2\displaystyle-6\dot{H}^{2}M_{pl}^{2}+2\beta M_{pl}\ddot{\phi}\dot{H}+2\beta M_{pl}\dot{\phi}\ddot{H}+3\frac{\beta}{M_{pl}}\ddot{\phi}\dot{\phi}^{2} (45)

Differentiating equation (23) also yields

ϕ˙˙˙=3Hϕ¨3H˙ϕ˙2(αβ)MpH¨(α2β)Mpϕ˙ϕ¨6αMplHH˙\displaystyle\dddot{\phi}=-3H\ddot{\phi}-3\dot{H}\dot{\phi}-2(\alpha-\beta)M_{p}\ddot{H}-\frac{(\alpha-2\beta)}{M_{p}}\dot{\phi}\ddot{\phi}-6\alpha M_{pl}H\dot{H} (46)

Their composition is expressed by

(X4Q)=\displaystyle(X-4Q)= (47)
62β2α23αβ+3αβq+4α2q4α2q22β2q2\displaystyle-6-2\beta^{2}-\alpha^{2}-3\alpha\beta+3\alpha\beta q+4\alpha^{2}q-4\alpha^{2}q^{2}-2\beta^{2}q^{2}
3q+6αβq24β2q+x(9α15β+18αq15βq)\displaystyle-3q+6\alpha\beta q^{2}-4\beta^{2}q+x(-9\alpha-15\beta+18\alpha q-15\beta q)
+x2(3β292αβq32q15+3β2q)+(152β92α)x3\displaystyle+x^{2}(3\beta^{2}-\frac{9}{2}\alpha\beta q-\frac{3}{2}q-15+3\beta^{2}q)+(\frac{15}{2}\beta-\frac{9}{2}\alpha)x^{3}
+x4(14α2+34αββ2)\displaystyle+x^{4}(\frac{1}{4}\alpha^{2}+\frac{3}{4}\alpha\beta-\beta^{2})

Corresponding to what was previously achieved for the equation (47), by differentiating both sides of equations (I) and (46) and using equations (34) to (37), we take

(Y5X)=\displaystyle(Y-5X)= (48)
19+29q1572βx316xαq2+17xβq2+qx3α7qβx3\displaystyle 19+29q-\frac{157}{2}\beta x^{3}-16x\alpha q^{2}+17x\beta q^{2}+qx^{3}\alpha-7q\beta x^{3}
+16xα3q+5αxβ216α3q2x+6α3qx316xβ3q7βxα2\displaystyle+16x\alpha^{3}q+5\alpha x\beta^{2}-16\alpha^{3}q^{2}x+6\alpha^{3}qx^{3}-16x\beta^{3}q-7\beta x\alpha^{2}
8β3q2x+9β3qx3+54x5αβ2+74x5βα24xα33x3α3\displaystyle-8\beta^{3}q^{2}x+9\beta^{3}qx^{3}+\frac{5}{4}x^{5}\alpha\beta^{2}+\frac{7}{4}x^{5}\beta\alpha^{2}-4x\alpha^{3}-3x^{3}\alpha^{3}
+9β3x312x5α352x5β3+34x5α34βx5+94x48xβ3\displaystyle+9\beta^{3}x^{3}-\frac{1}{2}x^{5}\alpha^{3}-\frac{5}{2}x^{5}\beta^{3}+\frac{3}{4}x^{5}\alpha-\frac{3}{4}\beta x^{5}+\frac{9}{4}x^{4}-8x\beta^{3}
+114x2+9α242αβq+692x2q214x4α2+452β2x4\displaystyle+114x^{2}+9\alpha^{2}-42\alpha\beta q+\frac{69}{2}x^{2}q-\frac{21}{4}x^{4}\alpha^{2}+\frac{45}{2}\beta^{2}x^{4}
+42β2q2+6q266x2β2q+12x2α2q84αq2β212x4αβ\displaystyle+42\beta^{2}q^{2}+6q^{2}-66x^{2}\beta^{2}q+12x^{2}\alpha^{2}q-84\alpha q^{2}\beta-\frac{21}{2}x^{4}\alpha\beta
+14βq2xα2212βqx3α2+63αqx2β+5αxβ2q\displaystyle+14\beta q^{2}x\alpha^{2}-\frac{21}{2}\beta qx^{3}\alpha^{2}+63\alpha qx^{2}\beta+5\alpha x\beta^{2}q
212αqβ2x3+7βxα2q+177xβq114xαq+61xα\displaystyle-\frac{21}{2}\alpha q\beta^{2}x^{3}+7\beta x\alpha^{2}q+177x\beta q-114x\alpha q+61x\alpha
+42β236α2q+42αβ6x2α2+84β2q66x2β2\displaystyle+42\beta^{2}-36\alpha^{2}q+42\alpha\beta-6x^{2}\alpha^{2}+84\beta^{2}q-66x^{2}\beta^{2}
+36α2q2+10αq2xβ2+160xβ+32x3α\displaystyle+36\alpha^{2}q^{2}+10\alpha q^{2}x\beta^{2}+160x\beta+32x^{3}\alpha

Distinguish between ”cosmographic test of the model”and ”reconstructing the model in terms of cosmographic parameter”

A subtle and important point that must be point out is that we must distinguish between two conceptions ”reconstruction of the model in terms of cosmographic parameters” and ”test of the model using cosmographic parameters”. In considerations such as the former, in fact, it is assumed that the model is theoretically valid. Based on this, the parameters of the model are reconstructed in terms of the measurable (observable) cosmographic parameters In latter cases, however, the aim is to find the relationships between measurable cosmographic parameters to test the theory of the model. On the other hand, it also tries to eliminate the parameters of the model to find the algebraic relation between model independent cosmographic parameters. A condition should be stated to say that the model is fully tested. While the model parameters are reconstructed in both of these considerations, more cosmographic parameters are needed to test the theory. For example, for ΛCDM\Lambda CDM model with free parameters Λ\Lambda, zero-pressure matter ρ\rho, and KK , all model parameters can be reconstructed according to the first three derivatives of the scale factor (H,q,Q)(H,q,Q) as equations (8) to (10) . However, a full test of the model can be done by equation (11) where includes the forth derivative of the scale factor XX. Another example, that has been investigated in some details by Hut, is a universe filled with a combined density of matter and radiation. In this case the free parameters of the model are Λ,ρm,ρr,K\Lambda,\rho_{m},\rho_{r},K constructed by cosmographic parameters (H,q,Q,X)(H,q,Q,X) as equations (13)-(16) . Nevertheless, the full test of the model is codified in the equation (17), where includes the fifth derivative of the scale factor YY. In chameleon model, the relations were obtained between the four (in principle free) parameters of the model and the first five cosmographic parameters, which can be written in terms of the Hubble parameter and its first four derivatives. The four free parameters include two new variables (x,y)(x,y) and two free parameters (α,β)(\alpha,\beta). (Note that the variable zz can be obtained in terms of (x,y(x,y) from constraint Eq. (39).)
If such cosmographic parameters are known, then it is possible to present algebraic relations that can be used to derive the free parameters in terms of the cosmographic ones.
Depending on whether the parameters (α,β)(\alpha,\beta) are known or not, we can classify our analysis and discussion in two cases, as follows
1-(α,β)(\alpha,\beta) is known : In this case, the only free variables or parameters of the model are (x,y)(x,y). Hence, using equation (I), the variable xx can be reconstructed in terms of (α,β,q,Q)(\alpha,\beta,q,Q). Then from equations (I) and (41), the variables (y,z)(y,z) can also be reconstructed in terms of (x,q)(x,q).
Assuming that (α,β)(\alpha,\beta) are known, hence, (q,Q)(q,Q) are the only cosmographic parameters that need to be determined to reconstruct the chameleon parameters.
To test the model, however, only the (q,Q)(q,Q) parameters are not sufficient, as the forth derivative of scale factor XX is required to find a relation between (q,Q,X)(q,Q,X) quantities. In this respect, we should figure out the variable xx from equation (I); so that by substituting it in the equation (47), we can obtain a condition for providing a full test of the model (note that the condition includes the known parameters (α,β)(\alpha,\beta)).
2-(α,β)(\alpha,\beta) is unknown : This case is appeared to be more realistic than pervious ones. If nothing could be proposed about the parameters (α,β)(\alpha,\beta), chameleon gravity could be reconstructed by measuring the first five derivatives of the scale factor and could also be tested by measuring its first six derivatives. There are four free parameter (α,β,x,y)(\alpha,\beta,x,y) by considering undetermined (α,β)(\alpha,\beta). The equations (I), (41), (47) and (48) are sufficient to reconstruct the chameleon free parameters in terms of the cosmographic ones (q,Q,X,Y)(q,Q,X,Y). An interesting feature is that, in this case the parameters (α,β)(\alpha,\beta) can also be determined in terms of the cosmographic parameters. However, to test the chameleon gravity we require This requires an additional cosmological scalar M=1H61ad6(a)dt6M=\frac{1}{H^{6}}\frac{1}{a}\frac{d^{6}(a)}{dt^{6}} to find a relation just between cosmographic parameters, which we call it as the full test of chameleon theory. Equations (I), (47) and (48) with seven variables (x,α,β,q,Q,X,Y)(x,\alpha,\beta,q,Q,X,Y) indicating that, if four cosmographic parameters (q,Q,X,Y)(q,Q,X,Y) are known, the chameleon parameters (α,β)(\alpha,\beta) and variable xx will be determined immediately. Consequently, the chameleon free parameters can be reconstructed on cosmological scales.
For more explanation, we want to reconstructing the chameleon free parameters (α,β)(\alpha,\beta) and current values of new variables (x0,y0,z0)(x_{0},y_{0},z_{0}) of the model in terms of determined cosmographic parameters. Here we consider the values that best fitted by observations Tegmark
q0=.588,Q0=1,X0=.238,Y0=2.846q_{0}=-.588,Q_{0}=1,X_{0}=-.238,Y_{0}=2.846
From equation (I), there are three solutions for the variable xx when Q0=1Q_{0}=1, as x=0x=0 is a simple one.
In this case, according to the equation (41), y0=2(1+q0)=0.824y_{0}=2(1+q_{0})=0.824. By subsisting these best fit values of cosmographic parameters in the equations (47) and (48), two coupled equations obtain in terms of (α,β)(\alpha,\beta) as follows

{4.734976α2.339488β22.689536αβ4.236=042.614784α2+7.129248β2+37.653504αβ+4.022464=0\left\{\begin{array}[]{ll}-4.734976\alpha^{2}-.339488\beta^{2}-2.689536\alpha\beta-4.236=0\\ 42.614784\alpha^{2}+7.129248\beta^{2}+37.653504\alpha\beta+4.022464=0\\ \end{array}\right.

Solving these equations gives
{(α2.780,β10.01)(α2.780,β10.01)\left\{\begin{array}[]{ll}(\alpha\simeq-2.780,\beta\simeq 10.01)\\ (\alpha\simeq 2.780,\beta\simeq-10.01)\\ \end{array}\right.
Hence, the four free parameters of the chameleon model is reconstructed. Furthermore, the author of Cap , finds the best values for cosmographic parameters as

q0=.64,Q0=1.02,X0=.39,Y0=4.05\displaystyle q_{0}=-.64,Q_{0}=1.02,X_{0}=-.39,Y_{0}=4.05

Reconstructing the chameleon parameters for this case gives

x0=0,y0=0.74,(α,β)(±2.598,11.25)\displaystyle x_{0}=0,y_{0}=0.74,\ \ (\alpha,\beta)\simeq(\pm 2.598,\mp 11.25)

In the above examples, the current values of model parameters were determined, since the current value of cosmographic parameters are available. However it is possible to reconstruct the model in terms of cosmographic parameter at any epoch of the universe In the following section we present the relation between cosmographic parameters in terms of free parameters of the model at crucial epochs of the universe

II Cosmography at different epochs of the Universe

As it goes to describe the behaviour of a dynamical system, we implement this approach to trace the dynamics of the universe in the presence of chameleon field in deferent epochs of its evolution.

We are interested to quantify the chameleon parameters such as chameleon mass mchm_{ch} at the critical points of the system, points that represent all important epochs in the evolution of the universe. The dynamics of the universe in chameleon gravity can be simplified by introducing the following dimensionless variables,

ζ1=ϕ˙6HMpl,ζ2=ρmeβϕMpl3H2Mpl2,ζ3=V3H2Mpl2\displaystyle\zeta_{1}=\frac{\phi\dot{}}{\sqrt{6}HM_{pl}},\zeta_{2}=\frac{\rho_{m}e^{\frac{\beta\phi}{M_{pl}}}}{3H^{2}M^{2}_{pl}},\zeta_{3}=\frac{V}{3H^{2}M^{2}_{pl}} (49)

Then using equations (20)-(23), the evolution equations of these variables become,

ζ1\displaystyle\zeta_{1}^{{}^{\prime}} =\displaystyle= 3ζ1+32ζ2ζ1+3ζ1362βζ262αζ3,\displaystyle-3\zeta_{1}+\frac{3}{2}\zeta_{2}\zeta_{1}+3\zeta_{1}^{3}-\frac{\sqrt{6}}{2}\beta\zeta_{2}-\frac{\sqrt{6}}{2}\alpha\zeta_{3}, (50)
ζ2\displaystyle\zeta_{2}^{{}^{\prime}} =\displaystyle= 3ζ2+3ζ22+6βζ1ζ2+6ζ12ζ2,\displaystyle-3\zeta_{2}+3\zeta_{2}^{2}+\sqrt{6}\beta\zeta_{1}\zeta_{2}+6\zeta_{1}^{2}\zeta_{2}, (51)
ζ3\displaystyle\zeta_{3}^{{}^{\prime}} =\displaystyle= ζ3(6αζ1+3ζ2+6ζ22)\displaystyle\zeta_{3}(-\sqrt{6}\alpha\zeta_{1}+3\zeta_{2}+6\zeta_{2}^{2}) (52)

Where prime indicates from now on differentiation with respect to N=lnaN=lna. Note that ζ1=x6,ζ2=y3,ζ3=z3\zeta_{1}=\frac{x}{\sqrt{6}},\zeta_{2}=\frac{y}{3},\zeta_{3}=\frac{z}{3}. The Friedmann equation (20) also becomes

ζ12+ζ2+ζ3=1\displaystyle\zeta_{1}^{2}+\zeta_{2}+\zeta_{3}=1 (53)

Using the constraint (53), the equations (50)-(52) are converted to

ζ1=ζ1(3+32ζ2+3ζ12)62(βα)ζ2+α(1ζ12)),\displaystyle\zeta_{1}^{{}^{\prime}}=\zeta_{1}(-3+\frac{3}{2}\zeta_{2}+3\zeta_{1}^{2})-\frac{\sqrt{6}}{2}\Big{(}\beta-\alpha)\zeta_{2}+\alpha(1-\zeta_{1}^{2})\Big{)},
ζ2=3ζ2+3ζ22+6βζ1ζ2+6ζ12ζ2,\displaystyle\zeta_{2}^{{}^{\prime}}=-3\zeta_{2}+3\zeta_{2}^{2}+\sqrt{6}\beta\zeta_{1}\zeta_{2}+6\zeta_{1}^{2}\zeta_{2},

In terms of the new dynamical variable, we also have

q=(1+H˙H2)=1+3ζ22+3ζ12\displaystyle q=-\Big{(}1+\frac{\dot{H}}{H^{2}}\Big{)}=-1+\frac{3\zeta_{2}}{2}+3\zeta_{1}^{2} (56)

One can also rewrite the equations (I) and (43) as

2(Q1)=366(αβ)ζ13+18ζ12\displaystyle 2\Big{(}Q-1\Big{)}=36\sqrt{6}(\alpha-\beta)\zeta_{1}^{3}+18\zeta_{1}^{2}
+6((4α2β)(1+q)+2α)ζ1\displaystyle+\sqrt{6}\Big{(}(4\alpha-2\beta)(1+q)+2\alpha\Big{)}\zeta_{1}
mch2H2=2(β2α2)(1+q)+3(α22β2)ζ12+3α2\displaystyle\frac{m_{ch}^{2}}{H^{2}}=2(\beta^{2}-\alpha^{2})(1+q)+3(\alpha^{2}-2\beta^{2})\zeta_{1}^{2}+3\alpha^{2} (58)

It is more convenient to investigate the properties of the dynamical system, namely Eqs.(II) and (II) rather than Eqs.(50)-(52). We obtain the fixed points (critical points) and study the stability of these steady states that are always exact constant solutions in the context of autonomous dynamical systems. Those are often the extreme points of the orbits and therefore describe the asymptotic behavior. In the following we find fixed points by solving dζ1dN=0\frac{d\zeta_{1}}{dN}=0 and dζ2dN=0\frac{d\zeta_{2}}{dN}=0 simultaneously. Two eigenvalues λi(i=1,2)\lambda_{i}(i=1,2) are obtained by substituting linear perturbations ζ1ζ1+δζ1\zeta_{1}^{\prime}\rightarrow\zeta_{1}^{\prime}+\delta\zeta_{1}^{\prime}, ζ2ζ2+δζ2\zeta_{2}^{\prime}\rightarrow\zeta_{2}^{\prime}+\delta\zeta_{2}^{\prime} about the critical points into the two independent equations (II) and (II), to the first order of perturbations. Stability requires that the real part of all eigenvalues be negative. There are also five fixed points which some of them explicitly depend on β\beta and α\alpha, as shown in Table 1.

Table 1: critical points
points A+A_{+} AA_{-} BB C D
ζ1\zeta_{1} 1 -1 6α6-\frac{\sqrt{6}\alpha}{6} 63β-\frac{\sqrt{6}}{3}\beta 62β2α\frac{\sqrt{6}}{2\beta-2\alpha}
ζ2\zeta_{2} 0 0 0 12β231-\frac{2\beta^{2}}{3} βα+α23(β+α)2\frac{-\beta\alpha+\alpha^{2}-3}{(-\beta+\alpha)^{2}}

Critical points, A±A_{\pm}, corresponding to two kinetic-dominated solutions. These are equivalent to the stiff-fluid-dominated evolution with a=t13a=t^{\frac{1}{3}}, irrespective of the nature of the potential. The kinetic-dominated solution for A+A_{+} has two eigenvalues, λ+=3+β6,λ=6+6α\lambda_{+}=3+\beta\sqrt{6},\lambda_{-}=6+\sqrt{6}\alpha,

[Uncaptioned image]

Fig. 1: The phase space for α=3\alpha=-3 and β=4\beta=-4 . The late time attractor is scaling solution with ζ1=1,ζ2=0\zeta_{1}=1,\zeta_{2}=0

[Uncaptioned image]

Fig. 2: The phase space for α=3\alpha=3 and β=4\beta=4 . The late time attractor is scaling solution with ζ1=1,ζ2=0\zeta_{1}=-1,\zeta_{2}=0

and is stable for β<62\beta<\frac{-\sqrt{6}}{2},α<6\alpha<-\sqrt{6}. The solution AA_{-} also has two eigenvalues λ+=3β6\lambda_{+}=3-\beta\sqrt{6}, and λ=66α\lambda_{-}=6-\sqrt{6}\alpha, stabilized for β>62\beta>\frac{\sqrt{6}}{2} and α>6\alpha>\sqrt{6}. The phase space of the system, in which these critical points are stable, has been shown in Figs. (1) and (2). Also, from equations 56 and (I) to (48), the values of the cosmographic parameters at these points are as follows:
{qc=2Qc=10Xc=80Yc=880\left\{\begin{array}[]{ll}q_{c}=2\\ Q_{c}=10\\ X_{c}=-80\\ Y_{c}=880\\ \end{array}\right.
where both V(ϕ)V(\phi) and effective VeffV_{eff} potentials are zero. So, the chameleon mass mchm_{ch} at those points is zero, as confirmed by equation (58).

Critical point, BB, corresponding to a potential-kinetic-scaling solution. This solution exists for all kinds of potentials, and has two eigenvalues depending on the slope of the potential and coupling constant β\beta: λ+=3+α22,λ=βα+α23.\lambda_{+}=-3+\frac{\alpha^{2}}{2}\,,\qquad\lambda_{-}=-\beta\alpha+\alpha^{2}-3.
As, the solution is stable for
{β<3+α2α,6<α<0β>3+α2α,0<α<6 \left\{\begin{array}[]{ll}\beta<\frac{-3+\alpha^{2}}{\alpha},-\sqrt{6}<\alpha<0\\ \beta>\frac{-3+\alpha^{2}}{\alpha},0<\alpha<\sqrt{6}\hbox{$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $}\end{array}\right.
which means that the potential-kinetic-dominated solution is stable for a sufficiently flat potential (α2<6\alpha^{2}<6). The phase space of the system has been shown in Fig.(3), in which the critical point is stable. The set of the values of the cosmographic parameters at this point is as follows {qc=1+12α2Qc=12α432α2+1Xc=34α6+114α43α2+1Yc=32α8254α6+354α45α2+1\left\{\begin{array}[]{ll}q_{c}=-1+\frac{1}{2}\alpha^{2}\\ Q_{c}=\frac{1}{2}\alpha^{4}-\frac{3}{2}\alpha^{2}+1\\ X_{c}=-\frac{3}{4}\alpha^{6}+\frac{11}{4}\alpha^{4}-3\alpha^{2}+1\\ Y_{c}=\frac{3}{2}\alpha^{8}-\frac{25}{4}\alpha^{6}+\frac{35}{4}\alpha^{4}-5\alpha^{2}+1\\ \end{array}\right.
The chameleon mass mchm_{ch} would also be

mch23H2=α2(1α26)\displaystyle\frac{m_{ch}^{2}}{3H^{2}}=\alpha^{2}(1-\frac{\alpha^{2}}{6}) (59)

indicating that the stability condition (α2<6)(\alpha^{2}<6) leads to an upper bound for chameleon mass as mch2<9H22m_{ch}^{2}<\frac{9H^{2}}{2}. For α=±2\alpha=\pm\sqrt{2} at this point, corresponding to the decelerationaccelerationdeceleration-acceleration phase of the universe, mch=2Hm_{ch}=2H and all cosmographic parameters are zero. For α0\alpha\rightarrow 0 at this point, in addition, the potential tends to V(ϕ)M4V(\phi)\rightarrow M^{4} and the cosmographic parameters would be {qc=1,Qc=Xc=Yc=1}\{q_{c}=-1,Q_{c}=X_{c}=Y_{c}=1\} , representing the cosmographic parameters of ΛCDM\Lambda CDM model.
Critical point CC, corresponds to the fluid-kinetic-scaling solution. This solution depends on the coupling constant β\beta and exists for all potentials. It has two eigenvalues depending on both α\alpha and β\beta: λ+=3/2+β2\lambda_{+}=-3/2+\beta^{2} and λ=3+2β22βα\lambda_{-}=3+2\beta^{2}-2\beta\alpha. The solution is stable for
{α<3+2β22β,32<β<0α>3+2β22β,0<β<32 \left\{\begin{array}[]{ll}\alpha<\frac{3+2\beta^{2}}{2\beta},-\sqrt{\frac{3}{2}}<\beta<0\\ \alpha>\frac{3+2\beta^{2}}{2\beta},0<\beta<\sqrt{\frac{3}{2}}\hbox{$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $}\end{array}\right.
in appropriate phase space shown in Fig.(4). The set of the values of cosmographic parameters at this point is:
{qc=12+β2Qc=1+3β2+2β4Xc=72272β216β46β6Yc=352+1632β2+134β4+94β6+24β8\left\{\begin{array}[]{ll}q_{c}=\frac{1}{2}+\beta^{2}\\ Q_{c}=1+3\beta^{2}+2\beta^{4}\\ X_{c}=-\frac{7}{2}-\frac{27}{2}\beta^{2}-16\beta^{4}-6\beta^{6}\\ Y_{c}=\frac{35}{2}+\frac{163}{2}\beta^{2}+134\beta^{4}+94\beta^{6}+24\beta^{8}\\ \end{array}\right.

[Uncaptioned image]

Fig. 3: The phase space for α=1\alpha=-1 and β=1\beta=-1 . The late time attractor is scaling solution with ζ1=66,ζ2=0\zeta_{1}=\frac{\sqrt{6}}{6},\zeta_{2}=0.

along with chameleon mass mchm_{ch}

mch23H2=β2(12β23)\displaystyle\frac{m_{ch}^{2}}{3H^{2}}=\beta^{2}(1-\frac{2\beta^{2}}{3}) (60)

determining the stability condition (β2<32)(\beta^{2}<\frac{3}{2}) for upper bound of chameleon mass in the form of mch2<9H216m_{ch}^{2}<\frac{9H^{2}}{16}. As β0\beta\rightarrow 0 , the potential tends to Veff(ϕ)ρmV_{eff}(\phi)\rightarrow\rho_{m} and the cosmographic parameters would be
qc=1/2,Qc=1,Xc=72,Yc=352q_{c}=1/2,Q_{c}=1,X_{c}=-\frac{7}{2},Y_{c}=\frac{35}{2}

[Uncaptioned image]

Fig. 4: The phase space for α=4\alpha=-4 and β=1\beta=-1 . The late time attractor is scaling solution with ζ1=63,ζ2=13\zeta_{1}=\frac{\sqrt{6}}{3},\zeta_{2}=\frac{1}{3}.

which are those corresponding to the matter-dominated era. The radiation-dominated epoch can also be represented by β2=12\beta^{2}=\frac{1}{2}, with mch=Hm_{ch}=H and cosmographic parameters
qc=1,Qc=3,Xc=15,Yc=105q_{c}=1,Q_{c}=3,X_{c}=-15,Y_{c}=105.
It is worth noting that, while the critical points BB and CC have the same QQ parameter (Qc=1Q_{c}=1) when (α,β)0(\alpha,\beta)\rightarrow 0, however they have different deceleration parameters
point,B:qc=1/2point,B:q_{c}=1/2 and point,C:qc=1point,C:q_{c}=-1.
This points are corresponds to SCDMSCDM and LCDMLCDM states respectivelyAlam . This degeneracy is associated with the order of the derivatives of scale factor. In fact, it is possible to derive QcQ_{c} in terms of qcq_{c} as

Qc=2qc2+qc\displaystyle Q_{c}=2q_{c}^{2}+q_{c} (61)

indicating two possible values of qcq_{c} for Qc>18Q_{c}>\frac{-1}{8}

qc=1±1+8Qc4\displaystyle q_{c}=\frac{-1\pm\sqrt{1+8Q_{c}}}{4} (62)
[Uncaptioned image]

Fig. 5: The phase space for α=10\alpha=-10 and β=4\beta=4 . The late time attractor is scaling solution with ζ1=628,ζ2=137196\zeta_{1}=\frac{\sqrt{6}}{28},\zeta_{2}=\frac{137}{196}.

Meaning that, two different epochs of the universe with different values of the deceleration parameter may have the same parameter QQ.
Critical point, DD corresponds to a fluid potential-kinetic-scaling solution with eigenvalues

λ+=32β34α+Aβ+αλ=32β34αAβ+α\lambda_{+}=\frac{\frac{3}{2}\beta-\frac{3}{4}\alpha+\sqrt{A}}{-\beta+\alpha}\,\qquad\lambda_{-}=\frac{\frac{3}{2}\beta-\frac{3}{4}\alpha-\sqrt{A}}{-\beta+\alpha}\,
where A=180β2108βα63α296β2α2+48β3α+48βα3+216A=180\beta^{2}-108\beta\alpha-63\alpha^{2}-96\beta^{2}\alpha^{2}+48\beta^{3}\alpha+48\beta\alpha^{3}+216. The cosmographic parameters at this point are as follows:
{qc=12(α+2β(αβ))Qc=12(5αβ+2β2+2α2(αβ)2)Xc=14(14α3+39α2β+24αβ2+4β3(αβ)3)Yc=14(70α4+209α3β+159α2β2+44αβ3+4β4(αβ)4)\left\{\begin{array}[]{ll}q_{c}=\frac{1}{2}\Bigg{(}\frac{\alpha+2\beta}{(\alpha-\beta)}\Bigg{)}\\ Q_{c}=\frac{1}{2}\Bigg{(}\frac{5\alpha\beta+2\beta^{2}+2\alpha^{2}}{(\alpha-\beta)^{2}}\Bigg{)}\\ X_{c}=-\frac{1}{4}\Bigg{(}\frac{14\alpha^{3}+39\alpha^{2}\beta+24\alpha\beta^{2}+4\beta^{3}}{(\alpha-\beta)^{3}}\Bigg{)}\\ Y_{c}=\frac{1}{4}\Bigg{(}\frac{70\alpha^{4}+209\alpha^{3}\beta+159\alpha^{2}\beta^{2}+44\alpha\beta^{3}+4\beta^{4}}{(\alpha-\beta)^{4}}\Bigg{)}\\ \end{array}\right.
with chameleon mass mchm_{ch} given by

mch23H2=α2(132(βα)2(βα+α23)(βα)2)\displaystyle\frac{m_{ch}^{2}}{3H^{2}}=\alpha^{2}\Bigg{(}1-\frac{3}{2(\beta-\alpha)^{2}}-\frac{(-\beta\alpha+\alpha^{2}-3)}{(\beta-\alpha)^{2}}\Bigg{)} (63)
+β2(βα+α23(βα)2)\displaystyle+\beta^{2}\Bigg{(}\frac{-\beta\alpha+\alpha^{2}-3}{(\beta-\alpha)^{2}}\Bigg{)}

The phase space of system has been shown in Fig.(5), in which the critical point is stable and states follow from initial conditions. It is interesting to note that, the cosmographic parameters at points CC and DD get the same values when β0\beta\rightarrow 0. Under this condition at these respected points, however, the chameleon mass gets different values as 0 and 9H22\frac{9H^{2}}{2}, respectively. Similarly, for α0\alpha\rightarrow 0, the critical points BB and DD have the same amounts of cosmographic parameters with different chameleon masses. From equation (58), because, the chameleon mass mch23H2\frac{m_{ch}^{2}}{3H^{2}} depends not only on the (q,α,β)(q,\alpha,\beta) but also on xx or ζ1=x6=ϕ˙6HMpl\zeta_{1}=\frac{x}{\sqrt{6}}=\frac{\phi\dot{}}{\sqrt{6}HM_{pl}}.

There are the following three solutions for variable xx, according to the equation (I) with {q=1/2,Q=1}\{q=1/2,Q=1\},
{x1=0x2=3+(912αβ+12β2)122(αβ)x3=3(912αβ+12β2)122(αβ)\left\{\begin{array}[]{ll}x_{1}=0\\ x_{2}=\frac{-3+(9-12\alpha\beta+12\beta^{2})^{\frac{1}{2}}}{2(\alpha-\beta)}\\ x_{3}=\frac{-3-(9-12\alpha\beta+12\beta^{2})^{\frac{1}{2}}}{2(\alpha-\beta)}\\ \end{array}\right.
Where x1=x2=0x_{1}=x_{2}=0 and x3=3αx_{3}=-\frac{3}{\alpha} are the critical points CC and DD, by β=0\beta=0 constraint. As a result, it is possible to having two or three different critical points with different chameleon mass, while their cosmographic parameters are the same.

III Summary and remarks

In our previous works, the stability analysis of chameleon field and its interaction with other fields have been studied sal1 ,sal3 ,sal4 . The chameleon gravity on cosmological scales and constraining its parameters (α,β)(\alpha,\beta) have also been investigated for various potentials sal5 . This paper has shown that, here, it is possible to reconstruct the chameleon gravity in the presence of exponential potential V=M4exp(αϕMpl)V=M^{4}\exp(\frac{\alpha\phi}{M_{pl}}) on a cosmological scale, by measuring the first three derivatives of the scale factor (H,q,Q)(H,q,Q), if the chameleon parameter β\beta and coupling constant α\alpha are known. In this right, measuring the third derivative of the scale factor QQ is of great importance to reconstruct the chameleon free parameters/variables. However, If, nothing could be proposed about the parameters (α,β)(\alpha,\beta), chameleon model could only be reconstructed by measuring the first five derivatives of the scale factor; as the parameters (α,β)(\alpha,\beta) will also be determined automatically. If. in addition, we want to test the validity of the chameleon model, the first six derivatives of the scale factor are required. In this respect, we reconstructed the free parameters of the model based on the best-fitted values of the cosmographic parameters in the significant studies done by the authors of Tegmark and Cap . In model-reconstructing paradigm using the data referenced to the former, the result was x0=0x_{0}=0, y0=0.824,z0=2.176y_{0}=0.824,z_{0}=2.176 and (α,β)(±2.780,±10.01)(\alpha,\beta)\simeq(\pm 2.780,\pm 10.01); as a case corresponding to ϕ˙mpH|0=0\frac{\dot{\phi}}{m_{p}H}|_{0}=0, ρmeβϕMpl3H2Mpl2|00.274,z=V3H2Mpl2|00.725\frac{\rho_{m}e^{\frac{\beta\phi}{M_{pl}}}}{3H^{2}M^{2}_{pl}}|_{0}\simeq 0.274,z=\frac{V}{3H^{2}M^{2}_{pl}}|_{0}\simeq 0.725. Based on the best-fitted cosmographic values of the latter, the result was x0=0x_{0}=0, y0=0.74,z0=.2.262y_{0}=0.74,z_{0}=.2.262 and (α,β)(±2.598,±11.25)(\alpha,\beta)\simeq(\pm 2.598,\pm 11.25); as a case corresponding to ϕ˙mpH|0=0\frac{\dot{\phi}}{m_{p}H}|_{0}=0, ρmeβϕMpl3H2Mpl2|00.246,z=V3H2Mpl2|00.754\frac{\rho_{m}e^{\frac{\beta\phi}{M_{pl}}}}{3H^{2}M^{2}_{pl}}|_{0}\simeq 0.246,z=\frac{V}{3H^{2}M^{2}_{pl}}|_{0}\simeq 0.754.
Recently, some studies have constrained the chameleon parameter β\beta by new technics, for example mart by searching for (solar) chameleons with the CERN Axion Solar Telescope (CAST), reported as (1<β<106)(1<\beta<10^{6}). Using neutron interferometry, also, the author of Lemmel has found that the β\beta constant is less than 1.9×1071.9\times 10^{7}. Now, based on the best fisted values of the cosmographic parameters by those mentioned above (Tegmark ,Cap ), we have found β10\beta\simeq 10 and β11\beta\simeq 11. These two values are close to each other, lie in the region of those expected by mart ,Lemmel and comparable with sal5 and that previously pointed out by Khoury and Weltman in the original chameleon paper Khourym (Khoury & Weltman 2004) (in harmony with string theory, the β\beta parameter should be of the order of unity). Finally, we derived the value of each of the cosmographic parameters at the level of critical points for chameleon mechanism. The important point was that, all cosmographic parameters can be derived in terms of the deceleration parameter qq at these points; meaning that only deceleration parameter is significant at this level.

We have also derived an expression for the chameleon mass in terms of the cosmographic and chameleon (α,β)(\alpha,\beta) parameters. The representation of the chameleon mass in terms of the cosmographic parameters shows that, not only the respective field takes different masses depending on the local matter density but also evolves dynamically in the Universe. It acquires a time-dependent mass by varying at different epochs of the universe. Hence, the field interaction range λ=mch1\lambda=m_{ch}^{-1} is also varying through the space and time.

References

  • (1) A. Sandage, Physics Today, February 23, 34 (1970)
  • (2) S. Weinberg, Astrophys. J. Lett., 161, L233 (1970)
  • (3) E.R. Harrison, Nature 260, 591 (1976)
  • (4) P.Hut, Nature 267, 128 (1977)
  • (5) A.G. Reiss et al, Astron. J. 116, 1009 (1998)
  • (6) C. I. Bennet et al, Astrophys J. Suppl. 148:1, (2003)
  • (7) A. G. Riess, et al, [Supernova Search TeamCollaboration] Astron J. 116 1009 (1998)
  • (8) A. C. Pope, et. al, Astrophys J. 607 655, (2004)
  • (9) D. N. Spergel, et. al., Astrophys J. Supp. 148 175, (2003)
  • (10) V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 9 373-444, (2000)
  • (11) S. Weinberg, Rev. Mod. Phys. 61 1(1989)
  • (12) R. R. Caldwell, R. Dave and P. J. Steinhardt, Phys. Rev. Lett. 80 1582,(1998)
  • (13) I. Zlatev, L. Wang and P. J. Steinhardt, Phys. Rev. Lett. 82 896,( 1999)
  • (14) R. R. Caldwell, M. Kamionkowski, N. N. Weinberg, Phys. Rev. Lett. 91 071301,( 2003)
  • (15) Z. H. Zhu, M. K. Fujimoto and X. T. He, Astrophys J. 603 365-370,( 2004)
  • (16) Z. H. Zhu and J. S. Alcaniz, Astrophys J. 620 7-11 ( 2005 )
  • (17) Sadeghi, J., Setare, M. R., Banijamali, A., & Milani, F. 2008, Phys. Lett. B 662 92; Sadeghi, J., Setare, M. R., Banijamali, A., & Milani, F. 2009, Phy. Rev. D 79 123003; Guo, Z. K. et al. 2005, Phys. Lett. B 608, 177; Xia, J.-Q., Feng, B., & Zhang, X. 2005, Mod. Phys. Lett. A 20 2409; Setare, M. R. 2006, Phys. Lett. B 641 130; Zhao, W. & Zhang, Y. 2006, Phy. Rev. D 73 123509; Zhao, G.-B., Xia, J.-Q., Feng, B., & Zhang, X. 2007, Int. J. Mod. Phys. D 16, 1229; Setare, M. R., Sadeghi, J. & Amani, A.R. 2008, Phys. Lett. B 660 299; Setare, M. R. & Saridakis, E. N. 2008, Phys. Lett. B 668 177; Setare, M. R. & Saridakis, E. N. 2009, Int. J. Mod. Phys. D 18 549; Setare, M. R. & Saridakis, E. N. 2008, J. Cos. Astro. Phys. 09 026.
  • (18) Cai, Y. F., Qiu, T., Piao, Y. S., Li, M. & Zhang, X. 2007, JHEP 0710 071.
  • (19) Farajollahi, H., Salehi, A., Tayebi, F., Ravanpak, A. 2011, J. Cos. Astro. Phys. 05, 017.
  • (20) Capozziello, S., Cardone, V. F., Carloni, S. & Troisi, A. 2006, Int.J.Mod.Phys. D15 69; 2003, Int.J.Mod.Phys. D12 1969.
  • (21) M. R. Setare, Phys. Lett. B644:99-103,(2007)
  • (22) Setare,M. R. & Jamil,M. 2010, Phys. Lett. B 690 1-4 ; Davis,A. C., Schelpe, C. A.O., Shaw, D. J., 2009, Phy. Rev. D 80 064016 ; Ito, Y. & Nojiri, S. 2009, Phy. Rev. D 79:103008; Tamaki,T. & Tsujikawa,S. 2008, Phy. Rev. D 78 084028 ; Farajollahi, H. & Salehi, A. 2010b Int. J. Mod. Phys. D19:621-633; Mota,D.F. & Shaw, D.J. 2007, Phy. Rev. D 75, 063501; Dimopoulos, K. & Axenides, M. 2005, J. Cos. Astro. Phys. 0506:008.
  • (23) D. H. Lyth and A. Riotto, Phys. Rept. 314, 1 (1999)
  • (24) C. Wetterich, Nucl. Phys. B302, 668 (1988)
  • (25) P. J. E. Peebles and B. Ratra, Ap. J. 325 ,L17 (1988)
  • (26) R. R. Caldwell, R. Dave and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998)
  • (27) D. A. Easson, JCAP 070 2, 004 (2007)
  • (28) T. Damour, G. W. Gibbons and C. Gundlach, Phys. Rev. Lett, 64, 123 (1990)
  • (29) M. R. Setare, Elias C. Vagenas, Int. J. Mod. Phys. D18:147-157 (2009)
  • (30) S. M. Carroll, Phys. Rev. Lett. 81 3067(1998)
  • (31) S. M. Carroll, W. H. Press and E. L. Turner, Ann. Rev. Astron. Astrophys, 30, 499 (1992)
  • (32) T. Biswas, R. Brandenberger, A. Mazumdar and T. Multamaki. Phys.Rev. D74 063501, (2006)
  • (33) J. P. Uzan, Rev. Mod. Phys. 75, 403 (2003)
  • (34) B. Bertotti et al. Nature 425, 374 (2003)
  • (35) G. F. Chew and S. C. Frautschi. Phys. Rev. Lett. 7, 394 (1961)
  • (36) T. Damour, F. Piazza and G. Veneziano, Phys. Rev. D 66 , 046007 (2002)
  • (37) S. Nojiri, S. D. Odintsov, Mod. Phys. Lett. A 19:1273-1280 (2004)
  • (38) J. Khoury and A. Weltman: Phys.Rev.D69:044026,2004;
  • (39) D. F. Mota, J. D. Barrow, Phys. Lett. B581 141-146(2004);
  • (40) J. Khoury and A. Weltman, Phys. Rev. Lett. 93,171104 (2004)
  • (41) Ph. Brax, C. van de Bruck, A. C. Davis, J. Khoury and A. Weltman. Phys. Rev.D70, 123518 (2004)
  • (42) C. Wetterich, Astron. Astrophys. 301, 321 (1995)
  • (43) T. Damour and A.M. Polyakov, Nucl. Phys. B423, 532 (1994); Gen. Rel. Grav. 26, 1171 (1994)
  • (44) G. Huey, P.J. Steinhardt, B. A. Ovrut and D. Waldram. Phys. Lett. B 476, 379 (2000)
  • (45) C.T. Hill and G. C. Ross, Nucl. Phys. B311, 253 (1988)
  • (46) J. Ellis, S. Kalara, K.A. Olive and C. Wetterich, Phys. Lett. B 228, 264 (1989)
  • (47) D. F. Mota and C. van de Bruck, Astron. Astrophys. 421,71 (2004)
  • (48) Liske J. et al., Mon. Not. Roy. Astron. Soc. 386, 1192 (2008).
  • (49) S. Weinberg, Gravitation and cosmology: Principles and applications of the general theory of relativity, (Wiley, New York, 1972).
  • (50) M. Visser, Class. Quantum Gravity 21, 2603 (2004)
  • (51) Matt Visser, Gen.Rel.Grav.37:1541-1548,2005
  • (52) S. Capozziello, V.F. Cardone, V. Salzano,Phys.Rev.D78:063504,2008
  • (53) A. Aviles, C. Gruber, O. Luongo, H. Quevedo, Arxiv: 1204.2007, (2011); A. Aviles, L. Bonanno, O. Luongo, H. Quevedo, Phys. Rev. D, 84, 103520, (2011).
  • (54) Capozziello, S., Cardone, V.F., Troisi, A. 2005, Phys. Rev. D, 71, 043503
  • (55) Capozziello, S., Cardone, V.F., Troisi, A. 2006, JCAP, 0608, 001
  • (56) S. Capozziello, V. F. Cardone, H. Farajollahi, and A. Ravanpak Phys. Rev. D 84, 043527
  • (57) U. Alam, V. Sahni, T. D. Saini, A. A. Starobinsky, Mon. Not. Roy. Astron. Soc. 344, 1057, (2003); V. Sahni, T. D. Saini, A. A. Starobinsky, U. Alam, JETP Lett., 77, 201,
  • (58) A. Salehi, M. R. Setare, A. Alaii, Eur. Phys.J. C 78 (6), 495
  • (59) K. Bamba et al., Astrophys. Space Sci. 342, 155 (2012) [arXiv:1205.3421].
  • (60) C. Cattoen and M. Visser, Phys. Rev. D 78, 063501 (2008) [arXiv:0809.0537].
  • (61) V. Vitagliano, J. Q. Xia, S. Liberati and M. Viel, JCAP 1003, 005 (2010) [arXiv:0911.1249].
  • (62) C. Cattoen and M. Visser, gr-qc/0703122; C. Cattoen and M. Visser, Class. Quant. Grav. 24, 5985 (2007) [arXiv:0710.1887]; M. Visser and C. Cattoen, arXiv:0906.5407 [gr-qc].
  • (63) L. X. Xu and Y. Wang, Phys. Lett. B 702, 114 (2011) [arXiv:1009.0963].
  • (64) J. Q. Xia et al., Phys. Rev. D 85, 043520 (2012) [arXiv:1103.0378]. [34] M. J. Zhang, H. Li and J. Q. Xia, Eur. Phys. J. C 77, no. 7, 434 (2017) [arXiv:1601.01758].
  • (65) P. K. S. Dunsby and O. Luongo, Int. J. Geom. Meth. Mod. Phys. 13, 1630002 (2016) [arXiv:1511.06532]; O. Luongo, G. B. Pisani and A. Troisi, Int. J. Mod. Phys. D 26, 1750015 (2016) [arXiv:1512.07076].
  • (66) A. Aviles, C. Gruber, O. Luongo and H. Quevedo, Phys. Rev. D 86, 123516 (2012) [arXiv:1204.2007]; A. Aviles, A. Bravetti, S. Capozziello and O. Luongo, Phys. Rev. D 87, 044012 (2013) [arXiv:1210.5149]; A. Aviles, A. Bravetti, S. Capozziello and O. Luongo, Phys. Rev. D 87, 064025 (2013) [arXiv:1302.4871]; O. Luongo, Mod. Phys. Lett. A 26, 1459 (2011); A. de la Cruz-Dombriz et al., JCAP 1612, 042 (2016) [arXiv:1608.03746].
  • (67) Y. N. Zhou, D. Z. Liu, X. B. Zou and H. Wei, Eur. Phys. J. C 76, 281 (2016) [arXiv:1602.07189].
  • (68) X. B. Zou, H. K. Deng, Z. Y. Yin and H. Wei, Phys. Lett. B 776, 284 (2018) [arXiv:1707.06367].
  • (69) Ph. Brax et al, JCAP 0411 (2004) 004
  • (70) Hao Wei, Rong-Gen Cai, Phys.Rev.D71:043504,2005
  • (71) Ph. Brax et al, Phys.Lett.B633:441-446,2006
  • (72) Baruch Feldman, Ann E. Nelson, JHEP 0608 (2006) 002
  • (73) David F. Mota, Douglas J. Shaw,Phys.Rev.Lett.97:151102,2006
  • (74) Amol Upadhye, Steven S. Gubser, Justin Khoury, Phys.Rev. D74 (2006) 104024
  • (75) P. Brax, Jerome Martin,Phys.Lett.B647:320-329,2007
  • (76) Ph.Brax, C.van de Bruck, A. -C. Davis, Phys.Rev.Lett.99:121103,2007
  • (77) P. Brax et al, Phys.Rev.D76:085010,2007
  • (78) P. Brax et al, Phys.Rev.D77:015018,2008
  • (79) C. Burrage, Phys.Rev.D77:043009,2008
  • (80) S. Capozziello, S. Tsujikawa,Phys.Rev.D77:107501,2008
  • (81) A.E.Nelson, J. Walsh, Phys.Rev.D77:095006,2008
  • (82) S. Das, N. Banerje, Phys.Rev.D78:043512,2008
  • (83) A.S.Chou et al. Phys.Rev.Lett.102:030402,2009
  • (84) P. Brax et al. Phys.Rev.D78:104021,2008
  • (85) T.Tamaki, S.Tsujikawa, Phys.Rev.D78:084028,2008
  • (86) C. Burrage, A.C. Davis, Douglas J. ShawPhys.Rev.D79:044028,2009
  • (87) Shinji Tsujikawa, Takashi Tamaki, Reza Tavakol, JCAP 0905:020,2009
  • (88) Yusaku Ito, Shin’ichi Nojiri, Phys.Rev.D79:103008,2009
  • (89) A.C. Davis, Camilla A. O. Schelpe, Douglas J. Shaw Phys.Rev.D80:064016,2009
  • (90) P. Brax et al. Phys.Rev.D81:103524,2010
  • (91) Camilla A. O. Schelpe, Phys.Rev.D82:044033,2010
  • (92) Ph. Brax, C. van de Bruck, A. C. Davis, D. J. Shaw, D. Iannuzzi, Phys.Rev.Lett.104:241101,2010
  • (93) Philippe Brax, Konstantin Zioutas, Phys.Rev.D82:043007,2010
  • (94) G. Rybka et al. Phys.Rev.Lett.105:051801,2010
  • (95) Ph. Brax, R. Rosenfeld, D. A. Steer, JCAP 1008:033,2010
  • (96) M. R. Setare, Mubasher Jamil,Phys.Lett.B690:1-4,2010
  • (97) Ph. Brax et al. Phys.Rev.D82:083503,2010
  • (98) Andrea Zanzi, Phys.Rev.D82:044006,2010
  • (99) S. A. Levshakov,Astronomy and Astrophysics, v. 524, A32 (2010)
  • (100) Philippe Brax, Clare Burrage, Phys.Rev.D82:095014,2010
  • (101) Ahmad Sheykhi, Mubasher Jamil, Phys.Lett.B694:284-288,2011
  • (102) H. Farajollahi, M. Farhoudi, A. Salehi, H. Shojaie, Astrophys.Space Sci.337:415-423, 2012
  • (103) Jason H. Steffen et al. Phys.Rev.Lett.105:261803,2010
  • (104) Hossein Farajollahi, Amin Salehi, JCAP 1011:006,2010
  • (105) H.Farajollahi, Amin salehi, Phys. Rev. D 85, 083514 (2012)
  • (106) Radouane Gannouji,Phys.Rev.D82:124006,2010
  • (107) Kurt Hinterbichler, Justin Khoury, Horatiu Nastase, JHEP 1103:061,2011
  • (108) Alessandra Silvestri, Phys.Rev.Lett.106:251101,2011
  • (109) Philippe Brax and Guillaume Pignol, Phys. Rev. Lett. 107, 111301
  • (110) Kurt Hinterbichler, Justin Khoury, Horatiu Nastase, Rogerio Rosenfeld, JHEP 08 (2013) 053
  • (111) Yousef Bisabr, Phys. Rev. D 86, 127503 (2012)
  • (112) Vladimir Folomeev, Phys. Rev. D 86, 063008 (2012)
  • (113) Amol Upadhye, Wayne Hu, and Justin Khoury,Phys. Rev. Lett. 109, 041301 (2011)
  • (114) John D. Anderson, J. R. Morris, Phys.Rev.D 85, 084017 (2012)
  • (115) Johannes Noller, JCAP07(2012)013
  • (116) Ayumu Terukina, Kazuhiro Yamamoto, Phys. Rev. D 86, 103503 (2012)
  • (117) Lucas Lombriser, Kazuya Koyama, Gong-Bo Zhao, Baojiu Li, Phys.Rev.D85:124054,2012
  • (118) Yu. N. Pokotilovski,Physics Letters B719 (2013) 341-345
  • (119) Kh. Saaidi, A. Mohammadi, T. Golanbari, H. Sheikhahmadi, B. Ratra, Physical Review D 86, 045007(2012)
  • (120) Khaled Saaidi, AbolHassan Mohammadi, Physical Review D 85, 023526(2012)
  • (121) Khaled Saaidi, Abolhassan Mohammadi, Haidar Sheikhahmadi, Physical Review D 83, 104019 (2011)
  • (122) Vladimir Folomeev, Douglas Singleton, Phys. Rev. D 85, 064045 (2012)
  • (123) A. Hees, A. Fuzfa, Phys. Rev. D, 85, 103005, 2012
  • (124) Katherine Jones-Smith,Phys. Rev. D 85, 043502 (2012)
  • (125) Baojiu Li, George Efstathiou, MNRAS, 421, 1431 (2012)
  • (126) Philippe Brax, Axel Lindner, and Konstantin Zioutas, Phys. Rev. D 85, 043014(2012)
  • (127) H. Farajollahi, A. Salehi,JCAP 07(2011)036
  • (128) Vladimir Folomeev, Phys. Rev. D 85, 024008 (2012)
  • (129) David F. Mota and Camilla A. O. Schelpe, Phys. Rev. D 86, 123002
  • (130) Yin Li, Wayne Hu,Phys. Rev. D 84, 084033 (2011)
  • (131) V. Dzhunushaliev, V. Folomeev, D. Singleton, Phys. Rev. D 84, 084025 (2011)
  • (132) Valerio Faraoni Phys.Rev.D83:124044,2011
  • (133) Katherine Jones-Smith, Francesc Ferrer,Phys. Rev. Lett. 108, 221101 (2012)
  • (134) H. Farajollahi, A. Salehi, F. Tayebi, A. Ravanpak,JCAP 05(2011)017
  • (135) Mubasher Jamil, Ibrar Hussain, D. Momeni,Eur.Phys.J.Plus 126:80,2011
  • (136) Philippe Brax, Nicola Tamanini, Phys. Rev. D 93, 103502 (2016)
  • (137) A.N. Ivanov and M. Wellenzohn,Phys. Rev. D 92, 125004
  • (138) Lucila Kraiselburd,Phys. Rev. D 97, 104044 (2018)
  • (139) Antonio Padilla, JCAP03(2016)058
  • (140) A.N. Ivanov and M. Wellenzohn, Phys. Rev. D92, 065006 (2015)
  • (141) H. Lemmel,Ph. Brax,A. N. Ivanov,T. Jenke,G. Pignol,Physics Letters B 743 (2015) 310–31
  • (142) Clare Burrage, Jeremy Sakstein, JCAP11(2016)045
  • (143) Antonio Padilla et al, JCAP03(2016)058
  • (144) Israel Quiros, Ricardo Garc?a-Salcedo, Tame Gonzalez, F. Antonio Horta-Rangel,Phys. Rev. D 92, 044055 (2015)
  • (145) Attaallah Almasi, Philippe Brax, Davide Iannuzzi, René I. P. Sedmik, Phys. Rev. D 91, 102002 (2015)
  • (146) Bridget Falck, Kazuya Koyama, Gong-bo Zhao, JCAP, 2015, 7, 049
  • (147) V.Anastassopoulos,P.L.B,Volume 749, Pages 172-180 (2015)
  • (148) Prolay Krishna Chanda, Subinoy Das, Phys. Rev. D 95, 083008 (2017)
  • (149) L.Gergely, Zoltn Keresztes,Phys. Rev. D 91, 024012 (2015)
  • (150) S. Baum, G. Cantatore, D. H. H. Hoffmann, M. Karuza, Y. K. Semertzidis, A. Upadhye, K. Zioutas,Physics Letters B 739 (2014) 167
  • (151) Surajit Chattopadhyay, Antonio Pasqua, Martiros Khurshudyan, Eur. Phys. J. C (2014) 74:3080
  • (152) Martin Pernot-Borràs, Joel Bergé, Philippe Brax, Jean-Philippe Uzan, Phys. Rev. D 100, 084006 (2019)
  • (153) Lucila Kraiselburd, Phys. Rev. D 99, 083516 (2019)
  • (154) Taishi Katsuragawa, Tomohiro Nakamura, Taishi Ikeda, Salvatore Capozziello, Phys. Rev. D 99, 124050 (2019)
  • (155) Philippe Brax, Sylvain Fichet, Phys. Rev. D 99, 104049 (2019)
  • (156) Tomohiro Nakamura, Taishi Ikeda, Ryo Saito, Chul-Moon Yoo, Phys. Rev. D 99, 044024 (2019)
  • (157) Antonio De Felice, Shinji Mukohyama, Michele Oliosi, Yota Watanabe, Phys. Rev. D 97, 024050 (2018)
  • (158) Taishi Katsuragawa, Shinya Matsuzaki,Phys. Rev. D 97, 064037 (2018)
  • (159) Philippe Brax, Anne-Christine Davis, Rahul Jha, Phys. Rev. D 95, 083514 (2017)
  • (160) Haidar Sheikhahmadi et al, Eur. Phys. J. C (2019) 79: 1038
  • (161) Maciej Dunajski, Gary Gibbons,Class. Quant. Grav. 25 (2008)
  • (162) En-Kun Li, Minghui Du, Lixin Xu, MNRAS, 491, 4960 (2020)
  • (163) Jun-Qing Xia, Vincenzo Vitagliano, Stefano Liberati, and Matteo Viel, Phys. Rev. D. 85, 043520 (2012)
  • (164) M. Tegmark et al., Sloan Digital Sky Survey Collaboration. Phys.Rev. D 69, 103501 (2004)
  • (165) S. Capozziello, V.F. Cardone, H. Farajollahi, A. Ravanpak, Phys.Rev. D 84, 043527 (2011)